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Introduction

The primary aim of this work was to create a theory that consistently linked fuzzy
sets to probability theory. The theory had to work with the phenomena described by
fuzzy sets, probability distributions and exact numbers. It had to apply the tools
of probability theory to all these phenomena. The whole required mathematical
consistency.

The new multi-value logic described in this text is named floppy logic.

During the work, floppy logic revealed itself to be not only the bridge searched
between fuzzy sets and probability theory but it was also fascinating in itself.

One of the beautiful and remarkable results of this theory is that floppy logic retains
all the properties of standard two-valued logic which can be formulated as equiv-
alences. Floppy logic, therefore, preserves distributivity, the law of contradiction,
the law of excluded middle, De Morgan laws, the law of contraposition, and so on.
Although floppy logic is similar to fuzzy logic, no fuzzy logic possesses this prop-
erty. The fact that such a multi-valued generalisation of standard two-valued logic
is possible at all is certainly a great surprise.

Another beautiful feature of floppy logic is that it is a model of Kolmogorov prob-
ability theory. It is therefore possible to use the full wealth of relationships and
knowledge of standard probability theory within floppy logic. For example, it is
feasible to define the mean value of a floppy set, use Bayes’ theorem or apply the
law of total probability.

Floppy logic also retains the simplicity and practicality of fuzzy logic. This will
surely be appreciated by anyone who wants to apply this new logic in solving specific
problems.

The work is divided into five chapters.

The first chapter is “Floppy Logic in a Historical Context”. I mention here some
important notions in logic and probability formed in the twentieth century. These
ideas are immediately associated with floppy logic and demonstrate whether and to
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what extent they contributed to the creation of floppy logic. This chapter is very
brief yet contains many references to other literature.

The second chapter “Mathematical Foundations of Floppy Logic” is the mathemat-
ical core of this work. It introduces the basic concepts and relationships of floppy
logic. The most important results of this chapter are three theorems: the first two
link floppy logic with probability theory and the third links with Boolean logic. The
proofs of these theorems are given in the appendices.

The third chapter “Other Interesting Mathematical Outcomes” describes three other
interesting topics. It first introduces the mean value of a floppy set as an example
of the link between fuzzy sets and probability theory.

The chapter then provides many interesting results concerning floppy implication
and introduces several generalisations of the inference rules modus ponens and
modus tollens.

Finally, the chapter describes an interesting relationship between the floppy mem-
bership function of a floppy set and t-norms and t-conorms used in fuzzy logic.
From this relationship, it is possible to derive the quantitative measurement of the
dependence of two statements.

The fourth chapter “Using Floppy Logic to Describe a System” examines in detail
everything required to describe and control a system using floppy logic. It starts
with the selection of suitable primary fuzzy sets, continues with the fuzzification of
input data, implementation of system rules and defuzzification of output data, and
ends with optimal control of the system.

The fifth chapter is “Comparison of Floppy Logic to Other Theories”. The chapter
compares floppy logic with fuzzy logic and Adams’ and Stalnaker’s probability logic.
For example, comparison of floppy implication with Adams’ Thesis is a fascinating
study.

The basis of this work is articles [51, 52, 53]. However, the text has been reworked
and greatly expanded.

I am confident that discussion of this remarkable theory will not only be instructive
but also a pleasant experience!
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Chapter 1

Floppy Logic in a Historical
Context

In the first chapter, I attempt to describe the basic ideas which contributed to or
hindered the formulation of floppy logic. In floppy logic, several streams of thought
combine. One of them is certainly multi-valued logic.

1.1 Multi-Valued Logic

The first article discussing multi-valued logic, written by Jan Łukasiewicz, appeared
in 1920 [42]. The author wrote [41] that he was inspired to create a three-valued
logic according to Aristotle’s reasoning in the ninth volume of Hermeneutics, where
a future of naval battle is considered. Before this uncertain future event takes place,
one cannot consider statements about it to be true or false.

Łukasiewicz assigned a logical value of 1
2 (or 2 in the original version) to such uncer-

tain statements and supplemented the logical table with rules for the third value.

Łukasiewicz attached great importance to the creation of this new logic [41]: “Each
such logic can be the basis of slightly different mathematics, and each such mathe-
matics can be the basis of slightly different physics.”

1.2 Truth-Functionality

When Łukasiewicz discussed logic, he assumed that multi-valued logic must be
truth-functional, just like classical logic [41]. This means that the truth-value of
a composite proposition depends only on the truth-values of its atom propositions.
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This assumption precludes a link between logic and probability theory which is not
truth-functional.

Floppy logic is not truth-functional either.

1.3 Other Multi-Valued Logic

Other three-valued systems of logic were independently introduced by Dmitry Ana-
tolievich Bochvar and Stephen Cole Kleene in 1938 and in 1945 [7, 33].

Many types of multi-valued logic are now known, such as four-valued logic [5] or
16-valued logic [59].

Let us focus on that logic which has truth values from the interval [0, 1]. The
best-known types of logic are probabilistic logic and fuzzy logic.

1.4 Probabilistic Logic

Probabilistic logic is not a unified theory, rather more of a school of thought which
assumes that probability can be considered a generalisation of a truth value.

The notion that a close link exists between probability and logic can be found in
the works of many thinkers of the nineteenth and twentieth centuries. We may cite,
for example, Augustus De Morgan [14], George Boole [8], Frank Plumpton Ramsey
[54], and Rudolf Carnap [13].

However, Łukasiewicz wrote [41]: “Previous attempts to combine multi-valued logic
with probability have encountered great difficulties.”

Floppy logic also interprets probability or conditional probability as a possible gen-
eralisation of a truth value.

1.5 Adams’ and Stalnaker’s Logic

Well-known works on probabilistic logic were written by Robert C. Stalnaker in 1970
[60] and Ernest Wilcox Adams in 1975 [2].

In these theories, probability is a generalisation of the truth value. The main hy-
pothesis behind these theories is Adams’ Thesis, which states that the probability
of implication 𝑃 (𝐴 → 𝐵) is equal to relevant conditional probability 𝑃 (𝐵|𝐴).
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David Lewis showed [40] that this probability logic has one major problem: it cannot
be used to work with sentences wherein an implication contains some other implica-
tion. For example, the sentence (𝐴 ∧ (𝐴 ⇒ 𝐵)) ⇒ 𝐵 departs from the possibilities
of this type of probabilistic logic. This outcome is known as the Lewis’ triviality
result.

Floppy logic also obtains an exact relationship between 𝑃 (𝐴 → 𝐵) and 𝑃 (𝐵|𝐴),
although this is different from Adams’ thesis. In floppy logic, Lewis’ triviality result
does not apply.

1.6 Fuzzy Sets

The first article exploring fuzzy sets was written by Lotfali Askar Zadeh in 1965
[68]. In that work, the author introduced fuzzy sets and their membership functions.
The membership function of a fuzzy set can obtain any value from the interval [0,1].
Therefore, an element can belong to a fuzzy set, for example, only to 20%.

Floppy logic adopts the idea of fuzzy sets and membership functions and applies
them.

1.7 Operations with Fuzzy Sets

Fuzzy logic generalises the intersection and union of fuzzy sets in several ways.

In his first work on fuzzy logic [68], Zadeh already suggested two methods of op-
erating with fuzzy sets. From these two methods, Gödel and product fuzzy logics
were devised.

The following years saw the invention of Łukasiewicz1, drastic, and many other types
of fuzzy logic.

However, floppy logic does not use fuzzy operations. Instead, it uses an ordinary set
intersection and union.

1This logic, named after a Polish mathematician, is a different type of logic to the one published
in 1920 by Jan Łukasiewicz. This logic introduced Robin Giles in a paper [24] in 1976.

19



1.8 Problems in Fuzzy Logic

Although fuzzy logic has become very popular and the most widely used multi-value
logic, it has certain problems.

The different types of fuzzy logic provide different results. It is not clear which fuzzy
logic should be used in certain situations.

The second problem is that no fuzzy logic satisfies all the laws of standard two-
valued logic. Proof of this can be found, for example, in [47]. Details on which laws
are satisfied in the most commonly applied types of fuzzy logic are given in Table
1.1.

Table 1.1: Logical laws in the most commonly used types of fuzzy logic. G
= Gödel logic, Ł = Łukasiewicz logic, P = product logic, all with standard
negation. Data are drawn from [47].

G Ł P
involution ¬ (¬𝐴) = 𝐴 OK OK OK
commutativity 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐴 OK OK OK

𝐴 ∧ 𝐵 = 𝐵 ∧ 𝐴

associativity (𝐴 ∨ 𝐵) ∨ 𝐶 = 𝐴 ∨ (𝐵 ∨ 𝐶) OK OK OK
(𝐴 ∧ 𝐵) ∧ 𝐶 = 𝐴 ∧ (𝐵 ∧ 𝐶)

distributivity 𝐴 ∧ (𝐵 ∨ 𝐶) = (𝐴 ∧ 𝐵) ∨ (𝐴 ∧ 𝐶) OK × ×
𝐴 ∨ (𝐵 ∧ 𝐶) = (𝐴 ∨ 𝐵) ∧ (𝐴 ∨ 𝐶)

idempotence 𝐴 ∨ 𝐴 = 𝐴 OK × ×
𝐴 ∧ 𝐴 = 𝐴

absorption 𝐴 ∨ (𝐴 ∧ 𝐵) = 𝐴 OK × ×
𝐴 ∧ (𝐴 ∨ 𝐵) = 𝐴

absorption with 1 and 0 𝐴 ∨ 1 = 1 OK OK OK
𝐴 ∧ 0 = 0

neutral elements 𝐴 ∨ 0 = 𝐴 OK OK OK
𝐴 ∧ 1 = 𝐴

law of contradiction 𝐴 ∧ ¬𝐴 = 0 × OK ×
law of excluded middle 𝐴 ∨ ¬𝐴 = 1 × OK ×
De Morgan’s laws ¬ (𝐴 ∨ 𝐵) = ¬𝐴 ∧ ¬𝐵 OK OK OK

¬ (𝐴 ∧ 𝐵) = ¬𝐴 ∨ ¬𝐵

Floppy logic satisfies all the properties listed in Table 1.1 and all properties of
standard Boolean logic which can be formulated as equivalences.

20



1.9 Probability Theory

Another stream of thinking significant to floppy logic is the evolution of probability
theory.

Probability theory emerged in the mid-seventeenth century and is associated with
the names of Blaise Pascal, Pierre de Fermat and Christian Huygens.

In 1933, Andrey Nikolajevic Kolmogorov performed an axiomatisation of the theory
[35]. This axiomatisation is very important to us.

First, floppy logic is a model of the Kolmogorov probability theory.

Second, in this axiomatisation, Kolmogorov attributed probability not to the indi-
vidual possible results of a random experiment but their sets.

Applied to fuzzy sets, this step is the main difference between floppy logic and fuzzy
logic.

We can also find other axiomatisations of probability theory. The axiomatisation
performed by Alfred Renyi [57] is compelling since the main concept in his theory
is not probability but conditional probability.

This is similar to floppy logic, where probability is also derived from conditional
probability.

1.10 Attempts to Link Probability Theory and
Fuzzy Logic

The notion to link probability theory and fuzzy set theory is not new.

Both approaches can be combined in many ways. For example, Lotfi Zadeh intro-
duced classical probability of fuzzy phenomena [70].

In another article, the same author examined the probability of fuzzy events not
given by real numbers but fuzzy numbers [67].

In paper [48], the authors discuss the conditional probability of fuzzy objects.

An interesting relationship can be found in an article [21] by Brian R. Gaines, who
introduces “uncertainty logic”. After adding the law of excluded middle, this con-
cept leads to Rescher’s probabilistic logic, which is introduced in the book [55]. Con-
versely, an addition to the requirement of functionality in logic leads to Łukasiewicz’s
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fuzzy logic. The addition of a combination of both requirements leads to contradic-
tion.

Another relationship between probability theory and fuzzy sets can be found in
the similar properties of conditional probability and fuzzy relative cardinality. This
similarity was highlighted by Bart Kosko [37].

Possibility theory, which falls between probability theory and the theory of fuzzy
sets, was developed by Lotfi Zadeh [69], Didier Dubois and Henri M. Prade [17] and
is important to mention.

I would also like to mention one more work concerning the relationship between
probability theory and the theory of fuzzy sets. The authors in the paper [45]
studied the question of which t-norms and t-conorms, in conjunction with Zadeh’s
definition of probability of fuzzy events [70], satisfied Kolmogorov’s axioms.

A very similar question arose in the formulation of floppy logic.

Despite these attempts, unifying probability theory and fuzzy set theory into a single
consistent theory failed.

The main reasons of the incompatibility between fuzzy sets and probability were as
follows:

(1) Fuzzy logic and probability theory work with different forms of uncertainty [31].

(2) Fuzzy logic is truth-functional whereas probability theory is not [31].

However, we can find a non-truth-functional fuzzy logic system combined with prob-
ability [23].

Floppy logic is not truth-functional and operates with the probabilities of floppy
sets whereas a floppy set is a crisp set of fuzzy sets.

1.11 Floppy Logic

In September 2014, Ivan Nagy, my colleague, posed an interesting question of
whether it would be possible somehow to link statistics and fuzzy logic consistently.
It would be very useful. Frequently, more complex systems described with fuzzy
logic simultaneously require statistical data on this system to be processed.

Ivan Nagy immediately suggested a solution: if a structure which satisfied all the
Kolmogorov Axioms of probability theory was found in the world of fuzzy sets, then
all probability tools could be consistently applied when working with fuzzy sets.
This idea was refreshing, and after two weeks, the first results were obtained.
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The first article on this new logic was published in 2017 [51]. The paper presented
a theoretical foundation, and the new logic was called floppy logic.

Published in 2018, the second article [52] provided many examples of working with
floppy logic.

The third paper [53] demonstrated that floppy logic could be considered a multi-
valued generalisation of standard two-valued logic since it preserves all the properties
of Boolean logic which can be formulated as equivalences. It also contains some
compelling results on floppy implication.
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Chapter 2

Mathematical Foundations of
Floppy Logic

2.1 Basic Floppy Logic

2.1.1 Assumptions and Definitions

Let 𝐴1, 𝐴2, . . . be fuzzy sets whose membership functions are defined in the same
domain. We will call these sets primary fuzzy sets.

Let 𝜇𝐴1 (𝑥), 𝜇𝐴2 (𝑥), . . . be the membership functions of primary fuzzy sets 𝐴1, 𝐴2,
. . .

Let 𝑋 be the domain of the membership functions 𝜇𝐴1 (𝑥), 𝜇𝐴2 (𝑥), . . .

Let 𝑆 be the set of all primary fuzzy sets 𝐴1, 𝐴2, . . .

Let 𝒫 (𝑆) be the power set of 𝑆.

Let 𝑆𝑥 be a set of all primary fuzzy sets 𝐴𝑖 whose membership functions are greater
than 0 for given 𝑥.

Let the following assumptions be satisfied:

Assumption 2.1.1. For all 𝑥 ∈ 𝑋, 𝑆𝑥 is a finite or countable set.

Assumption 2.1.2. The membership functions of fuzzy sets 𝐴𝑖 ∈ 𝑆 assume values
from the interval [0, 1].
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Assumption 2.1.3.

∀𝑥 ∈ 𝑋 :
∑︁

𝐴𝑖∈𝑆

𝜇𝐴𝑖
(𝑥) = 1. (2.1)

Assumption 2.1.4. A measure space (𝑋, 𝒜, 𝑃 ) is defined in the set 𝑋, where 𝒜 is
a 𝜎-algebra on 𝑋, and 𝑃 is a probability measure.

Assumption 2.1.5. All membership functions 𝜇𝐴𝑖
(𝑥) of fuzzy sets 𝐴𝑖 ∈ 𝑆 are

measurable in the sets 𝑋𝑖 ∈ 𝒜 corresponding to measure 𝑃 .

Definition 2.1.1. All subsets of 𝑆 are called floppy sets. Floppy sets are denoted
in bold capital letters.

Definition 2.1.2. Each floppy set 𝐵 ⊆ 𝑆 is associated with a function 𝜇𝐵 (𝑥). The
function 𝜇𝐵 (𝑥) is defined as:

𝜇𝐵 (𝑥) =
∑︁

𝐴𝑖∈𝐵

𝜇𝐴𝑖
(𝑥) . (2.2)

The function 𝜇𝐵 (𝑥) is called the floppy membership function of the floppy set and
is denoted by the bold Greek letter 𝜇.

Definition 2.1.3. Each floppy set 𝐵 ⊆ 𝑆 is associated with a number 𝑅 (𝐵). The
number 𝑅 (𝐵) is defined as:

𝑅 (𝐵) =
∫︁

𝑋
𝜇𝐵 (𝑥) d𝑃, (2.3)

where the integral is a Lebesgue integral and 𝑃 is the probability measure given in
Assumption 2.1.4. The number 𝑅 (𝐵) is called the probability of the floppy set and
is denoted by the capital letter 𝑅.

The following theorem shows that a number selected in this way genuinely has
probability properties.
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2.1.2 Theorem of Basic Floppy Probability Space

Definition 2.1.4. The space (𝑆, 𝒫 (𝑆) , 𝑅) is called a basic floppy probability space.

In floppy logic, the following theorem applies:

Theorem 2.1.1. Each basic floppy probability space satisfies all Kolmogorov Ax-
ioms.

Proof of this theorem is given in Appendix A.

2.1.3 Remarks

Remark 2.1.1. By proving Theorem 2.1.1, the objective set by Ivan Nagy is
achieved. A structure which satisfies all Kolmogorov Axioms is found in the world of
fuzzy sets. All standard probabilistic tools and concepts in floppy logic can therefore
be used. For example, Bayes’ theorem can be applied, or the mean value or median
of the floppy set can be introduced consistently.

Remark 2.1.2. The result of Theorem 2.1.1 could be thought of as trivial since the
existence of a probability space is assumed in Assumption 2.1.4 and the existence of a
probability space is proved in Theorem 2.1.1. This is not true because (𝑋, 𝒜, 𝑃 ) and
(𝑆, 𝒫 (𝑆) , 𝑅) are completely different probability spaces. The probability measures
𝑃 and 𝑅 were distinguished for this reason.

Remark 2.1.3. The floppy set is crisp set of the primary fuzzy sets. Its floppy
membership function is the sum of membership functions of its elements.

Remark 2.1.4. In articles [51] and [52], the function 𝜇𝐵 (𝑥) was called “the mem-
bership function of the floppy set”. This denomination was selected to indicate that
this function has a very similar role in floppy logic to the membership function of
the fuzzy set in fuzzy logic. However, this denomination led to misunderstandings,
and it was therefore changed to “the floppy membership function of the floppy set”.

Remark 2.1.5. The intersection of two different single-element floppy sets is equiv-
alent to an empty set. When a certain reality is modelled, the primary fuzzy sets
which respect this property must therefore be selected.
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For example, the temperature of water can be described with the following three
primary fuzzy sets: unpleasantly cold, pleasant, and unpleasantly warm. It would
never be suggested, for example, that water is unpleasantly cold and pleasant simul-
taneously. Therefore, it is acceptable that the intersection of these two properties
(single-element floppy set) is an empty set.

However, the following primary fuzzy sets cannot be used: cold, pleasant, and warm,
since water can be, for example, warm and pleasant simultaneously.

Remark 2.1.6. In articles [51] and [52], Assumption 2.1.1 was stronger: “𝑆 is a
finite or countable set.” However, this stronger version is not necessary for proving
Theorem 2.1.1, therefore this assumption was changed.

Remark 2.1.7. Floppy logic is not truth-functional. This means that 𝜇𝐴∩𝐵 (𝑥)
cannot be computed from 𝜇𝐴 (𝑥) and 𝜇𝐵 (𝑥). The common elements (primary
fuzzy sets) of floppy sets 𝐴 and 𝐵 must be known.

Similarly, in probability theory, the probability of an event 𝐴 ∩ 𝐵 cannot be calcu-
lated from the probabilities of events 𝐴 and 𝐵.

However, standard binary logic and fuzzy logic are truth-functional.

Remark 2.1.8. Many examples of working with floppy sets in practice are presented
in Chapter 4.

2.2 Generalised Floppy Logic

2.2.1 Definitions

We have two probabilistic spaces. The space (𝑋, 𝒜, 𝑃 ) was assumed whereas the
space (𝑆, 𝒫 (𝑆) , 𝑅) was defined. Let us create a joint probability space.

A sample space, sufficiently 𝜎-algebra rich, and a probabilistic measure are needed.
Let us assume satisfaction of Assumptions 2.1.1 to 2.1.5. The sample space of this
joint probability space is the Cartesian product 𝑆 × 𝑋.

Definition 2.2.1. The smallest 𝜎-algebra over 𝒫 (𝑆) × 𝒜 is denoted 𝒞.
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Definition 2.2.2. Elements of 𝒞 are called generalised floppy sets.

The generalised floppy sets are denoted by bold capital letters with an upper index
G.

Definition 2.2.3. The floppy membership function of a generalised floppy set 𝐶𝐺 ∈
𝒞 is defined by the rule:

𝜇𝐶𝐺 (𝑥) =
∑︁

𝐴𝑖∈𝑆: [𝐴𝑖,𝑥]∈𝐶𝐺

𝜇𝐴𝑖
(𝑥) . (2.4)

The floppy membership function of floppy sets is denoted by the bold letter 𝜇.

Definition 2.2.4. The probability 𝑅 of generalised floppy set 𝐶𝐺 ∈ 𝒞 is defined by
the rule:

𝑅
(︁
𝐶𝐺

)︁
=
∫︁

𝑋
𝜇𝐶𝐺 (𝑥) d𝑃. (2.5)

The floppy membership function of the generalised floppy set is a generalisation of
the floppy membership function of the floppy set because:

𝜇𝐵×𝑋 (𝑥) =
∑︁

𝐴𝑖∈𝑆: [𝐴𝑖,𝑥]∈𝐵×𝑋

𝜇𝐴𝑖
(𝑥) =

∑︁
𝐴𝑖∈𝐵

𝜇𝐴𝑖
(𝑥) = 𝜇𝐵 (𝑥) . (2.6)

Similarly, the probability of the generalised floppy set is a generalisation of the
probability of the floppy set because:

𝑅 (𝐵 × 𝑋) =
∫︁

𝑋
𝜇𝐵×𝑋 (𝑥) d𝑃 =

∫︁
𝑋

𝜇𝐵 (𝑥) d𝑃 = 𝑅 (𝐵) . (2.7)

The probabilistic measure 𝑅 for generalised floppy sets is a generalisation of the
probabilistic measure 𝑃 :

Let 𝑌 be a subset of 𝜎-algebra 𝒜 assumed in Assumption 2.1.4. Therefore:

𝑅 (𝑆 × 𝑌 ) =
∫︁

𝑋

∑︁
𝐴𝑖∈𝑆: [𝐴𝑖,𝑥]∈𝑆×𝑌

𝜇𝐴𝑖
(𝑥) d𝑃 =

∫︁
𝑌

1 d𝑃 = 𝑃 (𝑌 ) . (2.8)

2.2.2 Theorem of Generalised Floppy Probability Space

Definition 2.2.5. The space (𝑆 × 𝑋, 𝒞, 𝑅) is called a generalised floppy probability
space.

The names “probability of generalised floppy set” in the Definition 2.2.4 and “gener-
alised floppy probability space” in the Definition 2.2.5 are justified in the following
theorem:
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Theorem 2.2.1. Each generalised floppy probability space satisfies all Kolmogorov
axioms.

The proof of Theorem 2.2.1 is given in Appendix B.

Generalised and basic floppy sets can thus be seen as probabilistic events, and it is
possible to work with them in this manner.

Consequence 2.2.1. Theorem 2.2.1 allows us to work with 𝑅
(︁
𝐶𝐺|𝑥

)︁
as with a

conditional probability. For discrete cases, we can write:

𝑅
(︁
𝐶𝐺

)︁
=

𝑛∑︁
𝑖=1

𝑅
(︁
𝐶𝐺|𝑥𝑖

)︁
· 𝑃 (𝑥𝑖) . (2.9)

For continuous cases, we can can write:

𝑅
(︁
𝐶𝐺

)︁
=
∫︁

𝑋
𝑅
(︁
𝐶𝐺|𝑥

)︁
· 𝑓 (𝑥) d𝑥, (2.10)

where 𝑓 (𝑥) is a probability density function and the integral is a Riemann integral.

