
CZECH TECHNICAL UNIVERSITY

MASTER THESIS

Multi-constraint Vehicle Routing Problem
Solver with GRASP Metaheuristic

Author:
Bc. Jakub LEČBYCH

Supervisor:
Ing. Petr POŠÍK, Ph.D.

A thesis submitted in fulfillment of the requirements
for the degree of Master of Software engineering and technology

in the

Department of Cybernetics

January 2, 2022

https://www.cvut.cz/en
https://cyber.felk.cvut.cz/

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

457806Osobní číslo:JakubJméno:LečbychPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatikaStudijní program:

Softwarové inženýrstvíSpecializace:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Algoritmus využívající GRASP meta-heuristiku pro řešení problému routování vozidel s omezeními

Název diplomové práce anglicky:

Multi-constraint Vehicle Routing Problem Solver with GRASP Metaheuristic

Pokyny pro vypracování:
* Analyze the types of constraints for Vehicle Routing Problem (VRP) and their effect on the problem solution.
* Survey existing relevant approaches for the solution of the chosen variant of constrained VRP.
* Design a VRP solver based on GRASP meta-heuristic.
* Compare the results of your solver(s) with other available tools (OR-tools, OptaPlanner, jsprit)

Seznam doporučené literatury:
• Greedy Randomized Adaptive Search Procedures: Advances and Extensions (Mauricio G. C. Resende, Celso C. Ribeiro),
2018, DOI: 10.1007/978-3-319-91086-4_6
• Bio-inspired Algorithms for the Vehicle Routing Problem (Francisco Baptista Pereira, Jorge Tavares), 2009, ISBN
978-3-540-85151-6
• Vehicle Routing: Problems, Methods, and Applications (Daniele Vigo, Paolo Toth), 2014, ISBN 1611973589
• Vehicle Routing with Pickup and Delivery: Heuristic and Meta-heuristic Solution Algorithms (Hosny Manar), 2021, ISBN
978-3-659-20258-2
• Constructing initial solutions for the multiple vehicle pickup and delivery problem with time windows (Hosny M., Mumford
Ch.), 2021, DOI 10.1016/j.jksuci.2011.10.006

Jméno a pracoviště vedoucí(ho) diplomové práce:

Ing. Petr Pošík, Ph.D., katedra kybernetiky FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: 04.01.2022Datum zadání diplomové práce: 25.05.2021

Platnost zadání diplomové práce: 19.02.2023

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Petr Pošík, Ph.D.

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

iii

v

Declaration of Authorship
I, Bc. Jakub LEČBYCH, declare that this thesis titled, “Multi-constraint Vehicle Rout-
ing Problem Solver with GRASP Metaheuristic” and the work presented in it are my
own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

vii

Abstract
Multi-constraint Vehicle Routing Problem Solver with GRASP Metaheuristic

The Vehicle Routing Problem (VRP) is a problem that has been studied in the
literature for several decades and involves routing a fleet of cars to service a group
of consumers. The Pickup and Delivery Problem (VRPPD) is a well-known version
of the VRP. In the VRPPD, it is generally required to find one or more low-cost routes
to deliver/pickup goods to/from customers. Another noteworthy version is VRP
with Time Windows (VRPTW), where each site is assigned a time window and the
aim is to service all customers within that time window. The entire transportation
cost for both tasks should be minimized while adhering to a set of pre-specified
problem restrictions. Applications of VRP are common in everyday transportation
and logistics services, and the issue is anticipated to become much more prominent
in the future as e-commerce and Internet shopping become more popular. The real-
world cases of VRP cannot be optimally solved in a reasonable time, necessitating
the use of heuristic techniques.

The purpose of this study is to examine the GRASP metaheuristic with different
construction heuristics that pertain to solving VRP variants. Contrary to previous
research in this area, I devote my attention to tackling tough issues and constraints
in a straightforward and practical manner. I do so without complicating the process
of finding a solution. Experiments have shown that the implemented algorithm is
better than other baseline algorithms. Further, my trials have shown that my newly
added components can intensify and diversify more effectively than previous com-
ponents.

In summary, the study findings indicate that the algorithm is successful in deal-
ing with tough issue constraints and developing simple and resilient solution that
can be incorporated with vehicle routing management tools and employed in a
range of real-world applications.

Key words

Vehicle routing problem, VRP, pickup and delivery, time windows, routing, plan-
ning, heuristics, construction heuristics, greedy randomized adaptive search proce-
dure, GRASP

ix

Abstrakt
Algoritmus využívající GRASP meta-heuristiku pro řešení problému routování

vozidel s omezeními

Problém plánování tras (VRP) je problém, který je v literatuře studován již něko-
lik desetiletí a zahrnuje plánování tras vozidel za účelem obsluhy jednotlivých zákaz-
níků. Varianta problému zahrnující vyzvednutí a doručení (VRPPD) je dobře známá
verze VRP. Ve VRPPD je obecně vyžadováno najít jednu nebo více tras, ve kterých se
doručí/vyzvedne zboží zákazníkům/od zákazníků. Další verzí je VRP s časovými
okny (VRPTW), kde je každé lokalitě přiřazeno časové okno a cílem je obsloužit
všechny zákazníky v daném časovém okně. Celkové přepravní náklady u obou
variant by měly být minimalizovány při dodržení všech předem specifikovaných
omezení. Aplikace VRP jsou běžné v každodenní přepravě a logistických službách
a je očekáváno, že tato problematika bude v budoucnu mnohem významnější, díky
větší oblibě elektronického obchodování a nakupování přes internet. Protože pří-
pady VRP v reálném světě nelze optimálně vyřešit v rozumném čase, je nutné pro
řešení použít heuristické metody.

Účelem této studie je prozkoumat GRASP metaheuristiku, s různými variantami
konstrukčních heuristik,pro řešení VRP. Na rozdíl od předchozích výzkumů v této
oblasti věnuji svou pozornost řešení těžkých problémů a omezení přímým a prak-
tickým způsobem, aniž by proces hledání řešení byl výrazně komplikovaný. Exper-
imenty ukázaly, že implementovaný algoritmus je lepší než jiné základní algoritmy.
Dále mé pokusy ukázaly, že mé nově přidané složky mohou zesílit a diverzifikovat
poskytnutá řešení účinněji než předchozí složky.

Závěry studie naznačují, že algoritmus je úspěšný při řešení náročných omezení
a vývoji jednoduchých a spolehlivých řešení, která lze začlenit do nástrojů pro správu
plánování vozidel a použít v řadě aplikací v reálném světě.

Klíčová slova

Problém plánování tras, VRP, vyzvednutí a doručení, časová okna, routování, plánování,
omezení, heuristiky, konstrukční heuristiky, GRASP

xi

Acknowledgements
First and foremost, I’d like to thank my thesis supervisor, Ing. Petr POŠÍK, Ph.D. for
his patient guidance, counsel, material resources, and criticism during my work on
this thesis. His skills and experience were extremely beneficial to both the direction
and outcome of our project.

Second, I’d like to take this opportunity to thank all the department faculty mem-
bers for their help and encouragement throughout my studies. I’d also like to thank
David Mokoš, my coworker, for sharing his knowledge and expertise with me.

xiii

Contents

Declaration of Authorship v

Abstract vii

Acknowledgements xi

1 Introduction 1
1.1 Research problem . 2
1.2 Scope and purpose . 3
1.3 Thesis overview . 3

2 Problem definition and variants 5
2.1 Mathematical formulation . 5

2.1.1 Capacitated VRP . 6
2.1.2 VRP with time windows . 6
2.1.3 VRP with pickup and deliveries 6
2.1.4 VRPPDTW formulation . 7

2.2 Other variants of vehicle routing problem 9

3 VRP Heuristics 11
3.1 Construction heuristics . 11
3.2 Related work . 12
3.3 Cost function . 12

3.3.1 Complexity analysis and implementation issues 13
3.3.2 (Sub)route construction and selection 14

3.4 Routing algorithm . 15
3.5 The sequential construction algorithm 17
3.6 The parallel construction algorithm . 17

3.6.1 Best route parallel construction 18
3.6.2 Best request parallel construction 18
3.6.3 Parallel insertion k-Regret construction heuristic 19

4 GRASP implementation 21
4.1 Metaheuristic . 21
4.2 Random multi-start procedure . 21
4.3 Semi-greedy multi-start procedure . 22

4.3.1 Effect of alpha value on semi-greedy construction 22
4.3.2 Parallel vs sequential multi-start procedure 25

4.4 GRASP metaheuristic . 25
4.5 GRASP algorithm for VRPPDTW . 26

4.5.1 Recap on problem formulation 26
4.5.2 GRASP construction . 26
4.5.3 Local search . 27

xiv

4.5.4 Effect of LS algorithm on solution’s quality 29

5 Computational Experimentation 33
5.1 Data-set characteristics . 33
5.2 Existing solvers and baseline algorithms 33
5.3 Comparison criteria . 33
5.4 Comparing the construction heuristics 34

5.4.1 Implementation issues and complexity analysis 34
5.4.2 Comparing with an exiting insertion heuristic 36
5.4.3 Heuristics as an initial solution for OR-Tools 36

5.5 Comparing the results of GRASP with different construction heuristics 39
5.5.1 Comparing with exiting solvers 42

6 Conclusion 45
6.1 Summary . 45
6.2 Future work . 45

Bibliography 47

xv

List of Figures

2.1 A example of PDMVRPTW instance. Before solution (left) after solu-
tion (right) . 5

3.1 Solution construction . 12
3.2 Time window selection . 14

4.1 Distribution of the solution cost obtained by the semi-greedy con-
struction procedure as a function of α value. (1000 repetitions of a
minimization problem of VRP on instances with 100 customers and
10 vehicles) . 23

4.2 Average cost of best solution obtained by construction heuristic with
different alpha values . 24

4.3 Effect of parallelization of the GRASP algorithm with PBR 7 semi-
greedy construction procedure . 25

4.4 Distribution of solutions for PBR construction heuristic 30
4.5 Distribution of solutions for PBQ construction heuristic 30
4.6 Distribution of solution’s cost difference before and after application

of LS procedure . 31

5.1 Cost evolution of the GRASP algorithm with different construction
heuristic . 39

5.2 Cost of best solution found by GRASP with PBR and PBQ construc-
tion functions with less greedy HC algorithm 4 40

5.3 Cost of best solution found by of GRASP with PBR and PBQ construc-
tion functions with more greedy HC algorithm 5 40

5.4 Cost of best solution found by of GRASP with PBR and PBQ construc-
tion functions and both versions of HC algorithms 41

5.5 Cost evolution of PBR and PBQ constuction functions with 3 minute
time limit on an instances with 100 customers and 10 vehicles 42

xvii

List of Tables

2.1 Notation used in the VRP, VRPTW and VRPPD formulations 7

5.1 Result of construction heuristics . 35
5.2 Result of existing insertion heuristic with PBR and PBQ 37
5.3 Result of PBR, PBQ a PIR and insertion heuristics as initial solution to

OR-tools solver on instances with 300 customers and 50 vehicles 38
5.4 Result of different solvers on instances with 500 customers and 70 ve-

hicles . 43

xix

List of Abbreviations

TSP Traveling Salesman Pproblem
VRP Vehicle Routing Pproblem
CVRP Capacitated VRP
VRPPD VRP with Pickup and Delivery
VRPTW VRP with Time Windows
VRPPDTW VRP with Pickup and Delivery under Time Windows
SEQ Sequential constuction heuristic
PBR Parallel Bbest Rroute constuction heuristic
PBQ Parallel Bbest ReQuest constuction heuristic
PIR Parallel constuction heuristic with Insetion Regret
IRV Insertion Regret Value
HC Hill Climbing algorithm
GRASP Greedy Ransomized Adaptive Search Procedure
HALNS Hybrid Aadaptive Large Neighbor Search algorithm

1

Chapter 1

Introduction

In recent years, logistics have been increasing tremendously and play a huge role
in our everyday lives. From ordering food to manufacturing or distributing shared
bikes and scooters in the cities. All these areas start to rely on efficient planning to
save money spent on transportation. In fact, it is not unusual for some companies
to spend more than 20 % of the product’s value for logistics and product transporta-
tion [22]. In addition, the transportation sector itself is a significant industry, and its
volume and impact on society as a whole continue to increase every day. Logistics
investments in Europe went up to 38.64 billion euros in 2020. This is driven by the
massive growth of e-commerce in Europe [35]. The use of automated route planning
and scheduling can lead to huge savings in transportation costs, typically ranging
from 5% to 20% [16], which should contribute to boosting the overall economic sys-
tem.

