
ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

452981Osobní číslo:ArtemJméno:GrigorianPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatikaStudijní program:

Softwarové inženýrstvíSpecializace:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Sémantické služby pro úkoly v doméně plánování údržby letadel

Název diplomové práce anglicky:

Semantic services for tasks in aircraft maintenance planning domain

Pokyny pro vypracování:
AMOS [1] is complex software for management of processes within organization CSAT [2]. It solves many generic tasks,
however has serious limitations with domain specific ones.
The goal of this thesis is to create a set of services that would easily integrate with AMOS like systems and provide services
for domain specific tasks. Input of such services would come from lightweight and simple integration with the system and
domain expert knowledge represented in spreadsheets. The thesis addresses issues with poor-quality non-structured data
that often occurs in such systems. Based on possibly denormalized data of the system it will provide extraction of events
within processes of the organization.
It is assumed that the tool SPipes [3] will be used for data processing and services will be based on semantic web
technologies.
Instructions:
1) get acquainted with the technologies of semantic web for knowledge representation (RDF, RDFS, OWL, JSONLD),
querying (SPARQL) and persistence (triplestores)
2) analyze relevant tools for transforming and mapping relational data to RDF
3) analyze existing datasets and related processes within the organization
4) define requirements and scenarios for the services, design the system
5) implement a prototype
6) test prototype on defined scenarios with domain experts

Seznam doporučené literatury:
[1] AMOS, Swiss Aviation Software (https://www.swiss-as.com/amos-mro)
[2] Czech Airlines Technics a.s. (https://www.csatechnics.com/)
[3] SPipes, Semantic pipeline language and engine (https://github.com/kbss-cvut/s-pipes)
[4] Guizzardi, Giancarlo. "Ontological foundations for structural conceptual models." (2005).
[5] Hert, Matthias, Gerald Reif, and Harald C. Gall. "A comparison of RDB-to-RDF mapping languages." Proceedings of
the 7th international conference on semantic systems. 2011.

Jméno a pracoviště vedoucí(ho) diplomové práce:

Mgr. Miroslav Blaško, Ph.D., skupina znalostních softwarových systémů

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: 04.01.2022Datum zadání diplomové práce: 27.07.2021

Platnost zadání diplomové práce: 19.02.2023

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryMgr. Miroslav Blaško, Ph.D.

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZDP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZDP-2015.1

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Science and Engineering

Master’s Thesis

Semantic services for tasks in aircraft maintenance planning
domain

Bc. Artem Grigorian

Supervisor: Mgr. Miroslav Blaško, Ph.D.

Study Programme: Open Informatics, Master

Field of Study: Software Engineering

January 4, 2022

iv

v

Declaration
I declare that I elaborated this thesis on my own and that I mentioned all the information
sources and literature that have been used in accordance with the Guideline for adhering to
ethical principles in the course of elaborating an academic final thesis.

Prague, date

vi

Abstract

The goal of this thesis is to design and develop a set of ontology-based services that are
capable of providing domain-specific functionalities and that can be easily integrated with
MRO software systems, particularly AMOS.

Keywords: Web Application, JavaScript, TTL, Ontology, Maintenance, AMOS, Semantic
Web

Abstrakt

Cílem této práce je navrhnout a vyvinout sadu služeb založených na ontologii, které jsou
schopny poskytovat funkce specifické pro danou oblast a které lze snadno integrovat se soft-
warovými systémy MRO, zejména se systémem AMOS.

Klíčová slova: Webová aplikace, JavaScript, TTL, Ontologie, Údržba, AMOS, Sémantický
web

vii

viii

Contents

1 Introduction 1

2 Background 3
2.1 AMOS . 3

2.1.1 Description . 3
2.1.2 Limitations . 4

2.2 Semantic Web . 5
2.2.1 RDF . 5
2.2.2 JSON-LD . 6
2.2.3 RDFS . 8
2.2.4 OWL . 8
2.2.5 SPARQL . 8
2.2.6 RDF Triple Stores . 8

3 Analysis 11
3.1 Analysis of domain of interest . 11

3.1.1 Information gathering . 11
3.1.2 Formalization of dashboard statistics 12
3.1.3 Maintenance, Repair and Operations 12

3.1.3.1 Aircraft Maintenance . 12
3.1.3.2 Work packages . 14
3.1.3.3 Maintenance line . 14

3.1.4 Provided source data . 15
3.1.4.1 Time-analysis . 16
3.1.4.2 Time-estimates . 17
3.1.4.3 Wo-tc-ref . 17
3.1.4.4 Wp-catalog . 18
3.1.4.5 Presence . 18

3.1.5 Completeness of data and data constraints 19
3.2 Mapping of Relational Data to RDF . 20

3.2.1 Generating RDF from Tabular Data 20
3.2.2 RDB to RDF Mapping . 23
3.2.3 Mapping using SPipes . 25

3.2.3.1 CSV to RDF conversion . 26
3.2.3.2 RDF data mapping . 26

ix

x CONTENTS

3.3 Analysis of charting libraries . 27
3.3.1 CHARTIST.JS . 28
3.3.2 Chart.js . 30
3.3.3 Highcharts . 31
3.3.4 Google Charts . 33
3.3.5 D3.js . 33
3.3.6 Summary . 35

4 Requirement analysis 37
4.1 Prioritization of requirements . 37
4.2 Functional requirements . 38
4.3 Non-functional requirements . 41

5 System Design 43
5.1 Domain model . 43
5.2 Navigation . 45
5.3 Data management . 45
5.4 Dashboard 1.0 . 45

5.4.1 Data representation . 46
5.4.2 Metric functions . 47

5.5 Dashboard 2.0 . 52
5.5.1 Data representation . 52
5.5.2 Metric functions . 53

5.6 System modules . 53
5.6.1 API gateway . 53
5.6.2 Plan Execution Viewer module . 54
5.6.3 Updater module . 54
5.6.4 SPipes for data transformation . 54
5.6.5 Messaging service . 54

6 Implementation 57
6.1 Application architecture . 57
6.2 Technology stack . 57

6.2.1 User interface . 58
6.2.2 Persistence layer . 58
6.2.3 Programming language and software framework 58
6.2.4 Reverse proxy . 58
6.2.5 Containerization . 59

6.3 Development process . 59
6.3.1 CI/CD using GitHub . 59
6.3.2 Environments and deployment . 60

7 Testing 63
7.1 Unit and integration testing . 63
7.2 User testing . 63

7.2.1 Scenario 1: Navigation . 64

CONTENTS xi

7.3 Scenario 2: Retrieving work package information 64
7.4 Evaluation . 66

8 Conclusion 67

A Annotated table airlines.csv 75

B Columns of source CSV files 77

C The Contents of the Enclosed CD 81

xii CONTENTS

List of Figures

2.1 AMOS core modules . 4
2.2 Semantic Web Stack [21] . 6
2.3 RDF data visualized as a graph . 7

3.1 Work package elements . 15
3.2 CHARTIST.JS - stacked area chart with multiple series 29
3.3 Chart.js - stacked bar/line chart with multiple Y axes 31
3.4 Highcharts - Highcharts and Highsoft timeline [52] 32
3.5 Google Charts - combo chart (bar/line) with multiple series of data [54] . . . 34
3.6 D3.js - horizontal stacked bar chart multiple series of data [57] 34

4.1 MoSCoW priorities . 38
4.2 Use case diagram: functional requirements . 41

5.1 “CSAT-maintenance-spec” domain model . 55
5.2 CSAT original dashboard . 56
5.3 Sequence diagram: data update process . 56

6.1 Sequence diagram: CI/CD . 61

xiii

xiv LIST OF FIGURES

List of Tables

3.1 Maintenance checks . 13
3.2 Source data format . 16
3.3 Source data details . 19
3.4 Aircraft table . 24
3.5 Airline table . 24
3.6 Charting libraries - requirement coverage . 35

A.1 Annotated rows of the table http://example.org/airlines.csv from the example 75
A.2 Annotated columns of the table http://example.org/airlines.csv from the ex-

ample . 75
A.3 Annotated cells of the table http://example.org/airlines.csv from the example 76

xv

xvi LIST OF TABLES

Chapter 1

Introduction

Currently, ontologies are becoming more prominent on the Internet. They are being used
more and more frequently as an accessible tool for the exchange and expression of information
by specialists in their fields, thus ceasing to be a purely academic endeavor. Many disciplines
are now developing both general-purpose ontologies and standardized ontologies to formulate
and express knowledge in their fields. One of their core principles is the definition of a
common vocabulary for the exchange of information, including the specification of the basic
concepts of a given domain and the relationships between them.

In specialized domains, ontologies are developed to share the understanding of informa-
tion structure, to provide reuse of domain knowledge, and to separate domain and operational
knowledge. Furthermore, the ontology-based approach for domain knowledge specification
can significantly simplify the process of establishing a communication process with domain
experts. [1]

A great example of a field where ontologies can be used is an aircraft maintenance domain
since it has a relatively low digitalization level. Moreover, the generalized knowledge can be
applied to most aircraft maintenance organizations. [2] One of such organizations is Czech
Airlines Technics (CSAT), a subsidiary of Prague Airport which is mainly focused on aircraft
repair and maintenance, and offers a wide extent of services on Maintenance, Repair, and
Operations (MRO) market. [3]

AMOS is a comprehensive MRO software solution designated for solving a great variety of
clients’ maintenance, engineering, and logistics needs. CSAT uses AMOS for the management
of their MRO-related processes to ensure the conditions for the provision of airworthiness
services to the high standard required by national aviation authorities, operators, and aircraft
owners. Despite the fact that AMOS is designed to provide the full range of MRO-related
functionality needs, it does not cover entirely all processes within CSAT. More importantly,
in the majority of the domain-specific tasks within maintenance planning and execution, it
only provides support to persist important information for those tasks. It is left to domain
experts to process stored information manually and optimize those tasks using their expert
knowledge. On the other hand, ontology-based systems are well suited to incorporate expert
knowledge for the optimization of such tasks. For example, while planning or executing
maintenance tasks, the knowledge of how parts of the aircraft depend on each other is
critical to optimizing tasks.

1

CHAPTER 1. INTRODUCTION

The goal of this thesis is to design and develop a set of ontology-based services that are
capable of providing domain-specific functionalities and that can be easily integrated with
MRO software systems, particularly AMOS.

The first part of the thesis (2) is dedicated to the introduction of the most important
and essential aspects of the topic. It outlines brief information about the fundamentals
of the Semantic Web, as well as the main characteristics and limitations of the AMOS
system. The latter part of the thesis (3) discusses the information gathering approaches
used to specify the requirements. It also examines the techniques of mapping tabular data
to RDF, provides the analysis of the source data, and an overview of the charting libraries
required for prototype implementation. Chapter 4 summarizes the specified functional and
non-functional requirements. Afterward, chapter 5 demonstrates the system design of the
application services. It is followed by chapter 6, describing the most noteworthy decisions
made during the implementation phase. Chapter 7 presents the methods and results of the
performed testing activities. The last chapter 8 of the thesis concludes and summarises the
result of the work.

2

Chapter 2

Background

This chapter of the thesis is dedicated to the introduction of the most important and essential
aspects of the topic. It outlines brief information about the fundamentals of the Semantic
Web, as well as the main characteristics and limitations of the AMOS system.

2.1 AMOS

This section provides a brief general overview of the AMOS system to give a reader an idea
of its purpose and what problems it solved. Additionally, AMOS is used by Czech Airlines
Technics organization as a principal MRO solution and serves as the primary source of data
for the project.

2.1.1 Description

AMOS is one of the many MRO (Maintenance, Repair and Operations) software solutions,
which is intended to manage clients’ maintenance, engineering, and logistics needs. AMOS
was developed by Swiss Aviation Software AG and is used by more than 200 customers
worldwide [4] [5], including Czech Airlines Technics (CSAT).

AMOS has a large set of functionalities and features. In view of the fact that AMOS
appears to be a classic example of the enterprise-level software application, it follows the
modular architecture design principles and consists of several different modules. It comprises
the following core modules [6]:

• Material Management - for managing complex logistic tasks, parts availability and
component utilization, warranty control, inventory management, and vendor rating [7]

• Engineering - for managing maintenance tasks in accordance with the standards of a
Continuing Airworthiness Management Organisation (CAMO) [8]

• Planning - for managing the preparation of scheduled and unscheduled, short- and
long-term maintenance events [9]

• Component Maintenance - for managing extensive MRO activities in a shop environ-
ment [10]

3

CHAPTER 2. BACKGROUND

Figure 2.1: AMOS core modules

• Production - for managing troubleshooting, the actual execution of Line and Base
Maintenance and ensuring a handover of work packages from the Maintenance Planning
to the Production Department [11]

• Maintenance Control - this module is the main tool to control and improve the overall
reliability of the technical organisation and to ensure uninterrupted airworthiness of
the operating fleet [12]

• Commercial - for enabling AMOS users to monitor their relationships with all their
customers and tracking the ongoing pre-sales activities with potential and existing
customers [13]

• Human Resources - for allocating and deploying human resources in accordance with
man-hours, employee’s skills / licences and workload [14]

• Quality Assurance - for guaranteeing that agreed-upon quality requirements are re-
spected [15]

• Financial Management - for performing such tasks as cost and warranty control, invoice
generation, stock value determination and integration into the customer’s financial
accounting system [16]

2.1.2 Limitations

Despite the fact that AMOS software solution is designed to encompass the full range of
functionality needed by MRO customers, it can not cover all the customer-specific needs in

4

2.2. SEMANTIC WEB

advance. Therefore it was designed to make the integration of AMOS into the customers’
current system landscape as easy, smooth, and convenient as possible.

Since AMOS is an open system based on advanced technology, it can be easily linked with
other corporate information systems using different generic interfaces, such as flat files over
direct database access, XML-based interfaces, and others. This flexibility allows customers
to have many different ways on how to export and import data. [17]

2.2 Semantic Web

The World Wide Web (WWW) refers to a core retrieval system of the internet which is also
called simply Web. Nowadays three types of the web are distinguished: Web 1.0, Web 2.0,
and Web 3.0. The original Web 1.0 stands for the earliest version of the web and is typically
associated with the 1990s and early 2000s. It is often referred to as a read-only (RO) web
since the content of the websites was created by their owner [18] [19]. On the other hand,
Web 2.0 refers to the current version of the web internet, while Web 3.0 represents its next
phase. The creation and shaping of the content in Web 2.0 also involve the visitors and
users of the website. Therefore it is usually referred to as read-write (RW) web. Unlike
Web 2.0 where data is possessed by the owner of the website, the idea of Web 3.0 lies in
decentralization. This implies that the data is open and no permission is needed to post the
information. [19]

The term Semantic Web 1 is often referred to as Web 3.0 since Web 3.0 is based on
the same idea. It is an extension of the WWW that follows the standards specified by the
World Wide Web Consortium (W3C). The objectives of the Semantic Web are aimed at
establishing the machine-readability of the web. [20] It demands the use of standardized
semantic technologies and components that make up the architecture of the Semantic Web.

The figure 2.2 illustrates the architecture of the Semantic Web, also termed Semantic
Web Stack, Semantic Web Cake, or Semantic Web Layer Cake [21]. The stack builds on
the following technologies: Resource Description Framework (RDF), RDF Schema (RDFS),
Web Ontology Language (OWL), SPARQL, and others. The most relevant for this thesis
semantic technologies will be outlined in this chapter.

2.2.1 RDF

Resource Description Framework is a standard model for data interchange on the Web. It
is the core technology of the Semantic Web which defines a way of representing knowledge
in a decentralized world. It is intended for enabling the computer programs to make use of
all the structured information distributed over the Web. RDF specifies a universal way of
breaking down the knowledge into small pieces and sets certain rules regarding the meaning
of those pieces. [22]

There are plenty of formats that can be used to represent RDF data. The most common

1More information about Semantic Web available at <https://www.jstor.org/stable/26059207>

5

https://www.jstor.org/stable/26059207

CHAPTER 2. BACKGROUND

Figure 2.2: Semantic Web Stack [21]

and standardized ones are: N-Triples 2, Turtle 3, JSON-LD 4 and RDF/XML 5. The following
RDF example represents a simple object described using Turtle syntax:

@prefix cm: <http://onto.fel.cvut.cz/ontologies/csat-maintenance/> .

cm:aircraft-AIR-1 a cm:aircraft;
cm:age 19.728767;
cm:model "32A";
cm:registration "OE-LBX" .