Generally, we can write:

𝑅
(︁
𝐶𝐺

)︁
=
∫︁

𝑋
𝑅
(︁
𝐶𝐺|𝑥

)︁
d𝑃, (2.11)

where the integral is a Lebesgue integral.

This equation can be compared to Definition 2.2.4:

𝑅
(︁
𝐶𝐺

)︁
=
∫︁

𝑋
𝜇𝐶𝐺 (𝑥) d𝑃. (2.12)

The equation ∫︁
𝑋

𝜇𝐶𝐺 (𝑥) d𝑃 =
∫︁

𝑋
𝑅
(︁
𝐶𝐺|𝑥

)︁
d𝑃 (2.13)

applies to all possible sets 𝐶𝐺. It also applies to those 𝐶𝐺 whose membership
function has non-zero values only in an arbitrarily narrow interval from X.

Therefore, the equation

𝜇𝐶𝐺 (𝑥) = 𝑅
(︁
𝐶𝐺|𝑥

)︁
(2.14)

must apply for all 𝑥, except for a null set. In this work, I assume that it applies for
all 𝑥 ∈ 𝑋.
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This important relationship between conditional probability 𝑅
(︁
𝐶𝐺|𝑥

)︁
and the floppy

membership function 𝜇𝐶𝐺 (𝑥) can be interpreted in the following manner: the floppy
membership function 𝜇𝐶𝐺 (𝑥) can be calculated as the conditional probability of
event 𝐶𝐺 given an exact 𝑥.

Example 2.2.1. 60% of experts decide that water is hot when the temperature
reaches 50 ∘C. The floppy membership function of floppy set “hot” is therefore 0.6
for a temperature of 50 ∘C.

2.3 Isomorphism Theorem

2.3.1 Formulation

I now introduce a very important theorem in floppy logic. A similar statement
appeared in [51], although no detailed mathematical proof has yet been provided.

Theorem 2.3.1. Let 𝜀 = (𝐸, ∧, ∨, ¬, ⊥, ⊤, ≡) be a finite Boolean algebra of sen-
tences.

Let 𝐸𝐴 = {𝑈1, 𝑈2, 𝑈3, . . . 𝑈𝑛} be a set of all atoms of this Boolean algebra and 𝑛

number of these atoms.

Let 𝑆 = {𝐴1, 𝐴2, 𝐴3, . . . 𝐴𝑛} be a set of 𝑛 primary fuzzy sets and 𝑋 be their domain.

Let 𝛿 = (𝒫 (𝑆) , ∩, ∪,′ , ∅, 𝑆, =) be a Boolean algebra of subsets of 𝑆.

Let 𝑓 be a relation which satisfies the following:

a. ∀𝑘 ∈ {1, 2, 3, . . . 𝑛} : 𝑓 (𝑈𝑘) = {𝐴𝑘} , (2.15)
b. ∀𝑉, 𝑊 ∈ 𝐸 : 𝑓 (𝑉 ∧ 𝑊 ) = 𝑓 (𝑉 ) ∩ 𝑓 (𝑊 ) , (2.16)
c. ∀𝑉, 𝑊 ∈ 𝐸 : 𝑓 (𝑉 ∨ 𝑊 ) = 𝑓 (𝑉 ) ∪ 𝑓 (𝑊 ) , (2.17)
d. ∀𝑉 ∈ 𝐸 : 𝑓 (¬𝑉 ) = 𝑓 (𝑉 )′ . (2.18)

Then:

1. 𝑓 is an isomorphism,

2. 𝜀 and 𝛿 are isomorphic,

3. ∀𝑉, 𝑊 ∈ 𝐸 : 𝑉 ≡ 𝑊 ⇔ 𝑓 (𝑉 ) = 𝑓 (𝑊 ) , (2.19)
4. ∀𝑉, 𝑊 ∈ 𝐸, ∀𝑥 ∈ 𝑋 : 𝑉 ≡ 𝑊 ⇒ 𝜇𝑓(𝑉 ) (𝑥) = 𝜇𝑓(𝑊 ) (𝑥) , (2.20)
5. ∀𝑉, 𝑊 ∈ 𝐸 : 𝑉 ≡ 𝑊 ⇒ 𝑅 (𝑓 (𝑉 )) = 𝑅 (𝑓 (𝑊 )) . (2.21)
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The terms Boolean algebra, atom, and isomorphism are explained in Appendix C.
Also, Theorem 2.3.1 is proved in Appendix C.

2.3.2 Consequences

Consequence 2.3.1. Theorem 2.3.1 states that sentences which are equivalent in
standard Boolean logic (consisting of a finite set of atomic statements) are assigned
the same floppy set, and hence, the same floppy membership function and thus the
same probability. This means that statements which are equivalent in standard
Boolean logic are also equivalent in floppy logic.

Consequence 2.3.2. This means that floppy logic satisfies all the standard binary
logic properties which are formulated as an equivalence of two sentences. All the
properties listed in Table 1.1 are thus especially satisfied.

Consequence 2.3.3. Floppy logic can hence be considered a generalisation of stan-
dard Boolean logic.

Consequence 2.3.4. Standard Boolean logic often models statements using sets
such as Venn diagrams. In view of Theorem 2.3.1, these sets can be interpreted as
floppy sets.

Consequence 2.3.5. Theorem 2.3.1 states that the Boolean algebras 𝜀 and 𝛿 are
isomorphic. If it is appropriate, the logical and set operations can therefore be used
in combination or exchanged.

Consequence 2.3.6. The probability of implication, for example, can be expressed
as:

𝑅 (𝐴 ⇒ 𝐵) = 𝑅 (¬𝐴 ∨ (𝐴 ∧ 𝐵)) = 𝑅 (𝐴′ ∪ (𝐴 ∩ 𝐵)) . (2.22)

𝐴′ and 𝐴 ∩ 𝐵 are disjoint sets, therefore:

𝑅 (𝐴′ ∪ (𝐴 ∩ 𝐵)) = 𝑅 (𝐴′) + 𝑅 (𝐴 ∩ 𝐵) . (2.23)

Theorem 2.1.1 declares that 𝑅 satisfies all the properties of probability. Standard
equations for 𝑅 (𝐴 ∩ 𝐵) and 𝑅 (𝐴′) can therefore be used, obtaining:

𝑅 (𝐴 ⇒ 𝐵) = 1 − 𝑅 (𝐴) + 𝑅 (𝐵|𝐴) · 𝑅 (𝐴) . (2.24)

It was found that Adams’ Thesis in floppy logic does not apply.
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Consequence 2.3.7. Similarly, transitivity of implication can be expressed as:

𝑅
[︂ [︁

(𝐴 ⇒ 𝐵) ∧ (𝐵 ⇒ 𝐶)
]︁

⇒
[︁
𝐴 ⇒ 𝐶

]︁]︂
= 1. (2.25)

Floppy logic is not limited by Lewis’ triviality result.

Consequence 2.3.8. In floppy logic, both probabilities (as in probabilistic logic)
and floppy membership functions (as in fuzzy logic) can be worked with. Sentences
equivalent in standard binary logic possess the same floppy membership functions
and probabilities. It is very surprising that both of these different generalisations of
the truth-value encounter each other in a single theory.

As shown in Section 2.2.2, the relationship between probability and the floppy mem-
bership function is, in floppy logic, given by the equation:

𝜇𝐴 (𝑥) = 𝑅 (𝐴|𝑥) . (2.26)

Consequence 2.3.9. Let us accept that

∀𝑥 ∈ 𝑌 : 𝜇𝐴 (𝑥) = 1 is the same as ∀𝑥 ∈ 𝑌 : 𝐴 (𝑥) , (2.27)
∃𝑥 ∈ 𝑌 : 𝜇𝐴 (𝑥) = 1 is the same as ∃𝑥 ∈ 𝑌 : 𝐴 (𝑥) , (2.28)

then floppy logic is also a generalisation of predicate logic.

However, care must be taken. The notation which uses the membership functions
of floppy sets is more general than the notation which uses ∀ and ∃ quantifiers.
Therefore, for example, the basic relationship of predicate logic

¬ (∀𝑥 ∈ 𝑌 : 𝐴 (𝑥)) ≡ ∃𝑥 ∈ 𝑌 : ¬ (𝐴 (𝑥)) (2.29)

does not apply in floppy logic.
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Chapter 3

Other Interesting Mathematical
Outcomes

3.1 Mean Value of Floppy Sets

Theorems 2.1.1 and 2.2.1 guarantee that we can introduce probabilistic concepts for
floppy sets. Let us demonstrate this for the mean value of a floppy set.

Definition 3.1.1. Let us define the mean value of a floppy set as follows:

⟨𝐵⟩ = E (𝑥|𝐵) . (3.1)

For discrete cases, the mean value of a floppy set can be expressed as:

⟨𝐵⟩ = E (𝑥𝑖|𝐵) =
∑︁

𝑥𝑖∈𝑋

𝑥𝑖 · 𝑅 (𝑥𝑖|𝐵) =

= 1
𝑅 (𝐵)

∑︁
𝑥𝑖∈𝑋

𝑥𝑖 · 𝑅 (𝐵|𝑥𝑖) · 𝑅 (𝑥𝑖) =

=
∑︀

𝑥𝑖∈𝑋 𝑥𝑖 · 𝜇𝐵 (𝑥𝑖) · 𝑃 (𝑥𝑖)∑︀
𝑥𝑖∈𝑋 𝜇𝐵 (𝑥𝑖) · 𝑃 (𝑥𝑖)

=

=
∫︀

𝑋 𝑥𝑖 · 𝜇𝐵 (𝑥𝑖) d𝑃∫︀
𝑋 𝜇𝐵 (𝑥𝑖) d𝑃

(3.2)

where the integrals are Lebesgue integrals.
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For continuous cases, we can write:

⟨𝐵⟩ = E (𝑥|𝐵) =
∫︁

𝑋
𝑥 · 𝑓 (𝑥|𝐵) d𝑥 =

= 1
𝑅 (𝐵)

∫︁
𝑋

𝑥 · 𝑅 (𝐵|𝑥) · 𝑓 (𝑥) d𝑥 =

=
∫︀

𝑋 𝑥 · 𝜇𝐵 (𝑥) · 𝑓 (𝑥) d𝑥∫︀
𝑋 𝜇𝐵 (𝑥) · 𝑓 (𝑥) d𝑥

=

=
∫︀

𝑋 𝑥 · 𝜇𝐵 (𝑥) d𝑃∫︀
𝑋 𝜇𝐵 (𝑥) d𝑃

(3.3)

where the integrals on the final row are Lebesgue integrals and the other integrals
are Riemann integrals.

Let suppose that {𝐵1, 𝐵2, . . . 𝐵𝑛} is a finite set of pairwise disjoint floppy sets whose
union is whole set 𝑆.

We can then write the following interesting relationship:

E (⟨𝐵𝑖⟩) =
𝑛∑︁

𝑖=1
⟨𝐵𝑖⟩ · 𝑅 (𝐵𝑖) =

=
𝑛∑︁

𝑖=1

1
𝑅 (𝐵𝑖)

·
∫︁

𝑋
𝑥 · 𝑅 (𝐵𝑖|𝑥) d𝑃 · 𝑅 (𝐵𝑖) =

=
∫︁

𝑋
𝑥 ·
(︃

𝑛∑︁
𝑖=1

𝑅 (𝐵𝑖|𝑥)
)︃

d𝑃 =

=
∫︁

𝑋
𝑥 · 1 · d𝑃. (3.4)

Therefore:

E (⟨𝐵𝑖⟩) = E (𝑥) . (3.5)

This means that to calculate or estimate the mean value of a random variable,
we only need to know the mean values of the floppy sets and their probabilities.
Knowledge of the probability distribution of this random variable is not required.

Example 3.1.1. The performance of a football team is described by a random
variable. The domain of this random variable is a set of real numbers. We do not
know the course of the probability density.

The random variable is described by three floppy sets: “win”, “draw”, “lose”. Their
courses are also unknown. Suppose that three, one, and zero points for a win, draw,
and loss are the mean values of the respective floppy sets.

Our team won 18 times, drew 5 times, and lost 12 times. We can estimate the mean
value of its performance as
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E (𝑥) =
𝑛∑︁

𝑖=1
⟨𝐵𝑖⟩ · 𝑅 (𝐵𝑖) =

= 3 · 18
35 + 1 · 5

35 + 0 · 12
35 = 1.69. (3.6)

It is a fascinating idea that the points allocated to individual variants can be un-
derstood as the mean values of relevant floppy sets.

3.2 A Noteworthy Implication

One of the important consequences of the isomorphism theorem is the equation for
floppy implication (see Consequence 2.3.6):

𝑅 (𝐴 ⇒ 𝐵) = 1 − 𝑅 (𝐴) + 𝑅 (𝐵|𝐴) · 𝑅 (𝐴) . (3.7)

This equation, along with the law of total probability and Bayes’ theorem, allows us
to infer a range of interesting relationships for floppy implications. These relation-
ships not only hold for floppy logic but also standard Boolean logic, assuming that
we substitute the probabilities of sentences (floppy sets) with truth values 0 or 1.

3.2.1 Bayes’ Theorem

𝑅 (𝐵|𝐴) = 𝑅 (𝐴|𝐵) · 𝑅 (𝐵)
𝑅 (𝐴) , (3.8)

𝑅 (𝐵|𝐴) · 𝑅 (𝐴) = 𝑅 (𝐴|𝐵) · 𝑅 (𝐵) , (3.9)
𝑅 (𝐴 ⇒ 𝐵) − 1 + 𝑅 (𝐴) = 𝑅 (𝐵 ⇒ 𝐴) − 1 + 𝑅 (𝐵) , (3.10)

𝑅 (𝐵 ⇒ 𝐴) − 𝑅 (𝐴 ⇒ 𝐵) = 𝑅 (𝐴) − 𝑅 (𝐵) , (3.11)
𝑅 (𝐴 ⇒ 𝐵) = 𝑅 (𝐵 ⇒ 𝐴) + 𝑅 (𝐵) − 𝑅 (𝐴) . (3.12)

The following is a variant of the floppy membership function:

𝜇𝐴⇒𝐵 (𝑥) = 𝜇𝐵⇒𝐴 (𝑥) + 𝜇𝐵 (𝑥) − 𝜇𝐴 (𝑥) . (3.13)

3.2.2 Contraposition

A contraposition of implication is a logical law which states that implication 𝐴 ⇒ 𝐵

is logically equivalent to implication ¬𝐵 ⇒ ¬𝐴.
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In floppy logic, the law of contraposition follows directly from Theorem 2.3.1. The
variants for probabilities and floppy membership functions are provided below:

𝑅 (𝐴 ⇒ 𝐵) = 𝑅 (¬𝐵 ⇒ ¬𝐴) , (3.14)
𝜇𝐴⇒𝐵 (𝑥) = 𝜇¬𝐵⇒¬𝐴 (𝑥) . (3.15)

3.2.3 Modus Ponens

Modus ponens is a logical rule which states: If 𝐴 holds and 𝐴 ⇒ 𝐵 holds, then 𝐵

holds.

A generalisation of modus ponens in floppy logic might appear as follows: We know
the probability of 𝐴 and the probability of 𝐴 ⇒ 𝐵. What is the probability of 𝐵?

The correct answer is that we do not have enough information to answer the question.

Let us now consider the case where we are given more information. For instance,
we may know the probability of ¬𝐴 ⇒ 𝐵. We can then write the following:

𝑅 (𝐵) = 𝑅 (𝐴 ∩ 𝐵) + 𝑅 (¬𝐴 ∩ 𝐵) = (3.16)
= 𝑅 (𝐵|𝐴) · 𝑅 (𝐴) + 𝑅 (𝐵|¬𝐴) · 𝑅 (¬𝐴) = (3.17)
= 𝑅 (𝐴 ⇒ 𝐵) − 1 + 𝑅 (𝐴) + 𝑅 (¬𝐴 ⇒ 𝐵) − 1 + 𝑅 (¬𝐴) . (3.18)

Therefore:

𝑅 (𝐵) = 𝑅 (𝐴 ⇒ 𝐵) + 𝑅 (¬𝐴 ⇒ 𝐵) − 1. (3.19)

This is a very interesting generalisation of modus ponens. It is surprising that we do
not need 𝑅 (𝐴) to compute 𝑅 (𝐵). All the required information about 𝐴 is given
in the probabilities 𝑅 (𝐴 ⇒ 𝐵) and 𝑅 (¬𝐴 ⇒ 𝐵).

Let us now show that equation (3.19) is indeed a generalisation of modus ponens:
If 𝑅 (𝐴) = 1 and 𝑅 (𝐴 ⇒ 𝐵) = 1, then:

𝑅 (¬ (¬𝐴) ∨ (¬𝐴 ∧ 𝐵)) = 1, 𝑅 (¬𝐴 ⇒ 𝐵) = 1, 𝑅 (𝐵) = 1. (3.20)
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Other generalisations of modus ponens can be similarly derived:

𝑅 (𝐵) = 𝑅 (𝐴 ⇒ 𝐵) + 𝑅 (𝐴) − 𝑅 (𝐵 ⇒ 𝐴) , (3.21)
𝑅 (𝐵) = 2 − 𝑅 (𝐵 ⇒ ¬𝐴) − 𝑅 (𝐵 ⇒ 𝐴) , (3.22)
𝑅 (𝐵) = 𝑅 (¬𝐴 ⇒ 𝐵) + 𝑅 (¬𝐴) − 𝑅 (𝐵 ⇒ ¬𝐴) . (3.23)

The following are variants for floppy membership functions:

𝜇𝐵 (𝑥) = 𝜇𝐴⇒𝐵 (𝑥) + 𝜇¬𝐴⇒𝐵 (𝑥) − 1, (3.24)
𝜇𝐵 (𝑥) = 𝜇𝐴⇒𝐵 (𝑥) + 𝜇𝐴 (𝑥) − 𝜇𝐵⇒𝐴 (𝑥) , (3.25)
𝜇𝐵 (𝑥) = 2 − 𝜇𝐵⇒¬𝐴 (𝑥) − 𝜇𝐵⇒𝐴 (𝑥) , (3.26)
𝜇𝐵 (𝑥) = 𝜇¬𝐴⇒𝐵 (𝑥) + 𝜇¬𝐴 (𝑥) − 𝜇𝐵⇒¬𝐴 (𝑥) . (3.27)

3.2.4 Modus Ponens for a Finite Partition of the Sample
Space

Let {𝐴𝑖} be a finite set of 𝑛 pairwise disjoint floppy sets whose union is the whole
sample space. We can then generalise modus ponens as follows:

𝑅 (𝐵) =
𝑛∑︁

𝑖=1
𝑅 (𝐴𝑖 ⇒ 𝐵) − 𝑛 + 1, (3.28)

𝑅 (𝐵) = 𝑛 −∑︀𝑛
𝑖=1 𝑅 (𝐵 ⇒ 𝐴𝑖)

𝑛 − 1 , (3.29)

𝑅 (𝐵) = 𝑛 −
𝑛∑︁

𝑖=1
𝑅 (𝐵 ⇒ ¬𝐴𝑖) , (3.30)

𝑅 (𝐵) =
∑︀𝑛

𝑖=1 𝑅 (¬𝐴𝑖 ⇒ 𝐵) − 1
𝑛 − 1 , (3.31)

𝜇𝐵 (𝑥) =
𝑛∑︁

𝑖=1
𝜇𝐴𝑖⇒𝐵 (𝑥) − 𝑛 + 1, (3.32)

𝜇𝐵 (𝑥) =
𝑛 −∑︀𝑛

𝑖=1 𝜇𝐵⇒𝐴𝑖
(𝑥)

𝑛 − 1 , (3.33)

𝜇𝐵 (𝑥) = 𝑛 −
𝑛∑︁

𝑖=1
𝜇𝐵⇒¬𝐴𝑖

(𝑥) , (3.34)

𝜇𝐵 (𝑥) =
∑︀𝑛

𝑖=1 𝜇¬𝐴𝑖⇒𝐵 (𝑥) − 1
𝑛 − 1 . (3.35)
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Example 3.2.1. Let us show that in standard two-valued logic, the relation 3.29
holds for four sentences 𝐴1, 𝐴2, 𝐴3, and 𝐵:

Table 3.1: Demonstration of the validity of equation 3.29

𝑅 (𝐴1) 𝑅 (𝐴2) 𝑅 (𝐴3) 𝑅 (𝐵) 𝑅 (𝐵 ⇒ 𝐴1) 𝑅 (𝐵 ⇒ 𝐴2) 𝑅 (𝐵 ⇒ 𝐴3)
𝑛−
∑︀𝑛

𝑖=1
𝑅(𝐵⇒𝐴𝑖)

𝑛−1

1 0 0 1 1 0 0 1
1 0 0 0 1 1 1 0
0 1 0 1 0 1 0 1
0 1 0 0 1 1 1 0
0 0 1 1 0 0 1 1
0 0 1 0 1 1 1 0

We see that the fourth and eighth columns of Table 3.1 are the same.

3.2.5 Modus Tollens

Modus tollens is a logical rule which states that if 𝐴 ⇒ 𝐵 holds and 𝐵 does not
hold, then 𝐴 does not hold.

In floppy logic, we can describe these generalisations of modus tollens as follows:

𝑅 (¬𝐴) = 𝑅 (𝐴 ⇒ 𝐵) + 𝑅 (𝐴 ⇒ ¬𝐵) − 1, (3.36)
𝑅 (¬𝐴) = 𝑅 (𝐴 ⇒ 𝐵) + 𝑅 (¬𝐵) − 𝑅 (𝐵 ⇒ 𝐴) , (3.37)
𝑅 (¬𝐴) = 2 − 𝑅 (¬𝐴 ⇒ 𝐵) − 𝑅 (𝐵 ⇒ 𝐴) , (3.38)
𝑅 (¬𝐴) = 𝑅 (𝐵 ⇒ ¬𝐴) + 𝑅 (𝐵) − 𝑅 (¬𝐴 ⇒ 𝐵) . (3.39)

𝜇¬𝐴 (𝑥) = 𝜇𝐴⇒𝐵 (𝑥) + 𝜇𝐴⇒¬𝐵 (𝑥) − 1, (3.40)
𝜇¬𝐴 (𝑥) = 𝜇𝐴⇒𝐵 (𝑥) + 𝜇¬𝐵 (𝑥) − 𝜇𝐵⇒𝐴 (𝑥) , (3.41)
𝜇¬𝐴 (𝑥) = 2 − 𝜇¬𝐴⇒𝐵 (𝑥) − 𝜇𝐵⇒𝐴 (𝑥) , (3.42)
𝜇¬𝐴 (𝑥) = 𝜇𝐵⇒¬𝐴 (𝑥) + 𝜇𝐵 (𝑥) − 𝜇¬𝐴⇒𝐵 (𝑥) . (3.43)

40



3.2.6 Modus Tollens for a Finite Partition of the Sample
Space

Let {𝐵𝑖} be a finite set of 𝑛 pairwise disjoint floppy sets whose union is the entire
sample space. We can then generalise modus tollens:

𝑅 (¬𝐴) =
∑︀𝑛

𝑖=1 𝑅 (𝐴 ⇒ 𝐵𝑖) − 1
𝑛 − 1 , (3.44)

𝑅 (¬𝐴) = 𝑛 −
𝑛∑︁

𝑖=1
𝑅 (𝐵𝑖 ⇒ 𝐴) , (3.45)

𝑅 (¬𝐴) =
𝑛∑︁

𝑖=1
𝑅 (𝐵𝑖 ⇒ ¬𝐴) − 𝑛 + 1, (3.46)

𝑅 (¬𝐴) = 𝑛 −∑︀𝑛
𝑖=1 𝑅 (¬𝐴 ⇒ 𝐵𝑖)

𝑛 − 1 , (3.47)

𝜇¬𝐴 (𝑥) =
∑︀𝑛

𝑖=1 𝜇𝐴⇒𝐵𝑖
(𝑥) − 1

𝑛 − 1 , (3.48)

𝜇¬𝐴 (𝑥) = 𝑛 −
𝑛∑︁

𝑖=1
𝜇𝐵𝑖⇒𝐴 (𝑥) , (3.49)

𝜇¬𝐴 (𝑥) =
𝑛∑︁

𝑖=1
𝜇𝐵𝑖⇒¬𝐴 (𝑥) − 𝑛 + 1, (3.50)

𝜇¬𝐴 (𝑥) =
𝑛 −∑︀𝑛

𝑖=1 𝜇¬𝐴⇒𝐵𝑖
(𝑥)

𝑛 − 1 . (3.51)

3.2.7 Relationships between Implications

Implications can be substituted according to the following rules:

𝑅 (𝐴 ⇒ 𝐵) = 𝑅 (𝐵 ⇒ 𝐴) − 𝑅 (𝐴) + 𝑅 (𝐵) , (3.52)
𝑅 (𝐴 ⇒ 𝐵) = 𝑅 (𝐵) + 1 − 𝑅 (¬𝐴 ⇒ 𝐵) , (3.53)
𝑅 (𝐴 ⇒ 𝐵) = 𝑅 (¬𝐴) + 1 − 𝑅 (𝐴 ⇒ ¬𝐵) , (3.54)

𝜇𝐴⇒𝐵 (𝑥) = 𝜇𝐵⇒𝐴 (𝑥) − 𝜇𝐴 (𝑥) + 𝜇𝐵 (𝑥) , (3.55)
𝜇𝐴⇒𝐵 (𝑥) = 𝜇𝐵 (𝑥) + 1 − 𝜇¬𝐴⇒𝐵 (𝑥) , (3.56)
𝜇𝐴⇒𝐵 (𝑥) = 𝜇¬𝐴 (𝑥) + 1 − 𝜇𝐴⇒¬𝐵 (𝑥) . (3.57)

𝑅 (𝐴 ⇒ 𝐵) + 𝑅 (𝐴 ⇒ ¬𝐵) + 𝑅 (¬𝐴 ⇒ 𝐵) + 𝑅 (¬𝐴 ⇒ ¬𝐵) = 3, (3.58)

𝜇𝐴⇒𝐵 (𝑥) + 𝜇𝐴⇒¬𝐵 (𝑥) + 𝜇¬𝐴⇒𝐵 (𝑥) + 𝜇¬𝐴⇒¬𝐵 (𝑥) = 3. (3.59)
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3.3 Dependence Measurement

It is possible to compare the (floppy) membership functions of intersection and union
in both floppy logic and fuzzy logic:

Let 𝐴 and 𝐵 be two floppy sets with membership functions 𝜇𝐴 (𝑥) and 𝜇𝐵 (𝑥). The
following applies to the union of floppy sets:

max {𝜇𝐴 (𝑥) , 𝜇𝐵 (𝑥)} ≤ 𝜇𝐴∪𝐵 (𝑥) ≤ min {𝜇𝐴 (𝑥) + 𝜇𝐵 (𝑥) , 1} . (3.60)

Therefore, 𝜇𝐴∪𝐵 (𝑥) is bounded by Gödel and Łukasiewicz t-conorms.