Research in efficient vehicle planning, routing, scheduling, and optimization has
increased significantly, thanks to better technology, computational power, and more
data. Experimental work with autonomous vehicles and overall progress in the field
of machine learning led to new and better algorithms. Numerous techniques have
already been successfully implemented in commercial logistics software and appli-
cations. However, due to the increasing demands, dynamic settings, and growing
complexity of this sector, new innovations and techniques are still needed to opti-
mize vehicle routing, scheduling, and planning [20].

As a result, restaurants often utilize platforms such as Bolt, Wolt, Grap, or Uber
to manage their online sales and deliveries. These platforms frequently have hefty
fees, which significantly reduce the earnings of the business. Additionally, restau-
rants with many chains require more sophisticated planning as they have dozens of
drivers delivering food simultaneously. GoDeliver1 is one of the software solutions
that aims to solve this challenge. It offers tools for order administration, automatic
order dispatching, automatic route planning, real-time courier tracking, and more to
businesses. As of now, GoDeliver’s planning algorithm is still not suitable for large
instances in complicated and dynamic settings with hundreds of customers.

The goal of this thesis is to develop an efficient planning GRASP algorithm to
solve complex pickup and delivery vehicle routing instances with time windows.
The results will be utilized to improve GoDeliver’s existing planning algorithm.

Experimental results of the implemented algorithms show overall better solu-
tions in several metrics than the baseline algorithms. Results indicate that the newly
implemented solver is an adequate candidate as a new solver used in the GoDe-
liver’s planning algorithm.

Section 1.1 reviews the literature and other research papers related to this prob-
lem and briefly researches three main variants of VRP that the solver can solve: ca-
pacitated, time window, and pickup and delivery. Section 1.2 covers the scope and

1https://www.godeliver.co

2 Chapter 1. Introduction

main purpose of this research. The section 1.3 gives an overview of the content of
this thesis.

1.1 Research problem

The vehicle routing problem (VRP) aims to find optimal sets of routes in the trans-
portation network for a fleet of vehicles [12]. This NP-hard problem generalizes the
classical Traveling Salesman Problem (TSP) a canonical combinatorial optimization
problem that has been widely studied in the literature [4] - or more specifically to
multiple TSP - by requiring the assignment of a subset of vertices to a vehicle and
the sequencing of these vertices to create a feasible solution. Since the introduction of
this problem by [1], extensions and other variants of this problem have been created
to meet realistic application in the complex and dynamic world.

Many variants of VRP have emerged since the first publication, and the litera-
ture and research show a continuous trend towards the study of more complex VRP
variants [37]. The following classes of VRPs are often called "rich VRPs.

• VRP with capacity constraints (CVRP), where a vehicle has limited cargo space.

• VRP with pickup and delivery constrain (VRPPD), where a vehicle must visit
a depot before it can serve a customer.

• VRP with time windows constrain (VRPTW), where a vehicle can visit a cus-
tomer in a specified time window. This time window can either be hard (can-
not be violated) or soft (the vehicle is penalized if arrives outside of the time
window).

More about these VRP classes in chapter 2.
Research [2] have analyzed the complexity of the vehicle routing problem and

have concluded that practically all the vehicle routing problems are NP-hard (among
them the classical vehicle routing problem) since they are not solved in polynomial
time.

According to these surveys and technical reports [10], [19], [18], [16], all exten-
sions of the vehicle routing problem discussed here are NP-hard, thus it makes a
strong point for applying heuristics and metaheuristic to solve the problem.

Other approaches have also been explored by [6]. Their dynamic programming
algorithm has been used with great success to obtain a solution to the shortest path
problem with time window constrain. Enhancement of their algorithm by [8] proved
that even huge instances with up to 2,500 nodes and 250,000 arcs are solvable in less
than one minute on CYBER 1732 [11]

Applications of capacitated VRP with pickup and delivery, and time windows
(CVRPPDTW) are becoming even more important due to increasing growth of trans-
portation in food delivery and e-commerce sector [34]. Besides this sector, the appli-
cation of CVRPPD can be used in other sectors such as the air or ship cargo industry
[27].

2A Cyber 170-series system consists of one or two CPUs that run at either 25 or 40 MHz, and is
equipped with 10, 14, 17, or 20 peripheral processors (PP), and up to 24 high-performance channels for
high-speed I/O

1.2. Scope and purpose 3

1.2 Scope and purpose

This thesis addresses the problem of finding a (near) optimal solution for vehicle
routing problem (VRP), its corresponding variants using a GRASP (greedy random-
ized adaptive search procedure) algorithm, and concern to develop an efficient plan-
ning algorithm based on the recent research in VRP area to solve a complex pickup
and delivery vehicle routing instances with time windows. The main difference to
other papers is that the algorithms used in this thesis are constructed in such a way,
that they are able to solve most of these variants combined (after applying the cor-
responding mapping). Particularly in scenarios involving time limits, pickup and
delivery, and skill and capacity limitations.

In our situation, we are attempting to solve a logistical challenge in the food
sector in which the meal needs to be picked up first but not earlier than the spec-
ified pickup time and delivered to the customer within a particular time window.
Moreover, the routes that have already been created are not fixed and might alter
throughout the day as new orders are received. As a result, the solver has a limited
amount of time to create or find a near-optimal solution. In other words, the solver
must find a solution (if one exists) within a specified time limit (usually 3-5 minutes).
For this use case, we have decided in the GoDeliver’s team to create multiple dedi-
cated in-house solvers for our specific problem. The second reason for this decision
to create an in-house solver was a growing instance size where the solvers we were
using could not find a good enough solution in time. Most of the solutions for in-
stances with more than 100 points (customers) were far from optimal, thus making
the plan almost unusable.

The result will be used to improve the current GoDeliver’s planning algorithm.
Thanks to the in-house solution, future research, and development of last-mile lo-
gistics will be faster and easier. New GoDeliver’s planning algorithm will be able to
solve complex and bigger instances giving us an advantage over other solvers such
as OR-tools.

1.3 Thesis overview

Chapter 1 defines the problem of routing and planning in logistics, researches the
literature and the evolution of VRP, describes the motivation and purpose behind
this thesis, and finally gives an overview of the structure of this thesis.
Chapter 2 provides a mathematical definition of the problem and describes re-
searched variants.
Chapter 3 presents the methodology of construction heuristics, fitness function, and
complexity analysis of the construction algorithm.
Chapter 4 presents the methodology of the GRASP algorithm and its corresponding
hybridization variants.
Chapter 5 shows the computational experiments of the proposed algorithm. Com-
pare the results between different construction heuristics and between implemented
GRASP solver and other solvers.
Chapter 6 summarizes the implemented algorithm and construction heuristics and
research undertaken in this thesis. It also provides future work within GoDeliver
team.

5

Chapter 2

Problem definition and variants

As previously mentioned in section 1.1, routing and scheduling represent an impor-
tant part of many transportation/distribution systems. The vehicle routing problem
(VRP) aims to find optimal sets of routes in the transportation network for a fleet of
vehicles [12, 21]. This NP-hard problem generalizes the classical Traveling Salesman
Problem (TSP) - or more specifically the Multiple TSP - by requiring an assignment
of a subset of vertices to each vehicle and sequencing of these vertices to create a
feasible solution. Many variants of the generic VRP have been intensively studied
in the literature [13, 3, 9]. These variants that mainly differ in the objective function
and constraints are reviewed in the following subsections.

FIGURE 2.1: A example of PDMVRPTW instance. Before solution
(left) after solution (right)

2.1 Mathematical formulation

The standard objective function for all VRP problems (VRPPD, VRPTW, CVRP,...)
is to minimize the fleet size and/or the sum of travel times and/or the sum of dis-
tances traveled with a constraint, that the vehicle must have enough capacity for
transporting the goods between nodes.

I assume a complete digraph1 G = (N, A) with set of nodes N and set of arcs
A = {(i, j) : N × N, i 6= j}. Note that |A| = n(n− 1) where n = |N|. Notations are
summarized in Table 2.1. The problem formulation and constraints are described
hereafter (Section 2.1.4). [32]

1At least one of the pair of vertices i, j ∈ N has asymmetric cost cij 6= cji.

6 Chapter 2. Problem definition and variants

2.1.1 Capacitated VRP

The Capacitated Vehicle routing problem (CVRP) is the most studied version of VRP,
although it has primarily an academic relevance [27]. In CVRP, the problem intro-
duces an additional variable denoted as scalar CAP. The goal is to deliver goods
by the homogeneous2 fleet of vehicles V = {1, 2, 3, ..., |V|} with capacity CAP > 0,
from one depot - at node 0 - to a set of customers N = {1, 2, 3, ..., n}. Each customer
i ∈ N has a demand given by a scalar qi ≥ 0, e.g., number of items or weight of the
goods. A vehicle serving a subset of customers starts and ends its route in the depot
having a route cost equal to the sum of cij.

2.1.2 VRP with time windows

The VRP with Time Windows (VRPTW) is a generalization of the CVRP involving
the added complexity of allowable service time within customer’s defined earliest
and latest service times [14]. Note that the service times can be either hard time win-
dows (bank deliveries, school bus routing), or soft time windows (food deliveries,
e-shop deliveries). In case of hard time windows, if a vehicle arrives at a customer
location too early, it must wait till it can begin the service task, due dates cannot be
violated. Soft time windows allow a vehicle to arrive outside of specified time win-
dows but the vehicle is penalized by doing so by adding a fixed/dynamic penalty to
the vehicle route cost [23]. Soft time window can be encoded as list of hard time win-
dows with different penalties (additional cost added to the final objective function).
The problem is defined the same way as in the CVRP with the additional variable
ti representing the beginning of the service time within the time window defined
by time interval 〈ei, li〉. Each node in VRPTW can have multiple time windows in
which a vehicle can arrive (e.g., the first interval between 10am-12am and the second
interval between 13pm-15pm).

The route (path) in the graph G must satisfy all the constrains defined by CVRP.
Each node i ∈ N has a time window 〈ei, li〉. A duration cm

ij is associated with each
arc (i, j) ∈ A and time interval m ∈ M. Recall ti is defined as a start of the service
time at node i.

2.1.3 VRP with pickup and deliveries

Similarly as in VRPTW, in the VRP with Pickup and Delivery (VRPPD), a vehicle
fleet must satisfy a set of transportation requests. Each request is defined by a
pickup point, a corresponding delivery point, and a demand qi to be transported
between these locations [15]. VRPPD involves additional sets of constraints cou-
pling the pickup and corresponding delivery points on the same vehicle routes and
visit precedence among all pickup points and their associated delivery points. A
simple VRPPD is shown in figure 2.1.

The route (path) in the graph G consist of pickup nodes i ∈ P and corresponding
delivery nodes j ∈ D. It is possible that different pickup/drop nodes may represent
same geographical location. Set of pickup points is denoted as P = {1, 2, . . . , n} and
set of delivery points is denoted as D = {n + 1, . . . , 2n} and N = P ∪ D. [25]

2All vehicles are identical, i.e., they have the same operating costs and cargo capacity.

2.1. Mathematical formulation 7

2.1.4 VRPPDTW formulation

A combination of all the previously mentioned variants is called VRP with Pickup
and Delivery under Time Windows and is formalized by the following equation.

