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Abstract

These days, factories are often planned in
simulation environments — digital twins
first. The advantage of these digital twins
is that the preparation and testing the
entire robotized production line can be
performed before the actual factory hall
is built. The process assumes the equip-
ment locations in the factory correspond
exactly the digital twin ones. Therefore, it
is necessary to check the actual locations
and fix inaccuracies either in the factory
or in its simulation. This work proposes a
method of autonomous 3D scanning in fac-
tory halls with a mobile robotic platform.
As a main part of the method, we de-
signed a new exploration algorithm, called
Exploration by Static Scans (ESS), that
optimizes the completeness of 3D data
needed for the installation check in combi-
nation with minimizing the time needed
for the process. Due to technical limi-
tations, the high-resolution point clouds
are not available in real-time during the
factory mapping process. The algorithm
estimates several scanning positions based
on the digital twin model. The following
scanning positions are determined real-
time from low-quality LiDAR data. At
first, we verified the method in a model
of the factory hall in a robotic simulator.
Then we assembled a hardware prototype
of a scanning mobile robotic platform and
verified its functionality in a real factory
hall environment. Finally, we summarized
the obtained knowledge of using an au-
tonomous robot to automate 3D scanning
in factory halls in a study of technical
feasibility.

Keywords: mobile robots, autonomous
robots, 3D scanning, exploration,

mapping

Supervisor: prof. Ing. Tom&s Svoboda,
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Abstrakt

V dnesni dobé jsou tovarny nejprve pripra-
veny v simulovaci jako tzv. digitdlni dvoj-
cata. Vyhodou téchto digitalnich dvojcat
je, ze pripravu a testovani celé robotizo-
vané vyrobni linky lze provést jesté pred
samotnou vystavbou tovarni haly. Tento
proces predpoklada, ze umisténi zarizeni
v tovarné presné odpovidd umisténi digi-
talniho dvojcete. Proto je nutné zkontro-
lovat skuteénd umisténi a opravit nepres-
nosti bud v tovarné, nebo v jeji simulaci.
Tato prace navrhuje metodu autonomniho
3D skenovani v tovarnich haladch s mo-
bilni robotickou platformou. Jako hlavni
Cast prace jsme navrhli novy explorac¢ni
algoritmus nazvany Exploration by Sta-
tic Scans (ESS), ktery optimalizuje upl-
nost 3D dat potfebnych pro kontrolu insta-
lace v kombinaci s minimalizaci ¢asu po-
tfebného pro cely skenovaci proces. Kvili
technickym omezenim nejsou naskenovana
data béhem skenovaciho procesu k dispo-
zici. Algoritmus odhaduje nékolik skenova-
cich pozic na zakladé modelu digitdlniho
dvojcete. Nasledujici skenovaci pozice jsou
urceny v realném cCase z nekvalitnich dat
LiDAR. Metodu jsme nejdrive ovérili na
modelu tovarni haly v robotickém simulé-
toru. Poté jsme sestavili prototyp skeno-
vaci{ mobilni robotické platformy a ovérili
jeji funkénost v redlném prostiedi tovarni
haly. Nakonec jsme ziskané poznatky o
vyuziti autonomniho robota pro automa-
tizaci 3D skenovani v tovarnich halach shr-
nuli do studie technické proveditelnosti.

Kli¢ova slova: mobilni roboty,
autonomni roboty, 3D skenovani,
explorace, mapovani

Preklad nazvu: Automatizace 3D
skenovani tovarni haly pomoci mobilniho
robotu
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Chapter 1

Introduction

. 1.1 Motivation

These days, factories are often planned in simulation environments — digital twins first.The
advantage of these digital twins is that the preparation and testing the entire production line
can be performed before the factory is built. The process assumes the equipment locations in
the factory correspond exactly the digital twin ones. Otherwise, it is necessary to program
the robots when deployed to avoid possible damage caused by their collision with other
objects. This would result in manufacturing downtime and financial loss. For these reasons,
it is necessary to verify the equipment positions in the factory after or better during the
factory construction, and fix occurred inaccuracies either in the factory or in its simulation.
Nevertheless, factories are often large; thus, scanning is time-consuming. Moreover, it has
to be done when the production is suspended, such as during nights, weekends, or planned
downtime; hence, it has to be planned in advance. Because of these problems, it is desirable
to automate the scanning process and let a robotic platform make scans whenever needed
without dependence on a human operator.

This task requires robust autonomous control of the robot and effective and complete
environment coverage. However, current environment exploration methods aim to effectively
explore environment as fast as possible without coverage density constraints and with a
precision of several centimeters. Nevertheless, this is inadequate for precise factory mapping.
Therefore, we would like to adapt these methods to this specific task.

. 1.2 Goals

The main goal of this thesis is to propose a method of autonomous 3D scanning in factory
halls with a mobile robotic platform supplemented by a recommendation of an appropriate
hardware setup. An essential part of this goal is to introduce a new exploration algorithm
that optimizes the completeness of 3D data needed for the installation check, i.e., checking
the position and orientation of individual robot manipulators and robotic cells during the
construction or reconstruction of the factory arrangement. We will determine how to profit
from the gained experiences with exploration of an unknown underground terrain. Our
exploration algorithm must incorporate the constraint that the scanner must stand still when
scanning, which lasts several minutes. Moreover, it is necessary to approximate the scans
gathered from this scanning procedure using data gathered by a laser scanner (LiDAR) since
the data from the high-resolution scanner are not available during the factory mapping process.
We will find a criterion function that prefers high-density coverage of the environment instead
of maximizing the explored volume. Furthermore, we will determine whether and how to
exploit the prior information about the environment to improve and speed up the whole
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process.

We will assemble a prototype of hardware solution from available robotic and sensory
equipment, and test it in a real factory hall environment. We will propose solutions to
detected real-world problems. Furthermore, we have to find an optimal way of sensor data
processing during the whole procedure to have as much information about the environment
as possible, considering time and memory limits.

Finally, we will conduct a study of the technical feasibility of using an autonomous robot
in combination with the proposed exploration algorithm to automate 3D scanning in factory
halls. We will assess whether our current autonomous robot control is robust, safe, and precise
enough for this task. Eventually, we have to find improvements that have to be done to ensure
it, e.g., place calibration markers in the environment to improve the robot’s localization.

. 1.3 Related work

Recently, as computing power has been improved and sensors used to obtain 3D information,
such as cameras and laser scanners, have expanded significantly in range, accuracy, and
affordability, the 3D modeling of environments became popular. Without a doubt, one of
the industrial areas where this technology will benefit is engineering and construction, where
increasing attention is paid to quality control and control processes. Since the construction
sites are usually extensive, an effective planning algorithm for data acquisition in an unknown
environment is essential. Klein et al. [I] proposed one of the first next-view-based algorithms
for large complex environments. Adan et al. [2] provided an overview of existing autonomous
scanning systems and discussed their practical applicability. They call the problem of the next
best location decision as the Next-Best-Scan problem. Similar to [3], they group the solution
strategies into two categories — Frontier-based and Information-based. An example of the
frontier-based approach is presented in [4]. They proposed an automatic planning method
for efficient and accurate 3D modeling of the environment with the help of several robots.
This method replaces the robot localization based on the iterative closest points algorithm
with a multi-robot localization technique called Cooperative Positioning System. The system
consists of the parent robot carrying a laser sensor and several child robots (wheeled robots
and quadcopters) carrying light white balls for identification.

Strategies exploiting Information Gain estimate the next best view based on how much
of the unknown volume is visible from that view. Several examples of Information Gain
computation are presented, in e.g., [3, Bl 6]. Kriegel et al. [6] maximized the object surface
coverage instead of minimizing unseen area as it is done in [3,[5]. Bissmarck et al. [7] compared
the effectiveness of several different approaches to Next Best View evaluation for both indoor
and outdoor environments. They realized that the differences in accuracy and efficiency were
insignificant and that the main difference was in performance time. The HRT (Hierarchical
ray tracing) algorithm [8] achieved the best time results. However, this method does not
use the Information Gain computation, unlike the other compared methods. Therefore, the
authors proposed a new algorithm FVHRT (Frontier oriented volumetric hierarchical ray
tracing), with a similar algorithm speed as HRT but with Information Gain metric.

The autonomous scanning approaches can be divided according to the way how the scans are
collected—simultaneously while moving or only when the robot stands still (i.e., stop-and-go
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procedure). The first variant is often preferred for aerial robots as in [9), [10]. Meng et al.
[10] proposed a new two-stage method of autonomous reconstruction of the 3D environment
tested on drones simultaneously scanning with LiDAR. In the first step, suitable candidates
to visit are selected based on their Information Gain. In the second step, the optimal order
of visiting these points is calculated to maximize coverage of the space. Subsequently, the
trajectory to the first point is calculated. Then, the whole process is repeated, due to the
dynamically changing map, until the space is completely covered.

On the other hand, the second variant is often tested on ground robots, e.g., in [11], 12} [13]
or underwater robots [14]. Palomeras et al. [I4] proposed a probabilistic method of automatic
planning of individual scanning positions (next-best-view algorithm) to map and inspect
complex underwater environments. Their strategy selects scanning position candidates around
the current position to avoid moving back and forth.

Blaer and Allen [I1] proposed a method for automatic planning of individual scanning
positions to reconstruct 3D models of outdoor and indoor spaces. The procedure is divided
into two phases. In the first phase, a set of initial scanning positions is determined from the
prior 2D model to cover as much space as possible (also known as the art gallery problem).
The ordering of these scanning positions is formulated as a traveling salesman problem. An
initial 3D model is created from these scans. In the second phase, a set of scanning position
candidates is generated from a border between known and unknown parts of the environment.
The next scanning position is the candidate with the highest expected contribution to the 3D
model. This process is repeated until the model improvement is below a threshold.

Kim et al. [I2] utilize flexible 2D SLAM for robot position estimation in 3D. Their robotic
platform contains two LiDARs, one for dynamic scans and one for high-resolution scans for an
accurate 3D environment model. Dynamic scans are performed as the robot moves through
the environment. The data from dynamic scans are used to identify obstacles and suitable
locations for high-resolution static scans. The algorithm computes a fitness score for each
candidate along the robot trajectory based on the occlusion.

Similar to the other NBV methods, the method proposed in [15] selects the next scanning
position based on minimizing the number of occluded voxels. They introduced three new
types of voxels (window, door, and out), aside from the usual three types of voxels (empty,
occupied, occluded). Their method locates the doors and windows in the scanned room model
and removes them from the model. Moreover, the method exploits the geometry of the room
for the registration of point clouds.

. 1.4 Contribution

The contributions of this thesis are listed as follows:

® We designed a new exploration algorithm called Exploration by Static Scans (ESS)
optimizing the completeness of 3D data needed for the installation check in combination
with minimizing the time needed for the process.

® We proposed an approximation method for estimating the gathered high-resolution
point clouds from terrestrial scanner which are not available real-time during the factory
mapping process. The approximation exploits the information about the environment

3
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gathered by the LiDAR.

® We assembled a hardware prototype of a scanning mobile robotic platform and verified
its functionality in a real factory hall environment.

® We summarized the obtained knowledge of using an autonomous robot to automate 3D
scanning in factory halls in a study of technical feasibility.



Chapter 2

Experimental platform description

This chapter presents the experimental scanning mobile robot platform prepared profiting
from the experience of CTU-CRAS-NORLAB robotic team [16] in DARPA SubTerranean
Challenge [17]. At first, the meta-operating system and robotic simulator are presented in
Sec. 2.1| followed by the scanning platform description in [Sec. 2.2 and its simulation variant
in [Sec. 2.3 Then the solutions for robot localization and robot navigation are described in
Sections [2.4] and 2.5, respectively. Finally, the original exploration algorithm is described in
Sec. 2.6.

B 2.1 Robot Operating System and Ignition

Robots in both simulation and real world run under the Robot Operating System (ROS).
ROS [18] is an open-source, meta-operating system for robots. It contains services typical for
a classical operating system like hardware abstraction, low-level device control, and message-
passing between processes. ROS is a collection of tools, libraries, and conventions that enable
a collaborative environment for developing complex robotics software across different robotic
platforms.

The simulations were prepared in a robotic simulator called Ignition Gazebo because this
simulator was used in DARPA SubTerranean Challenge. Ignition [19] is a collection of open-
source software libraries and cloud services mainly aimed at robot developers, simplifying
high-performance applications development. Ignition is the successor of the robotic simulator
Gazebo Classic. Instead of upgrading the Gazebo Classic, a collection of loosely coupled
libraries was created. The following ones were used during the simulations:

® [gnition Physics — provides an interface for physics engines designed for various applica-
tions and with a range of features.

® Ignition Rendering — provides an interface for different rendering engines. It offers a
unified API for creating 3D graphics applications.

® [gnition Sensors — provides various sensor models generating realistic data from simula-
tions. It relies on other Ignition libraries, especially those providing rendering (Ignition
Rendering) and physics simulation (Ignition Physics).

