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Abstract
This thesis establishes modular-topology
optimization of structures and mech-
anisms through a collection of five
manuscripts. The modular-topology op-
timization problem constitutes a bilevel
task of optimizing topologies of a set of
modules and their spatial arrangement.
The first chapter focuses solely on gen-
erating module topologies and develops
a convex formulation for designing mod-
ular truss reinforcement to reduce elas-
tic wall instabilities within a thin-walled
composite beam. Subsequently, the au-
thor considers a generalization towards
bending-resistant structural elements and
proposes a global solution method based
on the moment-sum-of-squares hierarchy
to solve these kinds of problems for the
first time. The third chapter introduces
a concurrent modular-topology optimiza-
tion scheme coupling metaheuristics and
convex mathematical programming to
minimize compliance of structures dis-
cretized with reusable truss modules en-
coded via the Wang tiling formalism to
manage the module connectivity. The
fourth chapter extends the scheme to com-
pliant mechanisms and modules with con-
tinuum description of topologies. In addi-
tion, the chapter introduces a sequential
approach, which relies on free material
optimization and a novel hierarchical clus-
tering algorithm to produce efficient as-
sembly plans heuristically. The approach
is illustrated with compliant mechanisms
made of reusable modules. The final chap-
ter investigates the problem of generating
valid Wang tiling assembly plans alone
and it introduces several exact and heuris-
tic methods for its control and solution.

Keywords: modular-topology
optimization, semidefinite programming,
global optimality, reusability, Wang tiling

Supervisor: prof. Ing. Jan Zeman,
Ph.D.

Abstrakt
Tato práce se zabývá modulárně-
topologickou optimalizací konstrukcí
a poddajných mechanismů. Tato dvou-
úrovňová úloha hledá současně optimální
topologii sady modulů a jejich optimální
prostorové uspořádání. V první části je
pomocí konvexní optimalizace řešen návrh
příhradových modulů pro snížení vlivu
elastických nestabilit stěn kompozitního
nosníku. Následně je zavedeno zobecnění
na konstrukční prvky s ohybovou tuhostí
a představen přístup, který pomocí
Lasserovy hierarchie umožňuje nalezení
globálního optima, což doposud nebylo
pro tyto typy úloh možné. Třetí kapitola
zavádí koncept modulárně-topologické
optimalizace a navrhuje metodu řešení
založenou na kombinaci metaheuristiky
a konvexního programování pro úlohy
minimalizace poddajnosti modulárních
příhradových konstrukcí. Popis skla-
debného plánu a spojitosti jednotlivých
modulů je zde řešen pomocí formalismu
Wangových dláždění. Ve čtvrté kapitole
je představena heuristická sekvenční
metoda pro modulárně-topologickou
optimalizaci konstrukcí a mechanismů,
která není závislá na konvexitě úlohy
návrhu topologie modulů. Pro generování
skladebných plánů je využita kombinace
volnomateriálové optimalizace a shlu-
kování. Efektivitu navržené metody
ilustruje návrh poddajných mechanismů
složených z opakovaně použitelných
modulů. Poslední část se zabývá samot-
ným problémem generování skladebných
plánů Wangova dláždění a zahrnuje
několik autorem navržených exaktních
a heuristických metod řešení.

Klíčová slova: modulárně-topologická
optimalizace, semidefinitní programování,
globální optimalita, opakovatelnost,
Wangovo dláždění
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Chapter 1
Introduction

As of 1995, 80 % of the overall product development costs were spent in the first 5 % of
the design process [173]. Although the percentage may have decreased since, the early
design stage still requires several interconnected multidisciplinary decisions, such as selecting
the product shape, material, the principle of functionality, or the manufacturing method.
A considerable effort to reduce the human intervention has provoked establishing the Building
Information Modeling, Additive Manufacturing, and, ultimately, the Industry 4.0 initiative.
In structural design and materials engineering, topology optimization [22] is indeed the tool
that produces optimized, almost free-form conceptual designs but also enables a nearly instant
concept-to-prototype workflow thanks to additive manufacturing [228].

An equally significant contemporary challenge appears in designing sustainable structures
reducing the environmental footprint [149]. In materials engineering, this challenge requires
focusing on component reusability, structural reconfigurability, repairability, and reduction of
waste through recycling [31, 153, 5]. Although conventional topology optimization is unable
to address these issues due to customized production, the integration of modularity principles
enables this. Modular structures and architectured materials, made up of a few repeating
pieces called modules, are used to reduce production costs and provide multi-configurational
designs [43, 219, 214]. Modularity can also help balancing structural complexity, which is
common in optimal structures [111], while simultaneously enhancing mass production quality
[137] and reducing production time by efficient fabrication [63].

In topology optimization, modularity has often improved the solution efficiency by reducing
the design space dimensionality through patterned material distribution [13, 6]. However, the
modular-topology optimization problem is bilevel—it requires not only designing the module
topologies but also their connectable spatial arrangement. Since finding an optimal assembly
plan is a combinatorial problem, topology optimization is accelerated only if an assembly
plan is fixed a priori.

Therefore, the initial studies in the topology optimization of modular structures incorporated
a single non-rotatable module type, the Periodic Unit Cell (PUC) [128, 183, 127]. Only recent
developments included the module rotations [188, 132] and multiple module types [189, 227, 88],
superseding the inefficient structural performance of PUCs. Restricted by the computational
aspects, only few studies have exploited modularity to create components reusable within
different structures [189, 223] but remained limited to compliance optimization problems.
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1. Introduction .............................................
1.1 Research objectives

In the perspective of the aforementioned, three key questions shall be answered to enable
a more general design of reusable modular structures, mechanisms and, in the future, of
architectured materials and metamaterials:..1. How should the module topologies look like?..2. How to encode module connectivity?..3. How should the modules be arranged?

This thesis compiles five manuscripts (three published and two in preparation or under
review) related to these questions. The author of this thesis was the first author in all of
them, conducting the majority of the research, implementation, and manuscript writing.

In Chapter 2, we address Question 1 by means of an industrial problem of reducing elastic
wall instabilities in a thin-walled filament-wound carbon fiber composite beam. To this goal,
we propose solving a linear semidefinite program to generate a minimum-weight segmented
modular internal structure that limits the elastic instabilities by increasing the fundamental
free-vibration eigenfrequency. Subsequently, the internal structure is converted to a solid
geometry and produced with additive manufacturing, allowing the beam prototype to be
wounded, cured and finalized. Finally, verification and validation demonstrate the design
effectiveness.

While Chapter 2 assumes discretizations with truss elements, a more general model also
incorporates elements with bending stiffnesses. In Chapter 3, we investigate a global solution
to topology optimization of frame and shell structures. Aiming to solve these non-convex
problems for the first time, we start by recognizing that they are indeed a minimization of
a polynomial function over a semi-algebraic feasible set. Consequently, we propose using
the moment-sum-of-squares (Lasserre) hierarchy to solve them. First, we provide a suitable
formulation for the hierarchy. In each degree of the hierarchy, the emergent semidefinite
relaxation produces a lower-bound design that we project onto the feasible set of the original
problem to build up a feasible upper bound. Then, each step of the hierarchy provides
a certificate of global ε-optimality and, in the limit, these bounds are equal in the case of
unique global minimizers. Final numerical experiments reveal that the convergence is finite
for all our test cases.

In Chapter 4, we study the modular-topology optimization problem in its full generality for
the case of truss module discretizations, thereby covering Questions 1–3. To simplify control
over module interfaces and the module number, we propose utilizing stochastic corner Wang
tilings as a viable formalism for defining the assembly plans. We treat the design problem in its
original, bilevel setting, with the lower-level module design problem modeled via second-order
conic programming and the upper-level assembly plan design with meta-heuristics. Due to
the convexity of the lower-level problem, the performance of individual assembly plans is
unique and allows for their direct comparison. Ultimately, the proposed procedure is applied
to generate module designs reusable within a hinge beam and an L-shaped domain.

However, the method in Chapter 4 is impractical in conjunction with continuum topology
optimization because the underlying problems are non-convex, thus preventing a reliable
comparison of assembly plan performances. To avoid the need of assessing these performances,
we propose a sequential procedure that generates efficient assembly plans heuristically in

2



......................................... 1.1. Research objectives

Chapter 5. The proposed method relies on a solution to free material optimization problems
on a module-interface-based mesh. The resulting (locally-)optimal spatially-varying anisotropic
material parameters are then partitioned by a novel clustering algorithm into a predefined
number of classes, representing the interface labels or edge types in the Wang tiling formalism.
Finally, for the Wang tile assembly plan, we solve a conventional topology optimization
problem extended towards modularity to produce optimized modules (re)usable in structures
and, for the first time in compliant mechanisms.

Generating finite-sized Wang tilings, adopted in this thesis to formalize assembly plans
of modular structures and module connectivity, is an NP-complete problem in general. In
Appendix A, we study Question 3 alone and ask how to produce and control Wang tilings. To
this goal, we develop four integer programming formulations and three heuristic algorithms
together with a heuristic scheme.
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Chapter 2
Designing modular 3D printed reinforcement of
wound composite hollow beams with semidefinite
programming

Abstract: Fueled by their excellent stiffness-to-weight ratio and the availability of mature
manufacturing technologies, filament wound carbon fiber reinforced polymers represent ideal
materials for thin-walled laminate structures. However, their strong anisotropy reduces
structural resistance to wall instabilities under shear and buckling. Increasing laminate
thickness degrades weight and structural efficiencies and the application of a dense internal
core is often uneconomical and labor-intensive. In this contribution, we introduce a convex
linear semidefinite programming formulation for truss topology optimization to design an
efficient non-uniform lattice-like internal structure. The internal structure not only reduces
the effect of wall instabilities, mirrored in the increase of the fundamental free-vibration
eigenfrequency, but also keeps weight low, secures manufacturability using conventional three-
dimensional printers, and withstands the loads induced during the production process. We
showcase a fully-automatic procedure in detail for the design, prototype manufacturing, and
verification of a simply-supported composite machine tool component, including validation with
roving hammer tests. The results confirm that the 3D-printed optimized internal structure
almost doubles the fundamental free-vibration eigenfrequency, allowing to increase working
frequency of the machine tool, even though the ratio between elastic properties of the carbon
composite and the ABS polymer used for 3D printing exceeds two orders of magnitude.

Reproduced from:

[191] M. Tyburec, J. Zeman, J. Novák, M. Lepš, T. Plachý, and R. Poul, Designing modular
3D printed reinforcement of wound composite hollow beams with semidefinite program-
ming, Materials & Design, 183:108131, 2019, doi: 10.1016/j.matdes.2019.108131
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2. Designing modular 3D printed reinforcement of wound composite hollow beams with SDP ...........
2.1 Introduction

Offering excellent stiffness-to-weight ratios, high damping, and a low sensitivity to fatigue and
corrosion, carbon fiber reinforced polymers (CFRPs) are employed in high-tech applications,
including bodies of racing cars in automotive [66], propulsors and turbines in naval [34, 222],
wing boxes and ailerons in aerospace [91], and rocket bodies in the space industry [198].
Considerable attention has been therefore paid to methods for optimizing structural perfor-
mance of these laminates, particularly the laminate layup [73, 74]. To concurrently maximize
bending stiffness and keep weight low, the outer dimensions of these structures tend to be
maximized, while the wall thickness is minimized. The “thin-walledness” of the resulting
structures, combined with their anisotropy, renders them highly sensitive to shear and wall
buckling instabilities manifested in low fundamental free-vibration eigenfrequencies.

Below, we review common approaches to topology optimization that reduce wall instabilities
by designing an internal structure, Section 2.1.1. Section 2.1.2 provides a brief introduction
to semidefinite programming and highlights several applications in structural optimization.
Finally, Section 2.1.3 reveals the merits of designing internal structures using semidefinite
programming.

2.1.1 Topology optimization

Topology optimization techniques [22] provide the means for reducing wall instabilities
when designing sufficiently stiff yet lightweight structures. In the simplest setting—beam
cross section optimization—we search an optimal two-dimensional cross-sectional shape or
a stiffening of structures whose outer shape is predefined [102]. Blasques [29], for example,
maximized the fundamental free-vibration eigenfrequency while accounting for the mass and
shear center position constraints; Nguyen et al. [142] optimized cross-sections of prismatic
beams to maximize their buckling loads.

The design of optimal core sandwich structures, whose skins are stiffened by a thick core
is a related challenge. For honeycomb, solid, truss, and foam rectangular panels under
in-plane compression or shear loads, optimal periodic topologies can be found analytically by
considering the optimality criterium of all failure modes occurring simultaneously [199]. For
complex boundary conditions, parametric shape-optimization studies are usually performed.
Wang and McDowell [200] studied the geometry of a metal honeycomb sandwich beam core
under torsion and bending and Xu and Qiu [216] optimized the lattice core of a composite
sandwich panel to increase the fundamental eigenfrequency while accounting for uncertainties
in the model. They concluded that bending eigenfrequencies increase with increasing strut
thicknesses, with an increase in the elastic and shear modulus of the composite, and with
a decrease in density. Although Daynes et al. [47] optimized spatially-graded lattice structures
within a single sandwich panel domain, surprisingly, almost no prior research seems to have
stepped beyond parametric intuition-based designs [27, 84], the rare exception being the
multi-scale topology optimization approach investigated by Coelho and Rodrigues [39].

Questioning whether, where, and how to stiffen already engineered designs in order to further
improve their structural performance constitutes the central question of the reinforcement
problem [147, 51], superseding the former dimensional reduction and periodicity assumptions.
Initial studies in this area have considered maximization of the fundamental eigenfrequency [51]
and improving the structural frequency response of plane elastic structures [134] using the

6



............................................ 2.1. Introduction

homogenization and optimality criteria methods, respectively.
Using the ground structure approach for topology optimization of truss structures, Bendsøe

et al. [24] fixed cross-sectional areas of a set of bars and searched for their stiffest truss
reinforcement, a (non-smooth) convex quadratic programming formulation. Alternatively, the
effect of a fixed boundary structure has been approximated by an appropriate application
of nodal forces to the ground structure [14, 151], but this choice influences, however, the
optimized design.

In the setting of continuous topology optimization, Luo and Gea [133] developed a systematic
optimization approach for the topology and orientation design of composite stiffeners of
plates and shells in both static and dynamic settings, and Wang et al. [205] optimized the
overall structural rigidity of an automobile body through a maximization of the fundamental
eigenfrequency. In aerospace applications, Maute and Allen [135] optimized a wing’s internal
structure, subjected to fluid-surface interactions; Aage et al. [1] performed an extremely
large-scale optimization of the internal structure of a Boeing 777 wing, while avoiding the
traditional rib and spar designs [182]. In military applications, topology optimization was the
basis for the design of additively-manufactured lattice-reinforced penetrative warheads [156]
and for optimizing the layout weight of stiffeners in composite submarines subjected to
nonsymmetric wave slap loads [159].

Other methods relevant to internal structure design have arisen in conjunction with recently
introduced coating and infill optimization problems. Clausen et al. [36] developed a formulation
for the optimization of (uniformly) coated structures, wherein a base material, infill, was
surrounded by another material at the interfaces, finding a porous, complex infill significantly
improves both structural buckling resistance and robustness to local perturbations when
compared to optimized solid structures of equal weight and similar stiffnesses [37, 38]. In
three dimensions, optimized designs further exploit the merits of closed shell surfaces through
the sandwich effect [38].

Inspired by natural, bone-like microstructures, Wu et al. [210] optimized a spatially non-
uniform porous infill, Wang et al. [207] developed a sequential approach for generating graded
lattice mesostructures, and Zhu et al. [229] introduced a novel asymptotic-analysis-based
homogenization approach. All these methods automatically design stiff yet porous infills for
additive manufacturing products while superseding the traditional pattern-based designs [129].
Finally, Wu et al. [211] extended their approach to the ultimate setting of a concurrent
optimization of coated structures and porous infills, and Groen et al. [76] have developed
a homogenization-based method to accelerate solutions.

2.1.2 Semidefinite programming

It has been shown in recent decades that several structural optimization problems can be
modeled as semidefinite programs. Linear semidefinite programming (SDP) is a subset of
convex optimization of the form

min
x

cTx (2.1a)

s.t. X = F0 +
m∑
i=1

xiFi, (2.1b)

X � 0, (2.1c)

7



2. Designing modular 3D printed reinforcement of wound composite hollow beams with SDP ...........
and involves minimization of a linear function (2.1a) over a spectrahedron, which is an
intersection of an affine space (2.1b) with the cone of symmetric positive semidefinite matrices
(2.1c). In (2.1c), the notation “� 0” enforces positive semidefiniteness of the left hand side.
Due to the linear dependence of X on x (2.1b), (2.1c) is commonly referred to as a linear
matrix inequality (LMI).

Applications of semidefinite programming to structural design were pioneered by Ben-Tal
and Nemirovski [16], de Klerk et al. [48], and Vandenberghe and Boyd [197] who developed
formulations for minimum-compliance and weight truss topology optimizations. The main
added value of SDP lies in its ability to effectively avoid the non-differentiability of multiple
eigenvalues for free-vibrations [146, 2] and buckling [19, 106], robust optimization [15], and
bounds improvement for optimization problems in a discrete setting [33]. Semidefinite
programming has also found applications in optimal materials design, the Free Material
Optimization approach [18], or in the limit analyses [28].

2.1.3 Aims and novelty

In this contribution, we consider an industrial problem of designing the least-weight internal
structure of a thin-walled filament-wound composite machine tool component prone to
shear and buckling wall instabilities. The beam laminate was designed for bearing dynamic
loads, allowing us to describe the wall instabilities naturally in terms of free-vibrations
eigenfrequencies.

In current production process, the wall instabilities are reduced by inserting a uniform
foam core structure into the beam interior, an uneconomical and labor-intensive process.
Conversely, we have aimed to automatically design a structurally-efficient internal structure
which can easily be manufactured using conventional low-cost 3D printers.

To this goal, we extended the convex (linear) semidefinite programming formulation in-
troduced by Ohsaki et al. [146] and Ben-Tal and Nemirovski [15] to design globally-optimal
least-weight lattice-like internal structures and apply it to increasing the fundamental eigen-
frequency and decreasing the compression-molding compliance of a thin-walled composite
beam prototype. Note that Achtziger and Kočvara [2] avoided prescribed structural elements
but allowed for a non-structural mass and Ohsaki et al. [146] did not consider prescribed
mass or stiffness.

After introducing the case study of a simply-supported CFRP beam design in Section 2.2, we
develop its finite element representation in Section 2.3.1. For this representation, a semidefinite
programming formulation for truss topology optimization of internal structures is developed in
Section 2.3.2. Having designed the optimal internal structure, we post-process the optimization
outputs and export, in a fully-automated way, the internal structure for additive manufacturing

1000 mm

80 mm

80 mm

A

A’
x

y
z

(a)

80 mm

80
m

m2.22 mm

(b)

200 kN/m2

(c)

Figure 2.1: Case study setup. (a) Outer dimensions and simply supported boundary conditions,
(b) prismatic cross-section, and (c) compression molding load case.
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Layer E1 [GPa] E2 [GPa] G12 [GPa] ν12 [-] ν23 [-] θ [deg] ρ [kg/m3] t [mm]
1 128.2 5.0 3.4 0.34 0.35 89.3 1, 428 0.25
2 421.9 3.7 3.2 0.37 0.35 0.0 1, 680 1.25
3 130.9 5.0 3.4 0.34 0.35 26.9 1, 458 0.18
4 130.9 5.0 3.4 0.34 0.35 −26.9 1, 458 0.36
5 130.9 5.0 3.4 0.34 0.35 26.9 1, 458 0.18
6 (casing) 2.0 2.0 0.7 0.37 0.37 0.0 1, 040 0.80

Table 2.1: Material properties of the wound composite beam laminae. E1 and E2 stand for the
Young moduli in the fiber and transverse directions, respectively; G12 denotes the shear modulus,
ν12 and ν23 are Poisson’s ratios. θ constitutes the angle between the 1-direction and x, rotating
around the beam surface normals. Finally, ρ and t denote the density and thickness of the plies.

in Section 2.3.3. During manufacturing, the internal structure serves as the support for carbon
fibers in the filament-winding production phase, and a prototype is created. Section 2.4
describes verification and experimental validation of the prototype and concludes that its
response agreed well with the model prediction.

2.2 Case study

As the basic structure, we consider a prismatic, laminated composite beam 1, 000 mm long,
with a 80× 80 mm thin-walled cross-section 2.2 mm thick, Fig. 2.1b. According to current
manufacturing technology, beam production consists of several steps, in which a supporting
structure made of manually processed high-density foam is wound biaxially with a combination
of ultra high modulus (UHM) and high modulus (HM) carbon fibers saturated with epoxy resin.
The supporting structure prevents cross-section distortions induced by compression-molding
loads as shown in Fig. 2.1c. Subsequently, the beam is cured, the supporting structure is
pulled out, and the beam outer surface is finalized.

The final product is exposed primarily to loads that induce bending. For this purpose, most
of the carbon fibers are aligned with the beam’s longitudinal axis (layer 2 in Table 2.1), denoted
by x in Fig. 2.1a, whereas the remaining layers reduce the susceptibility to delamination. See
Table 2.1, where all layers are listed by their orientations relative to the beam’s longitudinal
axis, θ. This layered composition reliably transmits the design forces to the supports, and is
thus fully sufficient in this sense.

Attributed to transversely isotropic material properties, the beam’s walls are, however,
prone to elastic wall instabilities under shear and buckling, which also manifests in free-
vibration modes and frequencies of the non-reinforced beam. Figure 2.2 confirms that the first
fundamental eigenmode with a frequency of 128.5 Hz corresponds to shear wall instabilities,
whereas the second eigenmode combines bending with buckling; all higher eigenmodes (not
shown) exhibit similar wall instabilities. Because the fundamental eigenfrequency limits the
maximum working frequency of the machine part, its increase is of considerable interest.

Although the effect of these instabilities can be reduced by additional laminate layers or by
also keeping the uniform foam structure for operational loads, the added weight, decrease in
the bending eigenfrequencies, and labor-intensive production process render these approaches
both time-inefficient and uneconomical.

9
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(a) First eigenmode with a frequency of
128.5 Hz.

(b) Second eigenmode with a frequency of
403.1 Hz.

Figure 2.2: Axonometric and front view on the (a) first and (b) second eigenmodes of the composite
beam predicted by the finite element model.