The following applies to the intersection of floppy sets:

max {𝜇𝐴 (𝑥) + 𝜇𝐵 (𝑥) − 1, 0} ≤ 𝜇𝐴∩𝐵 (𝑥) ≤ min {𝜇𝐴 (𝑥) , 𝜇𝐵 (𝑥)} . (3.61)

𝜇𝐴∩𝐵 (𝑥) must be greater than or equal to max {𝜇𝐴 (𝑥) + 𝜇𝐵 (𝑥) − 1, 0}, because
if 𝜇𝐴∩𝐵 (𝑥) were less than max {𝜇𝐴 (𝑥) + 𝜇𝐵 (𝑥) − 1, 0}, then 𝜇𝐴∪𝐵 (𝑥) > 1 would
apply.

Therefore, 𝜇𝐴∩𝐵 (𝑥) is bounded by Łukasiewicz and Gödel t-norms.

The intersection is equal to the Łukasiewicz t-norm, and the union is equal to
the Łukasiewicz t-conorm simultaneously. In this case, 𝜇𝐴⇔𝐵 (𝑥) is as minimal as
possible.

Similarly, the intersection is equal to the Gödel t-norm, and the union is equal to the
Gödel t-conorm simultaneously. In this case, 𝜇𝐴⇔𝐵 (𝑥) is as maximal as possible.

Interestingly, a coefficient which measures dependence can be derived from this
comparison of (floppy) membership functions in floppy logic and fuzzy logic:

If the floppy membership functions of intersection and equivalence are as maximal
as possible and the floppy membership function of union is as minimal as possible,
then the dependence of 𝐴 and 𝐵 is as maximal possible (for a given 𝜇𝐴 (𝑥) and
𝜇𝐵 (𝑥)), and vice versa.

The floppy membership function of equivalence (or intersection or union) can be
used to measure dependency, either directly or after normalisation to the interval
[0, 1].
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Of course, normalisation is possible only if a spectrum of possible values of equiv-
alence (or intersection or union) exists in the floppy membership function. If some
of the floppy membership functions 𝜇𝐴 (𝑥) or 𝜇𝐵 (𝑥) are equal to zero or one, then
the membership function of equivalence (and intersection and union) is given un-
ambiguously and normalisation is impossible.

The normalised measure of dependency can be calculated in the following manner:

Intersection:

max {𝜇𝐴 (𝑥) + 𝜇𝐵 (𝑥) − 1, 0} ≤ 𝜇𝐴∩𝐵 (𝑥) ≤ min {𝜇𝐴 (𝑥) , 𝜇𝐵 (𝑥)} , (3.62)

0 ≤ 𝜇𝐴∩𝐵 (𝑥) − max {𝜇𝐴 (𝑥) + 𝜇𝐵 (𝑥) − 1, 0}
min {𝜇𝐴 (𝑥) , 𝜇𝐵 (𝑥)} − max {𝜇𝐴 (𝑥) + 𝜇𝐵 (𝑥) − 1, 0}

≤ 1, (3.63)

𝐾∩ (𝑥) = 𝜇𝐴∩𝐵 (𝑥) − max {𝜇𝐴 (𝑥) + 𝜇𝐵 (𝑥) − 1, 0}
min {𝜇𝐴 (𝑥) , 𝜇𝐵 (𝑥)} − max {𝜇𝐴 (𝑥) + 𝜇𝐵 (𝑥) − 1, 0}

. (3.64)

Union:

max {𝜇𝐴 (𝑥) , 𝜇𝐵 (𝑥)} ≤ 𝜇𝐴∪𝐵 (𝑥) ≤ min {𝜇𝐴 (𝑥) + 𝜇𝐵 (𝑥) , 1} , (3.65)

0 ≤ 𝜇𝐴∪𝐵 (𝑥) − max {𝜇𝐴 (𝑥) , 𝜇𝐵 (𝑥)}
min {𝜇𝐴 (𝑥) + 𝜇𝐵 (𝑥) , 1} − max {𝜇𝐴 (𝑥) , 𝜇𝐵 (𝑥)} ≤ 1, (3.66)

𝐾∪ (𝑥) = 𝜇𝐴∪𝐵 (𝑥) − max {𝜇𝐴 (𝑥) , 𝜇𝐵 (𝑥)}
min {𝜇𝐴 (𝑥) + 𝜇𝐵 (𝑥) , 1} − max {𝜇𝐴 (𝑥) , 𝜇𝐵 (𝑥)} . (3.67)

Equivalence:

𝜇𝐴⇔𝐵 (𝑥) = 𝜇𝐴∩𝐵 (𝑥) + 𝜇𝐴′∩𝐵′ (𝑥) = (3.68)
= 1 − 𝜇𝐴 (𝑥) − 𝜇𝐵 (𝑥) + 2𝜇𝐴∩𝐵 (𝑥) , (3.69)
· · ·

𝜇𝐴⇔𝐵 (𝑥) ≥ 1 − 𝜇𝐴 (𝑥) − 𝜇𝐵 (𝑥) + 2 max {𝜇𝐴 (𝑥) + 𝜇𝐵 (𝑥) − 1, 0}, (3.70)
𝜇𝐴⇔𝐵 (𝑥) ≤ 1 − 𝜇𝐴 (𝑥) − 𝜇𝐵 (𝑥) + 2 min {𝜇𝐴 (𝑥) , 𝜇𝐵 (𝑥)}, (3.71)

0≤ 𝜇𝐴⇔𝐵 (𝑥) − 1 + 𝜇𝐴 (𝑥) + 𝜇𝐵 (𝑥) − 2 max {𝜇𝐴 (𝑥) + 𝜇𝐵 (𝑥) − 1, 0}
2 min {𝜇𝐴 (𝑥) , 𝜇𝐵 (𝑥)} − 2 max {𝜇𝐴 (𝑥) + 𝜇𝐵 (𝑥) − 1, 0}

≤1,(3.72)
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𝐾⇔ (𝑥) =

= 𝜇𝐴⇔𝐵 (𝑥) − 1 + 𝜇𝐴 (𝑥) + 𝜇𝐵 (𝑥) − 2 max {𝜇𝐴 (𝑥) + 𝜇𝐵 (𝑥) − 1, 0}
2 min {𝜇𝐴 (𝑥) , 𝜇𝐵 (𝑥)} − 2 max {𝜇𝐴 (𝑥) + 𝜇𝐵 (𝑥) − 1, 0}

. (3.73)

It is curious that

𝐾∩ (𝑥) = 𝐾⇔ (𝑥) = 1 − 𝐾∪ (𝑥) = 𝐾 (𝑥) , (3.74)

where 𝐾 (𝑥) is the dependence coefficient.

For independent events 𝐴 and 𝐵, for a given 𝑥, the following is satisfied:

𝑅 (𝐴 ∩ 𝐵|𝑥) = 𝑅 (𝐴|𝑥) · 𝑅 (𝐵|𝑥) , (3.75)
𝜇𝐴∩𝐵 (𝑥) = 𝜇𝐴 (𝑥) · 𝜇𝐵 (𝑥) . (3.76)

In this case, for all 𝑥, the following simple relationship applies:

𝐾 (𝑥) = 𝜇𝑋 (𝑥) , (3.77)

where 𝑋 is a friend of 𝑌 ∈ {𝐴, 𝐵, 𝐴′, 𝐵′} and

𝜇𝑌 (𝑥) = min {𝜇𝐴 (𝑥) , 𝜇𝐵 (𝑥) , 𝜇𝐴′ (𝑥) , 𝜇𝐵′ (𝑥)} . (3.78)

𝐴 and 𝐵 are friends and 𝐴′ and 𝐵′ are friends.

A similar dependency coefficient can be created if we repeat the entire procedure
with probabilities instead of floppy membership functions.
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Chapter 4

Using Floppy Logic to Describe a
System

4.1 Introductory Example

This chapter illustrates how to work with a system using floppy logic. We start with
the choice of primary fuzzy sets and end with optimal control. First, however, the
most important concepts and relationships of floppy logic are demonstrated in the
following example.

We want to describe a quantity, such as the speed of a car, using primary fuzzy
sets, such as 𝐴1 – “too slow”, 𝐴2 – “satisfactory”, 𝐴3 – “too fast”. The membership
functions of these primary fuzzy sets can be represented as in Figure 4.1.
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Figure 4.1: Primary fuzzy sets
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Floppy sets are crisp sets of these primary fuzzy sets. For example, floppy set
𝐵011 – “Not too slow” obtains two primary fuzzy sets 𝐴2 and 𝐴3:

𝐵011 = {𝐴2, 𝐴3} . (4.1)

The floppy membership function of a floppy set is the sum of the membership func-
tions of its elements:

𝜇𝐵011 (𝑥) = 𝜇𝐴2 (𝑥) + 𝜇𝐴3 (𝑥) . (4.2)

We can write (see Section 2.2.2):

𝜇𝐵011 (𝑥) = 𝑅 (𝐵011|𝑥) . (4.3)

This conditional probability can be interpreted as the probability that somebody
(e.g. an expert) decides that speed 𝑥 “is not too slow”.

Besides floppy sets, speed can also be described by the probability density function
𝑓(𝑥). This function can be, for example, estimated from measured data.

Let the speed of the car at this point and time have a normal distribution with
a mean value of 90km

h and standard deviation of 15km
h . This probability density

function is shown in Figure 4.2.
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Figure 4.2: Probability density function

When we know the membership functions and the probability density, we can calcu-
late, for example, the probability or the mean value of the floppy sets. For example:

𝑅 (𝐵011) =
∫︁

𝑋
𝜇𝐵011 (𝑥) · 𝑓 (𝑥) d𝑥 = 0.9841, (4.4)

⟨𝐵011⟩ =
∫︀

𝑋 𝑥 · 𝜇𝐵011 (𝑥) · 𝑓 (𝑥) d𝑥∫︀
𝑋 𝜇𝐵011 (𝑥) · 𝑓 (𝑥) d𝑥

= 89.08
0.9841 = 90.52. (4.5)
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The functions from Figures 4.1 and 4.2 were inserted.

When we model statements using floppy sets, conjunction and disjunction are mod-
elled by ordinary intersection and union. For example, the statement “the speed is
too slow or too fast” is modelled as follows:

𝐵100 ∨ 𝐵001 = {𝐴1} ∪ {𝐴3} = {𝐴1, 𝐴3} . (4.6)

The relevant floppy membership function can be written in the following manner:

𝜇𝐵100∨𝐵001 (𝑥) = 𝜇𝐴1 (𝑥) + 𝜇𝐴3 (𝑥) . (4.7)

Other logical connectives must first be converted into conjunctions, disjunctions,
and negations. It does not matter how it is done (see Isomorphism Theorem 2.3).
For example, the sentence "If the speed is not too slow, then it is satisfactory," can
be modelled as follows:

¬𝐵100 ⇒ 𝐵010 = 𝐵100 ∨ 𝐵010 = {𝐴1} ∪ {𝐴2} = {𝐴1, 𝐴2} . (4.8)

Another way might be

¬𝐵100 ⇒ 𝐵010 = ¬𝐵010 ⇒ 𝐵100 =
= 𝐵010 ∨ (¬𝐵010 ∧ 𝐵100) =
= {𝐴2} ∪

(︁
{𝐴2}′ ∩ {𝐴1}

)︁
=

= {𝐴2} ∪ ({𝐴1, 𝐴3} ∩ {𝐴1}) =
= {𝐴2} ∪ {𝐴1} = {𝐴1, 𝐴2} . (4.9)

The relevant floppy membership function can be written as

𝜇¬𝐵100⇒𝐵010 (𝑥) = 𝜇𝐴1 (𝑥) + 𝜇𝐴2 (𝑥) . (4.10)

In this example, the basic properties of floppy logic are shown.

The following sections will show in detail the requirements for describing and con-
trolling a system using floppy logic:

∙ How to select primary fuzzy sets and their membership functions.

∙ How to create input and output floppy sets from primary fuzzy sets.

∙ How to calculate the probabilities of input floppy sets.

∙ How to implement system rules and calculate the probabilities of output floppy
sets.
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∙ How to determine probability distributions and the mean values of output
quantities from the probabilities of output floppy sets.

∙ How to control a system described by floppy logic.

4.2 Selection of Primary Fuzzy Sets

We want to describe a discrete or continuous quantity using several primary fuzzy
sets. What primary fuzzy sets should we select?

1. We select the primary fuzzy sets which correspond to the floppy sets used in
the system rules.

2. Each point of the domain of the input and output quantities must be covered
by a primary fuzzy set.

3. Primary fuzzy sets describing the same variable must be mutually incompati-
ble.1

Example 4.2.1. Let us have a system where we switch on heating according to the
water temperature. We consider the following system rules:

If the water is cold, then . . .

If the water is pleasant, then . . .

Our first choice of primary fuzzy set is “cold” and “pleasant” since these properties
appeared in the system rules.

However, this is not completely right since these properties are compatible. Water
can be cold and pleasant simultaneously. Our second choice therefore is “unpleas-
antly cold”, “cold and pleasant”, “pleasant but not cold”.

This is still not satisfactory, because we do not consider hot water. We add the
primary fuzzy set “warm”.

This is also not right, because water can be warm and pleasant simultaneously.
Our final choice therefore looks like this: “unpleasantly cold”, “pleasantly cold”,
“pleasant but not cold and not warm”, “pleasantly warm”, “unpleasantly warm”.

Then we add a system rule to consider warm water. For example:

If water is warm, then . . . ’
1Primary fuzzy sets describing the same variable must be mutually incompatible because the

intersection of two different single-element floppy sets is the empty set.
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The floppy sets, “cold”, “pleasant”, and “warm”, which appeared in the system
rules, contain two, three, and two elements (primary fuzzy sets), respectively.

4.3 Determination of the Membership Functions
of Primary Fuzzy Sets

In the previous section, we selected primary fuzzy sets. Membership functions must
now be assigned to these primary fuzzy sets. When we search for membership
functions, we follow these three rules:

1. The sum of the membership functions of all primary fuzzy sets must be 1
everywhere:

∑︁
𝐴𝑖∈𝑆

𝜇𝐴𝑖
(𝑥) = 1. (4.11)

2. The floppy membership function of floppy set 𝐵 is the sum of the membership
functions of its elements:

𝜇𝐵 (𝑥) =
∑︁

𝐴𝑖∈𝐵

𝜇𝐴𝑖
(𝑥) . (4.12)

3. The floppy membership function of floppy set 𝐵 can be understood as a con-
ditional probability:

𝜇𝐵 (𝑥) = 𝑅 (𝐵|𝑥) . (4.13)

Now, let us study some examples of how to determine the membership functions of
primary fuzzy sets in different situations.

4.3.1 Determination of Membership Functions from Experts’
Opinions

We start from the relation:

𝜇𝐵 (𝑥) = 𝑅 (𝐵|𝑥) . (4.14)
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Figure 4.3: Membership functions for cold and warm water

Conditional probability 𝑅 (𝐵|𝑥) can be understood as the probability that an expert
(or someone else) will state that for a given 𝑥, the system possesses property 𝐵.

Of course, sometimes it is not necessary to ask experts. We can often estimate
membership functions ourselves. We can estimate conditional probability 𝑅 (𝐵|𝑥)
for several 𝑥 and determine the course of the membership function.

This method can be applied to the floppy membership function of floppy sets and
to the membership function of primary fuzzy sets.

Example 4.3.1. We want to describe water temperature using two primary fuzzy
sets: cold (𝐶) and warm (𝑊 ).

For membership functions 𝜇𝐶 (𝑥) and 𝜇𝑊 (𝑥), we want to use piecewise linear func-
tions, as shown in Figure 4.3.

We want to determine the membership functions to best suit experts’ opinions. We
must therefore estimate the coefficients 𝑎 and 𝑏 as best we can.

We ask fifty people (experts) to determine whether the water is cold or warm. The
results are shown in Table 4.1.

Table 4.1: Responses from participants to whether the water is cold or warm

Temperature (∘C) Cold Warm
10 50 0
15 48 2
20 42 8
25 27 23
30 4 46
35 0 50
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For 𝜇𝐶 (𝑥) and 𝜇𝑊 (𝑥), it applies:

𝜇𝐶 (𝑥) = 1 − 𝜇𝑊 (𝑥) . (4.15)

It is therefore sufficient to determine, for example, only 𝜇𝐶 (𝑥).

We use the least-squares method to estimate the coefficients 𝑎 and 𝑏 and minimise
the expression:

50 · (1 − 𝜇𝐶 (10))2 + 0 · (0 − 𝜇𝐶 (10))2 +
+ 48 · (1 − 𝜇𝐶 (15))2 + 2 · (0 − 𝜇𝐶 (15))2 +

. . .

+ 0 · (1 − 𝜇𝐶 (35))2 + 50 · (0 − 𝜇𝐶 (35))2 . (4.16)

We obtain the parameters:

𝑎 = 18.246, (4.17)
𝑏 = 31.404. (4.18)

4.3.2 Determination of the Membership Functions of
Primary Fuzzy Sets from the Applied Floppy Sets

The following example shows how to proceed if the membership functions of primary
fuzzy sets are required and some floppy membership functions have already been
specified.

Example 4.3.2. We now describe the water temperature again and begin with
three floppy sets: 𝐴1 – Unhealthily cold, 𝐴3 – Pleasant, 𝐴4 – Warm. We assume
that these properties appear in the system rules. The membership functions are
presented in Figure 4.4(a).

First, we add floppy set 𝐴2 – Healthily cold – so that the sum is not less than one
anywhere (Fig. 4.4(b)).

If the sum for 𝑥 is greater than one and two nonzero floppy sets 𝐴𝑖 and 𝐴𝑗 exist
for this 𝑥, we substitute floppy sets 𝐴𝑖 and 𝐴𝑗 with the three primary fuzzy sets
“Only 𝐴𝑖”, “Only 𝐴𝑗” and “𝐴𝑖 and 𝐴𝑗”.

The primary fuzzy sets “Only 𝐴𝑖” are denoted 𝐴 with binary index containing 0
and 1 at the 𝑖-th position. The fuzzy sets “𝐴𝑖 and 𝐴𝑗” will contain 1 at the 𝑖-th
and 𝑗-th positions.
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Figure 4.4: Applied membership functions

For simplicity, the (floppy) membership functions in the following equations are
denoted in the same manner as the floppy sets and primary fuzzy sets:

For example, for floppy sets 𝐴3 and 𝐴4, the following must be satisfied:

𝐴0010 + 𝐴0001 + 𝐴0011 = 1, (4.19)
𝐴0010 + 𝐴0011 = 𝐴3, (4.20)
𝐴0001 + 𝐴0011 = 𝐴4, (4.21)

such that

𝐴0011 = 𝐴3 + 𝐴4 − 1, (4.22)
𝐴0010 = 𝐴3 − 𝐴0011, (4.23)
𝐴0001 = 𝐴4 − 𝐴0011. (4.24)

The membership degree of floppy set “𝐴𝑖 and 𝐴𝑗” is the sum minus 1, and we must
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subtract the same value from 𝐴𝑖 and 𝐴𝑗 to obtain the membership functions of
“Only 𝐴𝑖”, “Only 𝐴𝑗”.

A problem arises if for some 𝑥 more non-zero membership functions exist. This case
occurs for 𝑥 ∈ (25, 35).

Floppy sets 𝐴2, 𝐴3, and 𝐴4 can be substituted with primary fuzzy sets 𝐴0100,
𝐴0010, 𝐴0001, 𝐴0110, 𝐴0101, 𝐴0011, and 𝐴0111. We suppose that no expert states that
the water is cold and warm simultaneously. Therefore, we can eliminate sets 𝐴0101

and 𝐴0111.

The following must be satisfied:

𝐴0100 + 𝐴0010 + 𝐴0001 + 𝐴0110 + 𝐴0011 = 1, (4.25)
𝐴0100 + 𝐴0110 = 𝐴2, (4.26)

𝐴0010 + 𝐴0110 + 𝐴0011 = 𝐴3, (4.27)
𝐴0001 + 𝐴0011 = 𝐴4. (4.28)

For 𝑥 ∈ [30, 35) is the 𝐴3 floppy membership function 1. The membership functions
of primary fuzzy sets can therefore be calculated unambiguously.

Many solutions exist at interval (25, 30). For example, let us decide that the best
choice in our mathematical model is 𝐴0110 (28) = 0.55 and 𝐴0011 (28) = 0.05. This
solution is illustrated in Figure 4.4(c).

This solution is rather strange, however. The primary fuzzy set “Only warm” is
non-zero at interval (25, 30) and then at interval (40, 50). If we want a more elegant
solution, we can divide the fuzzy set “Only warm” into two fuzzy sets, one for each
interval.

Another option here is to select the values on interval (25, 30) to be zero on the fuzzy
set “Only warm”. This solution is illustrated in Figure 4.4(d). These membership
functions are listed in Appendix D.

4.3.3 Two-Dimensional Case – Marginal Floppy Sets

The following example shows how to proceed to create joint (floppy) membership
functions from marginal (floppy) membership functions.

Example 4.3.3. Variable 𝑇 is the air temperature. We select the following floppy
sets to describe this property: 𝑇1 – Cold, 𝑇2 – Tepid, 𝑇3 – Warm.

Variable 𝑃 is the air pressure. We select the following floppy sets to describe this
property: 𝑃1 – Low, 𝑃2 – Normal, 𝑃3 – High.

53



These floppy sets satisfy all their required rules.

We want to describe the conditions in the air according to both temperature and
pressure. The Cartesian product of temperature and pressure is therefore the do-
main of the floppy membership functions of the new floppy sets. Floppy set 𝑇1 is
understood as “it is cold and pressure is arbitrary”. Other floppy sets may be sim-
ilarly understood. These marginal floppy sets are listed in Appendix E and shown
in Figure 4.5(a) and (b).

We can observe that the sum of all floppy membership functions of 𝑇𝑖 and 𝑃𝑗 is 2
everywhere. We therefore introduce the primary fuzzy sets “Only 𝑇𝑖”, “Only 𝑃𝑗”
and “𝑇𝑖 and 𝑃𝑗”.