® [gnition Gazebo — a robotic simulator with many features, such as high fidelity physics
(Ignition Physics), rendering (Ignition Rendering), and sensor models (Ignition Sensors).
It supports including physical objects as meshes in one of several 3D model file types:
.dae, .obj, etc.
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B 2.2 Real-world scanning platform prototype

The experimental scanning mobile robot platform used in simulation and real-world envi-
ronments was assembled regarding the specific requirements for our task. Since very precise
positioning of the factory equipment is required to prevent possible robot collisions, only ter-
restrial scanners can be considered for high-resolution scanning. Unfortunately, the scanning
procedure with this type of scanner lasts several minutes, and the scanner must stand still
during the procedure. Therefore, the robot carrying the scanner has to be able to hold a
stable position for several minutes. Moreover, the data from the terrestrial scanners are not
available during the factory mapping process. Hence, the robot must have other sensors to
move successfully in an unknown environment, which implies that its payload capacity has
to be sufficient to hold all necessary sensors. Additionally, we assume that the environment
is easily accessible and only in one height level. For these reasons, we chose a four-wheeled
mobile robot equipped with a high-resolution terrestrial scanner for factory mapping and
other sensors (e.g., LIDAR, RGBD camera, inertial measurement unit) for robot localization
and navigation.

Il 2.2.1 Robotic platform

Four-wheeled mobile robot Husky [20] (see |[Fig. 2.1) was selected for the factory mapping task
because its construction enables holding a stable position for several minutes, and its payload
capacity is sufficient for all needed sensors. Furthermore, it can traverse the environment in
a reasonable speed of at up to 1 m/s with a maximum acceleration of 3 ms~2. Since it is
designed for challenging real-world terrain, it should easily operate in a factory environment,
except for the narrow sections, where omnidirectional four-legged robots like Spot [21] would
be more suitable choice. However, the stable position with attached heavy payload and the
robustness are the reasons why we preferred Husky robot for our experiments. Nevertheless,
the usage of Spot for this task will be considered in future. Another important aspect is
the robot endurance, which was updated to several hours. The robot is equipped with a
number of sensors, such as several RGBD cameras, an inertial measurement unit, and a WiFi
connection.

B 2.2.2 Terrestrial scanner

The terrestrial scanners are suitable for our task because they offer high resolution and
precision (both in the magnitude of millimeters). Specifically, we chose Leica BLK360, which
offers 3 user-selectable resolution modes — 5/10/20 mm @ 10 m (corresponding to an angular
resolution of 0.03°/ 0.05°/ 0.11°) in both directions. The precisions presented in the datasheet
are the 3D point accuracy of 6 mm @ 10 m and the measured range accuracy of 4 mm @
10 m. The scanner can measure objects lying at a distance of from 0.6 m up to 60 m and
produces around 350 thousand points per second.

The scanner is meant to be operated by a human the whole time and therefore the scanning
procedure has to be started manually. It can be controlled via a tablet /smartphone application
over WiFi. Another way is to use the button on the scanner. The button behavior (what
should be captured and how) has to be set in the Windows or tablet/smartphone application.

6



2.3. Scanning platform in simulation

B 2.2.3 LiDAR sensor

As scanning with the terrestrial scanner lasts several minutes and the gathered data are un-
available during the factory mapping process, the robot localization estimation and navigation
have to be secured by other sensors. Moreover, it would be useful to have a possibility to
estimate the data measured by the terrestrial scanner. Therefore, we decided to use a LiDAR
sensor as it scans continuously with a scanning frequency of 10 Hz regardless of whether
the robot is moving or not. The resolution and precision are significantly lower than for
the terrestrial scanner but sufficient for the robot navigation and localization. Specifically,
the chosen LiDAR Ouster 0s-0 has the vertical angular resolution of 0.7° and the horizontal
resolution of 0.2°; which means there are six times more rays from the terrestrial scanner than
from the LiDAR in the horizontal plane. The LiDAR can produce more than 2.5 - 10° points
per second in the measurable distance from 0.3 m up to 50 m, with measurement precision
from 1.5cm to bem depending on the distance from the sensor.

B 2.2.4 Custom holder for the terrestrial scanner

We decided to mount the terrestrial scanner above the sensor rack because the sensor rack with
RGBD cameras and Ouster LIDAR cannot be moved, otherwise, the calibration of the rack
precise position would be needed. Since the 3D printed sensor rack has holes with atypical
dimensions, a custom 3D printed adapter (see Fig. 2.2 left) had to be designed to connect
the sensor rack and the aluminium profiles creating the construction. The construction has
a shape of the letter T" with perpendicular profiles in each vertex (see Fig. 2.2/ right) and a
holder for the terrestrial scanner in the intersection of two profiles (center of 7). The robot
with the attached construction and the terrestrial scanner can be seen in |Fig. 2.1}

B 23 Scanning platform in simulation

For simulation, we updated Husky robot model prepared for DARPA SubTerranean Chal-
lenge [22]. The sensor rack defined in the model specification was adjusted to match the
customizations made on the real robot. The original LiDAR sensor model was derived from
Robosense RS-LiDAR-16. Therefore, it was necessary to update the parameters to model
Ouster os-0 LiDAR.

Like in the scanning prototype, the Leica scanner model was placed above the LiDAR in
the sensor rack, but without the aluminum construction to simplify data gathering by the
LiDAR, i.e., to prevent occlusion caused by the construction.

Protocol buffers [23] used in Ignition Sensors plugins limit the size of data obtained from a
measurement simulation. The limit is too low to simulate the parameters similar to the Leica
ones with one instance of the scanner model. Therefore, we substituted the Leica scanner
with 12 instances, each of them covering a distinguished circular sector in the horizontal plane
with a central angle 6 = 30°. The scanner model has the same vertical field of view as Leica
BLK360 scanner, and the number of channels is 3000, corresponding to the medium settings
in Leica BLK360 (angular resolution of 0.05°). The horizontal angular resolution is 0.05°
too, and the horizontal field of view is 30° as mentioned before. Scans are generated and
processed separately.
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Figure 2.1: Husky robot with the attached terrestrial scanner.

. 2.4 Robot localization

The estimation of the precise robot position in a map, which is crucial for autonomous
robot control, is ensured by a 2-D/3-D mapping library relying on the ICP algorithm called
norlab-icp-mapper [24]. The principle of a basic version of the ICP algorithm is described as
follows.

B 2.4.1 Iterative closest point algorithm

Iterative closest point algorithm by Besl and Mckay [25] is one of the most popular approaches
for point cloud registration — the process of finding the spatial transformation (rotation and
translation), i.e., aligning a point cloud with the other one.

The algorithm assumes two roughly aligned point clouds P and Q having an arbitrary
number of 3D points. The outputs of the algorithm are rotation matrix R and translation
vector t representing the transformation needed to align P with Q. The rotation matrix is
initialized as identity matrix and the translation vector as zero vector.

The algorithm iteratively updates the transformation aligning point cloud P with point
cloud Q to minimize the distance between the corresponding points. It can be divided into
four steps:



2.4. Robot localization

Figure 2.2: 3D printed adapter (left) and the construction attached to the sensor rack (right).

Figure 2.3: Husky robot model for Ignition Gazebo simulator.

1. For each point p; from P, the closest point g; in Q is found. KD-tree structure is applied
to speed up the computation.

2. Correspondences between distant pairs of points are removed based on the threshold,
.e.g, a median of distances.

3. Transformation minimizing distance between the corresponding points is calculated as

R',t'= argmin Y [|[R'p;+t' —qif5. (2.1)
R/€SO(3),t'eR3

9



2. Experimental platform description

This problem is solved using SVD decomposition as proposed by Arun et al. [26]:

1 _
Pi=Pi— 7> Pi=Pi— D, (2.2)
i
1 -
4 =di— x> % =di— 4 (23)
i
T
H =3 piqg (2.4)
i
H=USV’ (2.5)
R* = VUT (2.6)
t"=q—R'D (2.7)
4. Points from P are transformed, and the rotation matrix and translation vector are
updated:
pi = R'p; +t' (2.8)
R=RR (2.9)
t=R't+t (2.10)

5. Go back to Step 1| and repeat the procedure until the sum of Euclidean squared errors
decreases under a specified threshold.

B 242 ICP-SLAM

While moving in an unknown environment, the robot has to construct a map and localize
itself in the map. This problem is known as Simultaneous Localization and Mapping (SLAM).
In this work, we assume an online SLAM problem, where past robot poses are not updated.
The robot builds its map from the 3D LiDAR scans, aligned using ICP algorithm, therefore
the method is called ICP-SLAM, and it works as follows.

Each new scan is uniformly downsampled. The remaining points are initially aligned with
the robot map based on the last transformation and odometry fused from encoders in wheels
and an inertial measurement unit. Then the ICP algorithm finds a more precise alignment of
the point clouds to improve the localization accuracy. The aligned scan points are added to
the map and the robot position is updated.

The ICP-SLAM suffers from several issues. It does not work when an incompatible
combination of environment and movement appears, e.g., forward motion in a long hallway
or rotation in a circular room. ICP algorithm needs a good initialization, i.e., good initial
alignment estimation or small change between scanning poses, to avoid the convergence to a
local minimum. Moreover, since the algorithm estimates the robot position sequentially, the
position error is accumulated in time.

B 25 Robot navigation

The robot is controlled by programs from a framework Robot deployment system (further
referred to as RDS) [27]. The approach [28] provides basic navigation functionality. The
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2.5. Robot navigation

framework is mainly designed for multi-robot exploration of unknown underground large-
scale environments and provides several exploration strategies targeted for low bandwidth
communication [29]. It can use various robot platforms, including walking robots, tracked
and wheeled vehicles, and it is compatible with different driving systems; moreover, it works
in various simulators.

Bl 2.5.1 Path planning

The input to the RDS framework is a sequence of scans from the LiDAR, which are used to
build a local dense 3D grid map. The local grid map is used to assess terrain traversability,
which is based mainly on measuring terrain roughness by the difference in the height of
the neighboring cells. Besides the traversability assessment, the local map serves for robot
navigation to nearby waypoints within the local map. The path from the current robot location
is planned using Dijkstra’s algorithm [30], which runs on a graph connecting neighboring
traversable cells, and the cost of each edge is evaluated by computing distance from obstacles
as shown in [3I]. An example of the path planned within the local map with assessed

traversability is shown in [Fig. 2.4l

#® Untraversable cells
Enlarged obstacles

® » Traversable cells
® Path

Figure 2.4: Example plan within the map with the assessed traversability. (Courtesy of [28].)

B 2.5.2 Navigation using the planned path

A separate module executes the path planned within the local map. The module selects
the next navigational waypoint lying at least 0.5 m ahead of the robot. Then the module
calculates the distance from the current robot position to the waypoint and the angle required
to turn the heading of the robot to the waypoint. Finally, the forward and angular velocities
are calculated based on the proportional control law.

11
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B 26 Original frontier-based exploration

Originally, the exploration was secured by a ROS package for robot navigation and exploration
called Naex [32]. The package contains two main programs — a planner that plans paths
globally and a follower that follows the planned path.

The planning program either receives the next navigation goal or computes it as a part of
an exploration strategy maximizing the reward/cost ratio, where frontiers are preferred. A
frontier is a cell (voxel) that separates known and unknown regions. A path to the closest
reachable point to the specified goal is planned if the goal is valid. If a start position is not
given, the path is planned from the robot’s current position. A point map is built internally
from input point clouds to assess traversability and enable global path planning.

The follower program follows published paths. At each control step, the nearest point
on the path is selected as a (local) navigation goal at each checkpoint. Once the path is
completed or a timeout is exceeded, a new one is taken. If there is no valid path, the robot
can backtrack to its previous checkpoint. The follower program checks possible collisions with
objects that are detected in the input point clouds and tries to avoid them.

12



Chapter 3

Exploration that maximizes quality of the 3D scans

This chapter introduces the proposed exploration algorithm called Exploration by Static
Scans (ESS). At first, the used data structure and mapping library are presented in
Then the algorithm is presented. It consists of two phases: Prior Knowledge (PK) and
Next-Best-Scan (NBS) which are described in Sections and , respectively, and the
algorithm overview is visualized in High-level robot control and the teleoperation
are described in Section [3.6 introduces several metrics for measured data evaluation
and ESS algorithm variants comparison.

B 3.1 Octree data type and OctoMap library

The scanned environment is stored in octree [33]—a hierarchical data structure for a spatial
subdivision. Model volume is recursively subdivided into eight octans and the created tree
branches can be pruned at any level, if all node children have the same value and the octree
values are discretized (the represented space can be either occupied or free) without any
probabilistic approach.

OctoMap library [34] is an efficient probabilistic 3D occupancy grid mapping approach
based on octrees, providing data structures and mapping algorithms particularly suited for
robotics. OctoMap maps are stored efficiently and can model arbitrary environments without
prior assumptions. It distinguishes occupied areas, free space, and unknown areas, which are
encoded implicitly. The map is updated in a probabilistic fashion when new information is
added and dynamically expanded when needed. Created models can be easily visualized with
OctoMap visualization tool called Octovis [35].

B 3.2 Ess Algorithm overview

The goal of the algorithm is to find optimal Scanning positions (SPs) to maximize the coverage
of the unknown environment. The current hardware platform contains two scanners, a LIDAR
for robot mapping and navigation (i.e., dynamic scans) and a terrestrial scanner for the output
scans (i.e., static scans). A similar approach is in [I2]. As we assume that the data from
the terrestrial scanner are not available during the factory mapping process, it is necessary
to estimate the proportion of the environment the terrestrial scanner has already scanned.
Therefore, two models of the environment were maintained. The first one consists of the
dynamic scans (further referred to as dynamic model), and the second one (further referred
to as static model) is estimated from approximations of static scans for which the dynamic
model is used. The models are represented by an octree structure from OctoMap library. The
origin of the models is in the robot starting location, and the resolution of the octree models
is chosen to meet memory and time limits; usually, the voxel edge length of 0.1 m was used.