2.3 Optimal design of internal structure

The aim of this section is to cast the optimal internal structure design problem in the form
of a linear semidefinite program (2.1). The internal structure has to withstand compression
molding loads with a maximum deflection bound, while the internal structure is temporarily
supported by a steel mandrel passing through the beam interior, Fig. 2.1c. Most importantly,
the internal structure is supposed to increase the beam fundamental eigenfrequency via
reduction of wall instabilities.

In this section, we first describe the finite element model of the composite beam. This
finite element model serves then as the basis for establishing the optimization problem
formulation, yielding an optimal internal structure design. The section is concluded by
discussing post-processing steps necessary to maintain manufacturability of the design.

Internal structure, ABS
Casing, ABS

Composite beam, CFRP

Figure 2.3: The entire structure of considered composite beam design: internal structure (used for
the reduction of wall instabilities and for increase of the lowest free-vibration frequency); casing of
the internal beam structure (to allow for wounding the final composite layer); composite layers,
which transmits working load applied to the beam.
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21.3 mm 19.
5 m

m

19.5 mm

x
y

z

Figure 2.4: Ground structure building block, which fill in the entire internal volume of the
composite beam to represent a (to be optimized) internal beam structure. Cross-sectional areas of
individual trusses are design variables of the optimization problem (2.2).

2.3.1 Finite element model

The outer composite beam surface is discretized with shell elements which are supplied with
the material properties from Table 2.1. The beam internal structure is modeled by bar (truss)
elements, with the isotropic Acrylonitrile Butadiene Styrene (ABS) material properties [32]:
elastic modulus EABS = 2 GPa, Poisson ratio νABS = 0.37, and density ρABS = 1, 040 kg/m3.

Special care needs to be paid to establishing a rigid connection between the internal
structure and the carbon composite. The so-called casing, see Fig. 2.3, which is a 0.8 mm
thin layer of printed beam walls, further prevents leaking of the epoxy resin into the beam’s
interior. Casing is modeled as the bottom layer of the laminate composition, recall Table 2.1.

The finite element model for the optimization part was developed in Matlab. In this
model, the outer laminate was modeled with four-node Mitc4 elements [60]. The composite
beam interior was discretized into the ground structure [53], a set of admissible truss1 elements,
whose cross-sections we search in the optimization part. The ground structure was constructed
from 47× 4× 4 modular building blocks shown in Fig. 2.4, to guarantee manufacturability of
the entire internal structure with 3D printing. Note that the bars placed within the location
of the steel mandrel were removed from the ground structure and that the shell element nodes
coincided with the ground structure nodes, resulting in a rather coarse discretization of the
outer layer.

2.3.2 Formulation of the optimization problem

2.3.2.1 Non-convex formulation

Adopting the previously described discretization, our goal is to find the cross-sectional areas
a of nb bars in the minimum-weight (or volume) ground structure, such that the fundamental
eigenfrequency exceeds the user-defined lower threshold f , taken as 300 Hz in what follows,
while exhibiting limit displacements u of the reinforced structure during the compression

1Based on comparative simulations (not shown), modeling internal structure with trusses or beams leads to
an insignificant difference in the structural response which enabled us to employ truss topology optimization
approaches in Section 2.3.2.
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molding load case. This leads to the following optimization problem

min
a,ucm,u

`Ta (2.2a)

s.t. inf
(MIS

fv (a)+MC
fv)u6=0

uT
(
KIS

fv(a) + KC
fv

)
u

uT (MIS
fv(a) + MC

fv
)

u
≥ λ, (2.2b)(

KIS
cm(a) + KC

cm

)
ucm = fcm, (2.2c)

−u1 ≤ ucm,disp ≤ u1, (2.2d)
0 ≤ a ≤ a1, (2.2e)

with
λ = 4π2f

2
. (2.3)

In this formulation, the vector ` appearing in the objective function (2.2a) collects the bar
lengths in the truss ground structure. The Rayleigh quotient in (2.2b) involves stiffness, KC

fv,
and mass, MC

fv, matrices of the outer shell structure for free-vibration analysis together with
stiffness, KIS

fv(a), and mass, MIS
fv(a), matrices of the internal structure. The design-dependent

contributions of the internal structure are obtained as

KIS
fv(a) =

nb∑
e=1

K̂IS
fv,eae, MIS

fv(a) =
nb∑
e=1

M̂IS
fv,eae, (2.4)

where K̂IS
fv,e and M̂IS

fv,e stand for the stiffness and mass matrix of individual bars in the free-
vibration (fv) setting, respectively; ae is the e-th component of a and λ the limit fundamental
free-vibrations eigenvalue.

The constraints (2.2c) and (2.2d) address the compression-molding (cm) load case, recall
Fig. 2.1c. Specifically, (2.2c) introduces the generalized nodal displacements ucm in response
to the generalized load vector fcm corresponding to the compressive load, and ucm,disp denotes
the displacement components of ucm. The stiffness matrix corresponding to this load case
consists again of the design-independent, KC

cm, and design-dependent, KIS
cm(a), parts; the

latter is obtained as in (2.4). The symbol 1 denotes a column vector of all ones. Notice that
the stiffness matrices in (2.2b) and (2.2c) differ because of different boundary conditions in
the operational, Fig. 2.1a, and manufacturing, Fig. 2.1c, load cases. The constraint (2.2d)
requires the displacement components of ucm to remain smaller than the user-defined limit
value u, considered to be 0.5 mm in this study. Finally, (2.2e) requires the cross-sectional
areas of the bars to be non-negative and smaller than a = 200 mm2, a value set by the additive
manufacturing constraints.

A closer comparison of the optimization problem of Eq. (2.2) and that of Eq. (2.1) reveals
that the problem of Eq. (2.2) lacks the structure of a semidefinite program. Namely, the
objective function (2.2a) and the matrices in the constraints depend affinely on the design
variables, a. However, the constraints (2.2b) and (2.2c) are non-convex as the stiffness and
mass matrices may become singular when the zero lower-bound for cross-sectional areas is
attained in (2.2e). Moreover, (2.2b) might become non-differentiable when an eigenvalue
with multiplicity higher than one is encountered. Altogether, this renders the problem (2.2)
extremely difficult to solve in its original form. In the following section, we show how to
re-cast the problem of Eq. (2.2) as a linear semidefinite programming problem.

12
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2.3.2.2 Convex semidefinite program

Similar eigenvalue constraints such as (2.2b) have already been studied in detail by Ohsaki
et al. [146] and Achtziger and Kočvara [2]. Their results allow us to rewrite (2.2b) equivalently
as a convex LMI

KIS
fv(a) + KC

fv − 4π2f
2 (MIS

fv(a) + MC
fv

)
� 0, (2.5)

where the left hand side expression is a linear function of a. This constraint also avoids
the non-differentiability of multiple eigenvalues, see, e.g., [2], and effectively eliminates the
kinematic variables u from the problem formulation.

To attain convexity of the final formulation, the compression molding constraints (2.2c)–
(2.2d) must be enforced only approximately in the form of the LMI [48, 197, 15]:(

ccm −fT
cm

−fcm KIS
cm(a) + KC

cm

)
� 0, (2.6)

in which ccm denotes a prescribed upper bound on compliance (work done by external forces)
of the compression molding load case. As found from parametric studies (not shown), an
appropriate value of the bound is provided as

ccm = ccm,0
u

max {|ucm,disp|}
, (2.7)

where ccm,0 stands for the compliance of the non-reinforced structure:

ccm,0 = f̃T
cm

(
K̃C

cm

)−1
f̃cm. (2.8)

Here, K̃C
cm and f̃cm are constructed from KC

cm and fcm, respectively, by application of appro-
priate boundary conditions. For this particular problem, this compliance bound resulted in
a maximum deflection of 0.4 mm.

The final linear semidefinite programming formulation eventually reads as

min
a
`Ta (2.9a)

s.t. KIS
fv(a) + KC

fv − 4π2f
2 (MIS

fv(a) + MC
fv

)
� 0, (2.9b)(

ccm −fT
cm

−fcm KIS
cm(a) + KC

cm

)
� 0, (2.9c)

1a ≥ a ≥ 0. (2.9d)

This formulation now possesses the structure of the linear semidefinite program introduced in
Section 2.1.2, and thus can be solved efficiently via modern interior-point methods.

For numerical solution, we adopted the state-of-the-art industrial optimizer Mosek [138].
After discretization, the problem in Eq. (2.9) has 10, 216 admissible bars in total, with the
corresponding sizes of the linear matrix inequalities 5, 154× 5, 154 (free-vibration, Eq. (2.9b))
and 4, 608×4, 608 (compliance, Eq. (2.9c)). After tweaking the optimization problem with the
steps outlined in the following subsection, the optimization process itself required 13 GB of
memory, and terminated after 5.75 core hours running on Intel R© Xeon R© Gold 6130 processors
at the MetaCentrum2 virtual organization cluster. The resulting distribution of the optimal

2https://metavo.metacentrum.cz/
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Figure 2.5: Symmetric half of the beam as cut off by the xz plane. The top shell surface is hidden
to reveal the internal structure.

internal structure is shown in Fig. 2.5. Note that the internal structure increased the original
weight of the beam, 1, 094 g, by an additional 488 g (280 g of casing and 208 g of reinforcing
bars).

Improving solver performance. To reduce the number of iterations and time per iteration
to solve problem (2.9), we rescale the cross-sectional areas to obtain the optimal values of
the order of 1.0 mm. Second, to improve both the numerical stability and convergence of
the algorithm considerably, we rescale Eqs. (2.9b) and (2.9c) with the square root of the
Frobenius norm estimates of KC

fv (Eq. (2.9b)), and KC
cm (Eq. (2.9c)). Finally, using the static

condensation, Appendix A, and Schur complement, Appendix B, decomposition techniques,
the sizes of LMIs reduce to 3, 426 × 3, 426 (free-vibration, Eq. (2.9b)) and 2, 880 × 2, 880
(compliance, Eq. (2.9c)). Consequently, memory usage was decreased from 21 GB to 13 GB,
and the solution process was accelerated by 71% (from 19.5 to 5.75 core hours).

2.3.3 Post-processing

Manufacturing of the optimal design is preceded by three preprocessing steps addressing
individual bars, segmentation into modules, and conversion to a solid model. Note that we
checked that none of the steps led to the constraint violation and have a rather negligible
impact on the objective function, i.e., after all post-processing steps, the internal structure
volume increased from 168.3 cm3 to 175 cm3.

Figure 2.6: Solid models of typical topologies of segments.
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Figure 2.7: Segmentation of the beam internal structure.

Bars post-processing. In the initial step of module post-processing, we assign square cross-
sections to each bar with the square side length according to the optimal area, de = √ae.
Next, we check potential intersection of bars and place a node at each intersection, which
subdivides them into two and defines the new element lengths. Third, for each bar, we set the
cross-sectional size de to at least le/40, because more slender bars are difficult to manufacture
with the Prusa 3D printers used in this study. In addition to the optimized bars, the internal
structure is extended with short L-shaped beams that ensure mechanical interaction between
the internal structure and the steel mandrel, thus defining an empty 20.05× 20.05 mm space
along the beam longitudinal axis x for its insertion, see Figs. 2.6 and 2.9a.

Segmentation. To enable parallel manufacturing with conventional 3D printers, we split the
optimized internal structure into 48 segments of approximately 20 mm in length, see Fig. 2.7
where ten selected segments are shown, to be assembled later on the steel mandrel. Such
segmentation requires re-alignment of bars within each beam cross-section and along the beam
longitudinal axis to ensure the correct external beam dimension and a clearly defined interface
among adjacent modules, see Fig. 2.8 for an illustration. Note that segment production does
not require any supporting material when printed along the beam longitudinal axis x, which
would be impossible when printing the internal structure as a single-piece product.

re-alignment−→

(a)

re-alignment

−→

left end center right end left end center right end
(b)

Figure 2.8: Illustration of bar cross-sections re-alignment along the beam (a) yz section, and (b)
longitudinal axis x.
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(c):

a

b

d

e

(a)

(b)

(d)

(e)

Figure 2.9: Endoscope camera photographs (a), (b), (d) and (e) as captured in the manufactured
beam interior (c) showing that the 3D-printed internal structure successfully withstood the
compression-molding loads.

Solid conversion. Axial model conversion is performed independently and in parallel for
each node of the ground structure. We determine first all bars attached to the considered node,
elongate them by one half of their cross-sectional side lengths at both of their ends, and cut the
more distant half of each of these bars off. These half-bars are then modeled by a mesh-based
representation. Geometries of individual nodes then result from the mesh-boolean operations
performed with the Cork3 library. Finally, the overall segment geometry consists of the
union of all nodal geometries, see Fig. 2.6 for typical topologies of post-processed segments,
and can be readily exported to patch-based Stl file format, for example.

2.4 Results

2.4.1 Manufacturing

After the automated export of the optimized internal structure into Stl format, the part was
additively manufactured using the Fused Deposition Modeling method with Prusa i3 MK3
printers. Printed segments were inserted on a 20× 20× 1, 200 mm steel mandrel of 1.5 mm
wall thickness, with its surface lubricated with Vaseline to simplify the pull-out process, and
connected with acetone etching and a thin layer of epoxy glue.

The prototype beam was produced by CompoTech Plus company using the filament winding
technology with axial fiber placement. This technology relies on the positioning of the tows
of carbon fibers impregnated by the epoxy resin on the casing, placed in specified directions
and specified quantity to reach expected dimensions and mechanical properties of the final
product. The casing defines the internal shape of the beam and acts as an internal mold.
After the fiber placement operation, the product (with still liquid resin) is placed into the
press, the outer shape is formed, and the composite is consolidated. In the press, the product

3https://github.com/gilbo/cork
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Figure 2.10: Manufactured prototype of a composite beam with optimized stiffening internal
structure.

hardens at the room temperature. Finally, the prototype, Fig. 2.10, is postcured at the
elevated temperature of 90◦C.

The successful manufacturing process was followed by inspection of the prototype using an
endoscope camera. Video and photograph sequences, see Fig. 2.9, revealed that the internal
structure successfully withstood the compression molding pressure without any significant
visual defects. The minor deviations from the assumed model reside in a small amount of
Vaseline residue and slight leakage of the epoxy resin through casing interfaces. Another
difference appeared in the increased outer dimensions of the beam, 0.32 mm on average,
caused by an insufficiently closed press cover. The total prototype weight of 1.768 kg was
therefore by 186 g higher than the model predictions due to the additional epoxy resin.

2.4.2 Verification

Recall that in the optimization we required increasing the fundamental free-vibration eigen-
frequency above 300 Hz. To check this value, we employed an independent model in Ansys.
Compared to the model used for optimization, this model employs the dimensions measured
in-situ, more refined discretization of the outer shells (element type Shell181), and models the
internal structure with beam elements (Beam188) instead of trusses. Besides, the composite
shells are supplemented with an additional layer of epoxy resin to account for the increased
epoxy content. As a result, the model predicts that the beam fundamental eigenfrequency
was increased by 92% from 128.5 Hz to 246.7 Hz, compare Figs. 2.2 and 2.11. The effect of

(a) First eigenmode with a frequency of
246.7 Hz.

(b) Second eigenmode with a frequency of
frequency 347.0 Hz.

Figure 2.11: Axonometric and front view on the (a) first and (b) second eigenmodes of the
reinforced composite beam predicted by the refined finite element model.
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3

21

Figure 2.12: Free-free-vibration validation setup. Locations of 54 impact points are indicated by
gray squares and positions of 3 accelerometers are marked by white circles.

wall instabilities was reduced jointly in all the remaining eigenmodes (not shown).
Even though the fundamental eigenfrequency did not exceed the limit value, we find these

results satisfactory because of two reasons: First, we attribute this discrepancy mainly to
the manufacturing imperfections, which can be attributed to the prototype character of the
manufacturing process and can be easily resolved in serial production. Second, the constraint
violation is comparable to the difference between numerics and experiments as shown in the
next section.

2.4.3 Validation

Dynamic response was validated with the roving hammer test in the free-free-vibration
setting because it eliminates the need to reproduce the simply supported kinematic boundary
condition in the experiment. To this goal, the beam was suspended at one of its ends,
three piezoelectric acceleration transducers Type 4507B005 Brüel&Kjaer were placed on the
beam’s outer surface, two of which were located in the middle of adjacent sides of the beam’s
cross-section at one-eighth of the beam’s length, and the third one was placed at the corner
of the beam, Fig. 2.12. Two adjacent sides of the beam surface were marked with a regularly
spaced grid of 54 points, 27 on each side. These points then served as the excitation points
for the impact hammer Type 8206 Brüel&Kjaer equipped with a force transducer.

The measurement was realized using data acquisition front-end hardware Type 3560B
Brüel&Kjaer. The frequency response functions (FRFs) were evaluated from the recorded
response (acceleration) and excitation (force) using the Fast Fourier Transform for all 54
points. The natural frequencies and mode shapes were evaluated from the FRFs with MEscope
software developed by the Vibrant Technology company.

Experimentally determined natural modes and the values of natural eigenfrequencies,
Fig. 2.13 top, were compared with the results of numerical simulations, Fig 2.13 bottom.
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(a) 658 Hz (b) 714 Hz (c) 724 Hz (d) 846 Hz

(e) 864 Hz (f) 896 Hz (g) 942 Hz (h) 1102 Hz

(a) 600.057 Hz (b) 747.011 Hz (c) 748.241 Hz (d) 682.283 Hz

(e) 833.719 Hz (f) 708.852 Hz (g) 741.389 Hz (h) 1019.972 Hz

Figure 2.13: Selected experimentally determined natural frequencies and mode shapes, (a)–(h)
top, and finite element model predictions of eigenmodes and eigenfrequencies, (a)–(h) bottom.

Direct comparison in Table 2.2 reveals sufficient agreement of up to 9% for eigenfrequencies
of shear, bending, and torsional eigenmodes. In the case of buckling, we failed to measure the
first and second buckling natural modes, and for the higher eigenmodes, the model predictions
underestimate the natural frequencies by more than 20%. We attribute these deviations to the
overall difficulty of measuring the buckling natural modes and to the manufacturing defects
discussed in the previous section.

Eigenmode fFEM [Hz] fEXP [Hz] A [Hz] D [%]
First shear 600.1 658 2 −8.8
First bending y 747.0 714 2 +4.6
First bending z 748.2 724 2 +3.3
Third buckling 682.3 846 4 −19.3
First torsion 833.7 864 4 −3.5
Fourth buckling 708.9 896 4 −20.9
Fifth buckling 741.4 942 6 −21.3
Sixth buckling 790.6 1004 6 −21.3
Second bending z 1020.0 1102 6 −7.4

Table 2.2: Comparison of model prediction of eigenfrequencies fFEM and measured natural
frequencies fEXP using the roving hammer test. Accuracy of individual measurements is denoted
by A and the deviation of the model from the experiment by D.
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2.5 Summary and outlook

This contribution introduces and investigates a unique, fully-automatized procedure from
an idea to prototyping, with applications to the manufacturing of thin-walled structural
composite hollow beams. In particular, the considered prototype product is stiffened with
a low weight internal structure designed by an efficient convex linear semidefinite programming
formulation. This formulation increased the fundamental free-vibration eigenfrequency above
a specified threshold value while avoiding the traditional issue of non-differentiability of
multiple eigenvalues [2], and limited structural compliance of a compression-molding load case.
The optimization output of the non-uniformly distributed lattice-like internal structure was
further automatically post-processed and converted into a solid model ready for support-less
additive manufacturing.

Our methodology was verified by designing and producing the simply-supported CFRP
beam prototype. Optimization yielded an internal structure of 488 g which increased the
fundamental eigenfrequency by 92% and limited the effect of wall instabilities. Moreover, the
deflections within the compression-molding load case were limited to ±0.5 mm.

After a successful prototype production, the structural response was validated using the
roving hammer test, which showed that bending, torsional, and shear eigenmodes exhibited
good agreement with model predictions. For the wall buckling eigenmodes, however, the finite
element model underestimated the natural frequencies by almost 22%. We attribute this to
difficulties in measuring these natural modes and to manufacturing defects associated with
compression-molding deformations of the casing.

Improving the structural response with a material more than two orders of magnitude
more compliant when compared to CFRP suggests concentrating on substituting ABS with
high-stiffness continuous carbon fiber in future studies. Another essential future enhancement
resides in accelerating the optimization algorithm by exploiting the range-space sparsity [101]
associated with the segment-based internal-structure decomposition.

2.A Static condensation of static LMI

Consider the equilibrium equation
K(a)u = f (2.10)

split into two sets of equations(
Ka(a) Kb

KT
b Kc

)(
ua
ub

)
=
(

fa
fb

)
, (2.11)

such that only the principal submatrix Ka(a) depends affinely on a4. Assuming that the
system (2.10) is solvable uniquely for some a, i.e., it holds that ∃a ≥ 0 : K(a) � 0, where
“� 0” denotes positive definiteness of the left hand side. Note that a = 1 is sufficient for
verification that no rigid movement within the structure can occur. Because Kc is therefore
invertible, the degrees of freedom ub can be expressed from the second row in terms of ua

ub = (Kc)−1 fb − (Kc)−1 KT
b ua (2.12)

4In the context of this article, the matrix Ka(a) comprises the degrees of freedom of the truss ground
structure, Kc contains the remaining (rotational) degrees of freedom, and Kb is the coupling term.
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and inserted back into the first row,[
Ka(a)−Kb (Kc)−1 KT

b

]
ua = fa −Kb (Kc)−1 fb. (2.13)

Structural compliance (work done by external forces) is expressed as

c = uT
a fa + uT

b fb. (2.14)

After inserting (2.12) and acknowledging that K−1
c is Hermitian, we obtain

c = uT
a

[
fa −Kb (Kc)−1 fb

]
+ fT

b (Kc)−1 fb, (2.15)

i.e., compliance of the condensed problem (2.13) and a constant term. Because the compliance
of the condensed problem is positive by definition, the constant term represents a non-negative
lower bound on compliances achievable by the internal structure design.

Finally, the LMI (
c −fT

−f K(a)

)
� 0 (2.16)

is equivalent to a smaller LMI(
c− fT

b (Kc)−1 fb −fT
a + fT

b (Kc)−1 KT
b

−fa + Kb (Kc)−1 fb Ka(a)−Kb (Kc)−1 KT
b

)
� 0. (2.17)

Further, if c > fT
b (Kc)−1 fb is a prescribed constant (i.e., not a variable), then (2.17) is further

reducible, using the Schur complement lemma, e.g., [67, Proposition 16.1], to a yet smaller
LMI

Ka(a)−Kb (Kc)−1 KT
b −

(
−fT

a + fT
b (Kc)−1 KT

b

)
(
c− fT

b (Kc)−1 fb
)−1 (

−fa + Kb (Kc)−1 fb
)
� 0.

