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a b s t r a c t 

Background and objective: The geodesic ray-tracing method has shown its effectiveness for the recon- 

struction of fibers in white matter structure. Based on reasonable metrics on the spaces of the diffusion 

tensors, it can provide multiple solutions and get robust to noise and curvatures of fibers. The choice of 

the metric on the spaces of diffusion tensors has a significant impact on the outcome of this method. Our 

objective is to suggest metrics and modifications of the algorithms leading to more satisfactory results in 

the construction of white matter tracts as geodesics. 

Methods: Starting with the DTI modality, we propose to rescale the initially chosen metric on the space of 

diffusion tensors to increase the geodetic cost in the isotropic regions. This change should be conformal 

in order to preserve the angles between crossing fibers. We also suggest to enhance the methods to be 

more robust to noise and to employ the fourth order tensor data in order to handle the fiber crossings 

properly. 

Results: We propose a way to choose the appropriate conformal class of metrics where the metric gets 

scaled according to tensor anisotropy. We use the logistic functions, which are commonly used in statis- 

tics as cumulative distribution functions. To prevent deviation of geodesics from the actual paths, we 

propose a hybrid ray-tracing approach. Furthermore, we suggest how to employ diagonal projections of 

4th order tensors to perform fiber tracking in crossing regions. 

Conclusions: The algorithms based on the newly suggested methods were succesfuly implemented, their 

performance was tested on both synthetic and real data, and compared to some of the previously known 

approaches. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

DTI (Diffusion Tensor Imaging) has become a clinical standard 

or studying and diagnosing neuro diseases. It is the non-invasive 

pproach to obtain information on the neural architecture. Fiber 

racking methods broadly comprise of two classes, probabilistic [1–

] , and deterministic [4–8] . Probabilistic fiber tracking traverses 

ll possible trajectories and provides a simulated distribution of 

he fiber tracts, which can be used in brain connectivity stud- 

es. Deterministic tractography methods are primarily based upon 

treamline algorithms where the local tract direction is defined by 

he principal eigenvector of the diffusion tensor. These approaches 

ave been used to construct white matter anatomical connections 

n the human brain. In this work, we are considering the latter 

lass. 
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Earlier classical streamline based techniques [9] showed inef- 

ectiveness in the reconstruction of highly curved fibers. Other 

ifficulties with these methods appear in the isotropic (slightly 

nisotropic) regions where direction information is redundant. 

part from that, these methods are also sensitive to noise and fiber 

rossings. 

To overcome the problems mentioned above [10–13] propose 

ethods based on geodesics in Riemannian geometric space. These 

eodesics follow the shortest path locally between two points ly- 

ng on the manifold. This path is optimal for the underlying actual 

ber tracts. One class of such methods is based on Hamilton–Jacobi 

HJ) formalism. These methods are sensitive to local changes and 

rovide a single solution. 

In the works [10,12] authors proposed to use the inverse of dif- 

usion tensor as the metric tensor of the geometric space. Fuster 

nd others [14] introduce modification of inverse metric, called ad- 

ugate tensor, which better explained Brownian motion on Rieman- 

ian space and overcame the issue with inverse diffusion tensor. 

https://doi.org/10.1016/j.cmpb.2021.106283
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2021.106283&domain=pdf
mailto:slovak@muni.cz
https://doi.org/10.1016/j.cmpb.2021.106283
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Fig. 1. Initial shooting direction. 

Fig. 2. The effect of interpolation between the tensors and the Riemannian cost 

from anisotropy to isotropic region. HA gives low Riemannian cost for anisotropic 

and high Riemannian cost for isotropic region. 
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Fig. 3. An isotropic region (left) and anisotropic region (right). 
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In [15–17] Sepasian et al comes up with multi-valued ray- 

racing method for anisotropic medium. Ray-tracing methods are 

ased on the assumption that, locally in the medium, a wave or 

article follows a path corresponding to the least action. Conse- 

uently, the directions of the path vary. These methods are capa- 

le of producing multiple geodesics between point and region in 

he medium. 

Local variations of geodesics from underlying fibers are taken 

nder consideration using Euler-Lagrange equations, but while 

raversing they deviate from the actual underlying path. The con- 

ormal rescaling or adaptive Riemannian metric is chosen for trac- 

ography in [18] and segmentation in their subsequent work [19] . 

imilar to their work, authors in [20] evaluated adjugate instead of 

 

−1 with or without sharpening. The choice of adjugate tensor as 

 metric does not resolve minimizing the Riemannian cost in all 

nisotropic or nearly anisotropic regions. 