13



3. Exploration that maximizes quality of the 3D scans

SPs are positions where the static scans are gathered. Scanning position candidates (SPCs)
are sampled in the current position neighborhood (similar approach as in [14]). The algorithm
may exploit the prior knowledge about the environment (if available) to speed up the
exploration procedure by computing several SPs ahead (i.e., before the exploration starts) as

in [II]. It is assumed that the starting position is marked to enable the precise processing of
the SPs.

Prior Prior Knowledge phase | Sitrategy
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Figure 3.1: The proposed algorithm overview. The NBS phase can work with individual parts of
the model separately (inside of the dashed ellipse). Prior knowledge types are marked in green.
If there is no prior knowledge or the PK phase is completed, the NBS phase starts. Scanners
measurements are marked in red, algorithm outputs are marked in violet, and light yellow represents
variants (strategies) of the algorithm. Scanner parameters and model resolution are marked in
gold, and other parameters currently set to be constant are marked in gray.
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B 33 Prior Knowledge phase

The purpose of the PK phase is to exploit the prior knowledge of the environment to prepare
SPs maximizing the coverage of the environment and minimizing their count so the whole
procedure is faster. As the first step, the prior model is preprocessed, projected to 2D grid,
in order to consider SPCs in 2D space only, and then the possible SPCs are generated (see
Sec. 3.3.1)). Depending on the model type, visibility for each SPC is computed either in 2D

(see Sec. 3.3.2) or 3D (see|Sec. 3.3.3). The best SPs are the SPCs with the highest coverage
of the environment according to computed visibility (see Sec. 3.3.4). Once the best SPs are
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3.3. Prior Knowledge phase

chosen, the path between them and their order is determined (see |Sec. 3.3.5). The ordered
SPs and their connections are the output of the PK phase.

Bl 3.3.1 Scanning position candidates sampling

Since we assume the floor in the factory is not sloped,which means the sensor height is fixed,
the SPCs are sampled in 2D space. If the prior model is in 3D, it has to be projected into 2D
binary occupancy grid (cells can be either empty or occupied). The 3D model is projected
from a given range of z coordinate values. If any voxel in the given range is occupied, its
corresponding cell in the 2D grid is also occupied. Otherwise, it is set as empty. In our
experiments, the range minimum and maximum values are 0.1 m and 0.9 m — the lower limit
is higher than zero because the robot can run over small obstacles, and the upper limit is
associated with the height of the robot. The scanner can be placed only in cells marked as
free, which represent a safe space for the robotic platform with attached scanner(s).

Since the robot occupies more than one cell, the SPs close to the obstacles are infeasible
due to possible collision. Therefore, the obstacles are inflated to add a safety margin between
the robot and the obstacle. The inflation is performed by applying a morphological dilation
to the grid.

Once the occupancy grid is prepared, it is subsampled uniformly with a given step between
cells. Then each of these new samples is disturbed by adding a random offset to both
coordinates. If the new position is empty, it is checked whether it is reachable from the robot
starting position (i.e., a path between the positions exists), then it is added to the list of
SPCs; otherwise, it is disturbed and checked again (five times at maximum). Example of
sampled SPCs and the difference between original and inflated grid can be seen in [Fig. 3.2

Figure 3.2: 2D grid projection of the environment with SPCs (in red) and obstacles (in blue)
before (left) and after inflation (right).

B 3.3.2 2D visibility computation

The 2D visibility for a SPC is determined by casting rays in the 2D prior model represented by
a 2D grid (the version without inflated obstacles). To simulate the scanner with a horizontal
field of view of 360° in 2D, we sample points on the circle circumference as endpoints of
the rays. The circle has a radius of the scanner maximum range. The points on a circle
circumference can be generated in two different ways.
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3. Exploration that maximizes quality of the 3D scans

1) Bresenham’s circle algorithm [36] — An effective form of a midpoint circle algorithm
[37] calculating only one-eighth of the circle circumference. The rest of the circle is obtained
by mirroring and flipping of the generated points.

2) Angle increment — This approach takes the radius R and angular resolution as input
and uses the resolution to sample the values of the angle § € [—180°, 180°). Then the points
on the circle can be computed as

x = |Rcosf], (3.1)
y = |Rsinf|,

where |x| symbolize the floor function. The first approach covers the circle circumference
more densely; however, it is not suitable for higher radius values since it consumes too much
time. Therefore, the second option is preferred. Once the points on the circle are generated,
the rays from the SP to the points of circumference are computed using Bresenham’s line
algorithm [38].

We precomputed the ray paths beforehand to accelarate the procedure. We exploited the
"linearity” and symmetry and computed the rays for a circle with a center position (0,0).
During the visibility computation, the points are obtained by adding the computed points to
the SP coordinates.

The actual visibility is computed by iterating over the rays. For each ray, its points are
traversed until the first occupied point in 2D grid is reached. All traversed points are stored
in the set of visited cells. However, if the occupied cell is closer to the SP than a given scanner
minimum range so the scanner could not see it, the points are not added to the set.

The output of the 2D visibility computation is a set of visited cells for the specific SPC.
In this case, not only visible obstacles but all the visited cells are important to compare the
SPCs except for the close neighborhood of the robot due to occlusion caused by the robot
body. Example of the visited 2D points is in

Figure 3.3: 2D visibility estimation from several SPs. Color represents individual SPs, i.e., points
with the same color are seen from the same SP and blue color represents unvisited (unseen) space.
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3.3. Prior Knowledge phase

B 3.3.3 3D visibility computation

The 3D visibility for a SPC is computed by casting rays in the 3D prior model. The rays
were cast in a space represented by an octree using the OctoMap library.

As opposed to the 2D case, it is necessary to simulate both fields of view — horizontal and
vertical. Therefore, we sample points on a sphere. The points are generated by the Cartesian
product of the sampled 6 (horizontal angle) and ¢ (vertical angle) values. 6 € [-180°, 180°),
and ¢ is set based on the vertical field of view. Since the ray-casting function in OctoMap
takes a direction vector instead of the ray endpoint, the direction vectors are sampled on a
unit sphere as

x = sin ¢ - cosf (3.3)
Yy =sin¢ - sinf (3.4)
Z = Cos ¢ (3.5)

and they can be precomputed ahead.

For each direction, the ray is cast with the OctoMap function castRay, which uses algorithm
proposed by Amanatides and Woo [39] to traverse the voxels. If the ray reaches an obstacle,
it returns coordinates of the intersection, which is added to the set of visible occupied 3D
points.

A special case occurs when we want to simulate the high-resolution terrestrial scanner.
The rays are cast from all model voxels in the neighborhood limited by a scanner maximum
range. If the ray intersects the SP, the corresponding model voxel is stored in the set of
visible occupied 3D points. This method guarantees that all the model voxels visible from the
SP will be stored in the set.

The output of the 3D visibility computation is the set of visible 3D points, i.e., a gathered
point cloud, for the specific SPC. Example of the visible 3D points is in [Fig. 3.4

Figure 3.4: 3D visibility estimation from several SPs. Color represents individual SPs, i.e., points
with the same color are seen from the same SP.
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3. Exploration that maximizes quality of the 3D scans

B 3.3.4 Scanning positions selection

The key part of the PK phase is the best SPs selection. The choice is based on the previously
computed set of visible or visited points. The first SP is either the starting position or the
position uncovering the largest part of the model, i.e., the one with the highest number of
visible or visited points. This decision depends on the algorithm settings. A final visibility
set is created as a union of the final visibility set and the set of visible points of the newly
added SP. It is initialized to the set of visible points of the first SP. Then the SPs are chosen
from SPCs based on the size of their contribution in the final set from highest to lowest up to
a given maximum number of SPs or once the contribution to the final set is smaller than a
given threshold.

B 3.3.5 Ordering of the SPs

Once the SPs are chosen, their order has to be determined. To do that, it is necessary to find
the (shortest) paths between individual poses.

At first, the graph was constructed from the empty cells of the 2D prior model grid with
appropriate edge weights (1/2 for diagonal moves and 1 for other moves). Then Dijkstra’s
algorithm [30] was used to connect the SPs. The shortests paths were computed to obtain
the distances (costs) between the SPs to obtain their order.

The SPs and calculated distances construct a complete graph. The minimum cost Hamil-
tonian path is computed to obtain the order of the SPs. The Hamiltonian path is the path
that visits every vertex in the graph exactly once. Since the graph is complete, there is a
path between every two vertices. Opposed to the traveling salesman problem, i.e., finding the
minimum cost Hamiltonian cycle, there is no need to return to the start vertex. Nevertheless,
both problems can be approximately solved using the same greedy technique.

The greedy algorithm holds the list of visited SPs and the existing route. The algorithm
starts from the (selected) starting SP. The next SP is the one with the lowest cost from the
current SP that was not already visited. Once the last SP is processed, the order of the SPs
is generated and the PK phase ends. Example of the chosen SPs and their order is visualized
in [Fig. 3.5 together with 2D visibility estimation.

B 3.4 Next-Best-Scan phase

The NBS phase assures the environment will be covered sufficiently to detect the deviations
in the object positions and orientations compared to the factory model. It starts with an
initialization step when the initial scans are done to obtain initial knowledge about the
environment (see [Sec. 3.4.1). The point clouds from the scans are processed (see Sec. 3.4.2),
then stored in the dynamic model and used for static model updates (see Sec. 3.4.3)). The
SPCs are chosen from the updated static model (see Sec. 3.4.4)). For each SPC, its gain value
is computed (see [Sec. 3.4.5)), and the SPC with the highest gain value is selected as the next
SP (see Sec. 3.4.6). Then the process is repeated until the best SPC gain is too low or the
time is exceeded.

18



3.4. Next-Best-Scan phase
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Figure 3.5: Visualization of the PK phase output. Numbers represent SPs and their order. A
path between SPs is in magenta. The scanned empty space is in white, the unseen empty space in
red, the scanned occupied cells in blue, and the unseen occupied cells in green.

B 3.4.1 Initialization

During the NBS phase initialization, we distinguish two different cases. In the first case, the
prior model is available, the PK phase has been done, and the initial SPs are provided and
ordered. The robot goes through the SPs and collect point clouds from static scans. In the
second case, there is no prior information, and hence the scan in the robot starting position
has to be made to receive the initial information about the world.

B 3.4.2 Point cloud gathering

While preparing the ESS algorithm, we assume the robotic platform carries two different
scanners, one with lower angular resolution and the ability to scan the environment while
moving (i.e., the LIDAR ) and one with higher angular resolution without that ability (i.e.,
the terrestrial scanner ). Example of collected data during an experiment can be seen in
Fig. 3.6, Data from a LiDAR are used for robot navigation in the environment and dynamic
model. Gathered data from the terrestrial scanner are the main output of our pipeline.

B 3.4.3 Model update

The dynamic model is updated directly from measured data, but the static model update is
estimated from the dynamic model. Example of both models can be seen in [Fig. 3.7,

B Dynamic model update

The gathered point cloud from LiDAR is transformed from the scanner frame to the robot
base frame. The transformed point cloud is inserted into the dynamic model. For each point
of the point cloud, the corresponding voxel is found and marked as occupied.

Two post-processing procedures were implemented to filter unwanted fragments in the point
cloud. The first one is a simple (but not robust) eraser of dynamic objects. This methods
resolves the problem caused by people walking around the robot. Then the algorithm could

19



3. Exploration that maximizes quality of the 3D scans

Figure 3.6: Gathered point clouds during an experiment in simulation, colored to distinguish floor
from factory equipment.

Figure 3.7: World model constructed from LiDAR data (left) and from terrestrial scanner data
(right) after several static scans represented in the octree structure.

not find any SPC because the point clouds contained the points representing the human body.
The eraser assumes that the points of the model which are situated in front of the currently
gathered points cannot be in the model; otherwise, the currently gathered points would not
be collected. Therefore, rays are cast from the robot’s position to the currently gathered
points while processing a new measurement. If any point in the dynamic model lies in the ray
path, it is removed from the dynamic model. Due to its time complexity, the eraser is called
only in every tenth point cloud processing.

The second procedure is removing a human operator who is walking with the robot and
controlling the scanning process. The operator’s position is restricted to be behind the robot
(for simplification). As the human operator follows the robot and corrupts a part of the field
of view, removing these corrupted points from the measurements is necessary. Therefore, the
measurements from this circular sector (with a central angle # = 60°), which are closer than
2 m to the scanner, are skipped and not added to the dynamic model.
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3.4. Next-Best-Scan phase

B Approximated static model update

As the gathered high-resolution point clouds from static scans are not available during the
experiment, these collected data must be approximated. The approximation exploits the
information about the environment gathered by the LiDAR while the robot is moving, i.e.,
dynamic model.