(2.18)

2.B Reducing size of free-vibration LMI

In the case of the free-vibration constraint, we need to directly apply the (generalized) Schur
complement lemma. Beginning with reordering of rows and columns, we split the symmetric
LMI (2.9b) such that only the Ka(a) and Ma(a) matrices are functions of a, and the other
blocks are constant, (

Ka(a)− 4π2f
2Ma(a) Kb − 4π2f

2Mb

KT
b − 4π2f

2MT
b Kc − 4π2f

2Mc

)
� 0. (2.19)

For the (standard) Schur complement trick we require Kc−4π2f
2Mc � 0 [67, Proposition 16.1].

Since Kc � 0 (boundary conditions exclude rigid motions), and Mc � 0 by definition, we only
need to secure that the fundamental eigenfrequency f0 of the generalized eigenvalue problem

Kcub − λMcub = 0, (2.20)

with λ = 4π2f2, is strictly greater than f .
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Let us therefore first assume that 0 ≤ f < f0. Then, the inverse of Kc−4π2f

2Mc exists and
(2.19) can be rewritten equivalently using the Schur complement lemma into a smaller-sized
LMI

Ka(a)− 4π2f
2Ma(a)−

(
Kb − 4π2f

2Mb
) (

Kc − 4π2f
2Mc

)−1 (
KT

b − 4π2f
2MT

b

)
� 0.
(2.21)

Second, consider that f0 < f . Because the matrix Kc− 4π2(f0 + ε)2Mc is indefinite for any
ε > 0, which renders the original LMI (2.19) infeasible, the eigenfrequency f0 constitutes an
upper bound for achievable fundamental eigenfrequencies of the reinforced structure. From
the mechanical point of view, the eigenmodes ub associated with f0 excite degrees of freedom
not reinforced by the internal structure, and therefore the associated eigenfrequencies can not
be increased by any admissible internal structure design (given the specific discretization).

In the case f = f0, reduction of (2.19) relies on the generalized Schur complement lemma
[67, Theorem 16.1], so that (2.19) is equivalent to

Ka(a)− 4π2f
2Ma(a)−

(
Kb − 4π2f

2Mb
) (

Kc − 4π2f
2Mc

)† (
KT

b − 4π2f
2MT

b

)
� 0,

(2.22a)[
I−

(
Kc − 4π2f

2Mc
) (

Kc − 4π2f
2Mc

)†] (
KT

b − 4π2f
2MT

b

)
= 0,

(2.22b)

where (•)† denotes the Moore-Penrose pseudo-inverse of •, and I is the identity matrix.
The second condition (2.22b) holds iff the columns of KT

b − 4π2f
2MT

b are in the image of
Kc − 4π2f

2Mc. Indeed, (2.22b) can then be rewritten to[(
Kc − 4π2f

2Mc
)
−
(
Kc − 4π2f

2Mc
) (

Kc − 4π2f
2Mc

)† (
Kc − 4π2f

2Mc
)]

C = 0,
(2.23)

with the columns of C being the coefficients of linear combinations of the columns of
Kc − 4π2f

2Mc, making the term in the square brackets vanish [67, Lemma 14.1].
Because Im(Kc − 4π2f

2Mc) = Ker(Kc − 4π2f
2Mc)⊥ by [67, Lemma 13.1], it is spanned

by
span

{
ub :

(
Kc − 4π2f

2Mc
)

ub = 0
}⊥

. (2.24)

Clearly, f = f0 might be achieved iff the columns of the coupling term KT
b − 4π2f

2MT
b are

orthogonal to the eigenmodes occurring in (2.20) at f0. From the mechanical point of view,
induction of these eigenmodes would result in a decrease of the associated eigenfrequencies.
Note that in practice, equation (2.22b) can be verified numerically, but it does not guaran-
tee a feasible solution to (2.22a), because other (higher) eigenfrequencies associated with
eigenmodes of (2.20) may decrease below f0 due to the coupling term.
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Chapter 3
Global optimality in minimum compliance topology
optimization of frames and shells by
moment-sum-of-squares hierarchy

Abstract: The design of minimum-compliance bending-resistant structures with continuous
cross-section parameters is a challenging task because of its inherent non-convexity. Our
contribution develops a strategy that facilitates computing all guaranteed globally optimal
solutions for frame and shell structures under multiple load cases and self-weight. To this
purpose, we exploit the fact that the stiffness matrix is usually a polynomial function of design
variables, allowing us to build an equivalent non-linear semidefinite programming formulation
over a semi-algebraic feasible set. This formulation is subsequently solved using the Lasserre
moment-sum-of-squares hierarchy, generating a sequence of outer convex approximations
that monotonically converges from below to the optimum of the original problem. Globally
optimal solutions can subsequently be extracted using the Curto-Fialkow flat extension theorem.
Furthermore, we show that a simple correction to the solutions of the relaxed problems
establishes a feasible upper bound, thereby deriving a simple sufficient condition of global
ε-optimality. When the original problem possesses a unique minimum, we show that this
solution is found with a zero optimality gap in the limit. These theoretical findings are
illustrated on several examples of topology optimization of frames and shells, for which we
observe that the hierarchy converges in a finite (rather small) number of steps.

Reproduced from:

[196] M. Tyburec, J. Zeman, M. Kružík, and D. Henrion, Global optimality in minimum
compliance topology optimization of frames and shells by moment-sum-of-squares
hierarchy, Structural and Multidisciplinary Optimization, 64(4):1963–1981, 2021, doi:
10.1007/s00158-021-02957-5
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3. Global optimality in minimum compliance topology optimization of frames and shells .............
3.1 Introduction

Structural optimization is a research field developing concepts for the design of efficient
structures. It was pioneered by Michell [136], who showed that minimum-weight truss
structures under a single load case are fully-stressed, and the optimal trajectories of their
bars align with the principal stress directions. Hence, optimal designs can contain an infinite
number of bars in general. This drawback, which hinders their manufacturability, was
overcome in the work of Dorn [53] by introducing the ground structure approach, effectively
discretizing the continuum into a finite set of potential nodes and their interconnections of
finite elements. Because the dimensionality of these potential elements is lower than that of
the continuum and the presence and sizing of each element are investigated, this setting is
referred to as discrete topology optimization.

A tremendous progress has been made for the case of trusses. While Dorn [53] developed
a linear programming formulation for the single-load-case plastic design, Bendsøe et al. [23]
and Achtziger et al. [4] introduced a convex displacement-based elastic-design quadratic
program that additionally allowed for multiple load cases. Its dual, which incorporates the
cross-section variables explicitly, was shown by Lobo et al. [130] and Ben-Tal and Nemirovski
[17] to be a second-order conic program. This latter formulation handles multiple load cases
with stress constraints efficiently [192]. Convexity prevails even for fundamental free-vibration
constraints, in which case semidefinite programming can be used [3, 191].

A completely different situation holds for bending-resistant structures with continuous
design variables. To the best of our knowledge, no convex formulation has been established
so far, and, therefore, mostly local optimization techniques have been used. Among these,
Saka [167] developed a sequential linear programming approach to design minimum-weight
framed structures, and Wang and Arora [206] improved over its solution efficiency by using
sequential quadratic programming instead. Another, relaxation-based sequential semidefinite
programming method was proposed by Yamada and Kanno [217] to deal with vibration
problems. Nonlinear programming [65], Optimality Criteria (OC) [100, 35], the Method
of Moving Asymptotes (MMA) [184, 64], and meta-heuristics [8] are other commonly used
alternatives.

The only related, (dual) global optimization approach was adopted in Section 5.3 of Murota
et al. [140], who used a hierarchy of specific semidefinite programming relaxations [112] for
a frame structure topology optimization problem with a lower bound on the fundamental free-
vibrations eigenfrequency. Compared to our methodology, only convergence of the objective
function values is guaranteed theoretically [113] and approximate solutions may remain
unknown in the case of multiple global optima. On the other hand, when applied to the
compliance minimization problems considered in this manuscript, upper bounds, serving as
a tool to measure the approximate solution quality, could have been provided by developments
similar to ours.

Except for our earlier conference paper [194], which is a very preliminary version of this
manuscript, the only published global approach that secures extraction of the global optima
considers a discrete setting of the problem, in which case the cross-sections are selected from
a predefined catalog, allowing to use the branch-and-bound method [96].
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Figure 3.1: (a) Boundary conditions for the motivating problem, (b) the sublevel set c ≤ 5 of its
feasible design space, and its (c) first and (d) second convex outer approximations constructed by
the moment-sum-of-squares approach. Variables a1 and a2 stand for the cross-section areas of the
two elements and c denotes the corresponding compliance (assuming moments of inertia Ii = a2

i ,
i ∈ {1, 2}).

3.1.1 Motivation

This contribution investigates a conceptual design of bending-resistant structures with contin-
uous design variables. As follows from the previous survey, only local optimization approaches
have been adopted so far to tackle the frame/shell structure compliance minimization problem.
It is, therefore, not surprising that they fail to converge to globally optimal solutions even for
toy problems, such as the one shown in Fig. 3.1a: a two-element frame structure with fully
clamped nodes 1 and 3 , subjected to a single load case induced by the forces applied at the
node 2 .

Consider a linear-elastic material with the dimensionless Young modulus E = 1, available
material volume V = 1, element cross-sections parameterized by their area ai and the moment
of inertia Ii(ai) = a2

i , which corresponds to rectangular cross-sections with the height-to-width
ratio of 12, for example. Our goal is to find the cross-section areas ai associated with the
elements i = {1, 2} that induce minimum compliance c within all non-negative ai satisfying
the volume bound V . Notice here that the compliance follows from a non-linear equilibrium
equation, in which the stiffness matrix is a second-order polynomial function of a.

Standard local optimization techniques such as OC, MMA, and Matlab inbuilt optimizer
fmincon all converge1 to the optimized compliance c = 2.895 and the corresponding areas
a1 = 0.652 and a2 = 0.242. For the second local optimum, we have a1 = 0, a2 = 0.4

√
5 and

c = 4.429. While a similar design also arises in truss structure optimal design (i.e., when
neglecting rotational degrees of freedom), it is not optimal here: the globally optimal design
possesses compliance c∗ = 2.719 and requires a∗1 = 0.4

√
5 and a∗2 = 0, see Fig. 3.1b.

Because only few local optima exist in this case, the global optimum may be reached by
examining a few different starting points in the optimizers. Such a procedure, however, cannot
assure global optimality and cannot neither assess quality of the optimized designs with respect
to the global optimum. Even with a moderate increase in the number of structural elements,
addition of design-dependent loads, or using higher-order polynomials for the moments of
inertia, finding certified globally-optimal minimum-compliance designs becomes extremely
challenging.

1For OC and MMA, we adopted the commonly-used starting point of uniform mass distribution, i.e.,
a1 = a2 = 0.2

√
5. For fmincon, the default starting point was used.
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3. Global optimality in minimum compliance topology optimization of frames and shells .............
3.1.2 Aims and novelty

We address this problem by exploiting the simple fact that the constraints can be formulated as
polynomial functions, hence forming a (basic) semi-algebraic feasible set. Using a polynomial
objective function in addition, the moment-sum-of-squares (Lasserre) hierarchy of convex
outer approximations (relaxations) can be used to solve and extract all globally-optimal
solutions. These relaxations provide a non-decreasing sequence of lower bounds, eventually
attaining the optimal compliance, Figs 3.1c-3.1d. In addition, we show how to correct such
obtained lower-bound designs, and hence generate feasible upper bounds. A comparison of
these bounds then assesses the design quality, and their equality establishes a simple sufficient
condition of global optimality. We further show that when a unique global optimum exists,
we can expect the occurrence of a bound equality. Fortunately, this situation occurs quite
often when the design domain lacks structural and boundary conditions symmetries.

This paper is organized as follows. In Section 3.2, we introduce polynomial optimization
and the moment-sum-of-squares hierarchy. Section 3.3.1 develops a non-linear semidefinite
programming formulation for topology optimization of frame structures, which we modify
subsequently for the moment-sum-of-squares hierarchy in Section 3.3.2. Section 3.3.3 reveals
how to correct the lower-bound designs generated by the hierarchy to obtain feasible upper
bounds, and Section 3.3.4 introduces the sufficient condition of global ε-optimality as well
as a zero optimality gap for the case of a unique global optimum. Section 3.3.5 outlines the
required changes in notation to allow for thickness optimization of shell structures. These
results are then illustrated on five selected optimization problems in Section 3.4. We finally
summarize our contributions in Section 3.5.

3.2 Moment-sum-of-squares hierarchy

In this section, we briefly outline the moment-sum-of-squares hierarchy when applied to
solution of problems with polynomial matrix inequalities. For more information, we refer the
reader to an expository text [85] and to the excellent books [11, 122].

Suppose we aim to solve an optimization problem of the form

f∗ = inf
x
f(x) (3.1a)

s.t. G(x) � 0, , (3.1b)

where f(x) : Rn → R is a real polynomial function and G(x) : Rn → Sm is a real polynomial
mapping, so that ∀i, j : Gi,j(x) = Gj,i(x) are real polynomial functions of x. The degree
of these polynomials is less than or equal to k ∈ N. The symbol Sm denotes the space of
real symmetric square matrices of size m, and “�” establishes an ordering of fundamental
eigenvalues, i.e., G(x) in (3.1b) is positive semidefinite. Hence, we call (3.1b) a polynomial
matrix inequality (PMI) in what follows and denote its feasible set by K(G).

Clearly, the nonlinear semidefinite program (3.1) covers a variety of convex optimization
problems as special cases, including linear and quadratic programming or linear semidefinite
programming, see, e.g., [17, Section 4.2]. Although these instances can be solved in a poly-
nomial time, hence efficiently, (3.1) exhibits NP-hardness in general. This can be seen, for
example, by a reduction from binary programming, in which case the main diagonal of G(x)
contains both x2

i − xi and xi − x2
i terms for all i ∈ {1, . . . , n}.
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................................... 3.2. Moment-sum-of-squares hierarchy

Despite the fact that the admissible set of x is generally non-convex, (3.1) admits an
equivalent reformulation to a convex optimization problem over a finite-dimensional cone of
polynomials Ck(K(G)) of degree at most k which are non-negative on K(G), i.e.,

f∗ = sup
λ
{λ : f(x)− λ ≥ 0, ∀x ∈ K(G)} (3.2a)

= sup
λ
{λ : (f − λ) ∈ Ck(K(G))}. (3.2b)

Here, the feasible set of (3.2a) is the intersection of an infinite number of linear inequalities,
while the supremum of (3.2b) is performed such that the shifted polynomial f − λ is non-
negative on K(G). Unfortunately, it is not known how to handle Ck(K(G)) simply and in
a tractable way.

To introduce an approach that allows to solve (3.2), we first adopt the following notation.
Let x 7→ bk(x) be the polynomial space basis of polynomials of degree at most k,

bk(x) =
(
1 x1 x2 . . . xn x2

1 x1x2 . . . x1xn x2
2 x2x3 . . . x2

n . . . x3
2 . . . xkn

)
, (3.3)

Then, any polynomial p(x) of degree at most k can be written as

p(x) = qTbk(x), (3.4)

in which q denotes a vector of coefficients associated with the basis bk(x).
Definition 3.1. The polynomial matrix Σ(x) : Rn → Sm is a (matrix) sum-of-squares (SOS)
if there exists a polynomial matrix H(x) : Rn → Rm×o, o ∈ N, such that

Σ(x) = H(x) [H(x)]T , ∀x ∈ Rn. (3.5)

Let 〈·, ·〉 denote the standard inner product on matrices2, α ∈ N|bk(x)| with 1Tα ≤ k be
the multi-index associated with the basis bk(x), and let y ∈ R|bk(x)| be the moments (of
probability measures supported on K(G(x))) indexed in bk(x); see [122, Section 2.7] for more
details. In what follows, we adopt the following notation for the elements of y:

yα = y∏n

i=1 x
αi
i

is associated with
n∏
i=1

xαii . (3.6)

For example, when α = (0 0 1 2)T, y0012 = yx1
3x

2
4
corresponds to the polynomial

x1
3x

2
4 ∈ bk(x), where k ≥ 3.

Assumption 3.2. [85] Assume that there exist SOS polynomials x 7→ p0(x) and x 7→ R(x)
such that the superlevel set {x ∈ Rn : p0(x) + 〈R(x),G(x)〉 ≥ 0} is compact.

Note that Assumption 3.2 is an algebraic certificate of compactness of the feasible set
in problem (3.1). When Assumption 3.2 holds, then, the dual of (3.2) can be written
equivalently as an infinite-dimensional generalized problem of moments, which is equipped
with a finite-dimensional truncation:

f (r) = min
y

qT
0 y (3.7a)

s.t. y0 = 1, (3.7b)
Mk(y) � 0, (3.7c)

Mk−d(G(x)y) � 0, (3.7d)
2Let X,Y be real matrices of the same dimensions. Then, 〈X,Y〉 := Tr(XYT), where Tr is the trace

operator.
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3. Global optimality in minimum compliance topology optimization of frames and shells .............
in which r = k/2 denotes the relaxation degree, and d stands for the maximum degree of
polynomials in G(x). In addition, q0 are the coefficients of the polynomial f(x) with respect
to the basis bk(x), and Mk(y) with Mk−d(G(x)y) are the truncated moment and localizing
matrices associated with y and G(x). For a precise definition of Mk(y) and Mk−d(G(x)y),
we refer the reader to [85]. These moment matrices are linear in y, hence (3.7) is a linear
semidefinite program. Because (3.7) is a finite-dimensional convex relaxation of (3.1), we
have f (r) ≤ f∗, ∀r ∈ N. Moreover, these relaxations are tighter with increasing r, making the
sequence

(
f (r)

)∞
r

monotonically increasing and converging towards f∗ (expressed by the ↗
symbol).
Theorem 3.3. [85, Theorem 2.2] Let Assumption 3.2 be satisfied. Then, f (r) ↗ f∗ as r →∞
in (3.7).

Moreover, all globally optimal solutions of (3.1) can be extracted from (3.7) based on the
flat extension theorem of Curto and Fialkow [45]. Indeed, finite convergence occurs when

s = Rank(Mk(y∗)) = Rank(Mk−d(y∗)), (3.8)

where y∗ denotes the vector of optimal moments, and s stands for the minimum number of
distinct global minimizers [85, Theorem 2.4].

Example. We illustrate the process of building the (Lasserre) moment-sum-of-squares
hierarchy on an elementary example. Consider an optimization problem of the form

min
a,c

c (3.9a)

s.t.
(
c f
f a2

)
� 0, (3.9b)

V − a ≥ 0, (3.9c)
a ≥ 0. (3.9d)

In the first relaxation, y =
(
y00 y10 y01 y20 y11 y02

)T
is indexed in the polynomial

space basis b1(a, c) =
(
1 c a c2 ca a2

)T
. Then, the associated relaxation reads

min
y

y10 (3.10a)

s.t.
(
y10 f
f y02

)
� 0, (3.10b)

V − y01 ≥ 0, (3.10c)
y01 ≥ 0, (3.10d)
y00 = 1, (3.10e)y00 y10 y01

y10 y20 y11
y01 y11 y02

 � 0. (3.10f)

For r = 2, we have y = (y00 y10 y01 y20 y11 y02 y30 y21 y12 y03 y40 y31 y22 y13
y04)T indexed in b2(a, c) = (1c a c2 ca a2 c3 c2a ca2 a3 c4 c3a c2a2 ca3 a4)T. The

28



............................................ 3.3. Methodology

corresponding relaxation is written as

min
y

y10 (3.11a)

s.t.



y10 f y20 fy10 y11 fy01
f y02 fy10 y12 fy01 y03
y20 fy10 y30 fy20 y21 fy11
fy10 y12 fy20 y22 fy11 y13
y11 fy01 y21 fy11 y12 fy02
fy01 y03 fy11 y13 fy02 y04


� 0, (3.11b)

 V − y01 V y10 − y11 V y01 − y02
V y10 − y11 V y20 − y21 V y11 − y12
V y01 − y02 V y11 − y12 V y02 − y03

 � 0, (3.11c)

y01 y11 y02
y11 y21 y12
y02 y12 y03

 � 0, (3.11d)

y00 = 1, (3.11e)

y00 y10 y01 y20 y11 y02
y10 y20 y11 y30 y21 y12
y01 y11 y02 y21 y12 y03
y20 y30 y21 y40 y31 y22
y11 y21 y12 y31 y22 y13
y02 y12 y03 y22 y13 y04


� 0. (3.11f)

When solved, this relaxation allows for extracting the global solution of a∗ = V and c∗ =
f

2
/V

2.

3.3 Methodology

Topology optimization of discrete structures provides a natural application for the ground
structure approach [53], a discretized design domain composed of a fixed set of nn ∈ N
nodes and their subsets of admissible ne ∈ N finite elements. Here, we employ the simplest
two-node Euler-Bernoulli frame elements that adopt linear shape functions to interpolate the
longitudinal displacements and cubic shape functions to interpolate the lateral displacements
and rotations. Another elements can be adopted though, see Section 3.4.4 for applications to
the Timoshenko beam element and the MITC4 shell element.