In this work, the contributions are as follows:[ 42 ] 
2 
1. Starting with the second order tensor data, we present a 

method to choose the appropriate conformal class of metrics 

where the metric gets scaled according to tensor anisotropy. 

We use the idea that the rotational information is related to 

the anisotropy of the tensor, and logistic function can be ex- 

ploited to capture it. In particular, the rotational information is 

misleading in nearly isotropic regions in the presence of noise. 

The metric tensor is rescaled, according to this information. We 

compare various scalar anisotropies under the activation func- 

tion. 

2. Ray-tracing method deviates from the geodesics path in gen- 

eral. This problem is countered by feeding back the principal 

eigenvector direction of underlying interpolated tensor to ODE 

solver. This also enables the hybrid ray-tracing method to per- 

form better in high curvature regions. We also enhance the 

method by local interpolation based on the so-called spectral 

quaternionic distance measures on the metric tensors. 

3. We suggest to employ diagonal projection of 4th order tensors 

to perform fiber tracking in crossing regions. The diagonal com- 

ponents of the flattened 4th order tensor are second order ten- 

sors and lie in Riemannian space. We show that these compo- 

nents have potential to resolve fiber crossings even at small an- 

gle intersections. 

This paper is organized as follows. In Section II, we review 

he geodesic-based fiber tracking approach. In Section III, parts A 

hrough D, we introduce a modified ray-tracing method, which en- 

bles us to find multiple geodesics by shooting rays from point to 

egion. We describe the use of activation function, which we call 
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Fig. 4. Comparison of the three metric tensors with the two extreme cases. 

Fig. 5. 4th order ODF with angle differences between the two fibers. 
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Fig. 6. Comparison of DC vs. CT-FOD. 
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-scaled metric tensor. Next, we suggest how to employ the so 

alled diagonal components of the fourth order tensors, [21] , to re- 

olve the fiber crossing even at small angles. Finally, in part G we 

lso comment on various choices of metrics suitable for local inter- 

olation of tensor data. Section IV shows the results of our tracking 

pproach on synthetic and real brain diffusion data. 

. Background 

In geodesic ray-tracing, a small deviation of the geodesics from 

he direction of diffusion is preferred. It makes the geodesics ro- 

ust to noise, but if this deviation is big, it needs a sharpening 

f diffusion tensor [15,22] . It can be done by powering the tensor. 

owever, it causes artificial increase or decrease in volume, which 

s not required as the diffusion process is physical, and diffusion 

uality must be preserved. This is partially done by the normal- 

zation of the tensor. The sharpening strategy seems to result in 

etter tractography. For more details, we refer the readers to [22] . 

The works [23,24] explain the choice of inverse diffusion ten- 

or as a metric in the context of DTI. It does not work for all

ases. Another approach for modification of metric has been indi- 

ated by Hao [19] , which has a similar effect as the adjugate metric

roposed by Fuster [14] . The two approaches are build upon the 

onformal rescaling of the tensor. They use adjugate tensor with 
3 
harpening to track high curvature fibers. The main idea to use in- 

erse diffusion tensor as the metric tensor is to ensure that path is 

horter if diffusion is stronger along the high anisotropic direction. 

his provides the minimization of the path, in essence, which can 

e treated as a geodesic. The ray-tracing method works under the 

ssumption to consider a bundle of the rays together and provides 

 multi-valued solution. In this work, we consider a cone formed 

n the base of the ellipsoid. 

Sepasian et al introduced a modified ray-tracing by adjusting 

he direction of geodesics based on computing Ricci curvature ten- 

or from the metric tensor and its derivatives [25] . It provides a 

easure of the degree of deviation determined by the Riemannian 

etric tensor from Euclidean space. DTI model fails in the regions 

here fibers are merging, intersecting, and kissing. The second or- 

er tensor in DTI lies in the Riemannian space, which is well stud- 

ed in [24,26–29] . 