The estimation process is similar to the special case of the 3D visibility computation. All
voxels of the world model within a given maximum distance are tested whether they are
visible from the SP. The visible ones are added to the world model. Then the rays are cast
from the SP to these points. The traversed voxels are marked as empty because we assume
the points would not be collected if any of them was occupied. The estimation depends on
the quality of the dynamic model. Therefore, the first approximation is done after processing
of all SPs prepared in the PK phase and for all of them at once. The reason is that after
going through these SPs, the environment should be reasonably covered, which increases the
static scan estimation accuracy. However, this method still underestimates the world coverage
leading to redundant SPs. After the first approximation, the static model is updated only for
a new SP, not all previous ones.

B 3.4.4 Scanning position candidates sampling

The current position neighborhood is sampled in 2D space using the subsampling method
with a given step, as in the PK phase. The step value depends on the neighborhood size to
have always almost the same number of SPCs. The size of the neighborhood is a parameter
that should be tuned for the specific environment. Each sample is then disturbed by adding a
normally distributed noise (N(0,1)) to both coordinates.

The disturbed sample can become a SPC if it fulfills two conditions — the distance between
the current position and the new one must be higher than a specified threshold, and the new
position and its neighborhood representing the robot’s body must be known in the world
model and not occupied. As in the PK phase, if the disturbed position does not satisfy these
conditions, it is disturbed and checked again (up to five times). If the number of found SPCs
is less than a specified threshold, the neighborhood size is increased and the process of their
selection is restarted.

B 3.45 Gain computation

The gain computation takes into account the necessity to cover the environment properly to
gather enough data needed for the factory installation check. Therefore, the gain represents
how much of the yet unknown space could be explored from given SPC, and is estimated
using the ray-casting method. The rays are cast in the world model from the SP in the given
directions. If the ray intersects the first unknown voxel, it is assumed that it would explore it
and increase the knowledge about the environment. The angular resolution was estimated
by computing the required angular resolution to cover all voxels with given resolution at a
specific distance from the SP because the computational time is limited. Based on analysis
of scanned data, the mean distance from the measured points to the SP is around 6 m for
the factory model. The voxel edge length is assumed to be 0.1 m, and hence the angular
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3. Exploration that maximizes quality of the 3D scans

resolution a can be computed as
0.1 0.1
tana = - — o= arctan -~ 0.95% ~ 1°. (3.6)

This change motivates the robot to come closer to the objects.The intersected unknown voxels
are counted only if they are in a given height interval to eliminate the influence of the floor
and roof on the gain value, i.e., the manipulators and other factory equipment are prioritized
over the building itself. Moreover, the distance between the unknown voxel and the SP must
be higher than the minimum scanner range. The gain value is the number of these intersected
unknown voxels.

Bl 3.4.6 Next scanning position selection

The next SP is the SPC with the highest computed gain value. Once the gain of the selected
SP is lower than a threshold, the robot returns to the starting position. Then the experiment
either stops or continues from the starting position. This return to the start may help to
reach other parts of the environment which are too far from the current position.

B 3.4.7 Model division into parts

During the ESS algorithm preparation, the idea of dividing the large environment into several
parts and processing them sequentially was considered. Therefore, the ESS algorithm supports
the possibility to run the PK phase one part after another with a specific number of SPs for
each part. Then these SPs can be used in two different ways in the NBS phase.

1. The model division is not used in the NBS phase, and the prepared SPs from the PK
phase are taken in their order computed as usually, but the path may not be the same
one as if the model was not divided. The NBS phase starts in the last part, and there is
no area restriction for SPCs.

2. The model division is used in the NBS phase as well, and the parts are processed one
after another. It means that the next SP selection is limited to the area of the part.

B 35 High-level robot controller

ESS algorithm can be used without the robot, as it was used for preliminary tests of the ESS
algorithm (see [Sec. 4.2)). In that case, it is necessary to move the scanner between the SPs
manually. Another option is to control the robot movements manually, i.e., via teleoperation.
Nevertheless, the main task of the thesis was to prepare an automated scanning process,
including the autonomously moving robot. Therefore, it was necessary to prepare a high-level
controller which communicates with the RDS packages providing autonomous robot control
(see|Sec. 2.5) on the lower level. The robot high-level behavior is controlled by a state machine.

[l 3.5.1 Robot behavior state machine

A diagram of the state machine is pictured in [Fig. 3.8 with individual states and transitions
between them. The states are listed as follows:
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8 IDLE — The controller stays in IDLE state during the startup procedure and when the
process is paused.

# SCANNING — The high-resolution scan is being gathered. In real-world scenarios, this
procedure takes several minutes. The next SP is computed during the time needed to
complete the scan.

® READY TO MOVE — Robot is ready to move, the target position is sent to the
navigation program, and the confirmation is awaited.

® MOVING — Robot is moving towards the target position.
B STUCK — Robot is stuck. The command to stop the robot’s movement is sent.

# STOPPED — Robot is stopped. As the last several trajectory positions were saved, the
first safe checkpoint is selected as the next target.

# GOING BACK — Robot backtracks to the selected checkpoint.
® TELEOP — Robot is controlled externally via a teleoperation controller.

# END OF EXPERIMENT — Robot is returning to the starting position, and the program
is paused.

At the beginning of the experiment, the controller starts in IDLE state. Once everything is
prepared, the state is changed to SCANNING state if the starting position is SP, otherwise it
is skipped. Once the scan is finished, a new target is sent to the navigation program, and the
state is changed to READY TO MOVE. When the target confirmation is received, the state
is changed to MOVING, and the robot starts moving.

If the robot cannot move towards the target (this information is received from the RDS), the
state is set to STUCK. Otherwise, the target is reached or the reaching timeout is exceeded,
and the state is changed to SCANNING. Once the robot movement is stopped via the sent
command in STUCK state, the state is changed to STOPPED, which remains until the
checkpoint target is confirmed, then the state is GOING BACK. The state is again changed to
SCANNING when the checkpoint is reached or the time runs out. Sometimes it is necessary
to take control of the robot’s movement using the teleoperation controller. In that case, once
the teleoperation controller is activated, the state is changed to TELEOP. When the robot
control is autonomous again, the state is changed back to the previous state.

Once the experiment timeout is exceeded or the maximum number of SPs is reached, the
starting position is set as the new target and the state is changed to END OF EXPERIMENT.
Then after reaching the starting position, the state is changed to IDLE. If the program starts
again, the state is changed to SCANNING.

Il 3.5.2 Teleoperation controller

A game controller (button layout can be seen in |Fig. 3.9)) serves as the teleoperation controller
of the robot. Its primary feature is controlling the robot’s movement, and it has a higher
priority than the autonomous robot control. It means that once the game controller takes over
the robot control, the velocity commands from the RDS packages have no impact. The robot
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Experiment
timeout

Figure 3.8: High-level robot controller state machine. States are in blue ellipses, and the rectangles
represent the transition conditions. Optimal transitions are green, red represents the unwanted
transitions, orange represents transitions to recovery from unwanted states, and gray represents
transitions to and from the TELEOP state.

is moved with the left joystick (LSB) while holding the left or right bumper (LB/RB). Once
the bumper is released, the robot stops and eventually takes commands from the autonomous
control programs.

Compared to the controller usage during DARPA SubTerranean Challenge [17] described
above, several other buttons were mapped to specific triggers to accelerate the experiments
and make them safer for the robot and the environment. One of these buttons resolves the
issue that there is currently no possibility to automate the static scan process. There is
no communication between the program and the terrestrial scanner, which means that the
scanning procedure must be started manually, and then the program cannot detect that the
scan is finished. The newly mapped buttons are listed as follows:

® Right Trigger (RT) — The other pressed buttons are registered only when this button is
held. It serves as a safety button against accidentally pressed buttons.

® Button A — Pressing this button signals that the high-resolution scan is finished, and
the robot can move again.

8 Button B — Pressing this button triggers resuming of the previously paused experiment.

8 Button X — Pressing this button sends the robot to the starting position and pauses
the experiment.

8 Button Y — Pressing this button interrupts the robot movement, and the current position
is marked as the target SP. This button is usually used to skip waiting for a timeout
when the robot is stuck or the position is unreachable.
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® Start Button — Pressing this button sends a command to the RDS navigation program
to clear its local map. This command can be helpful for elimination of unexpected noise
or dynamic objects in the robot’s neighborhood.

m Left Trigger (LT) — The stop command is sent to the robot once this button is pressed.
When this button is held, the robot is in the teleoperation state. Once the button is
released, the robot starts moving autonomously again.

Left trigger Right trigger
Connect

Left bumper Right bumper

Face buttons
Left stick

Directional pad Right stick
(D-pad)

Figure 3.9: Xbox 360 wireless controller[40)].

. 3.6 Evaluation methods

We prepared several evaluation methods. The first of them is used for comparison of variants
of the proposed algorithm. The rest of the metrics are used to evaluate the measured data.

Bl 3.6.1 Environment coverage metric

The proposed exploration algorithm exists in different variants. The selection of the best
ones is decided based on the variant’s ability to cover as much of the whole environment as
possible. The explored area represented as occupied and free nodes in the octree model was
compared with the ground-truth model in the form of a voxel grid with occupied and free
voxels. For each voxel in the ground-truth model, we check whether it is explored. i.e., stored
in the octree model, and then if it is occupied or not (see Tab. 3.1| for notation).

original model

notation free (Gf) occupied (G,)
measured free‘ Hy o
model occupied My Ho
unknown U f Uo

Table 3.1: Voxel comparison notation.

The similarity score S representing the similarity between the ground-truth model and the
explored area after the experiment is computed as:

_ H,+0.01H; — M; — M,

5 G, +0.01G; ’

(3.7)

where the correctly marked occupied space (H,) has the highest weight (equal to 1) because it
corresponds to correctly gathered points in the point cloud. The correctly marked free space
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3. Exploration that maximizes quality of the 3D scans

(Hy) has a significantly lower positive weight because of the high ratio of free to occupied
voxels, and the free space is not gathered but only assumed. The unknown (not measured)
space (Uy and U,) does not occur in the equation because it does not make the model better
or worse, so its weight equals zero. On the other hand, the wrongly marked space (free if
it is actually occupied M, or the other way M) makes the model worse, and thus it has a
negative weight. The similarity score ranges from -100 to 1, but values under zero should not
be usually seen, and higher values signify higher similarity between the compared models.

Sometimes it is undesirable to mark the free space in the OctoMap tree due to high memory
load. In that case, the modified similarity score is computed as:

_ Ho— My

SM Go ;

(3.8)

score ranges from -1 to 1, and higher values signify higher similarity between the compared
models.

B 3.6.2 Metrics for algorithm performance evaluation

Once the best algorithm variants are chosen, it is necessary to test them in the planned appli-
cation with measurement imperfections (e.g., scanner noise, inaccurate robot target position
reaching). Several different metrics were prepared to evaluate the algorithm performance.

B Robot localization error

First of all, the robot localization error should be evaluated. The precise localization is crucial
for the task from several points of view. The robot has to know where it is to reach the given
target position and safely avoid all obstacles along the path. Another important reason is the
necessity of a meaningful scanner pose estimation to increase registration speed and precision.
The registration algorithm in Leica BLK360 finds overlapping data in individual point clouds
and matches them when no additional markers are used.

Unfortunately, the localization error can be evaluated only in the simulation because there
is no ground truth robot position in real-world scenarios. Nevertheless, we can detect the
problematic parts of the given model, where the error increases, and possibly solve them in
the real world by adding additional features like, e.g., markers in the specified positions.

B Gathered point cloud density

This metric evaluates the proportion of the model (density), which is covered by the collected
point cloud. The distance from each point in the reference model to the nearest point in
the point cloud is computed. Optimally, each point should have zero distance from the
corresponding point in the point cloud. Distances higher than zero can be caused probably by
one of the two reasons — 1) The corresponding point was not gathered, and thus the distance
is computed to a different one; 2) The corresponding point was collected in a different location
than assumed due to measurement noise or object displacement. The metric output can be
visualized, e.g., in form of a heatmap computed in CloudCompare program [41] (example in
Fig. 3.10).
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The output heatmap shows the measured data distribution in the world. It can be helpful
to identify the missed objects or their parts. However, this metric does not contain semantics.
Therefore, if the collected point cloud was monolithic and infinitely dense (with almost zero
distance between neighboring points), then the distance between the model points and their
correspondences in the point cloud would be almost zero, but no object could be recognized.

Figure 3.10: Metric visualization example—gathered point cloud density heatmap example.

B Estimated 6D pose error of the objects

Estimated 6D pose error of the objects is an evaluation method that simulates a check of
the position and orientation of individual robot manipulators and robotic cells. This metric
computes the difference between the object 6D pose in the reference model and its assumed 6D
pose in the gathered point cloud. Individual objects from the reference model are aligned using
the ICP algorithm (see Sec. 2.4.1) with the collected point cloud. The resulting transformation
between the object pose in the reference model and the point cloud is either an error caused by
insufficient data or the object displacement detection. The example of the metric visualization
can be seen in |Fig. 3.11|

The alignment procedure may struggle with similar models lying next to each other, e.g.,
several closets in a row. Once the point cloud is too sparse, an object may be placed at the
position of a similar one or between the two of them. Moreover, it is sensitive to registration
errors and scanner pose estimation errors.

The estimated pose error computed here is just a preview of the results because the actual
check of the position and orientation of individual robot manipulators and robotic cells is
evaluated in a specialized program in practice.