Each of these finite elements (indexed with i) must be supplied with the non-negative
cross-section area ai ∈ R≥0 and the area moment of inertia Ii ∈ R≥0. These are to be found in
the optimization process. In this contribution, we assume, for convenience, that the moment
of inertia is a second- or third-order polynomial function of the cross-sections,

Ii(ai) = cIIa
2
i + cIIIa

3
i , (3.12)

with cII, cIII ∈ R≥0 being fixed constants. When Ii(ai) = 0 and ai = 0, the finite element
vanishes and does not contribute to the load transfer.
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3. Global optimality in minimum compliance topology optimization of frames and shells .............
Different topology optimization formulations exist, accommodating specific needs of par-

ticular applications. Here, we consider the problem of searching the minimum-compliant
design under multiple load cases (3.13a) while satisfying the linear-elastic equilibrium equa-
tion (3.13b) and limiting the material volume from above by V ∈ R>0 (3.13c). Physical
admissibility of the resulting designs is ensured by the non-negative cross-section areas (3.13d).
Combination of these ingredients establishes the basic elastic-design formulation

min
a,u1,...,unlc

nlc∑
j=1

ωjfj(a)Tuj (3.13a)

s.t. Kj(a)uj − fj(a) = 0, ∀j ∈ {1, . . . , nlc}, (3.13b)
V − `Ta ≥ 0, (3.13c)

a ≥ 0, (3.13d)

in which ω ∈ Rnlc
>0 are positive weights associated with nlc load cases, and ` ∈ Rne

≥0 stands
for the element lengths column vector. Further, fj(a) ∈ Rndof,j and uj ∈ Rndof,j denote
the force and displacement column vectors of the j-th load case, ndof,j ∈ N stands for the
associated number of degrees of freedom, and Kj(a) ∈ Rndof,j×ndof,j is the corresponding
symmetric positive semidefinite stiffness matrix. For these stiffness matrices, we require
∀a > 0 : Kj(a) � 0 to exclude rigid body motions. Using the finite element method, Kj(a) is
assembled as

Kj(a) = Kj,0 +
ne∑
i=1

[
K(1)
j,i ai + K(2)

j,i a
2
i + K(3)

j,i a
3
i

]
, (3.14)

with Kj,0 � 0 standing for a design-independent stiffness (such as fixed structural elements),
K(1)
j,i � 0 being the unit-cross-section-area membrane stiffness of the i-th element in the j-th

load case, and K(2)
j,i � 0 with K(3)

j,i � 0 are the corresponding bending stiffness counterparts
associated with the unit cross-section area. The force column vector fj is assumed in the form

fj(a) = fj,0 +
ne∑
i=1

[
f (1)
j,i ai

]
, (3.15)

where fj,0 stands for the design-independent load and f (1)
j,i are the design-dependent loads

such as self-weight.
The formulation (3.13) is nonlinear and lacks convexity in general. The non-convexity

comes not only from the polynomial entries in the stiffness matrix (3.14), but also from its
possible singularity caused by zero cross-section areas (3.13d). But the feasible set of (3.13)
is an intersection of a finite number of polynomial inequalities, forming a basic semi-algebraic
set. However, using the moment-sum-of-square hierarchy, recall Section 3.2, to solve this
formulation directly is inefficient because of three reasons: (i) the number of design variables
is fairly large, leading to large moment matrices, and, therefore, long computational times
and large memory requirements, (ii) the degree of the polynomials in the objective function
and in the equilibrium equation is unnecessarily high, implying the use of higher-degree
relaxations, and (iii) to satisfy the Assumption 3.2, one needs (preferably tight) bounds on
the displacement variables.
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3.3.1 Semidefinite programming formulation for topology optimization of
frame structures

To avoid these shortcomings, we develop an approach to simplify (3.13) by eliminating the
displacement variables uj from the problem formulation. In the nested approach, which is
commonly used in topology optimization, the cross-section areas are bounded from below by
a strictly positive ε ∈ R>0, allowing for a computation of [K(a)]−1. Recall that K(a) � 0
for all a > 0. The optimization procedure then traditionally adopts, e.g., the Method of
Moving Asymptotes (MMA) [184], or the Optimality Criteria (OC) method [164]. Notice
that ε→ 0 results in a high condition number of K(a) and that larger values of ε may impair
quality of optimized designs, as sizing optimization is solved instead of the original topology
optimization. In contrast, here, we eliminate uj and allow the cross sections to truly attain
zero by deriving a semidefinite programming formulation.

Compared to other, simpler derivations of this formulation, e.g., [3, Proposition 3.1] or
[95, Proposition 3.1.5], our proof relies on the Moore-Penrose pseudo-inverse [K(a)]† which
generalizes the possibly non-existent inverse [K(a)]−1. Our motivation for adopting a longer
derivation was to reveal interconnections3 between the formulation structure and the feasible
upper bounds in Theorem 3.14.

We start by revealing the role of the Moore-Penrose pseudo-inverse in enforcing the
equilibrium conditions.

Lemma 3.4. Consider the equation Kj(a)uj = fj(a)−rj with uj = Kj(a)†fj(a) and a residual
vector rj ∈ Rndof . Then, rj = 0 if and only if fj(a) ∈ Im(Kj(a)).

Proof. Let fj(a) = vj(a) + wj(a), in which vj(a) ∈ Im (Kj(a)), and wj(a) ∈ Ker (Kj(a)).
Then, because Kj(a)Kj(a)† is an orthogonal projector onto the range of Kj(a), we obtain
Kj(a)Kj(a)†fj(a) = vj(a). Clearly, when fj(a) ∈ Im(Kj(a)), we have vj(a) = f(a) with
wj(a) = 0, implying that rj = 0. For the case of fj(a) /∈ Im(Kj(a)), wj(a) 6= 0, showing
that rj = −wj(a).

Lemma 3.4 allows us to eliminate the displacement variables and write the optimization
problem (3.13) only in terms of the cross-section areas a as

min
a

nlc∑
j=1

ωjfj(a)T [Kj(a)]† fj(a) (3.16a)

s.t. V − `Ta ≥ 0, (3.16b)
a ≥ 0, (3.16c)

fj(a) ∈ Im(Kj(a)), ∀j ∈ {1, . . . , nlc}. (3.16d)

Notice that (3.16d) essentially eliminates the nonphysical setup when Kj(a) = [Kj(a)]† = 0
produces zero compliance.

Because [Kj(a)]† � 0,∀j ∈ {1, . . . , nlc}, and ω > 0 by definition, (3.16a) is bounded from
below by 0. Thus, we introduce slack variables c ∈ Rnlc

≥0 comprising the to-be-minimized upper

3In particular, the transition from (3.17b) and (3.17e) to (3.21b) is reverse to how we approach Theorem
3.14 from Proposition 3.12.
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bounds on compliances for the load cases and rewrite (3.16) equivalently as

min
a,c

ωTc (3.17a)

s.t. cj − fj(a)T [Kj(a)]† fj(a) ≥ 0, ∀j ∈ {1, . . . , nlc}, (3.17b)
V − `Ta ≥ 0, (3.17c)

a ≥ 0, (3.17d)
fj(a) ∈ Im(Kj(a)), ∀j ∈ {1, . . . , nlc}. (3.17e)

To derive a nonlinear semidefinite programming formulation, let us now recall the generalized
Schur complement lemma:
Lemma 3.5. [67, Theorem 16.1] Let A and C be symmetric square matrices, B have ap-
propriate dimensions, and I denote an identity matrix. Then, the following conditions are
equivalent:..1. (

A BT

B C

)
� 0,..2. C � 0, A−BTC†B � 0, (I−CC†)B = 0.

Since we already have Kj(a) � 0 by definition and cj− [fj(a)]T [Kj(a)]† fj(a) ≥ 0 in (3.17b),
to use Lemma 3.5 it suffices to show that

(I−Kj(a) [Kj(a)]†)fj(a) = 0. (3.18)

Proposition 3.6. The condition (3.18) is equivalent to fj(a) ∈ Im(Kj(a)).
Proof. First, consider fj(a) ∈ Im(Kj(a)). Then, fj(a) = Kj(a)uj for some displacement
vector uj . After inserting it into the left-hand-side of (3.18), we have(

Kj(a)−Kj(a) [Kj(a)]†Kj(a)
)

uj = 0, (3.19)

which holds for all such uj as Kj(a) [Kj(a)]†Kj(a) = Kj(a) by the definition of the Moore-
Penrose pseudo-inverse [67, Lemma 14.1].

Otherwise, consider fj(a) /∈ Im(Kj(a)) and let ũ = [Kj(a)]† fj(a). Then, Kj(a)ũ =
fj(a)− rj for some rj ∈ Ker(K(a)), rj 6= 0 by Lemma 3.4. Thus, the left-hand-side of (3.18)
simplifies to

fj(a)−Kj(a) [Kj(a)]† fj(a) = fj(a)−Kj(a)ũ = rj 6= 0, (3.20)
which completes the proof.

Finally, Proposition 3.6 and Lemma 3.5 facilitate an equivalent reformulation of the
optimization problem (3.17) as a nonlinear semidefinite program

min
a,c

ωTc (3.21a)

s.t.
(

cj −fj(a)T

−fj(a) Kj(a)

)
� 0, ∀j ∈ {1, . . . , nlc}, (3.21b)

V − `Ta ≥ 0, (3.21c)
a ≥ 0, (3.21d)

in which only the constraint (3.21b) lacks convexity. Importantly, all constraints are polynomial
functions of a, forming therefore a semi-algebraic feasible set.
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3.3.2 Efficient polynomial reformulation

The optimization problem (3.21) constitutes a minimization of a linear function over a semi-
algebraic set, allowing for a solution using the moment-sum-of-squares hierarchy, as briefly
discussed in Section 3.2. However, efficiency of the hierarchy can be improved after modifying
(3.21) to provide a tighter feasible set of relaxed problems and to reduce numerical issues by
scaling the design variables. These modifications are outlined in the following paragraphs.

3.3.2.1 Compactness of the feasible set

We start by enforcing compactness of the feasible set of the optimization problem (3.21)
because of two reasons. First, compactness is required for Theorem 3.3, in the form of
Assumption 3.2. Second, compactness also allows tightening the feasible sets of relaxed
problems, notably improving numerical performance.
Proposition 3.7. Assume that a∗ and c∗ are optimal cross-section areas and compliances
associated with the optimization problem (3.21). Then, ∀i ∈ {1, . . . , ne} : 0 ≤ a∗i ≤ ai with
ai = V /`i and ∀j ∈ {1, . . . , nlc} : 0 ≤ c∗j ≤ c/ωj , where c =

∑nlc
j=1

[
ωjf(â)TK(â)−1f(â)

]
with

â = 1V /
∑ne
i=1 `i.

Proof. The cross-section areas are non-negative by definition (3.21d). Therefore, (3.21c)
represents a conic combination and none of the structural elements can occupy a larger volume
than the volume bound V , ∀i ∈ {1, . . . , ne} : a∗i ≤ V /`i.

The compliance variables are placed at the main diagonal of the polynomial matrix
inequality (PMI) (3.21b) and are hence non-negative, c∗j ≥ 0. Then, because ω > 0, the
conic combination ωTc∗ is an upper bound for its summands, ωjc∗j ≤ ωTc∗. Moreover,
since â determines uniquely the compliances ĉ, ĉj = fj(â)TKj(â)−1fj(â), the pair (â, ĉ) is
a feasible solution to (3.21b)–(3.21d), so that we also have ωTc∗ ≤ c = ωTĉ. Consequently,
∀j ∈ {1, . . . , nlc} : ωjc∗j ≤ c.

Among the bounds in Proposition 3.7, only the compliance upper bounds are not enforced
in the formulation (3.21). Indeed, for any fixed a > 0, c→∞ is feasible to (3.21), so that
Assumption 3.2 is not satisfied. To make the design space bounded, we add the (redundant)
upper-bound compliance constraint from Proposition 3.7, or, eventually, an upper-bound
obtained by solving the convex truss topology optimization problem instead, see Appendix 3.A.
Subsequently, we arrive at the optimization problem

min
a,c

ωTc (3.22a)

s.t.
(

cj −fj(a)T

−fj(a) Kj(a)

)
� 0, ∀j ∈ {1, . . . , nlc}, (3.22b)

V − `Ta ≥ 0, (3.22c)
c− ωTc ≥ 0, (3.22d)

a ≥ 0, (3.22e)

for which we have the following result:
Proposition 3.8. The feasible set of (3.22) is compact.
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3. Global optimality in minimum compliance topology optimization of frames and shells .............
Proof. The feasible set is bounded based on Proposition 3.7. Moreover, a and c satisfying
conditions (3.22c)–(3.22e) form a closed set. Thus, it suffices to show that (3.22b) is closed.
But the elements in (3.22b) are polynomial functions that are continuous. Moreover, the set of
semidefinite matrices is closed so a and c satisfying (3.22b) live in a closed set. Boundedness
and closeness imply compactness because we are in a finite dimensional space.

3.3.2.2 Scaling and box constraints

After introducing box constraints in formulation (3.22), we can scale all variables domains to
[−1, 1]. This scaling reduces numerical issues that may arise during the problem solution. To
this goal, we have

cj = 1
2ωj

(cs,j + 1) c, ∀j ∈ {1, . . . , nlc}, (3.23a)

ai = 0.5 (as,i + 1) ai, ∀i ∈ {1, . . . , ne}, (3.23b)

where as and cs are the scaled cross-section areas and compliance variables.
In addition, we explicitly insert the box constraints into the optimization problem formula-

tion to tighten feasible sets of the relaxed problems. There are multiple options how to write
these box constraints as, cs ∈ [−1, 1], e.g.,

−1 ≤ as,i ≤ 1, ∀i ∈ {1, . . . , nb},
−1 ≤ cs,j ≤ 1, ∀j ∈ {1, . . . , nlc},

(3.24a)

a2
s,i ≤ 1, ∀i ∈ {1, . . . , nb},
c2

s,j ≤ 1, ∀j ∈ {1, . . . , nlc}.
(3.24b)

Despite equivalent in what they enforce, their numerical performance in the moment-sum-of-
squares hierarchy varies considerably; we refer the reader to the recent note of Anjos et al.
[10] and the examples in Appendix 3.B. Here, we use the quadratic bounds (3.24b). Then,
the optimization problem reads

min
as,cs

nlc∑
j=1

[0.5 (cs,j + 1) c] (3.25a)

s.t.
( 1

2ωj (cs,j + 1) c −fj(as)T

−fj(as) Kj(as)

)
� 0, ∀j ∈ {1, . . . , nlc}, (3.25b)

2− ne − 1Tas ≥ 0, (3.25c)
1− ωTcs ≥ 0, (3.25d)

bound constraints (3.24b). (3.25e)

Because the feasible set of (3.25) is compact by Proposition 3.8, one may tempt to add
a redundant polynomial inequality constraint to satisfy Assumption 3.2. However, the
assumption is already satisfied in our case.
Proposition 3.9. The optimization problem (3.25) satisfies Assumption 3.2.
Proof. Let G(as, cs) be a block-diagonal matrix with the blocks (3.25b)–(3.25e) and let H
be a sparse matrix of the same dimensions with the structure

H =
(

0 0
0 I

)
, (3.26)

34



............................................ 3.3. Methodology

in which the identity matrix I ∈ Sne+nlc matches the positions of (3.25e) in G(as, cs). Clearly,
H is a SOS because of H = HHT, recall Definition 3.1. Then, p = 〈HHT,G(as, cs)〉 =
ne + nlc −

∑ne
i=1 a

2
s,i −

∑nlc
j=1 c

2
s,j , so that the level set {as ∈ Rne , cs ∈ Rnlc | p(3.24b) ≥ 0} is

compact.

Remark 3.10. The constraints (3.24b) are tighter in the moment representation than (3.24a).

To see this, assume that (y0, y1, y2) are the moments associated with the canonical basis of
the vector space of polynomials of degree at most four, (1, x, x2), where one can substitute
x by any element of as or cs. Then, in the first relaxation of the moment-sum-of-squares
hierarchy, the quadratic constraint 1− x2 ≥ 0 becomes

y0 − y2 ≥ 0, (3.27)

and the box constraint −1 ≤ x ≤ 1 provides

− y0 ≤ y1 ≤ y0, (3.28)

with y0 = 1. Moreover, the localizing matrix of the entire optimization problem contains the
principal submatrix (

y0 y1
y1 y2

)
� 0, (3.29)

that must be positive semi-definite as the entire localizing matrix is.
For the quadratic constraints (3.24b), y2 ≤ 1 from Eq. (3.27) and y2 ≥ 0 because of Eq.

(3.29). Writing the determinant of (3.29) then provides us with y2
1 ≤ y2. Consequently, we

observe that 0 ≤ y2
1 ≤ y2 ≤ 1.

In the case of pure box constraints (3.24a), we only have 0 ≤ y2
1 ≤ 1, Eq. (3.28), and

y2
1 ≤ y2, Eq. (3.29). Note that there is no upper bound for y2, which can attain arbitrarily
large values in the first relaxation. From the mechanical point of view, this allows for an
arbitrarily-large rotational stiffnesses K(2)

j,i a
2
i of the elements.

These observations then allow us to show feasibility of the first-order moments for (3.25c)–
(3.25e):

Proposition 3.11. Let y∗c1 and y∗a1 be the first-order moments associated with the variables cs
and as obtained from a solution to any relaxation of (3.25) using the moment-sum-of-squares
hierarchy. Then, these moments satisfy

2− ne − 1Ty∗a1 ≥ 0, (3.30a)
1− ωTy∗c1 ≥ 0, (3.30b)

1−
(
y∗a1

i

)2
≥ 0, (3.30c)

1−
(
y∗c1
j

)2
≥ 0. (3.30d)

Proof. (3.30a) and (3.30b) hold trivially from construction of the hierarchy. (3.30c)–(3.30d)
follow from Remark 3.10.
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3.3.3 Recovering feasible upper-bound solutions

In Proposition 3.11, we have shown that the first-order moments obtained by solving any
relaxation of the moment-sum-of-squares hierarchy satisfy all the constraints of (3.25) except
for (3.25b). This section is therefore devoted to the question how to “correct” these moments
to produce feasible upper-bounds to the original problem (3.21) and provide a natural sufficient
condition of global optimality.

We start by proving the following essential result:
Proposition 3.12. Let y∗c1 and y∗a1 be the first-order moments associated with the variables cs
and as obtained from a solution to any relaxation of (3.25) using the moment-sum-of-squares
hierarchy and let ∀i ∈ {1, . . . , ne} : ãi = 0.5(y∗

a1
i

+ 1)a be the corresponding cross-section areas.
Then,

fj,0 +
ne∑
i=1

fj,iãi ∈ Im
(

Kj,0 +
ne∑
i=1

3∑
k=1

K(k)
j,i ã

k
i

)
. (3.31)

Proof. In the lowest relaxation of the moment-sum-of-squares hierarchy, the PMI constraint
(3.25b) becomes  1

2ωj

(
y∗
c1
j

+ 1
)
c −fT

j

(
y∗a1

)T
−fj

(
y∗a1

)
Kj

(
y∗a1 ,y∗a2 ,y∗a3

)
 � 0, (3.32)

where y∗a2 and y∗a3 are the second- and third-order moments associated with as and, with
a slight abuse of notation, Kj

(
y∗a1 ,y∗a2 ,y∗a3

)
and fj

(
y∗a1

)
are the stiffness matrix and force

column vector constructed from the moments y. Using Lemma 3.5 and Proposition 3.6, we
observe that

f(y∗a1) ∈ Im (Kj (y∗a1 ,y∗a2 ,y∗a3)) . (3.33)

Because we have considered solely degree-one moments in (3.31) and ∀a > 0 : Kj(a) � 0
was our initial assumption, we must show that the combination of ai = 0 with Ii > 0 cannot
occur for any i, because that would result in a lower rank of Kj(ã) when compared with
Kj

(
y∗a1 ,y∗a2 ,y∗a3

)
.

To this goal, let ai = 0, which is equivalent to y∗
a1
i

= −1. Then, the non-negative
determinant of (3.29) and the inequalities (3.24b) imply that y∗

a2
i

= 1. For cIII > 0, we also
need higher-order terms. In the lowest, second relaxation, the inequality (3.24b) implies that( 1− y∗

a2
i

y∗ai − y
∗
a3
i

y∗ai − y
∗
a3
i

y∗
a2
i
− y∗

a4
i

)
� 0 (3.34)

and the moment matrix contains the principal submatrix
1 y∗

a1
i

y∗
a2
i

y∗
a1
i

y∗
a2
i

y∗
a3
i

y∗
a2
i

y∗
a3
i

y∗
a4
i

 � 0 (3.35)

When setting y∗ai = −1, it can easily be verified that (3.34) and (3.35) are feasible if and only
if y∗

a3
i

= −1 and y∗
a4
i

= 1.
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Thus, we write the moment of inertia in terms of the scaled cross-section areas (3.23b).
After inserting the moments, we obtain

Ii = 0.25cIIa
2
(
y∗a2

i
+ 2y∗a1

i
+ 1

)
+ 0.125cIIIa

3
(
y∗a3

i
+ 3y∗a2

i
+ 3y∗a1

i
+ 1

)
= 0. (3.36)

Remark 3.13. A similar result to Proposition 3.12 can also be derived for (3.24a), but it relies
on relaxations of degree two even for quadratic moments of inertia.

Using Proposition 3.12, we can correct c based on y∗a1 to provide a feasible solution to
(3.21). Notice that the following result would be weaker4 in the case of linear constraints
(3.24a) due to Remark 3.13.
Theorem 3.14. Let y∗c1 and y∗a1 be the first-order moments associated with the variables cs
and as obtained from a solution to any relaxation of (3.25) using the moment-sum-of-squares
hierarchy. Then,

ãi = 0.5(y∗a1
i

+ 1)ai, ∀i ∈ {1, . . . , ne}, (3.37a)

c̃j = [fj(ã)]T K†j(ã)fj(ã), ∀j ∈ {1, . . . , nlc} (3.37b)

is feasible (upper-bound) to (3.21).
Proof. Based on Proposition 3.11, ã satisfies the constraints imposed on the cross-section
areas. By correcting the compliance variables according to (3.37b), the equilibrium equation
(and so the PMI (3.21b)) is satisfied due to Proposition 3.12. Consequently, all the constraints
of (3.21) are feasible for the pair ã, c̃, showing that ωTc∗ ≤ ωTc̃ <∞.

We wish to emphasize that in Theorem 3.14, we have proved feasibility of the upper bounds
to (3.21) and such upper bounds may violate the compliance bound constraints (3.25d).
Thus, knowledge of ωTc∗ does not assure convergence of the lowest relaxation to the optimal
cross-section areas.

3.3.4 Certificate of global ε-optimality

Because the hierarchy generates a sequence of lower bounds and we have just shown in
Theorem 3.14 how to compute upper bounds in each relaxation, we naturally arrive at
a simple sufficient condition of global ε-optimality.
Lemma 3.15. Let y∗c1 and y∗a1 be the first-order moments associated with the variables cs
and as obtained from a solution to any relaxation of (3.25) using the moment-sum-of-squares
hierarchy. Then,

ωTc̃−
nlc∑
j=1

[
0.5(y∗c1

j
+ 1)c

]
≤ ε (3.38)

is a sufficient condition of global ε-optimality.
Lemma 3.15 is very simple to verify computationally, significantly simpler than the tradi-

tional rank-based certificate of global optimality (3.8), e.g., [85]. However, (3.38) fails to be
4The lowest relaxation might not produce feasible upper bounds. For example, consider cII > 0, cIII = 0,

and a one-element cantilever beam with one end fully clamped and the other carrying a moment load. Then,
ya1 = −1, ya2

1
=∞ with yc1 = −1 belongs to the set of optimal solutions to the first relaxation.
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a necessary condition. Indeed, the optimality gap ε may remain strictly positive even when
the hierarchy converged according to (3.8) in the case of multiple globally optimal solutions.
Then, the optimal first-order moments y are not unique; for instance, they may correspond to
any convex combination of the global optima, we refer to Section 3.4.2 for a specific example.