Notation table
Symbol Definition
N Set of nodes; In VRPPD N = P ∪ D
P Pickup nodes P = {1 . . . n}
D Delivery nodes D = {n + 1, . . . , 2n}
V Vehicle set
m number of time intervals
B A large constant
cm

ij Cost (e.g. travel time) from node i to node j at the time interval m
Si Service time at node i
CAP Capacity of the vehicle
qi The load at node i
Tm

ij Upper bound for time interval m for link (i,j)
ei Earliest time that the vehicle can arrive at node i
li Latest time that the vehicle can arrive at node i
tv
i The time vehicle v starts service at node i

wv
i The load of the vehicle v upon leaving node i

DPTi Desired pickup time at node i; (i ∈ P)
DDTi Desired delivery time at node i; (i ∈ D)
DRTi Desired ride time; (DRTi = ti+n − ti − Si)
MRTi Maximum ride time
xm

i,j,v Binary variable. If any vehicle v travels from node i to node j
during the time interval m, the variable is equal to 1. Otherwise
is equal to 0

R The set of feasible routes satisfying all constrains (2.3) - (2.20)
cr Cost of route r
air The number of times a node is visited by route r; (i ∈ P)
yr Binary variable. If route r is used in the solution, the variable is

equal to 1. Otherwise is equal to 0

TABLE 2.1: Notation used in the VRP, VRPTW and VRPPD formula-
tions

minimize ∑
i∈N

∑
j∈N

∑
m∈M

∑
v∈V

cm
i,jx

m
i,j,v (2.1)

s.t. (2.2)

∑
j∈N

∑
m∈M

∑
v∈V

xm
i,j,v = 1 ∀i ∈ P (2.3)

∑
i∈P

∑
m∈M

xm
0,i,v = 1 ∀v ∈ V (2.4)

∑
j∈D

∑
m∈M

xm
j,2n+1,v = 1 ∀v ∈ V (2.5)

∑
j∈N

∑
m∈M

xm
i,j,v − ∑

j∈N
∑

m∈M
xm

n+i,j,v = 0 ∀i ∈ P, ∀v ∈ V (2.6)

8 Chapter 2. Problem definition and variants

∑
j∈N

∑
m∈M

xm
j,i,v − ∑

j∈N
∑

m∈M
xm

i,j,v = 0 ∀i ∈ P ∪ D, ∀v ∈ V (2.7)

tj ≥ ti + Si + cm
i,j − B(1− xm

i,j,v) ∀i, j ∈ N, ∀m ∈ M, ∀v ∈ V (2.8)

ti − Tm−1
i,j xm

i,j,v ≥ 0 ∀i, j ∈ N, ∀m ∈ M, ∀v ∈ V (2.9)

ti + Bxm
i,j,v ≤ Tm

i,j + B ∀i, j ∈ N, ∀m ∈ M, ∀v ∈ V (2.10)

ei ≤ tv
i ≤ li ∀i ∈ N, ∀v ∈ V (2.11)

wv
j ≥ wv

i + qj − B(1− ∑
m∈M

xm
i,j,v) ∀i, j ∈ N, ∀v ∈ V (2.12)

wv
i ≤ CAP ∀i ∈ N, ∀v ∈ V (2.13)

xi,j,v ∈ {0, 1} (2.14)

m ∈ M (2.15)
v ∈ V (2.16)
tv
i ≥ 0 (2.17)

wv
i ≥ 0 (2.18)

N ∈ {{0} ∪ {2n + 1} ∪ P ∪ D} (2.19)

The formulation consists of the objective function (2.1) that minimizes overall
travel costs. And the following constraints:

• Constraint (2.3) guarantees that each demand has to be served once, and each
demand is only allowed to be visited by one vehicle.

• Constraints (2.4) and (2.5) ensure that all vehicles must start from the depot
and return to the depot.

• Constraint (2.6) ensures that each request (customer) must be picked up first
and then delivered with the same vehicle.

• Constraint (2.7) represents the flow conservation equations.

• Constraint (2.8) calculates the departure time to node j.

• Constraints (2.9) and (2.10) are the temporal constraints. If the vehicle travels
from node i to node j during time interval m, the departure time of the vehicle
from node i is between the upper bound for time interval m − 1 and upper
bound for time interval m.

• Constraint (2.11) imposes the time windows restrictions.

• Constraints (2.12) and (2.13) impose the capacity constraints.

− Constraint (2.12) is the sub-tour elimination constraints.

− Constraint (2.13) ensures that the vehicles do not exceed the vehicle ca-
pacity limitation.

The time-dependent formulation (VRPTW) is decomposed into the main prob-
lem and a set of sub-problems. The main problem becomes the set partitioning prob-
lem and the sub-problem becomes the constrained shortest path problem. The main
problem determines the optimal feasible vehicle routes based on the meaningful
subset of the feasible vehicle routes. The time-dependent VRPPDTW formulation

2.2. Other variants of vehicle routing problem 9

can be reformulated by using path flows instead of link flows. Each route means
one vehicle-route (v) in the time-dependent VRPPDTW formulation.

air = ∑
j∈N

∑
m∈M

xm
i,j,v∀i ∈ P, ∀r ∈ R, ∀v ∈ V (2.20)

The route cost for each vehicle can be expressed as follows:

cr = ∑
i∈N

∑
j∈N

∑
m∈M

cm
i,jx

m
i,j,v∀r ∈ R, ∀v ∈ V (2.21)

The mathematical formulation for the main problem is constructed as follows:

minimize ∑
r∈R

cryr (2.22)

s.t. (2.23)

∑
r∈R

airyr = 1 ∀i ∈ P (2.24)

yr ∈ {0, 1} ∀r ∈ R (2.25)

Where the total cost of the selected route is minimized by the objective function
(2.22). Constraint (2.24) ensures that each request (customer) is visited by one vehi-
cle. The objective of the sub-problem is to minimize the total reduced cost for the
constrained shortest path problem. An elaborate discussion on this formulation can
be found in [28].

2.2 Other variants of vehicle routing problem

It is good to mention other types of VRP. These problems will not be covered by this
thesis despite being relevant in real-world applications.

• Skill based problem where every vehicle has a set of skills that determines the
type of nodes a vehicle can visit.

• Backhauls problem where the set of vertices consists of two subsets: linehaul
vertices for which the demand is delivered from the depot and backhaul ver-
tices for which the demand is picked up and brought back to the depot.

• Periodic vehicle routing problems where routes are determined over a horizon
that spans several periods and where each vertex must be visited at a given
frequency within this horizon.

• Inventory routing where each vertex has an inventory and delivery routes are
determined to replenish the inventory to avoid any inventory shortage.

• Mixed fleet and size problems where the fleet size must be determined based on
different types of vehicles with different characteristics (e.g., capacity).

11

Chapter 3

VRP Heuristics

There are two techniques to solving VRP problems: exact methods and approximate
(heuristic) methods. The exact method will be found to be optimal if enough process-
ing resources are available. Due to the high complexity and computational needs of
this technique, only small VRP instances with up to tens of nodes (customers) are op-
timally solved [2]. Exact methods are frequently unsuitable in real-world scenarios
because the complexity and instance size are too huge to deal with in an accept-
able period. Heuristics methods, as opposed to exact methods, give a solution with
a trade-off between quality and computation time. These heuristic algorithms are
chosen over their counterparts even though they have no assurance of producing a
high-quality answer. The quality of the solutions provided by these heuristic algo-
rithms can only be determined experimentally through tests and observations. [30,
2, 29].

3.1 Construction heuristics

VRP construction heuristics are algorithms that gradually create a viable solution
while reducing the total cost of the solution. There are two major approaches to this
problem. The first tries to progressively create the routes by adding a new (unas-
signed) point to the best route. The alternative strategy is based on the "saving"
approach, in which the algorithm gradually combines separate paths, lowering the
total solution cost. The Clarke and Wright savings algorithm [33] is a well-known
heuristic for VRP that represents the second approach.

Vehicle routing problem with pickup and delivery under time windows (VRP-
PDTW) is a mix of VRPTW and VRPPD, as discussed in the previous chapter. Ac-
cording to [5], VRPPDTW is known to be NP-hard due to the existence of several
restrictions. All varieties of VRP are both grouping problems (assigning the request
to the vehicle) and routing problems (finding the best route for each vehicle). A
suitable algorithm should be able to handle both sides of the VRP issue effectively.

When constructing a solution for VRPPDTW, the algorithm normally selects an
unassigned customer request and inserts it into the route that results in the lowest
cost overall. The request is inserted into the route at the best (with the lowest cost)
feasible position on the particular route. For this type of insertion, an additional
calculation is required to determine the impact of insertion on all customers already
assigned to that route in terms of delay, feasibility, travel duration, etc. Additional
decisions on how to construct the routes include the selection of the customers and
the route building process - sequential or parallel. Order of selection of the cus-
tomers may affect the quality of the final solution. Generally, customers are sorted
by proximity to the depot or by time window.

12 Chapter 3. VRP Heuristics

3.2 Related work

The previous section mentions sequential and parallel build approaches for the VRP.
The sequential construction process builds the routes one by one, while the parallel
construction process builds all routes simultaneously.

Sequential construction (see Fig.3.1a) approach usually adopts the Solomon’s se-
quential insertion heuristics for the VRPTW [7]. This kind of insertion heuristic pri-
marily minimizes the number of vehicles used since the sequential algorithm assigns
the request to the first vehicle until the vehicle’s route is feasible. Then to the second
vehicle, and so on. This may result in assigning no requests to some vehicles.

Parallel construction (see Fig.3.1b) approach inserts requests into any of the avail-
able routes. Accordingly, the algorithm requires an initial estimate of the number of
routes. If the request cannot be inserted (insertion produces an infeasible solution)
to any of the routes, a new route is added and the request is inserted into that route.

(A) sequential construction (B) parallel construction

FIGURE 3.1: Solution construction

3.3 Cost function

The most important part of the construction phase of the algorithms is the cost func-
tion. A cost function can be any function that accepts the solution and produces
a single number or vector of numbers that indicate how good or bad the resulting
solution is. As the most often invoked function in the construction algorithm. This
function should be fast.

The cost function that measures the quality of the partial solution (route) in the
algorithm above is described by the equation 3.1.

cost(r) = w1 × DR(r) + w2 × DS(r) + w3 × CV(r)+
+ w4 × TWV(r) + w5 × D(r) + w6 × TWPP(r)+
+ w7 × DP(r)

(3.1)

where:

w1, . . . , w7 = weights of individual cost components
DR(r) = duration of the route r
DS(r) = distance of the route r
CV(r) = number of violated capacity constraints
TWV(r) = number of violated time windows constraints
D(r) = sum of all delays for given time windows in route r (total delay)
TWPP(r) = time window priority penalty*
DP(r) = sum of delay penalties**

* In my problem I assume, that each point (pick up or delivery) can have mul-
tiple time windows with different priority thus the cost function has an additional
variable TWPP(r) time window priority penalty computed as a sum of the number

3.3. Cost function 13

of time windows with higher priority divided by number of time windows for every point
on the route.

** Delay penalty is computed for all points on the route r given a time window
chosen for that point. The reason for this additional delay penalty variable is to
introduce a non-linear penalty function that will force the algorithm to minimize
the delay on the individual nodes rather than just minimizing the overall delay on
the route. Based on the experiments with customers, we within the GoDeliver team
conclude that it is better to have several smaller delays rather than just a few bigger
delays. As a non-linear function, I have chosen the following one.

2 ∗ exp(2 ∗ (x + 1)) (3.2)

The x variable in the non-linear penalty function stands for delay at the given
point in hours. The largest penalty should be imposed on the time window viola-
tions, in order to direct the solution search towards more feasible routes. Based on
the observations I have decided to use the following weights w1 = 0.005, w2 = 0.005,
w3 = 0.3, w4 = 0.2, w5 = 0.8, w6 = 0.001 and w7 = 1.

Algorithm 1: Route evaluation algorithm
Input: route r
Output: route cost

1 n′ ← nil
2 for n ∈ r do
3 if n′ 6= nil then
4 DR(r)← DR(r) + durationFromTo(n′, n)
5 DS(r)← DS(r) + distanceFromTo(n′, n)

/* If a request has a multiple time windows select one with smallest

time difference. */

6 timeWindow← f indBestTimeWindow(n, DR(r))
7 delay← delayAtTW(timeWindow, DS(r))
8 if delay > 0 then
9 D(r)← D(r) + delay

10 DP(r)← DP(r) + 2 ∗ exp(2 ∗ ((delay/3600) + 1))
11 if hardTimeWindow(timeWindow) then TWV(r)← TWV(r) + 1

12 a← numO f TwWithHigherPriority(n, timeWindow)
13 b← numberO f TimeWindows(n)
14 TWPP(r)← TWPP(r) + a/b

15 if isCapacityViolatedAtNode(n) then CV(r)← CV(r) + 1
16 if isSkillViolatedAtNode(n) then SV(r)← SV(r) + 1
17 n′ ← n

/* return the cost of the route r computed using equation 3.1 */

18 return cost(r)

3.3.1 Complexity analysis and implementation issues

The evaluation algorithm iterates over individual nodes in the route and computes
all variables required for the cost function 3.1. The main loop thus takesO(n), where
n is the number of nodes in the route r. Computing distance, duration, and delay
at the node n are done in constant time. Finding the best time window must iterate

14 Chapter 3. VRP Heuristics

over all time windows in a given node but the number of time windows at a given
node is negligible so I will assume that it takes a constant time. The same applies
when determining if the capacity or the skill constraint is violated. Assuming this,
the asymptotic complexity of Alg. 1 is O(n).