B Detection of shifted objects

Once the poses of the objects are estimated, it can be decided whether they are in their
predetermined position or not. As we assume the 2D problem only (the floor is not sloped),
the position check is done only in 2D and without orientation error for simplification. This
leads to a binary classification task, where class 0 means the object is in its predetermined
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Object alignment error
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Figure 3.11: Metric visualization examples—estimated pose error of the objects in individual
coordinates.

position in the x-y plane, and class 1 (i.e., positivity) means it is shifted in the x-y plane.
For binary classification, four different combinations of classes are defined (see Tab. 3.2) and
written in a form of a confusion matrix C.

Assigned cl
binary classification sslgnec class

0 (not shifted) 1 (shifted)
Actual 0 (not shifted) | True Negative (TN) False Positive (FP)
class 1 (shifted) False Negative (FN) True Positive (TP)

Table 3.2: Binary classification combinations.

In this thesis, we use two metrics to measure the performance of our classifier (object pose
estimation). The first one is accuracy, the ratio of correct predictions out of the total number
of cases tested. The second one is sensitivity, the ratio of correctly classified positive cases
(i.e., shifted objects) out of all classified positive cases.

TN FP
=[x ] -
TP+ TN
A - 1
Y = TP Y TN+ FP+ FN (3.10)
TP

itivity =~ 11
Sensitivity TP L FN (3.11)
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Chapter 4

Experiments and Results

In this chapter, we present the experiments and their evaluation for the factory mapping
process. At first, we tested the frontier-based exploration algorithm (further referred to as
Naex experiments) in Sec. 4.1. Then the optimal variants of the proposed algorithm were
searched in [Sec. 4.2l We performed experiments for the optimal variants of the Exploration
by Static Scans (ESS) algorithm in the robotic simulator (see [Sec. 4.3)) and in the real-world
scenario (see Sec. 4.4)).

In this thesis, an experiment refers to a factory mapping process, in which the robot
autonomously traverses the environment for a specific amount of time and collects scans of
the factory equipment, and when the timeout is exceeded, the robot goes back to the starting
location. The model used in all experiments except for the real-world experiment is a model
of a factory hall.It consists of several robotic cells separated by fences and accessible through
doors. Each cell contains multiple industrial manipulators, other tools for car assembly, and
cable channels distributing electricity. In this thesis, the (re-)construction phase without fences
and doors is assumed to eliminate the problem of door detection and increase the probability
of scanning parts of the objects otherwise invisible (occluded) due to cell separation. The
world coordinate system can be seen, e.g., in |[Fig. 4.3 with the z-axis going up. The model
was prepared with the model preprocessing pipeline (see Appendix Al).

The real-world scenario took place in Testbed for Industry 4.0 at Czech Institute of
Informatics, Robotics and Cybernetics, Czech Technical University in Prague [42](further
referred to as Testbed). Unfortunately, the prior model for this environment does not
correspond to the current state. Therefore, no ground truth model for this environment was
available.

B 4.1 Frontier-based exploration algorithm evaluation

Two simulation experiments were performed to evaluate Naex (see |Sec. 2.6) and to test
the prepared metrics. The reference model was used in the first experiment (Naex 1). For
the second experiment (Naex 2), the model was modified — several objects were moved to
different positions. This imitates the real-world situation where it is necessary to detect the
deviated objects. The collected point clouds were stored in the robot’s built global maps.
Two global maps were constructed for these experiments compared to the usual usage of
only one map. The first one was the robot’s main map used for its movement planning with
distances between neighborhood points around 15 c¢m, and the second one was an additional
map with a finer resolution (the distances between points were around 2 cm). The gathered
point clouds were retrieved from these two global maps.
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4. Experiments and Results

B 4.1.1 Naex experiment in the reference model

The first experiment lasted 35 minutes, and as can be seen in the robot traversed
the environment several times. At first, a gathered point cloud density was computed for the
collected output data. The density is visualized as a heatmap in As shown, the
bottom part of manipulators and the bottom part of closets are covered densely. On the other
hand, all objects are insufficiently covered from the top view, which is not visible from the
mobile robot.

Figure 4.1: Robot trajectory during a Naex 1 experiment.

Figure 4.2: Point cloud density as heatmap of distances between reference and measured points
for the Naex 1 experiment.

The next step was calculating the estimated pose error for all 250 objects. As the reference
model was used in the experiment, the estimated pose error should always be zero. Thus,
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4.1. Frontier-based exploration algorithm evaluation

nonzero values are caused by noise or insufficiently scanned objects. In this experiment, the
entire world model seems to be covered. The computed estimated pose errors are visualized
in two ways. Figure shows individual objects represented by colored circles in the x-y
plane, representing the environment 2D projection. The color encodes the size of the pose
error in the given coordinate. As shown, the highest position deviations are in the z-axis.
Furthermore, it can be noticed that there is a correspondence between the position errors in
the y-axis (left center) and the z-axis (left bottom), e.g., a horizontal stripe for y coordinates
around 12 m. Objects in this stripe are mainly the manipulators.

Object alignment error
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Figure 4.3: Object positions and deviations for the Naex 1 experiment. Circles represent individual
objects.

Figure |4.4] shows the same estimated pose errors this time as the scatter plot with border
lines for :|:0.02 m (red line) and +0.01 m (green line). As can be seen, all objects are within
£0.02 m error in the x-axis, and only four objects are out of the +0.02 m interval with the
error in the y-axis. Most objects have errors within +0.01 m for # and y coordinates. However,
almost a third of the objects have an error around or above +0.02 m in the z-axis.

The localization error, shown in is the most significant in the z-axis, with a
maximum value of about 0.03 m. It seems that the localization error causes the object
alignment error if we put these two errors into context. The localization error in the x and y
axes is hardly ever out of the +0.01 m interval.
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Figure 4.4: Object positions deviation as a scatter plot for the Naex 1 experiment.
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Figure 4.5: Robot estimated position error during the Naex 1 experiment.
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4.1. Frontier-based exploration algorithm evaluation

B 4.1.2 Naex experiment in the model with 9 shifted objects

As opposed to the previous experiment, nine objects (three manipulators, four lifters, and
two additional objects) were selected, and their positions were changed by values from +10
up to 20 cm in the x-axis, y-axis, or both of them. This experiment aims to test whether
the object pose error is computed correctly to detect the deviations and align the objects

properly.
The experiment lasted longer than the previous one; however, the number of points in the

maps was almost the same. The reason is that the robot traversed the environment repeatedly
without visiting new places.

Figure 4.6: Point cloud density as heatmap of distances between reference and measured points
for the Naex 2 experiment.

Since the reference model is not the same as the test one, the point cloud density has to be
computed using the test model (see Fig. 4.6). Otherwise, the metric would not work correctly
because the shifted objects would seem to be insufficiently covered.

Figure |4.7| shows object positions projected into the x-y plane. Colored squares represent
the objects which were shifted and colored circles the rest. As can be seen, only the squares
are red signalizing that their position errors are outside the interval £0.02 m, except for the
case of z-axis position error.

Orange circles in [Fig. 4.8 represent the shifted objects. The figure shows the pose errors
computed in the test model (even shifted models should have zero error now). It can be seen
that the pose errors of the shifted objects are inside the +0.01 m interval.

The localization error (see Fig. 4.9) is similar to the one in the previous experiment. Again,
the z-axis error is within 0.03 m in most cases, and the error in the x and y axes is hardly
ever out of the £0.01 m interval.

B 4.1.3 Classification of shifted objects

The promising results after alignment were used to decide whether the objects are in their
predetermined position or not. The detection of shifted objects was done only in x-y plane

33



4. Experiments and Results
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Figure 4.7: Object positions and deviation for the Naex 2 experiment. Squares represent shifted

objects and circles the rest.
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Figure 4.9: Robot estimated position error during the Naex 2 experiment.

without rotation. A decision whether the object was shifted was made regarding the threshold,
which was set to the same value for both coordinates. The confusion matrices (see Tab. 4.1)

and classification accuracy (see Tab. 4.2) were computed for four different values of the
threshold — 0.005 m, 0.01 m, 0.02 m, 0.05 m.

As there were no shifted objects in the Naex 1 experiment, all objects should be ideally
predicted as not shifted. On the other hand, there were nine shifted objects in the Naex 2
experiment, and the offset value for a specific coordinate is higher than or equal to 0.1 m. As
can be seen in there are no shifted objects marked as not shifted for all threshold
values in both experiments. Moreover, all shifted objects are marked as shifted for all threshold
values in both experiments. The only problem is marking not shifted objects as shifted (i.e.,
false positive — FP). In that case, the threshold value significantly impacts results, as shown
in where the accuracy increases (up to 1) with a higher threshold value.

. threshold
Experiment

0.005m | 0.01 m | 0.02 m | 0.05 m
139 111 | 216 34| 246 4 | 250 O

Naex 1
0 0 0 0 0 O 0 O
119 122 1222 19| 241 0 | 241 O

Naex 2
0 9 0 9 0 9 0 9

Table 4.1: Confusion matrices for both Naex experiments. Matrices are written as ?% 5112 ,

where positivity means that objects are shifted.

Experiment threshold
0.005m 0.01m 0.02m 0.05m
Naex 1 0.556 0.864 0.984 1
Naex 2 0.512 0.924 1 1

Table 4.2: Accuracy of shifted objects detection.
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B 4.2 Evaluation of ESS algorithm variants

Since several aspects were not decided during the implementation of the ESS algorithm,
all their possible variants were implemented. These aspects can be specific for different
environment types. Therefore, the preliminary tests of the ESS algorithm, mainly its different
variants and settings, were made outside of the robotic simulator. The reason was to eliminate
the influence of the robot movement constraints, target reachability, movement uncertainty,
and scanner uncertainty, so the results were affected only by the actual algorithm settings.
Therefore, we assume the scanner is a 3D sphere robot (nearly a point robot) with a precise
placement accuracy and all objects have an ideal reflectivity at an arbitrary angle. Moreover,
we assume the scans are perfectly aligned.

B 4.2.1 Evaluation program and model environments

The prepared testing program is based on OctoMap library, allowing us to cast rays in the
discretized environment easily. The program can take a list of Scanning positions (SPs)
prepared based on the prior model knowledge as an input. The scanning simulation is done by
ray-casting (provided by OctoMap) from the SP towards the known model of the environment.
Once the ray reaches the occupied space, the voxel center representing that space is stored in
a simulated point cloud, and the ray does not continue further. Since two different scanners
on the robotic platform are assumed, two different scanning simulations are done to see the
difference between scanners. Once the test finishes, the similarity score for both scanners is
computed and compared against other ESS algorithm variants.

Two different models (see |[Fig. 4.10) were provided for these experiments — 1) a factory
model with dimensions around 50x34x10 m with a resolution of 10 cm; 2) a cell model
with dimensions around 15x12x10 m with a resolution of 2 cm. The second model simulates
independent scanning of individual robotic cells. Three disturbed versions (see Tab. 4.3|for
more details) exist for each model simulating the real state with wrongly placed objects.
These versions served to test the influence of prior model accuracy. Moreover, the exploration
performance is tested for two different scanner locations and different combinations of angular
resolution for both scanners. All testing cases can be found in [Tab. 4.4l

Model ratio of disturbance
version shifted objects distribution
small differences 1/3 N(0,0.01)
medium differences 2/3 N(0,0.25)
big differences 1 N(0,1)

Table 4.3: Model versions overview.

B 4.2.2 PK phase

At first, the Prior Knowledge (PK) phase variants (see Tab. 4.5) were tested to find the most
effective ones for the factory environment. The variants were tested in different scenarios
and settings to assess their performance. Since a pseudo-random generator is used for the
generation of the Scanning position candidates (SPCs), every experiment was repeated three
times with different seeds.
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4.2. Evaluation of ESS algorithm variants

Figure 4.10: Whole factory model with the selected cell model.

Parameters Values
Angular res. ter. scanner | 0.1° / 0.1° 0.1° / 0.1° 0.2° /0.7°
(hor. /ver.) LiDAR 0.2° / 0.7° 1°/1° 1°/1°
label (Ang comb 0) (Ang comb 1) (Ang comb 2)
Sensor z coordinate 0.8 m 1m
Model type factory cell
Model disturbance Small Middle Big

Table 4.4: Experiment settings combinations.

Since the variants were tested for different sensor z coordinates (height) and different model
versions, the influence of these settings on the similarity score Sy (see[Sec. 3.6.1) was checked.
As shown in [Fig. 4.11], the similarity score is almost the same for both sensor z coordinate
values and all three model versions. It means the sensor placement on the scanning platform
does not affect the results; hence, the sensor placement in the hardware prototype was not
further optimized. Similarly, the model disturbance does not affect the results. It can imply
that a higher number of SPs computed in PK phase could be preferred over a higher number
of SPs computed in Next-Best-Scan (NBS) phase.

The actual comparison of individual ESS algorithm variants is shown in [Fig. 4.12. Each row
contains computed similarity score for different algorithm variants and experiment settings,
with one algorithm strategy aspect taken as the compared variable. Results for the two
methods of the first SP selection are shown in the first row. The results are the same for
almost all variants. The only difference is when the model is divided into parts with only one
SP used in each part (visualized in the bottom row as well). Otherwise, the inclusion of the
starting position as a SP does not worsen the results. Hence, the starting position can be
usually used, and its known position can be exploited for the robot’s localization.