A stronger result holds, however, when the optimization problem possesses a unique global
optimum. To show this, we first prove that, with an increasing relaxation degree r, the feasible
space of relaxations converges to the convex hull of the initial (non-convex) problem.

Proposition 3.16. Let K(r) be the feasible set of the first-order moments in the r-th relaxation
of the moment-sum-of-squares hierarchy of (3.25). Then, K(r) ↗ conv(K) as r →∞, where
K is the intersection of (3.25b)–(3.25e).

Proof. Let f(as, cs) be an arbitrary affine function. Based on Proposition 3.9, Assumption 3.2
holds for (3.25) independently of the objective function. Hence, optimization of f(as, cs) over
K yields f(as, cs)↗ f∗(as, cs) as r →∞ due to Theorem 3.3. Because f(as, cs) is arbitrary,
K(r) ↗ conv(K) as r →∞.

Finally, we can prove that the hierarchy eventually attains a zero optimality gap.

Theorem 3.17. If there is a unique global solution to (3.25), then

ωTc̃−
nlc∑
j=1

[
0.5(y(r)∗

c1
j

+ 1)c
]

= 0 (3.39)

as r →∞.

Proof. Assuming r →∞, optimization of (3.25a) over K(r) is equivalent to optimization of
(3.25a) over conv(K) by Proposition 3.16. Because K is compact, its convex hull must be also
compact. Hence, it can be equivalently expressed as the convex hull of the limit points of K
that are denoted by d1,d2, . . . , i.e.,

conv(K) = conv(∪∞i=1{di}). (3.40)

Because we assume there is the unique global optimum when optimizing over K, there must
be a unique limit point d∗ associated with this optimum.

Remark 3.18. Although Theorem 3.17 relies on r → ∞, a finite (and fairly small) r is
required in all our test cases to reach the zero optimality gap, up to the numerical precision
of the semidefinite programming solver. Moreover, this bound equality has occurred when
the hierarchy converged based on the rank test (3.8). It might be possible, therefore, to
strengthen Theorem 3.17 to a finite termination result.

3.3.5 Global topology optimization of shell structures

Until now, solely frame structures have been considered. However, the optimization formula-
tions (3.21) and (3.25) allow for simple modifications to optimize other discrete structures
such as shells. Let t ∈ Rne

≥0 be the vector of shell element thicknesses. Then, the formulation
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(3.21) becomes

min
t,c

ωTc (3.41a)

s.t.
(

cj −fj(t)T

−fj(t) Kj(t)

)
� 0, ∀j ∈ {1, . . . , nlc}, (3.41b)

V − sTt ≥ 0, (3.41c)
t ≥ 0, (3.41d)

where s ∈ Rne
>0 is a vector of the surface areas of individual shell elements, and Kj(t) is

assembled as

Kj(t) = Kj,0 +
ne∑
i=1

[
K(1)
j,i ti + K(3)

j,i t
3
i

]
. (3.42)

Because the design variables can be bounded very similarly to Proposition 3.7 and scaled, all
proven results hold true.

3.4 Sample problems

This section investigates global topology optimization of selected small-scale structural design
problems using the proposed strategy solved numerically by the Mosek optimizer [138]. These
examples demonstrate strengths and weaknesses of the presented approach: certificate of global
ε-optimality using Lemma 3.15, extraction5 of all guaranteed globally optimal solutions based
on the flat extension theorem [45], but also higher computational demands when compared to
selected local optimization techniques: OC and MMA adopting the nested approach, see, e.g.,
[22], Matlab’s inbuilt optimizer fmincon solving (3.13) directly, and non-linear semidefinite
programming (NSDP) formulation (3.21) solved by the Penlab optimizer [62].

For the OC and MMA methods, we adopt the commonly used starting points of a uniform
mass distribution; for the fmincon and Penlab optimizers, we rely on the default starting
points. We note here that different starting points may lead to very different structural
topologies and varying compliances, even to a global optimum. Hence, the comparison of
our approach with these local methods shall be seen from the perspective of computational
scalability and certified optimality, and the resulting designs as specific local optima, rather
than as a systematic comparison of optimized objective functions. Except for the nested
approaches, all optimization problems were modeled using the Yalmip toolbox [131]. Our
implementation and the corresponding source codes written in Matlab can be accessed at
[195].

The first three examples involve two finite elements only to allow visualization of the feasible
sets and provide intuition about the solution approach. In the later part, we investigate the
influence of finite element types on optimal design and increase the number of elements to
evaluate scalability of the approach. All computations were performed on a personal laptop
with 16 GB of RAM and Intel R© CoreTM i5-8350U CPU. Times of individual optimization
approaches are measured to allow a simple comparison of the computational demands.

5For rank computation we considered the eigenvalues with the absolute value smaller than 10−8 to be
singular.
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Figure 3.2: Frame structure composed of two elements: (a) boundary conditions, (b) the cross-
section parametrization, and the sub-level set ωTc ≤ 10 of the (c) feasible space and of the (d)
second, (e) third, and (f) fourth outer approximations with the associated lower- and upper-
bounds. Variables a1 and a2 stand for the cross-section areas of the two elements and ωTc denotes
the corresponding weighted compliance of the two load cases (assuming the moments of inertia
Ii = 25/27a3

i , i ∈ {1, 2}), and hi is the cross-section height.

3.4.1 Structure possessing multiple global optima

As the first problem, we consider a frame structure composed of two Euler-Bernoulli frame
elements, see Fig. 3.2a. Two loads are applied, each of them acting as a separate load case,
and weighted equally by ω = 1. Both these frame elements posses the Young modulus E = 1,
and their overall volume is bounded by V = 0.816597322 from above6. Accordingly with
Fig. 3.2b, the elements i = {1, 2} have rectangular cross-sections with areas ai = 0.3hi. Then,
Ii = 1

40h
3, which implies that cII = 0 and cIII = 25/27 in Eq. (3.12).

The feasible domain of the optimization problem shown in Fig. 3.2c reveals that there are
three global optima of the objective function value 7.738, corresponding to the following cases:
(i) a∗1 = V /

√
2 and a∗2 = 0, (ii) a∗1 = 0 and a∗2 = V /

√
2, and (iii) a∗1 = a∗2 = V

√
2/4. All these

solutions are extracted in the fourth relaxation of the moment-sum-of-squares hierarchy (Fig.
3.2f), which converged based on the rank condition (3.8) with the rank equal to s = 3 and
also based on Lemma 3.15, ε = 5×10−10. Notice that in all the relaxations, the upper bounds

6Fewer digits may prevent the solver from reaching all three global optima. Although an analytical formula
for this specific V can be derived, we omit it for the sake of brevity.

method a1 a2 LB UB time [s] nc ×m n
OC 0.289 0.289 - 7.738 0.009 - 2
MMA 0.289 0.289 - 7.738 0.011 - 2
fmincon 0.289 0.289 - 7.738 0.113 - 8
NSDP 0.289 0.289 - 7.738 0.409 2× 4 4
PO(2), Lemma 3.15 0.289 0.289 5.065 7.738 0.018 1× 15, 6× 5, 2× 4 69
PO(3), Lemma 3.15 0.289 0.289 7.647 7.738 0.070 1× 35, 6× 15, 2× 20 209
PO(4), Lemma 3.15 0.289 0.289 7.738 7.738 0.545 1× 70, 6× 35, 2× 60 494

Table 3.1: Different optimization methods applied to the first optimization problem. LB denotes
lower bound, UB abbreviates feasible upper bounds, and PO stands for polynomial optimization.
In addition, nc stands for the number of semidefinite constraints of the size m and n is the number
of variables. The entries ai denote cross-section areas of the i-th element, or the areas constructed
from the first-order moments in the case of PO.
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(a) (b) (c)

Figure 3.3: Frame structure possessing a non-zero optimality gap. The sub-level set ωTc ≤ 4 of
the (a) feasible space and of the (b) second, and (c) third outer approximations with the associated
lower- and upper-bounds. Variables a1 and a2 stand for the cross-section areas of the two elements
and ωTc denotes the corresponding weighted compliance of the two load cases (assuming the
moments of inertia Ii = 25/27a3

i , i ∈ {1, 2}).

recovered by Theorem 3.14 are global minima, Figs. 3.2d-3.2f.
Because all local minima are also global, all tested optimization algorithms converge to

the optimal objective function value, see Table 3.1. Among these algorithms, OC and MMA
exhibited the best performance in terms of computational time.

3.4.2 Irreducible positive optimality gap

Let us now modify the optimization problem described in the preceding section by fixing the
volume bound to some V ∈ (0.816597322, 2.73603242). Whilst the boundary points of this
open interval match the cases when three global optima occur, the interval interior removes
a1 = a2 = V

√
2/4 from the set of globally optimal solutions. In what follows, we set V to the

center of the interval.
Solving this modified optimization problem with the moment-sum-of-squares hierarchy

produces the sequence of lower- and upper-bounds shown in Fig. 3.3. Although the hierarchy
exhibited a finite convergence based on the rank condition (3.8) with s = 2, the corresponding
optimality gap remains strictly positive (ε = 0.521) and cannot be reduced in the subsequent
relaxations. Clearly, all outer convex approximations must contain the convex combination
of their limit points. Hence, if the limit points denote the global optima, also their convex
combinations attain the globally optimal objective function value. Therefore, they are
also optimal for the associated relaxation, but may lack feasibility to the original problem.
Depending on the optimization algorithm and its settings, one can either reach a lower bound
that is actually feasible for the original problem (as was the case in Section 3.4.1), i.e., a zero
optimality gap, or a positive optimality gap that cannot be further reduced, which is the case
here.

For this particular problem, all local optimization techniques, using their default starting
points and settings, missed the global optima, see Table 3.2. In fact, they approached the
feasible upper-bound that was provided by Theorem 3.14.

3.4.3 Frame structure with self-weight

For the previous examples, f(a) = f was constant, so that the optimum designs utilized the
entire available volume V . In these cases, the volume inequality constraint could have been
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method a1 a2 LB UB time [s] nc ×m n
OC 0.628 0.628 - 2.161 0.003 - 2
MMA 0.628 0.628 - 2.161 0.004 - 2
fmincon 0.628 0.628 - 2.161 0.049 - 8
NSDP 0.628 0.628 - 2.161 0.200 2× 4 4
PO(2), Lemma 3.15 0.628 0.628 0.936 2.161 0.026 1× 15, 6× 5, 2× 4 69
PO(3), Lemma 3.15 0.628 0.628 1.640 2.161 0.062 2× 35, 6× 15, 2× 20 209

PO(3), Eq. (3.8) 1.256 0.000 1.640 1.640 0.062 1× 35, 6× 15, 2× 20 209
0.000 1.256 1.640 1.640 0.062 1× 35, 6× 15, 2× 20 209

Table 3.2: Different optimization methods applied to the second optimization problem. LB denotes
lower bound, UB abbreviates feasible upper bounds, and PO stands for polynomial optimization.
In addition, nc stands for the number of semidefinite constraints of the size m and n is the number
of variables. The entries ai denote cross-sectional areas of the i-th element, or the areas constructed
from the first-order moments in the case of PO.

changed to equality, and, therefore, one design variable eliminated. However, such a procedure
cannot be applied when design-dependent loads are present.

To visualize this, let our third illustration be the single-load-case frame structure in
Fig. 3.4a, composed of two frame elements with E = 1 with I-shaped cross-sections, Fig. 3.4b,
parameterized by the thickness tp,i. The overall volume is bounded from above by V = 1.
The self-weight applies in the vertical direction and is parameterized by the material density
ρ = 10. For the considered cross-sections, we have ai = 18t2p,i and Ii = 246t4p,i. Hence,
cII = 41/54 and cIII = 0 in Eq. (3.12).

The feasible domain of this optimization problem, Fig. 3.4c, reveals three local optima,
and one of them is the global solution. Computation of the optimum by the moment-sum-of-
squares hierarchy required three relaxations, Figs. 3.4d–3.4f, which converged based on both
the rank condition (3.8) with s = 1 and on Lemma 3.15 with ε = −7 × 10−8; the slightly
negative value of ε is due to the numerical accuracy of the optimizer. Also notice that the
upper-bounds based on Theorem 3.14 are of very high qualities, see Table 3.3.

Using local optimization techniques, only OC and MMA were able to arrive at the global
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1

1
1

1
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5tp,i

10
t p
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Figure 3.4: Frame structure with self-weight: (a) boundary conditions, (b) the cross-section
parametrization, and the sub-level set c ≤ 140 of the (c) feasible space and of the (d) first, (e)
second, and (f) third outer approximations with the associated lower- and upper-bounds. Variables
a1 and a2 stand for the cross-section areas of the two elements and c denotes the corresponding
compliance (assuming the moments of inertia Ii = 41/54a2

i , i ∈ {1, 2}), and tp,i stands for the
flanges and web thickness.
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method a1 a2 LB UB time [s] nc ×m n
OC 0.022 0.166 - 70.442 1.129 - 2
MMA 0.022 0.166 - 70.442 0.935 - 2
NSDP 0.707 0.000 - 85.846 1.448 1× 4 3
PO(1), Lemma 3.15 0.050 0.119 48.246 74.171 0.006 2× 4 9
PO(2), Lemma 3.15 0.034 0.220 68.328 71.594 0.015 1× 10, 4× 4, 16 34
PO(3), Lemma 3.15 0.022 0.166 70.442 70.442 0.058 1× 20, 4× 10, 40 83

Table 3.3: Different optimization methods applied to the optimization problem with self-weight.
LB denotes lower bound, UB abbreviates feasible upper bounds, and PO stands for polynomial
optimization. In addition, nc stands for the number of semidefinite constraints of the size m and
n is the number of variables. The entries ai denote cross-sectional areas of the i-th element, or the
areas constructed from the first-order moments in the case of PO.

optimum, see Table 3.3. Among other formulations, NSDP approached the worst local
optimum and fmincon failed even to find a feasible solution.

3.4.4 Different element types on a cantilever beam

A certain generality of the developed approach is illustrated on a cantilever beam/plate design
problem, Fig. 3.5. The dimensions of the cantilever are 5 in length and 1 in width, and the
thicknesses of 5 finite elements are to be found in the optimization. The beam is made of
a linear-elastic material with the Young modulus E = 1 and Poisson ratio ν = 0.25. This
structure is subjected to a tip distributed load of magnitude 1 induced under 30◦ angle with
respect to the midline/midsurface. We optimize the frame/shell thicknesses ti (of rectangular
cross-sections) while satisfying V = 10. The shear correction factor is set to 5/6 where
appropriate.

In what follows, we compare the optimization results of the cantilever problem for three
finite element types: Euler-Bernoulli and Timoshenko frame elements, and the quadrilateral
Mixed Interpolation Tensorial Component (MITC4) shell element [60]. For both of the frame
element types, we have cII = 0 and cIII = Ii(a)/a3

i = 1/12 in Eq (3.12), whereas cII = 0 and
cIII = 1 for the MITC4 element.

The moment-sum-of-squares hierarchy required three steps (degree-four relaxation) to
converge in all three cases, Fig. 3.6, and approached very similar optimal thicknesses, Table 3.4.
As expected, the lowest compliance is provided by the Euler-Bernoulli frame elements, which
neglect the shear effects. We account for these effects in the Timoshenko frame elements,

1 1 1 1 1

5

1

cos(30◦)

sin(30◦)

1 2 3 4 5

x

y z

Figure 3.5: Boundary conditions of the cantilever beam design problem.
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Figure 3.6: Convergence of the moment-sum-of-squares hierarchy for the cantilever problem with
three finite element types. Variable c denotes compliance, r stands for the relation degree, and LB
with UB abbreviate lower- and upper-bound.

increasing so the value of optimal compliance. Another generalization occurs when using the
MITC4 shell elements, which not only consider the effects of shear, but further incorporate
effects induced by bending about z axis, recall Fig. 3.5. Therefore, the optimal compliance
associated with the MITC4 elements is the highest. Clearly, different finite elements lead to
different designs, and their influence on optimal minimum-energy designs can be rigorously
studied by the proposed approach.

Euler-Bernoulli Timoshenko MITC4
a∗1 2.775 2.724 2.754
a∗2 2.454 2.414 2.462
a∗3 2.086 2.060 2.091
a∗4 1.639 1.643 1.651
a∗5 1.047 1.159 1.041
c∗ 12.025 12.923 13.734

time [s] 55.945 53.907 806.538
Lemma 3.15, ε −3× 10−9 −6× 10−9 −6× 10−9

Eq. (3.8), s 1 1 1
n 3002 3002 3002

nc ×m
1× 210, 1× 210, 1× 210,
7× 84, 7× 84, 7× 84,
1× 448 1× 448 1× 1428

Table 3.4: Globally optimal thicknesses a∗1, . . . , a∗5 and compliances c∗ for the cantilever problem
for three element types: Euler-Bernoulli and Timoshenko frame elements, and the MITC4 shell
element. Variables ε and s denote the optimality gap in Lemma 3.15 and the rank of the moment
matrices according to (3.8), respectively. In addition, nc stands for the number of semidefinite
constraints of the size m and n is the number of variables.
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Figure 3.7: (a) Ground structure of the 22-elements frame optimization problem, (b) cross-section
parameterized by ri, and optimized designs of compliances: (c) c = 3276.3 obtained by PO(1), (d)
c∗ = 1668.6 resulting from PO(2) and OC, (e) c = 1697.7 reached by MMA and fmincon, and (f)
c = 1741.1 optimized by NSDP.

3.4.5 22-elements frame structure

Our final example investigates topology optimization of a 22-element frame structure shown
in Fig. 3.7a. Two loads are applied at nodes 3 and 6 in a single load case. In addition, we set
E = 1 and V = 0.5. All the structural elements possess a thin-walled circular cross-section
with the radius 5ri and the wall thickness ri, Fig. 3.7b. Hence, ai = 9πr2

i and Ii = 46.125πr4
i ,

so that cII = 46.125/(81π) and cIII = 0.
The moment-sum-of-squares hierarchy requires two relaxations to achieve a guaranteed

global optimum, both based on Lemma 3.15 with ε = 2× 10−5 and on Eq. (3.8) with s = 1.
However, even the second relaxation is fairly computationally expensive (see Table 3.5),
prohibiting solution of higher relaxations of similarly-sized problems on standard hardware.

Evaluation of the local optimization algorithms revealed that only OC converged to the
global optimum (c∗ = 1668.6 shown in Fig. 3.7d). The remaining optimization approaches
reached local optima of comparable performance but considerably different topologies: MMA
and fmincon converged to the design shown in Fig. 3.7e with c = 1697.7, and NSDP reached

method LB UB time [s] nc ×m n
OC - 1668.585 2.454 - 22
MMA - 1697.749 13.816 - 22
fmincon - 1697.665 0.650 - 37
NSDP - 1741.062 4.406 1× 16 23
PO(1), Lemma 3.15, Eq. (3.8) 1062.105 3276.294 0.103 1× 24, 1× 16 299
PO(2), Lemma 3.15, Eq. (3.8) 1668.584 1668.584 1492.842 1× 300, 24× 24, 1× 384 17549

Table 3.5: Different optimization methods applied to the 22-frame structure design problem.
LB denotes lower bounds, UB abbreviates feasible upper bounds, and PO stands for polynomial
optimization. In addition, nc stands for the number of semidefinite constraints of the size m and
n is the number of variables.
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the design in Fig. 3.7f with c = 1741.1.

3.5 Conclusions

Our contribution has addressed the fundamental question in the structural design: how to
find globally-optimal minimum-compliant bending-resistant structures in discrete topology
optimization with continuous design variables. For the cases of frame and shell structures,
multiple loading conditions and design-dependent loads, we have formulated this optimization
problem as a (non-linear) semidefinite program constrained by a polynomial matrix inequality.
The feasible set of this optimization problem forms a semialgebraic set; hence, powerful results
on polynomial optimization—the moment-sum-of-squares hierarchy—facilitate computation
of the global solutions.

This hierarchy generates a sequence of tightening outer convex approximations in the space of
moments of the probability measures, so that the first-order moments converge monotonically
to the convex hull of the original problem. Therefore, a non-decreasing sequence of lower
bounds is established. Using the first-order moments only, we have shown that a sequence of
feasible upper bounds can be obtained by a simple correction. Consequently, because lower
and upper bounds are available in each relaxation, the upper-bound design quality can be
assessed, establishing a sufficient condition of global ε-optimality. This condition is very
simple to check and complements the traditional rank-based certificate of global optimality,
e.g., [85].

Our condition fails to be necessary because the first-order moments are not unique when
considered optimization problem possesses multiple global optima, potentially leaving a strictly
positive optimality gap. For the case of the unique global optimum, we have shown that
the hierarchy eventually attains a zero optimality gap as the relaxation number approaches
infinity. We note here that the possibility of the global minima multiplicity can almost be
avoided in practice when the symmetry of structure and boundary conditions are exploited.

These theoretical results have been illustrated on five problems, which indicate the merits
and weaknesses of the presented strategy. First, all of our test problems exhibited a rapid
convergence of the hierarchy, allowing for extraction of all global solutions based on the
flat extension theorem of Curto and Fialkow [45]. However, the computational complexity
is currently fairly high, also when compared to investigated local optimization techniques,
leaving the ability to compute proven global optima for small-scale optimization problems
only. Yet, even for middle-scale problems, the hierarchy still provides a sequence of upper
bounds of reasonable qualities, and, especially, the certificate of their ε-optimality.

In the future, we plan to extend these results in multiple directions. First, we believe that
Theorem 3.17 can be strengthened to certify a zero optimality gap when convergence of the
hierarchy in a finite number of steps occurs. Second, the computational demands could be
decreased by exploiting the structural sparsity via clique-based chordal decomposition in
the spirit of [101, 107]. Another research directions may explore eigenvalue constraints and
optimization [3, 191], the minimum-weight setting, or, eventually, investigate performance of
the hierarchy for different topology optimization formulations.
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3.A Relation to truss topology optimization

The problem formulation (3.21) has already been known in the context of truss topology
optimization [197], for which the constraints (3.21b) reduce to linear matrix inequalities (LMI).
Consequently, the feasible set is convex, allowing for an efficient solution of (3.21) by interior
point methods, for example.