The geodesic methods employing the Hamilton–Jacobi equation 

HJ) fail in highly curved regions comparing to fast marching tech- 

iques. In [30] , geodesics are considered as a function of posi- 
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Fig. 7. Local Interpolation of 2nd order tensors in crossing fibers using LogE and SQ interpolation. 
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ion and direction. In isotropic regions, the rays may deviate from 

he actual path [22,31,32] . Sharpening is helpful in these cases, as 

entioned above. 

During traversal, geodesic rays tend to deviate so that there 

s non-uniformity in their distribution across the regions, which 

auses less dense fibers. Ray density can be altered by changing 

he mesh size of interpolation. Anisotropic diffusion in Euclidean 

pace is similar to the Brownian motion of water molecules in an 

sotropic medium in Riemannian Space [14] . 

. Ray-tracing via Activation function 

.1. Initial shooting direction 

Ray-tracing method is used to find the trajectory of the particle 

oving in medium. To compute the geodesics using this technique 

e need the initial position and direction. In DTI tractography, we 

an restrict the initial shooting directions. Let R be the radius of 

he base and σ ∈ (0 , 1) , which adjusts the base of the cone. The

ifferent values of σ provide different bases ( σ.R ) of a cone. Direc- 

ions are uniformly distributed over a spherical section of the cone, 

s shown in Fig. 1 . This is done to restrict the shooting direction

nd to ensure the ray bundle remains densely packed. 

The values of σ approaching to 1 causes bigger perturbation. 

he more realistic way is to ray trace from point to region or re-

ion to region because it is not possible to know in advance if the 

nitial and final points are connected [15] . 

.2. Activation function 

The logistic or activation functions are known for their common 

se in deep learning methods and statistics as cumulative distri- 

ution functions. One of their special cases is sigmoid functions, 

hich are differentiable over real domain values and have positive 

erivatives at each point. To account for the tensors with negli- 

ible difference between the maximal ( λmax ) and minimal ( λmin ) 

igenvalues, a smooth transition function is applied. In our case, 

e tested the following three functions with very similar perfor- 
4 
ance: 

 1 (x ) = tanh (x ) (1a) 

 2 (x ) = 

1 

1 + exp (− 1 
2 

x ) 
(1b) 

 3 (x ) = 

x √ 

1 + x 2 
(1c) 

In our experiments discussed below, the function S 1 was used. 

Hilbert Anisotropy [34] is given by: 

A = log ( 
λmax 

λmin 

) , (2) 

here HA ≥ 0 , HA = 0 for fully isotropic tensor. 

HA is a scalar measure of anisotropy and is scale-invariant (de- 

ends on the shape not the size of the tensor). It is also invari- 

nt to rotation and it is a dimensionless number reflecting micro- 

copic diffusion at the level of tissues [33] . To choose an appropri- 

te metric, we scale the Riemannian metric by an activation func- 

ion, which is adapted according to the inherent anisotropy. 

Let β := S i (x ) for x = HA, i = 1 , 2 , 3 , then the β-scaled metric is

iven by 

 β = β−p D 

−n , (3) 

here D is the second order diffusion tensor p ≥ 1 , n ≥ 1 . In our

xperiments, we used n = 2 , and mostly p = 2 . Recall, D belongs to

he space S + (3) of positive definite 3 × 3 matrices (SPD). In partic- 

lar, D and all its powers are metric tensors. 

Beside the Hilbert anisotropy, various scalar measures ex- 

st, which can serve as description for the degree of anisotropy 

f diffusion tensor. These measures can be composed with the 

bove functions. They include: mean diffusivity (MD), fractional 

nisotropy (FA), relative anisotropy (RA) and geometric ones: 

eodesics anisotropy (GA), Hilbert anisotropy (HA) [33] . 

Spectral metrics allow for proper scaling of the rotational con- 

ribution according to the anisotropy. This is achieved by using 

he combination of the activation function with anisotropy scalar 
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Fig. 8. FA images corresponding to (a),comparison of ray-tracing with ODE solver using adjugate, and β-scaled metric tensors from (b) - (e) respectively. 
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easure. In Fig. 2 , we compare the Riemannian cost while con- 

idering these anisotropy measures under the activation function. 

rom left to right the tensors exhibit high-low-high spectrum of 

nisotropies. The interpolation of tensors in between two extreme 

nisotropic tensors is obtained using Log-Euclidean metric shown 

n Eq. (11) . Under this metric we can observe that the anisotropy 

s not preserved. There is variation in eigenvalues and rotational 

omponent of interpolated tensors. 