The prior model dimensionality is the compared variable in the middle row of [Fig. 4.12| As
can be seen, the similarity scores for the 3D prior model are higher in most cases. Therefore,
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# of SPs low - 1/8 (1 part/whole) | high - 5/15 (1 part/whole)
Model division || None 8 parts None 8 parts

First SP fixed | fixed best fixed | fixed best
# of dimensions 2‘3 2‘3 2‘ 3 2‘3 2‘3 2‘ 3

Table 4.5: All tested variants of the algorithm PK phase.
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Figure 4.11: Similarity score for different sensor z coordinate (top) and different model disturbance
(bottom).

the 3D prior model will be preferred for the PK phase if available.

The last row of [Fig. 4.12 contains the model division strategy as the compared variable.
In this case, the comparison is made only for the same total number of SPs prepared in PK
phase to prevent influence of a different number of SPs. As shown, it should be preferred
not to divide the model into separated parts but to process the whole model at once. The
influence of the first SP selection can be seen here as well (as mentioned above).

B 4.2.3 NBS phase

The goal of the NBS phase experiments is to analyze an influence of SPs division ratio, i.e.,
how many of the SPs should be computed ahead in PK phase. Furthermore, the algorithm
variant without PK phase is tested and then compared with the other ones.

As opposed to the previous experiments, the only used settings were the angular resolution
and model type because the model disturbance and sensor z coordinate value did not affect
the result in the offline phase. During the experiments, 30 scans were gathered, the sensor z
coordinate was set to 1 m, and the chosen model version was the middle disturbed one.

Figure [4.13| shows a similarity score evolution during the experiments for the case without
prior knowledge, the case with 8 SPs prepared in PK phase, and the case with 15 SPs prepared
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Figure 4.12: Similarity score for different strategies — first SP strategy (top), prior knowledge
type (middle), model division strategy (bottom).

in PK phase. It can be noticed that prior knowledge about the environment expedites the
model coverage. The similarity score after 30 scans for the case without PK phase is similar
to the one after 6 scans for the case with 8 SPs in PK phase. Furthermore, the score for the
case with 15 SPs from PK phase has slower growth, but the final score is higher than for the
case with 8 SPs from PK phase. The slower increase of the similarity score during the PK
phase can be caused by the order of the SPs — the SPs in the middle of the path have a
lower impact on the score than the ones in the end. The final score comparison shows, that
the model is more covered when a higher number of SPs computed in PK phase is used.

Moreover, the influence of the LiDAR angular resolution can be seen. The first case (Ang
comb 0) has a higher similarity score for all three variants, and the most significant difference
between LiDAR angular resolutions is when no prior knowledge is used, i.e., PK phase is
skipped. The reason is that the LIDAR angular resolution affects the model estimation.
Therefore, the higher LIDAR angular resolution estimates the already scanned environment
more precisely, which leads to a more optimal next SP selection.

Finally, it can be seen that the similarity score becomes stagnant early in the NBS phase
for the cases with PK phase. The reason is that the environment estimation by the LiDAR is
not sufficient; thus, the selected SP do not significantly improve the environment model. This
issue is addressed in [Sec. 5.1. Nevertheless, the scanned world approximation was modified
for the experiments in the robotic simulator and the real-world scenario.
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Figure 4.13: Evolution of similarity score for different PK phase strategies and different angular
resolutions.

Figure 4.14: Model of the environment based on the terrestrial scanner data (left) and LiDAR
data (right).
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4.3. Algorithm evaluation in robotic simulator

B a3 Algorithm evaluation in robotic simulator

The parameters and algorithm settings (see Tab. 4.6|) for the experiments in Ignition Gazebo
were set based on the previous results. At first the PK phase ran and estimated 15 and 25 SPs
from the prior (reference) model. Both variants were then tested with different total number
(25,30,35,40) of SPs in two different model versions: 1) the same model as in |Sec. 4.1.2| (see
Sec. 4.3.2)), and 2) the small disturbance version of the model from |Sec. 4.2| (see Sec. 4.3.3)).

Parameters Value
# of SPs high (15 and 25)
Model division None
First SP fixed (Starting position)
# of dimensions 3
Angular res, ter. scanner 0.05° / 0.05°
(hor. /ver.) LiDAR 0.2° / 0.7°
label (Ang comb 0)
Sensor z coordinate 1m

Table 4.6: Algorithm parameters and settings for simulations in Ignition Gazebo

B 4.3.1 Initial SPs preparation in PK phase

At the beginning of the PK phase, the 3D prior model was projected into a 2D grid with
square cells with a side length of 0.1 m. Then the obstacles were inflated to eliminate possibly
infeasible SPs. The inflated 2D grid was subsampled with a given step, and random offsets
were added to the new sampled cells. The free samples reachable from the robot start position
(a cell with indexes [20,20]) create the set of SPCs. Generated SPCs and the difference
between original and inflated grid can be seen in |[Fig. 4.15. As can be noticed, the grid
inflation causes that the SPCs have to be almost always outside the individual robotic cells.
Therefore, the scans from the SPs from PK phase provide an overview of the environment
without the details hidden due to occlusion. The details have to be gathered during the NBS
phase.

0 100 200 300 400 500 0 100 200 300 400 500

Figure 4.15: 2D projection of the model for the simulation experiments with sampled SPCs (left)
and its inflated version (right).
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The visibility for each SPC is computed in 3D because the 3D prior model is available. As
the terrestrial scanner is used in the experiments, the visibility is computed by casting rays
from the model voxels to the SPC. All model voxels in the neighborhood limited by a scanner
maximum range are selected, and the direction vectors between these voxels and the SPC are
computed.

The first SP is the starting position. The other SPCs are sorted by how much the
environment is visible from their positions. Best 14 (24) SPCs were selected as the rest of the
SPs. Once the best SPs were chosen, the path between them and their order was determined.
As shown in the path for the case with 15 SPs seems to be intuitively worse than
the one for the case with 25 SPs, and the order of the SPs is different for the same subset of
SPs in both cases.

350

300
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200

150

100

50

0 100 200 300 400 500 0 100 200 300 400 500

Figure 4.16: Offline phase output for the simulation experiments with the selected SPs and the
path traversing them — 15 SPs (left) and 25 SPs (right).
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4.3. Algorithm evaluation in robotic simulator

Il 4.3.2 Experiments in the model with 9 shifted objects

At first, the experiments in the model with 9 shifted objects were done to compare the
proposed solution with the classical frontier-based exploration (Naex experiments). The
gathered point clouds are evaluated after 25, 30, 35, and 40 SPs for two different numbers of
SPs prepared in the PK phase — 15 SPs in Exp 1 and 25 SPs in Exp 2. The scan coverage
of the environment is shown in As shown in the figure, the environment is fairly
covered. Most of the regions are blue (see histograms in , which means the majority
of the distances are around or less than 1 cm, imply that the environment is now better
scanned than during classical frontier-based exploration.

0.031250

0.000000

T 0.437500

0.406250-

0.062500

0.031250

0.000000

Figure 4.17: Point cloud density as heatmap of distances between reference and measured points
in the first environment for Exp 1 (top) and Exp 2 (bottom) experiments. A histogram of distances
is on the right side next to the color scale.

Results after object alignment are shown in |Fig. 4.18, As can be noticed, the medians (solid
lines) remain almost the same for different SPs and their value is about 0.002 m. It means
that at least half of the objects are aligned with errors inside an interval £0.002 m even for 25
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4. Experiments and Results

SPs. Furthermore, the figure shows the 75th and 90th percentile errors decrease significantly
with increasing number of the SPs, which means that a subset of objects was insufficiently
scanned resulting in bad alignment after 25 SPs (errors over 1 cm). The alignment errors for
individual objects are shown in |Fig. 4.19.

Object alignment error
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0006 F T Te==me-e—o_____  TT==ol
0.004 e
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0.002 [ e
0 - - - [

Error [m]

# of SPs

Figure 4.18: Objects positions deviation percentiles in the first environment for Exp 1 and Exp 2
experiments.

The classification was done only in the x-y plane without rotation like in Naex experiments.
A decision whether the object was shifted was made regarding the threshold, which was set
to the same value for both coordinates. The classification accuracy was computed for four
different values of the threshold — 0.005 m, 0.01 m, 0.02 m, 0.05 m. As shown in [Fig. 4.20] the
accuracy increases with the number of SPs. For thresholds 0.02 m and 0.05 m, it reaches the
value of 1 after a certain number of SPs. Furthermore, the accuracy overcomes the accuracy
of frontier-based exploration somewhere between 30 and 35 SPs. Moreover, the accuracy for
the threshold of 0.005 m is significantly higher, even for 25 SPs. Another important finding is
that there are no shifted objects marked as not shifted for all threshold values (i.e., sensitivity
is always equal to 1) as can be seen from [Tab. 4.7,

The localization error (see [Fig. 4.21)) is lower than during the Naex experiments, mainly in
the problematic z-axis. On the other hand, there are many noisy estimations of the robot’s
position in the x-axis, which did not appear in the previous experiments. They may be caused
by going along the walls and closets.
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Figure 4.19: Objects positions and computed deviations after 40 SPs in the first environment.
Squares represent shifted objects and circles the rest.
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Figure 4.20: Accuracy of shifted objects detection for different threshold values for both experi-
ments in the first environment.
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: threshold
Experiment

0.00bm | 0.0l m | 0.02 m | 0.05 m
Exp 1 after 25 SPs 165 76 | 214 27 | 227 14 | 235 6
0 9]0 90 9] 0 9
Exp 1 after 30 SPs 177 64 | 220 21| 234 7 | 238 3
0 9]0 9| 0 9] 0 9
Exp 1 after 35 SPs 186 55 | 231 10| 239 2| 240 1
0O 9]0 90 0 9] 0 9
Exp 1 after 40 SPs 201 40 | 234 7 | 239 2 | 240 1
0 9 0 9 0 9 0 9
Exp 2 after 25 SPs 174 67 | 217 24| 236 5 | 239 5
0 90 90 9| 0 9

182 222 19 | 239 2 | 241
Exp 2 after 30 SPs 82 59 9 39 0
0 9]0 9| 0 9] 0 9

1 44 | 2 11 ] 240 1 | 241
Exp 2 after 35 SPs 7 30 0 0
0 910 9/ 0 9| 0 9
Exp 2 after 40 SPs 206 35 | 233 8 | 241 0 | 241 0
0 91 0 9| 0 9| 0 9

Table 4.7: Confusion matrices for both experiments in the first environment after given number

. i TN FP e . .
of SPs. Matrices are written as FN TP’ where positivity means that objects are shifted.
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Figure 4.21: Robot estimated position error in the first environment for Exp 1 (left) and Exp 2
(right) experiments.
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B 4.3.3 Experiments in the model with small disturbance

The other experiments were done in the small disturbance model where around 80 objects
were shifted using the normal distribution noise (see . The gathered point clouds
are evaluated after 25, 30, 35, and 40 SPs for two different numbers of SPs prepared in the
PK phase — 15 SPs in Exp 3 and 25 SPs in Exp 4. The scan coverage of the environment
is shown in The coverage of the environment is less dense than in the previous
experiments. Furthermore, there is a remarkable difference between them. The heatmap
for Exp 4 is mostly blue, meaning most of the distances are around 1 cm compared to the
heatmap for Exp 3, where especially the upper part is mostly green (distances are several
centimeters).

Figure 4.22: Point cloud density as heatmap of distances between reference and measured points
in the second environment for Exp 3 (top) and Exp 4 (bottom) experiments. A histogram of
distances is on the right side next to the color scale.

The differences between the results of object alignment, shown in [Fig. 4.23, reflect the big
differences in the coverage of the environment. Medians are lower than 0.006 m for both
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experiments. On the other hand, the 90th percentile for Exp 3 is around 0.07 m, i.e., seven
times higher than for Exp 4.

Object alignment error
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Figure 4.23: Objects positions deviation percentiles in the second environment for Exp 3 and Exp
4 experiments. Value of 90th percentile for Exp 3 is around 0.07 m, i.e., seven times higher than
for Exp 4.

In this case, the classification was done for three different variants of ground-truth classes.
The variants differ in the border value needed to decide whether the object is really shifted or
not. Since the offsets are sampled from a normal distribution, a few of them are too small to
be detected. Hence, these should not be taken into account for the classification (i.e., marked
as not shifted) as they would affect the results. The border values are 0.01 m, 0.02 m, and
0.05 m. A decision whether the object was shifted was made regarding the threshold, which
was set to the same value for both coordinates. The classification accuracy was computed for
four different values of the threshold — 0.005 m, 0.01 m, 0.02 m, 0.05 m.

As shown in |[Fig. 4.24, even for 40 SPs, the accuracy is never equal to 1, the highest values
are around 0.95. Furthermore, it can be noticed, the border value affects the accuracy for
different threshold values, i.e., the best results are for the same border and threshold value.
The classification accuracy is better in Exp 3 than in Exp 4, although the coverage is worse
in that case.