A natural question then arises: What happens when the rotational degrees of freedom are
neglected, solving truss topology optimization problem instead of the frame one? To this
goal, however, we must first satisfy the rather restrictive assumption that the truss ground
structure is capable of carrying the loads fj(a), i.e.,

fj(a) ∈ Im (Kt,j(a)) ,∀j ∈ {1, . . . , nlc}, (3.43)

where Kt,j(a) = Kj,0 +
∑ne
i=1 K(1)

j,i ai, and that with all empty rows and columns removed
Kt,j(a) is positive definite for all positive a. From the mechanical point of view, we require
that no moment loads are imposed, a straight bar does not have to carry transverse loads,
and the ground structure is well supported.

Suppose now that a∗t are optimal cross-sections obtained from a solution to (3.21) with the
terms K(2)

j,i and K(3)
j,i neglected, and ωTc∗t is the associated optimal objective function value,

which can be computed from a∗t as

ωTc∗t =
nlc∑
j=1

(
ωj [fj(a∗t )]T [Kt,j(a∗t )]† fj(a∗t )

)
. (3.44)

When the optimal cross-sections of a truss structure, a∗t , are reused in a frame structure, the
resulting objective function value changes to

ωTcf =
nlc∑
j=1

(
ωj [fj(a∗t )]T [Kt,j(a∗t ) + Kb,j(a∗t )]† fj(a∗t )

)
(3.45)

with Kb,j(a) =
∑ne
i=1

(
cIIK(2)

j,i a
2
t,i + cIIIK(3)

j,i a
3
t,i

)
.

To state a relation between ωTc∗t and ωTcf we recall a useful lemma:
Lemma 3.19. [115] Let A ∈ Sn and B ∈ Rn×q. Then,(

A + BBT
)†

= A† −A†B
(
I + BTA†B

)−1
BTA† +

(
B†⊥

)T
B†⊥ (3.46)

with B⊥ =
(
I−AA†

)
B.

Using this lemma, we prove that ωTct provides an upper bound for ωTcf .
Lemma 3.20. Suppose that ωTc∗ is the optimal objective function value of the frame structure
design problem (3.21) and (3.43) holds. Then, ωTc∗ ≤ ωTcf ≤ ωTc∗t .
Proof. Because of fj(a∗t ) ∈ Im (Kt,j(a∗t )), we clearly have fj(a∗t ) ∈ Im (Kt,j(a∗t ) + Kb,j(a∗t )).
Therefore, a∗t is a feasible solution to the frame structure design problem (3.21) and the
associated objective function is bounded from below by the global optimum ωTc∗. Hence,
ωTc∗ ≤ ωTcf .
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For the other inequality, we express (3.45) using Lemma 3.19. To this goal, let Kb,j(a∗t ) =

BjBT
j , where Bj is a real matrix because Kb,j(a∗t ) � 0 by definition. Then, (3.45) can be

written as
ωTcf = ωTc∗t − ωTca + ωTcb, (3.47)

where

ca,j = [fj(a∗t )]T A†jBj

(
I + BT

j A†jBj

)−1
BT
j A†jfj(a∗t ), (3.48a)

cb,j = [fj(a∗t )]T
(
B†⊥,j

)T
B†⊥,jfj(a

∗
t ), (3.48b)

with Aj = Kt,j(a∗t ). Clearly, Eq. (3.48a) is non-negative. For (3.48b),
(
B†⊥

)T
B†⊥ ∈ Ker(Aj),

so that ωTcb vanishes. Hence, ωTcf = ωTc∗t − ωTca ≤ ωTc∗t .
Thus, when (3.43) holds true, the truss topology optimization produces an upper bound to

the optimal objective of the frame structure topology optimization problem.

3.B Numerical performance of bound constraints

This section illustrates the effect of using different types of bound constraints, (3.24a) or
(3.24b), on performance of the moment-sum-of-squares hierarchy.

We start by re-evaluating the problem in Section 3.4.3. Our numerical experiments in Table
3.6 reveal that for this specific problem the quadratic constraints (3.24b) are substantially
tighter in terms of generated lower bounds, they require smaller relaxation degree to converge,
and are computationally more efficient. Also notice that fewer constraints are needed when
using (3.24b).

For the problem in Section 3.4.4 discretized by Euler-Bernoulli frame elements, we observe
that the difference in performance becomes less noticeable, see Table 3.7: the quadratic con-
straints lead to a better lower bound in the third relaxation only, but are still computationally
more efficient because fewer constraints are needed.

formulation a1 a2 LB time [s] nc ×m n

PO(1) (3.24a) 0.008 0.008 0.000 0.008 2× 4 9
PO(1) (3.24b) 0.050 0.119 48.246 0.006 2× 4 9
PO(2) (3.24a) 0.052 0.170 49.805 0.058 1× 10, 7× 4, 1× 16 34
PO(2) (3.24b) 0.034 0.220 68.328 0.015 1× 10, 4× 4, 1× 16 34
PO(3) (3.24a) 0.026 0.201 69.755 0.173 1× 20, 7× 10, 1× 40 83
PO(3) (3.24b) 0.022 0.166 70.442 0.058 1× 20, 4× 10, 1× 40 83
PO(4) (3.24a) 0.022 0.166 70.442 0.291 1× 35, 7× 20,1× 80 164

Table 3.6: Performance of the hierarchy on the problem with self-weight using different bound
constraints. LB denotes lower bound, and PO stands for polynomial optimization. In addition, nc
stands for the number of semidefinite constraints of the size m and n is the number of variables.
The entries ai denote the cross-section areas constructed from the first-order moments.
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formulation a1 a2 a3 a4 a5 LB time [s] nc ×m n

PO(2) (3.24a) 2.346 2.129 1.950 1.822 1.754 2.471 0.072 1× 28, 13× 7, 1× 16 209
PO(2) (3.24b) 2.236 2.129 1.950 1.822 1.754 2.471 0.074 1× 28, 7× 7, 1× 16 209
PO(3) (3.24a) 2.947 2.524 2.043 1.520 0.966 10.018 2.091 1× 84, 13× 28, 1× 112 923
PO(3) (3.24b) 2.946 2.523 2.043 1.522 0.967 10.025 1.854 1× 84, 7× 28, 1× 112 923
PO(4) (3.24a) 2.775 2.454 2.086 1.640 1.047 12.025 64.615 1× 210, 13× 84, 1× 448 3002
PO(4) (3.24b) 2.775 2.454 2.086 1.640 1.047 12.025 54.634 1× 210, 7× 84, 1× 448 3002

Table 3.7: Performance of the hierarchy on the cantilever problem using different bound constraints.
LB denotes lower bound, and PO stands for polynomial optimization. In addition, nc stands for
the number of semidefinite constraints of the size m and n is the number of variables. The entries
ai denote the cross-section areas constructed from the first-order moments.
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Chapter 4
Modular-topology optimization with Wang tilings:
An application to truss structures

Abstract: Modularity is appealing for solving many problems in optimization. It brings
the benefits of manufacturability and reconfigurability to structural optimization, and enables
a trade-off between the computational performance of a Periodic Unit Cell (PUC) and the
efficacy of non-uniform designs in multi-scale material optimization. Here, we introduce
a novel strategy for concurrent minimum-compliance design of truss modules topologies and
their macroscopic assembly encoded using Wang tiling, a formalism providing independent
control over the number of modules and their interfaces. We tackle the emerging bilevel
optimization problem with a combination of meta-heuristics and mathematical programming.
At the upper level, we employ a genetic algorithm to optimize module assemblies. For each
assembly, we obtain optimal module topologies as a solution to a convex second-order conic
program that exploits the underlying modularity, incorporating stress constraints, multiple
load cases, and reuse of module(s) for various structures. Merits of the proposed strategy
are illustrated with three representative examples, clearly demonstrating that the best designs
obtained by our method exhibited decreased compliance: by 56% up to 69% compared to the
PUC designs.

Reproduced from:

[192] M. Tyburec, J. Zeman, M. Doškář, M. Kružík, and M. Lepš, Modular-topology opti-
mization with Wang tilings: an application to truss structures, Structural and Multidis-
ciplinary Optimization, 63(3):1099–1117, 2020, doi: 10.1007/s00158-020-02744-8

51

http://dx.doi.org/10.1007/s00158-020-02744-8


4. Modular-topology optimization with Wang tilings: An application to truss structures..............
4.1 Introduction

Modular structures, composed of repeated building blocks (modules), offer multiple appealing
advantages over non-modular designs. These include more economical mass fabrication,
increased production productivity [188], and better quality control [137]. In addition, modules
facilitate structural reconfigurability, conversion among designs with considerably different
structural responses [141]. Finally, the design of modular structures enables structural
efficiency to be balanced with design complexity [189], which often arises in optimal struc-
tures [111].

Our approach to designing modular structures follows recent successful applications of Wang
tiles in compression and reconstruction of heterogeneous microstructures [143, 56, 12, 58],
where modularity suppresses artificial periodicity artifacts inherent to the periodic-unit-cell
approach, e.g., [225]. Here, we focus on the reverse direction: designing modular structures
or materials composed of a compressed set of modular Lego R©-like building blocks. In this
endeavor, the concept of Wang tiles provides us with a convenient mechanism for describing
and controlling module types as well as their interface types. Our approach is explained in
the simplest setting: the topology optimization of truss structures.

Below, we review recent developments in the modular design of truss structures (Section
4.1.1), and modular microstructures, (Section 4.1.2). Finally, we discuss the benefits of our
approach in Section 4.1.3.

4.1.1 Design of modular trusses

The optimal design of modular trusses appears to be a new, to a large extent unexplored,
branch of structural optimization. In one of the pioneering works in this area of research,
Tugilimana et al. [188] developed a method to optimize the topology of a single module
as well as the module’s spatially-varying rotations within the design domain. With this
method, the optimization part relies on a plastic design formulation [53] and thus provides
lower-bound designs only as the kinematic compatibility is not automatically satisfied. The
need for an elastic design formulation resulted in a follow-up work [187], which proposed
a non-convex formulation allowing for multiple load cases, stress constraints, multiple module
types, as well as the module reusability among structures. However, this formulation still
requires a manual definition of the module spatial distribution within the design domains.
Therefore, Tugilimana et al. [189] introduced a two-level approach to optimize the topology
of multiple modules as well as their spatial placement within a structural design domain.
While the lower-level formulation they proposed additionally extends itself to self-weight and
local and global stability constraints, the upper-level simulated annealing with an adaptive
neighborhood ensures dynamic grouping of modules.

Another approach, that of Zawidzki and Jankowski [223], proposes a bilevel optimization
method to optimize the Truss-Z system [224], a modular pedestrian network. In the upper-
level of this approach, the NSGA-II algorithm optimizes the module outer shape to provide
geometrically versatile structures that can construct connected paths between pairs of access
points. Lower-level optimization then employs simulated annealing with an adaptive neigh-
borhood and minimizes the module weight in the sizing optimization of circular thin-walled
sections with constraints on the von-Mises stresses and the Euler buckling ratio.

Limiting the number of unique cross-section areas of truss structures to improve con-
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structability resulted in the use of dynamic grouping in topology optimization. In contrast
to the former methods, where modules comprise multiple truss elements, this approach
groups individual cross-sections into sets whose number and cardinalities result from the
optimization. For example, Shea et al. [174] adopted the shape annealing approach with
a grouping criterion based on the optimized non-grouped cross-section areas, and Toğan and
Daloğlu [186] employed genetic algorithms with grouping criteria based on the internal forces
and on the slenderness ratios. Finally, Lemonge et al. [123] extended a genetic algorithm to
multiple cardinality constraints to solve frame structure sizing optimization problems.

4.1.2 Design of modular microstructures

Distinguished modular and structural scales in the design of modular trusses evoke the
standard multi-scale topology optimization for the design of (meta-)material microstructures.
In such settings, theoretically optimal designs occur when microstructures vary pointwise in
macro-scale design domains [163], i.e., with each macro-point associated with an independent
module type.

In a single-scale setting, a large resolution is usually required to attain a sufficient level
of details at the microstructure scale, with a price of considerable computational costs [1].
Limiting the computational demands has thus been the aim of various investigations. One
group of such methods extends the inverse homogenization approach of Sigmund [175, 176],
developed originally for uniform microstructures, by designing an independent microstructure
for each macro point [163, 40]. Unfortunately, resulting designs may lack manufacturability
due to discontinuous material distribution over microstructural cell interfaces. This issue
has been resolved recently, e.g., in [71]. Alternatively, projection-based methods optimize
parametric unit cells while maintaining their connectedness by a diffeomorphic projection of
optimally-oriented parametric microstructures at a given length scale, reaching the limits of
structural efficiency [152, 75, 7, 72].

Another way of accelerating solutions reduces the design space by limiting the number
of unique microstructures. The periodic unit cell (PUC) approach—repeating a single,
possibly graded, microstructural cell throughout the entire design domain—was initially
employed [128, 183, 127]; however, the enforced periodicity may significantly compromise
the quality of optimized designs. In general, structural performance improves when the
number of microstructure types increases [116], i.e., when the macro-structure becomes
modular. The emerging modularity thus paves the way for balancing computational demands
with structural efficiency. In this context, Sivapuram et al. [179] extended the multi-scale
optimization approach by limiting the number of microstructures, but their method requires
a predefined spatial placement of microstructural cells and still lacks material continuity
across their boundaries. More general methods, published by Li et al. [126] and Zhang et al.
[227], introduced concurrent approaches to simultaneously optimize spatial placement and
the topology of a finite set of modules while ensuring the material continuity with predefined
kinematical connectors.

4.1.3 Aims and novelty

As seen from the state-of-the-art review, the optimum design of modular structures is a rapidly-
evolving line of research for the structural optimization community. In this contribution,
we consider this inherently two-level design problem in its original form; similarly to earlier
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studies [188, 187, 189], we design optimized topologies of modules (lower level) and the
assembly plan (upper level) concurrently. In contrast to the earlier contributions, however,
we develop a convex lower-level formulation for the topology optimization of truss modules,
while still allowing for stress constraints, module reusability, and multiple load cases.

Thanks to convexity, we can reach true global optima for coarse discretizations and assure
that the algorithm avoids poor local optima for module topologies. We find this convex
subproblem very important in this incipient phase of research because it provides a rigorous
answer regarding what is achievable. Unfortunately, this convexity does not translate into
continuum topology optimization, which explains our choice for discretization with truss
elements.

Second, we adopt the formalism of corner Wang tilings to describe the assembly plan of
modules. This generalization [143, 56, 54, 57, 58] of the PUC allows us to design compressed
yet non-periodic assemblies, a novel class of connectable and reusable (micro-)structures and
materials. Contrary to [126, 227], our approach generates mechanically compatible structures
fully automatically and avoids prescribing fixed cell interfaces.

The rest of the paper is structured as follows. In Section 4.2, we introduce the formalism of
corner Wang tilings and recall a convex elastic-design formulation for topology optimization of
trusses. Subsequently, we extend this formulation with modularity, stress constraints, multiple
load cases, and module reusability. To handle the discreteness of the modular assembly plan,
a genetic algorithm is applied as the solver in the upper-level optimization in Section 4.3.
Finally, Section 4.4 illustrates our method with three examples, assessing the scalability of
the approach and multiple constraint types, and leads us to the conclusion that the proposed
methodology is fairly efficient.

4.2 Background

4.2.1 Wang tilings

One of the goals of this article is to explore the merits of Wang tilings [201] for the opti-
mal design of modular structures. Wang tiles—unit squares with colored edges and fixed
orientation—constitute a formalism introduced by Wang [201] to visualize the ∀∃∀1 decidabil-
ity problem of predicate calculus using an equivalent domino problem. Wang considered an
infinite number of copies of an arbitrary set of Wang tiles and investigated whether there exists
a simply-connected tiling of the infinite plane such that the adjoining edges of neighboring
tiles share the same color—the so-called valid tilings. Contrary to Wang’s conjecture, Berger
[26] built a tileset that covers the infinite plane and that yet does not allow any periodic
pattern to emerge, a property proved by a reduction from the Turing machine halting problem
[190].

The two properties that made Wang tiles appealing in multi-disciplinary research are
notably Turing completeness and the ability to form aperiodic patterns. While computations
by self-assembly of DNA [209, 208] and automated theorem proving [201] exploit the Turing
completeness, non-periodic patterns apply in computer graphics to construct compressed yet
naturally-looking textures [41]. The latter research also provided the motivation to employ

1The ∀∃∀ is a decision problem investigating whether there is a general algorithm that decides emptiness
of a satisfiable set for all logical formulas of the form “for all x there is a y such that for all z. . . ” which is
followed by a logical combination of predicates without quantifiers [203].
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Figure 4.1: The complete set of corner Wang tiles over two colors.

Wang tiles in compression and reconstruction of microstructures, generalizing the concept of
the periodic unit cell [143, 56, 54, 57, 58].

Although traditional Wang tiles maintain information continuity across the edges, some
discontinuity artifacts might appear in their corners. To solve this so-called corner problem [41]
and avoid these periodically repeating artifacts [58], tiles with connectivity information stored
in colored corners were proposed [119]. These corner tiles form a subset of Wang tiles, as each
combination of vertex color codes denotes a unique edge type. Note that a reverse procedure
is not generally applicable [58].

The corner Wang tiles proved to be preferable over the traditional Wang tiles, allowing for
simpler generation of valid tilings, reduced memory requirements, and easier generalization to
multiple dimensions [119], while preserving the possibility of building aperiodic tilings [121].
These findings inspired us to employ corner tiles in this paper. In particular, we consider here
the complete set of planar corner Wang tiles over two colors, containing one corner tile for
each possible combination of color codes as depicted in Fig. 4.1.

Using corner tiles, valid assemblies or tilings must satisfy identical colorings of shared
vertices over all adjacent tiles, compare Fig. 4.2b and 4.2c. Marking each color code with
an integer value [119], any valid assembly determines the color-code connectivity matrix C
uniquely. Note that in the case of only two vertex colors, the connectivity matrix becomes
Boolean, Fig. 4.2a. Conversely, for all complete sets of corner tiles over a limited set of colors,
any connectivity matrix containing integer values corresponding to the vertex codes of the set
automatically defines a valid rectangular tiling. Notice that an extension to non-rectangular
tiling with holes is straightforward, using a flattened one-dimensional array. In addition,
non-rectangular tiles can be adopted by prescribing various shapes to different edge types,
see, e.g., the mapping from regular Wang tilings to aperiodic Penrose tiling containing kites
and darts [79, Fig. 11.1.5].

C =




1 1 1 0
1 1 0 1
1 0 0 0




x

y

(a)

16 8 10

8 2 5

(b)

16 14 10

8 2 5

(c)

Figure 4.2: Illustration of (a) a connectivity matrix and (b) its correspondence to a valid tiling,
(c) an example of an invalid tiling.
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4.2.2 Optimal truss design

Trusses are structures consisting of nodes and straight bars which transmit axial forces only.
While the optimal topology of the least-compliant trusses under a single load case aligns
structural stiffness with the principal strains [136], their trajectories are not straight in general
and hence an optimal design can contain an infinite number of bars. To overcome this
undesirable property, the continuum design domain is usually discretized into the so-called
ground-structure [53], constituting a finite-dimensional design space formed by the sets of
nn ∈ N fixed nodes and nb ∈ N potential bars. Design variables of truss topology optimization
then involve cross-section areas a ∈ Rnb

≥0 [22], possibly attaining zero values, so that the
structurally inefficient truss elements vanish. To this goal, two branches of truss topology
optimization commonly apply.

The traditional plastic design [53] poses the problem in terms of the member axial forces
only, and searches for the minimum-weight topology under the static equilibrium constraint
and bounds on allowed stresses. Despite neglecting the kinematic compatibility, convergence
to statically determinate2 optimal designs occurs [185] when a single load case is consid-
ered [165] and cross-section areas are not constrained, so that the compatibility conditions
hold. Unfortunately, modularity violates the latter assumption by implicitly requiring equality
of cross-sections within specified sets of elements. This can be seen, for example, by optimiz-
ing any statically indeterminate ground structure and requiring all bars to share the same
cross-section area. Consequently, modular designs obtained by the plastic formulation may
and usually are statically indeterminate, violate the compatibility conditions, and in turn
provide a lower bound for the objective function value only.

Therefore, the compatibility conditions must be considered, impelling us to use an elastic
design formulation instead. Here, we search for the least-compliant design (4.1a), subjected
to the bound on the available volume of material (4.1c) and the equilibrium equation (4.1b),
i.e.,

min
a,u

1
2 fTu (4.1a)

s.t. K(a)u = f , (4.1b)
`Ta ≤ V , (4.1c)
a ≥ 0, (4.1d)

where, f ∈ Rndof denotes the nodal forces column vector, ndof ∈ N refers to the number of
degrees of freedom, u ∈ Rndof stands for the displacements column vector, K(a) ∈ Rndof×ndof

is the structural stiffness matrix, an affine function of the cross-section areas, ` ∈ Rnb stands
for the column vector of the bars lengths, and V ∈ R>0 denotes an upper-bound on the
total structural volume. Finally, the objective of the optimization c = 1

2 fTu, c ∈ R≥0, (4.1a)
denotes compliance, i.e., half of the work done by the external loads.

While the problem (4.1) is straightforward to formulate, it lacks convexity due to the
bilinear equilibrium equation (4.1b) with a possibly singular stiffness matrix, and is hard to
solve (to global optimality) even for small-scale problems [108]. However, based on [130] and
Section 3.4.3 in [17], we can write (its dual) convex second-order cone programming (SOCP)

2Statically determinate designs uniquely determine the axial forces only based on the static equilibrium [165].
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reformulation:

min
a,w,s

1Tw (4.2a)

s.t. `Ta ≤ V , (4.2b)
As = f , (4.2c)∥∥∥∥∥
(
wi − ai√

2`i
Ei
si

)∥∥∥∥∥
2
≤ wi + ai, ∀i ∈ {1, . . . , nb}, (4.2d)

a ≥ 0, (4.2e)

which is efficiently solvable to global optimality by interior-point methods [11]. In Eq. (4.2),
the symbol s ∈ Rnb stands for the axial forces column vector, Ei ∈ R>0 denotes the modulus
of elasticity, wi ∈ R≥0 constitutes the complementary strain energy, and `i is the length of
the i-th bar, respectively. Further, A ∈ Rndof×nb stands for the static matrix relating axial,
s, and nodal, f , forces. At the optimum, the objective function (4.2a) attains the value of
the complementary strain energy, equal to the compliance, as w provides a to-be-minimized
upper bounds on the complementary strain energies of individual bars in the second-order
conic constraints (4.2d).