The minimal Riemannian cost in anisotropic direction is given 

y βλ−2 
max . It is observed that Riemannian cost increases as ten- 

ors achieve high isotropy in the middle of the spectrum and af- 

er which a smooth descend is noticed for HA case. The other 

calar measures do not give linear interpolation as shown in [33] , 

ee Fig 3 there. HA is the only one of all above mentioned scalar

nisotropy measure keeping affine combinations invariant. 
5 
.3. Governing equations 

The trajectory of a fiber pathway is computed iteratively from 

he hybrid approach, position from ODE solver, and direction equal 

o the principal eigenvector direction. The geodesic method in Rie- 

annian manifold which is used to compute the trajectory of the 

bers from ODEs is shown below. 

Let x (τ ) be a smooth and differentiable parametrized curve 

n the Riemannian manifold, τ = [0 , T ] . The Riemannian length is 

iven as follows: 

 (x, ˙ x ) = 

∫ T 

(g αβ ˙ x α ˙ x β ) 1 / 2 dτ (4) 

0 
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Fig. 9. Fiber tracing using β-scaled and DC when two fibers are close. 
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he geodesic is the curve that minimizes the length (4) . The tech- 

ique of the Euler–Lagrange equations for solving variational prob- 

ems is explained, e.g., in [35] . 

Let ˙ x γ and ẍ γ be the first and second derivative with respect 

o τ , respectively, of the geodesic for dimension γ = 1 , 2 , 3 . The 

eodesics are given by the following system of equations: 

¨
 

γ + 

3 ∑ 

α=1 

3 ∑ 

β=1 

�
γ
αβ

˙ x α ˙ x β = 0 , (5) 

here �
γ
αβ

are the so called Christoffel symbol, given by 

γ
αβ

= 

1 

2 

3 ∑ 

σ=1 

g γ σ

(
∂g βσ

∂x α
+ 

∂g ασ

∂x β
− ∂g βα

∂x σ

)
(6) 

nd g βσ denotes the matrix component of our rescaled metric, and 

 

γ σ represents an element of its inverse. We compute the solution 

f Eq. (5) for the given initial position and multiple initial direc- 

ions using the standard ODE solvers, such as fourth-order Runge–

utta method. This gives us a set of geodesics connecting the given 

nitial point, which we integrate until they hit the boundary. De- 

ending on the Eqs. (5) and (6) , we need nine symbols per di-

ension, for a total of 27 symbols. However, dealing with torsion 

ree connections allows to exploit additional symmetries. The ini- 

ial position is user-specified and directions are computed by form- 

ng a cone with a base of the radius. 

The choice of power of β is done experimentally. In our work, 

e have compared the results on synthetic data with D 

−1 , adju- 

ate and β-scaled diffusion tensor. The experiment shows our ap- 

roach works irrespective of configuration in terms of curvature 

nd (an)isotropy of neighboring tensors. 

Based on the observation that the ODE solver’s output direction 

eviates from the actual fiber path, we used the principal eigen- 

ector of the underlying interpolated tensor as input for the ODE 

olver. While picking up the principal vector direction, there are 

lways possibilities of choosing two directions. At each iteration, 

e need to keep track of following the direction consistent with 

raversing fiber. This hybrid approach resulted in the traversal of 

eodesics in the high curvature cases and is robust to noise as well. 
6 
.4. Rescaling of metric tensor 

Illustration of Fig. 3 comes from [14] that advocate the use of 

djugate diffusion tensor instead of the inverse of diffusion tensor 

s a metric tensor. The intuitive idea is to minimize the Rieman- 

ian cost along the trajectory. 

Consider two tensors whose principal eigenvalues are equal. In 

 

−1 case, Riemannian cost (4) of (traveling along) an infinitesimal 

ertical line element scales by 1 /λ. For adjugate case i.e., dD 

−1 , 

here d = det (D ) the Riemannian cost for isotropic tensor is pro- 

ortional to λ2 (size of the shaded circle) and for anisotropic ten- 

or it is λ2 λ3 (proportional to the size of the shaded region). This 

ethod does not work if λ > λ2 , λ3 . When the area of the orthog- 

nal cross section in the isotropic case becomes equal (i.e., same 

2 , λ3 ) but their principal eigenvalues are different, adjugate tends 

o give the same Riemannian cost whereas our approach scales the 

etric appropriately according to the scalar anisotropy. The scal- 

ng coefficient takes zero value for isotropic and higher values for 

nisotropic cases. 