The same example in form of the RDF graph is depicted in figure 2.3:

2.2.2 JSON-LD

JSON-LD is one of the standardized 6 RDF formats. It is based on the existing JSON format
with minimal changes made so that the data can be interpreted as Linked Data. It is worth
noting, that the data in JSON-LD format are fully compatible with JSON, therefore the
majority of JSON tools available today can be reused. [23]

The following example describes the same object from the the previous example, but in
the JSON-LD format:

2Specification is available at <https://www.w3.org/TR/n-triples/>
3Specification is available at <https://www.w3.org/TR/turtle/>
4Specification is available at <https://www.w3.org/TR/json-ld/>
5Specification is available at <https://www.w3.org/TR/rdf-syntax-grammar/>
6Specification is available at <https://www.w3.org/TR/sparql11-overview/>

6

https://www.w3.org/TR/n-triples/
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/json-ld/
https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TR/sparql11-overview/

2.2. SEMANTIC WEB

Figure 2.3: RDF data visualized as a graph

{
"@context": {

"cm": "http://onto.fel.cvut.cz/ontologies/csat-maintenance/",
"xsd": "http://www.w3.org/2001/XMLSchema#",
"owl": "http://www.w3.org/2002/07/owl#"

},
"@id": "cm:aircraft-AIR-1",
"@type": [

"cm:aircraft",
"owl:NamedIndividual"

],
"cm:age": {

"@type": "xsd:decimal",
"@value": "19.728767"

},
"cm:model": "32A",
"cm:registration": "OE-LBX"

}

JSON-LD is designed to satisfy the following objectives:

• Simplicity - no additional tools are necessary to use JSON-LD in its most basic form

• Compatibility - the documents in JSON-LD format are consistently valid JSON doc-
uments

• Expressiveness - the JSON-LD syntax serializes labeled directed graphs to ensure that
the majority of real world data models can be expressed

• Terseness - the syntax is human readable and concise

• Zero Edits, most of the time - it ensures a straightforward transition from existing
JSON-based systems

• Usable as RDF - it can be used as plain JSON, so there is no need to understand RDF.
[23]

7

CHAPTER 2. BACKGROUND

2.2.3 RDFS

RDFS stands for Resource Description Framework Schema (also variously abbreviated as
RDF(S), RDF-S, or RDF/S). It is the most fundamental schema language in the Semantic
Web technology stack which is intended to explain how nodes of a graph relate. It is designed
to be lightweight, intelligible, and straightforward. [24] [25]

The RDFS vocabulary introduces the concept of classes and class hierarchy by allowing
defining superclasses and subclasses of the nodes. [24]

2.2.4 OWL

The Web Ontology Language (OWL) is a Semantic Web language specified by World Wide
Web Consortium (W3C) that is designed to represent complex knowledge about things and
the relationships between them. Since OWL belongs to the Semantic Web and is part of the
Semantic Web Stack, the knowledge given in OWL can be utilized by computer programs.
[26]

In contrast to the RDFS, OWL provides a more expressive and wider vocabulary and
allows one to express much more about the data model. [27]

2.2.5 SPARQL

SPARQL is the standardized 7 language and protocols to query and manipulate RDF data.
It is used as a common query language in RDF triple stores and, similarly to SQL, allows
users to perform CRUD operations on the RDF data.

SPARQL queries are commonly constructed using the following fundamental clauses:

• SELECT - basic query command which is used to find and return the data matching
certain patterns

• CONSTRUCT - serves for creating and transforming the data

• ASK - used for checking if certain patterns exist in the data

• DESCRIBE - command for viewing the RDF graph that describes a particular resource.

Additionally, there exist optional statements such as PREFIX, FROM and WHERE, and also
several query result modifiers: ORDER BY, OFFSET, LIMIT, GROUP BY, and HAVING.
[28]

2.2.6 RDF Triple Stores

An RDF triple store is a graph database that is designed to store and retrieve the entries
from the collections of strings. These entries are constructed from semantic triples (also
known as RDF triples or just triples) which represent a sequence of three entities in the
form of subject-predicate-object relationships. [29] An example of such triple entry could

7Specification is available at <https://www.w3.org/TR/sparql11-overview/>

8

https://www.w3.org/TR/sparql11-overview/

2.2. SEMANTIC WEB

be: “aircraft-AIR-1 model 32A”, where “aircraft-AIR-1” is a subject, “model” is a predicate
and "32A" is an object.

There are a plethora of different implementations of RDF triple stores. Some of them
are based on the database engines that have been built de novo, while others have been
constructed on the basis of existing ones. The following list outlines some of the most
popular triplestores in use [30]:

• AllegroGraph

• Apache Jena

• BlazeGraph

• MarkLogic

• Eclipse RDF4J

• GraphDB

• Virtuoso

• 3Store

Since triple store databases are non-relational (i.e. do not work with relational data) and
do not require a fixed schema, they are considered to be NoSQL 8. Therefore, they aren’t
favorable for transactional applications since there is a lack of ACID 9 transactions. [30] The
data in RDF triple stores are queried by SPARQL query language.

8More information about NoSQL is available at <https://www.couchbase.com/resources/why-nosql>
9More information about ACID is available at <https://database.guide/what-is-acid-in-databas

es/>

9

https://www.couchbase.com/resources/why-nosql
https://database.guide/what-is-acid-in-databases/
https://database.guide/what-is-acid-in-databases/

CHAPTER 2. BACKGROUND

10

Chapter 3

Analysis

This chapter is dedicated to the analysis of the source data. The first section of the chapter
outlines the information gathering process. The following section describes the techniques
used to transform and map the source tabular data into the ontology of the OWL domain
model. Afterward, the analysis of the charting libraries required for further implementation
is described.

3.1 Analysis of domain of interest

As can be seen from the requirements formulated in the chapter 4.2, the main objectives
of the project are aimed at defining and calculating certain metrics. These metrics have to
be calculated from the provided data spreadsheets. The problem is that in this case the
data are provided in a denormalized form, and what is more important, have poor quality.
Therefore, in order to achieve the stated goals, it is necessary to thoroughly analyze the
data, distinguish relevant and irrelevant parts and finally transform them into meaningful
and practical form. This is the main objective of this section of the thesis.

3.1.1 Information gathering

Information gathering activities are necessary for identification and definition of stakeholder
requirements. During the analysis phase of this project, information gathering was the most
time-consuming part, since it involved regular meetings with the domain experts. These
meetings were needed to build a knowledge base from the provided source data since the
data encompassed no information about the meaning of its contents. No information about
the data origins, data life cycle, or original data flows was given, therefore the source system
was treated as a black-box.

One of the objectives was to extract knowledge from the provided data sets. This process
of building a knowledge base comprised the following activities: defining the domain data
model by expressing it using OWL and specifying the mapping of the source data to the data
model. Another important part of the information gathering process was the correct and
precise definition of the dashboard metrics since they build the foundation for the software
requirements fulfillment.

11

CHAPTER 3. ANALYSIS

3.1.2 Formalization of dashboard statistics

One of the goals of the meetings with domain experts was the formalization of dashboard
statistics and data constraints. In order to achieve that it was necessary to prepare in
advance a prototype of the dashboard with mock-up data. Every data metric was specified
by defining formulas referring to the columns and rows of the source CSV files since the
domain experts are familiar with their structure and content. For example, the following
formula was defined to calculate the number of closed task cards per work package wp based
on the data from wo-tc-ref (WOTA) file:

CTC(wp) = |{row ∈ WOTA∥row.WP = wp, row.type = ”TC”, row.state = ”C”}|
However, these formulas are hardly applicable for the actual metrics calculation since

they refer to the CSV files and not to the domain model of the application. The prepared
OWL ontology for the domain model is formulated and described in the chapter 5.1. The
process and result of formulas definition concerning the domain model is described in chapter
5.

Another point worth mentioning is that the CSV data had to be transformed to RDF in
order to perform mapping of the data to the ontology. The complete process of transforming
and mapping was handled by the SPipes application 1 and is outlined in the chapter 3.2.

3.1.3 Maintenance, Repair and Operations

The term “Maintenance, Repair and Operations” is also referred to as “Maintenance, Repair
and Overhaul” or MRO. In the aviation industry, the meaning of this term comprises a group
of activities that are aimed at the upkeep of an aircraft or its components. The principal
objective of the MRO is to ensure the continuing airworthiness of the aircraft during its
service life. This section provides a brief overview of MRO activities, focusing on the most
significant aspects within the scope of this thesis.

3.1.3.1 Aircraft Maintenance

Aircraft maintenance is an essential part of the MRO. It is a fundamental process of ensuring
the airworthiness of the aircraft and satisfying the conditions to guarantee the safe operation
of the vehicle. [58]

Due to the fact that the aviation industry is highly regulated, airline companies are
obliged to provide continuous inspection programs established by aviation authorities. It
is crucial to perform the aircraft maintenance checks continually as they keep it airworthy
and reliable. These checks include routine and non-routine maintenance activities such as
replacing aircraft components, repairing previously discovered defects, performing scheduled
repairs, etc. [31] The fundamental types of the maintenance checks are outlined in the
following sections.

Base Maintenance
Base maintenance, also known as heavy or depth maintenance, is one of the most crucial

phases of aircraft maintenance. It involves the detailed, long-lasting, and extensive inspection
1GitHub repository is available at <https://github.com/kbss-cvut/s-pipes>

12

https://github.com/kbss-cvut/s-pipes

3.1. ANALYSIS OF DOMAIN OF INTEREST

Check type Check frequency* Check duration*
A check 400-600 flight hours/200–300 flights 10-100 man-hours
B check 6-8 months 160-180 man-hours/1-3 days
C check 2 years 10000-30000 man-hours/1-4 weeks
D check 6-10 years 30000-50000 man-hours/2 months
* provided values are approximate and depend on numerous factors, such as aircraft type,

operational environment, etc.

Table 3.1: Maintenance checks

of an aircraft and always requires its downtime during the check process. Typically it puts the
aircraft out of service for 1-4 weeks with intervals of 2-6 years. The operational time between
base maintenance inspections depends on the requirements specified by the manufacturer
and may be adapted based on the operational environment of the aircraft. [32] This type
of maintenance is usually referred to as “checks” of different levels, classified based on the
intensity and magnitude of the inspections and overhaul. There are 4 types of checks [31]
[33]:

• A check - this is a lighter check that is typically performed at a hangar and takes tens
of working hours to be finished. The A checks commonly include general inspections of
the interior and the aircraft hull for evidence of damage, deformation, corrosion, and
missing parts, as well as the service, engine, and function checks.

• B check - these checks are often performed along with the A checks. For the sake of
resource efficiency and downtime reduction, the airlines often merge B check tasks into
A checks. A typical example of a task completed during this phase is inspecting the
wheel well hydraulic tubing for corrosion and leakage.

• C check - this type of check is significantly more comprehensive and extensive than
the A and B checks. It involves a thorough inspection of a majority of the aircraft’s
components. During this check, the maintenance technicians typically perform complex
servicing tasks such as examination of structures for corrosion and damage, in-depth
lubrication of fittings and cables, and others.

• D check - this is the most embracive check type, otherwise known as “heavy maintenance
visit” (HMV), that includes deep inspections and repairs of the entire aircraft. This
can involve dismantling the entire vehicle so that it can be examined and inspected
for damage and corrosion. Because of the nature and the cost of the D checks, the
majority of airlines plan them years in advance. In certain cases (typically after two
or three D checks) the cost of repair may even exceed the actual cost of the vehicle.

The table below aggregates the rough information about how often each of the checks happens
and how long it typically takes [31] [33]:

Line Maintenance
This is one of the phases of aircraft maintenance that is performed on the apron, during

the turnaround time (TAT), i.e. the time between the landing and the take-off for a new
flight. [34] Line maintenance includes routine inspections, daily checks, and troubleshooting.

13

CHAPTER 3. ANALYSIS

This includes the maintenance activities that are performed on an aircraft while it is fully
operational. Basically, line maintenance can be characterized as a set of minor servicing,
inspection, and repair tasks, which do not require vehicle downtime due to disassembly and
can be carried out in a simple way. [33] The typical examples of such activities are changing
a tire or checking aircraft navigation lights for their functioning. [35]

3.1.3.2 Work packages

In MRO systems, a work package is a group of related maintenance tasks that are performed
on an aircraft during a maintenance period. The work package includes information about
the components, materials, inspections, and repair locations on which the maintenance work
has to be performed. Every work package is generally associated with a customer on the
basis of a customer agreement. [36]

At CSAT, the work package encompasses all the maintenance tasks assigned to the air-
craft of the work package, including:

• Task Cards (TC), which specify the detailed information about the maintenance work
on aircraft or its components to be done, including the job card information that is
copied to work orders, when the tasks become due [37]

• Non-Routine Cards (NRC), also referred to as Findings. These are the tasks that
occurred due to additional maintenance needs detected during the aircraft maintenance
checks, but not included in the scheduled task requirements or maintenance plan. [38]

• Work Orders (WO), which contain information about the work that must be performed.
The WO also outlines a process for completing the task, and typically includes the
details on the scope, assigned technician, and what is expected to be done [39] [40]. At
CSAT, the work orders are divided into two types: the unscheduled Maintenance Work
Orders (MWO), which basically represent the Findings (NRC), and the Scheduled
Work Orders (SWO).

3.1.3.3 Maintenance line

At CSAT, the term Maintenance line (also referred to simply as Line) has a specific meaning.
It might be confused with Line maintenance from MRO, but it’s not the same thing. The
term "Maintenance Line" applies to maintenance technicians (also known as mechanics) as
well as to work packages. The term refers to the group of employees to which these mechanics
belong. Each of these groups corresponds to a specific station in the MRO hangar. These
groups can also be assigned to work packages, thus representing a responsible (main) main-
tenance line. A maximum of one Maintenance Technician can be assigned to a work package.
Similarly, one maintenance technician can be assigned to a maximum of one maintenance
line at a time.

14

3.1. ANALYSIS OF DOMAIN OF INTEREST

Figure 3.1: Work package elements

3.1.4 Provided source data

All source files are regularly exported by two CSAT systems: AMOS and Carded Personnel
Attendance Control System (CPACS). AMOS provides MRO data, such as work log within
the current work packages, information about corresponding task cards and work orders,
time estimation of execution steps, information about work packages, etc. CPACS, on the
other hand, provides data about the time and attendance of employees, such as the arrivals
and departures of maintenance technicians (mechanics).

All provided files are exported to an external SFTP server in nonunified comma-separated
values format (CSV). Although CSV is very common and has been widely used for data
tabular exchange for quite some time, it has never been formally specified, i.e. it is not
fully standardized. [41] Likewise, the provided CSV files do not follow any common format.
Therefore it has been evaluated with respect to the format that seems to be followed by
most implementations (stated in Section 2 of RFC4180 2). The evaluation result is depicted
in the table below:

There are five source files presented: time-analysis (TA), time-estimates (TE), wo-tc-
ref (WOTA), wp-catalog (WPC) and presence (P). Together they provide plenty of useful
information, sufficient to fulfill described requirements. However, some of them contain a
certain amount of irrelevant information, that is, irrelevant fields. Furthermore, some of

2RFC4180 is available at <https://datatracker.ietf.org/doc/html/rfc4180>

15

https://datatracker.ietf.org/doc/html/rfc4180

CHAPTER 3. ANALYSIS

Source
file Source Delimiter Header

Cells
contain
line breaks

Cells
contain
delimiter

Ending
line
break

Time-analysis AMOS Tab Yes No No Yes
Time-estimates AMOS Tab Yes No No Yes
Wo-tc-ref AMOS Tab Yes No No Yes
Wp-catalog AMOS Tab Yes No No Yes
Presence CPACS Semicolon No No No Yes

Table 3.2: Source data format

the column names are quite vague and do not clearly indicate the meaning. The following
sections define the most relevant data fields needed to fulfill the requirements. A complete
list of fields with descriptions can be found in Appendix B.

3.1.4.1 Time-analysis

Time-analysis (TA) file contains records of activities that employees perform during their
work hours, i.e. work log. It consists of the following columns:

1. "Employee No" - unique identifier of employee

2. "Start Date" - start date of the working activity

3. "Start Time" - start time of the working activity

4. "End Date" - end date of the working activity

5. "End Time" - end time of the working activity

6. "Duration Full" - overall time spent on the task in hours

7. "Scope" - the work orientation of the employee, i.e. the specific aircraft maintenance
activity they perform (also referred to as maintenance group)

8. "Shift Group" - identifier of a group/shift, to which the worker is assigned

9. "Type" - type of the task (e.g. “M” is MWO, “S” is SWO and “TC” is TC)

10. "WO/TC" - identifier of the WO (for MWO and SWO tasks) or identifier of the TC
(for TC tasks)

11. "Workpackage" - identifier of the WP

12. "A/C model" - model of the aircraft, to which the task is assigned

13. "A/C age" - age of the aircraft in years, to which the task is assigned

14. "WP Start date - scheduled" - planned start date of the work package

15. "WP End date - scheduled" - planned end date of the work package

16

3.1. ANALYSIS OF DOMAIN OF INTEREST

16. "WP Start date - real" - actual start date of the work package

17. "WP End date - real" - actual end date of the work package

18. "Line" - identifier of the responsible (main) line, to which the work package is assigned

19. "AC registration" - unique code, representing an aircraft registration number

20. "operator" - code of the customer, i.e. aircraft owner

3.1.4.2 Time-estimates

Time-estimates (TE) file contains time estimates for the specific tasks and consists of the
following columns:

1. "AC registration" - unique code, representing an aircraft registration number

2. "operator" - code of the customer, i.e. aircraft owner

3. "WP" - identifier of the WP

4. "WO" - identifier of the WO (for MWO and SWO tasks)

5. "TC" - identifier of the TC (for TC tasks)

6. "sequence" - sequential number of the task (also known as workstep) within the TC
or WO that has one or more worksteps

7. "scope" - the work orientation of the employee, i.e. the specific aircraft maintenance
activity they perform (also referred to as maintenance group)

8. "est-min" - time estimate for the task in hours

3.1.4.3 Wo-tc-ref

Wo-tc-ref (WOTA) contains WO texts and WO actions records, which are given as individual
task steps (action sequence). Every task within the work package is split into these particular
sequences and each sequence action has its order number defining the order in task execution.
This WOTA file consists of the following columns:

1. "AC" - unique code, representing an aircraft registration number

2. "A/C age" - age of the aircraft in years, to which the task is assigned

3. "WP" - identifier of the WP

4. "CSAT WO/TC" - identifier of the WO (for MWO and SWO tasks) or identifier of
the TC (for TC tasks)

5. "type" - type of the task (e.g. “M” is MWO, “S” is SWO and “TC” is TC)

6. "state" - state of the task step (e.g. “O” for open and “C” for close)

17

CHAPTER 3. ANALYSIS

7. "TC reference" - identifier of the TC (for TC tasks)

8. "issue date" - date when the task was issued

9. "closing date" - date when the task was closed

10. "sequence" - order number of the task step

3.1.4.4 Wp-catalog

Wp-catalog (WPC) is a work package catalog file. It contains overall information about the
work package, such as details about time estimation from strategic planning prior agreement
between customer and maintenance provider. It only includes information related to current
(active) work packages, work packages that are expected to be finished soon or that have
been closed in the last few days. CSV file consists of the following columns:

1. "AC registration" - unique code, representing an aircraft registration number

2. "Workpackage" - identifier of the WP

3. "Start date - scheduled" - planned start date of the work package

4. "End date - scheduled" - planned end date of the work package

5. "Start date - real" - actual start date of the work package

6. "End date - real" - actual end date of the work package

3.1.4.5 Presence

Presence (P) file contains information about the work time and attendance of employees,
such as arrival and departure time of mechanics. It consists of the following columns:

1. "Employee No" - unique identifier of employee

2. "status-1" - status of the employee (e.g. “A” for “available” and “N” for “not available”).