The primary fuzzy sets “Only 𝑇𝑖” and “Only 𝑃𝑗” are denoted 𝐴𝑖,0 and 𝐴0,𝑗. The
primary fuzzy sets “𝑇𝑖 and 𝑃𝑗” are denoted 𝐴𝑖,𝑗.

As in the previous example, instead of the (floppy) membership functions, we write
directly the relevant floppy or primary fuzzy sets.

We solve the following system of equations:∑︁
𝑖

𝐴𝑖,0 +
∑︁

𝑗

𝐴0,𝑗 +
∑︁

𝑖

∑︁
𝑗

𝐴𝑖,𝑗 = 1, (4.29)

𝐴𝑖,0 +
∑︁

𝑗

𝐴𝑖,𝑗 = 𝑇𝑖, (4.30)

𝐴0,𝑗 +
∑︁

𝑖

𝐴𝑖,𝑗 = 𝑃𝑗 , (4.31)∑︁
𝑖

𝑇𝑖 = 1, (4.32)∑︁
𝑗

𝑃𝑗 = 1. (4.33)

In solving this system, we find that the membership functions of all fuzzy sets “Only
𝑇𝑖” and “Only 𝑃𝑗” must be zero.

The system has an unambiguous solution only for a small number of non-zero fuzzy
sets. Larger systems have more solutions.

However, one solution, always valid, is very simple:

𝐴𝑖,𝑗 = 𝑇𝑖 · 𝑃𝑗 . (4.34)

The primary fuzzy set “Tepid and normal” obtained in this way is shown in Figure
4.5(c).

Multiplication of the floppy membership functions of marginal floppy sets is, of
course, possible even in cases which are more than two-dimensional.
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Figure 4.5: Marginal and joint (floppy) membership functions
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4.3.4 Two-Dimensional Case – Clusters

This example demonstrates that clusters can be understood as primary fuzzy sets
(or floppy sets) and how their (floppy) membership functions can be calculated.

The example was inspired by article [9], in which the authors described a fuzzy
C-means clustering algorithm. This method was introduced in [6].

Example 4.3.4. We need to divide points in the plane into three clusters. These
clusters are understood as the primary fuzzy sets 𝐴1, . . . 𝐴3. The cluster centres
are at points 𝐶1, . . . 𝐶3. How do we obtain the cluster membership functions which
satisfy all the required rules?

The method is very simple: Let us assign a non-negative function 𝑔𝑖 (𝑋) to each
cluster.2 For example, function 𝑔𝑖 (𝑋) = 1

𝑑𝑖
, where 𝑑𝑖 is the distance between points

𝑋 and 𝐶𝑖.3 This is a standard choice in a C-means method.

Now, we calculate cluster membership functions according to the equation:

𝜇𝐴𝑖
(𝑋) = 𝑔𝑖 (𝑋)∑︀

𝑗
𝑔𝑗 (𝑋) . (4.35)

Many functions 𝑔𝑖 are permissible. However, which functions best match the de-
scribed reality?

We require such membership functions so that their ratio in 𝑋 corresponds to the
ratio in which the points at 𝑋 belong to individual clusters. The best choice of
𝑔𝑖 (𝑋) is therefore the density of intensity. This may often be calculated as the
probability density function of the cluster multiplied by the intensity of the cluster.

For example, our three clusters have three different multivariate normal distributions
(see [38] and Appendix E) with mean vectors (centres of clusters):

m1 =
⎛⎝ −100

30

⎞⎠, m2 =
⎛⎝ 20

−5

⎞⎠, m3 =
⎛⎝ 80

0

⎞⎠, (4.36)

covariance matrices:

M1 =
⎛⎝ 1600 −800

−800 1600

⎞⎠, M2 =
⎛⎝ 200 0

0 200

⎞⎠, M3 =
⎛⎝ 300 100

100 300

⎞⎠, (4.37)

and cluster intensities of 70, 50 and 80 points per minute.
2At least one positive function must be everywhere.
3Of course, the singularities must be solved.
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Figure 4.6: Cluster membership functions
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We multiply the relevant multivariate normal distributions by the intensity of the
clusters and substitute into equation 4.35. These three membership functions are
shown in Figure 4.6(a), (b), (c).

But these membership functions are somewhat strange. A large membership degree
is also evident in places very distant from the centres.

How can this be improved? Article [64] can offer insight. The authors considered not
only clusters but also backgrounds. We add the new fuzzy set 𝐴4 – “Backgrounds”.
Its function 𝑔4 (𝑋) is constant everywhere. For example, the intensity of this fuzzy
set is 30 points per minute in rectangle 300 × 200. Therefore, 𝑔4 (𝑋) = 30

300·200 .

We now recompute the membership functions of all 𝐴𝑖 as shown above. The results
are presented in Figure 4.6(d), (e), (f), (g). These functions better typify the degree
of cluster membership.

4.4 Fuzzification

The previous two sections show how to determine primary fuzzy sets and their
membership functions.

From these primary fuzzy sets, we construct floppy sets which occur in the rules
defining the system. A floppy set is a set of respective primary fuzzy sets. The
floppy membership function of the floppy set is the sum of the membership functions
of its elements.

Some floppy sets appearing in the system rules are input whereas others are output.

To implement the system rules, we must first determine the probabilities of the
input floppy sets.

Let us demonstrate how to calculate the probabilities of input floppy sets in several
different situations.

4.4.1 An Exact Number Is Given

We know that the exact value of variable 𝐴 is 𝑥0.

The probability of floppy set 𝐵 is calculated according to the equation:

𝑅 (𝐵|𝑥0) = 𝜇𝐵 (𝑥0) . (4.38)
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Example 4.4.1. Let us continue in Example 4.3.4. What is the probability that a
point with coordinates (10, 40) belongs to cluster 𝐴2?

𝑅 ({𝐴2} | (10, 40)) = 𝜇{𝐴2} (10, 40) = 𝑔2 (10, 40)
4∑︀

𝑗=1
𝑔𝑗 (10, 40)

, (4.39)

where

𝜇{𝐴2} (𝑥) = 𝜇𝐴2 (𝑥) . (4.40)

After applying the functions from Example 4.3.4, we obtain:

𝑅 ({𝐴2} | (10, 40)) = 0.0001961
0.0007277 = 0.270. (4.41)

We found that the ratio of the probabilities that the point belong to the cluster 𝐴1

to 𝐴4 is equal to the ratio of the intensity densities. It is the right result. This is
why we chose intensity densities as 𝑔𝑖 functions.

4.4.2 A Probability Distribution Is Given

We know the probability distribution of variable 𝐴. It might be the probability
distribution given in Assumptions 2.1.4 and 2.1.5.

The probability of floppy set 𝐵 can be calculated according to the equation:

𝑅 (𝐵) =
∫︁

𝑋
𝜇𝐵 (𝑥) d𝑃, (4.42)

where the integral is the Lebesgue integral.

If 𝐴 is a discrete random variable, then we can use a simpler equation:

𝑅 (𝐵) =
∑︁

𝑥𝑖∈𝑋

𝜇𝐵 (𝑥𝑖) · 𝑃 (𝑥𝑖) , (4.43)

where 𝑃 (𝑥𝑖) is the known probability function.

If 𝐴 is a continuous random variable, then we can use the equation:

𝑅 (𝐵) =
∫︁

𝑋
𝜇𝐵 (𝑥) · 𝑓 (𝑥) d𝑥, (4.44)

where the integral is a Riemann integral and 𝑓 (𝑥) is the known probability density.
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Example 4.4.2. Let us continue in Example 4.3.3. We know the joint probability
distribution of air temperature 𝑡 and air pressure 𝑝. What is the probability that
air pressure is high?

𝑅 ({𝐴1,3, 𝐴2,3, 𝐴3,3}) =
∫︁ ∞

𝑝=0

∫︁ ∞

𝑡=−∞
𝜇{𝐴1,3,𝐴2,3,𝐴3,3} (𝑡, 𝑝) · 𝑓 (𝑡, 𝑝) d𝑡 d𝑝, (4.45)

where
𝜇{𝐴1,3,𝐴2,3,𝐴3,3} (𝑡, 𝑝) = 𝜇𝐴1,3 (𝑡, 𝑝) + 𝜇𝐴2,3 (𝑡, 𝑝) + 𝜇𝐴3,3 (𝑡, 𝑝) . (4.46)

After applying the functions from Appendix E, we obtain:

𝑅 ({𝐴1,3, 𝐴2,3, 𝐴3,3}) = 0.2290. (4.47)

4.4.3 A Floppy Set and an Exact Value Are Given

We know that variable 𝐴 is described by floppy set 𝐶 and that the exact value of
variable 𝐴 is 𝑥0.

The probability of floppy set 𝐵 is calculated according to the equation:

𝑅 (𝐵|𝐶, 𝑥0) = 𝑅 (𝐵 ∩ 𝐶|𝑥0)
𝑅 (𝐶|𝑥0) = 𝜇𝐵∩𝐶 (𝑥0)

𝜇𝐶 (𝑥0)
. (4.48)

Example 4.4.3. We continue in Example 4.3.4. A point has coordinates [50, 0].
We know that the point belongs to either cluster 𝐴2 or cluster 𝐴3. What is the
probability that the point belongs to cluster 𝐴3?

𝑅 ({𝐴3} | {𝐴2, 𝐴3} , [50, 0]) =

=
𝜇{𝐴3}∩{𝐴2,𝐴3} ([50, 0])

𝜇{𝐴2,𝐴3} ([50, 0]) =
𝜇{𝐴3} ([50, 0])

𝜇{𝐴2,𝐴3} ([50, 0]) =

=

𝑔3([50,0])
4∑︀

𝑗=1
𝑔𝑗([50,0])

𝑔2([50,0])+𝑔3([50,0])
4∑︀

𝑗=1
𝑔𝑗([50,0])

= 𝑔3 ([50, 0])
𝑔2 ([50, 0]) + 𝑔3 ([50, 0]) . (4.49)

After applying the functions from Example 4.3.4, we obtain:

𝑅 ({𝐴3} | {𝐴2, 𝐴3} , [50, 0]) = 0.008327
0.01227 = 0.679. (4.50)

4.4.4 A Floppy Set and a Probability Distribution Are Given

We know that variable 𝐴 is described by floppy set 𝐶, and we also know the prob-
ability distribution of variable 𝐴.
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The probability of floppy set 𝐵 can be calculated according to the equation:

𝑅 (𝐵|𝐶) = 𝑅 (𝐵 ∩ 𝐶)
𝑅 (𝐶) =

∫︀
𝑋 𝜇𝐵∩𝐶 (𝑥) d𝑃∫︀

𝑋 𝜇𝐶 (𝑥) d𝑃
, (4.51)

where the integrals are Lebesgue integrals.

If 𝐴 is a discrete random variable, then we use the equation:

𝑅 (𝐵|𝐶) =
∑︀

𝑥𝑖∈𝑋 𝜇𝐵∩𝐶 (𝑥𝑖) · 𝑃 (𝑥𝑖)∑︀
𝑥𝑖∈𝑋 𝜇𝐶 (𝑥𝑖) · 𝑃 (𝑥𝑖)

. (4.52)

If 𝐴 is a continuous random variable, then we use the equation:

𝑅 (𝐵|𝐶) =
∫︀

𝑋 𝜇𝐵∩𝐶 (𝑥) · 𝑓 (𝑥) d𝑥∫︀
𝑋 𝜇𝐶 (𝑥) · 𝑓 (𝑥) d𝑥

, (4.53)

where the integrals are Riemann integrals.

Example 4.4.4. We continue in Example 4.3.2. We know that the water is cold.
The probability density function of temperature is 𝑓 (𝑥). What is the probability
that the water is pleasant?

𝑅 ({𝐴0110, 𝐴0010, 𝐴0011} | {𝐴1000, 𝐴0100, 𝐴0110}) =

=

∫︀
𝑋 𝜇{𝐴0110,𝐴0010,𝐴0011}∩{𝐴1000,𝐴0100,𝐴0110} (𝑥) · 𝑓 (𝑥) d𝑥∫︀

𝑋 𝜇{𝐴1000,𝐴0100,𝐴0110} (𝑥) · 𝑓 (𝑥) d𝑥
=

=
∫︀

𝑋 𝜇{𝐴0110} (𝑥) · 𝑓 (𝑥) d𝑥∫︀
𝑋 𝜇{𝐴1000,𝐴0100,𝐴0110} (𝑥) · 𝑓 (𝑥) d𝑥

. (4.54)

After applying the functions from Appendix D, we obtain:

𝑅 ({𝐴0110, 𝐴0010, 𝐴0011} | {𝐴1000, 𝐴0100, 𝐴0110}) = 0.1456
0.6844 = 0.2127. (4.55)

4.4.5 An Interval and a Probability Density Function Are
Given

We know that the value of continuous random variable 𝐴 lies in the interval [𝑎, 𝑏]
and that the probability density function is 𝑓 (𝑥).

The probability of floppy set 𝐵 can be calculated according to the equation:

𝑅 (𝐵| [𝑎, 𝑏]) = 𝑅 (𝐵 ∩ [𝑎, 𝑏])
𝑅 ([𝑎, 𝑏]) =

∫︀ 𝑏
𝑎 𝜇𝐵 (𝑥) · 𝑓 (𝑥) d𝑥∫︀ 𝑏

𝑎 𝑓 (𝑥) d𝑥
. (4.56)
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Example 4.4.5. We continue in Example 4.3.2. The water temperature is in the
interval [20, 40] ∘C. What is the probability that the water is pleasant?

𝑅 ({𝐴0110, 𝐴0010, 𝐴0011| [20, 40]}) =
∫︀ 40

20 𝜇{𝐴0110,𝐴0010,𝐴0011} (𝑥) · 𝑓 (𝑥) d𝑥∫︀ 40
20 𝑓 (𝑥) d𝑥

. (4.57)

After applying the functions from Appendix D, we obtain:

𝑅 ({𝐴0110, 𝐴0010, 𝐴0011| [20, 40]}) = 0.3944
0.6247 = 0.6314. (4.58)

4.4.6 A Floppy Set, an Interval and a Probability Density
Function Are Given

We know that the continuous random variable 𝐴 is described by floppy set 𝐶, its
exact value lies within the interval [𝑎, 𝑏] and the probability density function is 𝑓 (𝑥).

The probability of floppy set 𝐵 is calculated according to the equation:

𝑅 (𝐵|𝐶, [𝑎, 𝑏]) = 𝑅 (𝐵 ∩ 𝐶| [𝑎, 𝑏])
𝑅 (𝐶| [𝑎, 𝑏]) =

=

∫︀ 𝑏

𝑎
𝜇𝐵∩𝐶(𝑥)·𝑓(𝑥) d𝑥∫︀ 𝑏

𝑎
𝑓(𝑥) d𝑥∫︀ 𝑏

𝑎
𝜇𝐶(𝑥)·𝑓(𝑥) d𝑥∫︀ 𝑏

𝑎
𝑓(𝑥) d𝑥

=

=
∫︀ 𝑏

𝑎 𝜇𝐵∩𝐶 (𝑥) · 𝑓 (𝑥) d𝑥∫︀ 𝑏
𝑎 𝜇𝐶 (𝑥) · 𝑓 (𝑥) d𝑥

. (4.59)

Example 4.4.6. We continue in Example 4.3.2. The water is not warm and the
water temperature is over 15 ∘C. The probability density function is 𝑓 (𝑥). What is
the probability that the water is pleasant?

𝑅 ({𝐴0110, 𝐴0010, 𝐴0011} | {𝐴1000, 𝐴0100, 𝐴0110, 𝐴0010} , [15, ∞)) =

=
∫︀∞

15 𝜇{𝐴0110,𝐴0010,𝐴0011}∩{𝐴1000,𝐴0100,𝐴0110,𝐴0010} (𝑥) · 𝑓 (𝑥) d𝑥∫︀∞
15 𝜇{𝐴1000,𝐴0100,𝐴0110,𝐴0010} (𝑥) · 𝑓 (𝑥) d𝑥

=

=
∫︀∞

15 𝜇{𝐴0110,𝐴0010} (𝑥) · 𝑓 (𝑥) d𝑥∫︀∞
15 𝜇{𝐴1000,𝐴0100,𝐴0110,𝐴0010} (𝑥) · 𝑓 (𝑥) d𝑥

. (4.60)

After applying the functions from Appendix D, we obtain:

𝑅 ({𝐴0110, 𝐴0010, 𝐴0011} | {𝐴1000, 𝐴0100, 𝐴0110, 𝐴0010} , [15, ∞)) = 0.2660
0.6461 = 0.4117.

(4.61)
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4.4.7 A Floppy Set, a Subset of 𝑋 and a Probability
Distribution Are Given

We know that variable 𝐴 is described by floppy set 𝐶, and we also know the proba-
bility distribution of variable 𝐴. The exact value of 𝐴 lies in set 𝑌 , which is a subset
of 𝑋 and 𝑌 ∈ 𝒜.

The probability of floppy set 𝐵 can be calculated according to the equation:

𝑅 (𝐵|𝐶, 𝑌 ) =
∫︀

𝑌 𝜇𝐵∩𝐶 (𝑥) d𝑃∫︀
𝑌 𝜇𝐶 (𝑥) d𝑃

, (4.62)

where the integrals are Lebesgue integrals.

If 𝐴 is a discrete random variable, then we apply the equation:

𝑅 (𝐵|𝐶, 𝑌 ) =
∑︀

𝑥𝑖∈𝑌 𝜇𝐵∩𝐶 (𝑥𝑖) · 𝑃 (𝑥𝑖)∑︀
𝑥𝑖∈𝑌 𝜇𝐶 (𝑥𝑖) · 𝑃 (𝑥𝑖)

. (4.63)

If 𝐴 is a continuous random variable, then we apply the equation:

𝑅 (𝐵|𝐶, 𝑌 ) =
∫︀

𝑌 𝜇𝐵∩𝐶 (𝑥) · 𝑓 (𝑥) d𝑥∫︀
𝑌 𝜇𝐶 (𝑥) · 𝑓 (𝑥) d𝑥

, (4.64)

where the integrals are Riemann integrals.

Example 4.4.7. Let us continue in Example 4.3.3. It is warm. The joint probability
density function is 𝑓 (𝑡, 𝑝). The set 𝑌 is given:

𝑡 < 32 ∘C, 𝑝 > 952 hPa,
𝑝

𝑡
≤ 34 hPa

∘C . (4.65)

What is the probability that the air pressure is low?

𝑅 ({𝐴1,1, 𝐴2,1, 𝐴3,1} | {𝐴3,1, 𝐴3,2, 𝐴3,3} , 𝑌 ) =

=
∫︀ 32

𝑡= 952
34

∫︀ 34·𝑡
𝑝=952 𝜇{𝐴1,1,𝐴2,1,𝐴3,1}∩{𝐴3,1,𝐴3,2,𝐴3,3} (𝑡, 𝑝) · 𝑓 (𝑡, 𝑝) d𝑝 d𝑡∫︀ 32
𝑡= 952

34

∫︀ 34·𝑡
𝑝=952 𝜇{𝐴3,1,𝐴3,2,𝐴3,3} (𝑡, 𝑝) · 𝑓 (𝑡, 𝑝) d𝑝 d𝑡

=

=
∫︀ 32

𝑡=28
∫︀ 34·𝑡

𝑝=952 𝜇{𝐴3,1} (𝑡, 𝑝) · 𝑓 (𝑡, 𝑝) d𝑝 d𝑡∫︀ 32
𝑡=28

∫︀ 34·𝑡
𝑝=952 𝜇{𝐴3,1,𝐴3,2,𝐴3,3} (𝑡, 𝑝) · 𝑓 (𝑡, 𝑝) d𝑝 d𝑡

. (4.66)

After applying the functions from Appendix E, we obtain:

𝑅 ({𝐴1,1, 𝐴2,1, 𝐴3,1} | {𝐴3,1, 𝐴3,2, 𝐴3,3} , 𝑌 ) = 0.002085
0.02828 = 0.0737. (4.67)
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4.5 System Rules

4.5.1 System Rules as a Conditional Probability
Distribution

In the previous section, we calculated the probabilities of input floppy sets. Using
system rules, we now calculate the probabilities of output floppy sets. The system
rules will therefore take the form of a conditional probability distribution. This
method enables more options than strict IF-THEN rules.

The probabilities of output floppy sets can be calculated as follows:

𝑅𝑃 (𝐵𝑖) =
∑︁

𝑗

𝑅 (𝐵𝑖|𝐴𝑗) · 𝑅 (𝐴𝑗) , (4.68)

where 𝐴𝑗 are input floppy sets and 𝐵𝑖 are output floppy sets. 𝑅 (𝐵𝑖|𝐴𝑗) is the
conditional probability distribution which describes the system rules. Probabilities
𝑅 (𝐴𝑗) are the probabilities calculated in the previous section 4.4.

Note that now we have two different probabilities of output floppy sets. A priori
probability is given by Definition 2.1.3.

In Equation 4.68, an a posteriori probability which depends on the probabilities of
the input floppy sets was introduced. We denote the a posteriori probability by the
upper index 𝑃 .

Example 4.5.1. Let us continue in Example 4.3.4. We suppose that points in the
plane are patients and that individual clusters are different types of patients.

A system can be described according to the following rules:

1. If we give medicine to a patient from “cluster 1”, their condition will be good.

2. If we give medicine to a patient from “cluster 2”, their condition will be good
in 70% or fair in 30% of cases.

3. If we give medicine to a patient from “cluster 3”, their condition will be serious.

4. If we give medicine to a patient from “background”, their condition will be
good in 50%, fair in 30%, or serious in 20% of cases.
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We thus have four input floppy sets (𝐴1 = cluster 1, 𝐴2 = cluster 2, 𝐴3 = cluster
3, 𝐴4 = background) and three output floppy sets (𝐵1 = good, 𝐵2 = fair, 𝐵3 =
serious). The matrix of the conditional probability distribution is:

𝑅 (𝐵𝑖|𝐴𝑗) =

⎛⎜⎜⎝
1 0.7 0 0.5
0 0.3 0 0.3
0 0 1 0.2

⎞⎟⎟⎠ . (4.69)

Note that the sum in each column is equal to one.

We have a patient. The probabilities that he or she belongs to individual clusters
are as follows:

𝑅 (𝐴1) = 0.2, 𝑅 (𝐴2) = 0.5, 𝑅 (𝐴3) = 0.2, 𝑅 (𝐴4) = 0.1. (4.70)

We calculate the a posteriori probabilities of the output floppy sets:

𝑅𝑃 (𝐵𝑖) =
4∑︁

𝑗=1
𝑅 (𝐵𝑖|𝐴𝑗) · 𝑅 (𝐴𝑗) =

=

⎛⎜⎜⎝
1 0.7 0 0.5
0 0.3 0 0.3
0 0 1 0.2

⎞⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎝
0.2
0.5
0.2
0.1

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎝
0.60
0.18
0.22

⎞⎟⎟⎠ . (4.71)

4.5.2 Estimation of System Rules Parameters

Values 𝑅 (𝐵𝑖|𝐴𝑗) are sometimes known, but often it is necessary to determine them
from data. How should we proceed?

Our model, which consists of one family of input floppy sets, one family of output
floppy sets, and the conditional probability distribution, is equivalent to a discrete
model with one input and one output variable. The values 𝑅 (𝐵𝑖|𝐴𝑗) can therefore
be estimated as follows [46, p. 14]:

𝑅 (𝐵𝑖|𝐴𝑗) = 𝜅𝑖,𝑗 (𝑛)∑︀
∀𝑘 𝜅𝑘,𝑗 (𝑛) , (4.72)

where 𝜅𝑖,𝑗 (𝑛) are statistics obtained from 𝑛 data vectors. These statistics describe
how many times a particular combination of input and output floppy sets has oc-
curred.
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Example 4.5.2. We continue in Example 4.3.4. Again, we suppose that points in
the plane are patients and that individual clusters are different types of patients,
yet we do not know the values 𝑅 (𝐵𝑖|𝐴𝑗).

Table 4.2 presents data on five patients.