HA is zero irrespective of the size of the isotropic tensor. This 

eads to same evaluation of Riemann costs for any isotropic ten- 

or. Such scaling suggests that the diffusion of water molecules is 

niform in all directions and hence the Riemann cost as well. In 

ig. 4 two cases are depicted. Fig. 4 (a) shows the case 1, where

sotropic tensors in the intersection region are chosen with the 

maller eigenvalues. Fig. 4 (e) shows the case 2 with larger eigen- 

alues. In both of the cases, the metrics D 

−1 and adjugate induces 

ifferent Riemann cost. However, in both cases, the β-scaled met- 

ic lowers the cost of traversing irrespective of the eigenvalues of 

sotropic tensors. 

.5. Decomposition of 4th order tensor 

Tuch [36] introduced the idea to use mono-exponential model 

or diffusion of water molecules in the tissues using multiple gra- 

ient directions: 

 = S 0 exp (−bD (g)) (7) 

or anisotropic diffusion this Eq. (7) is linear in the log domain, 

hus, 

og (S) = log (S 0 ) − bD (g) 

here, 

 (g) = 

3 ∑ 

i 1 =1 

3 ∑ 

i 2 =1 

3 ∑ 

i 3 =1 

· · ·
3 ∑ 

i n =1 

D i 1 j 2 i 3 , ... ,i n g i 1 g i 2 g i 3 , . . . , g i n 

ere, D i 1 , ... ,i n 
are the coefficients of n -th order tensor, while g i are 

omponents of the unit gradient vector g, b is the diffusion weight- 

ng factor, and S and S 0 are drop in the signal in presence and 

bsence of diffusion gradients respectively. Earlier methods based 

n the least square estimation do not ensure positive diffusion 

rofile. The methods proposed in [37,38] ensures positive semi- 

efiniteness of the tensors. We apply flattening of 4th order ten- 

or, which gives 9 × 9 matrix, and eigen-tensors have the potential 

o reveal actual fiber directions [39] . The diagonal components ap- 

roach [21] retains geometrical information of the full tensor. The 

iagonal component of this matrix is symmetric positive definite 

ensor [21] . In general, n th order tensor T (n ) can be expressed as a 

atrix of (n − 2) order tensors: 

 

(n ) = 

⎛ 

⎝ 

T (n −2) 
xx T (n −2) 

xy T (n −2) 
xz 

T (n −2) 
yx T (n −2) 

yy T (n −2) 
yz 

T (n −2) 
zx T (n −2) 

zy T (n −2) 
zz 

⎞ 

⎠ (8) 
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Fig. 10. Ray-tracing using Hybrid approach and diagonal sum 2nd order in high curvature fiber flows. Here we consider with 10 points and 5 shoots per points inside the 

rectangular region. 
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or instance, the diagonal block element T (2) 
xx in the fourth order 

iffusion tensor is given by 

 

T xx (xx ) T xx (xy ) T xx (xz) 

T xx (xy ) T xx (yy ) T xx (yz) 

T xx (xz) T xx (yz) T xx (zz) 

) 

= 

( 

D xxxx D xxxy D xxxz 

D xxxy D xxyy D xxyz 

D xxxz D xxyz D xxzz 

) 

(9) 

nother observation is that the flattening of 4th order tensor us- 

ng diagonal components (DC) can potentially reveal the actual un- 

erlying fiber directions. This observation could be quite useful in 

ber tracking. 
7 
.6. Resolution of fiber crossings at fine angles 

We have shown experimentally that these diagonal compo- 

ents produce small orientation errors in comparison to the Carte- 

ian tensor fiber orientation distribution (CT-ODF) method [40] and 

41] . In [40] , Fig. 3 , shows a comparison of orientation errors com-

uted from CT-ODF method versus the other methods: QBI, DOT, 

OVMF, and MOW. The other observation is about fuzziness in 

nding maxima using the CT-ODF method. These maxima provide 

he direction of underlying fibers. The maximal of ODF does not 

ecessarily align with the actual underlying fiber direction. The CT- 
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Fig. 11. (a) Reflected S-shaped fiber with Riccian noise 0.25, (b) Signal corrupted with Riccian noise = 0 . 30 , (c) Ray-tracing with Principal eigenvector direction using adjugate 

and noise 0.25 (d) Ray-tracing with Principal eigenvector direction using adjugate and noise 0.30, (e) Ray-tracing with principal eigenvector direction using β-scaled metrics 

with p = 2 and Riccian noise 0.25, (f) Ray-tracing with principal eigenvector direction using β-scaled metrics with p = 2 and Riccian noise 0 . 30 . 
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arise. 
DF method does the misalignment correction. The correction in- 

olves the computation of the maxima. 