3. "status-2" - status of the employee (e.g. “1” for “available” and “2” for “not available”).

4. "date" - date of the status change (i.e. employee arrival or departure)

5. "time" - time of the status change (i.e. employee arrival or departure)

18

3.1. ANALYSIS OF DOMAIN OF INTEREST

Source file Primary key Time period Constraints

Time-analysis "bookingno_i" Work log from the
last 24 hours CR1

Time-estimates

("WP" +
"WO" +
"TC" +
"sequence" +
"scope")*

All estimates related
to the relevant
(current, ongoing, latest)
work packages

CR2

Wo-tc-ref
("WP" +
"CSAT WO/TC" +
"sequence")

All relevant (current,
ongoing, latest)
work packages

CR3

Wp-catalog "Workpackage"
All relevant (current,
ongoing, latest)
work packages

none

Presence

("Employee No" +
status_1" +
"status_2" +
"date" +
"time")

Attendance log from
the last 30 days CR4

* there might occur multiple rows with the same primary key, but different "est-min" values.
The possible reasons for that could be human error (wrongly entered data), the way AMOS (at
CSAT) implements data modifications (e.g. increase of "est-min" value yields an additional
record) or specifics of exporting SQL. It was decided to solve these inconsistencies by summing
"est-min" values with the same primary key.

Table 3.3: Source data details

3.1.5 Completeness of data and data constraints

Based on the file content analysis described in the previous chapter, it appears that the
source tabular data are provided in denormalized form. Moreover, after a more thorough
examination, it seems that there also is a high degree of redundancy and repetition. As
an example, all four TA, TE, WOTA, and WPC files contain columns referring to the
same entities. Examples of such columns are "AC registration" for TA, TE, and WPC and
"AC" for WOTA, all of which hold a unique code value, representing an aircraft registration
number, e.g. "PH-HZD". In order to properly and correctly process the input data, define
a mapping, and construct domain model instances, the comprehensiveness and wholeness of
the data need to be examined. Furthermore, it is evident that the data from each source file
refers to a certain time period. Therefore, in order to ensure the completeness of the data per
work package, it was necessary to identify time windows for every data set. In the following
table, the main detected issues related to the data completeness are described. In addition,
the principal data constraints are indicated. It is worth noting, that only the relevant data
fields are considered:

The table contains the references to the following constraints:

19

CHAPTER 3. ANALYSIS

CR1 Time-analysis constrains

• "Start Date" is either equal to "End Date" or "End Date" minus 1 day
• "Start Time" = "End Time" => "Duration Full" is 0.00
• "End Date" is null <=>"End Time" = 0:00 and "Duration Full" = 0.00
• "Type" is "ID-JOB" or "ARID-JOB" => "Workpackage",

"A/C model", "A/C age", "WP Start date - scheduled", "WP End date - sched-
uled", "WP Start date - real", "WP End date - real", "Line" are null

CR2 Time-estimates constraints

• "WO" is null <=> "TC" is not null
• "WO" is not null <=> "TC" is null

CR3 Wo-tc-ref constraints

• state = "O" => "closing date" is null
• "Customer ref" contains "(finding)" => "type" = "M"

CR4 Presence constraints

• "status-1" = "A" <=> "status-2" is "1" or "28"
• "status-1" = "N" <=> "status-2" is "2" or "29"

3.2 Mapping of Relational Data to RDF

The tabular form is one of the simplest, oldest, and most prevalent structured data forms.
The data elements of these forms represent a set of data cells arranged in columns (vertical)
and rows (horizontal). [42] Tabular and relational databases use this structure to keep and
manage the internal data. In tabular databases, each record (i.e. row) always has the same
set of properties and the same set of columns. In case one of the rows is missing a value for a
particular column, that cell is associated with a special value representing the missing data.
In this thesis, it was of interest to investigate the process of mapping relational data to RDF
to ensure and confirm data traceability, i.e. the ability to follow the data all the way back to
its original source. Another motivation for becoming familiar with the mapping technique
was to understand the process that most converters follow, which will be important in the
design and implementation phases.

3.2.1 Generating RDF from Tabular Data

The “CSV2RDF” W3C specification describes the procedure of converting the annotated
tabular data model into RDF data representation. It expresses the strategy of creating
an RDF from the tabular data with associated metadata [43]. These metadata provide
information about the cells, rows, columns, tables, and groups of tables with which they
are associated. [44] There are plenty of various extensions, applications, and tools that are
intended to convert the data from tabular-text formats (CSV-like, e.g. TSV) into RDF such
as:

20

3.2. MAPPING OF RELATIONAL DATA TO RDF

• RDF123 - an application that works with simple spreadsheets and converts them into
an RDF graph. [45]

• XLWrap - typically used as an RDF spreadsheets wrapper that can transform and
convert CSV files to arbitrary RDF graphs using the provided mapping. It supports
plenty of tabular data formats, including CSV-like ones. [46]

• Tarql - an application capable of converting the CSV data to RDF based on the pro-
vided mapping in the form of standard SPARQL 1.1 language. It uses the CON-
STRUCT queries for bindings the particular fields and generating the output data
records. [47]

The “CSV2RDF” specification distinguishes two modes of transform operation: Standard
and Minimal. It also states that the conversion applications must provide at least two of
them. In Standard mode, the conversion processes the obtained information in frames and
takes into account the details of the rows, tables, and a group of tables (containing the
source data). On the contrary, the Minimal mode implies the conversion that includes only
the information obtained from the cells of the tabular data.

The tabular data below presented as a CSV file is used to demonstrate a simple example of
the data transformation. This table contains information attributes about airlines, including
country name, IATA code, ICAO code, and call sign:

code_IATA,code_ICAO,call_sign,country_name
DV,ACK,”ACK AIR”,”United States”
OK,CSA,CSA,”Czech Republic”
EO,ALX,ALLCONGO,”Democratic Republic of the Congo”

In view of the fact that the conversion procedure described in CSV2RDF operates on
the annotated tabular data model and does not include the specification of the process of
converting CSV-encoded data into tabular data form, the annotation of the presented table
needs to be considered. There are several annotation levels: table, columns, rows, and cells.
The annotation of table A from the example mentioned above is the following:

• id: A

• URL: http://example.org/airlines.csv

• rows: B1, B2, B3

• columns: C1, C2, C3, C4

Annotation of the rest levels (columns, rows, and cells) can be found in Appendix A. The
input CSV file contains a header line and is located at http://example.org/airlines.csv. The
data transformation in Minimal mode, adhering to the specification mentioned above, results
in the following RDF file presented in “Turtle” notation:

21

CHAPTER 3. ANALYSIS

http://example.org/airlines-minimal.ttl

@base <http://example.org/airlines.csv> .

_:771750a0-7193-4677-94d3-63f3a126e7e4
<#code_IATA> "DV" ;
<#code_ICAO> "ACK" ;
<#call_sign> "ACK AIR" ;
<#country_name> "United States" .

_:bfff7f8a-0603-456c-9575-ef592a7efae0
<#code_IATA> "OK" ;
<#code_ICAO> "CSA" ;
<#call_sign> "CSA" ;
<#country_name> "Czech Republic" .

_:26929753-418e-4d4f-83ab-280ca8697d3b
<#code_IATA> "EO" ;
<#code_ICAO> "ALX" ;
<#call_sign> "ALLCONGO" ;
<#country_name> "Democratic Republic of the Congo" .

In addition, the transformation result of the same http://example.org/airlines.csv file (in
Standard mode) is presented below (also in “Turtle” notation):

http://example.org/airlines-standard.ttl

@base <http://example.org/airlines.csv> .
@prefix csvw: <http://www.w3.org/ns/csvw#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

_:3869b505-e8d7-4f00-bacb-ee79bb72e8cc a csvw:TableGroup ;
csvw:table [a csvw:Table ;

csvw:url <http://example.org/airlines.csv> ;
csvw:row [a csvw:Row ;

csvw:rownum "1"^^xsd:integer ;
csvw:url <#row=2> ;
csvw:describes _:771750a0-7193-4677-94d3-63f3a126e7e4

], [a csvw:Row ;
csvw:rownum "2"^^xsd:integer ;
csvw:url <#row=3> ;
csvw:describes _:bfff7f8a-0603-456c-9575-ef592a7efae0

], [a csvw:Row ;
csvw:rownum "3"^^xsd:integer ;
csvw:url <#row=4> ;
csvw:describes _:26929753-418e-4d4f-83ab-280ca8697d3b

22

3.2. MAPPING OF RELATIONAL DATA TO RDF

]
] .

_:771750a0-7193-4677-94d3-63f3a126e7e4
<#code_IATA> "DV" ;
<#code_ICAO> "ACK" ;
<#call_sign> "ACK AIR" ;
<#country_name> "United States" .

_:bfff7f8a-0603-456c-9575-ef592a7efae0
<#code_IATA> "OK" ;
<#code_ICAO> "CSA" ;
<#call_sign> "CSA" ;
<#country_name> "Czech Republic" .

_:26929753-418e-4d4f-83ab-280ca8697d3b
<#code_IATA> "EO" ;
<#code_ICAO> "ALX" ;
<#call_sign> "ALLCONGO" ;
<#country_name> "Democratic Republic of the Congo" .

As is evident from the provided example, the conversion in Standard mode has yielded a
more complete and comprehensive result, that additionally contains extra metadata such as
positions of the rows amongst the rows of the source table.

3.2.2 RDB to RDF Mapping

In the previous section, the strategies of generating RDF from CSV-like files were considered.
Since the concept of mappings from relational databases to RDF datasets is also applicable
in the context of this thesis, it will be revealed in this section.

There is a good deal of mapping languages that provide the ability to represent the
existing relational data in the RDF data model. [48] An “RDB-Direct-Mapping” W3C spec-
ification describes the approach for RDB to RDF transformation and provides a framework
for defining and comparing more sophisticated conversions. [49] There is also a complement
W3C specification, that characterizes the R2RML mapping language. This language is a
relaxed variant of the Direct Mapping and is intended as a default mapping for further
customization. [50]

The most straightforward way to describe the idea of R2RML mapping language tech-
nique is by providing examples. The following sample demonstrates the RDB to RDF trans-
formation on a simple database that includes multiple data types, primary keys, and a single
reference (foreign key). All transformation artifacts, inputs, and outputs are presented below.

Consider having the following input database consisting of two tables:
Both presented tables are in normalized form and have multiple data columns. The first

table contains a single record of the aircraft with a serial number (primary key), registration

23

CHAPTER 3. ANALYSIS

serial_number:INT, PK registration:TEXT type:TEXT airline_id:INT,
FK airline(id)

50020 N101DU CS100 3712

Table 3.4: Aircraft table

id:INT, PK call_sign:TEXT country_code:TEXT
3712 Delta Air Lines US

Table 3.5: Airline table

number, aircraft type, and a column that references the record from the latter table. The
latter table also has a single entity, representing a specific airline and contains the information
about the call sign of the airline and the country code.

In order to transform the RDB to RDF using the R2RML mapping language, it is
necessary to construct the mapping RDF file. This mapping does not essentially have to
map all fields of the input tables and can be partial. Since the database has multiple tables,
it is necessary to define a mapping for each of them. A possible mapping of the airline table
could be the following:

@prefix rr: <http://www.w3.org/ns/r2rml#>.
@prefix ex: <http://example.com/ns#>.

<#TriplesMap1>
rr:logicalTable [rr:tableName "airline"];
rr:subjectMap [

rr:template "http://data.example.com/airline/{id}";
rr:class ex:Airline;

];
rr:predicateObjectMap [

rr:predicate ex:has_call_sign;
rr:objectMap [rr:column "call_sign"];

].
rr:predicateObjectMap [

rr:predicate ex:has_country_code;
rr:objectMap [rr:column "country_code"];

].

This mapping generates the following output triples:

<http://data.example.com/airline/3712> rdf:type ex:Airline.
<http://data.example.com/airline/3712> ex:has_call_sign
"Delta Air Lines".
<http://data.example.com/airline/3712> ex:has_country_code "US".

At this point, a complete mapping of the airline table is defined. The only missing part
is the aircraft table which additionally has a column referencing the records in the airline

24

3.2. MAPPING OF RELATIONAL DATA TO RDF

table. The following mapping demonstrates how to define a linking between two different
mappings:

<#TriplesMap2>
rr:logicalTable [rr:tableName "aircraft"];
rr:subjectMap [

rr:template "http://data.example.com/aircraft/{serial_number}";
rr:class ex:Aircraft;

];
rr:predicateObjectMap [

rr:predicate ex:has_registration;
rr:objectMap [rr:column "registration"];

].
rr:predicateObjectMap [

rr:predicate ex:belongs_to_airline;
rr:objectMap [

rr:parentTriplesMap <#TriplesMap1>;
rr:joinCondition [

rr:child "airline_id";
rr:parent "id";

];
];

].

It is worth noting that the stated mapping is partial and does not include column “type”.
The result of the mapping is displayed below:

<http://data.example.com/aircraft/50020> rdf:type ex:Aircraft.
<http://data.example.com/aircraft/50020> ex:has_registration "N101DU".
<http://data.example.com/aircraft/50020> ex:belongs_to_airline
<http://data.example.com/airline/3712>.

3.2.3 Mapping using SPipes

In order to represent the provided source tabular data according to the OWL data model,
it was necessary to first convert them into RDF. For this purpose, an implementation of
the SPipes 3 scripting language named SPipes Engine was used. An individual SPipes
transformation script was prepared for each source data file. Each such transformation script
consists of two stages: CSV to RDF conversion along with the validation of constraints and
subsequent mapping of the result to the OWL data model. It should be emphasized that
all RDF transformation scripts were created by Mgr. Miroslav Blaško, Ph.D., Knowledge
Based Software Systems Group (KBSS) and lie outside the scope of the thesis.

3GitHub repository is available at <https://github.com/kbss-cvut/s-pipes>

25

https://github.com/kbss-cvut/s-pipes

CHAPTER 3. ANALYSIS

3.2.3.1 CSV to RDF conversion

The conversion of source CSV files to RDF is an initial stage of the data transformation
process. It is achieved using a tabular data to RDF convertor module for SPipes called
Tabular. Tabular was created by KBSS and is intended for converting tabular data (e.g. CSV
or TSV) to RDF. Its implementation loosely follows the CSV2RDF W3C Recommendation
discussed in the previous section. It should be pointed out that this stage also involves the
validation of the constraints defined for the corresponding source CSV file.

3.2.3.2 RDF data mapping

The result of the CSV to RDF conversion serves as input for the latter stage of the data
transformation process. This stage involves the construction of the OWL ontology with
instance data which is compliant with the OWL ontology defining the data model (the
domain model as well as the prefixes used are described in chapter 5.1). The construction
is defined using CONSTRUCT statements of SPARQL. For instance, the following excerpt
from the RDF mapping script (slightly modified for readability) has been used to construct
the cm:workpackage (work package) and cm:aircraft (aircraft) entities based on the result of
the CSV to RDF conversion of WOTA file:

:construct-csat-maintenance-data
a sml:ApplyConstruct ;
sm:next :transform ;
sml:constructQuery [

a sp:Construct ;
sp:text """# 1 - extract ontology

CONSTRUCT {
cm:wo-tc-ref-34567 a owl:Ontology ;

owl:imports
<http://onto.fel.cvut.cz/ontologies/csat-maintenance>

.

?workpackageIRI a cm:workpackage, owl:NamedIndividual ;
cm:id ?workpackageId ;
cm:is-repair-of ?aircraftIRI ;

.

?aircraftIRI a cm:aircraft, owl:NamedIndividual;
cm:registration ?acRegistration ;
cm:age ?acAge ;

.
} WHERE {

?rd :AC ?acRegistration .
?rd :A_C_age ?A_C_age .
?rd :WP ?workpackageId .
BIND(dl:instance(cm:workpackage, ?workpackageId) as ?workpackageIRI)

26

3.3. ANALYSIS OF CHARTING LIBRARIES

BIND(?A_C_age as ?acAge)
BIND(dl:instance(cm:aircraft, ?workpackageId) as ?aircraftIRI)

}""" ;
] ;

sml:replace true ;
rdfs:label "construct-csat-maintenance-data" ;

The possible result of the mentioned script could be the following (represented using Turtle
syntax):

cm:wo-tc-ref-34567 a owl:Ontology ;
owl:imports <http://onto.fel.cvut.cz/ontologies/csat-maintenance>

.
cm:workpackage--PH-XRY-H-21-HMV9-AWL-LDG a cm:workpackage,
owl:NamedIndividual;
cm:has-client cm:client--TAV;
cm:id "PH-XRY/H-21 HMV9+AWL+LDG";

cm:is-repair-of cm:aircraft--PH-XRY-H-21-HMV9-AWL-LDG;
.
cm:aircraft--PH-XRY-H-21-HMV9-AWL-LDG a cm:aircraft, owl:NamedIndividual;
cm:age "18.783561";

cm:registration "PH-XRY"
.