The main issue in the implementation of Alg. 1 is how to define and choose the
best time window. If the node has only a single time window then we can return it,
but in the case when a node has several time windows then, there are two possible
outcomes.

• In the first case, the time at which the vehicle arrives at the node n is within one
of the node’s time windows. This is the best possible scenario that can happen
because that time window can be returned as the best possible one.

• In the second case, none of the time window ranges covers a time in which
a vehicle arrived at the node n. For this case, I used a simple approach of
finding a time window (TW) immediately to the vehicle’s arrival time in terms
of time difference. As can be seen in Fig 3.2. If a distance to TW 1 is smaller
than the distance to TW 2, first time window is selected otherwise the second
is selected.

FIGURE 3.2: Time window selection

3.3.2 (Sub)route construction and selection

An important part of the routing algorithm is the part where we generate a new
candidate (Alg. 2). Candidate is defined as a new (sub)route obtained by adding
new request x to the previous route r. The candidate carries the information about
the newly constructed (sub)route, vehicle, request, and route’s cost given by the cost
function 3.1.

Algorithm 3 describes the process of selecting a new candidate from the list of
candidates based on the α parameter. The value of α ∈ 〈0, 1〉, that plays an important
role in the selection process, will be further explained in section 4.3.1. The candidate
selected by this algorithm is used within the construction heuristics to construct part
of the final solution.

The following algorithms will be used in the construction process of different
construction heuristics (see next section).

3.4. Routing algorithm 15

Algorithm 2: Candidate generation
Input: list of candidates CL
Input: request x
Input: vehicle v
Input: route r
Output: CL

1 r′ ← r ∪ {x} // insert x to route r

2 r′′ ← HillClimbing(r′) // call HC algorithm 4 to improve r’

3 CL← CL ∪ {newCandidate(r′′, v, x)} // create and add new candidate to CL

4 return CL

Algorithm 3: Candidate selection and assignment
Input: value α
Input: list of candidates CL
Input: route r
Input: list of unassigned requests X
Output: candidate/nil, new route r, new list of unassigned requests X

1 RCL← f ilterUn f easible(CL) // create restricted candidate list

containing only feasible solutions

2 if len(RCL) == 0 then return nil, r, X
3 sort(RCL, descending) // sort RCL based on cost value given eq.3.1

4 maxIndex ← (1− α)× (len(RCL)− 1) // α ∈ 〈0, 1〉
5 selectedCandidate← RCL[randomInt(0, maxIndex + 1)]
6 r ← selectedCandidate.route // update route r based on selectedCandidate

7 X ← X \ {selectedCandidate.x} // remove request from X based on

selectedCandidate

8 return selectedCandidate, r, X

3.4 Routing algorithm

The crucial part of the construction process is the routing algorithm that will gener-
ate a feasible solution based on the problem’s constraints. The implemented routing
algorithm is based on [25]. This algorithm is based on iterative improvements of in-
dividual routes and is embedded in the construction algorithm that could be either
sequential or parallel. Compared to the other insertion algorithms, this algorithm
does not try to find the best insertion position but rather accepts any feasible inser-
tion position. This results in less complex calculations and decisions related to the
problem specification.

The solution is represented as a permutation of pickup and delivery pairs (re-
quests) rather than a one-dimensional permutation of all different locations. Mean-
ing that the same identifier is assigned to the both pickup and delivery location.
Since this representation relies on a simple decoder that the first occurrence of the
identifier in the route is always pickup and the second occurrence is always deliv-
ery, both coupling and precedence constraints are handled and we no longer have to
ensure both pickup and delivery points are assigned to the same vehicle and pickup
must be visited before delivery. On the other hand, this representation may induce a

16 Chapter 3. VRP Heuristics

redundancy in the locations, especially for the pickup points where a single pickup
point might be assigned to the multiple delivery points. Capacity and time window
constraints might be violated in this representation but both constraints are penal-
ized by the cost function (see equation 3.1).

For the purpose of the VRPPDTW, a simple Hill climbing (HC) algorithm was
selected as a route-improving algorithm. This algorithm tries to gradually improve
a current route by swapping positions of points in the route until no further im-
provements are possible. The reason this algorithm was chosen is its simplicity and
effectiveness.

Algorithm 4: Hill Climb routing algorithm v1
Data: initial route r
Result: improved route r

1 initialization;
2 while route was improved do
3 Evaluate(r);
4 for each possible pair of locations i, j in r do
5 if j-th location is more urgent than i-th location then
6 Swap i with j to get new route r′;
7 Evaluate(r′);

/* cost of route r is computed using equation 3.1 */

8 if cost(r′) < cost(r) then r ← r′ ;
9 end

10 end
11 end
12 return r

The first version of HC algorithm 4 swaps points i and j (line 5) only if the end of
the j-th point time window ends before the end of the i-th point time window. The
second version of this algorithm ignores the if condition at line 5 and swaps every
possible combination of points. In other words, the second version (algorithm 5) is
being fully-greedy as it tries to explore the whole neighbor space.

Algorithm 5: Hill Climb routing algorithm v2
Data: initial route r
Result: improved route r

1 initialization;
2 while route was improved do
3 Evaluate(r);
4 for each possible pair of locations i, j in r do
5 Swap i with j to get new route r′;
6 Evaluate(r′);

/* cost of route r is computed using equation 3.1 */

7 if cost(r′) < cost(r) then r ← r′ ;
8 end
9 end

10 return r

3.5. The sequential construction algorithm 17

3.5 The sequential construction algorithm

As mentioned before, the sequential construction heuristic algorithm (SQA) builds
the routes one by one by selecting a request (pickup and delivery pair) and adding
them at the end of the route. Then the Hill-Climbing algorithm is called to improve
the current route. If the HC algorithm finds a feasible route then the algorithm selects
another request. However, if the request cannot be inserted, HC returns an infeasible
route, then the request is removed from the current route and inserted at the end of
the next route. So this algorithm heavily relies on the HC algorithm to improve the
quality of the route without the need to calculate the cost of every possible insertion
position. Algorithm 6 describes the sequential construction procedure.

Algorithm 6: Sequential route constuction (SEQ)
Input: list of requests (PD pairs) X
Output: list of routes for each vehicle

1 R← [] // array of initial empty routes

2 for each vehicle v ∈ V do
3 while true do
4 CL← [] // candidate list. list of sub-routes and latest request

assigned to that sub-route

5 for each unassigned request x ∈ X do
/* call Algorithm 2 */

6 CL← createAndAddCandidateToCandidateList(CL, x, v, R[v])
/* call Algorithm 3 */

7 candidate, r, X ← selectCandidateAndUpdateRequests(CL, R[v], X)
8 if candidate = nil then break

9 R[v]← r
/* if there are some requests not assigned make the last route unfeasible by

assigning all points to it */

10 if len(X) > 0 then
11 r ← R[|V|] // last vehicle’s route

12 for each unassignedRequest x ∈ X do
13 r ← r ∪ {x} // insert x to route of the last vehicle

14 r′ ← HillClimbing(r) // call HC algorithm 4 to improve r

15 R[|V|]← r

16 return R

3.6 The parallel construction algorithm

The parallel construction algorithm builds all routes simultaneously. As mentioned
previously an initial estimate of the number of vehicles is required. To estimate an
initial number of vehicles, the resulting number of routes from Solomon’s sequen-
tial construction [7] can be used. Traditional parallel construction algorithms insert
the selected request to the best possible route. If the request cannot be successfully
inserted a new route is added.

18 Chapter 3. VRP Heuristics

3.6.1 Best route parallel construction

The construction process of the algorithm 7 works as follows: In each iteration of
the main for loop, the selected request is inserted in the route in which the insertion
produces a new route with the lowest cost among all routes. Thus the algorithm
tries to construct the routes with similar costs.

Algorithm 7: Parallel best route constuction (PBR)
Input: list of requests (PD pairs) X
Output: list of routes for each vehicle

1 R← [] // array of initial empty routes

2 for each unassigned request x ∈ X do
3 CL← [] // candidate list. list of sub-routes and latest request

assigned to that sub-route

4 for each vehicle v ∈ V do
/* call Algorithm 2 */

5 CL← createAndAddCandidateToCandidateList(CL, x, v, R[v])
/* call Algorithm 3 */

6 candidate, r, X ← selectCandidateAndUpdateRoute(CL, [], X)
/* if no feasible candidate exist assign first candidate... */

7 if candidate = nil then
8 candidate← CL[0]
9 X ← X \ {candidate.x} // remove request from X based on candidate

10 R[candidate.v]← candidate.r

11 return R

3.6.2 Best request parallel construction

The second parallel construction heuristics (Alg. 8) do not only try to find the best
route for each request but also find the best request for each route. The best-unrouted
request is the one whose insertion causes the smallest increase in the cost of the
partial solution.

3.6. The parallel construction algorithm 19

Algorithm 8: Parallel best request constuction (PBQ)
Input: list of requests (PD pairs) X
Output: list of routes for each vehicle

1 R← [] // array of initial empty routes

2 while len(X) > 0 do
3 CL← [] // candidate list. list of sub-routes and latest request

assigned to that sub-route

4 for each unassigned request x ∈ X do
5 RBCL← [] // route best candidate list. list of sub-routes and

latest request assigned to that sub-route

6 for each vehicle v ∈ V do
/* call Algorithm 2 */

7 RBCL←
createAndAddCandidateToCandidateList(RBCL, x, v, R[v])

8 CL← CL ∪ selectBestCandidateFrom(RBCL)
/* call Algorithm 3 */

9 candidate, r, X ← selectCandidateAndUpdateRoute(CL, R[v], X)
/* if no feasible candidate exist assign first candidate... */

10 if candidate = nil then
11 candidate← CL[0]
12 X ← X \ {candidate.x} // remove request from X based on candidate

13 R[candidate.v]← candidate.r

14 return R

3.6.3 Parallel insertion k-Regret construction heuristic

Similar to the previous construction heuristic, this one computes the best insertion
value of each request into each route and inserts the one with the highest k-Regret
value. K-Regret value is calculated within the insertion procedure as ∑M

m=1(f (m, i)−
f (i, i)) (function computeKRegret at line 5 of Alg.9), where f (m, i) is cost of i-th request
inserted in m-th best route and represents the regret of not inserting the current re-
quest into the current route. In other words, the regret value is a measure of the
potential cost that could be paid if a given request were not immediately inserted.
This feature is particularly useful for highly constrained problems, as it drives the
algorithm towards the search for feasible solutions. The main focus is to limit as
much as possible the myopic behavior of the classical insertion procedures, which
for mixed scheduling and routing problems with additional constraints is particu-
larly harmful [17].

20 Chapter 3. VRP Heuristics

Algorithm 9: Parallel insertion k-Regret (PIR)
Input: list of requests (PD pairs) X
Input: list of vehicles V
Input: k-regret value k
Output: list of routes for each vehicle

1 R← [] // array of initial empty routes

2 while len(X) > 0 do
3 CL← [] // candidate list. list of sub-routes and latest request

assigned to that sub-route

4 for each unassigned request x ∈ X do
5 CL← CL ∪ computeKRegret(k, x, R, V)

/* call Algorithm 3 */

6 candidate, r, X ← selectCandidateAndUpdateRoute(CL, [], X)
/* if no feasible candidate exist assign first candidate... */

7 if candidate = nil then
8 candidate← CL[0]
9 X ← X \ {candidate.x} // remove request from X based on candidate

10 R[candidate.v]← candidate.r

11 return R

21

Chapter 4

GRASP implementation

This chapter presents the basic overview of metaheuristics. We begin with an in-
troduction of simple metaheuristics called random and semi-greedy multi-start pro-
cedures, and describe how these procedures differ. Then we introduce a GRASP
metaheuristic and describe in detail the implementation of GRASP for VRP.

4.1 Metaheuristic

According to [26] a metaheuristic is a high-level problem-independent algorithmic
framework that provides a set of guidelines or techniques for developing heuris-
tic optimization algorithms. Notable examples of metaheuristics include genetic/
evolutionary algorithms, tabu search, simulated annealing, variable neighborhood
search, (adaptive) large neighborhood search, and ant colony optimization, among
many more.