The CT-ODF method shows ambiguity in finding maxima, as 

hown in Fig. 5 . In Fig. 5 (a), when the angle between fibers is less

han 70 ◦, the points labeled by arrows are supposed to be the bet- 

er choices for maxima than the middle one (point labelled by red 

olour). This effect disappears when the angle difference falls in 

0 ≤ θ ≤ 90 range (see Fig. 5 (b)). 

Our projection to second order tensors mentioned in last sec- 

ion is devoid of this ambiguity. In Fig. 6 , the known angle dif-

erences between the two fibers are shown on x -axis. These fibers 

re used to generate the ODFs. These angles are then retrieved us- 
8 
ng CT-ODF and D-components. The resulting orientation errors are 

hown on y -axis. For the angle range 70 ≤ θ ≤ 110 , performance of 

oth the methods is comparable whereas for smaller angle differ- 

nces there is a significant drop of the estimated error visible for 

-components. 

In the next subsection, we propose to use CT-ODF for re- 

rientation and diagonal components for tracking fibers, partic- 

larly in crossing regions. This method is extendable to higher- 

rder tensors; for instance, 6th order tensor has nine diagonal 

omponents which could resolve up to nine directions. How- 

ver, practically more than 3 or 4 fibers per crossing seldom 
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Fig. 12. Fibers computed using the hybrid approach and diagonal sum at crossing area. 
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Algorithm 2 Compute Christoffel symbol �i 
jk 

Input : the diffusion tensor D and the indices i, j, k . 

Output : Christoffel symbols 

1: Adapt D to g β according to (3) 

2: Set �i 
jk 

= 0 

3: Loop through all three dimensions, i.e m = 1 , 2 , 3 

4: �i 
jk 

= �i 
jk 

+ 

1 
2 

(
g β

−1 (m, k ) . 
(
D 2( j, m, i ) + D 2(m, i, j) −

D 2(i, j, m ) 
))

5: End of loop 

Here, D2 is the second order difference of the metric tensor g β
in (6). 

Algorithm 3 Reconstruction of fibers 

Input : Reoriented 4th order tensor field 

Output : Fiber reconstruction 

1: Flatten the 4th order tensor 

2: Extract two layers corresponding to the diagonal components 

in 2D usingthe matrix representation (9) 

3: Shoot the rays from initial point/region using Algorithm 1 in 

layer 1 and layer 2. 

t

d

Resolving crossing fibers. When dealing with the crossing re- 

ions, we enhance Algorithm 1 by working in two layers corre- 

ponding to two projections of the fourth order tensor to its diag- 

nal components, see Algorithm 3 . 

lgorithm 1 Hybrid Ray-Tracing 

Input : Initial position ( x ) and direction ( ̇ x ) 

Output : Local geodesics 

1: Define the mesh size locally over the physical grid with size 

m = 0 . 1 

2: Compute interpolated inverse diffusion tensor locally. 

3: Find local geodesics 

a Give the position and direction to ODE solver. 

b Compute Christoffel symbols using Algorithm 2. 

4: Take the new position and replace directions with principal 

eigen vector of the underlying interpolated tensor. 

5: Repeat step 2 − 4 until the geodesics leave the grid. 