Table 4.2: Patients data
Patient Input floppy sets Output floppy sets

Cluster 1 Cluster 2 Cluster 3 Backgr. Good Fair Serious
1 1 1
2 1 1
3 1 0.5 0.5
4 0.8 0.2 1
5 0.6 0.4 0.7 0.3

The first data vector states that input floppy set 𝐴2 occurred with output floppy
set 𝐵1. We can therefore determine 𝜅𝑖,𝑗 (1):

𝜅𝑖,𝑗 (1) =

⎛⎜⎜⎝
0 1 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ . (4.73)

Then, we add the second patient’s data:

𝜅𝑖,𝑗 (2) =

⎛⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 0

⎞⎟⎟⎠ . (4.74)

The third patient’s data indicate that the output floppy sets “Fair” and “Serious”
have a membership degree of 0.5. We add these data:

𝜅𝑖,𝑗 (3) =

⎛⎜⎜⎝
0 1 0 0
1 0 0.5 0
0 0 0.5 0

⎞⎟⎟⎠ . (4.75)

Similarly, for the fourth patient, we see non-integer degrees of membership in the
input floppy sets:

𝜅𝑖,𝑗 (4) =

⎛⎜⎜⎝
0.8 1 0 0.2
1 0 0.5 0
0 0 0.5 0

⎞⎟⎟⎠ . (4.76)

A problem arises when we discover non-integer membership degrees in the input and
output floppy sets simultaneously. We do not know exactly how we should increase
individual statistics 𝜅𝑖,𝑗.
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We may exclude such data or proceed as if the input and output data were inde-
pendent. We selected this (not entirely correct) method in this example:

𝜅𝑖,𝑗 (5) =

⎛⎜⎜⎝
0.8 1 0 0.2
1 0.42 0.5 0.28
0 0.18 0.5 0.12

⎞⎟⎟⎠ . (4.77)

Now we calculate 𝑅 (𝐵𝑖|𝐴𝑗) according to equation 4.72:

𝑅 (𝐵𝑖|𝐴𝑗) =

⎛⎜⎜⎝
0.4444 0.625 0 0.3333
0.5556 0.2625 0.5 0.4667
0 0.1125 0.5 0.2

⎞⎟⎟⎠ . (4.78)

Note that the sum in each column is equal to one.

The conditional probability distribution 𝑅 (𝐵𝑖|𝐴𝑗) is now determined only by the
data for the five patients in Table 4.2. However, we may have some other information
in the form of an expert estimate or some other research. If we want to include this
information in our estimate of 𝑅 (𝐵𝑖|𝐴𝑗), we create an a priori statistic 𝜅𝑖,𝑗 (0).
Then we add the data from Table 4.2 and proceed according to equation 4.72.

The sum in each column 𝜅𝑖,𝑗 (0) indicates how many fictitious patients the estimate
corresponds to.

For example, an expert’s estimate might appear as follows:

𝜅𝑖,𝑗 (0) =

⎛⎜⎜⎝
10 700 0 0
0 300 0 0
0 0 10 0

⎞⎟⎟⎠ . (4.79)

The sum in the first and third columns is ten. This means that the expert is not very
confident with the patients from clusters 1 and 3. The sum in the second column
is 1000. The expert is very confident with the patients from cluster 2. The sum in
the fourth column is zero. This means that the expert does not estimate at all the
conditions with patients from the “background”.

If we include the expert estimate 𝜅𝑖,𝑗 (0), we obtain an estimate of 𝑅 (𝐵𝑖|𝐴𝑗) as
follows:

𝑅 (𝐵𝑖|𝐴𝑗) =

⎛⎜⎜⎝
0.9153 0.6999 0 0.3333
0.0847 0.2999 0.0455 0.4667
0 0.0002 0.9545 0.2

⎞⎟⎟⎠ . (4.80)
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4.6 Defuzzification

4.6.1 Calculation of A Posteriori Probability Distributions

In Section 4.5.1 we calculated the a posteriori probabilities of output floppy sets.
This form of output data can be absolutely satisfactory in some situations. For
example: It will be 80% sunny, 15% cloudy, and 5% rainy.

Sometimes we want to know which floppy set has the highest probability. For
example: It will probably be sunny.

Sometimes we are interested in point estimation. For example: It will be 28 ∘C.
These point estimations as either a mean or median can be computed from an a
posteriori probability distribution.

The aim in this section is to calculate an a posteriori probability distribution from the
a posteriori probabilities of the output floppy sets. The point or interval estimations
can then be calculated as usual.

Let {𝐵𝑗} be a family of pairwise disjoint floppy sets whose union is the entire sample
space.

Then, the a posteriori probability distribution can be computed with the law of total
probability and Bayes’ theorem.

Variant for discrete case:

𝑅𝑃 (𝑥𝑖) =
∑︁

𝑗

𝑅 (𝑥𝑖|𝐵𝑗) · 𝑅𝑃 (𝐵𝑗) =

=
∑︁

𝑗

𝑅 (𝐵𝑗|𝑥𝑖) · 𝑅 (𝑥𝑖)
𝑅 (𝐵𝑗) · 𝑅𝑃 (𝐵𝑗) =

=
∑︁

𝑗

𝜇𝐵𝑗
(𝑥𝑖) · 𝑃 (𝑥𝑖)∑︀

𝑥𝑖∈𝑋 𝜇𝐵𝑗
(𝑥𝑖) · 𝑃 (𝑥𝑖)

· 𝑅𝑃 (𝐵𝑗) . (4.81)

Variant for continuous case:

𝑓𝑃 (𝑥) =
∑︁

𝑗

𝑓 (𝑥|𝐵𝑗) · 𝑅𝑃 (𝐵𝑗) =

=
∑︁

𝑗

𝑅 (𝐵𝑗|𝑥) · 𝑓 (𝑥)
𝑅 (𝐵𝑗) · 𝑅𝑃 (𝐵𝑗) =

=
∑︁

𝑗

𝜇𝐵𝑗
(𝑥) · 𝑓 (𝑥)∫︀

𝑥∈𝑋 𝜇𝐵𝑗
(𝑥) · 𝑓 (𝑥) d𝑥

· 𝑅𝑃 (𝐵𝑗) . (4.82)
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Example 4.6.1. Let us have a system which heats water with the aid of the sun.

The weather is described according to three primary fuzzy sets: “sunny"”, “cloudy”,
“rainy”. Water temperature is described as in Example 4.3.2. The system is defined
by the following rules:

1. If it is sunny, then the water is cold in 10% or warm in 50% of cases.

2. If it is cloudy, then the water is cold in 20% or warm in 30% of cases.

3. If it is rainy, then the water is cold in 40% or warm in 10% of cases.

Today it is 50% sunny and 50% cloudy. Calculate the probability distribution for
the water temperature.

We determine three output floppy sets:

∙ cold – 𝐵1 = {𝐴1000, 𝐴0100, 𝐴0110},

∙ not cold and not warm – 𝐵2 = {𝐴0010},

∙ warm – 𝐵3 = {𝐴0011, 𝐴0001}.

We create matrix 𝑅 (𝐵𝑖|𝐴𝑗):

𝑅 (𝐵𝑖|𝐴𝑗) =

⎛⎜⎜⎝
0.1 0.2 0.4
0.4 0.5 0.5
0.5 0.3 0.1

⎞⎟⎟⎠ . (4.83)

We compute the a posteriori probabilities of output floppy sets 𝐵𝑖:

𝑅𝑃 (𝐵𝑖) =

⎛⎜⎜⎝
0.1 0.2 0.4
0.4 0.5 0.5
0.5 0.3 0.1

⎞⎟⎟⎠ ·

⎛⎜⎜⎝
0.5
0.5
0

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0.15
0.45
0.40

⎞⎟⎟⎠ . (4.84)

We calculate the a posteriori probability density function of temperature:

𝑓𝑃 (𝑥) = 𝜇𝐵1 (𝑥) · 𝑓 (𝑥)∫︀
𝑥∈𝑋 𝜇𝐵1 (𝑥) · 𝑓 (𝑥) d𝑥

· 0.15 +

+ 𝜇𝐵2 (𝑥) · 𝑓 (𝑥)∫︀
𝑥∈𝑋 𝜇𝐵2 (𝑥) · 𝑓 (𝑥) d𝑥

· 0.45 +

+ 𝜇𝐵3 (𝑥) · 𝑓 (𝑥)∫︀
𝑥∈𝑋 𝜇𝐵3 (𝑥) · 𝑓 (𝑥) d𝑥

· 0.40. (4.85)
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Figure 4.7: Comparison of a priori and a posteriori probability densities

After applying the functions from Appendix D, we obtain:

𝑓𝑃 (𝑥) = [0.2192 · 𝜇𝐵1 (𝑥) + 3.7375 · 𝜇𝐵2 (𝑥) + 2.0489 · 𝜇𝐵3 (𝑥)] · 𝑓 (𝑥) . (4.86)

A comparison of a priori and a posteriori probability densities of water temperature
is presented in Figure 4.7.

4.6.2 Calculation of Mean Values

The mean value can be calculated from the a posteriori probability distribution in
the standard manner.

For discrete cases, we use the equation:

E (𝑥) =
∑︁

𝑥𝑖∈𝑋

𝑥𝑖 · 𝑅𝑃 (𝑥𝑖) (4.87)

For continuous cases, we use the equation:

E (𝑥) =
∫︁

𝑥∈𝑋
𝑥 · 𝑓𝑃 (𝑥) d𝑥. (4.88)
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Sometimes, the a posteriori probability distribution is barely determinable. To com-
pute it, we must know the membership functions of all output floppy sets and the a
priori probability distribution. We do not know these required properties, especially
regarding subjective variables such as “the need for something”.

In these cases, we cannot compute the a posteriori probability distribution, but we
can calculate the mean value using equation 3.5. In that equation, we need to know
or estimate only the mean values of all individual output floppy sets.4

Example 4.6.2. We continue with Example 4.6.1. Calculate the mean value to
make a point estimate of the water temperature.

We compute the mean value of 𝑥 from the a posteriori probability density function:

E (𝑥) =
∫︁

𝑥∈𝑋
𝑥 · 𝑓𝑃 (𝑥) d𝑥. (4.89)

After applying the functions from Appendix D, we obtain:

E (𝑥) = 32.98. (4.90)

If we do not know the a posteriori probability density, we calculate the mean value
using the mean values of the individual output floppy sets.

Assume that the mean value of cold water is 20.01 ∘C, the mean value of not cold
and not warm water is 33.53 ∘C, and the mean value of warm water is 37.22 ∘C.
(We calculated these values by applying the functions from Appendix D in equation
3.3.)

We proceed according to formula 3.5:

E (𝑥) =

⎛⎜⎜⎝
20.01
33.53
37.22

⎞⎟⎟⎠
𝑇

·

⎛⎜⎜⎝
0.15
0.45
0.40

⎞⎟⎟⎠ = 32.98. (4.91)

The resulting mean values obtained in both methods were, of course, the same.

4.7 Control of Floppy Systems

4.7.1 General Approach

To control floppy systems, we can successfully use the strategies developed to control
systems in general. Much quality literature is available on this topic [4, 28, 39].

4Definition 3.1.1.
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This section presents a procedure based on penalising individual states of the system.

A penalty is assigned to each combination of control and output variables.

Floppy systems are stochastic. We therefore do not know the exact output which
will be achieved. The resulting penalty is therefore also unknown.

However, we know the probability distribution for the individual outputs. This
allows us to calculate the mean value of the penalty for each variant of control.

We then select a control variant which has the smallest mean value for the penalty.

4.7.2 Static Discrete Systems

A system specified by one family of input floppy sets {𝐴𝑗}, one family of output
floppy sets {𝐵𝑖}, and the conditional probability distribution matrix {𝐵𝑖|𝐴𝑗} cor-
responds to a discrete static model.

If we add a discrete control, we can use the standard procedure for controlling
discrete models.

Example 4.7.1. We continue with Example 4.5.1.

We add the control variables: 𝑢1 = “We administer the medicine.” 𝑢2 = “We do not
administer the medicine.”

We add the following system rules:

5. If we do not administer the medicine to a patient from “cluster 1”, their
condition will be good in 50% of cases or fair in 50%.

6. If we do not administer the medicine to a patient from “cluster 2”, their
condition will be good in 20% of cases, fair in 40%, or serious in 40%.

7. If we do not administer the medicine to a patient from “cluster 3”, their
condition will be good in 10% of cases, fair in 70%, or serious in 20%.

8. If we do not administer the medicine to a patient from “background”, their
condition will be good in 30% of cases, fair in 40%, or serious in 30%.
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We write all rules into matrices:

𝑅 (𝐵𝑖|𝐴𝑗 , 𝑢1) =

⎛⎜⎜⎝
1 0.7 0 0.5
0 0.3 0 0.3
0 0 1 0.2

⎞⎟⎟⎠ , (4.92)

𝑅 (𝐵𝑖|𝐴𝑗 , 𝑢2) =

⎛⎜⎜⎝
0.5 0.2 0.1 0.3
0.5 0.4 0.7 0.4
0 0.4 0.2 0.3

⎞⎟⎟⎠ . (4.93)

The probabilities that our patient belongs to individual clusters are as follows:

𝑅 (𝐴1) = 0.2, 𝑅 (𝐴2) = 0.5, 𝑅 (𝐴3) = 0.2, 𝑅 (𝐴4) = 0.1. (4.94)

We calculate the a posteriori probabilities of output floppy sets for individual control
variants:

𝑅𝑃 (𝐵𝑖, 𝑢1) =

⎛⎜⎜⎝
1 0.7 0 0.5
0 0.3 0 0.3
0 0 1 0.2

⎞⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎝
0.2
0.5
0.2
0.1

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎝
0.60
0.18
0.22

⎞⎟⎟⎠ , (4.95)

𝑅𝑃 (𝐵𝑖, 𝑢2) =

⎛⎜⎜⎝
0.5 0.2 0.1 0.3
0.5 0.4 0.7 0.4
0 0.4 0.2 0.3

⎞⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎝
0.2
0.5
0.2
0.1

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎝
0.25
0.48
0.27

⎞⎟⎟⎠ . (4.96)

We determine the penalty for individual output floppy sets and control variables.

Good condition in a patient is not penalised, fair condition is penalised with 10
points, and serious condition with 50 points. If we administer the medicine, we add
3 points (price, side effects).

We therefore create the following penalty vectors for output floppy sets and control
variants:

𝑘 (𝑢1) =

⎛⎜⎜⎝
3

13
53

⎞⎟⎟⎠ , 𝑘 (𝑢2) =

⎛⎜⎜⎝
0

10
50

⎞⎟⎟⎠ . (4.97)

73



We calculate the mean value of the penalty for both control variants:

𝐾 (𝑢1) = 𝑘 (𝑢1)𝑇 · 𝑅𝑃 (𝐵𝑖, 𝑢1) =

⎛⎜⎜⎝
3

13
53

⎞⎟⎟⎠
𝑇

·

⎛⎜⎜⎝
0.60
0.18
0.22

⎞⎟⎟⎠ = 15.8, (4.98)

𝐾 (𝑢2) = 𝑘 (𝑢2)𝑇 · 𝑅𝑃 (𝐵𝑖, 𝑢2) =

⎛⎜⎜⎝
0

10
50

⎞⎟⎟⎠
𝑇

·

⎛⎜⎜⎝
0.25
0.48
0.27

⎞⎟⎟⎠ = 18.3. (4.99)

If we administer the medicine, the mean value of the penalty is lower. We select
this variant.

4.7.3 Dynamic Discrete Systems

The previous example was static. In this example, the current output variable
depends on the previous output variable and the previous discrete control.

Because the outputs in the individual steps depend on each other, the control in one
step also affects the other steps. Therefore, if we want to penalise individual control
variants, we must penalise the consequences of control not only in the current steps
but also any future steps.

The 𝑛-step penalisation of individual control variants is therefore:

𝐾 (𝑢𝑣0,𝑣1,𝑣2,...𝑣𝑛) =
𝑛∑︁

𝑚=1
𝑘
(︁
𝑢𝑣𝑚−1

)︁𝑇
· 𝑅𝑃

𝑚 (𝐵𝑖) , (4.100)

where 𝑢𝑣𝑚−1 is 𝑣-th variant of the control in (𝑚 − 1)-th step, 𝑢𝑣0,𝑣1,𝑣2,...𝑣𝑛 is the
control sequence 𝑢𝑣0 , 𝑢𝑣1 , 𝑢𝑣2 , . . . 𝑢𝑣𝑛 , 𝑅𝑃

𝑚 (𝐵𝑖) is the vector of the probabilities of
output floppy sets in 𝑚-th step, and 𝑘

(︁
𝑢𝑣𝑚−1

)︁
is the penalty vector dependent on

the control 𝑢𝑣𝑚−1 .

Assume that the probability of the output floppy sets in one round depends on the
probability of output floppy sets in the previous round, as follows:

𝑅𝑃
𝑚 (𝐵𝑖) = 𝑅

(︁
𝐵𝑖|𝐵𝑗 , 𝑢𝑣𝑚−1

)︁
· 𝑅𝑃

𝑚−1 (𝐵𝑗) , (4.101)

where 𝑅
(︁
𝐵𝑖|𝐵𝑗 , 𝑢𝑣𝑚−1

)︁
is a matrix dependent on the 𝑚 − 1-th control.
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We then substitute into equation 4.100:

𝐾 (𝑢𝑣0,𝑣1,𝑣2,...𝑣𝑛) = 𝑘 (𝑢𝑣0)𝑇 · 𝑅 (𝐵𝑖|𝐵𝑗 , 𝑢𝑣0) · 𝑅𝑃
0 (𝐵𝑗) +

+ 𝑘 (𝑢𝑣1)𝑇 · 𝑅 (𝐵𝑖|𝐵𝑗 , 𝑢𝑣1) · 𝑅 (𝐵𝑖|𝐵𝑗 , 𝑢𝑣0) · 𝑅𝑃
0 (𝐵𝑗) +

+ . . . =
=
[︁
𝑘 (𝑢𝑣0)𝑇 · 𝑅 (𝐵𝑖|𝐵𝑗 , 𝑢𝑣0) +

+ 𝑘 (𝑢𝑣1)𝑇 · 𝑅 (𝐵𝑖|𝐵𝑗 , 𝑢𝑣1) · 𝑅 (𝐵𝑖|𝐵𝑗 , 𝑢𝑣0) +
+ . . .] · 𝑅𝑃

0 (𝐵𝑗) . (4.102)

The expression in square brackets is denoted 𝐿 (𝑢𝑣0,𝑣1,𝑣2,...𝑣𝑛):

𝐾 (𝑢𝑣0,𝑣1,𝑣2,...𝑣𝑛) = 𝐿 (𝑢𝑣0,𝑣1,𝑣2,...𝑣𝑛) · 𝑅𝑃
0 (𝐵𝑗) . (4.103)

We calculate 𝐾 (𝑢𝑣0,𝑣1,𝑣2,...𝑣𝑛) for all combinations of control and select the variant
with the least penalty. From this variant, we use only the first control 𝑢𝑣0 .

The disadvantage of this control method is that we must calculate the penalty for all
control variants. However, the expressions 𝐿 (𝑢𝑣0,𝑣1,𝑣2,...𝑣𝑛) need only be computed
once. If we save the results, we can use them without change in any subsequent
control steps.

Example 4.7.2. We can use one of two medicines to treat a patient: 𝑢1 = “the
first medicine”, 𝑢2 = “the second medicine.”

The patient’s condition is described according to three floppy sets: 𝐵1 = “good”,
𝐵2 = “fair”, 𝐵3 = “serious”.

Each day, we determine the patient’s condition by determining the probabilities of
individual floppy sets 𝐵𝑖.

We model the progress of the patient’s condition in the following manner:

𝑅𝑃
𝑚 (𝐵𝑖) = 𝑅

(︁
𝐵𝑖|𝐵𝑗 , 𝑢𝑣𝑚−1

)︁
· 𝑅𝑃

𝑚−1 (𝐵𝑗) (4.104)

The system rules are given by the following matrices:

𝑅 (𝐵𝑖|𝐵𝑗 , 𝑢1) =

⎛⎜⎜⎝
0.9 0.7 0.1
0.1 0.2 0.1
0 0.1 0.8

⎞⎟⎟⎠ , 𝑅 (𝐵𝑖|𝐵𝑗 , 𝑢2) =

⎛⎜⎜⎝
0.8 0.4 0.1
0.2 0.5 0.5
0 0.1 0.4

⎞⎟⎟⎠ . (4.105)

The penalty is given by the following vectors:

𝑘 (𝑢1) =

⎛⎜⎜⎝
3

13
53

⎞⎟⎟⎠ , 𝑘 (𝑢2) =

⎛⎜⎜⎝
5

15
55

⎞⎟⎟⎠ . (4.106)
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We perform a three-step control and decide which medicine to administer to a patient
whose condition was rated today by two doctors as serious and one doctor as fair.

We know the current vector 𝑅𝑃
0 (𝐵𝑗):

𝑅𝑃
0 (𝐵𝑗) =

⎛⎜⎜⎝
0

1/3
2/3

⎞⎟⎟⎠ . (4.107)

Now, we calculate 𝐿 (𝑢𝑣0,𝑣1,𝑣2) and 𝐾 (𝑢𝑣0,𝑣1,𝑣2) for all control variants. For example,
for a three-step control 𝑢 = (𝑢1,2,2), we calculate:

𝐿 (𝑢1,2,2) =
= 𝑘 (𝑢0)𝑇 · 𝑅 (𝐵𝑖|𝐵𝑗 , 𝑢0) +

+ 𝑘 (𝑢1)𝑇 · 𝑅 (𝐵𝑖|𝐵𝑗 , 𝑢1) · 𝑅 (𝐵𝑖|𝐵𝑗 , 𝑢0) +
+ 𝑘 (𝑢2)𝑇 · 𝑅 (𝐵𝑖|𝐵𝑗 , 𝑢2) · 𝑅 (𝐵𝑖|𝐵𝑗 , 𝑢1) · 𝑅 (𝐵𝑖|𝐵𝑗 , 𝑢0) =

=

⎛⎜⎜⎝
3

13
53

⎞⎟⎟⎠
𝑇

·

⎛⎜⎜⎝
0.9 0.7 0.1
0.1 0.2 0.1
0 0.1 0.8

⎞⎟⎟⎠+

+

⎛⎜⎜⎝
5

15
55

⎞⎟⎟⎠
𝑇

·

⎛⎜⎜⎝
0.8 0.4 0.1
0.2 0.5 0.5
0 0.1 0.4

⎞⎟⎟⎠ ·

⎛⎜⎜⎝
0.9 0.7 0.1
0.1 0.2 0.1
0 0.1 0.8

⎞⎟⎟⎠ =

+

⎛⎜⎜⎝
5

15
55

⎞⎟⎟⎠
𝑇

·

⎛⎜⎜⎝
0.8 0.4 0.1
0.2 0.5 0.5
0 0.1 0.4

⎞⎟⎟⎠ ·

⎛⎜⎜⎝
0.8 0.4 0.1
0.2 0.5 0.5
0 0.1 0.4

⎞⎟⎟⎠ ·

⎛⎜⎜⎝
0.9 0.7 0.1
0.1 0.2 0.1
0 0.1 0.8

⎞⎟⎟⎠ =

=
(︁

20.87 31.60 88.55
)︁

. (4.108)

𝐾 (𝑢1,2,2) =
(︁

20.87 31.60 88.55
)︁

·

⎛⎜⎜⎝
0

1/3
2/3

⎞⎟⎟⎠ = 69.57. (4.109)

The results are given in Table 4.3.

We obtained the smallest mean value of the penalty for the control sequence 𝑢2,2,1.
Today, therefore, we administer the second medicine.

When we check the patient’s condition tomorrow, we perform the entire procedure
again. We already have the calculated values 𝐿 (𝑢𝑣0,𝑣1,𝑣2). It is therefore enough
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Table 4.3: Calculation of penalties for individual control sequences

Control sequence 𝐿 (𝑢𝑣0,𝑣1,𝑣2) 𝐾 (𝑢𝑣0,𝑣1,𝑣2)
𝑢1,1,1 (13.66 27.92 111.26) 83.48
𝑢1,1,2 (16.71 29.46 103.43) 78.77
𝑢1,2,1 (17.58 29.04 90.22) 69.83
𝑢1,2,2 (20.87 31.60 88.55) 69.57
𝑢2,1,1 (17.72 36.10 72.70) 60.50
𝑢2,1,2 (20.62 37.19 69.71) 58.87
𝑢2,2,1 (21.96 38.18 68.42) 56.34
𝑢2,2,2 (25.14 40.41 65.79) 57.33

to calculate the values 𝐾 (𝑢𝑣0,𝑣1,𝑣2). For example, if all doctors agree that a pa-
tient’s condition is fair, then we determine the smallest penalty for variant 𝑢1,1,1

and administer the first medicine to the patient.