4.3 Methodology

Modularity constitutes a partitioning of a complex structure into several simpler repeated
units—modules. Here, we assume that a fixed (rectangular) structural design domain of
the size nt,y × nt,x consists of square truss modules with a fixed orientation, see Fig. 4.3a.
Without loss of generality, the number of (employed) module types nt is at most nt,ynt,x.
With nt = nt,ynt,x, the problem is equivalent to the non-modular design, while nt = 1 implies
a single-module periodic design.

When nt � nt,ynt,x, it may happen that each module type neighbors with all the remaining
module types, implying n2

t ways of possible module interconnections. In this setting, it
is therefore not surprising that a single solid/high-stiffness interface is obtained during
optimization [71] and this interface then propagates periodically through the macro design
domain. Aiming at controlling the numbers of modules and their interface types directly,
Wang tiles appear to be a natural approach.

Therefore, we further restrict our formalism of describing modular assembly plans to Wang
tilings. For the sake of demonstration, we consider here the complete set of corner Wang
tiles over two colors, recall Section 4.2.1. Consequently, we have nt = 16 together with
four independent horizontal and vertical edge types. Discretized by trusses, these modules
are compatible by definition over the matching edges in the sense of generating a statically
admissible ground structure.

In this section, we first suitably modify the SOCP formulation for truss topology optimization
(4.2) to account for structural modularity and to handle multiple loading conditions, stress
constraints, and module reusability. Ultimately, we develop a bilevel optimization approach
to optimize the topologies of all the module types and their assemblies simultaneously.
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Figure 4.3: (a) Partitioning of a design domain into modules. (b) Bars forming each module split
up into two sets—module-associated (drawn as solid lines highlighted in blue), and edge-associated
(drawn as dashed lines with green and red backgrounds).

4.3.1 Truss topology optimization extended to structural modularity

Structural modularity is inherently prescribed in the form of equality constraints of certain
cross-section areas, consequently reducing the number of unique cross-section areas within
the ground structure. The developed formulation preserves its convexity and applies when
a fixed module assembly plan C is specified a priori.

In the following text, we consider that all truss modules share the same module ground
structure inspired by the union-jack lattice [81], see Fig. 4.3. Another ground structure can
be adopted though, if needed.

To secure the mechanical compatibility of modules over their edges, the bars within each
module split up into two sets. Those located entirely inside a module—the module-associated
bars—occur only in the specific module type, and are highlighted in blue in Fig. 4.3b. The
second set contains bars that intersect module boundaries. To preserve constant cross-section
areas of the inter-domain bars along their lengths, they need to be associated with the edge
types, occurring in multiple modules. These edge-associated bars are highlighted in red and
green in Fig. 4.3b. Distinction of horizontal (green) and vertical (red) bars is the consequence
of forbidden rotations in Wang tiling formalism.

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16

(a)

(b)

Figure 4.4: (a) Module- and (b) edge-associated bars. Scattered points represent nodes.
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To achieve identical topology of the modules and their edge connections in all their
occurrences, the bars are divided into groups, such that all bars in the same group share the
same cross-section area. Assignment of bars to a particular group is provided by the group
vector g(C) ∈ Nnb , uniquely for each assembly plan C. This group vector assigns a single
number in the range of {1, . . . , ng} to each bar of the ground structure, where ng denotes the
number of groups, i.e., the number of unique cross-section areas.

For the complete tileset shown in Fig. 4.1 and the module ground structure, Fig. 4.3b, we
have 48 bars associated with each module type, i.e., 16×48 = 768 groups of module-associated
bars in total, see Fig. 4.4a. Similarly, each edge, either horizontal or vertical, accommodates
3 edge-associated bars, leading to 8× 3 = 24 groups of edge-associated bars, see Fig. 4.4b.
Consequently, we have ng = 792 for this specific choice of the tileset and the module ground
structure.

Following the definition of the group vector, let G ∈ Bnb×ng denote the group matrix
defined as

Gi,j(C) =
{

0 if j 6= gi(C),
1 if j = gi(C),

∀i ∈ {1, . . . , nb}, ∀j ∈ {1, . . . , ng}, (4.3)

with Gi,j(C) being the element in the i-th row and j-th column of the group matrix G(C),
and gi standing for the i-th element in g. The group matrix represents a linear transformation
mapping the space of the unique cross-section areas ag ∈ Rng into the space of all cross-section
areas a ∈ Rnb ,

a = G(C)ag. (4.4)

Because of modularity, the original topology optimization formulation (4.2) must be
modified, reducing the number of cross-section areas from nb to ng, as they are substituted
by unique cross-section areas3. Moreover, a similar procedure can be applied to reduce the
number of the complementary strain energies of bars w ∈ Rnb to wg ∈ Rng , where wg,j is the
complementary strain energy of all the bars in group j. Consequently, the objective function
reads as

1Twg, (4.5)

and the volume constraint (4.2b) transforms into

`TG(C)ag ≤ V . (4.6)

For the second-order conic constraints (4.2d), we follow the aggregation in Appendix 4.A to
receive

wg,j + ag,j ≥
∥∥∥∥∥
(

wg,j − ag,j

G:,j(C)� [2`�E]◦
1
2 � s

)∥∥∥∥∥
2
, ∀j ∈ {1, . . . , ng}, (4.7)

with �, �, and ◦ denoting the Hadamard (element-wise) division, multiplication, and power;
and G:,j being the j-th column of G.

The final formulation of truss topology optimization extended to structural modularity

3Note that if ng = nb, the problem simplifies back to non-modular design.
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then reads

min
ag,wg,s

1Twg (4.8a)

s.t. `TG(C)ag ≤ V , (4.8b)
As = f , (4.8c)

wg,j + ag,j ≥
∥∥∥∥∥
(

wg,j − ag,j

G:,j(C)� [2`�E]◦
1
2 � s

)∥∥∥∥∥
2
, ∀j ∈ {1, . . . , ng}, (4.8d)

ag ≥ 0. (4.8e)

Because the number of constraints and variables in (4.8) decreases compared to the non-
modular design (4.2), finding the optimal topology of a modular structure is faster than
obtaining the optimal non-modular design. The acceleration factor depends on the repeatability
of individual module types and, of course, on the optimization solver employed.

4.3.2 Handling stress constraints, multiple load cases, and module
reusability

In addition to modularity, we extend formulation (4.8) to handle stress constraints, multiple
loading scenarios, and module reusability among multiple structures. Most importantly,
all these extensions preserve the convexity of the optimization problem, and thus do not
compromise the efficiency of the solution.

In the case of stress constraints, let us assume that

σL ≤ σi ≤ σU, ∀i ∈ {1, . . . , nb}, (4.9)

where σL and σU are the bounds for stress in element i, σi. To maintain convexity and avoid
additional variables, we can multiply the inequality (4.9) by ai and constrain the internal
forces, si, instead of the stress variables, σi, which provides us with equivalent convex linear
inequalities

σLG(C)ag ≤ s ≤ σUG(C)ag. (4.10)

Based on these inequalities, the stresses vanish with zero cross-sections, because ai =
Gi,:(C)ag = 0 implies si = 0.

For multiple loading conditions and module reusability, we assume that there are ns ∈ N
structures subjected to nlc ∈ N load cases, and we minimize the weighted average of the
complementary strain energies of all the load cases with the weights4 ω ∈ Rnlc×ns

>0 . To
minimize the number of design variables and constraints, we aggregate the complementary
strain energies of bars with the same cross-sections across load cases. Because this aggregation
follows the steps already outlined in Appendix 4.A, we omit the details here for the sake of
brevity.

The final convex second-order conic formulation for optimization of trusses with prescribed
modularity and subjected to stress constraints, multiple loading scenarios, and allowing for
module reusability reads as (4.11), where sk and fk stand for the axial and nodal forces
associated with the k-th load case. Moreover, the superscript •(m) associates the variable •
with the m-th structure.

4These weights are fixed in advance to prioritize individual load cases, for example, based on their time of
occurrence.
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a∗g
w∗g
s∗

 ∈ min
ag,wg,s

1Twg (4.11a)

s.t.
ns∑
m=1

(
`(m)

)T
[G(C)](m) ag ≤ V , (4.11b)

As(m)
k = f (m)

k , ∀k ∈ {1, . . . , nlc}, ∀m ∈ {1, . . . , ns}, (4.11c)

wg,j + ag,j ≥

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



wg,j − ag,j

ω1,1 [G:,j(C)](1) �
[
2`(1) �E

]◦ 1
2 � s(1)

1
...

ωnlc,1 [G:,j(C)](1) �
[
2`(1) �E

]◦ 1
2 � s(1)

nlc

ω1,2 [G:,j(C)](2) �
[
2`(2) �E

]◦ 1
2 � s(2)

1
...

ωnlc,ns [G:,j(C)](ns) �
[
2`(ns) �E

]◦ 1
2 � s(ns)

nlc



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
2

,

∀j ∈ {1, . . . , ng},
(4.11d)

σL [G(C)](m) ag ≤ s(m)
k ≤ σU [G(C)](m) ag,

∀k ∈ {1, . . . , nlc},∀m ∈ {1, . . . , ns},
(4.11e)

ag ≥ 0. (4.11f)

4.3.3 Modular-topology optimization

The objective function of the optimal design obtained by solving (4.8) or (4.11) depends
inherently on the specified assembly plan of modules C. However, because the number of
potential valid assemblies increases with the number of entries in C exponentially, exploring
all possible combinations may be intractable. Therefore, a method to efficiently find a “good”
connectivity matrix must be developed. In this section, we propose an approach to solve this
bilevel optimization problem, i.e., optimizing the module topologies as well as their assembly
simultaneously. While the lower-level problem (4.11) exhibits convexity, the upper-level is
combinatorial and NP-hard in general [49]. Therefore, we propose tackling the problem with
a combination of mathematical programming and meta-heuristics.

The bilevel optimization problem then reads

C∗ ∈ arg min
C

1Tw∗g(C), (4.12)

with w∗ following from (4.11), and the globally optimal design is eventually recovered as

a∗ = G(C∗)a∗g(C∗). (4.13)

The problem (4.12) is solved with (i) the globally optimal connectivity matrix C∗ and with
(ii) the globally optimal vector of unique cross-section areas a∗g at the globally optimal
complementary strain energy c∗.
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Algorithm 4.1 Genetic Algorithm
1: function GeneticAlgorithm(C, npop, ngen, nt, pt, pc, pm)
2: population← RandomPopulation(C, npop)
3: fitness← PopulationFitness(population)
4: for δ ← {1, . . . , ngen} do
5: elite← EliteIndividual(population, fitness)
6: matingPool← Selection(population, fitness, nt, pt)
7: population← CrossOver(matingPool, pc)
8: population← Mutation(population, pm)
9: population← AppendElite(population, elite)

10: population← Diversify(population)
11: fitness← PopulationFitness(population)
12: end for
13: return C← EliteIndividual(population)
14: end function

To approximately solve the upper-level assembly problem, we adopt the genetic algorithm
(GA) [87], a stochastic meta-heuristic optimization algorithm that simulates the process
of evolution by following Darwin’s “survival of the fittest” rule [180]. Genetic algorithms
receive high recognition in combinatorial and multi-objective optimizations, as they handle
discrete, non-differentiable, and non-convex optimization problems fairly efficiently. Here,
we implement the standard GA routine [87], see Algorithm 4.1, consisting of the following
steps: (i) First, we generate a random population of npop individuals (connectivity matrices)
that evolve through ngen generations. (ii) Fitness of individuals, inversely proportional to the
complementary strain energy, result from a parallel solution to (4.11). Next, (iii) tournament
selection is performed, controlled by probability pt and the number of competitors nt. Both
the (iv) cross-over and (v) mutation operators are applied, governed by the probabilities pc
and pm, and following the standard implementations. We also enforce population diversity,
so that duplicate individuals get substituted by random ones, and elitism applies. Specific
numerical values of these parameters appear in Appendix 4.B. Finally, we note here that one
may sacrifice optimized design performance to shorter computation times by reducing the
number of generations and of individuals.

4.4 Examples

The proposed modular-topology optimization approach was implemented in Matlab, with
the source codes available at [193], and applied to three illustrative two-dimensional problems.
In Section 4.4.1, we consider a hinge-supported beam subjected to a single load case without
stress constraints. In this setting, we first adopt a coarse discretization, as this allows us to
obtain a globally optimal design through brute-force enumeration. Subsequently, we assume
a finer discretization and discuss the results. Section 4.4.2 investigates an L-shaped domain
with two load cases and stress constraints. The third problem in Section 4.4.3 aims at
designing modules and assemblies that are reusable for both of the former cases.

All computations were performed on a Linux workstation with two Intel R© Xeon R© E5-2630
processors. The second-order cone programs for topology optimization of trusses were solved
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Figure 4.5: Dimensions, discretization into modules, boundary conditions, and ground structure
of the coarsely discretized beam.

using the state-of-the-art Mosek optimizer [138], interfaced with Matlab via the Yalmip
toolbox [131]. All times reported in this section include launching and termination of Matlab
and its parallel pool.

4.4.1 Hinge-supported beam

4.4.1.1 Coarse discretization

As the first illustration, we investigate a simply-supported beam of dimensions 8 × 3, see
Fig. 4.5. Under coarse discretization, the beam splits up into 24 unit-size square modules
that follow the corner Wang tiling formalism, recall Fig. 4.1. We assume the module ground
structures shown in Fig. 4.3b, with Young’s modulus E of each bar equal to 1. The beam is
supported with two hinges at the very bottom-left and bottom-right corners, and loaded with
an external force of magnitude 10 at the mid-span of the top edge.

Bounds on the global optimum. Structural modularity comes at a price of higher com-
plementary strain energy when compared to the non-modular design [89]. Because all the
modules share identical module ground structures, performing topology optimization without
modularity constraints, recall Eq. (4.2), provides, in 0.1 s, the lower-bound energy c = 61.9
with the design shown in Fig. 4.6a. Analogously, the upper-bound complementary strain
energy arises in the topology optimization of the design domain assembled from a single
module type, indicated by the connectivity matrix C containing all-zeros or all-ones. In
this setting, topology optimization results in the optimal design depicted in Fig. 4.6b, with
c = 191.2 obtained in 0.1 s. Therefore, the strain energy of the optimal modular design must
lie in the interval c∗ ∈ [61.9, 191.2].

We wish to emphasize here that the initial choice of the module ground structure and of the
modules aspect ratio strongly influences which designs can emerge in the optimization. On
one hand, this choice brings the benefit of a simple method to ensure manufacturability by 3D
printing [191]. On the other hand, truss discretization provides suboptimal designs in general.
For example, the module ground structures used in this work, recall Fig. 4.3b, exclude the
analytically optimal von Mises truss of compliance 34.7. This choice was made intentionally:
knowledge of analytical optima is seldom available and convergence of the bilevel optimization
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Figure 4.6: (a) Lower-bound non-modular, and (b) worst-case designs of the evaluated coarsely
discretized beam with complementary strain energies c = 61.9 and c = 191.2, respectively.

is immediate in this case, which can be verified by running the MTSimpleBeamAR.m example
available in the supplementary implementation [193].

Complete enumeration. Because the discretization is coarse enough, the globally optimal
connectivity matrix C∗ and the corresponding complementary strain energy c∗ can be de-
termined using the complete enumeration, which allows us to assess the performance of the
bilevel optimization rigorously. Notice that even the coarse discretization permits 236 possible
connectivity matrices, preventing a complete enumeration in a reasonable time. To reduce
the complexity, we have enforced symmetry of the connectivity matrix C with respect to the
vertical axis of the beam, consequently reducing the number of combinations to 220 feasible
assemblies. Because all modules comprise identical module ground structures, the number
of combinations is further decreased by noticing that the vertex types lack any physical
meaning. This makes the problem invariant against the coloring of Wang tiles corners, i.e.,
wg(C) = wg(C), where the connectivity matrix C follows from C by inverting 0 to 1 and vice
versa. Subsequently, we need to enumerate 219 distinct combinations instead of the original
236.

Evaluations of the optimization problem (4.11) for all the combinations took 9.5 core
hours. During the enumeration, a globally optimal design of the complementary strain energy
c∗ = 62.7 was obtained, see Fig. 4.7a, yielding a 1.3% increase of the objective function
compared to the lower-bound design. The module set of the globally optimal design, shown
in Fig. 4.7b, contains 13 modules that contribute to the load transfer, allowing for potential
elimination of three empty modules from the set. One of these, module 1, is not used because
of the edge-matching rules. Overall, the enumerated combinations generate a nearly Gaussian
distribution with a mean value of 107.7 and a standard deviation of 14.6, see Fig. 4.8.
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Figure 4.7: Globally optimal design for the (a) coarsely discretized beam of c∗ = 62.7, and (b)
the corresponding tileset.

Bilevel optimization using GA. The bilevel optimization solver was launched 50 times,
each time with a random population of 16 individuals, evaluating the statistical properties
of the bilevel optimization approach. On average, a single run took 11 core minutes. The
distribution of the complementary strain energy of the best individual within the population
is shown in Fig. 4.9.

The initial random populations yielded topologies with a mean energy of 107.4, approxi-
mately matching the mean value 107.7 of the nearly Gaussian distribution of the complete
enumeration. Throughout the prescribed 40 generations of the genetic algorithm, the comple-
mentary strain energy decreased to the final mean value of the best individual, 67.4, being on
average 8.9% higher than the lower-bound solution and 7.5% higher than the global optimum.
Through bilevel optimization, a second-best design, with strain energy 64.6, was obtained.
All the achieved objectives are within the lowest 0.2% of all combinations, recall Fig. 4.8.

Figure 4.8: Distribution of optimal complementary strain energies c of all enumerated combinations
(in blue), and 50 independent runs of the bilevel optimization (in red). While c and c∗ denote
the complementary strain energies of the worst and best modular designs, c is the complementary
strain energy of the non-modular one.
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Figure 4.9: Convergence of complementary strain energies c of the best individuals with 50
independent runs of the genetic algorithm; c∗ denotes the complementary strain energies for the
best modular design and c stands for the complementary strain energy of the non-modular one.

4.4.1.2 Fine discretization

Let us now consider a beam with the same dimensions and with identical boundary conditions
as in the previous subsection, recall Fig. 4.5, but with a refined discretization 6 × 16 and
modules with dimensions 0.5× 0.5. To preserve comparability with the previous case, the
connectivity matrix again satisfies symmetry along the midspan of the beam. Consequently,
fine discretization permits 262 distinct combinations of assemblies.

This huge number of combinations, pronounced further with an increased number of degrees
of freedom, makes it impossible to perform the complete enumeration as in the previous case,
leaving us without the knowledge of a guaranteed global optimum. However, similarly to the
previous example, we can obtain the bounds on the optimum: c = 61.1 obtained in 0.7 s and
c = 228.7 reached in 0.4 s, implying that c∗ ∈ [61.1; 228.7].
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Figure 4.10: Best design of the (a) finely discretized beam with c = 71.6 as obtained via bilevel
optimization, and (b) the corresponding tile set.
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Figure 4.11: Convergence of complementary strain energies c of the best individuals with 50
independent runs of the genetic algorithm for the finely discretized beam; c stands for the
complementary strain energy of the optimal non-modular design. For details in this figure, we
kindly ask the reader to consult the online version of the article.

Compared to the coarse problem, fine discretization produces a richer ground structure,
which allows the algorithm to reach a decreased lower-bound complementary strain energy.
Conversely, the upper-bound energy noticeably increases because a larger ratio of material
volume V appears to be placed inefficiently. Similar consequences of modularity also emerged
in [6, 89].

Convergence of the bilevel optimization algorithm, independently launched 50 times, is
shown in Fig. 4.11. A mean run took 1.6 core hours. The initial random populations of
29 individuals determined designs of the mean objective value 156.5—a significant increase
(45.3%) compared to coarse discretization. Throughout 70 generations, bilevel optimization
converged to mean objective value of 82.1, being 34.4% more-compliant than the lower-bound
design. The best design achieved, with c = 71.6, is shown in Fig. 4.10, which amounts to
a 17.0% increase over the lower-bound complementary strain energy c.

4.4.2 L-shaped beam with stress constraints and multiple load cases

As the second illustrative problem, we assume an L-shaped design domain as shown in Fig. 4.12.
For this domain, two equally-weighted load cases, indicated by the two arrows in Fig. 4.12,
apply. Furthermore, we limit the structural volume by V = 100, set the Young modulus to
E = 1, and fix the maximum value of stress to σUB = −σLB = 20. Although the maximum
(absolute value of) stress equals to 4.6 in the lower-bound non-modular setting, which makes
the stress constraint inactive, these constraints become active for some modular designs. For
example, the worst-case modular design would yield a maximum stress of 39.4 without stress
constraints. When imposed, the worst-case modular complementary strain energy approaches
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Figure 4.12: Dimensions, discretization into modules, boundary conditions, and ground structure
of the L-shaped domain.

c = 1837.9 in 2.2 s and both the stress constraint bounds are active. Because c = 552.3 arises
from the lower-bound non-modular design in 2.2 s, the optimum lies in c∗ ∈ [552.3, 1837.9].
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Figure 4.13: Best design of the (a) evaluated L-shaped beam with c = 803.1 as obtained via
bilevel optimization, and (b) the corresponding tile set.