3.3 Analysis of charting libraries

The implementation of the application involves the creation of the graphical user interface
(GUI). The system design of the application separates the presentation layer from the rest of
the system. Since the application is built on the web technology stack, the communication
with the controllers is done through asynchronous JavaScript HTTP requests (AJAX). The
user interface of the application will primarily consist of the data charts, i.e. tools for data
metric visualization, in which the values are represented by graphical elements. Therefore
its implementation will require a choice of the JavaScript library that can create the data
charts of necessary types. The main requirements for the charting library are the following:

R1 it has to be open-source and actively maintained

R2 it has to work with HTML5 elements (Canvas 4 or SVG 5)

R3 it has to be lightweight and fast

R4 it has to be responsive 6

4More information about Canvas available at <https://developer.mozilla.org/en-US/docs/Web/HTM
L/Element/canvas>

5More information about SVG available at <https://developer.mozilla.org/en-US/docs/Web/SVG/E
lement/svg>

6More information about Responsive Design available at <https://developer.mozilla.org/en-US/do
cs/Learn/CSS/CSS_layout/Responsive_Design>

27

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/canvas
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/canvas
https://developer.mozilla.org/en-US/docs/Web/SVG/Element/svg
https://developer.mozilla.org/en-US/docs/Web/SVG/Element/svg
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Responsive_Design
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Responsive_Design

CHAPTER 3. ANALYSIS

R5 it has to work in modern browsers defined in NFR1 of non-functional requirements
(4.3)

R6 it has to support multiple X and Y axes

R7 it has to have minimal dependencies

R8 it has to have sufficiently good documentation

R9 it has to be able to visualize the following chart types*: bar, stacked bar,line, area,
stacked area, line column, pie

* the mentioned chart types are referring to the definitions from the ThoughtSpot Soft-
ware Documentation 7

The following section describes five libraries that were considered as graph visualization
solutions. Every library was checked for compliance with the stated requirements and sub-
sequently compared with the others.

3.3.1 CHARTIST.JS

CHARTIST.JS 8 is a charting library for creating simple responsive charts with the aim of
providing customization capabilities. The main benefits of the library are the following:

1. based on SVG, i.e. using vector graphics

2. open-source and free for all uses

3. lightweight and fast

4. supports animations

5. responsive charts of all required types

6. no dependencies

7. compatible with the majority of the modern browsers

8. highly customizable

According to the documentation of the library, it supports only three types of charts: line,
bar, and pie. However, because of its high customization abilities, these basic chart types
can be used to build more complex ones. For instance, a simple line chart can be used as a
basis for building the stacked area chart with multiple series:

7ThoughtSpot Software Documentation is available at <https://docs.thoughtspot.com/software/6.
2/about-charts>

8CHARTIST.JS homepage available at <http://gionkunz.github.io/chartist-js/>

28

https://docs.thoughtspot.com/software/6.2/about-charts
https://docs.thoughtspot.com/software/6.2/about-charts
http://gionkunz.github.io/chartist-js/

3.3. ANALYSIS OF CHARTING LIBRARIES

new Chartist.Line(’.ct-chart’, {
labels: [1, 2, 3, 4, 5, 6, 7, 8],
series: [

[447, 681, 572, 409, 449, 332, 642, 670, 672],
[666, 641, 540, 434, 343, 545, 396, 323, 443],
[652, 548, 302, 405, 621, 361, 505, 592, 612],
[356, 404, 492, 590, 699, 300, 420, 395, 413]

]
}, {

low: 0,
showArea: true

});

The result of the code is depicted in the figure 3.2:

Figure 3.2: CHARTIST.JS - stacked area chart with multiple series

The library fulfills the majority of the stated requirements. However, there are several
significant disadvantages, such as relatively weak documentation and quite a humble feature
set. Furthermore, it does not support multiple X and Y axes out of the box, and, most
importantly, it is not being actively maintained.

29

CHAPTER 3. ANALYSIS

3.3.2 Chart.js

Chart.js 9 is a simple yet flexible JavaScript HTML5 based charting library for creating
interactive and customizable charts. Its API is quite simple, decently organized, and well-
documented. It has the following advantages:

1. open-source and free for all uses

2. lightweight and fast

3. responsive animated charts of required types

4. no dependencies

5. custom plugins support

6. compatible with the majority of the modern browsers

7. highly customizable and supports multiple axes

8. clear documentation

The Sample page 10 of the library demonstrates the examples of the various chart types,
including:

• bar charts

– horizontal and vertical bar charts

– stacked bar chart

– floating bars

• line chart

• area chart

• bubble chart

• scatter chart

• doughnut chart

• pie chart

• polar and radar charts

This set is absolutely sufficient and contains all chart types from the stated requirements.
The example of the diagram with multiple chart types (stacked bar/line) is depicted in the
image below.

9Chart.js homepage available at <http://www.chartjs.org/>
10Sample page is available at <https://www.chartjs.org/docs/latest/samples/information.html>

30

http://www.chartjs.org/
https://www.chartjs.org/docs/latest/samples/information.html

3.3. ANALYSIS OF CHARTING LIBRARIES

Figure 3.3: Chart.js - stacked bar/line chart with multiple Y axes

One of the most important advantages of Chart.js is the support of customized plugins.
It provides the ability to modify the existing graphical elements of the charts, as well as to
create personalized ones. In addition, there exist a good deal of useful plugins created by
the community 11.

In fact, the only drawback of this library is that it is based on the raster graphics (i.e.
it uses a Canvas API of the HTML5), meaning they cannot scale up losslessly. Nevertheless,
it is still responsive and meets all the stated requirements.

3.3.3 Highcharts

Highcharts 12 is a charting library that comes with plenty of tools for creating reliable and
secure data visualizations. It is built on JavaScript and TypeScript and works with multiple
back-end technologies. Highcharts library also comes with the wrappers for the programming
languages, such as .Net, PHP, Python, R, Java. The mobile platforms are also supported
(iOS and Android) as well as the most popular front-end frameworks like Angular, Vue, and
React. [51]

The following advantages are offered by the Highcharts library:

• based on SVG and can be saved as raster image

• supports many different charts with many options

• provides good documentation and plenty of examples

• excellent browser support
11List of plugins available at <https://github.com/chartjs/awesome>
12Highcharts homepage available at <https://www.highcharts.com/>

31

https://github.com/chartjs/awesome
https://www.highcharts.com/

CHAPTER 3. ANALYSIS

• has a large and active community

• supports multiple Y axes

As can be seen from the demo pages 13, the library includes all essential chart types, such
as:

• line charts

• area charts

• column and bar charts

• pie charts

• scatter and bubble charts

• and many others, including event 3D versions of them

The library is extremely customizable and can combine basically unlimited numbers of charts
together. A good example of a chart showing the capabilities of the library is portrayed in
the image below:

Figure 3.4: Highcharts - Highcharts and Highsoft timeline [52]

This is an advanced example showing a combination of various features, including flags
and plot bands. It comprises multiple charts of different types with several notes, labels,
and graphical elements. The library fulfills the majority of defined requirements, although
it may appear to be quite complex and not lightweight due to the number of functionalities
it provides. Moreover, the library has a proprietary license, meaning it is free for personal
and non-commercial uses but paid for commercial applications.

13Demo page available at <https://www.highcharts.com/demo>

32

https://www.highcharts.com/demo

3.3. ANALYSIS OF CHARTING LIBRARIES

3.3.4 Google Charts

Google Charts 14 is a charting library developed by Google. It allows users to create sim-
ple charts without any complex interactions [53] and provides a variety of interactive and
zoomable visualization elements based on pure HTML5/SVG technology. The following
strengths can be highlighted in the library:

• cross-browser compatibility (including older IE versions)

• cross-platform portability to iOS and Android

• no dependencies, no plugins are needed

• good documentation, plenty of guides and samples

• easy to use

• an extensive number of different chart types, such as:

– area charts

– bar charts

– bubble charts

– calendar charts

– candlestick charts

– Gantt charts

– line charts

– and many others, including word trees and 3D charts

The following image demonstrates the capabilities of the library on the example of a mod-
erately complex chart, combining two different chart types with multiple series of the data:

Despite the listed advantages, the library has a fundamental flaw. In order to use the
interactive features of Google Charts, it requires the users’ computers to have access to the
gstatic server 15 (where the JS library script is hosted). The reason is that the visualization
libraries are loaded dynamically in advance. Moreover, the terms of service of the library do
not allow downloading the particular code. This makes it impossible to use on an intranet,
in offline mode, or to be hosted locally. [55] Therefore the library might not be the best
option for enterprise systems or systems with sensitive data.

3.3.5 D3.js

D3.js is a JavaScript charting library for using HTML, SVG, and CSS. Its emphasis on web
standards provides the full capabilities of modern browsers and combines powerful visualiza-
tion components for data representation. [56]

14Google Charts homepage available at <https://developers.google.com/chart/>
15Server gstatic available at <https://www.gstatic.com/charts/loader.js>

33

https://developers.google.com/chart/
https://www.gstatic.com/charts/loader.js

CHAPTER 3. ANALYSIS

Figure 3.5: Google Charts - combo chart (bar/line) with multiple series of data [54]

The charts created with this library are based on SVG elements. There are a large number
of different charts of all types, including various bar, line, area, radial, pie, donut charts, and
others. The home web pages of the library provide a huge amount of examples showing its
capabilities. It also provides decent documentation in form of a GitHub repository wiki 16.

The following figure 3.6 depicts the example of a relatively complex chart with multiple
data series and negative values:

Figure 3.6: D3.js - horizontal stacked bar chart multiple series of data [57]

Amongst the strengths of D3.js is certainly the absence of dependencies, its lightweight-
ness, and featurefulness. However, to some, it may seem that the library is overwhelmed to
some degree and has a steep learning curve.

16D3.js GitHub repository wiki available at <https://github.com/d3/d3/wiki>

34

https://github.com/d3/d3/wiki

3.3. ANALYSIS OF CHARTING LIBRARIES

Library R1 R2 R3 R4 R5 R6 R7 R8 R9
CHARTIST.JS + + + + + - + + ±*
Chart.js + + + + + + + + +
Highcharts - + - + + + - + +
Google Charts ±** + + ±*** + - + + +
D3.js + + + + + + + + +

* basic chart types can be used to build the more complex ones; ** not open-source, but free
for all uses; *** requires additional coding and configuration

Table 3.6: Charting libraries - requirement coverage

3.3.6 Summary

The following table 3.6 summarizes the overview and comparison results with respect to the
defined requirements. Each considered library is assigned a certain symbol in the column
corresponding to one of the requirements, indicating the degree of compliance with the
requirement.

The results show that both Chart.js and D3.js libraries best meet the stated requirements.
However, when choosing a library, it should be taken into account the fact that D3.js has a
steeper learning curve compared to Chart.js. It is also worth noting that Chart.js library is
based on raster graphics, while the latter uses vector graphics. This should be considered
since it might influence to a certain extent the related development process.

35

CHAPTER 3. ANALYSIS

36

Chapter 4

Requirement analysis

The requirement analysis is the process of determining user expectations for a new or mod-
ified product. [59] It is an essential step in the early stages of software development. The
software requirements are intended to provide a vision of the functionalities and capabilities
of the software. It enables the developer team to prioritize tasks and goals during the rest
of the development process.

In this chapter of the thesis, the software requirements are defined. They have been
gathered from the regular meetings with a domain expert from CSAT throughout the de-
velopment process of the project. The specified software requirements are divided into two
groups: functional and non-functional. The functional requirements describe a particular
behavior of functions of the system when certain conditions are met. On the other hand,
the non-functional requirements are intended to describe how a system should behave and
the limits on its functionality. [60]

4.1 Prioritization of requirements

Requirement prioritization helps to define the relative importance and urgency of different
requirements to cope with the limited resources of projects. Its purpose is to ensure that the
most critical requirements are addressed immediately in case time runs out. [61]

MoSCoW prioritization method is one of the widely-used prioritization techniques which
consists of assigning a category to each requirement in order to indicate the degree of its
importance. The acronym MoSCoW is formed from the following categories [62]:

• Must have initiatives represent non-negotiable needs for the project, product, or release
in question

• Should have initiatives are essential to the product, project, or release, but they are
not vital

• Could have initiatives are not necessary to the core function of the product

• Will not have (this time) initiatives are not a priority for this specific time frame but
might be prioritized in the future.

37

CHAPTER 4. REQUIREMENT ANALYSIS

Figure 4.1: MoSCoW priorities

The following sections outline the functional and non-functional requirements. Each of
the stated requirements is assigned with one of the MoSCoW priorities using the following
marks [M] for “Must have”, [S] for “Should have”, [C] for “Could have”, and [W] for “Will not
have”.

4.2 Functional requirements

FR1 Work package list page

FR1.1 [M] Users are able to view the list of the ongoing work packages

FR1.2 [S] Users are able to see the status of every listed WP

FR1.3 [C] Users are able to filter listed work packages by name using regular expression

FR1.4 [C] Users are able to filter listed work packages by end date

FR2 Data management

FR2.1 [M] Users are able to initiate the data update process

FR2.2 [S] Users are able to get information about the latest performed update

FR2.3 [S] Users are able to download a source dataset from the latest update

FR2.4 [M] System is able to consume data exported by AMOS system*

38

4.2. FUNCTIONAL REQUIREMENTS

FR2.5 [M] System is able to consume personnel attendance data exported by CPACS*

*Both these systems are providing their data through the external dedicated secure FTP
server in the form of multiple CSV files. A more detailed specification of CSV files is
stated in section 3.1.4.

FR3 Work package execution progress (Dashboard 1.0)

FR3.1 System is able to display the current execution progress of the selected WP by:

FR3.1.1 [M] number of remaining days until the end of the WP

FR3.1.2 [M] number of issued and closed task cards

FR3.1.3 [M] number of issued and closed scheduled work orders

FR3.1.4 [M] number of issued and closed non-routine cards

FR3.2 System is able to visualize the current resource utilization of the selected WP
as a chart consisting of:

FR3.2.1 [M] resource utilization goal of WP and its responsible line

FR3.2.2 [M] overall average resource utilization of WP*

FR3.2.3 [M] overall average resource utilization of WP responsible line*

FR3.2.4 [M] amount of productive man-hours performed by maintenance techni-
cians on each day of WP execution*

FR3.2.5 [M] amount of cost hours performed by maintenance technicians on each
day of WP execution*

FR3.2.6 [M] resource utilization rate of maintenance technicians on each day of
WP execution*
*None of these metrics should take into account the “support” maintenance groups:
Administrative works group, Washer supervision group, Planner group

FR3.3 [M] System is able to visualize the progress of NRC tasks (NRC progress) of the
selected WP as a chart

FR3.4 System is able to visualize the current WO findings statistics of the selected
WP as a chart consisting of:

FR3.4.1 [M] amount of estimated man-hours for each main heavy-maintenance
group*

FR3.4.2 [M] amount of used man-hours for each main heavy-maintenance group*
*The set of main heavy-maintenance groups consist of: Avionics mechanic group,
Sheet metal support group, Landing gear mechanic group, Engine mechanic group,
Interior mechanic group, Exterior mechanic group

FR3.5 System is able to display current information about the selected WP such as:

FR3.5.1 [M] WP name

FR3.5.2 [M] customer name

39

CHAPTER 4. REQUIREMENT ANALYSIS

FR3.5.3 [M] aircraft model
FR3.5.4 [M] WP execution status
FR3.5.5 [M] WP start date and end date

FR4 Work package execution progress details (Dashboard 2.0)

FR4.1 System is able to display current detailed information about the selected WP
such as:

FR4.1.1 [S] total amount of productive man-hours performed by maintenance
technicians during WP execution*
FR4.1.2 [S] total amount of cost man-hours performed by maintenance technicians
during WP execution*
FR4.1.3 [S] overall average resource utilization of WP*
*None of these metrics should take into account the “support” maintenance groups

FR4.2 System is able to display current detailed information about the resource uti-
lization related to the selected WP such as:

FR4.2.1 [W] planned amount of man-hours to be spent on a WP within agreed
fixed price based on time estimation for inspections
FR4.2.2 [W] planned amount of man-hours to be spent on a WP above agreed
fixed price based on time estimation for unplanned work orders

FR4.3 [W] System is able to display current detailed information about the resource
utilization related to the responsible maintenance line of the selected WP

FR4.4 System is able to display detailed information about the resource estimate for
the following maintenance groups of the selected WP:

FR4.4.1 [W] Avionics mechanic group
FR4.4.2 [W] Sheet metal support group
FR4.4.3 [W] Landing gear mechanic group
FR4.4.4 [W] Engine mechanic group
FR4.4.5 [W] Interior mechanic group
FR4.4.6 [W] Exterior mechanic group

It should be emphasized that the majority of the Dashboard 2.0 functional requirements (all
except FR4.1) have [W] priority, which means that they will neither be implemented nor
comprehensively specified in this thesis.

The following use case diagram (figure 4.2) depicts the interactions between the system
and its users. It comprises the activities based on the functional requirements with higher
priority, i.e. the ones that will be implemented in the software prototype.

There are two main system roles are distinguished: Plan Execution Manager, which
requires additional privileges, and Maintenance Technician, which represents a basic user.
The basic users are only interested in the main dashboard statistics and do not need any
interaction with the system. On the other hand, the manager wants to be able to utilize
extra functionalities which are not visible to the ordinary employee.

40

4.3. NON-FUNCTIONAL REQUIREMENTS

Figure 4.2: Use case diagram: functional requirements

4.3 Non-functional requirements

NFR1 System is accessible using modern internet desktop web browsers:

NFR1.1 [M] Google Chrome version 96.0.4664 or higher

NFR1.2 [M] Firefox 91.0 version or higher

NFR1.3 [M] Safari version 14.0 or higher

NFR2 [M] System user interface is in English

NFR3 [M] System is designed to be extensible to enable integrability with other systems

NFR4 [S] System is developed using a modern and widely used technology stack

NFR5 [M] Only authenticated users are able to access the system

NFR6 [S] The charts for metric visualization are created using the charting library
that meets all the requirements stated in chapter 3.3.