77



78



Chapter 5

Comparison of Floppy Logic to
Other Theories

5.1 Floppy Logic and Kolmogorov Probability
Theory

The relationship between floppy logic and probability theory is very simple. Theo-
rems 2.1.1 and 2.2.1 state that both basic floppy logic and generalised floppy logic
are models of probability theory.

We can therefore use all the constructions and tools of Kolmogorov probability the-
ory in floppy logic. An example is the floppy set’s mean value. This was introduced
in section 3.1 and used in section 4.6.2.

We can translate the concepts of floppy logic into the language of probability theory.

The set of all primary fuzzy sets is the sample space.

A floppy set is a probability event.

The floppy membership function of floppy set 𝐵 is a conditional probability:

𝜇𝐵 (𝑥) = 𝑅 (𝐵|𝑥) , (5.1)

where 𝑥 is an element of the domain.

From the assumptions of floppy logic (Section 2.1.1), this relation follows for all
𝑥 ∈ 𝑋, except for a null set. (Section 2.2.2.) The natural choice is to accept this
relation for all 𝑥 ∈ 𝑋.
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The case is similar to a probability density function in probability theory. This func-
tion must be non-negative throughout the domain, except for a null set. However,
it is usually selected non-negatively everywhere.

The number

𝑅 (𝐵) =
∫︁

𝑋
𝜇𝐵 (𝑥) d𝑃 (5.2)

is the probability of event 𝐵.

Interestingly, in floppy logic, the probability is derived from the floppy member-
ship function, which is interpreted as the conditional probability. In floppy logic,
therefore, the fundamental concept is conditional probability, not probability, as
in Kolmogorov probability theory. It would therefore be interesting to compare
floppy logic with alternative probability theories (e.g. [50, 57]) in which conditional
probability is the central concept.

5.2 Floppy Logic and Standard Bivalent Logic

The relationship between floppy logic and standard Boolean logic is discussed in
Theorem 2.3.1. This theorem states that every two statements which are equivalent
in standard Boolean logic are also equivalent in floppy logic.

Therefore, distributivity, idempotence, the law of excluded middle and all the prop-
erties listed in Table 1.1 are also preserved in floppy logic.

It is very surprising that some multi-valued logic exists with these properties.

For the reasons above, floppy logic can be considered a multi-valued generalisation
of standard propositional logic.

If we accept that floppy membership functions are the generalisations of quantifiers
(Consequence 2.3.9), we may consider floppy logic as a generalisation of standard
predicate logic.

5.3 Floppy Logic and Fuzzy Logic

5.3.1 The Basic Differences

Floppy logic and fuzzy logic have in common that they both work with fuzzy sets
and their membership functions.
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The basic difference between floppy logic and fuzzy logic is that events are modelled
according to fuzzy sets in fuzzy logic whereas in floppy logic, they are modelled
according to floppy sets. A floppy set is a set of primary fuzzy sets. Floppy sets are
introduced in Sections 2.1.1 and 2.2.1.

This shift from elements to sets is not a new concept. A similar step was made by
Andrey Nikolaevich Kolmogorov in his probability theory [35], where he assigned
probabilities not to elements but to subsets of the sample space.

The second difference is that fuzzy logic is truth-functional, while floppy logic is not.
More about this is examined in Section 5.3.4.

Another important difference is that floppy logic, unlike fuzzy logic, preserves the
equivalence of statements. More about this is written in detail in Section 2.3.

The great advantage of floppy logic is that it is fully compatible with Kolmogorov
probability theory. See Sections 2.1.2 to 2.2.2.

Another advantage of floppy logic is that it consistently works with data in the form
of exact values, probability distributions, crisp sets and floppy sets simultaneously.
See Chapter 4.

5.3.2 Intersections and Unions in Fuzzy Logic

In his first article on fuzzy logic [68], Zadeh already discusses two methods of gen-
eralising the intersection and union of sets. The first pair of these functions is the
minimum and maximum of membership functions (Gödel t-norm and t-conorm):

𝜇𝐴∩𝐵 = min {𝜇𝐴, 𝜇𝐵} ,

𝜇𝐴∪𝐵 = max {𝜇𝐴, 𝜇𝐵} .

The second pair is now called the algebraic product (= product t-norm) and algebraic
sum (= product t-conorm):

𝜇𝐴∩𝐵 = 𝜇𝐴 · 𝜇𝐵,

𝜇𝐴∪𝐵 = 𝜇𝐴 + 𝜇𝐵 − 𝜇𝐴 · 𝜇𝐵.

The third pair of these functions was introduced by Robin Giles in 1976 [24] (bounded
product = Łukasiewict t-norm) and Lotfi Zadeh in 1975 [66] (bounded sum =
Łukasiewicz t-conorm):

𝜇𝐴∩𝐵 = max {0, 𝜇𝐴 + 𝜇𝐵 − 1} ,

𝜇𝐴∪𝐵 = min {1, 𝜇𝐴 + 𝜇𝐵} .
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The next pair, drastic sum and drastic product, was introduced by Didier Dubois
in 1979 [16, 44]:

𝜇𝐴∩𝐵 =

⎧⎪⎪⎨⎪⎪⎩
𝜇𝐴 if 𝜇𝐵 = 1,

𝜇𝐵 if 𝜇𝐴 = 1,

0 if 𝜇𝐴, 𝜇𝐵 < 1.

𝜇𝐴∪𝐵 =

⎧⎪⎪⎨⎪⎪⎩
𝜇𝐴 if 𝜇𝐵 = 0,

𝜇𝐵 if 𝜇𝐴 = 0,

1 if 𝜇𝐴, 𝜇𝐵 > 0.

Over time, the notion arose that any t-norm and t-conorm could be used as a
generalisation of intersection and union. This concept first appeared in the study
[18].

T-norms are binary operations which first appeared in 1942 in Menger’s article [43].
They were studied before the advent of fuzzy logic. For example, in paper [58] from
1960, all four basic t-norms above can be found. Many families of t-norms and
t-conorms are now known; for example Schweizer-Sklar, Hamacher, Frank, Yager,
Dombi, Sugeno-Weber, Aczel-Alsina, and Mayor-Torrens [34].

All t-norms (and t-conorms) can be arranged by size [18]. The smallest is the
drastic t-norm, the largest is the Gödel t-norm. Similarly, the smallest t-conorm is
the Gödel t-conorm, and the largest is the drastic t-conorm.

Negation, as with the complement, can also be modelled in several ways; for example,
standard (= Łukasiewicz) negation, Gödel negation [30] and the Sugeno class of
negations [22] are all known.

5.3.3 Intersections and Unions in Floppy Logic

In floppy logic, we generally apply intersection, union and complement.

Interestingly, it is possible to compare the (floppy) membership functions of inter-
section and union in both floppy logic and fuzzy logic.

The floppy membership function of the intersection of two floppy sets in floppy logic
is bounded from above by a Gödel t-norm and from below by a Łukasiewicz t-norm.
The floppy membership function of the union of two floppy sets is bounded from
above by a Łukasiewicz t-conorm and from below by a Gödel t-conorm. More about
this is described in Section 3.3.
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5.3.4 Truth-Functionality Problem

The previous result is curiously related to the truth-functionality problem. Fuzzy
logic is truth-functional, while floppy logic is not.

This means that in fuzzy logic, we can calculate the membership function of 𝜇𝐴∩𝐵 (𝑥)
or 𝜇𝐴∪𝐵 (𝑥) from the membership functions of 𝜇𝐴 (𝑥) and 𝜇𝐵 (𝑥). By contrast, this
is not possible in floppy logic. In floppy logic, the elements of individual floppy sets
and their membership functions must be known.

Similarly, in probability theory, we must know the conditional probability, which
then determines the degree of dependence of both events.

If we compare floppy logic and fuzzy logic, we can generally state that in fuzzy
logic, the degree of dependence is determined by the choice of the relevant t-norm
and t-conorm. The product t-norm and t-conorm correspond to independent events.
The t-(co)norms between product and Gödel t-(co)norms correspond to positive
dependent events. The t-(co)norms between product and Łukasiewicz t-(co)norms
correspond to negative dependent events.

5.3.5 Implications in Floppy Logic and Fuzzy Logic

Implication is another important operation. In floppy logic, the case is simple. The
implication is calculated according to the equation:

𝜇𝐴⇒𝐵 = 1 − 𝜇𝐴 + 𝜇𝐴∩𝐵. (5.3)

Some interesting results from floppy implication are examined in section 3.2.

Fuzzy logic has three main methods of defining an implication [3, 47]. The first (e.g
[62]) uses the equation:

𝜇𝐴⇒𝐵 = 𝜇¬̇𝐴∨̇𝐵, (5.4)

where ¬̇ is a fuzzy negation and ∨̇ is a t-conorm.

For standard negation and the Łukasiewicz, Gödel and product t-conorms, we ob-
tain:

∙ Łukasiewicz implication: 𝜇𝐴⇒𝐵 =

⎧⎨⎩ 1 − 𝜇𝐴 + 𝜇𝐵 if 𝜇𝐴 > 𝜇𝐵,

1 if 𝜇𝐴 ≤ 𝜇𝐵.

∙ Kleene-Dienes implication: 𝜇𝐴⇒𝐵 = max {1 − 𝜇𝐴, 𝜇𝐵}.
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∙ Reichenbach implication: 𝜇𝐴⇒𝐵 = 1 − 𝜇𝐴 + 𝜇𝐴 · 𝜇𝐵.

A second method of defining fuzzy implication is explored in [19, 30]:

𝜇𝐴⇒𝐵 = max {𝜇𝐶 : 𝜇𝐴∧̇𝐶 ≤ 𝜇𝐵} , (5.5)

where ∧̇ is a continuous t-norm.

For Łukasiewicz, Gödel and product t-norms, we obtain the following implications:

∙ Łukasiewicz implication.

∙ Gödel implication: 𝜇𝐴⇒𝐵 =

⎧⎨⎩ 𝜇𝐵 if 𝜇𝐴 > 𝜇𝐵,

1 if 𝜇𝐴 ≤ 𝜇𝐵.

∙ Goguen implication: 𝜇𝐴⇒𝐵 =

⎧⎨⎩ 𝜇𝐵/𝜇𝐴 if 𝜇𝐴 > 𝜇𝐵,

1 if 𝜇𝐴 ≤ 𝜇𝐵.

The third method of obtaining a fuzzy implication is the equation:

𝜇𝐴⇒𝐵 = 1 − 𝜇𝐴 + 𝜇𝐴∧̇𝐵, (5.6)

which is similar to the corresponding relationship from floppy logic. For Łukasiewicz,
Gödel and product t-norms, we obtain Kleene-Dienes, Łukasiewicz and Reichenbach
implications (in this order).

5.3.6 Probability in Fuzzy Logic and Floppy Logic

Fuzzy logic contains Zadeh’s definition of the probability of a fuzzy set [70]:

𝑃 (𝐴) =
∫︁

Ω
𝜇𝐴 (𝑥) d𝑃, (5.7)

where the integral is a Lebesgue Stieltjes integral and 𝑃 is a probability measure.
𝐴 is a fuzzy set and 𝜇𝐴 (𝑥) is its membership function.

In floppy logic, the probability of a floppy set is defined as:

𝑅 (𝐵) =
∫︁

Ω
𝜇𝐵 (𝑥) d𝑃, (5.8)

where the integral is a Lebesgue (or Lebesgue Stieltjes) integral and 𝑃 is the prob-
ability measure presumed in Assumption 2.1.4. 𝐵 is a floppy set and 𝜇𝐵 (𝑥) is its
membership function.
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These two equations are very similar, although they yield the same results only for
single-element floppy sets.

For example, an event “warm or tepid water” in fuzzy logic is modelled according
to the fuzzy union of the fuzzy sets “warm water” and “tepid water”: 𝐴𝑊 ∨̇𝐴𝑇 .

In floppy logic, this event can be modelled according to the two-element floppy set:
{𝐴𝑊 , 𝐴𝑇 }. In both these cases we obtain, generally, different (floppy) membership
functions and probabilities.

5.3.7 Assumptions of Floppy Logic

For floppy logic to be a model of Kolmogorov probability theory, Assumptions 2.1.1
to 2.1.5 must be satisfied. Let us now examine the validity of these assumptions in
fuzzy logic:

In floppy logic, Assumption 2.1.1 is required so that the floppy membership functions
of floppy sets, which are the sum of the membership functions of its elements, are
well defined. In fuzzy logic, this assumption is usually not required.

In fuzzy logic, Assumption 2.1.2 is often accepted (e.g. [30, 47, 68]). Sometimes it
is generalised (e.g. [26, 65]).

Assumption 2.1.3 is not a component of fuzzy logic and is sometimes highlighted
as such (e.g. [27]). However, especially in practical applications, this assumption is
often added (e.g. [10, 12, 20, 32, 49, 56]).

If we want to use Zadeh’s definition of the probability of a fuzzy set [70], we must
accept Assumptions 2.1.4 and 2.1.5.

One more assumption must be satisfied to model reality well: “Two properties which
are described by two different primary fuzzy sets cannot simultaneously describe
reality.” This assumption is explained in Remark 2.1.5.

This assumption is not required in fuzzy logic.

The unpleasant consequence of this assumption is that in floppy logic, we must work
with a larger set of primary fuzzy sets than in fuzzy logic. If the number of these
primary fuzzy sets is great, we can use standard fuzzy operations to automatically
estimate their membership functions. If the events are independent, we use the
product t-norm. If the events are heavily positively dependent, we can use the Gödel
t-norm. If the events are heavily negatively dependent, we can use the Łukasiewicz
t-norm.
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5.4 Floppy Logic and Adams’ and Stalnaker’s
Probability Logic

Except for the membership function, the probability of a floppy set 𝑅 (𝐴) is the
second possible generalisation of the truth value in floppy logic. In this aspect,
floppy logic is similar to the probability logic of Ernest Adams and Robert Stalnaker.

The main idea of these theories is Adams’ Thesis or the PCCP hypothesis [29]: The
probabilities of conditionals are conditional probabilities [2, 60]:

𝑃 (𝐴 ⇒ 𝐵) = 𝑃 (𝐵|𝐴) , if 𝑃 (𝐴) > 0. (5.9)

Adams adds that:

𝑃 (𝐴 ⇒ 𝐵) = 1, if 𝑃 (𝐴) = 0. (5.10)

This idea, best known from Adams’ and Stalnaker’s works, can already be found in
some older studies, for example [54] from 1931.

Two important arguments against this idea are presented by Lewis [40]. However,
Adams [1] and Douven and Verbrugge [15] defend the PCCP hypothesis.

In floppy logic, the relationship between the probability of conditionals and condi-
tional probabilities is rather more complicated. We can derive1 the equation:

𝑅 (𝐴 ⇒ 𝐵) = 1 − 𝑅 (𝐴) + 𝑅 (𝐵|𝐴) · 𝑅 (𝐴) . (5.11)

A comparison of the probability of implication in probabilistic logic and floppy logic
is presented in Figure 5.1.

The benefits of floppy implication include, for example, the fact that the implication
is logically equivalent to its contrapositive (as in standard logic):

𝑅 (𝐴 ⇒ 𝐵) = 𝑅 (¬𝐵 ⇒ ¬𝐴) . (5.12)

The PCCP implication does not possess this property.

1For the derivation of this equation, see Consequence 2.3.6.
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Figure 5.1: Comparison of the probability of implication in probabilistic
logic according to Adams’ Thesis (a) and floppy logic (b)

Let us show one more advantage of floppy logic versus probability logic. In floppy
logic, Lewis’ triviality result [40] presents no problems, and implications may be
used in the antecedent and consequent of other implications. For example, in floppy
logic, the distributivity and transitivity of an implication apply such that:

𝑅
[︂ [︁

𝐴 ⇒ (𝐵 ⇒ 𝐶)
]︁

⇒
[︁

(𝐴 ⇒ 𝐵) ⇒ (𝐴 ⇒ 𝐶)
]︁ ]︂

= 1, (5.13)

𝑅
[︂ [︁

(𝐴 ⇒ 𝐵) ∧ (𝐵 ⇒ 𝐶)
]︁

⇒
[︁
𝐴 ⇒ 𝐶

]︁ ]︂
= 1. (5.14)

The truth of these statements derives directly from Theorem 2.3.1 and the distribu-
tivity and transitivity of implications in standard bivalent logic.
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Conclusion

The main objective of this research was to find a consistent link between fuzzy sets
and probability theory. The objective was attained and resulted in a new multi-
valued logic, which was named floppy logic.

Floppy logic is a non-truth-functional logic similar to fuzzy logic. It works with
floppy sets, which are crisp families of primary fuzzy sets.

Three important theorems concerning floppy logic were proved. The first two theo-
rems claimed that floppy logic is a model of Kolmogorov probability theory. There-
fore, it is possible to apply all the concepts and tools of this theory in floppy logic.
This principle was demonstrated with an example which defined the mean value of
a floppy set. Bayes’ theorem and the law of total probability were also frequently
applied.

The third theorem linked floppy logic with Boolean logic. The theorem demonstrated
that each two statements which are logically equivalent in standard Boolean logic
are also equivalent in floppy logic. It followed that floppy logic retains all the
properties of standard two-valued logic which can be expressed as equivalences. I am
confident that this remarkable feature lets us consider floppy logic as a multi-valued
generalisation of standard two-valued logic.

Floppy logic also links two streams of thinking which generalise the truth value
in different ways. It is a probabilistic logic which generalises truth values by ap-
plying probability and fuzzy logic which generalises truth values using membership
functions. Both these concepts have their place in floppy logic.

Several other interesting results concern the mean value of the floppy set, floppy
implication, and measurement of statement dependence.

In addition to the theoretical results, the practical aspects of floppy logic were
explored. The thesis described detailed work with a system, including the selection of
suitable primary fuzzy sets, fuzzification, application of system rules, defuzzification
and optimal control. The thesis attempted to demonstrate that floppy logic is a
relatively simple, intuitive, practical and elegant theory.
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This research is certainly only the foundation of a new theory. Many options are
available for the application or theoretical development of floppy logic. I cordially
encourage the reader to engage in this research.

For example, it may be important to elaborate the concept of floppy logic as a
generalisation of predicate logic.

Reduction of the computational difficulty of the multi-step control algorithm would
be very useful. It would also be interesting to further develop the notion of mea-
surement of the dependence of statements or to derive additional relationships for
floppy implication or other floppy operations.

I am confident that this text contains everything essential for researchers to conduct
theoretical or practical work with floppy logic.

90



References

[1] ADAMS E.W. A primer of probability logic. Stanford, Calif.: Center for the Study
of Language and Information, 1998. ISBN 157586066X.

[2] ADAMS E.W. The logic of conditionals: An application of probability to deductive
logic. Dordrecht: Springer Science & Business Media, 1975. ISBN 9789048183432.

[3] BACZYŃSKI M., JAYARAM B. (S, N)- and R-implications: A state-of-the-art sur-
vey. Fuzzy Sets and Systems. 2008, 159(14), pp. 1836 –1859. ISSN 0165-0114.

[4] BELLMAN R.E. Adaptive control processes: a guided tour. Princeton: Princeton
university press, 2015. ISBN 9781400874668.

[5] BELNAP N. A Useful Four-Valued Logic. In: J.M. DUNN, G. EPSTEIN, eds. Mod-
ern Uses of Multiple-Valued Logic. Dordrecht: Springer, 1977, pp. 5–37. ISBN 978-
94-010-1161-7.

[6] BEZDEK J.C. Pattern Recognition with Fuzzy Objective Function Algorithms. Boston,
MA: Springer US, 1981. ISBN 978-1-4757-0450-1.

[7] BOCHVAR D.A. On a three-valued logical calculus and its application to the anal-
ysis of contradictions. Rec. Math. (Mat. Sbornik) N. S. 1938, 4(46)(2), pp. 287–308,
doi: 10.14445/22312803/IJCTT-V10P119. ISSN 23490829.

[8] BOOLE G. An Investigation of the Laws of Thought, on which are Founded the
Mathematical Theories of Logic and Probabilities. London: Walton and Maberly,
1854.

[9] BORA D.J., GUPTA A.K. A Comparative study Between Fuzzy Clustering Algo-
rithm and Hard Clustering Algorithm. International Journal of Computer Trends
and Technology. 2014, vol. 10(issue 2), pp. 108–113, doi: 10 . 14445 / 22312803 /
IJCTT-V10P119. ISSN 23490829.

[10] BROWN D.G. Classification and boundary vagueness in mapping presettlement
forest types. International Journal of Geographical Information Science. 1998, 12(2),
pp. 105–129, doi: 10.1080/136588198241914. ISSN 1365-8816.

[11] BURKILL J.C. The Lebesgue integral. London: Cambridge University Press, 1963.

[12] CALCEV G. Some remarks on the stability of Mamdani fuzzy control systems. IEEE
Transactions on Fuzzy Systems. 1998, 6(3), pp. 436–442, doi: 10.1109/91.705511.

91

http://dx.doi.org/10.14445/22312803/IJCTT-V10P119
http://dx.doi.org/10.14445/22312803/IJCTT-V10P119
http://dx.doi.org/10.14445/22312803/IJCTT-V10P119
http://dx.doi.org/10.1080/136588198241914
http://dx.doi.org/10.1109/91.705511


[13] CARNAP R. Logical Foundations of Probability. Chicago: University of Chicago
Press, 1950.

[14] DE MORGAN A. Formal Logic. London: Taylor and Walton, 1847.

[15] DOUVEN I., VERBRUGGE S. The probabilities of conditionals revisited. Cognitive
Science. 2013, 37(4), pp. 711–730, doi: 10.1111/cogs.12025. ISSN 03640213.

[16] DUBOIS D. Quelques classes d’opérateurs remarquables pour combiner des ensem-
bles flous (Some notable operator classes to combine fuzzy sets). Busefal, Automne.
1979, (1), pp. 29–35.

[17] DUBOIS D., PRADE H. Possibility Theory. Wiley Encyclopedia of Electrical and
Electronics Engineering. 2001-08-21, doi: 10.1002/047134608X.W3502.

[18] DUBOIS D., PRADE H.M. Fuzzy sets and systems: theory and applications. New
York: Academic Press, 1980. ISBN 01-222-2750-6.

[19] ESTEVA F., GODO L., HÁJEK P., NAVARA M. Residuated fuzzy logics with
an involutive negation. Archive for mathematical logic. 2000, 39(2), pp. 103–124,
doi: 10.1007/s001530050006. ISSN 1432-0665.

[20] FRANSSEN H.H., VAN EIJNSBERGEN A., STEIN A. Use of spatial prediction
techniques and fuzzy classification for mapping soil pollutants. Geoderma. 1997,
77(2-4), pp. 243–262, doi: 10.1016/S0016-7061(97)00024-4. ISSN 0016-7061.

[21] GAINES B.R. Fuzzy and probability uncertainty logics. Information and Control.
1978, vol. 38(issue 2), pp. 154–169, doi: 10 . 1016 / S0019 - 9958(78 ) 90165 - 1.
ISSN 00199958.

[22] GALAR M, BUSTINCE H, FERNANDEZ J, SANZ J, BELIAKOV G. Fuzzy en-
tropy from weak fuzzy subsethood measures. Neural network world. 2010, 20(1), pp.
139–158. ISSN 1210-0552.

[23] GERLA G. Inferences in probability logic. Artificial Intelligence. 1994, 70(1-2), pp.
33–52, doi: 10.1016/0004-3702(94)90102-3. ISSN 00043702.

[24] GILES R. Łukasiewicz logic and fuzzy set theory. International Journal of Man-
Machine Studies. 1976, 8(3), pp. 313–327, doi: 10.1016/S0020-7373(76)80003-X.
ISSN 00207373.

[25] GIVANT S., HALMOS P. Introduction to Boolean Algebras. New York: Springer
Science+Business Media, 2009. ISBN 978-0-387-68436-9.

[26] GOGUEN J.A. L-Fuzzy Sets. Journal of Mathematical Analysis and Applications.
1967, 18(1), pp. 145–174, doi: 10.1016/0022-247X(67)90189-8. ISSN 0022247X.

[27] GONZÁLEZ M.A.S. Developing mass appraisal models with fuzzy systems. In:
T. KAUKO, M. D’AMATO, eds. Mass Appraisal Methods: An International Per-
spective for Property Valuers. Oxford, UK: Wiley-Blackwell, 2008, pp. 181–202.
ISBN 9781444301021.