The localization error (see |Fig. 4.25)) is almost the same as in the previous experiments.
Again, there are many noisy estimations of the robot’s position in the x-axis.
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) Exp 3 with border value 0.01 m ; Exp 4 with border value 0.01 m
| —— | '
0.9
—C ———0
0.8
' w@== Threshold 0.005 m
sesf)== Threshold 0.01 m
0.7 Threshold 0.02 m
wf@== Threshold 0.05 m
25 30 35 40 25 30 35 40
. Exp 3 with border value 0.02 m Exp 4 with border value 0.02 m

accuracy |[-]
o
©

—

25 30 35 40 25 30 35 40
. Exp 3 with border value 0.05 m ; Exp 4 with border value 0.05 m
F PR —— —0 F — . 0
094 ———© 09
—O === < L 4 0
0.8 0.8
"
0.7 0.7
25 30 35 40 25 30 35 40
# of SPs

Figure 4.24: Accuracy of shifted objects detection for different threshold values and different
border values (rows) for both experiments in the second environment.
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Figure 4.25: Robot estimated position error in the second environment for Exp 3 (left) and Exp
4 (right) experiments.
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. 4.4 Algorithm evaluation in real factory hall environment

Experiments with the real robot (see took place in Testbed. Testbed is an experi-
mental workplace with several robotic cells with different robots. Dimensions of the given
model (see are around 55x20x4 m. However, part of the environment is hidden
behind the doors, thus inaccessible. As opposed to the factory model, there are no fences
between cells, which means the scanner can gather points from the distant robotic cells as
well.

Figure 4.26: 3D prior model of Testbed.

Two experiments were prepared. Each of them consisted of 15 SP and lasted about 50
minutes. The first experiment started with the PK phase, whereas the second one tested only
the NBS phase of the proposed ESS algorithm. Photos from the experiments are shown in
The gathered point clouds were either aligned automatically during the experiment
(data from LiDAR for navigation) or manually after the experiment (data from terrestrial
scanner as the main output of the experiment). Since there was a problem with the robot
localization, the floor in the aligned point clouds gathered by LiDAR was not horizontal, but
there was a slope caused by the error in robot estimated position.

Figure 4.27: Photos from experiment in Testbed taken while the robot stood still and the terrestrial
scanner was gathering data. The operator sat next to the robot and held the teleoperation
controller.
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4.4. Algorithm evaluation in real factory hall environment

B Experiment with PK phase

At the beginning of the first experiment, the prior model was preprocessed, and the SPCs
were sampled (see . The big blue rectangle in the right upper corner, meaning the
space is occupied, was added manually because no factory equipment was in this part of the
area neither in model (empty rooms) nor in reality (leisure area with sofa). As can be noticed,
there is no SPC in the right lower corner room. The reason is that there is no path between
the main room and this room based on the model (in reality, they are connected through a
door). Since the experiment was designed to contain 15 SPs, we decided to prepare 10 SPs in
PK phase to cover most of the environment, and the rest of the SP would be used to fill the
holes in the model during the NBS phase. The selected SPs and their order can be seen in
Fig. 4.28 (right).
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Figure 4.28: 2D projection of Testbed with sampled SPCs (left) and PK phase output, the selected
SP with the path traversing them (right).

The final combined point clouds are depicted in [Fig. 4.29. As can be seen, the data from

the terrestrial scanner were less noisy. On the other hand, the data from the LiDAR were
more complete.
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Figure 4.29: Scanned Testbed in the experiment with PK phase by terrestrial scanner (top) and
LiDAR (middle) and their overlap (bottom) — terrestrial scanner (green) and LiDAR (red).
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B Experiment without PK phase

The second experiment consisted of NBS phase only. The reason is that the model did not
correspond to the current state (see , so the impact of the skipped PK phase was not
significant. The final combined point clouds can be seen in Similar to the previous
experiments, the data from the terrestrial scanner were less noisy. On the other hand, the
data from the LiDAR were more complete.

Figure 4.30: Scanned Testbed in the experiment without PK phase by terrestrial scanner (top)
and LiDAR (middle) and their overlap (bottom) — terrestrial scanner (green) and LiDAR (red).
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B Experiments comparison

Since both experiments lasted a similar time and the number of scans was the same, the
results should be similar. As can be seen in the detailed view of the gathered data (see
[Fig. 4.31)), the right bottom corner of the model is better covered in the first experiment.
Nevertheless, when Figures (top) and (top) are compared, the differences in the rest
of the model are not significant.

Figure 4.31: Detailed view on the gathered data in the right bottom corner of the model. First
(left) and second (right) experiment in Testbed.

Furthermore, the traversed paths are compared in The robot stayed on the long
passage in the center during the second experiment (see bottom). Once the robot
was going back from the far side, the SPs were planned closer to objects and walls. The SPs
planned in the PK phase of the first experiment (see top) were placed near the
objects. The robot could not reach the desired positions because the SPs were planned on
the misleading model. Nevertheless, as seen earlier, even these inaccurate SPs improve the
model coverage.

N B N ® measured data
Experiment with prior knowledge ® Traversed path

Figure 4.32: Traversed path during the experiments in Testbed with prior (top) and without
(bottom) knowledge.
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Chapter 5

Discussion

In this chapter, we discuss the problems we faced during the implementation (Sec. 5.1)) and
the real-world testing (Sec. 5.2)). Then we summarize the obtained knowledge in a study of
technical feasibility in [Sec. 5.3|

. 5.1 Implementation issues

During implementation of Exploration by Static Scans (ESS) algorithm, several issues appeared.
Therefore, several changes were made to resolve these issues or at least to minimize their
effect.

The first issue was related to the problem of the gathered high-resolution point clouds
(un)availability during the experiment. Since the output static scans could not be used for
the next Scanning position (SP) decision, these gathered scans had to be approximated. In
the first implementation, the output scans (and the world model) had been estimated by
the scans collected by the LiDAR in the SP. An approximation method was introduced (see
Sec. 3.4.3) because of the differences between the scans from the terrestrial scanner and the
LiDAR.

The second issue was related to the gain computation function. Originally, cast rays had
been sampled with high angular resolution in both directions. However, the ray-casting
computation with high resolution had been computationally demanding. Moreover, the high
resolution had influenced the coverage of far voxels only because nearby voxels had been
traced by multiple rays, which had been unnecessary and ineffective. Therefore, the angular
resolution of the rays was changed (see Sec. 3.4.5).

The last issue was that there was currently no possibility to automate the static scan
process. This issue appeared only in the real-world scenario. There was no communication
between the program and the terrestrial scanner, which meant that the scanning procedure
had to be started manually and the program could not detect that the scan was finished. In
the first version, the program had waited for a specific amount of time, and when the time
had been exceeded, the robot had started moving again. However, looking for a suitable time
limit had not been trivial, because the scanning procedure had been started manually by the
operator. Therefore, instead of the time limit, a specific button had to be pressed on the
teleoperation controller when the scan was finished (more details in [Sec. 3.5.2)).

B 5.2 Real-world experiments issues

Several problems occurred during the real-world experiments in Testbed. The first one was
polished floor, which caused difficulties for the navigation program and the ESS algorithm.
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Figure 5.1: The polished floor in Testbed with visible light reflection (top left), the created
artifacts (orange circles with red dots) in the navigation map (top right), and gathered points
under the ground level (bottom).

A problematic (light) ray reflection can be seen in |Fig. 5.1 (top left). Like light rays, laser
rays from the LIDAR were also reflected. As a result, the reflected rays caused fragments in
the navigation map — the orange circles with red dots shown in |Fig. 5.1/ (top right). Due to
the reflection, the navigation algorithm assumed that these artifacts were holes in the floor
and the robot could not pass through them. Therefore, the robot movement was sometimes
chaotic as the fragments were constantly changing. The reason is that many measured points
seemed to be under the floor, mainly for the measurements close to the walls and closets as the
reflected rays from the floor hit these obstacles and then went back to the scanner, resulting
in a higher measured distance compared to reality. It can be observed in Fig. 5.1| (bottom),
where the measured points under the floor are shown. Furthermore, the robot localization
estimation was disturbed (see deviation of z-axis coordinate of the robot estimated position
during experiments in Fig. 5.2).

The second problem was the inaccurate prior model. As shown in [Fig. 5.4] the measured
data and the given model were not similar. Even if the manipulators were in both models
(the given one and the measured one), they often had different joint configurations, making
the object alignment more difficult. Since there was no ground truth, the evaluation of the
experiments could not be done properly. On the other hand, it could be used to test whether
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Figure 5.2: The change of the robot position in z-axis from the starting position during experi-
ments.

the proposed algorithm was able to deal with unreachable scanning poses.

Another observed problem was that the implemented alignment method does not work in
this case (see , probably because of the initialization. Unfortunately, our alignment
method was sensitive to the quality of initial estimation. The alignment likely failed once the
objects were not close to the correct position or their shape was not the same.

Figure 5.3: An unsuccessful attempt to align objects with measured data.

B 53 Study of technical feasibility

In this section, we summarize the prepared method for automated 3D scanning in factory
halls, highlight the achieved results, discuss the drawbacks and problems, and propose possible
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Figure 5.4: Inaccurate 3D prior model (black) vs the actually measured model (white).

enhancements.

B 5.3.1 Exploration algorithm

The original frontier-based exploration algorithm had to be replaced by the new exploration
algorithm because the high-resolution terrestrial scanner could collect data only while it
stood still. The proposed exploration algorithm called ESS maximizes the coverage of the
unknown environment and minimizes the required time of the process, i.e., the number of
SPs. After the experiments, we can conclude that the division into two phases is useful—the
environment is explored more effectively (see . As shown in Figures and ,
the whole environment was covered. Gathered points were closer than 1 cm to points of
the corresponding objects. The coverage was more dense than in the experiments without
the terrestrial scanner (see Figures and as expected. The measured data from the
terrestrial scanner were almost without noise; hence the shifted object classification accuracy
achieved values close to 1, mainly for the experiments with the shift of at least several
centimeters. The classification of shifted objects was not successful only when the area was
not covered properly as can be seen in In the case of the real-world experiment, we
had no ground-truth data. Nonetheless, it visually seemed the environment was sufficiently
covered.

The static model approximation during the factory mapping process worked fine, mainly
because it exploited that the first SPs were precomputed so that it was not necessary to
approximate the model from the beginning of the process. Nevertheless, it would be better if
the data from the terrestrial scanner were available during the process and incorporated into
the model as soon as possible.

The main drawback of the proposed algorithm is that it assumes the SPs only in a 2D grid.
However, the factory floor can be in different height levels, e.g., a platform accessible by stairs.
Once the selected mobile robot is able to reach these areas, it will be unavoidable to change the
selection of Scanning position candidates (SPCs) from 2D to 3D. Furthermore, representation
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of the scanned model should be changed or customized to improve and accelerate removal of
the dynamic objects and improve empty voxel estimation. Moreover, the navigation algorithm
should be closely connected with the exploration algorithm to detect unreachable SPCs
effectively and improve the robot’s path planning.

The robot’s return to the dock station can arise several problems. It is necessary to resolve
the (automated) model division to suspend the factory scanning process between two parts
and not when the current part is not finished. The model division should be done with respect
to the robot’s remaining power and the distance from the dock station. Another problem
would be precise detection of the docking/charging station.

Finally, we suggest several other possible features and future enhancements. The first one
is automated detection of robotic cells, which would be helpful to divide the environment
automatically and would enable the processing of cells independently. It would be necessary
to detect the doors and exploit the found fences to limit the scanning area. Another feature
would be reporting of unreachable areas of the environment, which should speed up the
process by skipping additional attempts to reach these areas. If there is no prior model or
the prior model is inaccurate, we suggest letting the robot traverse the environment rapidly
without using the terrestrial scanner and gathering an approximate model of the environment
for the Prior Knowledge (PK) phase.

Furthermore, the procedure could be sped up and improved by object recognition and
classification online during the scanning process. It would help to identify the object interiors
that cannot be seen and distinguish them from the uncovered parts of the objects. The static
model could be improved by incorporating the postprocessed measured data by terrestrial
scanner during the robot’s charging in the dock station.

Il 5.3.2 Autonomous robot behavior

The robot’s autonomous behavior is ensured by programs from the framework RDS [27, 28] 29,
31], using norlab-icp-mapper [24] for robot localization estimation. The robot traversed the
environments successfully both in simulation and real-world scenarios. However, sometimes it
struggled in narrow passages because the navigation algorithm wrongly assumed the robot
could not move through due to map resolution and LiDAR noise. Since the navigation
program is parametrized to be adaptive to different environments, it is necessary to find
suitable values for various settings to improve the navigation performance and robustness.
However, the optimal parametrization must be found in the actual environment with all
aspects considered.

The localization error evaluated in the simulated experiments can be seen in Figures |4.5|
4.9, 4.21, and [4.25 The localization error in the z-axis was problematic during the classical
frontier-based exploration (Naex) experiments because the errors were about 0.03 m which
resulted in a sloping floor. On the other hand, there were noisy estimations of the robot’s
position in the x-axis during the proposed algorithm exploration, probably caused by going
along the walls and closets. The more significant problems with localization were in the
real-world scenario, where the errors were over 0.4 m in the z-axis. This problem was discussed
in Sec. 5.2l For the actual deployment, we assume that the floor in the real factory will not
be polished to a mirror-like appearance. Otherwise, the LIDAR data postprocessing method
should be implemented. Moreover, we suggest placing position calibration marks (e.g., QR
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codes) in different places in the factory hall, such as walls and robotic cell doors, to stabilize
the robot localization.