4.2 Random multi-start procedure

A randomized multi-start technique is the most basic type of metaheuristic. This
approach is illustrated in Algorithm 10. This method creates a random solution until
the stop condition is fulfilled, at which point it outputs the best solution discovered.
In a line 2, a solution is formed by adding a new ground element from the set of
elements to partial-solution. This new ground element is picked at random from the
candidate set of ground elements. elements.[31]

Algorithm 10: Pseudo-code of randomized multi-start procedure
Result: feasible solution r

1 while stop condition do
2 r’← randomSolution();
3 if r’ is not feasible then
4 repairSolution(r’)
5 end
6 if cost(r′) < cost(r) then
7 r← r’
8 end
9 end

10 return r;

22 Chapter 4. GRASP implementation

4.3 Semi-greedy multi-start procedure

A semi-greedy multi-start method is yet another type of metaheuristic. The pseudo-
code for this process is available in Algorithm 11. The sole difference between this
procedure and Algorithm10 is a semi-greedy building step (line 2). A semi-greedy
solution is formed by adding a ground element from the restricted candidate list
(RCL) of ground elements. In a minimization problem, an RCL is a list of ground
elements regulated by the parameter α ∈ 〈0, 1〉, where α = 1 leads to a pure-greedy
solution because only the best ground element is placed in the RCL and α = 0 leads
to a pure-random solution because all ground elements are placed in the RCL. The
RCL is then used to generate a new element at random. [31]

Algorithm 11: Pseudo-code of randomized multi-start procedure
Result: feasible solution r

1 while stop condition do
2 r’← semiGreedySolution();
3 if r’ is not feasible then
4 repairSolution(r’)
5 end
6 if cost(r′) < cost(r) then
7 r← r’
8 end
9 end

10 return r;

4.3.1 Effect of alpha value on semi-greedy construction

Figure 4.1 shows the distribution of the solution values after each iteration of the
semi-greedy construction procedure. For different α values, a total of 1000 solutions
values were constructed by the PBR construction heuristic (Algorithm 7). All solu-
tions were constructed on VRP instances with 100 customers and 10 vehicles. The
distribution shows that the solutions are less spread for the higher α values (> 0.6)
compare to the lover α values (< 0.6). This also means that semi-greedy procedure is
less likely to escape local optimum with a high α value - as can be seen with a greedy
approach (with α = 1), the best-produced solution has a cost 12 700 compare to the
best solution produced by semi-greedy procedure with α = 0.8, with a cost 12 450.
This is illustrated better in a figure 4.2. In this example, even a semi-greedy con-
struction procedure with α = 0.9 was not able to escape a local optimum thus not
improving. I have decided to select two promising alpha values (0.6 and 0.7) for
future experiments because these values produced solutions with the best quality

4.3. Semi-greedy multi-start procedure 23

FI
G

U
R

E
4.

1:
D

is
tr

ib
ut

io
n

of
th

e
so

lu
ti

on
co

st
ob

ta
in

ed
by

th
e

se
m

i-
gr

ee
dy

co
ns

tr
uc

ti
on

pr
oc

ed
ur

e
as

a
fu

nc
ti

on
of

α
va

lu
e.

(1
00

0
re

pe
ti

ti
on

s
of

a
m

in
im

iz
at

io
n

pr
ob

le
m

of
V

R
P

on
in

st
an

ce
s

w
it

h
10

0
cu

st
om

er
s

an
d

10
ve

hi
cl

es
)

24 Chapter 4. GRASP implementation

F
IG

U
R

E
4.2:A

verage
costofbestsolution

obtained
by

construction
heuristic

w
ith

differentalpha
values

4.4. GRASP metaheuristic 25

4.3.2 Parallel vs sequential multi-start procedure

In a sequential multi-start procedure, we build a solution one by one, keeping the
best solution we found so far. Since we are not dependent on the best solution we
found so far, we can easily use multiple processors to find the solution in parallel.
Each processor can construct the solution by itself and then compare it with the
best solution we found. The construction of the solution takes way more time than
comparing the solution thus the CPU overhead is minimal as can be seen in figure
4.3. For testing purposes, a used 4 core CPU with no multi-threading and the results
show more than 3x speedup in terms of execution time after 1000 iterations, for a
Multi-start procedure with PBR (Alg. 7) semi-greedy construction procedure.

FIGURE 4.3: Effect of parallelization of the GRASP algorithm with
PBR 7 semi-greedy construction procedure

4.4 GRASP metaheuristic

The greedy randomized adaptive search procedure (GRASP) is a multi-start meta-
heuristic that enjoys wide success in practice, with an extraordinarily broad range of
applications to real-world optimization problems [24]. Also, it is among the most ef-
fective metaheuristics for solving combinatorial optimization problems [31]. GRASP
is a hybridization of a semi-greedy multi-start procedure with a local search algo-
rithm 12. The procedure works in two phases - construction and improvement. In
the first phase, a construction heuristic builds a feasible solution. In the second
phase, its neighborhood is investigated by a local search procedure, until a local
minimum is found. The best overall solution is kept as a result.

Algorithm 12 illustrates a simple GRASP metaheuristic for minimization prob-
lem. After initialization in line 1, the main GRASP iterations are carried out in the
while loop in lines 2 to 11. At first a semi-greedy solution r′ is constructed in line
3. Sometimes a semi-greedy solution might not be feasible, thus a repair procedure

26 Chapter 4. GRASP implementation

must be invoked in line 5 to make a necessary changes to r′ so that it becomes fea-
sible. Alternatively an infeasible solution r′ might be discarded and followed by
another iteration until a feasible solution is constructed, but in this case a stop con-
dition in line 2 should take this into account. In line 7, local search algorithm is
applied. We used an Hill-climbing algorithm (Algorithm 4) described in chapter 3.4.
If the objective function cost(r′) (function 3.1 from chapter 3.3) is better than objec-
tive function cost(r) then a new local minimum is saved in line 9. The best solution
found during the main GRASP loop is then returned in line 12 as a GRASP solution.

Algorithm 12: Pseudo-code of GRASP
Result: feasible solution r

1 r← null
2 while stop condition do
3 r’← semiGreedySolution();
4 if r’ is not feasible then
5 repairSolution(r’);
6 end
7 r’← localSearch(r’);
8 if cost(r′) < cost(r) then
9 r← r’;

10 end
11 end
12 return r;

The biggest drawback of most metaheuristics, including GRASP, is the absence
of effective stopping criteria. Commonly used stopping criteria are the maximum
number of iterations or the maximum number of consecutive iterations without im-
provements or stabilization of the elite set of solutions found during the search.
Sometimes the metaheuristic algorithm can quickly find the best solution (as often
happens in GRASP [31]) thus performing an exaggerated and unnecessary number
of iterations.

4.5 GRASP algorithm for VRPPDTW

4.5.1 Recap on problem formulation

Let G = (V, A) be a complete digraph with set of edges (arcs) A = {{i, j} : V ×
V, i 6= j}. Each node i ∈ V has a time window 〈ti, tj〉 and a duration dij associated
with edge (i, j) ∈ A. The route (path) in the graph G consist of pickup nodes P =
{1, . . . , n} and corresponding delivery nodes D = {n + 1, . . . , 2n}. Union of P and
D creates an original set of vertices in G. It is possible that different pickup/drop
nodes may represent the same geographical location. VRPPDTW problem consist of
finding the optimal set of routes in the transportation network (graph G) for a fleet
of vehicles [25].

4.5.2 GRASP construction

The construction of a new solution is done by a sequential algorithm described in
chapter 3.5 or by one of the parallel algorithms described in chapter 3.6. Each iter-
ation of a construction phase starts by picking up the best request from the set of

4.5. GRASP algorithm for VRPPDTW 27

unassigned requests and inserting it into the best position in the given route (in case
of sequential construction algorithm 6) or inserting it into the best route of a given
set of routes (in case of parallel construction algorithms 7, 8, 9). The design of these
algorithms always produces a feasible solution or no solution at all, thus no repair
procedure is needed.

4.5.3 Local search

The local search phase seeks to improve each solution built during the construction
phase by relocating the requests in-between routes. From the nature of the construc-
tion heuristics, where during each iteration a hill-climbing algorithm (Algorithm 4)
is called to insert a request to the best position in the route and to eventually reorder
the rest of the route (improving partial solution as a whole), it is not necessary to try
to further improve the individual routes without moving at least one request into a
different route. The procedure of the Local search phase is shown in Algorithm 13.

28 Chapter 4. GRASP implementation

Algorithm 13: Local Search algorithm for GRASP metaheuristic
Input: solution M
Output: improved solution M’
/* sorted routes, in descending order, based on their objective (cost) value

*/

1 R← getSortedRoutes(M)
2 improved← true
3 while improved do
4 improved← f alse
5 outer:
6 for each route r ∈ R do

/* find request that, by removing, decrease route r objective (cost)

value most */

7 newR1← nil
8 bestRequest← −1
9 bestCostDecrease← 0.0

10 for each request i ∈ r do
/* Remove request x from the route r */

11 r′ ← r \ {x}
12 hillClimb(r′)
13 costDecrease← cost(r)− cost(r′)
14 if bestRequest == −1 or bestCostDecrease < costDecrease then
15 newR1← r′

16 bestRequest← x
17 bestCostDecrease← costDecrease

/* Find new route to insert ’bestRequest’ */

18 for each route r2 ∈ R do
19 if r == r2 then continue
20

/* Add bestRequest to route textitr2 */

21 newR2← r2∪ {bestRequest} hillClimb(newR2)
/* Check if cost of new routes is better than cost of old routes

*/

22 if f easible(newR2) == f easible(r2) then
23 if cost(newR2) + cost(newR1) < cost(r) + cost(r2) then
24 improved← true
25 r ← newR1
26 r2← newR2
27 break outer

28 S′ ← constructSolution(R)
29 return S’

The LS algorithm accepts a solution and eventually returns an improved solu-
tion. We start by sorting all routes based on their cost value in the descending order
(line 1). Then we try to move request x from some route r ∈ R to a different route
r′ ∈ R. The whole procedure is divided into two for-loops. In the first loop (lines
10 to 17) we find a request x that has the greatest effect on the route’s cost. Mean-
ing, we are looking for a request, whose removal from the route r gives us the best
improvement in terms of the solution’s cost. Then in the second loop (lines 18 to

4.5. GRASP algorithm for VRPPDTW 29

27) bestRequest is inserted to a different route r2 if two conditions are met. Newly
constructed route (with request bestRequest) r2∪{bestRequest} does not increase the
number of unfeasible routes (the route is still feasible or unfeasible if the old route
was also unfeasible). And the new solution has an overall cost lower than the pre-
vious solution (line 24). We continue with this procedure until there are no more
requests that can be relocated (while loop - lines 3 to 27).

4.5.4 Effect of LS algorithm on solution’s quality

My next experiment was conducted by analyzing the performance of this LS algo-
rithm 13 with the following conclusion. Solutions constructed by PBR (Algorithm
7) and PBQ (Algorithm 8) with a HillClimb procedure (Algorithm 4) on an instance
with 100 requests and 50 vehicles were improved on average only by 3.3% and 3%
respectively. As can be seen in figures 4.4 and 4.5 and 4.6. The fact1 that the original
solution (plan) is optimal within the individual routes in the plan is causing this low
improvement of the new solution (plan) obtained after applying the LS algorithm.
Thus there is little to no space to further improve the plan by moving the requests
to different routes. Moving a request from route A to route B improves the cost of
route A but makes the cost of route B worst. And the cost of the solution is likely to
be higher than the cost of the original solution.

With a time restriction we have within our GoDeliver’s planning algorithm, it
might not be worth spending extra time trying to improve the solution with this LS
algorithm. On the other hand, various weights in the cost function 3.1 may improve
the difference in cost of the solutions. Also if the time restriction shows not to be an
issue I don’t see any drawbacks of using this LS algorithm.

1HC algorithm 4 in the construction phase always finds the best permutation of requests for a given
route

30 Chapter 4. GRASP implementation

FIGURE 4.4: Distribution of solutions for PBR construction heuristic

FIGURE 4.5: Distribution of solutions for PBQ construction heuristic

4.5. GRASP algorithm for VRPPDTW 31

FIGURE 4.6: Distribution of solution’s cost difference before and after
application of LS procedure

33

Chapter 5

Computational Experimentation

5.1 Data-set characteristics

The algorithms have been tested using several data sets of real-world requests (pickup
and delivery) with time windows from a Prague-based restaurant. The data set in-
cludes 50-300 real locations, and the time windows range from 10:00 to 15:00. Re-
sulting on average in 10-30 customers being served in the same time frame. Time
windows in these data sets were both hard (opening and closing times of the branch)
and soft (time frame specified by the customer). Additionally, two types of vehicles
with varying cargo capacities are included in the data sets - cars and bikes/scooters.
Vehicles of any type could visit any customer since no special skills were required.
In the section 3.6, it is noted that the parallel version of the construction heuristics
algorithm requires an initial estimate of how many vehicles are involved. Data sets
used to test the algorithm included the maximum fleet size and the initial location
for all vehicles, which were used in parallel heuristic algorithms.