92

http://dx.doi.org/10.1111/cogs.12025
http://dx.doi.org/10.1002/047134608X.W3502
http://dx.doi.org/10.1007/s001530050006
http://dx.doi.org/10.1016/S0016-7061(97)00024-4
http://dx.doi.org/10.1016/S0019-9958(78)90165-1
http://dx.doi.org/10.1016/0004-3702(94)90102-3
http://dx.doi.org/10.1016/S0020-7373(76)80003-X
http://dx.doi.org/10.1016/0022-247X(67)90189-8


[28] GOODWIN G.C., GRAEBE S.F., SALGADO M.E. Control System Design. Upper
Saddle River: Prentice Hall, 2001. ISBN 0139586539.

[29] HÁJEK A. Probability, logic, and probability logic. In: L. GOBLE, ed. The Black-
well guide to philosophical logic. 2001, pp. 362–384. ISBN 9780631206927.

[30] HÁJEK P. Metamathematics of Fuzzy Logic. Boston: Kluwer Academic Publishers,
1998. ISBN 0-7923-5238-6.

[31] HÁJEK P., GODO L., ESTEVA F. Fuzzy Logic and Probability. 2013. Available also
from: arXiv: 1302.4953 (cs.AI).

[32] KAREMORE G., MULLICK J.B., SUJATHA R, NIELSEN M., SANTHOSH C.
Classification of protein profiles using fuzzy clustering techniques: An application
in early diagnosis of oral, cervical and ovarian cancer. In: Engineering in Medicine
and Biology Society (EMBC), 2010 Annual International Conference of the IEEE.
Buenos Aires: Curran Associates, 2010, pp. 6361–6364. ISBN 978-1-4244-4123-5.

[33] KLEENE S.C. On the Interpretation of Intuitionistic Number Theory. The Journal
of Symbolic Logic. 1945, 10(4), pp. 109–124, doi: 10.2307/2269016. ISSN 0022-4812.

[34] KLEMENT E.P., MESIAR R., PAP E. Triangular Norms. Dordrecht: Springer
Netherlands, 2000. ISBN 978-94-015-9540-7.

[35] KOLMOGOROV A.N. Grundbegriffe der Wahrscheinlichkeitsrechnung (Foundations
of the Theory of Probability). Berlin: J. Springer, 1933.

[36] KOPÁČEK J. Matematická analýza nejen pro fyziky (III) (Mathematical Analysis
Not Only for Physicists (III)). 3., upr. vyd. Praha: Matfyzpress, 2007. ISBN 978-
80-7378-020-3.

[37] KOSKO B. Fuzziness vs. Probability. International Journal of General Systems.
1990, vol. 17(2-3), pp. 211–240, doi: 10.1080/03081079008935108. ISSN 0308-1079.

[38] KOTZ S., READ C.B., BALAKRISHNAN N., VIDAKOVIC B., JOHNSON N.L.
Encyclopedia of Statistical Sciences. Hoboken, NJ, USA: John Wiley & Sons, 2004.
ISBN 9780471667193.

[39] KUČERA V. Analysis and design of discrete linear control systems. Upper Saddle
River: Prentice-Hall, Inc., 1991. ISBN 978-0-13-033085-7.

[40] LEWIS D. Probabilities of conditionals and conditional probabilities. In: W.L.
HARPER, R. STALNAKER, G. PEARCE, eds. Ifs. Dordrecht: Springer, 1976, pp.
129–147. ISBN 978-94-009-9117-0.

[41] ŁUKASIEWICZ J. Geneza logiki trójwartościowej (The genesis of three-valued logic).
Nauka Polska. 1939, 24, pp. 215–223.

[42] ŁUKASIEWICZ J. O logice trójwartościowej (On three-valued logic). Ruch Filo-
zoficzny. 1920, 6, pp. 170–171.

93

1302.4953
http://dx.doi.org/10.2307/2269016
http://dx.doi.org/10.1080/03081079008935108


[43] MENGER K. Statistical Metrics. Proceedings of the National Academy of Sciences
of the United States of America. 1942, 28(12), pp. 535–537, doi: 10.1073/pnas.28.
12.535.

[44] MIZUMOTO M. Fuzzy sets and their operations, II. Information and Control. 1981,
50(2), pp. 160 –174, doi: https://doi.org/10.1016/S0019-9958(81)90191-1.
ISSN 0019-9958.

[45] MONTES I., HERNÁNDEZ J., MARTINETTI D., MONTES S. Characterization
of continuous t-norms compatible with Zadeh’s probability of fuzzy events. Fuzzy
Sets and Systems. 2013, vol. 228(October, 2013), pp. 29–43, doi: 10.1016/j.fss.
2012.11.020. ISSN 01650114.

[46] NAGY I., SUZDALEVA E. Algorithms and Programs of Dynamic Mixture Estima-
tion: Unified Approach to Different Types of Components. Cham: Springer, 2017.
ISBN 978-3-319-64670-1.

[47] NAVARA M., OLŠÁK P. Základy fuzzy množin (Basics of Fuzzy Sets). Praha: Vy-
davatelství ČVUT, 2002. ISBN 80-01-02585-3.

[48] OKUDA T., TANAKA H., ASAI K. A formulation of fuzzy decision problems with
fuzzy information using probability measures of fuzzy events. Information and Con-
trol. 1978, vol. 38(issue 2), pp. 135–147, doi: 10.1016/S0019-9958(78)90151-1.
ISSN 00199958.

[49] ÖZDEMIR D., AKARUN L. A fuzzy algorithm for color quantization of images.
Pattern Recognition. 2002, 35(8), pp. 1785–1791, doi: 10.1016/S0031-3203(01)
00170-4. ISSN 00313203.

[50] POPPER K. The logic of scientific discovery. New York: Basic Books, 1959.

[51] PROVINSKÝ P. Floppy Logic - a Younger Sister of Fuzzy Logic. Neural Network
World. 2017, vol. 27(issue 5), pp. 479–497, doi: 10 . 14311 / NNW . 2017 . 27 . 025.
ISSN 2336-4335.

[52] PROVINSKÝ P. Floppy Logic - Instructions for Use. Neural Network World. 2018,
28(5), pp. 473–494, doi: 10.14311/NNW.2018.28.026. ISSN 2336-4335.

[53] PROVINSKÝ P. Floppy logic as a generalization of standard Boolean logic. Neu-
ral Network World. 2020, 30(3), pp. 193–209, doi: 10.14311/NNW.2020.30.014.
ISSN 2336-4335.

[54] RAMSEY F.P. Truth and Probability. In: R. BRAITHWAITE, ed. The Foundations
of Mathematics and Other Logical Essays. London: Routledge a Kegan Paul, 1931,
pp. 156–198.

[55] RESCHER N. Many-valued logic. New York: McGraw-Hill, 1969. ISBN 0070518939.

[56] RIVEROL C, COONEY J. Fault Detection Using Fuzzy Similarities. International
Journal of Soft Computing. 2006, 1(3), pp. 193–198. ISSN 1816-9503.

94

http://dx.doi.org/10.1073/pnas.28.12.535
http://dx.doi.org/10.1073/pnas.28.12.535
http://dx.doi.org/https://doi.org/10.1016/S0019-9958(81)90191-1
http://dx.doi.org/10.1016/j.fss.2012.11.020
http://dx.doi.org/10.1016/j.fss.2012.11.020
http://dx.doi.org/10.1016/S0019-9958(78)90151-1
http://dx.doi.org/10.1016/S0031-3203(01)00170-4
http://dx.doi.org/10.1016/S0031-3203(01)00170-4
http://dx.doi.org/10.14311/NNW.2017.27.025
http://dx.doi.org/10.14311/NNW.2018.28.026
http://dx.doi.org/10.14311/NNW.2020.30.014


[57] RÉNYI A. On a new axiomatic theory of probability. Acta Mathematica Academiae
Scientiarum Hungaricae. 1955, vol. 6(3-4), pp. 285–335, doi: 10.1007/BF02024393.
ISSN 0001-5954.

[58] SCHWEIZER B., SKLAR A., et al. Statistical metric spaces. Pacific J. Math. 1960,
10(1), pp. 313–334, doi: 10.1109/TSMC.1977.4309687.

[59] SHRAMKO Y., WANSING H. Some useful 16-valued logics: How a computer net-
work should think. Journal of Philosophical Logic. 2005, 34(2), pp. 121–153, doi: 10.
1007/s10992-005-0556-5. ISSN 1573-0433.

[60] STALNAKER R.C. Probability and conditionals. Philosophy of science. 1970, 37(1),
pp. 64–80, doi: 10.1086/288280. ISSN 00318248.

[61] ŠTĚPÁN J. Teorie pravděpodobnosti: Matematické základy (Probability Theory: Math-
ematical Foundations. Praha: Academia, 1987.

[62] TRILLAS E., VALVERDE L. On implication and indistinguishability in the setting
of fuzzy logic. In: J. KACPRZYK, R.R. YAGER, eds. Management decision support
systems using fuzzy sets and possibility theory. Köln: Verlag TÜV Rheinland, 1985,
pp. 198–212. ISBN 3885851431.

[63] VESELÝ J. Základy matematické analýzy: První díl (Fundamentals of Mathematical
Analysis: First Part). Praha: Matfyzpress, 2004. ISBN 978-80-7378-063-02.

[64] WEN Z.L., HAN J.L., LIU F.S. Galaxy clusters identified from the SDSS DR6 and
their properties. The Astrophysical Journal Supplement Series. 2009, 183(2), pp.
197–213, doi: 10.1088/0067-0049/183/2/197. ISSN 0067-0049.

[65] YAGER R.R. Connectives and quantifiers in fuzzy sets. Fuzzy Sets and Systems.
1991, 40(1), pp. 39–75, doi: 10.1016/0165-0114(91)90046-S. ISSN 01650114.

[66] ZADEH L.A. Calculus of fuzzy restrictions. In: L.A. ZADEH, K.-S. FU, K. TANAKA,
M. SHIMURA, eds. Fuzzy Sets and their Applications to Cognitive and Decision
Processes. 1975, pp. 1 –39. Available also from: http://www.sciencedirect.com/
science/article/pii/B9780127752600500062. ISBN 978-0-12-775260-0.

[67] ZADEH L.A. Fuzzy probabilities. Information Processing. 1984, vol. 20(issue 3), pp.
363–372, doi: 10.1016/0306-4573(84)90067-0. ISSN 03064573.

[68] ZADEH L.A. Fuzzy sets. Information and Control. 1965, 8(3), pp. 338–353, doi: 10.
1016/S0019-9958(65)90241-X. ISSN 00199958.

[69] ZADEH L.A. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Sys-
tems. 1978, vol. 1(issue 1), pp. 3–28, doi: 10 . 1016 / 0165 - 0114(78 ) 90029 - 5.
ISSN 01650114.

[70] ZADEH L.A. Probability Measures of Fuzzy Events. Journal of Mathematical Analy-
sis and Applications. 1968, 23(2), pp. 421–427, doi: 10.1016/0022-247X(68)90078-
4. ISSN 0022247x.

95

http://dx.doi.org/10.1007/BF02024393
http://dx.doi.org/10.1109/TSMC.1977.4309687
http://dx.doi.org/10.1007/s10992-005-0556-5
http://dx.doi.org/10.1007/s10992-005-0556-5
http://dx.doi.org/10.1086/288280
http://dx.doi.org/10.1088/0067-0049/183/2/197
http://dx.doi.org/10.1016/0165-0114(91)90046-S
http://www.sciencedirect.com/science/article/pii/B9780127752600500062
http://www.sciencedirect.com/science/article/pii/B9780127752600500062
http://dx.doi.org/10.1016/0306-4573(84)90067-0
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1016/0165-0114(78)90029-5
http://dx.doi.org/10.1016/0022-247X(68)90078-4
http://dx.doi.org/10.1016/0022-247X(68)90078-4


96



Appendices

97





Appendix A

Proof of Theorem on Basic Floppy
Probability Space

A.1 Kolmogorov Axioms

Kolmogorov axioms are taken from the studies [35, 61] in the following form:

Let us have a set of values which can be adopted by a random variable. This set is
denoted Ω and known as the sample space.

Let us also have the 𝜎-algebra ℬ of subsets of Ω. We therefore assume:

Axiom A.1.1. Ø ∈ ℬ.

Axiom A.1.2. If 𝐴 ∈ ℬ, then 𝐴′ ∈ ℬ. 1

Axiom A.1.3. If 𝐴1, 𝐴2, . . . , 𝐴𝑛, . . . ∈ ℬ, then
∞⋃︁

𝑖=1
𝐴𝑖 ∈ ℬ. (A.1)

The elements of ℬ are called events.

A real number 𝑃 (𝐴) is assigned to all events 𝐴 ∈ ℬ. The number 𝑃 (𝐴) is known
as the the probability of event A.

We assume that the probability satisfies:

Axiom A.1.4. 𝑃 (Ω) = 1.
1𝐴′ is the designation for the set Ω − 𝐴.
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Axiom A.1.5. ∀𝐴 ∈ ℬ : 𝑃 (𝐴) ≥ 0.

Axiom A.1.6. If 𝑀 = {𝐴𝑛} is a finite or countable sequence of pairwise disjoint
sets from ℬ, then

𝑃

⎛⎝ ⋃︁
𝐴𝑛∈𝑀

𝐴𝑛

⎞⎠ =
∑︁

𝐴𝑛∈𝑀

𝑃 (𝐴𝑛) . (A.2)

A.2 The Floppy Membership Function 𝜇𝐵 (𝑥) and
the Probability 𝑅 (𝐵) of Floppy Set 𝐵 Are
Well Defined

Lemma A.2.1. For all 𝑥 ∈ 𝑋 and for each set 𝐵 ⊆ 𝑆, the sum 𝜇𝐵 (𝑥) =∑︀
𝐴𝑖∈𝐵 𝜇𝐴𝑖

(𝑥) converges absolutely to a number from the interval [0, 1].

First, we prove absolute convergence:

𝜇𝐵 (𝑥) = ∑︀
𝐴𝑖∈𝐵 𝜇𝐴𝑖

(𝑥) = ∑︀
𝐴𝑖∈𝐵∩𝑆𝑥

𝜇𝐴𝑖
(𝑥), which is a finite or countable sum.

(Assumption 2.1.1.)

Let 𝑛 be a natural number.

A sequence of partial sums ∑︀𝐴𝑖∈𝐵∩𝑆𝑥∧𝑖<𝑛 𝜇𝐴𝑖
(𝑥) is non-decreasing since we add only

non-negative functions. (Assumption 2.1.2.)

The sequence of partial sums ∑︀𝐴𝑖∈𝐵∧𝑖<𝑛 𝜇𝐴𝑖
(𝑥) is bounded above by the number 1:∑︁

𝐴𝑖∈𝐵∧𝑖<𝑛

𝜇𝐴𝑖
(𝑥) ≤

∑︁
𝐴𝑖∈𝐵

𝜇𝐴𝑖
(𝑥) ≤

∑︁
𝐴𝑖∈𝑆

𝜇𝐴𝑖
(𝑥) = 1, (A.3)

where Assumption 2.1.3 was applied in the previous equation.

A finite limit of a non-decreasing, bounded from above sequence always exists, and
therefore the sum ∑︀

𝐴𝑖∈𝐵 𝜇𝐴𝑖
(𝑥) converges (e.g. [63, p. 55]).

The sum ∑︀
𝐴𝑖∈𝐵 𝜇𝐴𝑖

(𝑥) converges absolutely since we add only non-negative num-
bers.

Let us show that the sum ∑︀
𝐴𝑖∈𝐵 𝜇𝐴𝑖

(𝑥) converges to a number in the interval [0, 1]:

The sum ∑︀
𝐴𝑖∈𝐵 𝜇𝐴𝑖

(𝑥) is equal to or greater than zero since we add only non-
negative numbers. (Assumption 2.1.2.)

The sum ∑︀
𝐴𝑖∈𝐵 𝜇𝐴𝑖

(𝑥) is equal to or less than one because:∑︁
𝐴𝑖∈𝐵

𝜇𝐴𝑖
(𝑥) ≤

∑︁
𝐴𝑖∈𝑆

𝜇𝐴𝑖
(𝑥) = 1, (A.4)
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where Assumption 2.1.3 is applied.

Lemma A.2.2. The sum 𝜇𝐵 (𝑥) = ∑︀
𝐴𝑖∈𝐵 𝜇𝐴𝑖

(𝑥) does not depend on the order in
which the addends are added together.

The sum ∑︀
𝐴𝑖∈𝐵 𝜇𝐴𝑖

(𝑥) = ∑︀
𝐴𝑖∈𝐵∩𝑆𝑥

𝜇𝐴𝑖
(𝑥) is a finite or countable sum according

to Assumption 2.1.1.

A finite sum does not depend on the order of the addends.

If the sum is countable, then the expression ∑︀
𝐴𝑖∈𝐵 𝜇𝐴𝑖

(𝑥) converges absolutely
according to Lemma A.2.1. The sum of an absolutely convergent sequence also does
not depend on the order of addends (e.g. [63, p. 99]).

Lemma A.2.3. The function 𝜇𝐵 (𝑥) is measurable on the set 𝑋 with respect to
the measure 𝑃 .

The sum ∑︀
𝐴𝑖∈𝐵 𝜇𝐴𝑖

(𝑥) = ∑︀
𝐴𝑖∈𝐵∩𝑆𝑥

𝜇𝐴𝑖
(𝑥) is a finite or countable sum (Assump-

tion 2.1.1.)

All functions 𝜇𝐴𝑘
are measurable on the set 𝑋 with respect to the measure 𝑃 .

(Assumption 2.1.5.)

Finite series:

The sum of two measurable functions is a measurable function (e.g. [11, p. 24]). A
finite sum of measurable functions is thus a measurable function. Therefore, if the
sum 𝜇𝐵 (𝑥) = ∑︀

𝐴𝑖∈𝐵∩𝑆𝑥
𝜇𝐴𝑖

(𝑥) is a finite sum, then it is measurable.

Countable series:

If the sum 𝜇𝐵 (𝑥) = ∑︀
𝐴𝑖∈𝐵∩𝑆𝑥

𝜇𝐴𝑖
(𝑥) is countable, then its partial sums are mea-

surable functions (according to the previous paragraph). A sequence of partial sums
is non-decreasing. (Assumption 2.1.2.) and a limit of a monotonous sequence of
measurable functions is a measurable function (e.g. [11, p. 25]).

In both cases, the function 𝜇𝐵 (𝑥) is measurable.

Lemma A.2.4. The Lebesgue integral 𝑅 (𝐵) =
∫︀

𝑋 𝜇𝐵 (𝑥) d𝑃 always exists.

The function 𝜇𝐵 (𝑥) is bounded (according to Lemma A.2.1) and measurable on the
set 𝑋 with respect to the measure 𝑃 (according to Lemma A.2.3).

(𝑋, 𝒜, 𝑃 ) is a space with a probability measure. (Assumption 2.1.4.) Therefore, it
satisfies all Kolmogorov axioms, especially Axiom A.1.4. So 𝑃 (𝑋) = 1. Therefore,
the set 𝑋 is measurable with respect to the measure 𝑃 , and its measure is finite.
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A Lebesgue integral of a bounded measurable function over a measurable set with
a finite measure always exists (e.g. [11, pp. 29 - 31]).

A.3 The Basic Floppy Probability Space Satisfies
All Kolmogorov Axioms

Proposition A.3.1. 𝒫 (𝑆) satisfies Axiom A.1.1.

The power set 𝒫 (𝑆) contains all subsets of 𝑆 and therefore specifically Ø. Ax-
iom A.1.1 is therefore satisfied.

Proposition A.3.2. 𝒫 (𝑆) satisfies Axiom A.1.2.

A set of elements of 𝑆 that does not belong to 𝐵 is a subset of 𝑆. The power
set 𝒫 (𝑆) contains all subsets of 𝑆 and therefore specifically 𝐵′. Axiom A.1.2 is
therefore satisfied.

Proposition A.3.3. 𝒫 (𝑆) satisfies Axiom A.1.3.

The union of any system of subsets 𝑆 is a subset of 𝑆. The power set 𝒫 (𝑆) contains
all subsets of 𝑆 and therefore specifically ⋃︀∞

𝑖=1 𝐵𝑖 where 𝐵𝑖 ∈ 𝒫 (𝑆). Axiom A.1.3
is therefore satisfied.

Proposition A.3.4. (𝑆, 𝒫 (𝑆) , 𝑅) satisfies Axiom A.1.4.

Axiom A.1.4 is applicable because:

𝑅 (𝑆) =
∫︁

𝑋
𝜇𝑆 (𝑥) d𝑃 =

∫︁
𝑋

∑︁
𝐴𝑖∈𝑆

𝜇𝐴𝑖
(𝑥) d𝑃 =

∫︁
𝑋

1 d𝑃 = 𝑃 (𝑋) = 1, (A.5)

where Assumption 2.1.3 was first applied followed by Axiom A.1.4 for the probability
space (𝑋, 𝒜, 𝑃 ) (according to Assumption 2.1.4).

Proposition A.3.5. (𝑆, 𝒫 (𝑆) , 𝑅) satisfies Axiom A.1.5.

A number 𝑅 (𝐵) exists for every set 𝐵. (Lemma A.2.4.) The number 𝑅 (𝐵) =∫︀
𝑋 𝜇𝐵 (𝑥) d𝑃 is non-negative since we integrate a non-negative function (according

to Lemma A.2.1.)

The space (𝑆, 𝒫 (𝑆) , 𝑅) therefore satisfies Axiom A.1.5.
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Proposition A.3.6. (𝑆, 𝒫 (𝑆) , 𝑅) satisfies Axiom A.1.6.

Let 𝑀 = {𝐵𝑖} be a finite or countable sequence of pairwise disjoint sets from 𝒫 (𝑆).

Each fuzzy set 𝐴𝑘 ∈ ⋃︀
𝐵𝑖∈𝑀

𝐵𝑖 is therefore an element of just one floppy set 𝐵𝑖.

We can therefore write:

𝑅

⎛⎝ ⋃︁
𝐵𝑖∈𝑀

𝐵𝑖

⎞⎠ =
∫︁

𝑋
𝜇 ⋃︀

𝐵𝑖∈𝑀

𝐵𝑖
(𝑥) d𝑃 =

=
∫︁

𝑋

∑︁
𝐴𝑘∈

⋃︀
𝐵𝑖

𝜇𝐴𝑘
(𝑥) d𝑃 =

=
∫︁

𝑋

∑︁
𝐵𝑖∈𝑀

⎡⎣ ∑︁
𝐴𝑘∈𝐵𝑖

𝜇𝐴𝑘
(𝑥)
⎤⎦ d𝑃 =

=
∫︁

𝑋

∑︁
𝐵𝑖∈𝑀

𝜇𝐵𝑖
(𝑥) d𝑃. (A.6)

The sum and the integral can be exchanged since 𝜇𝐵𝑛
(𝑥) are non-negative and

measurable functions according to Lemmas A.2.1 and A.2.3 (e.g. [36, p. 106]).

Therefore:

𝑅

⎛⎝ ⋃︁
𝐵𝑖∈𝑀

𝐵𝑖

⎞⎠ =
∑︁

𝐵𝑖∈𝑀

∫︁
𝑋

𝜇𝐵𝑖
(𝑥) d𝑃 =

∑︁
𝐵𝑖∈𝑀

𝑅 (𝐵𝑖) . (A.7)

Therefore, the space (𝑆, 𝒫 (𝑆) , 𝑅) satisfies Axiom A.1.6.
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Appendix B

Proof of Theorem on Generalised
Floppy Probability Space

Proposition B.0.1. 𝒞 satisfies Axioms A.1.1, A.1.2 and A.1.3.

𝒞 is a 𝜎-algebra. (Definition 2.2.1.)

Proposition B.0.2. (𝑆 × 𝑋, 𝒞, 𝑅) satisfies Axiom A.1.4.

𝑅 (𝑆 × 𝑋) =
∫︁

𝑋
𝜇𝑆×𝑋 (𝑥) d𝑃 =

∫︁
𝑋

∑︁
𝐴𝑖∈𝑆:[𝐴𝑖,𝑥]∈𝑆×𝑋

𝜇𝐴𝑖
(𝑥) d𝑃 =

∫︁
𝑋

1 d𝑃 = 1. (B.1)

Assumption 2.1.3 followed by Axiom A.1.4 for the probability space (𝑋, 𝒜, 𝑃 ) (ac-
cording to Assumption 2.1.4) were applied.