.7. Local interpolation effect 

The interpolation step in the algorithm affects the flow of 

eodesics while fiber tracking. Aside the elementary Euclidean in- 

erpolation of the tensor data, there are smarter choices available, 

ncluding the Log-Euclidean (LogE), Spectral Quaternion (SQ), and 

pherical version of spectral quaternionic interpolation (SlerpSQ) 

21] , detailed explanation can be also found in [33] . 
9 
Log-Euclidean Interpolation : In this geometry, the distance be- 

ween two tensors T 1 , T 2 ∈ S + (3) is given by 

 LogE (T 1 , T 2 ) = || log (T 1 ) − log (T 2 ) || (10) 
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Fig. 13. This figure illustrate β-scaled fiber tracking can trace in high curvature fiber flow using the hybrid approach and diagonal sum at crossing area. 
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t is based on the fact that the symmetric 3 × 3 matrices are diffeo-

orphic to S + (3) via the exponential mapping. The interpolation 

urve between two tensors is the geodesics curve γLogE : [0 , 1] −→ 

 

+ (3) , where the space S + (3) is a convex subset of the Euclidean

pace R 3 ×3 of 3 × 3 matrices and it is given for all 0 ≤ t ≤ 1 by: 

LogE (t) = exp (t log (T 1 ) + (1 − t) log (T 2 )) , (11) 
10 
pectral quaternion interpolation : The basic idea of spectral metric 

s to treat eigenvalues and eigenvectors of a SPD matrix separately. 

he eigenvalue decomposition of the SPD matrix in spectral geom- 

try is T = RΛR T into a rotation matrix R ∈ S O (3) and a diagonal

atrix Λ containing the eigenvalues, which provides a natural way 

f splitting the tensor. Thus using the spectral decomposition of 

 positive definite matrix, the interpolation curve is given by the 
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Fig. 14. Fiber tracking in crossing fibers under noise. 
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quations 

(t) = R (t) Λ(t) R (t) T , (12) 

 (t) = R 1 exp (t log (R 

T 
1 R 2 )) , (13) 

(t) = R 1 exp (t log (R 

T 
1 R 2 )) (14) 

he geometric interpretation of the interpolation curve is a 

eodesic in the product space of the Lie group defined as G = 

O (3) × D 

+ (3) , where D 

+ (3) is the group of diagonal matrices 

ith positive elements. In [21] , both SQ and SlerpSQ have a similar 

ffect in interpolation, we choose SQ interpolation for fiber track- 

ng. 

Fig. 7 (a) and (b) show the spectral metric preserves anisotropy, 

hich is crucial in fiber tracking application. In Fig. 7 (c), a tensor 

ocated at (12,13), the rectangular section is considered. The ten- 

or at this position is part of the vertical fiber and is underlying 

o the uniform background and not cross-section with horizontal 

ber. Fig. 7 (d) is interpolation in its neighborhood using the LogE 

etric and Fig. 7 (e) does the same with respect to the SQ met-

ic. The flow of interpolated tensors is more accurately captured in 

ig. 7 (e), which shows interpolation flows towards the left. Spectral 

etrics are known for robustness with respect to noise, in segmen- 

ation of curved fibers, and presentation of anisotropy. 
11 
. Experiments and results 

.1. Results on synthetic data 

For the experiments, we generate synthetic tensor fields with 

any configurations that have similar properties to many white 

atter tracts in the brain. The synthetic images are simulated 

sing a signal generated with b-value 1500 s/mm 

2 
with a signal 

ithout gradient impulse S 0 = 1 . Total of 81 gradient directions are 

hosen, which are uniformly distributed over the sphere. We use 

he adaptive kernel method to create fibers as detailed in [42] . 

In Fig. 8 , deep inverted U-shape is considered with four points 

n the starting region and five shooting per point. It is visible that 

he adjugate metric fails to trace the fibers as it approaches the tar- 

et region. β-scaled metric tensor geodesics follow the fibers well, 

nd higher power of p produces smooth fibers and increases fiber 

ensity. Fig. 9 shows tractography result on the layer of the diago- 

al components where the two fibers cross closely (cf. Fig. 5 (a)). 

Fig. 10 shows that the hybrid approach can trace in high curva- 

ure fiber flows. On top of that, the 4th order tensor field image is 

hown with 2nd order tensor field obtained by sum of the diagonal 

omponents. This produces sharp images contrary to DTI. 

In Algorithm 1, the ODE solver method increases the deviation 

f geodesic along the path. To overcome this problem, we feed- 

ack the principal eigenvector direction of the underlying interpo- 

ated tensor to ODE solver. This causes geodesic deviation to dis- 

ppear and leads to better performance under the three metrics. 

e tested our method on different high curvature fiber flows, as 

hown in Fig. 10 . 
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Fig. 15. (a) Real image (the selected rectangular section showing a section of Corpus Callosum, (b) 4th order tensor field in region of interest(black rectangular section in 

Fig (a)), (c) Fractional Anisotropy real Image. 
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Fig. 11 shows the S-shaped configuration corrupted with Ric- 

ian noise. The hybrid method acts robust and stable even in case 

here the fiber is poorly visible Fig. 11 (b). We show results of 

eodesic tracking on synthetic data for crossing fibers based on β- 

caled metric and diagonal component approach. 