B 5.3.3 Hardware platform

The scanning mobile robot platform prototype was tested only in Testbed, not in a real
factory environment/'l Therefore, the experiment outputs may not reflect the issues which
would appear in the factory. The Husky robot traversed the environment reliably. It safely
dealt with minor floor roughness and obstacles, such as small robot pedestals and Ethernet
cables. However, the four-legged robots seem to be more suitable for the factory environment
since they have better traversability. Specifically, they can overcome stairs and obstacles such
as cable channels distributing electricity. Moreover, they can better move in narrow areas.

The terrestrial scanner gathered high-resolution data covering the environment densely as
can be seen in Figures |4.2974.30. The problem of missing connection between the scanner and
the control algorithm remains, due to which the human operator must be close to the scanner
and manually start scanning. It leads to occlusion caused by the human operator and to
contamination of the gathered point clouds with points corresponding to the human operator.
However, it should be possible to purchase an SDK from Leica to control the scanner directly
from the robot. Moreover, the terrestrial scanner should be powered from the robot and not
externally with batteries. The platform should work with the remaining power and decide
when it is necessary to return to a dock station.

It is possible to incorporate a scanner with even higher precision and points density than
the Leica BLK360, such as Leica RTC360. Nevertheless, its weight is several times higher;
hence the robot’s permissible payload must be considered. Moreover, it should be more deeply
studied whether the higher points density is needed and valuable.

!Experiments in a real factory are planned just after the submission deadline.
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Chapter 6

Conclusion

In this thesis, we proposed a method of autonomous 3D scanning in factory halls with a
mobile robotic platform. Mainly, we prepared a new exploration algorithm called Exploration
by Static Scans (ESS) optimizing the completeness of 3D data needed for the installation
check in combination with minimizing the needed time for the process. Several tasks had to
be done to test the proposed algorithm.

At first, we prepared several metrics to evaluate the ESS algorithm. The first metric is used
to select the most suitable variants of the ESS algorithm for maximizing the environment
coverage. The other metrics are employed to verify the ESS algorithm performance in
optimizing the completeness of 3D data needed for the installation check.

Furthermore, we assembled a hardware prototype of a scanning mobile robotic platform
to test the ESS algorithm in a real-world scenario. The platform is based on the robot
setup for DARPA SubTerranean Challenge, and it consists of a four-wheeled mobile robot
Husky, an ultra-wide view LiDAR sensor Ouster 0s-0, and other sensors for robot localization
and navigation. We extended the setup with a terrestrial scanner Leica BLK360 provides
high-resolution scans. Custom construction for attaching the Leica scanner to the robot was
designed and the Leica scanner was mounted above the Ouster LIDAR. Then we verified
its functionality together with the behavior of the ESS algorithm in a real factory hall
environment.

The proposed ESS algorithm consists of two phases. Since a very high scan precision is
required, the scans are gathered only when the robot stands still. Scanning positions (SPs)
are positions where these high-resolution scans are gathered. The goal of the algorithm is to
find optimal SPs to maximize the coverage of the unknown environment. The algorithm may
exploit the prior knowledge about the environment (if available) to speed up the exploration
procedure by computing several SPs ahead, i.e., before the exploration starts.

As we assume that the data from the terrestrial scanner are not available during the factory
mapping process, it is necessary to estimate the proportion of the environment the terrestrial
scanner has already scanned. Therefore, we proposed an approximation method for estimating
the gathered high-resolution point clouds from terrestrial scanners. The approximation
exploits the information about the environment gathered by the LiDAR.

We performed several experiments to test the performance of our proposed algorithm. At
first, we ran classical frontier-based exploration experiments to obtain baseline results and test
the prepared metrics. The robot was gathering data simultaneously during these experiments
with the LIDAR. The majority of the distances between the gathered data and the reference
point cloud were a few centimeters. Nevertheless, the alignment error was within +0.02 m
for almost all objects, and most of them were within #0.01 m for the x-axis and y-axis. The
small alignment errors led to satisfactory classification results — the recall always equals 1,
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and the accuracy equals 1 for the object position deviation threshold 0.02 m and 0.05 m.

We conducted experiments to choose the best variant of our ESS algorithm. Based on
the similarity score computation, a prior model should be used because the coverage of the
environment increases slowly without the prior model. Moreover, a 3D prior model should
be preferred instead of a 2D prior model if both are available. Another outcome is that it is
favorable not to divide the environment into parts but to process it at once.

The evaluation of the proposed algorithm in the robotic simulator was performed in two
different versions of the model, each of them with a different number of shifted objects.
However, the computation of SPs in Prior Knowledge (PK) phase was done in the same prior
model different from them. We prepared two sets of SPs prepared in PK phase with 15 and
25 SPs respectively. Then during the experiments, scans were gathered in 40 SPs. In the first
model version, the environment was fairly covered. The majority of the distances between the
gathered data and the reference point cloud were around 1 cm. The object alignment errors
in the x-axis and y-axis were promising as well. Their mean was around 0.002 m even after 25
SPs and the 90th percentile was less than 0.006 m after 40 SPs. The classification accuracy
equals 1 for threshold 0.02 m from 35 SPs, and the recall is 1 for all thresholds from 25 SPs.

In the second model version, there is a difference between the environment coverage for the
cases with 15 and 25 SPs prepared in PK phase, mainly in the top part of the model. The
difference propagated into the object alignment errors in the x-axis and y-axis. The means
were around 0.004 m and 0.002 m for 15 and 25 SPs prepared in PK phase respectively. The
value of 90th percentile was more than seven times higher for the case with 15 SPs than with
25 SPs prepared in PK phase. The classification accuracy is over 0.9 for the threshold of
0.02 m and all border values. In contrary to the object alignment results, the classification
results have higher accuracy for the case with 15 SPs than with 25 SPs prepared in PK phase.

Finally, we tested the algorithm in a real-world scenario in Testbed environment. Unfortu-
nately, the prior model of the environment does not correspond to the current state; hence, it
is not possible to evaluate the measured data using our metrics. We ran two experiments

— with and without the prior model. For each experiment, scans were collected in 15 SPs.
During the experiments, we discovered that the floor in Testbed was polished to a mirror-like
appearance. The reflected rays caused fragments in the navigation map and added noise to
the robot localization estimation, leading to errors around 0.4 m in the robot position in the
z-axis. Despite this problem, the robot successfully gathered all scans and returned to the
starting position.

As a final task, we summarized the obtained knowledge of using an autonomous robot
to automate 3D scanning in factory halls in a study of technical feasibility. In the study,
we evaluated the combination of the robotic scanning platform prototype and the proposed
algorithm. We identified the drawbacks of the current solution and proposed possible
improvements for actual deployments.
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Appendix A

Model preprocessing

This appendix documents the factory model preprocessing. The model was converted into
human-readable file formats, then analyzed and simplified. Finally, we prepared programs
and a configuration file to generate environments with different objects or different poses of
objects.

B A1 Data representation

The model of the environment was represented in several ways and formats in the model
preparation pipeline.

Original models are stored in a .jt format created by Siemens PLM Software [43] as a
default export format for Siemens Digital industries software [44]. This format can contain
facet data, product and manufacturing information, and metadata in binary form. Although
.jt format was officially declared ISO-standardized 3D visualization format, it can be opened
only in specific programs and data in binary form are not easily editable. For that reason, it
was necessary to convert it to human-readable formats supported by robotic simulators.

COLLADA format (.dae) is a file format for interactive 3D applications with XML-based
schema [45]. Models can be stored in a tree structure which simplifies the reading of the file.
Moreover, individual blocks, e.g., robotic arms, can be easily parsed and extracted from the
whole model.

Wavefront object file format (.obj) is a data format for 3D geometry definition [46]. The
object file usually contains vertex positions, vertex normals, texture vertices, and the faces
that form each polygon as a list of vertices and their normals.

A models in the .obj and .dae file formats is represented as a polygonal mesh - a collection
of vertices, edges, and faces that make up the shape of a polyhedral object. Later, the meshes
were converted into voxels (i.e., voxelized) - a grid of cubic volumes of equal size - for easy
manipulation and evaluation in the exploration algorithm. Octree models (see Sec. 3.1|) were
obtained from the voxelized models.

A mesh can be easily converted to a point cloud by sampling its surface. The model
represented by a point cloud can be easily compared with the gathered scanner measurements.

B A2 Model simplification

The original model of the factory, even after conversion to supported file formats such as
Collada or Wavefront file format, was not suitable for experiments in the robotic simulator
because the model was too detailed and thus too memory-demanding. Therefore, it was
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necessary to simplify it.

In the beginning, the model and its tree structure were analyzed in .dae file format. Since
the fences and doors were in one tree branch away from other objects, they were removed
before the analysis continued.

The goal of the analysis was to separate the objects based on semantics (e.g., individual
manipulators, lifters, and closets) connected or constructed from multiple pieces with different
levels of detail and different dimensions (e.g., a manufacturer’s logo versus a large concrete
pedestal under a robot). The total number of these pieces (i.e., leaves of the model tree) was
over 10°. After the automatic and manual analysis, the model tree was pruned in different
levels to obtain 254 objects (leaves of the pruned model tree).

There were 43 manipulators, 8 car body holders, 8 type tag readers, 4 lifters, 3 filtration
stations, 2 conveyors, and other objects. Since it was unnecessary to have multiple objects of
the same type, a subset of them was selected to create a set of template objects with 37
models (8 of them were different versions of manipulators). The rest of the objects were just
rotated, translated, and sometimes slightly modified versions of the unique ones.

This small set of template objects was converted from Collada file format to Wavefront
object file in Blender [47]. The converted objects were manually checked in MeshLab [48], and
useless details like a warning text in [Fig. A.1, were removed. Then the objects were cleaned
by removing duplicate vertices, duplicate faces, zero area faces, and unreferenced vertices
in MeshLab [48]. The cleaned objects were then simplified by merging close vertices. After
cleaning and simplification, the saved objects were small enough for the robotic simulator,
having about a tenth of the original file size, although the difference between the original
model and its simplified version is not visible, as shown in [Fig. A.2]
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Figure A.1: Warning text label on one of the objects.

B A3 Model generation from configuration file

As the template objects were taken directly from the model tree with their locations, all their
vertices were shifted, which caused unwanted offsets. Therefore, the template objects were
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A.3. Model generation from configuration file

Figure A.2: Original model (left) and the simplified one (right) of the KUKA manipulator.

moved to their centroids in the x-y plane to remove these offsets. Moreover, they were aligned
in the x-y plane, with the bottom starting at z=0. As a result, the template objects lie on
the floor, and their centroids in the x-y plane are in (0,0).

Since the measured data are stored in point clouds, the template objects were sampled
to create reference point clouds comparable to the measured data. Object surfaces were
uniformly sampled with a density of 1 point per cm?. The Ignition Gazebo model of the
environment, its corresponding sampled version (i.e., point cloud), and the voxelized version

can be seen in

As the final step, a configuration file for the factory model generation was created. Each
row contains the object name, its position in 3D (usually z=0), its orientation around the
axes (only the orientation around z-axis is not equal to zero), and the name of the template
object from which the object was derived. An example snippet of the configuration file can
be seen in The configuration file defines the factory model completely, and thus can
be used to create different models in different file formats for different parts of the testing
pipeline, such as, Gazebo model for the Ignition Gazebo, polygonal mesh for visualization,
the reference point cloud for comparison with measured data, the binvox model and its octree
variant for OctoMap library, which is used for evaluation. Since the file can be easily modified,
it is possible to create many environments with different objects or different poses of objects.

The model preprocessing pipeline was designed to be easily used in different scenarios with
various applications. New environments can be created by extending the set of template
objects.

Node name X [m] Y[m] |Z[m] RX[rad] RY [rad] |[RZ [rad] Filename

kuka_type2_6 13.776 8.4221 0 0 0/ 1.5708 kuka_type2
kuka_type2 7 -8.945 12.6574 0 0 0| -1.5708kuka_type2
kuka_type2 8 -8.945 8.5274 0 0 0/ 1.5708kuka_type2
kuka_type3 11.5638 8.9201 0 0 0/ 1.5678kuka_type3
kuka_type3 1 5.5788 12.6981 0 0 0| -1.5528kuka_type3
kuka_typed 10.2246| 12.8751 0 0 0| -1.5828kuka_typed
kuka_typed 1 10.4534| 8.5385 0 0 0/ 1.5588kuka_typed
kuka_type5 16.2972| 12.9563 0 0 0| -1.5688kuka_type5
kuka_type5_1 16.315 8.4544 0 0 0| 1.5758kuka_type5
kuka_type5_2 7.7502 13.1519 0 0 0| -1.5738kuka_type5
kuka_type5_3 7.7852 8.2891 0 0 0/ 1.5388kuka_type5
kuka_type6 -9.045 -1.4675 0 0 0/ -1.5708 kuka_type6
kuka_typef_1 -8.8134 -5.6674 0 0 0| 0.7854 kuka_type6
kuka_type6_2 3.4465 12.9949 0 0 0| -1.5758kuka_type6
kuka_type6_3 3.4495 8.3918 0 0 0/ 1.5738kuka_type6

Figure A.3: Example snip of the configuration file with the header.
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Figure A.4: Ignition Gazebo model example (top), its corresponding sampled version (middle),
and the voxelized version (bottom).
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