5.2 Existing solvers and baseline algorithms

As baselines, I used several existing solvers/construction heuristics. The first base-
lines are a simple insertion heuristic and HALNS solver implemented in [36]. The
third baseline is the OR-Tools planner1 that is a part of the GoDeliver planning algo-
rithm. The fourth and the last is a so-called "Jackpot solver"—a semi-greedy multi-
start procedure (described in section 4.3) with insertion heuristic as a construction
procedure implemented based on research by my co-worker David Mokoš.

5.3 Comparison criteria

Evaluation datasets used in measurements are real-world instances of different prob-
lem sizes (number of requests). These datasets were created for testing purposes
within a GoDeliver’s system and are based on the real data from a selected com-
pany, which delivers food from several restaurants in Prague and in total contains
more than 10000 requests between 1st of January 2020 and 10th of July 2020. These
datasets are described in detail in [36].

For instances with more than a few tens of requests, an optimal solution is nearly
impossible to obtain (meaning that the optimal cost value is unknown). Further-
more, the cost of the solution given by the fitness function 3.1 does not provide
sufficient information about the quality of the solution. This information was lost

1ILP/MILP solver developed by Google. https://developers.google.com/optimization

34 Chapter 5. Computational Experimentation

when I simplified the search procedure by transforming the multi-objective prob-
lem to a single-objective problem. Therefore, it is necessary to use another metrics
(transform the cost to original indicators). In my comparison, I will use the following
indicators:2

• delivery delay per request - Request’s delay time given by its time window.
Difference between delivery time and request’s time window upper bound.

• delivery time per request - Time an order spent in the vehicle. Difference
between delivery time and pickup time.

• total delivery time - Sum of all delivery times and waiting times for all vehi-
cles.

• total distance traveled - Sum of total distance traveled by all vehicles.

• execution time - How fast the solution was found. This metric is not relevant
to the solution’s quality but is an important deciding factor since I assume a
limited time constraint for a solver.

From these values, I have deduced the quality of the solution. Where lower
values indicate a better solution. These metrics have also proven to be more user-
friendly than a value for the cost function, as I’ve discovered from my research.
The delay is more significant than the duration or distance in the VRP with time
windows. In all cases, the maximum fleet size is limited but the time windows are
not fixed; this is due to characteristics of those data sets. Most research assumes an
unlimited number of vehicles, but in the real world, most businesses have a limited
number of vehicles or people.

For the experiments with different construction heuristics (algorithms 6, 7, 8 and
9) for a GRASP solver I used a cost value produced by the cost function 3.1.

5.4 Comparing the construction heuristics

Three of all four implemented heuristics (SEQ, PBR, PBQ) are based on the heuristics
described in Manar I. Hosny’s [25] thesis. So I expected the results of these functions
to be very similar compared to the original counterparts. The sequential construc-
tion (SEQ) heuristic has a great usage if your goal is also to minimize the fleet size
or you don’t know the minimum size of your fleet. As none of these use-cases ap-
plied to my data sets I have decided not to include the results of the SEQ heuristic.
Another reason not to include the SEQ heuristic in the results is that the requests
are assigned to the first vehicle until the route is feasible. So if all requests have soft
time windows or their time windows are sufficiently big, the solution will contain
all requests assigned to the first vehicle only. From the feasibility point of view, the
final plan is feasible but not optimal as only the first vehicle is doing all work.

5.4.1 Implementation issues and complexity analysis

Based on the measurements shown in the table 5.1 - the Parallel Best Route (Alg. 7)
(PBR) heuristic shows slightly better overall results compared to the Parallel Best Re-
quest (Alg. 8) (PBQ) heuristic. One of the reasons for this behavior might be caused

2Another reason is, that these are the metrics that my coworker used in his thesis [36]. So I can easily
compare the GRASP performance with the existing solver used in GoDeliver’s planning algorithm.

5.4. Comparing the construction heuristics 35

In
st

an
ce

(r
eq

ue
st

s-
ve

hi
cl

es
)

PB
Q

de
la

y
pe

r
or

de
r(

m
in

)
(a

vg
/m

ax
/m

ed
ia

n)
du

ra
ti

on
pe

r
or

de
r

(m
in

)
(a

vg
/m

ax
/m

ed
ia

n)
to

ta
ld

is
ta

nc
e

tr
av

el
ed

(k
m

)
to

ta
lt

im
e

sp
en

t(
m

in
)

ti
m

e
(m

s)

15
0-

35
0.

4/
13

.1
/0

19
.8

/6
0.

5/
18

.4
73

4
30

29
59

97
15

0-
20

1.
8/

54
.2

/0
20

.3
/5

9/
18

.7
80

2
32

01
14

09
1

15
0-

15
4.

2/
82

.6
/0

23
.2

/7
1.

2/
19

.6
81

1
31

42
18

12
5

15
0-

10
43

.6
/1

38
.2

/3
2

22
/1

29
.1

/1
5.

7
10

20
35

22
42

56
0

10
0-

8
19

.4
/1

25
.8

/0
27

.2
/1

16
/1

9.
3

64
8

24
66

71
84

70
-6

25
.7

/1
43

.6
/0

25
/1

17
.3

/1
8

53
1

17
39

21
56

50
-5

20
.3

/9
9.

6/
0

25
.6

/1
05

.4
/1

7.
5

38
2

14
03

10
70

In
st

an
ce

(r
eq

ue
st

s-
ve

hi
cl

es
)

PI
R

de
la

y
pe

r
or

de
r(

m
in

)
(a

vg
/m

ax
/m

ed
ia

n)
du

ra
ti

on
pe

r
or

de
r

(m
in

)
(a

vg
/m

ax
/m

ed
ia

n)
to

ta
ld

is
ta

nc
e

tr
av

el
ed

(k
m

)
to

ta
lt

im
e

sp
en

t(
m

in
)

ti
m

e
(m

s)

15
0-

35
0.

6/
29

.5
/0

19
.2

/6
4/

16
.6

73
0

32
51

60
10

15
0-

20
1.

4/
29

.4
/0

19
.7

/5
5.

2/
17

81
2

29
00

11
90

0
15

0-
15

23
/1

42
.5

/0
17

.3
/7

5.
7/

15
.2

11
41

26
85

17
77

0
15

0-
10

53
.6

/2
22

/2
5.

5
24

.2
/1

68
/1

6.
4

12
71

45
20

34
80

0
10

0-
8

51
/1

75
/3

3.
2

23
.7

/1
46

/1
6

88
3

12
42

71
80

70
-6

49
.8

/1
76

/2
7.

8
17

.6
/9

2.
6/

15
57

3
14

89
21

40
50

-5
32

/1
60

/1
.2

16
/5

7.
9/

13
.2

41
5

10
94

76
0

In
st

an
ce

(r
eq

ue
st

s-
ve

hi
cl

es
)

PB
R

de
la

y
pe

r
or

de
r(

m
in

)
(a

vg
/m

ax
/m

ed
ia

n)
du

ra
ti

on
pe

r
or

de
r

(m
in

)
(a

vg
/m

ax
/m

ed
ia

n)
to

ta
ld

is
ta

nc
e

tr
av

el
ed

(k
m

)
to

ta
lt

im
e

sp
en

t(
m

in
)

ti
m

e
(m

s)

15
0-

35
0.

5/
17

.5
/0

20
.4

/6
3.

4/
16

.9
12

83
28

87
14

9
15

0-
20

1.
2/

28
/0

20
/5

6.
3/

16
.7

14
25

27
74

26
3

15
0-

15
4.

7/
57

.9
/0

21
/8

8.
9/

16
.6

16
02

25
89

46
0

15
0-

10
22

.7
/1

25
/0

26
.3

/1
04

.8
/1

9.
8

15
84

35
62

89
0

10
0-

8
12

.5
/7

3.
2/

0
21

.6
/6

6.
4/

16
.6

10
72

20
54

13
7

70
-6

39
.7

/1
24

.4
/4

0
18

.4
/4

5/
16

.6
78

7
14

69
92

50
-5

5.
7/

42
.7

/0
17

.6
/5

9/
15

48
2

90
7

24

TA
B

L
E

5.
1:

R
es

ul
to

fc
on

st
ru

ct
io

n
he

ur
is

ti
cs

36 Chapter 5. Computational Experimentation

(in the PBQ heuristic case) by inserting the best requests (based on their insertion
cost value) earlier in the construction phase, leaving the worst requests to be in-
serted last. This process causes the beginning of the route to be optimized, but the
end will include the customers that did not fit nicely earlier in the final route. This
problem could be solved using something called k-Regret value [17] described in
chapter 3.6.3. To my surprise, the Parallel insertion k-Regret construction heuristic
(Alg. 9) (PIR) showed even worse results than the PBQ heuristic.

Results also show that increasing the number of vehicles significantly reduces
the computation time in both cases. Increasing the number of vehicles reduces the
computation time by more than 3 times. The reason for this is the number of times
an HC algorithm must be called. Finding a solution with more but shorter routes is
less computationally expensive than finding a solution for less but longer routes.

5.4.2 Comparing with an exiting insertion heuristic

Table 5.2 shows the results of the new PBR and PBQ heuristic and currently used
insertion heuristic described in [36]. On average, solutions found by the insertion
heuristics are slightly better in terms of delay per order and slightly worst based on
the duration per order and time spent metrics. Solutions generated by both PBR and
PBQ heuristics are similar in total time spent and outperform insertion heuristic by
more than 25% By tweaking the weights parameters of the cost function (Function
3.1, the quality of the solution produced by the PBR and PBQ heuristic could be
improved to match the quality of the solutions generated by the insertion heuristic.

In summary, the insertion heuristic is better in delay per order metrics but worst
in duration per order metric compares to the PBR and PBQ construction heuristics.

5.4.3 Heuristics as an initial solution for OR-Tools

In the next experiment, I compared the quality of solutions produced by the OR-tools
solver with initial solutions provided by different construction heuristics. Table 5.3
shows the results of the experiment. As all measurements show, the quality of the
solutions found by the OR-Tools solver is heavily optimized in delay per order and
total distance traveled metrics. On the other hand in all cases, the OR-tools found a
solution with a slightly worst duration per order and total time spent metric. As the
difference in the last two metrics is minor, the OR-tools is still a great solver if given
an initial solution.

5.4. Comparing the construction heuristics 37

In
st

an
ce

(r
eq

ue
st

s-
ve

hi
cl

es
)

Ex
is

ti
ng

In
se

rt
io

n
he

ur
is

ti
c

de
la

y
pe

r
or

de
r(

m
in

)
(a

vg
/m

ax
/m

ed
ia

n)
du

ra
ti

on
pe

r
or

de
r

(m
in

)
(a

vg
/m

ax
/m

ed
ia

n)
to

ta
ld

is
ta

nc
e

tr
av

el
ed

(k
m

)
to

ta
lt

im
e

sp
en

t(
m

in
)

ti
m

e
(m

s)

30
0-

50
0.

1/
7.

8/
0

28
.8

/6
4.

5/
25

.3
85

3
54

56
35

9
15

0-
35

0/
6.

2/
0

24
.6

/6
4.

5/
20

63
6

41
68

14
4

10
0-

15
0.

2/
2.

2/
0

24
/7

0.
6/

18
.8

50
0

27
01

85

In
st

an
ce

(r
eq

ue
st

s-
ve

hi
cl

es
)

PB
R

de
la

y
pe

r
or

de
r(

m
in

)
(a

vg
/m

ax
/m

ed
ia

n)
du

ra
ti

on
pe

r
or

de
r

(m
in

)
(a

vg
/m

ax
/m

ed
ia

n)
to

ta
ld

is
ta

nc
e

tr
av

el
ed

(k
m

)
to

ta
lt

im
e

sp
en

t(
m

in
)

ti
m

e
(m

s)

30
0-

50
0.

6/
24

.6
/0

17
.5

/5
9.

7/
14

.6
17

56
33

11
24

5
15

0-
35

0.
1/

17
.6

/0
19

.5
/5

6.
7/

16
.6

13
21

27
62

15
7

10
0-

15
1.

2/
13

.7
/0

20
.3

/4
8.