Proposition B.0.3. (𝑆 × 𝑋, 𝒞, 𝑅) satisfies Axiom A.1.5.

We can write:

𝑅
(︁
𝐶𝐺

)︁
=
∫︁

𝑋
𝜇𝐶𝐺 (𝑥) d𝑃 =

∫︁
𝑋

∑︁
𝐴𝑖∈𝑆:[𝐴𝑖,𝑥]∈𝐶𝐺

𝜇𝐴𝑖
(𝑥) d𝑃, (B.2)

where 𝜇𝐴𝑖
(𝑥) is measurable on the set

{︁
𝑥 ∈ 𝑋 : [𝐴𝑖, 𝑥] ∈ 𝐶𝐺

}︁
(Assumption 2.1.5)

and non-negative (Assumption 2.1.2). Thus, the sum ∑︀
𝐴𝑖∈𝑆:[𝐴𝑖,𝑥]∈𝐶𝐺 𝜇𝐴𝑖

(𝑥) is mea-
surable and non-negative. The integral 𝑅

(︁
𝐶𝐺

)︁
=

∫︀
𝑋

∑︀
𝐴𝑖∈𝑆:[𝐴𝑖,𝑥]∈𝐶𝐺 𝜇𝐴𝑖

(𝑥) d𝑃

therefore exists and is non-negative.

Proposition B.0.4. (𝑆 × 𝑋, 𝒞, 𝑅) satisfies Axiom A.1.6.
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Let 𝑀 =
{︁
𝐶𝐺

𝑛

}︁
be a finite or countable sequence of pairwise disjoint sets from 𝒞.

Therefore, each point [𝐴𝑖, 𝑥] ∈ ⋃︀
𝐶𝐺

𝑛 ∈𝑀

𝐶𝐺
𝑛 is an element of just one floppy set 𝐶𝐺

𝑛 .

We can therefore write:

𝑅

⎛⎜⎝ ⋃︁
𝐶𝐺

𝑛 ∈𝑀

𝐶𝐺
𝑛

⎞⎟⎠ =
∫︁

𝑋
𝜇 ⋃︀

𝐶𝐺
𝑛 ∈𝑀

𝐶𝐺
𝑛

(𝑥) d𝑃 =

=
∫︁

𝑋

∑︁
𝐴𝑖∈𝑆:[𝐴𝑖,𝑥]∈

⋃︀
𝐶𝐺

𝑛 ∈𝑀

𝐶𝐺
𝑛

𝜇𝐴𝑖
(𝑥) d𝑃 =

=
∫︁

𝑋

∑︁
𝐶𝐺

𝑛 ∈𝑀

⎡⎢⎣ ∑︁
𝐴𝑖∈𝑆:[𝐴𝑖,𝑥]∈𝐶𝐺

𝑛

𝜇𝐴𝑖
(𝑥)

⎤⎥⎦ d𝑃 =

=
∫︁

𝑋

∑︁
𝐶𝐺

𝑛 ∈𝑀

𝜇𝐶𝐺
𝑛

(𝑥) d𝑃. (B.3)

The sum and the integral can be exchanged since 𝜇𝐶𝐺
𝑛

(𝑥) are non-negative and
measurable functions.

Therefore:

𝑅

⎛⎜⎝ ⋃︁
𝐶𝐺

𝑛 ∈𝑀

𝐶𝐺
𝑛

⎞⎟⎠ =
∑︁

𝐶𝐺
𝑛 ∈𝑀

∫︁
𝑋

𝜇𝐶𝐺
𝑛

(𝑥) d𝑃 =
∑︁

𝐶𝐺
𝑛 ∈𝑀

𝑅
(︁
𝐶𝐺

𝑛

)︁
. (B.4)

The space (𝑆 × 𝑋, 𝒞, 𝑅) therefore satisfies Axiom A.1.6.
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Appendix C

Proof of Theorem on Isomorphism

C.1 Explanation of Concepts

C.1.1 Boolean Algebra

A Boolean algebra is a non-empty set 𝐵, together with two binary operations ∧ and
∨ (on 𝐵), a unary operation ′, and two distinguished elements 0 and 1, satisfying
the following axioms [25, p. 10]:

0′ = 1, 1′ = 0, (C.1)
𝑝 ∧ 0 = 0, 𝑝 ∨ 1 = 1, (C.2)
𝑝 ∧ 1 = 𝑝, 𝑝 ∨ 0 = 𝑝, (C.3)
𝑝 ∧ 𝑝′ = 0, 𝑝 ∨ 𝑝′ = 1, (C.4)

(𝑝′) = 𝑝, (C.5)
𝑝 ∧ 𝑝 = 𝑝, 𝑝 ∨ 𝑝 = 𝑝, (C.6)

(𝑝 ∧ 𝑞)′ = 𝑝′ ∨ 𝑞′, (𝑝 ∨ 𝑞)′ = 𝑝′ ∧ 𝑞′, (C.7)
𝑝 ∧ 𝑞 = 𝑞 ∧ 𝑝, 𝑝 ∨ 𝑞 = 𝑞 ∨ 𝑝, (C.8)

𝑝 ∧ (𝑞 ∧ 𝑟) = (𝑝 ∧ 𝑞) ∧ 𝑟, 𝑝 ∨ (𝑞 ∨ 𝑟) = (𝑝 ∨ 𝑞) ∨ 𝑟, (C.9)
𝑝 ∧ (𝑞 ∨ 𝑟) = (𝑝 ∧ 𝑞) ∨ (𝑝 ∧ 𝑟) , 𝑝 ∨ (𝑞 ∧ 𝑟) = (𝑝 ∨ 𝑞) ∧ (𝑝 ∨ 𝑟) . (C.10)

These axioms are not independent. Often, a smaller group of axioms is selected.

Boolean algebra is often denoted as follows: (𝐵, ∧, ∨,′ , 0, 1, =). Operations ∧, ∨,
and ′ are often called meet, join, and complement. Elements 0 and 1 are called zero
and one.
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C.1.2 Atoms

An atom 𝑞 of a Boolean algebra ℬ is an element that satisfies the following propo-
sitions [25, p. 117]:

a. 𝑞 ̸= 0,
b. for every element 𝑝 ∈ ℬ, either 𝑝 ∧ 𝑞 = 𝑞 or 𝑝 ∧ 𝑞 = 0, but not both.

Example 1: Atoms of a Boolean algebra of sentences given by sentence 𝐴1, 𝐴2, 𝐴3,
. . . 𝐴𝑛 are sentences 𝐵1 ∧ 𝐵2 ∧ 𝐵3 ∧ . . . ∧ 𝐵𝑛, where either 𝐵𝑖 = 𝐴𝑖 or 𝐵𝑖 = ¬𝐴𝑖.

Example 2: Atoms of a Boolean algebra of subsets of 𝑆 are one-element subsets of
𝑆.

C.1.3 Isomorphism

The Isomorphism 𝑓 of two Boolean algebras ℬ1 and ℬ2 is a bijection which preserves
the operations meet, join, and complement. Thus:

a. ∀𝑝, 𝑞 ∈ ℬ1 : 𝑓 (𝑝 ∧ 𝑞) = 𝑓 (𝑝) ∧ 𝑓 (𝑞) , (C.11)
b. ∀𝑝, 𝑞 ∈ ℬ1 : 𝑓 (𝑝 ∨ 𝑞) = 𝑓 (𝑝) ∨ 𝑓 (𝑞) , (C.12)
c. ∀𝑝 ∈ ℬ1 : 𝑓 (𝑝′) = 𝑓 (𝑝)′ . (C.13)

C.2 Proof of Theorem 2.3.1

The proof begins with the statement: “Each finite Boolean algebra ℬ is isomorphic
to the field 𝒫 (𝑛), or, equivalently, to the Boolean algebra 2𝑛, for a non-negative
integer 𝑛. In fact, 𝑛 is the number of atoms in ℬ ” [25, p. 127].

𝜀 and 𝛿 are finite algebras, 𝒫 (𝑆) is the field 𝒫 (𝑛), 𝑛 is the number of atoms in 𝜀

and 𝛿. Therefore, 𝜀 is isomorphic to 𝛿.

An isomorphism between 𝜀 and 𝛿 therefore must exist. Let us find it:

Let 𝑔 be a binary relation over 𝐸 and a set 𝐵 of binary indices of length 𝑛.

The indices to the statements are as follows: If a sentence 𝑉 satisfies 𝑉 ∧ 𝑈𝑘 = 𝑈𝑘,
then 1 is in the 𝑘-th place.

If 𝑉 satisfies 𝑉 ∧ 𝑈𝑘 = ⊥, then 0 is in the 𝑘-th place. No other possibility exists
since 𝑈𝑘 are atoms.

Let us show that 𝑔 is a bijection:
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a. Each statement is assigned a binary index. Therefore, 𝑔 is a left-total relation.

b. Each statement is assigned exactly one binary index.

Let us suppose that two equivalent sentences 𝑉 ≡ 𝑊 are assigned two different
binary indices. Let these indices be different in the 𝑘-th place. This means
that 𝑉 ∧ 𝑈𝑘 = 𝑈𝑘 and 𝑊 ∧ 𝑈𝑘 = ⊥ (or vice versa).

𝑉 and 𝑊 are equivalent and can therefore be exchanged: 𝑊 ∧𝑈𝑘 = 𝑈𝑘. Thus,
𝑈𝑘 = ⊥, which is a contradiction since 𝑈𝑘 is an atom and atoms are non-zero
elements.

Therefore, 𝑔 is a left-total function.

c. Each binary index is assigned a statement. The statement 𝑈𝑖 ∨ 𝑈𝑗 ∨ 𝑈𝑘 ∨ . . .

can be assigned to the binary index with 1 in the 𝑖-th, 𝑗-th, 𝑘-th, . . . places.

Therefore, 𝑔 is a surjection.

d. 𝐸 and 𝐵 are finite sets with the same number of elements. The number of
elements is 2𝑛 [25, p. 82].

Therefore, 𝑔 is a bijection.

Let ℎ be a binary relation 𝒫 (𝑆) to the set 𝐵 of binary indices of length 𝑛.

The indices are assigned to the floppy sets as follows:

If a floppy set 𝐵 satisfies 𝐵 ∩ {𝐴𝑘} = {𝐴𝑘}, then 1 is in the 𝑘-th place.

If 𝐵 ∩ {𝐴𝑘} = ∅, then 0 is in the 𝑘-th place.

ℎ is also a bijection. It can be proven in the same manner as bijection 𝑔.

Therefore, ℎ−1 ∘ 𝑔 is a bijection. Let us show that ℎ−1 ∘ 𝑔 is an isomorphism:

a. Preservation of the binary operation meet:

Sentences 𝑉 and 𝑊 have the same binary indices as floppy sets ℎ−1 ∘ 𝑔 (𝑉 )
and ℎ−1 ∘ 𝑔 (𝑊 ).

𝑉 ∧ 𝑊 has a binary index, where 1 is in the places where 1 is in both binary
indices of 𝑉 and 𝑊 simultaneously.

ℎ−1 ∘ 𝑔 (𝑉 ) ∩ ℎ−1 ∘ 𝑔 (𝑊 ) has a binary index where 1 is in the places where 1
is in both binary indices of ℎ−1 ∘ 𝑔 (𝑉 ) and ℎ−1 ∘ 𝑔 (𝑊 ) simultaneously.

Therefore, 𝑉 ∧ 𝑊 and ℎ−1 ∘ 𝑔 (𝑉 ) ∩ ℎ−1 ∘ 𝑔 (𝑊 ) have the same binary index.

Therefore: ∀𝑉, 𝑊 ∈ 𝐸 : ℎ−1 ∘ 𝑔 (𝑉 ∧ 𝑊 ) = ℎ−1 ∘ 𝑔 (𝑉 ) ∩ ℎ−1 ∘ 𝑔 (𝑊 ).
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b. Preservation of binary operation join can be proved in the same manner.

c. Preservation of unary operation complementation:

A binary index of sentence ⊥ has 0 in all positions since ∀𝑘 : ⊥ ∧ 𝑈𝑘 = ⊥.

A binary index of sentence ⊤ has 1 in all positions since ∀𝑘 : ⊤ ∧ 𝑈𝑘 = 𝑈𝑘.

Applying the axiom of Boolean Algebra: 𝑉 ∧¬𝑉 = ⊥. Therefore, in the index
of ¬𝑉 , 1 must not be in the positions where 1 is in the index of 𝑉 .

Now, applying the axiom: 𝑉 ∨¬𝑉 = ⊤. Therefore, in the index of ¬𝑉 , 1 must
be in all positions where 1 is not in the index of 𝑉 .

Therefore, the index of ¬𝑉 has 1 exactly in these positions where 𝑉 has 0.

Similarly, it can be shown that (ℎ−1 ∘ 𝑔 (𝑉 ))′ has 1 exactly in these positions
where ℎ−1 ∘ 𝑔 (𝑉 ) has 0.

Therefore, ¬𝑉 and (ℎ−1 ∘ 𝑔 (𝑉 ))′ have the same binary indices.

Therefore: ∀𝑉 ∈ 𝐸 : ℎ−1 ∘ 𝑔 (¬𝑉 ) = (ℎ−1 ∘ 𝑔 (𝑉 ))′.

d. Preservation of neutral elements:

Sentence ⊥ and empty floppy set ∅ have a binary index with all zeros. There-
fore:

ℎ−1 ∘ 𝑔 (⊥) = ∅.

Similarly, it can be shown that ℎ−1 ∘ 𝑔 (⊤) = 𝑆.

Bijection ℎ−1 ∘ 𝑔 preserves all operations, therefore it is an isomorphism.

Let us show that ℎ−1 ∘ 𝑔 satisfies all properties of relation 𝑓 :

Properties 2.16, 2.17, and 2.18 were proved above. Now, we prove property 2.15:

First, 𝑈𝑖 ∧ 𝑈𝑗 = ⊥, if 𝑖 ̸= 𝑗 is applied. The second possibility for atoms 𝑈𝑖 ∧ 𝑈𝑗 = 𝑈𝑖

cannot apply since 𝑈𝑗 would not be an atom, which is a contradiction.

Therefore, all atoms have only one 1 in their binary indices. Sentence 𝑈𝑘 has 1 in
the 𝑘-th position and the floppy set {𝐴𝑘}.

Therefore: ∀𝑘 ∈ {1, 2, 3, . . . 𝑛} : ℎ−1 ∘ 𝑔 (𝑈𝑘) = {𝐴𝑘}.

Now, let us show that ℎ−1 ∘ 𝑔 = 𝑓 .

First, the set of all sentences whose binary indices contain no more than 𝑘 1 is
denoted 𝑀𝑘.

It was proved above that ℎ−1 ∘ 𝑔 (𝑈𝑘) = 𝑓 (𝑈𝑘).
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Now, let us show that ℎ−1 ∘ 𝑔 (⊥) = 𝑓 (⊥). It is simple, because ℎ−1 ∘ 𝑔 (⊥) = ∅ and
𝑓 (⊥) = 𝑓 (𝑉 ∧ ¬𝑉 ) = 𝑓 (𝑉 ) ∩ 𝑓 (¬𝑉 ) = 𝑓 (𝑉 ) ∩ 𝑓 (𝑉 )′ = ∅.

The equivalence ℎ−1 ∘ 𝑔 = 𝑓 for all sentences from 𝑀1 is thus proved.

All sentences from 𝑀2 can be expressed as a disjunction of two sentences from 𝑀1:

∀𝑍 ∈ 𝑀2 : ∃𝑉, 𝑊 ∈ 𝑀1 : 𝑍 = 𝑉 ∨ 𝑊. (C.14)

Therefore:

ℎ−1 ∘ 𝑔 (𝑍) = ℎ−1 ∘ 𝑔 (𝑉 ∨ 𝑊 ) =
= ℎ−1 ∘ 𝑔 (𝑉 ) ∪ ℎ−1 ∘ 𝑔 (𝑊 ) =
= 𝑓 (𝑉 ) ∪ 𝑓 (𝑊 ) = 𝑓 (𝑍) . (C.15)

The equivalence ℎ−1 ∘ 𝑔 = 𝑓 for all sentences from 𝑀2 is thus proved.

This procedure can be repeated to prove the equivalence ℎ−1 ∘ 𝑔 = 𝑓 for 𝑀3,
𝑀4, . . . 𝑀𝑛.

Since 𝑀𝑛 = 𝐸, the equivalence ℎ−1 ∘ 𝑔 = 𝑓 is proved for all sentences from 𝐸.

Therefore, 𝑓 is an isomorphism.

It represents the first assertion of Theorem 2.3.1. The following assertions are im-
plied immediately.
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Appendix D

Entry of Functions Used in
Examples 4.3.2, 4.4.4, 4.4.5, 4.4.6,
4.6.1 and 4.6.2

The membership functions of the primary fuzzy sets are presented as they are shown
in Figure 4.4(d).

Unhealthily cold – 𝐴1000:

𝑡 ∈ (−∞, 10] 𝜇𝐴1000(𝑡) = 1,

𝑡 ∈ (10, 20] 𝜇𝐴1000(𝑡) = 2 − 0.1 · 𝑡,

𝑡 ∈ (20, ∞) 𝜇𝐴1000(𝑡) = 0. (D.1)

Only healthily cold – 𝐴0100:

𝑡 ∈ (−∞, 10] 𝜇𝐴0100(𝑡) = 0,

𝑡 ∈ (10, 20] 𝜇𝐴0100(𝑡) = −1 + 0.1 · 𝑡,

𝑡 ∈ (20, 22] 𝜇𝐴0100(𝑡) = 1,

𝑡 ∈ (22, 30] 𝜇𝐴0100(𝑡) = 30
8 − 𝑡

8 ,

𝑡 ∈ (30, ∞) 𝜇𝐴0100(𝑡) = 0. (D.2)
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Healthily cold and pleasant – 𝐴0110:

𝑡 ∈ (−∞, 22] 𝜇𝐴0110(𝑡) = 0,

𝑡 ∈ (22, 25] 𝜇𝐴0110(𝑡) = −22
8 + 𝑡

8 ,

𝑡 ∈ (25, 30] 𝜇𝐴0110(𝑡) = −10
40 + 𝑡

40 ,

𝑡 ∈ (30, 35] 𝜇𝐴0110(𝑡) = 35
10 − 𝑡

10 ,

𝑡 ∈ (35, ∞) 𝜇𝐴0110(𝑡) = 0. (D.3)

Only pleasant – 𝐴0010:

𝑡 ∈ (−∞, 25] 𝜇𝐴0010(𝑡) = 0,

𝑡 ∈ (25, 35] 𝜇𝐴0010(𝑡) = −25
20 + 𝑡

20 ,

𝑡 ∈ (35, 45] 𝜇𝐴0010(𝑡) = 45
20 − 𝑡

20 ,

𝑡 ∈ (45, ∞) 𝜇𝐴0010(𝑡) = 0. (D.4)

Warm and pleasant – 𝐴0011:

𝑡 ∈ (−∞, 25] 𝜇𝐴0011(𝑡) = 0,

𝑡 ∈ (25, 40] 𝜇𝐴0011(𝑡) = −25
20 + 𝑡

20 ,

𝑡 ∈ (40, 45] 𝜇𝐴0011(𝑡) = 135
20 − 3 · 𝑡

20 ,

𝑡 ∈ (45, ∞) 𝜇𝐴0011(𝑡) = 0. (D.5)

Only warm – 𝐴0001:

𝑡 ∈ (−∞, 40] 𝜇𝐴0001(𝑡) = 0,

𝑡 ∈ (40, 45] 𝜇𝐴0001(𝑡) = −40
5 + 𝑡

5 ,

𝑡 ∈ (45, ∞) 𝜇𝐴0001(𝑡) = 1. (D.6)

Let us select the probability density as follows:

𝑓(𝑡) = 1
𝜎

√
2𝜋

e− (t−𝜇)2

2𝜎2 , (D.7)

where

𝜇 = 25, (D.8)
𝜎 = 10. (D.9)

114



Appendix E

Entry of Functions Used in
Examples 4.3.3, 4.4.2 and 4.4.7

The (floppy) membership functions are presented as they are shown in Figure 4.5.

Cold – 𝑇1:

𝑡 ∈ (−∞, 10] 𝑝 ∈ R 𝜇𝑇1(𝑡, 𝑝) = 1,

𝑡 ∈ (10, 20] 𝑝 ∈ R 𝜇𝑇1(𝑡, 𝑝) = 2 − 𝑡

10 ,

𝑡 ∈ (20, ∞) 𝑝 ∈ R 𝜇𝑇1(𝑡, 𝑝) = 0. (E.1)

Tepid – 𝑇2:

𝑡 ∈ (−∞, 10] 𝑝 ∈ R 𝜇𝑇2(𝑡, 𝑝) = 0,

𝑡 ∈ (10, 20] 𝑝 ∈ R 𝜇𝑇2(𝑡, 𝑝) = −1 + 𝑡

10 ,

𝑡 ∈ (20, 25] 𝑝 ∈ R 𝜇𝑇2(𝑡, 𝑝) = 1,

𝑡 ∈ (25, 30] 𝑝 ∈ R 𝜇𝑇2(𝑡, 𝑝) = 6 − 𝑡

5 ,

𝑡 ∈ (30, ∞) 𝑝 ∈ R 𝜇𝑇2(𝑡, 𝑝) = 0. (E.2)

Warm – 𝑇3:

𝑡 ∈ (−∞, 25] 𝑝 ∈ R 𝜇𝑇3(𝑡, 𝑝) = 0,

𝑡 ∈ (25, 30] 𝑝 ∈ R 𝜇𝑇3(𝑡, 𝑝) = −5 + 𝑡

5 ,

𝑡 ∈ (30, ∞) 𝑝 ∈ R 𝜇𝑇3(𝑡, 𝑝) = 1. (E.3)
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Low – 𝑃1:

𝑡 ∈ R 𝑝 ∈ (−∞, 960] 𝜇𝑃1(𝑡, 𝑝) = 1,

𝑡 ∈ R 𝑝 ∈ (960, 980] 𝜇𝑃1(𝑡, 𝑝) = 49 − 𝑝

20 ,

𝑡 ∈ R 𝑝 ∈ (980, ∞) 𝜇𝑃1(𝑡, 𝑝) = 0. (E.4)

Normal – 𝑃2:

𝑡 ∈ R 𝑝 ∈ (−∞, 960] 𝜇𝑃2(𝑡, 𝑝) = 0,

𝑡 ∈ R 𝑝 ∈ (960, 980] 𝜇𝑃2(𝑡, 𝑝) = −48 + 𝑝

20 ,

𝑡 ∈ R 𝑝 ∈ (980, 1010] 𝜇𝑃2(𝑡, 𝑝) = 1,

𝑡 ∈ R 𝑝 ∈ (1010, 1020] 𝜇𝑃2(𝑡, 𝑝) = 102 − 𝑝

10 ,

𝑡 ∈ R 𝑝 ∈ (1020, ∞) 𝜇𝑃2(𝑡, 𝑝) = 0. (E.5)

High – 𝑃3:

𝑡 ∈ R 𝑝 ∈ (−∞, 1010] 𝜇𝑃3(𝑡, 𝑝) = 0,

𝑡 ∈ R 𝑝 ∈ (1010, 1020] 𝜇𝑃3(𝑡, 𝑝) = −101 + 𝑝

10 ,

𝑡 ∈ R 𝑝 ∈ (1020, ∞) 𝜇𝑃3(𝑡, 𝑝) = 1. (E.6)

The membership functions of the primary fuzzy sets are obtained from the equation:

𝜇𝐴𝑖,𝑗
(𝑡, 𝑝) = 𝜇𝑇𝑖

(𝑡, 𝑝) · 𝜇𝑃𝑗
(𝑡, 𝑝). (E.7)

Let us select, as a joint probability density, a multivariate normal probability density

with mean vector 𝑚 =
⎛⎝ 15

1000

⎞⎠ and covariance matrix 𝑆 =
⎛⎝ 100 20

20 400

⎞⎠.

The two-dimensional normal probability density is given by the equation:

𝑓(𝑡, 𝑝) = 1
2𝜋
√︁

|𝑆|
· e− 1

2 ·(x−m)T·S−1·(x−m), (E.8)

where 𝑥 =
⎛⎝ 𝑡

𝑝

⎞⎠.
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