Fig. 12 depicts two linear fibers intersecting at small angle. 

ig. 12 (c) shows the two components in the intersection region. 

hese components are sharp and follows the trajectory of their in- 

ividual single fibers. Fig. 12 (d) shows the β-scaled metric tensor 

sed for tracing the fiber bundle. 

Fig. 13 has two curved fibers intersecting. The Fig. 13 (b) shows 

he diagonal components in the intersection region. Fig. 13 (c) rep- 

esent horizontally orientated regions of fiber curves whereas 13 (d) 

ndicates the vertically oriented regions and 13 (e) is the result of 

-scaled metric tensor tracking. In Fig. 13 (c and d), the diago- 

al components are able to align along with the correct running 

urved fibers. 

In Fig. 14 , the image shows two linear fibers crossing at sharp 

ngles corrupted with noise. In this difficult case our method is 

ble to reconstruct the fibers and behaves robust. 

.2. Results on real data 

Finally, we shortly comment on the results of our tracking al- 

orithm applied to real images of the human brain. 

The DW-MRI image consists of total size 114 × 114 × 70 and 

ach voxel is the size of 2 × 2 × 2 mm 

3 . The real images are ob-

ained by applying gradient in 64 diffusion directions with diffu- 

ion weighting factor b = 1500 s/mm 

2 with single reference image 
12 
b = 0). We have used generalized logistic function (1a) as activa- 

ion to test on real images. 

In Fig. 15 , a rectangular section of the Dorsal Longitudinal Fasci- 

ulus (DLF) is selected. The Fig. 15 (c) is corresponding to FA scalar 

mage, while (b) depicts the 4th order tensor. 

In Fig. 16 , 10 points were randomly picked in rectangular sec- 

ion on the top of the structure. Five geodesics are shot per point 

n both directions. The results indicate that most of the fibers trace 

he white matter structure in all three cases. Results under β - 

caled metric tensor produce smoother geodesics. 

The fiber crossing resolution method proposed above was not 

sed in this experiment. 

. Discussion 

We propose a new geodesic based tractography method by us- 

ng a β-scaled metric tensor. This metric tensor is adapted ac- 

ording to the inherent anisotropy property. We have shown that 

he performance of adapted metrics by means of sigmoid func- 

ion as activation function composed with the Hilbert anisotropy 

s better than performance of the classical metric and it also 

erforms better than adjugate metric for highly curved fiber 

ows. 

To increase the accuracy of the tracking approach, we iterate 

ocal geodesics tracing via Runge–Kutta ODE solver in the inter- 

olated grid of tensor data, initiated by the principal eigenvector 

irection, called the hybrid approach. 

Further, we propose to exploit the potential of using the diag- 

nal components of 4th order tensors, in particular for capturing 
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Fig. 16. Fibers computed using the hybrid approach in Real Data with (a) D −1 , (b) Adjugate metric and (c) β-scaled metric with p = 2 . 
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rossing fibers. These diagonal components are second order ten- 

ors lying in Riemannian symmetric space. We have shown that 

hey have potential to effectively locate orientation distribution 

unctions (ODFs) maxima even at small angle intersections. Our ex- 

eriments showed that these diagonal components produce small 

rientation errors in comparison to the CT-ODF method [40] and 

41] , while CT-ODF was earlier shown to outperform other meth- 

ds, cf. [40] . Moreover, the diagonal component method does not 

epend upon finding maxima of the ODFs. 

In future work, we will systematically use the spectral metric 

pproach for local interpolation. The experiment discussed in Sec- 

ion suggests to use spectral metric for local interpolation to pre- 

erve anisotropy which is crucial for fiber reconstruction. 

In this paper, the tractography algorithms are performed using 

he 2nd order tensors, dealing with synthetic, phantom, and real 

ata. We also suggest a new method how to resolve the fiber 

rossing, robust and efficient with small crossing angles. In near 

uture, we plan to employ the novel fiber crossing resolution 

pproach in global framework adapted for fiber tracking in real 

mages. 
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