1/
17

.4
10

38
16

16
11

7

In
st

an
ce

(r
eq

ue
st

s-
ve

hi
cl

es
)

PB
Q

de
la

y
pe

r
or

de
r(

m
in

)
(a

vg
/m

ax
/m

ed
ia

n)
du

ra
ti

on
pe

r
or

de
r

(m
in

)
(a

vg
/m

ax
/m

ed
ia

n)
to

ta
ld

is
ta

nc
e

tr
av

el
ed

(k
m

)
to

ta
lt

im
e

sp
en

t(
m

in
)

ti
m

e
(m

s)

30
0-

50
0.

4/
11

.5
/0

20
/5

1.
8/

18
.7

81
7

38
46

97
37

15
0-

35
0.

6/
18

.2
/0

20
/6

1.
2/

17
.7

78
4

30
19

51
63

10
0-

15
3.

8/
72

.4
/0

19
.5

/5
8.

7/
17

.4
61

2
19

52
24

74

TA
B

L
E

5.
2:

R
es

ul
to

fe
xi

st
in

g
in

se
rt

io
n

he
ur

is
ti

c
w

it
h

PB
R

an
d

PB
Q

38 Chapter 5. Computational Experimentation

C
om

bination/heuristic
delay

per
order(m

in)
(avg/m

ax/m
edian)

duration
per

order
(m

in)
(avg/m

ax/m
edian)

totaldistance
traveled

(km
)

totaltim
e

spent(m
in)

tim
e

(s)

Insertion
+

O
r-Tools

0.08/4.8/0
28.8/64.4/26.2

815
5446

228
Insertion

only
0.08/7.6/0

28.8/64.5/25.3
853

5456
3

PBQ
+

O
r-Tools

0.01/2/0
26.2/69.3/24.6

716
4956

154
PBQ

only
0.2/13.2/0

21.8/63/18.4
880

4132
12

PBR
+

O
r-Tools

0.02/1.8/0
24.6/71.3/22.2

1068
4650

141
PBR

only
0.5/22/0

17.4/57/15.7
1668

3292
4

PIR
+

O
r-Tools

0.06/4.5/0
23.3/67.8/20.3

749
4417

153
PIR

only
0.4/22.5/0

20.9/67/16.8
884

3853
11

T
A

B
L

E
5.3:R

esultofPBR
,PBQ

a
PIR

and
insertion

heuristics
as

initialsolution
to

O
R

-tools
solver

on
instances

w
ith

300
custom

ers
and

50
vehicles

5.5. Comparing the results of GRASP with different construction heuristics 39

5.5 Comparing the results of GRASP with different construc-
tion heuristics

Figure 5.1 shows the average cost values of 10 runs of PBR, PBQ, and PIR (algo-
rithms 7, 8 and 9) procedures during a 1500 iteration search on instances with 100
customers and 10 vehicles. PBQ procedure produces the overall best solutions (in
terms of cost). On the other hand, the solutions produced by the PIR procedure
scored worst in terms of cost. Since both PBQ and PIR heuristics were similar in the
execution time (their time complexity is the same) and the solutions produced by
the PBQ procedure were more than 2× better, I decided not further investigate the
performance of the GRASP solver with PIR heuristic

FIGURE 5.1: Cost evolution of the GRASP algorithm with different
construction heuristic

Next, I measured the performance of the GRASP solver with construction heuris-
tics using different Hill Climbing (HC) procedures (HCv1 - Algorithm 4 and HCv2
- Algorithm 5). As can be seen in figures 5.2, 5.3 and 5.4. Both HC procedures in the
PBQ construction heuristic produced solutions similar in terms of cost, but the com-
bination of HCv2 with PBQ heuristic required 25% less time to perform the search.
On the other hand, the combination for the PBR construction heuristic the second
version of the HC procedure (HCv2) produced solutions with better quality (on av-
erage by 25%), but the search took on average 5×more time.

40 Chapter 5. Computational Experimentation

FIGURE 5.2: Cost of best solution found by GRASP with PBR and
PBQ construction functions with less greedy HC algorithm 4

FIGURE 5.3: Cost of best solution found by of GRASP with PBR and
PBQ construction functions with more greedy HC algorithm 5

5.5. Comparing the results of GRASP with different construction heuristics 41

FIGURE 5.4: Cost of best solution found by of GRASP with PBR and
PBQ construction functions and both versions of HC algorithms

The final experiment of GRASP solver with PBR and PBQ construction heuristics
set a stopping condition for GRASP as the execution time instead of a fixed number
of iterations. For our purpose described in section 1.2 I set a time limit to 3 minutes.
Figure 5.5 shows the measured results of different combinations of alpha, construc-
tion heuristic, and HC procedures. The best performing combination is the PBR +
HCv2, and the worst-performing combination is the PBR + HCv1. Even though the
combinations with PBQ construction heuristic were not able to explore wider search
space (due to the time complexity of the PBQ procedure), the difference in the cost
of the solutions found is minimal (< 5%)

42 Chapter 5. Computational Experimentation

FIGURE 5.5: Cost evolution of PBR and PBQ constuction functions
with 3 minute time limit on an instances with 100 customers and 10

vehicles

5.5.1 Comparing with exiting solvers

Based on all conducted measurements, I have decided to use a combination of PBQ
+ HCv1 and PBR + HCv2 as they have proven to be the best-performing ones. Solu-
tions found by both versions of the GRASP solver are compared in the table 5.4 with
other solves previously described in section 5.2.

Outcome of the measurements show that both versions of the GRASP solver are
performing pleasingly. Average delivery time is lowest within compared solvers,
and the average delay is somewhere between the results of HALNS and Jackpot
solvers.

5.5. Comparing the results of GRASP with different construction heuristics 43

So
lv

er
de

la
y

pe
r

or
de

r(
m

in
)

(m
in

/a
vg

/m
ax

/m
ed

ia
n)

du
ra

ti
on

pe
r

or
de

r
(m

in
)

(m
in

/a
vg

/m
ax

/m
ed

ia
n)

to
ta

ld
is

ta
nc

e
tr

av
el

ed
to

ta
lt

im
e

sp
en

t
ti

m
e

(m
s)

H
A

LN
S

+
O

r-
To

ol
s

3.
8/

11
8.

9/
0

28
.3

/9
8.

9/
26

18
44

14
16

0
47

1
H

A
LN

S
on

ly
3.

8/
11

9/
0

27
.9

/1
00

/2
4.

8
18

44
13

97
4

14
8

Ja
ck

po
t+

O
r-

To
ol

s
3.

7/
12

8/
0

28
.3

/1
79

.7
/2

3.
9

20
61

14
18

1
49

7
Ja

ck
po

to
nl

y
3.

9/
12

8/
0

28
.2

/1
79

.7
/2

3.
4

20
62

14
12

4
13

4
In

se
rt

io
n

+
O

r-
To

ol
s

1.
1/

59
/0

31
.8

/1
13

/3
0.

8
17

07
15

91
5

34
2

In
se

rt
io

n
on

ly
1.

2/
59

/0
31

.8
/1

13
/3

0.
7

17
14

15
91

2
12

G
R

A
SP

(P
BQ

)+
O

r-
To

ol
s

0.
13

/1
6.

5/
0

21
.9

/6
5/

19
.8

20
93

10
96

0
11

92
G

R
A

SP
(P

BQ
)o

nl
y

0.
8/

25
.7

/0
21

.8
/6

9.
3/

19
.7

20
93

10
90

4
87

0
G

R
A

SP
(P

BR
)+

O
r-

To
ol

s
0.

19
/1

1.
5/

0
20

/7
6.

7/
15

.9
36

07
10

00
3

52
9

G
R

A
SP

(P
BR

)o
nl

y
1.

4/
30

.8
/0

19
.6

/8
9.

3/
15

.7
36

03
97

99
18

6

TA
B

L
E

5.
4:

R
es

ul
to

fd
iff

er
en

ts
ol

ve
rs

on
in

st
an

ce
s

w
it

h
50

0
cu

st
om

er
s

an
d

70
ve

hi
cl

es

45

Chapter 6

Conclusion

6.1 Summary

During the first part, I conducted experiments with different construction heuris-
tics and compared them to my colleague’s insertion heuristic [36]. Out of all the
construction heuristics included in this thesis, the SEQ heuristic is the only one that
doesn’t apply to the problem I am confronted with. Nonetheless, it might be relevant
to different VRP problems (e.g. VRP with an unlimited fleet). Among all implemen-
tations of construction heuristics, the PBR heuristic is the most efficient in terms of
search space explored within the given time limit. The quality of solution provided
by PBR are slightly worst then the one provided by PBQ constuciton heuristic. A
disadvantage of the PBQ heuristic is its time complexity, but its solutions are consis-
tently the best (lowest cost). The last construction heuristic, PIR, whose asymptotic
complexity is the same as the complexity of PBQ, yielded the least desirable results
of the other two heuristics (PBR and PBQ) for GRASP. Thus, this heuristic will not be
used as a construction heuristic. In the table 5.2, the final results demonstrate there
is not much difference in quality between PBR, PBQ, and insertion methods.

In the second part of the experiment, I investigated different combinations of
construction heuristics with hill-climbing procedures, and alpha values to see what
effect they had on the GRASP solver’s performance. Combinations where the high-
est performance was achieved, include PBR+HCv2 and PBQ+HCv1. They both pro-
vided comparable results within a 3-minute time limit.

Different solvers have been compared with the GRASP implemented in this the-
sis, and the results are presented in table 5.4. The quality of the solutions provided
by the GRASP with previously mentioned combinations of construction heuristic
achieved similar results as Jackpot and HALNS solvers implemented in the thesis
[36].

6.2 Future work

My future research will focus on developing a "better" (less greedy/randomized) lo-
cal search technique for the VRP problem. As the local search used in this research
has shown little to no improvement in the quality of solutions. Second, instead of
adding a request at the end of the route, I will attempt to enhance the construction
phase by inserting a request at the most promising position within the existing route.
This adjustment, I believe, will significantly reduce the execution time for route con-
struction. The HC procedure can then be called only during the Local search phase
or if the request insertion yields an unfeasible route. Finally, the GRASP solver cre-
ated in this thesis, along with other solvers, will be integrated into our GoDeliver’s
planning algorithm.

47

Bibliography

[1] Dantzig George B. and Fulkerson Delbert Ray. “MINIMIZING THE NUMBER
OF CARRIERS TO MEET A FIXED SCHEDULE”. In: Naval Research Logistics
Quarterly 1 (1954), pp. 217–222 (cit. on p. 2).

[2] J. K. Lenstra and Rinnooy Kan A. H. G. “Complexity of vehicle routing and
scheduling problems”. In: Networks 11.2 (1981), pp. 221–227. DOI: https://
doi.org/10.1002/net.3230110211 (cit. on pp. 2, 11).

[3] L. Bodin et al. “Routing and Scheduling of Vehicles and Crews - The State of
the Art”. In: 10 (1983), pp. 63–212 (cit. on p. 5).

[4] R. Johnson and M. G. Pilcher. “The traveling salesman problem”. In: vol. 19. 5.
1985, p. 463. DOI: https://doi.org/10.1002/net.3230190511 (cit. on p. 2).

[5] M.W.P. Savelsbergh. “Local search in routing problems with time windows”.
In: Annals of Operations Research 4 (1985), pp. 285–305. DOI: https://doi.org/
10.1007/BF02022044 (cit. on p. 11).

[6] Desrosiers Jacques et al. “Methods for routing with time windows”. In: Eu-
ropean Journal of Operational Research 23.2 (1986), pp. 236–245. ISSN: 0377-2217.
DOI: https://doi.org/10.1016/0377-2217(86)90243-2 (cit. on p. 2).

[7] Solomon M. “Algorithms for the Vehicle Routing and Scheduling Problem
with time Window Constraints”. In: Operations Research 35 (1987), pp. 254–265.
DOI: http://dx.doi.org/10.1287/opre.35.2.254 (cit. on pp. 12, 17).

[8] Martin Desrochers and Francois Soumis. “A Generalized Permanent Labelling
Algorithm For The Shortest Path Problem With Time Windows”. In: INFOR:
Information Systems and Operational Research 26.3 (1988), pp. 191–212. DOI: 10.
1080/03155986.1988.11732063 (cit. on p. 2).

[9] LAPORTE GILBERT, NOBERT YVES, and TAILLEFER SERGE. “Solving a
Family of Multi-Depot Vehicle Routing and Location-Routing Problems”. In:
Transportation Science 22.3 (1988), pp. 161–172. ISSN: 00411655, 15265447 (cit. on
p. 5).