41

CHAPTER 4. REQUIREMENT ANALYSIS

42

Chapter 5

System Design

This chapter is intended to describe general system design decisions. It includes information
about system components, services, and modules, as well as the definition and specification
of the dashboard metrics required to meet the requirements.

5.1 Domain model

In order to define object-relational mapping (ORM), it is needed to introduce the domain
model of the application.In order to define object-relational mapping (ORM), it is needed
to introduce the domain model of the application. This process began with an examination
of the already existing “CSAT-maintenance” ontology. This process was accompanied by
consultations and discussions with domain experts and ontology engineers. During the de-
velopment process, an extension ontology “CSAT-maintenance-spec” was created, in which
the concepts not suitable for the target system were changed and expanded. The diagram
below reflects a “CSAT-maintenance-spec” domain model of the aircraft maintenance execu-
tion process as a collection of OWL classes, relations, and properties. For readability, the
following prefixes are used instead of full URIs (presented using Turtle syntax):

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix cm: <http://onto.fel.cvut.cz/ontologies/csat-maintenance/> .

Every relation presented on the diagram is either a type inference (rdfs:subClassOf),
object property (owl:ObjectProperty) linking source class to target class, or a data property
(owl:DatatypeProperty) linking class to an attribute. Each particular instance also implicitly
includes an attribute, representing its identifier (cm:id).

One of the core entities of the domain model is a work package (cm:workpackage). This
entity reflects a group of related tasks within a maintenance plan execution and is always as-
sociated with a single client (cm:client by cm:has-client relation) and an aircraft (cm:aircraft
by cm:is-repair-of relation). The work package entity also includes a set of attributes:
cm:start-date-scheduled, cm:end-date-scheduled, cm:start-date, cm:end-date, providing the
following information respectively: work package scheduled start date, scheduled end date,
actual start date, and actual end date. The aircraft entity, in turn, has three attributes:

43

CHAPTER 5. SYSTEM DESIGN

cm:model, showing a model code of the aircraft, cm:age, reflecting the age of the aircraft,
and a unique aircraft registration number, represented by cm:registration attribute.

The work package can be assigned to a single responsible (or main) maintenance line
(cm:maintenance-line). It is reflected using relation cm:has-responsible-maintenance-line.
Each work package embraces a collection of maintenance tasks (cm:maintenance-task), which
provide details about maintenance, repair, or operations work, such as replacing a part,
returning an asset to operating condition, or performing an inspection of aircraft components,
etc.

The maintenance tasks indicate which action an assigned maintenance technician (or
simply mechanic cm:mechanic) is supposed to complete. It comprises two data properties:
issue time (cm:issue-time), indicating when the task was issued, and end time (cm:end-time),
indicating the end time in case the task is finished. In addition, there are two major categories
of tasks - planned tasks (cm:planned-task) and non-routine tasks, i.e. work orders (cm:work-
order). The planned tasks are the task orders issued by a client or organization, usually for
a service technician. Every non-routine task is either the scheduled task (cm:scheduled-work-
order) or the failure-finding (represented by cm:maintenance-work-order). Failure-findings,
i.e. non-routine cards (NRC) used to reveal hidden or potential failures of components. It
should be noted that every scheduled task is also a planned task. Planned tasks comprise two
different types - client extra order task (cm:client-extra-order-task) or a task card (cm:task-
card).

Every work order consists of one or more execution steps (cm:scoped-task-step). Each step
is interconnected with its work order through the corresponding work order step (cm:work-
order-step) and belongs to a single maintenance group (cm:maintenance-group), namely a
scope. Furthermore, the majority of execution steps have a time estimate represented by
cm:time-estimate-in-hours attribute. On the other hand, the work order steps (cm:work-
order-step) contain two additional attributes: cm:work-order-text, indicating the description
of the corresponding task, and cm:work-order-action-text, reflecting a description of the
aircraft maintenance activity performed.

Service technicians (mechanics) perform maintenance, operations, diagnostic testing, and
repairs to complete assigned maintenance tasks. Their activity is represented by the cm:work-
session entities (through cm:performs relation), containing information about the performed
task and the amount of spent hours. Work activity time rarely matches the actual workplace
attendance, therefore an additional class cm:presence is introduced to represent the period of
time when employees are at work. Work sessions, as well as maintenance tasks, always belong
to a certain maintenance group (cm:maintenance-group). Every maintenance technician
(mechanic) is assigned to a single maintenance group (cm:maintenance-group), also referred
to as a shift group. Moreover, both cm:work-session and cm:presence classes are sub-classes
of the event class (cm:event). Such events contain five attributes: cm:duration-in-hours,
reflecting the duration of the event (in hours), cm:start-date with cm:start-time, indicating
when the event started, and cm:end-date with cm:end-time, representing an instant when
the event ended. Additionally, in case the start date and end date of the event differ, the
event can be divided into multiple instances of cm:day-bound-event, which are basically the
events that started and ended within one day. Then, cm:day-bound-event the must refer to
the original event through cm:is-day-bound-part-of relation.

44

5.2. NAVIGATION

5.2 Navigation

The navigation part of the application is designed in accordance with the described functional
requirements (4.2), namely the ones defined under the FR1 group. It is intended to allow
the users to navigate between different views of the application to access its functions. The
navigation part includes a work package explorer and the navigation menu.

The work package explorer is done in the form of a separate web page. It is responsible
for listing the existing work packages and performing filtering based on the name and end
date of the work package. Each listed item is assumed to have a navigation element which
can be used to open the dashboard page of a corresponding work package. Moreover, a
schedule status of the WP is assumed to be presented for each listed item.

Additionally, the navigation menu is designed to be accessible from every page of the
application. It is supposed to provide the navigation links to access different parts of the
application, such as Dashboard 1.0, Dashboard 2.0, work package explorer, etc.

5.3 Data management

According to the requirements stated in (4), the data management is one of the objectives
of the application. It includes system processes designed to keep the application data up-to-
date, as well as communication and data exchange with the source.

The whole data update process can be initiated by the user manually or by an internal
system event (such as a timer) and comprises the following steps:

• download of an exposed source dataset, provided by AMOS and CPACS through se-
cured FTP server

• transformation of the fetched tabular data into domain model compliant RDF (as
entities)

• processing of the incoming entities

• propagation of the entities changes to the persistent database storage.

Additionally, the system should provide users with the ability to access (download) the
source dataset that was utilized in the most recent successful update. It is assumed that the
graphical user interface of the application will contain the control elements such as a button
to initiate the update or the links to download the source data from the latest successful
update. Furthermore, the interface should also provide information about the date and time
of the last successful update, as well as a status message reflecting the progress of the ongoing
data update process.

5.4 Dashboard 1.0

This section outlines the purpose and advantages of Dashboard 1.0 with respect to the origi-
nal solution used by CSAT. In addition, the prototype of the dashboard page is demonstrated,
as well as the compulsory metrics, required to fill the charts with the data.

45

CHAPTER 5. SYSTEM DESIGN

5.4.1 Data representation

According to the requirements stated in (4), Dashboard 1.0 should visualize metrics related
to the execution progress of the selected work package. It is also supposed to facilitate the
monitoring of work performance and effectiveness of resource utilization. Initially, CSAT
used a simple visualization of these metrics done in the form of spreadsheet charts (depicted
in figure 5.2).

Each update was time-consuming since it was done manually, and therefore could lead
to potential errors and inconsistencies. Moreover, the metric values contained in the original
dashboard lack accuracy and precision and therefore could not be used for more demanding
use cases.

The Dashboard 1.0 is designed on the basis of the structure of the original dashboard
with certain improvements in UI and component layout.

Dashboard structure comprises a set of charts and metrics and consists of multiple sep-
arate segments: work package details, work package execution status, NRC progress, uti-
lization, and work order findings. A brief description of these segments is provided in the
following sections. For each mentioned metric, a function will be assigned to calculate its
value.

Work package details
This section of the dashboard provides the information about the selected work package

wp, including work package identifier WPid(wp), client (customer) label WPcl(wp), and a
model of aircraft WPam(wp).

Work package execution status
This part of the dashboard discloses the maintenance plan execution status and consists

of the following elements:

• schedule status WPss(wp)

• number of issued TCissued(wp) and closed TC TCclosed(wp)

• number of issued SWOissued(wp) and closed SWO SWOclosed(wp)

• number of issued MWOissued(wp) and closed NRC MWOclosed(wp)

• overall information about the schedule, i.e. WP scheduled start date WPssd(wp),
scheduled end date WPsed(wp) and actual end date WPaed(wp).

NRC progress
This section of the dashboard consists of a single chart that shows the number of closed

NRC MWOclosed(d,wp) and a number of issued NRC MWOissued(d,wp) on each day d
throughout the work package wp execution.

Utilization
The utilization chart of the dashboard is intended to depict the relation between pro-

ductive hours Hprod(d,wp) and cost hours Hcost(d,wp) spent by employees on each day d
within the work package wp. This relation is also depicted on the chart and shows the pro-
ductivity (utilization) UT (d,wp) per day d. In addition, the average resource utilization of
the responsible (main) maintenance line UTrline(wp) of the work package wp is portrayed.

46

5.4. DASHBOARD 1.0

Work order findings

This section of the dashboard consists of a single chart displaying a relation between the
total time estimate of maintenance tasks Hest(sc, wp) per each scope sc and the amount of
the productive hours Hprod(sc, wp) spent by employees on the corresponding maintenance
tasks.

5.4.2 Metric functions

In this section the formulas for dashboard metric calculation are provided. The stated
formula definitions are primarily describing the sets by enumerating their elements or stating
the properties that its members must satisfy. The ones that use predicates are given in a
set-builder notation 1.

There are multiple types of predicate presented in the set definitions:

• object predicates, e.g. tc.is-part-of -workpackage = wp, where tc and wp are variables
basically means that there must exist the following triple:

?tc cm:is-part-of-workpackage ?wp .

• property predicate, for instance:

– mg.has-abbreviation ∈ {”WASH”, ”ADM”, ”PLA”}, where mg is variable ba-
sically means that there must not exist the following triples:

?mg cm:has-abbreviation “WASH” .
?mg cm:has-abbreviation “ADM” .
?mg cm:has-abbreviation “PLA” .

– tc.end-date = ∅, where tc is variable basically means that there must not exist
the following triple:

?tc cm:end-date ?anything .

– tc.end-date ̸= ∅, where tc is variable basically means that there must exist the
following triple:

?tc cm:end-date ?anything .

There are also several getter functions presented that always return a single property value
or none. To exemplify F (x) = x.has-y.has-name where x is a variable will return the result
of the following SPARQL expression:

1More information about set-builder notation available at <https://www.cuemath.com/algebra/set-bu
ilder-notation/>

47

https://www.cuemath.com/algebra/set-builder-notation/
https://www.cuemath.com/algebra/set-builder-notation/

CHAPTER 5. SYSTEM DESIGN

SELECT ?z WHERE {
?x cm:has-y ?y .
?y cm:has-name ?z .

}

The list of getter functions relevant for the dashboard is presented below:

• get identifier of the responsible (main) maintenance line of the work package wp:
RL(wp) = wp.has-responsible-maintenance-line

• get identifier of the work package wp: WPid(wp) = wp.id

• get label of the client (customer) of the work package wp: WPcl(wp) = wp.has-client

• get model of the aircraft of the work package wp: WPam(wp) = wp.is-repair-of.model

• get scheduled start date of the WP wp:

WPssd(wp) = wp.workpackage-scheduled-start-time

• get scheduled end date of the WP wp:

WPsed(wp) = wp.workpackage-scheduled-end-time

• get actual end date of the work package wp: WPaed(wp) = wp.workpackage-end-time

• get schedule status of the work package :
”Behind schedule”, if now() < WPsed(wp) ∥ WPsed(wp) < WPaed(wp)

”Ahead of schedule”, if now() ≥ WPsed(wp) & WPsed(wp) ≥ WPaed(wp)
”On schedule”, otherwise

(5.1)

The following sets are presented in metric definitions:

• TC = set of all individuals of type cm:task-card

• WP = set of all individuals of type cm:workpackage

• WS = set of all individuals of type cm:work-session

• DBE = set of all individuals of type cm:day-bound-event

• MG = set of all individuals of type cm:maintenance-group

• SWO = set of all individuals of type cm:scheduled-work-order

• MWO = set of all individuals of type cm:maintenance-work-order

• P = set of all individuals of type cm:presence

• M = set of all individuals of type cm:mechanic

• C = set of all individuals of type cm:client

48

5.4. DASHBOARD 1.0

• A = set of all individuals of type cm:aircraft

• STS = set of all individuals of type cm:scoped-task-step

• MGsupport = {mg ∈ MG∥mg.has-abbreviation ∈ {”WASH”, ”ADM”, ”PLA”}}
defines a set of irrelevant support maintenance groups, i.e. Administrative works

group, Washer supervision group, and Planner group

For example, the TC set can be obtained by executing the following SPARQL expression:

SELECT DISTINCT ?tc WHERE {
?tc a cm:task-card .

}

In order to dramatically reduce the complexity and size of the formulas, the following as-
sumption was introduced: every cm:event (i.e. work sessions (cm:work-session) and atten-
dances (cm:presence)) starts and ends within the same day. In other words, cm:start-date
and cm:end-date of such entities are assumed to be the same. Nevertheless, in practice,
this is not always the case, especially when it comes to night shifts. Therefore, to solve
this problem, every event for which the assumption does not apply is split into multiple
cm:day-bound-event entities.

Metric 1: number of closed TC in work package wp → |TCclosed(wp)|
wp = identifier of the work package

TCclosed(wp) = {tc ∈ TC∥tc.is-part-of -workpackage = wp, tc.end-date ̸= ∅} (5.2)

Metric 2: number of issued TC in work package wp → |TCissued(wp)|

TCissued(wp) = {tc ∈ TC∥tc.is-part-of -workpackage = wp} (5.3)

Metric 3: number of closed SWO in work package wp → |SWOclosed(wp)|

SWOclosed(wp) = {swo ∈ SWO∥swo.is-part-of -workpackage = wp, swo.end-date ̸= ∅}
(5.4)

Metric 4: number of issued SWO in work package wp → |SWOissued(wp)|

SWOclosed(wp) = {swo ∈ SWO∥swo.is-part-of -workpackage = wp} (5.5)

Metric 5: number of closed MWO in work package wp → |MWOclosed(wp)|

MWOclosed(wp) = {mwo ∈ MWO∥mwo.is-part-of -workpackage = wp,

mwo.end-date ̸= ∅}
(5.6)

Metric 6: number of issued MWO in work package wp → |MWOissued(wp)|

49

CHAPTER 5. SYSTEM DESIGN

MWOclosed(wp) = {mwo ∈ MWO∥mwo.is-part-of -workpackage = wp} (5.7)

Metric 7: number of closed MWO in work package wp on the day d → |MWOclosed(d,wp)|

MWOclosed(d,wp) = {mwo ∈ MWO∥mwo.is-part-of -workpackage = wp,

mwo.end-date < d}
(5.8)

Metric 8: number of issued MWO in work package wp on the day d → |MWOissued(d,wp)|

MWOissued(d,wp) = {mwo ∈ MWO∥mwo.is-part-of -workpackage = wp,

mwo.issue-date < d}
(5.9)

Metric 9: total duration of all attendances during the day d within work package wp
besides the irrelevant support maintenance groups → Hcost(d,wp)

Hcost(d,wp) =
∑

m∈Mdwp(d,wp)

Hcost(d,m,wp) (5.10)

Mdwp(d,wp) defines a set of mechanics worked at work package wp during the day d

Mdwp(d,wp) = {m ∈ M∥m.performs.ipomt.ipow = wp,m.performs.start-date = d,

m.performs.ipomt.has-scope /∈ MGsupport}
(5.11)

where ipomt is a shortcut for is-part-of-maintenance-task and ipow is a shortcut for
is-part-of-workpackage.

Hcost(d,m,wp) defines a total duration of all attendances of mechanic m during the day
d within work package wp besides the irrelevant support maintenance groups

Hcost(d,m,wp) = Hcost(d,m) ∗ coeff(d,m,wp) (5.12)

Hcost(d,m) =
∑

p∈Pdm(d,m)

p.duration-in-hours (5.13)

Pdm(d,m) = {p ∈ P∥p.start-date = d, p.has-participant = m} (5.14)

Since cm:presence entities do not have any property that directly connects it to a work
package, a multiplier value has been introduced. This value helps to approximate the real
attendance duration with respect to the work package. The value calculation is based on
the work sessions of the corresponding mechanic m on the corresponding day d within the
required work package wp and is defined by the coeff(d,m,wp).