[10] Solomon Marius M. and Desrosiers Jacques. “Survey Paper—Time Window
Constrained Routing and Scheduling Problems”. In: Transportation Science 1
(1988), pp. 1–13 (cit. on p. 2).

[11] Martin Desrochers, Jacques Desrosiers, and Marius Solomon. “A New Opti-
mization Algorithm for the Vehicle Routing Problem with Time Windows”.
In: Operations Research 40.2 (1992), pp. 342–354. DOI: 10.1287/opre.40.2.342
(cit. on p. 2).

[12] Laporte Gilbert. “The vehicle routing problem: An overview of exact and ap-
proximate algorithms”. In: European Journal of Operational Research 59.3 (1992),
pp. 345–358. ISSN: 0377-2217. DOI: https://doi.org/10.1016/0377-2217(92)
90192-C (cit. on pp. 2, 5).

https://doi.org/https://doi.org/10.1002/net.3230110211
https://doi.org/https://doi.org/10.1002/net.3230110211
https://doi.org/https://doi.org/10.1002/net.3230190511
https://doi.org/https://doi.org/10.1007/BF02022044
https://doi.org/https://doi.org/10.1007/BF02022044
https://doi.org/https://doi.org/10.1016/0377-2217(86)90243-2
https://doi.org/http://dx.doi.org/10.1287/opre.35.2.254
https://doi.org/10.1080/03155986.1988.11732063
https://doi.org/10.1080/03155986.1988.11732063
https://doi.org/10.1287/opre.40.2.342
https://doi.org/https://doi.org/10.1016/0377-2217(92)90192-C
https://doi.org/https://doi.org/10.1016/0377-2217(92)90192-C

48 Bibliography

[13] Kokubugata H., Itoyama H., and Kawashima H. “Vehicle Routing Methods for
City Logistics Operations”. In: IFAC Proceedings Volumes 30.8 (1997), pp. 727–
732. DOI: https://doi.org/10.1016/S1474-6670(17)43907-3 (cit. on p. 5).

[14] Guy Desaulniers et al. “The Vehicle Routing Problem”. In: Jan. 2002. Chap. VRP
with Time Windows, pp. 157–193. ISBN: 978-0-89871-498-2. DOI: 10.1137/1.
9780898718515.ch7 (cit. on p. 6).

[15] Guy Desaulniers et al. “The Vehicle Routing Problem”. In: Jan. 2002. Chap. VRP
with Pickup and Delivery, pp. 225–242. ISBN: 978-0-89871-498-2. DOI: 10.1137/
1.9780898718515.ch9 (cit. on p. 6).

[16] Paolo Toth and Daniele Vigo. The Vehicle Routing Problem. Jan. 2002. DOI: 10.
1137/1.9780898718515 (cit. on pp. 1, 2).

[17] Marco Diana and Maged M. Dessouky. “A new regret insertion heuristic for
solving large-scale dial-a-ride problems with time windows”. In: Transporta-
tion Research Part B: Methodological 38.6 (2004), pp. 539–557. ISSN: 0191-2615.
DOI: https://doi.org/10.1016/j.trb.2003.07.001 (cit. on pp. 19, 36).

[18] Gerardo Berbeglia et al. “Static pickup and delivery problems: A classification
scheme and survey”. In: An Official Journal of the Spanish Society of Statistics and
Operations Research 15 (Feb. 2007), pp. 1–31. DOI: 10.1007/s11750-007-0009-0
(cit. on p. 2).

[19] Sophie Parragh, Karl Doerner, and Richard Hartl. “A survey on pickup and
delivery problems: Part I: Transportation between customers and depot”. In:
Journal für Betriebswirtschaft 58 (Apr. 2008), pp. 21–51. DOI: 10.1007/s11301-
008-0033-7 (cit. on p. 2).

[20] Eksioglu B., Vural A. V., and Reisman A. “The vehicle routing problem: A tax-
onomic review”. In: Computers & Industrial Engineering 4 (2009), pp. 1472–1483
(cit. on p. 1).

[21] JY Potvin. “A Review of Bio-inspired Algorithms for Vehicle Routing”. In:
Studies in Computational Intelligence (2009), pp. 1–13. DOI: https://doi.org/
10.1007/978-3-540-85152-3_1 (cit. on p. 5).

[22] Hoff Arild et al. “Industrial aspects and literature survey: Fleet composition
and routing”. In: Computers & Operations Research 37.12 (2010), pp. 2041–2061.
ISSN: 0305-0548. DOI: https://doi.org/10.1016/j.cor.2010.03.015 (cit. on
p. 1).

[23] El-Sherbeny Nasser A. “Vehicle routing with time windows: An overview of
exact, heuristic and metaheuristic methods”. In: Journal of King Saud University
- Science 22.3 (2010), pp. 123–131. ISSN: 1018-3647. DOI: https://doi.org/10.
1016/j.jksus.2010.03.002 (cit. on p. 6).

[24] Mauricio Resende and Celso Ribeiro. “Greedy Randomized Adaptive Search
Procedures: Advances, Hybridizations, and Applications”. In: vol. 146. Sept.
2010, pp. 283–319. DOI: 10.1007/978-1-4419-1665-5_10 (cit. on p. 25).

[25] Manar Hosny. “Vehicle Routing with Pickup and Delivery: Heuristic and Meta-
heuristic Solution Algorithms”. PhD thesis. Jan. 2012. ISBN: 978-3-659-20258-2
(cit. on pp. 6, 15, 26, 34).

[26] Kenneth Sörensen and Fred Glover. “Metaheuristics”. In: Jan. 2013, pp. 960–
970. ISBN: 978-1-4419-1137-7. DOI: 10.1007/978-1-4419-1153-7_1167 (cit. on
p. 21).

https://doi.org/https://doi.org/10.1016/S1474-6670(17)43907-3
https://doi.org/10.1137/1.9780898718515.ch7
https://doi.org/10.1137/1.9780898718515.ch7
https://doi.org/10.1137/1.9780898718515.ch9
https://doi.org/10.1137/1.9780898718515.ch9
https://doi.org/10.1137/1.9780898718515
https://doi.org/10.1137/1.9780898718515
https://doi.org/https://doi.org/10.1016/j.trb.2003.07.001
https://doi.org/10.1007/s11750-007-0009-0
https://doi.org/10.1007/s11301-008-0033-7
https://doi.org/10.1007/s11301-008-0033-7
https://doi.org/https://doi.org/10.1007/978-3-540-85152-3_1
https://doi.org/https://doi.org/10.1007/978-3-540-85152-3_1
https://doi.org/https://doi.org/10.1016/j.cor.2010.03.015
https://doi.org/https://doi.org/10.1016/j.jksus.2010.03.002
https://doi.org/https://doi.org/10.1016/j.jksus.2010.03.002
https://doi.org/10.1007/978-1-4419-1665-5_10
https://doi.org/10.1007/978-1-4419-1153-7_1167

Bibliography 49

[27] Vigo Daniele and Toth Paolo. Vehicle Routing: Problems, Methods, and Appli-
cations. 2nd edition. SIAM-Society for Industrial and Applied Mathematics,
2014. ISBN: 1611973589 (cit. on pp. 2, 6).

[28] Ta-Yin Hu and Chin-Ping Chang. “A revised branch-and-price algorithm for
dial-a-ride problems with the consideration of time-dependent travel cost”. In:
Journal of Advanced Transportation 49 (Nov. 2014). DOI: 10.1002/atr.1296 (cit.
on p. 9).

[29] Grandinetti L. et al. “The Multi-objective Multi-vehicle Pickup and Delivery
Problem with Time Windows”. In: Procedia - Social and Behavioral Sciences 111
(2014), pp. 203–212. ISSN: 1877-0428. DOI: https://doi.org/10.1016/j.
sbspro.2014.01.053 (cit. on p. 11).

[30] Gilbert Laporte, Stefan Ropke, and Thibaut Vidal. “Vehicle Routing: Problems,
Methods, and Applications”. In: Nov. 2014. Chap. Chapter 4: Heuristics for the
Vehicle Routing Problem, pp. 87–116. ISBN: 978-1-61197-358-7. DOI: 10.1137/
1.9781611973594.ch4 (cit. on p. 11).

[31] Mauricio Resende and Celso Ribeiro. Optimization by GRASP. 2016. DOI: https:
//doi.org/10.1007/978-1-4939-6530-4 (cit. on pp. 21, 22, 25, 26).

[32] Liao Tsai-Yun, Hu Ta-Yin, and Wu Yu-Wen. “A Time-dependent Vehicle Rout-
ing Algorithms for Medical Supplies Distribution Under Emergency”. In: OP-
ERATIONS AND SUPPLY CHAIN MANAGEMENT 10.3 (2017), pp. 161–169.
ISSN: 1979-3561 (cit. on p. 5).

[33] Kenneth Sörensen, Florian Arnold, and Daniel Palhazi Cuervo. “A critical
analysis of the “improved Clarke and Wright savings algorithm””. In: Inter-
national Transactions in Operational Research 26.1 (2019), pp. 54–63. DOI: https:
//doi.org/10.1111/itor.12443 (cit. on p. 11).

[34] COVID-19 has changed online shopping forever, survey shows. 2020. URL: https:
//unctad.org/news/covid-19-has-changed-online-shopping-forever-
survey-shows (cit. on p. 2).

[35] EUROPE FREIGHT AND LOGISTICS MARKET - GROWTH, TRENDS, COVID-
19 IMPACT, AND FORECASTS 2021− 2026. 2020. URL: https://www.mordorintelligence.
com/industry-reports/european-freight-logistics-market (cit. on p. 1).

[36] David Mokos. “Online Planner for Food Deliveries”. PhD thesis. June 2020.
URL: https://dspace.cvut.cz/handle/10467/95468 (cit. on pp. 33, 34, 36,
45).

[37] Andrea Mor and M.Grazia Speranza. “Vehicle routing problems over time: a
survey”. In: 4OR 18 (June 2020). DOI: 10.1007/s10288-020-00433-2 (cit. on
p. 2).

https://doi.org/10.1002/atr.1296
https://doi.org/https://doi.org/10.1016/j.sbspro.2014.01.053
https://doi.org/https://doi.org/10.1016/j.sbspro.2014.01.053
https://doi.org/10.1137/1.9781611973594.ch4
https://doi.org/10.1137/1.9781611973594.ch4
https://doi.org/https://doi.org/10.1007/978-1-4939-6530-4
https://doi.org/https://doi.org/10.1007/978-1-4939-6530-4
https://doi.org/https://doi.org/10.1111/itor.12443
https://doi.org/https://doi.org/10.1111/itor.12443
https://unctad.org/news/covid-19-has-changed-online-shopping-forever-survey-shows
https://unctad.org/news/covid-19-has-changed-online-shopping-forever-survey-shows
https://unctad.org/news/covid-19-has-changed-online-shopping-forever-survey-shows
https://www.mordorintelligence.com/industry-reports/european-freight-logistics-market
https://www.mordorintelligence.com/industry-reports/european-freight-logistics-market
https://dspace.cvut.cz/handle/10467/95468
https://doi.org/10.1007/s10288-020-00433-2

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Research problem
	Scope and purpose
	Thesis overview

	Problem definition and variants
	Mathematical formulation
	Capacitated VRP
	VRP with time windows
	VRP with pickup and deliveries
	VRPPDTW formulation

	Other variants of vehicle routing problem

	VRP Heuristics
	Construction heuristics
	Related work
	Cost function
	Complexity analysis and implementation issues
	(Sub)route construction and selection

	Routing algorithm
	The sequential construction algorithm
	The parallel construction algorithm
	Best route parallel construction
	Best request parallel construction
	Parallel insertion k-Regret construction heuristic

	GRASP implementation
	Metaheuristic
	Random multi-start procedure
	Semi-greedy multi-start procedure
	Effect of alpha value on semi-greedy construction
	Parallel vs sequential multi-start procedure

	GRASP metaheuristic
	GRASP algorithm for VRPPDTW
	Recap on problem formulation
	GRASP construction
	Local search
	Effect of LS algorithm on solution's quality

	Computational Experimentation
	Data-set characteristics
	Existing solvers and baseline algorithms
	Comparison criteria
	Comparing the construction heuristics
	Implementation issues and complexity analysis
	Comparing with an exiting insertion heuristic
	Heuristics as an initial solution for OR-Tools

	Comparing the results of GRASP with different construction heuristics
	Comparing with exiting solvers

	Conclusion
	Summary
	Future work

	Bibliography