50

5.4. DASHBOARD 1.0

coeff(d, e, wp) = Hprod(d,m,wp)/Hprod(d,m) (5.15)

Hprod(d,m,wp) defines a total duration of all work sessions performed by mechanic m
during the day d within work package wp besides the irrelevant support maintenance groups

Hprod(d,m,wp) =
∑

ws∈WSdmwp(d,m,wp)

ws.duration-in-hours (5.16)

WSdmwp(d,m,wp) defines a set of work sessions performed by mechanic m during the
day d within work package wp besides the irrelevant support maintenance groups

WSdmwp(d,m,wp) = {ws ∈ WS∥ws.ipomt.ipow = wp,m.performs = ws,

ws.has-scope /∈ MGsupport, ws.start-date = d}
(5.17)

Hprod(d,m) defines a total duration of all work sessions performed by mechanic m during
the day d across all work packages

Hprod(d,m) =
∑

wp∈WP

Hprod(d,m,wp) (5.18)

It must be noted that there are cases when some mechanic m on some date d has zero
presence time, i.e. Hcost(d,m,wp) = 0, despite the fact that the same mechanic m on
the same date has some work records, i.e. Hprod(d,m,wp) > 0. This is an indication of
inconsistencies in source data, probably caused by situations when employees forget to clock
in or out. As a solution for such cases the artificial attendance values H ′

cost(d,m,wp) will be
used for computation instead of Hcost(d,m,wp), given as H ′

cost(d,m,wp) = Hprod(d,m,wp).
Metric 10: total duration of all work sessions performed during the day d within work

package wp besides the irrelevant support maintenance groups → Hprod(d,wp)

Hprod(d,wp) =
∑
m∈M

Hprod(d,m,wp) (5.19)

Metric 11: utilization (productivity) on day d within work package wp → UT (d,wp)

UT (d,wp) = Hprod(d,wp)/Hcost(d,wp) (5.20)

Metric 12: average utilization of the responsible (main) maintenance line of work pack-
age wp → UTrline(wp)

UTrline(wp) = UTline(line, t1, t2), where line = RL(wp), t1 = wp.scheduled-start-time
and t2 = now(), i.e. today’s date

UTline(line, t1, t2) defines the utilization of line line during interval < t1, t2)

UTline(line, t1, t2) =

∑
d∈DATES(t1,t2)

∑
m∈Mline(line)

Hprod(d,m)∑
d∈DATES(t1,t2)

∑
m∈Mline(line)

Hcost(d,m)
(5.21)

51

CHAPTER 5. SYSTEM DESIGN

DATES(t1, t2) defines a set of every date in interval < t1, t2), for instance, the function
DATES(2042-01-01, 2042-01-04) yields the following set of dates: { 2042-01-01, 2042-01-02,
2042-01-03 }

Mline(line) defines a set of mechanics having shift group related to line line

Mline(line) = {m ∈ M∥m.ipoml = line}
Metric 13: total time estimate of maintenance work orders per scope sc within work

package wp → Hest(sc, wp)

Hest(sc, wp) =
∑

sts∈STSscwp(sc,wp)

sts.time-estimate-in-hours (5.22)

STSscwp(sc, wp) defines set of all scoped task steps per scope sc within work package wp

STSscwp(sc, wp) = {sts ∈ STS∥sts.is-part-of ∈ MWO,

sts.is-part-of.ipow = wp, sts.has-scope = sc}
(5.23)

Metric 14: total duration of all work sessions performed within work package wp and
scope sc → Hprod(sc, wp)

Hprod(sc, wp) =
∑

ws∈WSscwp(sc,wp)

ws.duration-in-hours (5.24)

WSscwp(sc, wp) defines a set of work sessions performed within work package wp and
scope sc

WSscwp(sc, wp) = {ws ∈ WS∥ws.ipomt.ipow = wp,m.performs = ws,ws.has-scope = sc}
(5.25)

5.5 Dashboard 2.0

This section partially outlines the purpose and functionalities of Dashboard 2.0. It should
be stressed that the scope of this thesis covers neither the implementation of the dashboard
prototype nor the comprehensive definition of the dashboard metrics.

5.5.1 Data representation

The dashboard is intended for monitoring operational metrics of the work package, such as
aircraft maintenance progress of individual revisions and maintenance lines.

In accordance with the functional requirements, Dashboard 2.0 is intended to visualize
the work package execution progress in a more detailed way than in Dashboard 1.0.

A partial realization of the dashboard should portray the following information:

• total amount of productive man-hours performed by mechanics during WP execution

• total amount of cost man-hours performed by mechanics during WP execution

52

5.6. SYSTEM MODULES

• overall average resource utilization of WP

It is worth noting that as in the Dashboard 1.0 none of the mentioned metrics should take into
account the values associated with the “support” maintenance groups. These maintenance
groups are defined by the MGsupport set in the Metric functions section of Dashboard 1.0.

5.5.2 Metric functions

In this section, the formulas for dashboard metric calculation are provided. The stated
formula definitions follow the same notation and share the sets and formulas from the cor-
responding section of Dashboard 1.0 description.

Metric 1: total duration of all attendances within the work package wp besides the
irrelevant support maintenance groups → Hcost(wp)

Hcost(wp) = Hcost(t1, t2, wp), where t1 = wp.scheduled-start-time and t2 = now(), i.e.
today’s date

Hcost(t1, t2, wp) =
∑

d∈DATES(t1,t2)

Hcost(d,wp) (5.26)

Metric 2: total duration of all work sessions performed within the work package wp
besides the irrelevant support maintenance groups → Hcost(wp)

Hprod(wp) = Hprod(t1, t2, wp), where t1 = wp.scheduled-start-time and t2 = now(),
i.e. today’s date

Hprod(t1, t2, wp) =
∑

d∈DATES(t1,t2)

Hprod(d,wp) (5.27)

Metric 3: overall utilization (productivity) within the work package wp → UT (wp)

UT (wp) = Hprod(wp)/Hcost(wp) (5.28)

5.6 System modules

In order to back the extensibility and integrability of the application the system is designed
to consist of several modules. Each module is designed to be responsible for a specific set
of functionalities it provides. This section of the thesis provides details about the particular
components and services of the system.

5.6.1 API gateway

The API gateway is a module that serves as the “front door” of the application. The system
design assumes it to be the only publicly available component of a system, exposing the
HTTP RESTful API. Using such a gateway API service in the system architecture allows
to lower the coupling degree and eliminate its dependence on internal subsystems and com-
ponents, as well as to unify the API for external clients. This is made possible because the

53

CHAPTER 5. SYSTEM DESIGN

API gateway does not communicate with internal subsystems and components directly, but
rather through a message service. Moreover, such an approach backs the extensibility and
also integrability of a system, which is part of the non-functional requirements.

5.6.2 Plan Execution Viewer module

Since both Dashboard 1.0 and Dashboard 2.0 share similar functionality and are intended
to be used exclusively for visualization purposes, i.e. perform read-only operations, it was
decided to compose them together to implement a Plan Execution Viewer service. The
main purpose of the service is to provide a graphical interface to the user that is capable
of displaying the plan execution progress of a concrete work package. The implemented
functionalities of the service are supposed to cover the functional requirements FR1, FR3,
and FR4 (4.2)

5.6.3 Updater module

The Updater is a service that is meant to solve the tasks related to data management. The
main purpose of this module is to maintain the application data up to date. The whole
update process is depicted in the figure 5.3.

It consists of multiple steps and involves interaction with an external CSAT SFTP server,
containing the source data, as well as with the SPipes module, which is responsible for data
transformation. The Updater module is assumed to be the only part of the system that
performs write operations on the application database.

5.6.4 SPipes for data transformation

This part of the system is intended to provide the functionalities described in section 3.2.3.
It is presented as a separate module of the application that exposes an HTTP RESTful
API for communication with other services. It is worth noting, that this module does not
assume the use of a Messaging service for communication. Furthermore, the system design
implies that this module will only communicate with the Updater module, therefore it can
be isolated event more.

5.6.5 Messaging service

In every system consisting of multiple interconnected services, there must be some sort
of messaging channel. For instance, one of the traditional approaches for communicating
between services in a microservice architecture is through REST APIs. However, as the
system grows in a number of services, communication becomes more complex and leads
to tight coupling, which is considered an anti-pattern and slows down further development
process. One possible way to overcome this design flaw is to use an asynchronous messaging
platform. [63] The design of the application implies strong isolation of the system modules
from each other. Communication between them is supposed to be done through the dedicated
messaging platform service.

54

5.6. SYSTEM MODULES

Figure 5.1: “CSAT-maintenance-spec” domain model

55

CHAPTER 5. SYSTEM DESIGN

Figure 5.2: CSAT original dashboard

Figure 5.3: Sequence diagram: data update process

56

Chapter 6

Implementation

This chapter contains a brief description of the technologies and methods used in the im-
plementation phase of the project. The first section describes the decisions made regarding
the architecture of the application. The next section provides basic information about the
technology stack of the application. In the third section, the most significant approaches in
the development process are discussed.

6.1 Application architecture

The application architecture combines the principles of Service Oriented Architecture (SOA)
and Microservices Architecture (MA). It uses the most appropriate ideas and features of both
architectural styles to best fit the conditions and requirements of the project. In contrast to
the original approaches, to avoid the high resource demand and additional limitations of the
database transaction models caused by the Database-per-service pattern 1, it was decided to
use the Shared-database-per-service pattern 2, which is considered an anti-pattern in MA.
On the other hand, a lightweight Message Queue (MQ) was chosen instead of the traditional
SOA heavyweight and complex Enterprise service bus (ESB). Furthermore, to avoid excessive
formality and complexity of the service interface caused by SOAP and XML Schema, the
more lightweight solutions (such as REST and JSON) were chosen.

Additionally, the implementation of the application has been following the methodology
called Twelve-Factor App 3. This methodology comprises the best practices for developing
applications with high portability and sustainability.

6.2 Technology stack

This section provides an overview of the technology stack used for the implementation of
the application. It is composed of a combination of used frameworks, libraries, programming

1More information about Database-per-service pattern available at <https://docs.aws.amazon.com/pr
escriptive-guidance/latest/modernization-data-persistence/database-per-service.html>

2More information about Shared-database-per-service pattern available at <https://docs.aws.amazon.
com/prescriptive-guidance/latest/modernization-data-persistence/shared-database.html>

3More information about Twelve-Factor App methodology available at <https://12factor.net/>

57

https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/database-per-service.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/database-per-service.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/shared-database.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/shared-database.html
https://12factor.net/

CHAPTER 6. IMPLEMENTATION

languages, and technologies.

6.2.1 User interface

The user interface of the application is has been made using the classic WEB UI technologies:

• HTML5

• CSS3

• JavaScript (JS)

To ensure lightweightness and reduce the number of dependencies, the frontend part is done
using a plain JS without any JS framework. It uses Asynchronous JavaScript and XML
(AJAX) to communicate with the backend part of the system and retrieve the data. The
charts of the dashboards are created using Chart.js charting library. This library has been
chosen based on the analysis results presented in section 3.3.

6.2.2 Persistence layer

The persistence layer has been built on top of the JOPA library, providing Java OWL
Persistence API to manage and access the database model in external triplestore storage.
This layer is prepared for using any RDF4J compatible database, e.g. GraphDB. As it
was described in section 5.1, the domain model is defined in and generated from an OWL
ontology file.

All tabular source data consumed by application modules are exposed through an external
secured FTP (STFP) server and eventually transformed to RDF-compliant format by S-Pipes
service utilizing its exposed RESTful API endpoints.

6.2.3 Programming language and software framework

The Java programming language has been chosen as a programming language for imple-
mentation due to its significant advantages over other languages in terms of this project.
The main advantages are that it is platform-independent, robust, object-oriented, and has a
number of available libraries and frameworks, including Spring and Spring Boot.

Spring Boot is a Java framework extending a Spring platform and providing a radically
faster and widely accessible getting started experience for all Spring development. Due to
Its security, flexibility, and robustness, it was favored to be used as the main application
framework to create Spring-powered services with absolute minimum difficulties.

6.2.4 Reverse proxy

Reverse proxies are applications that reside between a web server and the server’s clients
[64]. The reverse proxy can also serve as an additional layer to the web application in order
to improve its security and is also considered a best practice.

NGINX web server is one of the most popular web servers [65] and therefore has been
used as a reverse proxy server to route incoming requests and also to enhance the security
of the application.

58

6.3. DEVELOPMENT PROCESS

6.2.5 Containerization

Containerization (OS-level virtualization) improves portability and efficiently delivers higher
utilization of computing resources (compared to VMs). It also allows developers to integrate
with existing environments and augments security by isolating applications from the host sys-
tem and from each other. Containerization in this project has been managed by the Docker
engine and defined using the Docker-compose tool to ease the configuration of applications’
services.

The logging layer consists of several services, represented by the EFK stack - Elasticsearch
as persistent log storage, Fluentd for log message routing, and Kibana for log data accessing,
filtering, and visualization of metrics.

The fundamental technology stack can be shortened in the following list:

1. Java, Spring Boot

2. JOPA, RDF4J/GraphDB

3. SFTP, CSV

4. S-Pipes, RDF

5. NGINX, HTTP

6. EFK stack: Elasticsearch, Fluentd, Kibana

7. Docker, Docker-compose

8. HTML, CSS, JavaScript + Chart.js

6.3 Development process

This section outlines the key aspects of the software development process. It describes the
approaches used to facilitate and automate the integration and deployment of the application
components and services in different environments.

6.3.1 CI/CD using GitHub

GitHub is a cloud-based web service that provides software developers with many features
such as collaborative coding, automation, project management, team administration, bug
tracking, version control, issue tracking, and many others. It is a highly useful tool that
fulfills all the major requirements for software development flow including agile development,
primarily consisting of:

1. features for managing and tracking the project tasks, including participant notifications

2. features for tracking and managing changes to software code and project artifacts

3. tools for DevOps-related processes, such as continuous integration and continuous de-
ployment

59

CHAPTER 6. IMPLEMENTATION

The entire application code, along with the related configuration files, OWL ontologies,
deployment manifest files, and scripts have been stored in the private GitHub repository,
belonging to the KBSS.

Since the project time was quite limited and the thorough analysis could take the ma-
jority of available time, it was considered to follow the hybrid agile-like project management
approach. This approach has been focused on sustainable development with automated
testing to preserve quality and continuous feedback retrieving for more precise requirements
specification. Following this strategy, the software code has been continuously built and
tested by the GitHub Actions services, reporting any failures caused by code changes.

6.3.2 Environments and deployment

To facilitate the deployment process during development, the services were defined as con-
tainers. The containerization has been implemented using Docker and Docker-compose tools,
which eases the automation of the deployment and management of applications in container-
ized environments. It allows composing an entire application with all its dependencies into
an OS-level virtualized environment that can be deployed to a target system.

All environment-relevant deployment configuration files and scripts are stored in a sep-
arate directory ‘deploy‘. Two environments are distinguished during software development:
testing environment and production environment. The particular compose configuration has
been prepared for each of them:

1. docker-compose.yaml is made for a production environment and defines the essential
services, required for a correct and stable running of the application

2. docker-compose-dev.yaml is intended for a testing environment and defines some extra
services for debugging and tuning purposes.

Along with the continuous testing the continuous deployment was performed in a testing
environment. It has been done by using GitHub Actions, Container registry, and Webhooks.
The whole process is depicted in the following diagram:

Every commit to the repository triggers a predefined deployment workflow (located at
.github/workflows/docker-image.yml). This workflow represents a set of activities divided
into multiple stages. It starts with the application build to create the software binaries and
supplementary artifacts to be used in the subsequent stages. In case of failure, the author
of the commit gets notified (e.g. by email) and the workflow terminates. Otherwise, the
second stage of the workflow takes place and builds the application Docker image (i.e. set of
instructions for running docker containers) containing all relevant files required to successfully
run the application. The created image is pushed to the GitHub Container Registry in the
final stage of the workflow which produces a specific Packages event. Thereafter the event is
consumed by the GitHub Webhook service that afterward sends the HTTP message to the
Nginx web server on the target environment. This message is received by the FastCGI module
for Nginx that runs the deployment Bash script (located at deploy/nginx/cgi-bin/deploy.sh)
for pulling the updated Docker image and restarting the application container.

60

6.3. DEVELOPMENT PROCESS

Figure 6.1: Sequence diagram: CI/CD

61

CHAPTER 6. IMPLEMENTATION

62

Chapter 7

Testing

Testing is an essential process of software development. Its main goal is to ensure that the
software meets the defined project requirements. In this chapter, the main testing phases
are outlined. Additionally, the process of user testing is described and further evaluation
results are provided.

7.1 Unit and integration testing

Unit testing is the earliest stage of software testing. Unit tests are intended to evaluate the
functionality of components of the system. Integration testing, on the other hand, is more
abstract and does not require knowledge of the software implementation details. During the
implementations phase, the code of the application has been continuously tested by the CI
pipelines. It provided quick feedback on the quality and ability of the system to perform
its functions. Since the majority of the core modules are implemented in Java using Spring
Boot framework, they were tested with the related testing platforms and libraries, including
JUnit Jupiter (JUnit5), Mockito, embedded Kafka, etc.

7.2 User testing

The user testing was performed by several domain experts. For this purpose, the shared
online document was prepared. This document was intended to test the user experience
of the graphical user interface part of the application. Two test scenarios testing different
functionalities of the application have been described:

• Scenario 1 - focuses on the navigation tests i.e. how users navigate through the appli-
cation

• Scenario 2 - focuses on the retrieving of information about the work package

These scenarios contained a set of tasks and steps that users had to perform. Some of the
tasks required users to measure the time spent on them. In addition, each scenario contained
a post-test questionnaire that was designed to elicit feedback from users and improve the
evaluation of the application. The following sections contain the testing scenarios, as well as
the post-test questionnaire.

63

CHAPTER 7. TESTING

7.2.1 Scenario 1: Navigation

Open the web application <https://kbss.felk.cvut.cz/csat/dashboards.html> in the
web browser Find a WP with the name “PH-HZE/H-21 HMV12” in a work package list

1. Open the main dashboard of the found work package

2. Locate and open the side navigation menu

3. Navigate to the additional (secondary) dashboard with the WP details

4. Navigate back to the main dashboard of the WP using the side navigation menu

5. Using the side navigation menu, open the list of work packages with the name starting
with “OH.”

Post-test questionnaire
Please answer the following questions:

1. What part of the test was the most difficult and why?

2. Describe any problems you had in understanding the task.

3. Describe any problems you had in navigating through the application.

4. Do you have any suggestions for user interface improvements (e.g. rearrange the items
in the navigation menu)?

5. Other comments (e.g. how did you like the user interface).

7.3 Scenario 2: Retrieving work package information

In some test steps, you will be asked to measure the time spent on the task. Please use
the stopwatch on your mobile phone and note the time spent in seconds. Some of the tasks
will ask you to determine certain values based on the provided description. Please note the
found values along with the units and send them with the report.

Open the dashboard of the work package “PH-XXX/H-21 XXX12” in the web browser
using the link Please measure the duration of the next task (3)

1. Take a look at the dashboard and try to obtain the following information:

(a) what is the model of the maintained aircraft

(b) what is the name of the customer

(c) when is the inspection deadline (related to NRC progress)

(d) how many task cards (TC) are in the WP and how many of them have been closed

2. Locate and open the side navigation menu

64

https://kbss.felk.cvut.cz/csat/dashboards.html

7.3. SCENARIO 2: RETRIEVING WORK PACKAGE INFORMATION

3. Navigate to the additional (secondary) dashboard with the WP details

4. Try to obtain the following information:

(a) how many productive hours have been spent during the WP execution

5. Navigate back to the main dashboard of the WP using the side navigation menu

6. Please measure the duration of the next task (9)

7. Try to obtain the following information:

(a) what is the total time estimate for the tasks from the exterior mechanic group
(MECH-EXT)

(b) how many productive hours have been spent on the fifth day of the WP execution
(December 2, 2021)

(c) what was the utilization rate on the fifth day of the WP execution (December 2,
2021)

(d) what is the average utilization rate of the maintenance line of the WP

(e) what is the average utilization rate of the WP

Post-test questionnaire

Please answer the following questions:

1. What part of the test was the most difficult and why?

2. How much time total (in seconds) did you spend on task 3?

3. In task 3 what metric values you did/did not manage to determine?

4. How much time total (in seconds) did you spend on task 9?

5. In task 9 what metric values you did/did not manage to determine?

6. Describe any problems you had in understanding the task.

7. Describe any problems you had in determining the values of the metrics.

8. Do you have any suggestions for user interface improvements (e.g. add tooltips to
certain metric values)?

9. Other comments (e.g. how did you like the user interface).

65

CHAPTER 7. TESTING

7.4 Evaluation

Three domain experts participated in the test process. Each of them went through both
prepared testing scenarios and gave thorough feedback during the answering the post-testing
questions.

As a result of the testing, several shortcomings were identified, which were mainly related
to user experience and user interface of the application. No critical flaws were identified.
However, in spite of this, the project is still under development. There is a plenty of thing
that have to be improved, including all the found flaws that are planned to be fixed in the
next releases.

66

Chapter 8

Conclusion

The main goal of the thesis work was to design and develop a set of ontology-based services.
These services had to be integrated into the AMOS software solution, which is designed
to handle a large number of maintenance and customer design tasks and is used by CSAT
to manage their MRO-related processes. However, it has serious limitations that can be
addressed with an ontology-based approach. Developing an extension of the ontology was
an important objective of the thesis.

As a result, a solution was developed and a prototype was created to automate day-
to-day problem solving in the organization, as well as increased the accuracy of the overall
maintenance calculations within the planning and monitoring processes. This was made
possible by the ontology-based approach, which was implemented with domain experts.

67

CHAPTER 8. CONCLUSION

68

Bibliography

[1] Noy, N. and Mcguinness, Deborah. (2001). Ontology Development 101: A Guide to
Creating Your First Ontology. Knowledge Systems Laboratory. 32.

[2] Verhagen, Wim and Curran, R.. (2013). An ontology-based approach for aircraft main-
tenance task support. 20th ISPE International Conference on Concurrent Engineering,
CE 2013 - Proceedings. 494-506. 10.3233/978-1-61499-302-5-494.

[3] Czech Airlines Technics. (n.d.). Czech Airlines Technics. Linkedin - Czech Airlines Tech-
nics. Retrieved June 5, 2021, from <https://cz.linkedin.com/company/czech-airl
ines-technics>

[4] Swiss-AS. (n.d.). AMOS | Swiss-AS. AMOS | Swiss-AS. Retrieved May 17, 2021, from
<https://www.swiss-as.com/amos-mro>

[5] Swiss-AS. (n.d.). Customers | Swiss-AS. AMOS | Swiss-AS. Retrieved December 1, 2021,
from <https://www.swiss-as.com/customers>

[6] Swiss-AS. (n.d.). Modules | Swiss-AS. AMOS | Swiss-AS. Retrieved June 19, 2021, from
<https://www.swiss-as.com/modules>

[7] Swiss-AS. (n.d.). Material Management | Swiss-AS. Material Management | Swiss-AS.
Retrieved July 22, 2021, from <https://www.swiss-as.com/amos-mro/modules/mate
rial-management>

[8] Swiss-AS. (n.d.). Engineering | Swiss-AS. Engineering | Swiss-AS. Retrieved July 20,
2021, from <https://www.swiss-as.com/amos-mro/modules/engineering>

[9] <https://www.swiss-as.com/amos-mro/modules/planning> Swiss-AS. (n.d.).
Planning | Swiss-AS. Planning | Swiss-AS. Retrieved July 25, 2021, from <https:
//www.swiss-as.com/amos-mro/modules/planning>

[10] Swiss-AS. (n.d.). Component Maintenance | Swiss-AS. Component Maintenance | Swiss-
AS. Retrieved January 4, 2021, from <https://www.swiss-as.com/amos-mro/module
s/component-maintenance>

[11] Swiss-AS. (n.d.). Production | Swiss-AS. Production | Swiss-AS. Retrieved June 14,
2021, from <https://www.swiss-as.com/amos-mro/modules/production>

69

https://cz.linkedin.com/company/czech-airlines-technics
https://cz.linkedin.com/company/czech-airlines-technics
https://www.swiss-as.com/amos-mro
https://www.swiss-as.com/customers
https://www.swiss-as.com/modules
https://www.swiss-as.com/amos-mro/modules/material-management
https://www.swiss-as.com/amos-mro/modules/material-management
https://www.swiss-as.com/amos-mro/modules/engineering
https://www.swiss-as.com/amos-mro/modules/planning
https://www.swiss-as.com/amos-mro/modules/planning
https://www.swiss-as.com/amos-mro/modules/planning
https://www.swiss-as.com/amos-mro/modules/component-maintenance
https://www.swiss-as.com/amos-mro/modules/component-maintenance
https://www.swiss-as.com/amos-mro/modules/production

BIBLIOGRAPHY

[12] Swiss-AS. (n.d.). Maintenance Control | Swiss-AS. Maintenance Control | Swiss-AS.
Retrieved June 14, 2021, from <https://www.swiss-as.com/amos-mro/modules/main
tenance-control>

[13] Swiss-AS. (n.d.). Commercial | Swiss-AS. Commercial | Swiss-AS. Retrieved December
10, 2021, from <https://www.swiss-as.com/amos-mro/modules/commercial>

[14] Swiss-AS. (n.d.). Human Resources | Swiss-AS. Human Resources | Swiss-AS. Retrieved
October 22, 2021, from <https://www.swiss-as.com/amos-mro/modules/human-reso
urces>

[15] Swiss-AS. (n.d.). Quality Assurance | Swiss-AS. Quality Assurance | Swiss-AS. Retrieved
October 22, 2021, from <https://www.swiss-as.com/amos-mro/modules/quality-as
surance>

[16] Swiss-AS. (n.d.). Financial Management | Swiss-AS. Financial Management | Swiss-AS.
Retrieved October 1, 2021, from <https://www.swiss-as.com/amos-mro/modules/fi
nancial-management>

[17] Swiss-AS. (n.d.). Interfaces | Swiss-AS. Interfaces | Swiss-AS. Retrieved October 22,
2021, from <https://www.swiss-as.com/amos-mro/interfaces>

[18] THE INVESTOPEDIA TEAM. (2021, November 15). Web 2.0 and Web 3.0 Definitions.
Investopedia. Retrieved December 10, 2021, from <https://www.investopedia.com/w
eb-20-web-30-5208698>

[19] Narottam04, N. (2021, December 24). Web 1.0, Web 2.0 and Web3 Explained. DEV
Community. Retrieved December 25, 2021, from <https://dev.to/narottam04/web-
10-web-20-web-30-explained-591n>

[20] MATTR. (n.d.). Semantic Web Machine Readable Data. MATTR | Learn. Retrieved
October 13, 2021, from <https://learn.mattr.global/docs/concepts/semantic-we
b>

[21] Admin. (2011). MyLabBook.org. MyLabBook. Retrieved October 22, 2021, from <ht
tps://www.mylabbook.org/blog-drupal-semantic-web.php>

[22] Tauberer. (2005). RDF. XMLHack. Retrieved October 1, 2021, from <http://xmlh
ack.ru/texts/06/rdf-quickintro/rdf-quickintro.html>

[23] Manu Sporny, Dave Longley, Gregg Kellogg, Markus Lanthaler, Pierre-Antoine
Champin, Niklas Lindström. (2020, July 16). JSON-LD 1.1. W3C. Retrieved October
7, 2021, from <https://www.w3.org/TR/json-ld/>

[24] RDFS - W3C Wiki. (2005). W3C. Retrieved December 10, 2021, from <https://www.
w3.org/wiki/RDFS>

[25] Semantic University. (2021, July 23). Learn OWL and RDFS. Cambridge Semantics.
Retrieved August 14, 2021, from <https://cambridgesemantics.com/blog/semantic
-university/learn-owl-rdfs/>

70

https://www.swiss-as.com/amos-mro/modules/maintenance-control
https://www.swiss-as.com/amos-mro/modules/maintenance-control
https://www.swiss-as.com/amos-mro/modules/commercial
https://www.swiss-as.com/amos-mro/modules/human-resources
https://www.swiss-as.com/amos-mro/modules/human-resources
https://www.swiss-as.com/amos-mro/modules/quality-assurance
https://www.swiss-as.com/amos-mro/modules/quality-assurance
https://www.swiss-as.com/amos-mro/modules/financial-management
https://www.swiss-as.com/amos-mro/modules/financial-management
https://www.swiss-as.com/amos-mro/interfaces
https://www.investopedia.com/web-20-web-30-5208698
https://www.investopedia.com/web-20-web-30-5208698
https://dev.to/narottam04/web-10-web-20-web-30-explained-591n
https://dev.to/narottam04/web-10-web-20-web-30-explained-591n
https://learn.mattr.global/docs/concepts/semantic-web
https://learn.mattr.global/docs/concepts/semantic-web
https://www.mylabbook.org/blog-drupal-semantic-web.php
https://www.mylabbook.org/blog-drupal-semantic-web.php
http://xmlhack.ru/texts/06/rdf-quickintro/rdf-quickintro.html
http://xmlhack.ru/texts/06/rdf-quickintro/rdf-quickintro.html
https://www.w3.org/TR/json-ld/
https://www.w3.org/wiki/RDFS
https://www.w3.org/wiki/RDFS
https://cambridgesemantics.com/blog/semantic-university/learn-owl-rdfs/
https://cambridgesemantics.com/blog/semantic-university/learn-owl-rdfs/

BIBLIOGRAPHY

[26] OWL Working Group. (2012). OWL - Semantic Web Standards. OWL. Retrieved Oc-
tober 7, 2021, from <https://www.w3.org/OWL/>

[27] Cambridge Semantics. (2021, August 24). RDFS vs. Owl. Retrieved October 7, 2021,
from <https://cambridgesemantics.com/blog/semantic-university/learn-owl-
rdfs/rdfs-vs-owl/>

[28] Cambridge Semantics. (2021a). SPARQL Query and Command Clauses. Retrieved Oc-
tober 22, 2021, from <https://docs.cambridgesemantics.com/anzograph/v2.4/use
rdoc/sparql-queries.htm>

[29] Jack Rusher, Radar Networks, J. (2001). Rhetorical Device: Triple Store. Triple Store.
Retrieved October 22, 2021, from <https://www.w3.org/2001/sw/Europe/events/2
0031113-storage/positions/rusher.html>

[30] Gilbert, E. (2016, September 29). Triplestores 101: Storing Data for Efficient Inferenc-
ing. DATAVERSITY. Retrieved June 14, 2021, from <https://www.dataversity.net/
triplestores-101-storing-data-efficient-inferencing/>

[31] Douglas, S. (2021, October 21). The Different Types of Aviation Maintenance Checks.
National Aviation Academy. Retrieved December 10, 2021, from <https://www.naa.ed
u/types-of-aviation-maintenance-checks/>

[32] Forde-Hyde, M. (2021). What are some examples of line and base maintenance work
in an aircraft maintenance facility? Quora. Retrieved October 13, 2021, from <https:
//www.quora.com/What-are-some-examples-of-line-and-base-maintenance-work
-in-an-aircraft-maintenance-facility>

[33] Department for Business, Innovation and Skills. (2016). UK Aerospace Maintenance,
Repair, Overhaul and Logistics Industry Analysis. <https://assets.publishing.serv
ice.gov.uk/government/uploads/system/uploads/attachment_data/file/502588/
bis-16-132-uk-mrol-analysis.pdf>

[34] Dviation. (2018, December 19). The Difference Between Line, Base and Component
Maintenance. Retrieved October 13, 2021, from <https://blog.dviation.com/2018/1
1/14/the-difference-between-line-base-and-component-maintenance/>

[35] What does “line maintenance” on aircraft entail, and how many hours does line main-
tenance take? (2019). Quora. Retrieved October 7, 2021, from <https://www.quora.
com/What-does-line-maintenance-on-aircraft-entail-and-how-many-hours-doe
s-line-maintenance-take>

[36] IBM. (2015). Work packages. IBM Documentation. Retrieved October 7, 2021, from
<https://www.ibm.com/docs/en/maximo-for-aviation/7.6.1?topic=packages-wo
rk>

[37] IBM. (2016). Configuring task cards and master task cards. IBM Corporation. Retrieved
December 10, 2021, from <https://www.ibm.com/docs/en/maximo-for-aviation/7.
6.3?topic=management-configuring-task-cards-master-task-cards>

71

https://www.w3.org/OWL/
https://cambridgesemantics.com/blog/semantic-university/learn-owl-rdfs/rdfs-vs-owl/
https://cambridgesemantics.com/blog/semantic-university/learn-owl-rdfs/rdfs-vs-owl/
https://docs.cambridgesemantics.com/anzograph/v2.4/userdoc/sparql-queries.htm
https://docs.cambridgesemantics.com/anzograph/v2.4/userdoc/sparql-queries.htm
https://www.w3.org/2001/sw/Europe/events/20031113-storage/positions/rusher.html
https://www.w3.org/2001/sw/Europe/events/20031113-storage/positions/rusher.html
https://www.dataversity.net/triplestores-101-storing-data-efficient-inferencing/
https://www.dataversity.net/triplestores-101-storing-data-efficient-inferencing/
https://www.naa.edu/types-of-aviation-maintenance-checks/
https://www.naa.edu/types-of-aviation-maintenance-checks/
https://www.quora.com/What-are-some-examples-of-line-and-base-maintenance-work-in-an-aircraft-maintenance-facility
https://www.quora.com/What-are-some-examples-of-line-and-base-maintenance-work-in-an-aircraft-maintenance-facility
https://www.quora.com/What-are-some-examples-of-line-and-base-maintenance-work-in-an-aircraft-maintenance-facility
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/502588/bis-16-132-uk-mrol-analysis.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/502588/bis-16-132-uk-mrol-analysis.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/502588/bis-16-132-uk-mrol-analysis.pdf
https://blog.dviation.com/2018/11/14/the-difference-between-line-base-and-component-maintenance/
https://blog.dviation.com/2018/11/14/the-difference-between-line-base-and-component-maintenance/
https://www.quora.com/What-does-line-maintenance-on-aircraft-entail-and-how-many-hours-does-line-maintenance-take
https://www.quora.com/What-does-line-maintenance-on-aircraft-entail-and-how-many-hours-does-line-maintenance-take
https://www.quora.com/What-does-line-maintenance-on-aircraft-entail-and-how-many-hours-does-line-maintenance-take
https://www.ibm.com/docs/en/maximo-for-aviation/7.6.1?topic=packages-work
https://www.ibm.com/docs/en/maximo-for-aviation/7.6.1?topic=packages-work
https://www.ibm.com/docs/en/maximo-for-aviation/7.6.3?topic=management-configuring-task-cards-master-task-cards
https://www.ibm.com/docs/en/maximo-for-aviation/7.6.3?topic=management-configuring-task-cards-master-task-cards

BIBLIOGRAPHY

[38] Aungst, Josanne and Johnson, Mary and Soo, Sung and Denver, Lee and Williams,
Lopp. (2009). Planning of Non-Routine Work for Aircraft Scheduled Maintenance. the
Technology Interface Journal/Winter Special Issue Aungst.

[39] IBM. (2017). Creating work orders. IBM Corporation. Retrieved October 7, 2021, from
<https://www.ibm.com/docs/en/maximo-for-aviation/7.6.6?topic=orders-crea
ting-work>

[40] Cousineau, M. (2021, November 23). Mastering the fundamentals: Maintenance work
orders. Fiix. Retrieved November 29, 2021, from <https://www.fiixsoftware.com/b
log/work-order/>

[41] Shafranovich, Y. (2005, October). rfc4180. Ietf. Retrieved June 14, 2021, from <https:
//datatracker.ietf.org/doc/html/rfc4180>

[42] Techopedia. (2018, December 6). Tabular Database. Techopedia.Com. Retrieved June
14, 2021, from <https://www.techopedia.com/definition/26181/tabular-databa
se>

[43] Jeremy Tandy, Met Office Ivan Herman, W3C Gregg Kellogg, Kellogg Associates. (2015,
December 17). Generating RDF from Tabular Data on the Web. W3C. Retrieved October
13, 2021, from <https://www.w3.org/TR/csv2rdf/>

[44] Jeni Tennison, Open Data Institute Gregg Kellogg, Kellogg Associates Ivan Herman,
W3C. (2015, December 17). Model for Tabular Data and Metadata on the Web. W3C.
Retrieved December 10, 2021, from <https://www.w3.org/TR/2015/REC-tabular-dat
a-model-20151217/>

[45] Ebiquity, U. (2007). RDF123. UMBC Ebiquity. Retrieved October 7, 2021, from <ht
tps://ebiquity.umbc.edu/project/html/id/82/RDF123>

[46] Langegger, A. (2009). XLWrap – Spreadsheet-to-RDF Wrapper. Sourceforge. Retrieved
October 7, 2021, from <https://xlwrap.sourceforge.io/>

[47] Tarql. (2019). Tarql: SPARQL for Tables – Tarql – SPARQL for Tables: Turn CSV
into RDF using SPARQL syntax. Github. Retrieved December 10, 2021, from <https:
//tarql.github.io/>

[48] Hert, Matthias and Reif, Gerald and Gall, Harald. (2011). A comparison of RDB-to-
RDF mapping languages. 25-32. 10.1145/2063518.2063522.

[49] Marcelo Arenas, W3C, Juan Sequeda. (2012). A Direct Mapping of Relational Data to
RDF. W3C. Retrieved October 1, 2021, from <https://www.w3.org/TR/rdb-direct-m
apping/>

[50] Souripriya Das, Seema Sundara, Richard Cyganiak. (2012). R2RML: RDB to RDF
Mapping Language. W3C. Retrieved June 14, 2021, from <https://www.w3.org/TR/r2
rml/>

[51] Highcharts. (2021). Interactive javascript charts library. Highcharts.Js. Retrieved June
14, 2021, from <https://www.highcharts.com/>

72

https://www.ibm.com/docs/en/maximo-for-aviation/7.6.6?topic=orders-creating-work
https://www.ibm.com/docs/en/maximo-for-aviation/7.6.6?topic=orders-creating-work
https://www.fiixsoftware.com/blog/work-order/
https://www.fiixsoftware.com/blog/work-order/
https://datatracker.ietf.org/doc/html/rfc4180
https://datatracker.ietf.org/doc/html/rfc4180
https://www.techopedia.com/definition/26181/tabular-database
https://www.techopedia.com/definition/26181/tabular-database
https://www.w3.org/TR/csv2rdf/
https://www.w3.org/TR/2015/REC-tabular-data-model-20151217/
https://www.w3.org/TR/2015/REC-tabular-data-model-20151217/
https://ebiquity.umbc.edu/project/html/id/82/RDF123
https://ebiquity.umbc.edu/project/html/id/82/RDF123
https://xlwrap.sourceforge.io/
https://tarql.github.io/
https://tarql.github.io/
https://www.w3.org/TR/rdb-direct-mapping/
https://www.w3.org/TR/rdb-direct-mapping/
https://www.w3.org/TR/r2rml/
https://www.w3.org/TR/r2rml/
https://www.highcharts.com/

BIBLIOGRAPHY

[52] Highcharts. (2021a). Advanced timeline | Highcharts.com. Highcharts.Js. Retrieved June
14, 2021, from <https://www.highcharts.com/demo/combo-timeline>

[53] Fusioncharts. (n.d.). Google Charts vs Chart.js. Fusioncharts.Com. Retrieved October
1, 2021, from <https://www.fusioncharts.com/javascript-charting-comparison/
google-charts-vs-chartjs>

[54] Google. (2021). Visualization: Combo Chart | Charts. Google Developers. Retrieved
October 22, 2021, from <https://developers.google.com/chart/interactive/docs
/gallery/combochart>

[55] Google. (2021). Frequently Asked Questions | Charts. Google Developers. Retrieved
October 22, 2021, from <https://developers.google.com/chart/interactive/faq>

[56] Bostock, M. (2021). D3.js - Data-Driven Documents. D3 - Data-Driven Documents.
Retrieved October 13, 2021, from <https://d3js.org/>

[57] Bostock, M. (2020). Stacked Bar Chart, Diverging. ObservableHQ. Retrieved October
22, 2021, from <https://observablehq.com/@d3/diverging-stacked-bar-chart>

[58] Reportlinker. (2018, June 28). Top 20 Commercial Aircraft Maintenance, Repair and
Overhaul (MRO) Companies 2015: Leaders in Engine, Component, HMV and Line Main-
tenance. PR Newswire. Retrieved August 12, 2021, from <https://www.prnewswire.c
om/news-releases/top-20-commercial-aircraft-maintenance-repair--overhaul
-mro-companies-2015-leaders-in-engine-component-hmv--line-maintenance-30
0052039.html>

[59] Contributor, T. (2007, March 31). Requirements analysis (Requirements engineering).
SearchSoftwareQuality. Retrieved October 1, 2021, from <https://searchsoftwarequ
ality.techtarget.com/definition/requirements-analysis>

[60] ReQtest. (2012, April 5). Functional vs Non-Functional Requirements - Understand the
Difference. Retrieved June 14, 2021, from <https://reqtest.com/requirements-blo
g/functional-vs-non-functional-requirements/>

[61] Schedlbauer, M. (2011, February 23). Requirements Prioritization Strategies. Project
Management Articles, Webinars, Templates and Jobs. Retrieved October 1, 2021, from
<https://www.projecttimes.com/articles/requirements-prioritization-strate
gies/>

[62] ProductPlan. (2021, September 11). MoSCoW Prioritization. Retrieved October 22,
2021, from <https://www.productplan.com/glossary/moscow-prioritization/>

[63] Garbarino, J. (2020, January 22). Communicate Between Microservices with Apache
Kafka. Okta Developer. Retrieved October 13, 2021, from <https://developer.okta
.com/blog/2020/01/22/kafka-microservices>

[64] Tracy, Miles and Jansen, Wayne and Scarfone, Karen and Winograd, Theodore. (2007).
NIST Special Publication 800-44 Version 2, Guidelines on Securing Public Web Servers.

73

https://www.highcharts.com/demo/combo-timeline
https://www.fusioncharts.com/javascript-charting-comparison/google-charts-vs-chartjs
https://www.fusioncharts.com/javascript-charting-comparison/google-charts-vs-chartjs
https://developers.google.com/chart/interactive/docs/gallery/combochart
https://developers.google.com/chart/interactive/docs/gallery/combochart
https://developers.google.com/chart/interactive/faq
https://d3js.org/
https://observablehq.com/@d3/diverging-stacked-bar-chart
https://www.prnewswire.com/news-releases/ top-20-commercial-aircraft-maintenance-repair--overhaul- mro-companies-2015-leaders-in-engine-component-hmv-- line-maintenance-300052039.html
https://www.prnewswire.com/news-releases/ top-20-commercial-aircraft-maintenance-repair--overhaul- mro-companies-2015-leaders-in-engine-component-hmv-- line-maintenance-300052039.html
https://www.prnewswire.com/news-releases/ top-20-commercial-aircraft-maintenance-repair--overhaul- mro-companies-2015-leaders-in-engine-component-hmv-- line-maintenance-300052039.html
https://www.prnewswire.com/news-releases/ top-20-commercial-aircraft-maintenance-repair--overhaul- mro-companies-2015-leaders-in-engine-component-hmv-- line-maintenance-300052039.html
https://searchsoftwarequality.techtarget.com/definition/requirements-analysis
https://searchsoftwarequality.techtarget.com/definition/requirements-analysis
https://reqtest.com/requirements-blog/functional-vs-non-functional-requirements/
https://reqtest.com/requirements-blog/functional-vs-non-functional-requirements/
https://www.projecttimes.com/articles/requirements-prioritization-strategies/
https://www.projecttimes.com/articles/requirements-prioritization-strategies/
https://www.productplan.com/glossary/moscow-prioritization/
https://developer.okta.com/blog/2020/01/22/kafka-microservices
https://developer.okta.com/blog/2020/01/22/kafka-microservices

BIBLIOGRAPHY

[65] Mauro, T. (2021, June 10). Now the World’s 1 Web Server, NGINX Looks Forward to
an Even Brighter Future. NGINX. Retrieved June 14, 2021, from <https://www.ngin
x.com/blog/now-worlds-1-web-server-nginx-looks-forward-to-even-brighter-
future>

74

https://www.nginx.com/blog/now-worlds-1-web-server-nginx-looks-forward-to-even-brighter-future
https://www.nginx.com/blog/now-worlds-1-web-server-nginx-looks-forward-to-even-brighter-future
https://www.nginx.com/blog/now-worlds-1-web-server-nginx-looks-forward-to-even-brighter-future

Appendix A

Annotated table airlines.csv

id table position source position cells
B1 A 1 2 D11, D12, D13, D14
B2 A 2 3 D21, D22, D23, D24
B3 A 3 4 D31, D32, D33, D34

Table A.1: Annotated rows of the table http://example.org/airlines.csv from the example

id table position source position cells name title
C1 A 1 2 D12, D21, D31 code_IATA code_IATA
C2 A 2 3 D12, D22, D32 code_ICAO code_ICAO
C3 A 3 4 D13, D23, D33 call_sign call_sign
C4 A 4 4 D14, D24, D34 country_name country_name

Table A.2: Annotated columns of the table http://example.org/airlines.csv from the example

75

APPENDIX A. ANNOTATED TABLE AIRLINES.CSV

id table column row string value value property URL
D11 A C1 B1 “DV” “DV” null
D12 A C2 B1 “ACK” “ACK” null
D13 A C3 B1 ”ACK AIR” ”ACK AIR” null
D14 A C4 B1 ”United States” ”United States” null
D21 A C1 B2 “OK” “OK” null
D22 A C2 B2 “CSA” “CSA” null
D23 A C3 B2 “CSA” “CSA” null
D24 A C4 B2 ”Czech Republic” ”Czech Republic” null
D31 A C1 B3 “EO” “EO” null
D32 A C2 B3 “ALX” “ALX” null
D33 A C3 B3 “ALLCONGO” “ALLCONGO” null

D34 A C4 B3 ”Democratic Republic
of the Congo”

”Democratic Republic
of the Congo” null

Table A.3: Annotated cells of the table http://example.org/airlines.csv from the example

76

Appendix B

Columns of source CSV files

List of source file fields with short descriptions (the relevant ones are marked by the star
symbol): Time-analysis:

• "bookingno-i" - unique identifier of the action within the AMOS (internal value, irrel-
evant)

• "Employee No" - unique identifier of employee

• "user-sign" - text value of employee made up from forename and surname

• "Start Date" - start date of the working activity

• "Start Time" - start time of the working activity

• "End Date" - end date of the working activity

• "End Time" - end time of the working activity

• "Duration Full" - overall time spent on the task in hours

• "Scope" - the work orientation of the employee, i.e. the specific aircraft maintenance
activity they perform (also referred to as maintenance group)

• "Shift Group" - identifier of a group/shift, to which the worker is assigned

• "Type" - type of the task (e.g. “M” is MWO, “S” is SWO and “TC” is TC)

• "WO/TC" - identifier of the WO (for MWO and SWO tasks) or identifier of the TC
(for TC tasks)

• "TC reference" - reference to the TC in which the fault was detected

• "Closing date" - closing date of the task, That is, whether the task has already been
closed.

• "Description" - description of the task

• "Workpackage" - identifier of the WP

77

APPENDIX B. COLUMNS OF SOURCE CSV FILES

• "A/C model" - model of the aircraft, to which the task is assigned

• "A/C age" - age of the aircraft in years, to which the task is assigned

• "WP Start date - scheduled" - planned start date of the work package

• "WP End date - scheduled" - planned end date of the work package

• "WP Start date - real" - actual start date of the work package

• "WP End date - real" - actual end date of the work package

• "Line" - identifier of the responsible (main) line, to which the work package is assigned

• "Real date of booking entry" - date when the action record was created within the
AMOS (internal value, irrelevant)

• "AC registration" - unique code, representing an aircraft registration number

• "operator" - code of the customer, i.e. aircraft owner

Time-estimates:

• "AC registration" - unique code, representing an aircraft registration number

• "operator" - code of the customer, i.e. aircraft owner

• "WP" - identifier of the WP

• "WO" - identifier of the WO (for MWO and SWO tasks)

• "TC" - identifier of the TC (for TC tasks)

• "sequence" - sequential number of the task (also known as workstep) within the TC
or WO that has one or more worksteps

• "scope" - the work orientation of the employee, i.e. the specific aircraft maintenance
activity they perform (also referred to as maintenance group)

• "est-min" - time estimate for the task in hours

Wo-tc-ref:

• "AC" - unique code, representing an aircraft registration number

• "A/C age" - age of the aircraft in years, to which the task is assigned

• "WP" - identifier of the WP

• "CSAT WO/TC" - identifier of the WO (for MWO and SWO tasks) or identifier of
the TC (for TC tasks)

• "type" - type of the task (e.g. “M” is MWO, “S” is SWO and “TC” is TC)

78

• "state" - state of the task step (e.g. “O” for open and “C” for close)

• "ATA" - ATA 100, reference to the ATA numbering system which is a common refer-
encing standard for commercial aircraft documentation

• "Customer ref" - reference to the identifier of the work according to the customer (it
may vary according to the aircraft operator, therefore it is not unified for all)

• "TC reference" - identifier of the TC (for TC tasks)

• "issue date" - date when the task was issued

• "closing date" - date when the task was closed

• "sequence" - order number of the task step

• "WO text" - description of task

• "WO action" - description of the aircraft maintenance activity performed

Wp-catalog:

• "AC owner" - code of the customer, i.e. aircraft owner

• "AC registration" - unique code, representing an aircraft registration number

• "Workpackage" - identifier of the WP

• "Start date - scheduled" - planned start date of the work package

• "End date - scheduled" - planned end date of the work package

• "TAT scheduled [days]" - scheduled turnaround time (TAT) of the work package, i.e.
duration of inspection in days

• "Start date - real" - actual start date of the work package

• "End date - real" - actual end date of the work package

• "TAT real [days]" - actual TAT of the work package, i.e. duration of inspection in days

• "TAT difference [days]" - difference between scheduled TAT and actual TAT, i.e. delay
in days

• "Delay [hours]" - difference between scheduled TAT and actual TAT, i.e. delay in hours

• "Delay reasons" - reasons that caused delay

• "Line" - identifier of the responsible (main) line, to which the work package is assigned

• "Delay reason" - incorrect unidentified column, irrelevant and should be ignored

• "WP status" - status of the work package (open/close)

79

APPENDIX B. COLUMNS OF SOURCE CSV FILES

• "MHrs in FIX" - planned amount of man-hours to be spent on a work package (within
agreed fixed price, based on time estimation for inspections)

• "MHrs above FIX" - planned amount of man-hours to be spent on a work package
(above agreed fixed price, based on time estimation for unplanned work orders)

• "Routine (customized included) work" - estimated man-hours for routine tasks

• "Findings Up To Limit" - Faults, estimated hours spent on faults that the customer
has already paid for

• "Additional Work, Mods, Sbs, Ads Etc." - hours spent on the additional work, service
bulletins and modifications

• "Findings Over Limit - Estimation" - hours estimated for troubleshooting beyond the
fixed price

• "Customer Requests" - hours spent on resolving customer requirements or extra work
done after the contract is signed

• "Findings MECH-EXT" - estimated hours for troubleshooting within the work package
for mechanics in “MECH-EXT” maintenance group

• "Findings MECH-INT" - estimated hours for troubleshooting within the work package
for mechanics in “MECH-INT” maintenance group

• "Findings MECH-ENG" - estimated hours for troubleshooting within the work package
for mechanics in “MECH-ENG” maintenance group

• "Findings MECH-LDG" - estimated hours for troubleshooting within the work package
for mechanics in “MECH-LDG” maintenance group

• "Findings AVIO" - estimated hours for troubleshooting within the work package for
mechanics in “AVIO” maintenance group

• "Findings SHM" - estimated hours for troubleshooting within the work package for
mechanics in “SHM” maintenance group

Presence:

• "Employee No" - unique identifier of employee

• "status-1" - status of the employee (e.g. “A” for “available” and “N” for “not available”).

• "status-2" - status of the employee (e.g. “1” for “available” and “2” for “not available”).

• "date" - date of the status change (i.e. employee arrival or departure)

• "time" - time of the status change (i.e. employee arrival or departure)

80

Appendix C

The Contents of the Enclosed CD

• Readme.md - installation guide

• application.zip - archive with an application

• AG.pdf - thesis

81

	Introduction
	Background
	AMOS
	Description
	Limitations

	Semantic Web
	RDF
	JSON-LD
	RDFS
	OWL
	SPARQL
	RDF Triple Stores

	Analysis
	Analysis of domain of interest
	Information gathering
	Formalization of dashboard statistics
	Maintenance, Repair and Operations
	Aircraft Maintenance
	Work packages
	Maintenance line

	Provided source data
	Time-analysis
	Time-estimates
	Wo-tc-ref
	Wp-catalog
	Presence

	Completeness of data and data constraints

	Mapping of Relational Data to RDF
	Generating RDF from Tabular Data
	RDB to RDF Mapping
	Mapping using SPipes
	CSV to RDF conversion
	RDF data mapping

	Analysis of charting libraries
	CHARTIST.JS
	Chart.js
	Highcharts
	Google Charts
	D3.js
	Summary

	Requirement analysis
	Prioritization of requirements
	Functional requirements
	Non-functional requirements

	System Design
	Domain model
	Navigation
	Data management
	Dashboard 1.0
	Data representation
	Metric functions

	Dashboard 2.0
	Data representation
	Metric functions

	System modules
	API gateway
	Plan Execution Viewer module
	Updater module
	SPipes for data transformation
	Messaging service

	Implementation
	Application architecture
	Technology stack
	User interface
	Persistence layer
	Programming language and software framework
	Reverse proxy
	Containerization

	Development process
	CI/CD using GitHub
	Environments and deployment

	Testing
	Unit and integration testing
	User testing
	Scenario 1: Navigation

	Scenario 2: Retrieving work package information
	Evaluation

	Conclusion
	Annotated table airlines.csv
	Columns of source CSV files
	The Contents of the Enclosed CD