68



............................................. 4.4. Examples

0 10 20 30 40 50 60 70 80 90 100
Generation

600

800

1000

1200

1400

1600

1800

2000

2200
c

Individual GA runs
Mean convergence
c

11
1
5
10
4
7
10
4
4
7
10
7

11
1
2
3
1
2
3
5
9
6
11
6

3
1
1
1
1
1
1
6
11
6
11
6

1
1
1
1
1
1
1
6
11
6
11
6

1
1
5
13
13
13
13
14
15
14
15
10

1
1
2
8
16
16
12
4
4
4
4
7

1
1
1
2
8
12

1
1
1
1
2
3

1
1
1
1
1
1

1
1
1
1
1
5

5
9
1
1
1
6

6
15
9
1
1
6

11
1
5
10
4
7
10
4
4
7
10
7

11
1
2
3
1
2
3
5
9
6

11
6

3
1
1
1
1
1
1
6
11
6
11
6

1
1
1
1
1
1
1
6

11
6

11
6

1
1
5
13
13
13
13
14
15
14
15
10

1
1
2
8

16
16
12
4
4
4
4
7

1
1
5
10
8
12

1
1
2
3
2
3

1
1
1
1
1
1

1
1
1
1
1
5

5
9
1
1
1
6

6
15
9
1
5
14

1
2
8
11
5
13
13
13
13
13
13
13

1
1
2
3
2
4
4
4
4
4
4
4

1
1
5
9
1
1
5
13
13
13
13
13

1
1
2
3
5
9
2
4
4
4
4
4

1
1
1
5
10
7
13
13
13
13
13
13

1
1
1
6
15
14
16
16
16
16
16
16

1
1
1
2
8
12

1
1
5
9
2
7

1
1
2
7
9
2

1
5
9
2
7
13

5
10
7
9
2
4

6
15
10
7
13
13

10
3
2
7
10
8
16
16
16
16
12
8

7
13
9
6

15
10
4
4
4
8

11
2

2
4
3
2
4
3
5
9
5
10
3
1

5
13
13
9
1
1
2
3
2
3
1
1

2
4
8
15
13
9
5
13
13
13
13
13

5
13
10
4
8
15
14
16
16
16
16
12

2
4
7
13
10
8

5
9
2
4
3
6

2
3
5
13
9
2

1
1
2
4
3
1

1
1
1
5
9
1

5
13
9
6

11
5

9
5
13
13
13
9
2
3
1
1
5
9

11
2
4
8
12
7
9
1
5
13
14
11

3
1
5
10
7
14
11
5
14
16
16
15

9
5
10
7
14
16
11
2
8
16
12
4

3
6
11
6
12
4
7
13
14
16
15
9

13
14
11
2
7
9
2
4
4
4
4
7

12
8
11
1
6
15

15
10
7
9
6

16

8
15
10
7

10
4

6
12
7

10
3
5

6
15
14
11
1
2

14
16
12
3
1
5

Figure 4.14: Convergence of complementary strain energies c of the best individuals with 50
independent runs of the genetic algorithm for an L-shaped beam; c stands for the complementary
strain energy of the optimal non-modular design. For details in this figure, we kindly ask the
reader to consult the online version of the article.

After launching the bilevel optimization approach, the first generation of random individuals
yielded a mean energy of 1468.4, a value not too distant from the worst case. Through 106
generations of 42 individuals, the population evolved to set the mean energy of the best
individuals at 891.0, including a best design of 803.1 (45.4% higher than c), and the worst
design had a complementary strain energy of 1045.0. See Fig. 4.14 for the statistics of the
best individuals within 50 independent random runs of the algorithm. A mean run of the
algorithm terminated in 27.8 core hours.

While the best design, Fig. 4.13, clearly aligns structural stiffness with the principal stress
direction of the first load case (e.g., modules 10, 11, 14, 16), the interior of the module types
1, 4, and 13 serves mainly as a structural stabilization against the second load case. Stress
constraints bounds are active both in tension and compression.

4.4.3 Module reusability in simply-supported and L-shaped beams

The final example concerns the concurrent design of the finely discretized beam from Section
4.4.1.2 with the L-shaped domain from Section 4.4.2. In this case, the modules become reusable
among these two domains, which is a key benefit of modularity. Additionally, we introduce
three minor deviations from the settings of the original problems: the stress constraints of the
L-shaped domain also apply to the hinge-supported beam; the hinge supported beam does not
enforce symmetric colorings; and instead of independent volume constraints, we constrain the
overall volume by V = 200. All these changes are justified by practical considerations: stress
constraints should apply over the same material, symmetric coloring of the simply-supported
beam may become inefficient as the L-shaped domain lacks the symmetry, and (one of the)
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Figure 4.15: Convergence of complementary strain energies c of the best individuals with 50
independent runs of the genetic algorithm for reusable design; c stands for the complementary
strain energy of the optimal non-modular design. For details in this figure, we kindly ask the
reader to consult the online version of the article.

volume constraints may become inactive. For these reasons, the designs in this section are
not directly comparable with the previous ones. However, the original constraints can still be
imposed, with few adjustments in the code.

In the modular-topology optimization framework, we obtained the lower-bound comple-
mentary strain energy of c = 490.5 in 4.8 s and a worst-case design with c = 2056.8 in 3.5
s, implying that c∗ ∈ [490.5, 2056.8]. In 50 independent runs of the algorithm, lasting 155
core hours on average, the originally random population of 57 individuals evolved in 140
generations from an initial mean complementary strain energy of 1695.1 to the best individual
having the complementary strain energy of 924.5, see Fig. 4.15. The best design acquired,
Fig. 4.16, exhibited a strain energy of 829.6, which is 69% worse than the lower-bound design.
Modules in the design of Fig. 4.16b are clearly distinguished by their major effective stiffness

(a) (b)

Figure 4.16: (a) Best reusable designs of the two domains with c = 829.6 as obtained via bilevel
optimization, and (b) the corresponding tile set.
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directions: the vertical direction of module 1; the almost horizontal direction of modules
11 and 16; and the rest inclined (2, 3, 5, 6, 7, 9, 10, 12, 15), or stiff in three (8, 14) or all
directions (4, 13).

4.5 Conclusions

In this paper, we introduced a novel bilevel modular-topology optimization approach, facilitat-
ing simultaneous optimization of the topologies of 16 independent truss modules together with
their optimal placement within their respective structural macro-scale domains. This method
adopts the concept of corner Wang tiles as a suitable formalism for describing non-periodic
assemblies of structural modules to maintain edge compatibility: a new class of compatible
and reconfigurable (micro-)structures.

Lower-level optimization constitutes the truss topology least-compliant design problem,
extended to structural modularity, stress constraints, multiple load cases, and modules reusabil-
ity. We formulate this optimization problem as a convex second-order cone program (SOCP),
efficiently solvable to global optimality by employing modern mathematical programming
solvers. In addition, modularity enables us to aggregate the constraints and variables of the
original non-modular problem, resulting in the optimal modular designs being found faster
compared to their non-modular counterparts. Since the compliances of modular designs are
bounded by the periodic-unit-cell (PUC) design from above and by the non-modular design
from below, any (and even random) assembly plan balances the solution efficiency of PUC
with the design performance of the non-modular design. The final optimized design quality
thus strongly depends upon the supplied assembly plan. To mitigate and take advantage
of this dependence, we have developed a bilevel modular-topology optimization framework,
using meta-heuristics (namely, a genetic algorithm) to search for an optimal assembly plan.

After implementing this approach in Matlab, we assess its performance using three sample
problems. For the first, we consider a hinge-supported beam. For the case illustrating coarse
discretization and symmetric module interfaces, we compute the globally optimal design
using brute-force enumeration. It turns out that the optimal modular design almost achieves
the quality of a non-modular one. The bilevel optimization approach converges to solutions
near the optimum, and is, therefore, suitable for finding an approximate solution to the
optimization problem in much shorter times compared to the enumeration. When a finer
discretization for the hinge-supported beam is adopted, the quality of the optimized modular
design decreases compared to coarse discretization. This issue seems to be a common drawback
of modularity, as reported earlier by Huang and Xie [89]. For the second and third problems,
which include an L-shape design domain, we demonstrated how stress constraints, multiple
load cases, and module reusability can be imposed while maintaining convexity (and thus
solution efficiency) for the inner optimization problem. For both of these sample problems, the
optimized designs outperform the optimal PUC designs considerably, and exhibit structural
efficiency and material distribution nearly equivalent to the non-modular designs.

In the future, several important extensions need to be considered to build upon these pilot
results. First, upper-level optimization (GA) could be replaced by a heuristic procedure
based on free-material optimization [231, 88] or by machine learning to allow more efficient
solution of larger problems. Tuning such procedures can beneficially incorporate knowledge
acquired by our extensive exploration of the design space of module assemblies. Machine
learning may also allow for us to design the topology of individual modules [80]. Second,
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since the chosen Wang tileset plays a crucial role, different tilesets may yield different optimal
designs. Adaptive choice of a set cardinality and distribution of color codes within set is worth
investigating. Similarly, the module ground structure as well as the shape of the modules
influence the final design; for instance, in the first example of the hinge-supported beam,
the best modular design always tends to be the two-bar truss when a correct aspect ratio of
the modules and a suitable module ground structure is used. Another important issue that
deserves investigation is the decrease in stiffness under the refinement of the macroscopic
assembly. Here, the influence of tileset cardinality and coloring as well as the module-assembly
scale separation shall be investigated in particular.

The formulation and approach here presented should extend seamlessly to 3D. However,
the scaling of the computational requirements required in the 3D case will likely require future
developments or different approaches before it becomes practically usable. Then, optimized
module sets could be applied in the modular design of 3D-printed Lego R©-like products [169]
or combinatorial aperiodic metamaterials [43] with complex shapes [12]. Moreover, the
inner SOCP formulation also allows for other convex extensions, e.g., the fundamental free-
vibrations eigenfrequency lower-bound constraint [146, 191] and bounds on peak power [83].
An extension to modular buckling mechanisms [148] is another challenge. Last, adopting
continuum topology optimization might also provide invaluable insights and broaden the
potential of the proposed approach.

4.A Complementary strain energy conic constraints for
modular designs

Although the original elastic design formulation (4.1) lacks convexity, it allows for reformulation
into a convex conic optimization problem. Here, we consider dual complementary-strain-
energy reformulation (4.2) that can exploit modularity by aggregation of constraints and
design variables. This section of the appendix derives this aggregation and explains the basic
mechanical reasoning behind the reformulation.

Let us assume a minimization of the structural complementary strain energy function, Eq.
(4.2a), defined to be the sum of the upper bounds for the complementary strain energies wi
of individual bars i ∈ {1, . . . , nb}, i.e.,

wi ≥
1
2
`i
Ei

s2
i

ai
, (4.14)

where `i, Ei, and ai are the length, Young modulus, and the cross-section area of the i-th
element, respectively. The axial force in this element is denoted by si. Notice that since we
minimize the sum of the upper bounds wi (4.2a), they attain the value of the complementary
strain energy at the optimum, which is in turn equal to the compliance in (4.1).

Instead of minimizing the sum of complementary strain energies of individual bars we can,
however, minimize the sum of aggregated complementary strain energies

wg,j = [G:,j(C)]Tw ≥ 1
2ag,j

[G:,j(C)]T
(
`�E� s◦2

)
, (4.15)

where wg,j is the upper bound for the sum of complementary strain energies of the bars that
share the cross-section area ag,j , and �, � with ◦ are the Hadamard “element-wise” division,
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multiplication, and power. This step effectively eliminates summands in the objective function
and aggregates constraints as well as design variables.

Because (4.15) is not defined for ag,j = 0, we perform a multiplication by the non-negative
4ag,j to obtain

4wg,jag,j ≥ [G:,j(C)]T
(
[2`�E]◦

1
2 � s

)◦2
. (4.16)

Eq. (4.16) now allows for zero cross-section areas as is required by topology optimization.
However, in this case, the corresponding internal forces vanish and wg,j is arbitrary. Notice
that wg,j may even attain arbitrarily low negative values, making the complementary strain
energy functional non-physical and the objective function (4.2a) unbounded.

Because the aggregated constraints share the same cross-section, adding w2
g,j−2wg,jag,j+a2

g,j
to both sides of the inequality provides us with the sum-of-squares inequality

(wg,j + ag,j)2 ≥ (wg,j − ag,j)2 + [G:,j(C)]T
(
[2`�E]◦

1
2 � s

)◦2
, (4.17)

which is equivalent to

w+
g,j + a+

g,j ≥
∥∥∥∥∥
(

w+
g,j − a

+
g,j

G:,j(C)� [2`�E]◦
1
2 � s

)∥∥∥∥∥
2
, (4.18a)

−w−g,j − a
−
g,j ≥

∥∥∥∥∥
(

w−g,j − a
−
g,j

G:,j(C)� [2`�E]◦
1
2 � s

)∥∥∥∥∥
2
, (4.18b)

with

ag,j = a+
g,j − a

−
g,j , (4.19a)

wg,j = w+
g,j − w

−
g,j , (4.19b)

a+
g,j ≥ 0, a−g,j ≥ 0, w+

g,j ≥ 0, w−g,j ≥ 0. (4.19c)

Clearly, (4.18b) is redundant, as both the ag,j and wg,j must be non-negative, i.e., w−g,j =
a−g,j = 0. Moreover, if ag ≥ 0 is enforced explicitly, which is our case—recall Eq. (4.2e)—the
non-physical situation of the negative complementary strain energy is automatically eliminated
because the Euclidean norm is non-negative by definition. Consequently, we end up with the
conic constraint

wg,j + ag,j ≥
∥∥∥∥∥
(

wg,j − ag,j

G:,j(C)� [2`�E]◦
1
2 � s

)∥∥∥∥∥
2
, (4.20)

which is convex and equivalent to (4.15) for all positive cross sections. For zero cross sections,
complementary strain energy is implicitly enforced to be non-negative, and actually zero,
since wg,j is to be minimized.

4.B Binary genetic algorithm

In the considered bilevel optimization problem, we use the following parameters for the genetic
algorithm: The population consists of npop individuals, heuristically set to

npop =
⌊
3.6
√
|C|+ 0.5

⌋
, (4.21)
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where b•c denotes rounding of • towards the nearest integer less than or equal to •.

The individuals evolve through ngen generations, where

ngen = 5 b0.49npop + 0.5c .in (4.22)

Further, the selection of parents giving birth to offspring follows from tournament selection.
The size of tournament nt equals

nt =
⌊4

3

√
|C|+ 0.5

⌋
, (4.23)

and the individuals participating in the tournament are chosen randomly. Sorted accordingly
to their fitness values, the probability pi of the i-th individual to win the tournament equals

pi = pt · (0.7)i, (4.24)

where pt = 0.3.
For combinations of individuals, we used uniform cross-over with a probability of pc = 0.94

and a combination of the parents genes based on their fitness, or keeping the better parent
otherwise.

The mutation operator applies for each gene with a probability of

pm = 1
|C| , (4.25)

reversing the binary value of the affected genes. Additionally, the genetic algorithm was set
to guarantee population diversity, i.e., substituted duplicate individuals with random ones
and to keep the best individual through elitism.
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Chapter 5
Modular-topology optimization of structures and
mechanisms with free material design and clustering

Abstract: In the optimal design of modular structures and mechanisms, two key questions
must be answered: (i) what should the topology of individual modules be like and (ii) how
should modules be arranged at the product scale? We address these challenges by proposing
a bi-level sequential strategy that combines free material design, clustering techniques, and
topology optimization. First, using free material optimization enhanced with post-processing
for checkerboard suppression, we determine the distribution of elasticity tensors at the product
scale. To extract the sought-after modular arrangement, we partition the obtained elasticity
tensors with a novel deterministic clustering algorithm and interpret its outputs within Wang
tiling formalism. Finally, we design interiors of individual modules by solving a single-scale
topology optimization problem with the design space reduced by modular mapping, conveniently
starting from an initial guess provided by free material optimization. We illustrate these
developments with three benchmarks, covering compliance minimization of modular structures,
and, for the first time, the design of compliant modular mechanisms. Furthermore, we design
a set of modules reusable in an inverter and in gripper mechanisms, which ultimately pave the
way towards the rational design of modular architectured (meta)materials.
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5.1 Introduction

Modular architectured materials, (self-)assembled [93] from a number of patterned components
called modules, boost structural sustainability with possibly (re)configurable, multi-functional
structures and mechanisms [221, 90, 141, 189, 213] while enabling efficient mass manufacturing
through prefabrication, e.g., [63].

Optimal design of these modular materials is, however, still in its infancy. In principle, the
design problem involves solving a bilevel modular-topology optimization problem incorporating
(i) the design of the module topologies, and (ii) the spatial arrangement of the modules,
both of which drive the resulting performance and versatility of the final structure. While
the lower-level problem alone introduces only a slight modification to standard topology
optimization (TO) procedures [192, 189, 212], the upper-level assembly plan design adds
another combinatorial dimension to the structure of the problem [192]. For the case of
continuum topology optimization, the module design problem lacks convexity and appears to
be strongly dependent on initial guesses, which makes a rigorous assessment of assembly plan
performance challenging.

Following a brief introduction to microstructural optimization in Section 5.1.1, we focus
on modular designs and divide the contemporary methods for solving the modular-topology
optimization problem into three groups: multi-material-based and meta-heuristic methods
(both covered in Section 5.1.2), and clustering-based procedures (Section 5.1.3). In addition,
any of these paradigms enable either a concurrent design scheme, in which the two levels are
solved simultaneously and converged designs are (locally) optimal with respect to both the
assembly plan and the module topologies, or a sequential scheme, in which the assembly plan
design precedes the design of modules.

In this contribution we develop a novel sequential clustering method for designing modular
structures and mechanisms based on Wang tiling formalism, Section 5.1.4. Main challenges of
the methods and our contributions are summarized in Section 5.1.5.

5.1.1 Microstructural optimization

Microstructural topology optimization has been a very vivid research area [212], particularly
due to the link to numerical homogenization [30]. However, conversely to homogenization,
which evaluates effective properties of periodic media, the inverse homogenization approach
proposed by Sigmund [175] has established a new framework for designing periodic materials
with prescribed constitutive properties. The local periodicity requirement for homogenization-
based methods relies on an infinite scale separation in order to maintain material connectedness
of non-uniform microstructures and theoretical, superior performance. Because non-uniform
distributions are optimal in general [163, 192], but since only finite-scale separations can be
practically considered, the disconnectedness issue of neighboring microstructural cells has
challenged researchers for years [170, 71].

Except for periodic-unit-cell (PUC) designs, which are compatible by definition but usually
provide poor structural performance [128, 188, 213], several conceptual ideas have been
proposed to resolve this problem for practical finite-scale separations during the last decade:
prescribing connectors of neighboring, often parametric microstructures [227], design post-
processing [75, 7, 170], and maintaining natural mechanical connectivity via single-scale
optimization of the whole domain [192, 189] or subdomains [71].
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Among these methods, the de-homogenization approach [152, 7, 77, 72] has proven to
be a superior tool for single-load-case compliance optimization problems. With it, optimal
microstructures are known to be rank-2 or rank-3 laminates whose stiffness is aligned with
principal stress directions. Consequently, the optimal structures are found by projecting
and smoothing optimal parametric microstructures. In more general cases such as multiple
load cases, modular structures, or compliant mechanism designs, the topology of optimal
microstructures is not known, and hence the method cannot be applied.

5.1.2 The optimum design of modular materials

Unlike the theoretically-optimal non-uniform distributions of microstructures, modularity
limits itself to a finite small number of pattern types. As a consequence, it only approximates
the optimal distribution, unless the optimal distribution is periodic. There are two extreme
cases of modular designs: PUC microstructures, which repeat a single module in the design
domain; and the optimal, infinite number of module types. As a result, modularity drastically
reduces the number of design variables compared to the theoretically-optimal solution, but
also provides a better structural response than PUC designs [192]. Furthermore, modularity
may also improve the susceptibility of structures to local damage or imperfections [213].

As we have already outlined, the main challenge in the design of modular structures and
mechanisms remains a coupled design of module topologies and their connectable spatial
arrangements. Hence, early methods for modular design relied on a predefined distribution
of modules [179, 61]. Although these designs performed better than PUCs in general, they
were unable to handle the macro-scale module-assembly design problem, which substantially
influenced their performance.

Several of the early methods for modular-topology optimization relied on meta-heuristics
coupled with numerical optimization. Among these, Tugilimana et al. [188] optimized the
spatially-varying rotations of a truss module, and, ultimately, both rotations and placements
of multiple module types [189]. In the latter work, a simulated annealing was used for selecting
an appropriate assembly plan, and a non-convex mathematical program for designing module
topologies. Another approach was developed by Tyburec et al. [192], who optimized truss
modules and their assemblies in the form of Wang tilings. In this method, a genetic algorithm
was combined with convex mathematical programming, which provided a reliable way of
assessing the performance of individual assembly plans.

Another class of approaches to modular design relies on concurrent multi-material-based
methods. Among these, Zhang et al. [227] developed an approach based on ordered SIMP
interpolation. Its main idea encompassed a repeated solution to two subproblems: solving
a multi-material distribution problem for fixed material properties, and finding the material
properties for a given material distribution. Notice that the former subproblem is not
considered in the above meta-heuristic approaches. A similar setting to [227] can also be
found in [132], where a rotation of a single parameterized unit cell was optimized for compliant
mechanism problems.

5.1.3 Clustering-based methods

The third class of methods relies on clustering algorithms. Because these methods are
particularly relevant to us, we review relevant developments in a dedicated section. For the

77



5. Modular-topology optimization of structures and mechanisms with FMO and clustering ............
readers’ convenience, we categorize the methods according to the quantities that are clustered:
densities, the stress or strain tensors, and material stiffness tensors.

Density-based clustering. Density-based clustering determines candidate modular arrange-
ments as clustered pseudo-densities of the variable thickness sheet problem. Since these
densities usually interpolate isotropic materials, the isotropic homogenized properties of
the modules are implicitly assumed. Due to the continuity of the density field, an infinite
number of isotropic microstructures is needed in order to describe a general macro-domain.
To effectively limit this number, Li et al. [126] and Gao et al. [69, 70] partitioned their ranges
based on predefined thresholds. Each of these clustered densities was subsequently associated
with a unique microstructure found by an inverse homogenization based on the level set
method.

A related concept was adopted in Yan et al.’s [218] concurrent method, in which the
strain energy of thermo-elastic lattice structures was minimized and the discreteness of the
macro-scale structure assembly was secured by the kmeans algorithm which clustered similar
strain energies of the cells without the need to specify fixed thresholds a priori.

Stress- and strain-based clustering. Because the idea of density-based clustering relies on
the assumption of isotropic microstructures, it is usually too restrictive, since it reduces all
microstructural information into a scalar field. A more general viewpoint incorporates the
directional information, i.e., the data provided by the stress and strain tensors. However,
even this perspective lacks full generality: it assumes designing each microstructure based on
the principal directions only, i.e., rank-3 laminates in 3D. Such settings thus cannot handle
cases with different optimum microstructures properly. These cases include multiple loading
scenarios in minimum-compliance optimization or compliant mechanism design.

In one of the earliest works leading towards stress-based clustering, Xu and Cheng [215]
investigated the concurrent setting of minimum-compliant multiscale topology optimization. In
their work, the requirement of multiple unique microstructures was enforced by using so-called
misplaced material volume constraints, which penalized the assignments of microstructures
out of their assumed range of principal stress directions. Individual microstructures were
designed by the inverse homogenization approach, but lacked mutual connectivity. Another
recent concurrent method from Qiu et al. [157] proposed using dynamic clustering to cluster
vectors containing the direction of the principal stresses as well as their ratios. The clustering
task was solved by the kmeans algorithm. To ensure similar local optima of the clustering
algorithm among the iterations of topology optimization, the cluster centers of kmeans were
initialized based on the previous run.

In contrast to density-based clustering, stress- or strain-based clustering usually operates
without microstructural volume fraction information. This drawback has been circumvented
by the combined clustering proposed by Kumar and Suresh [116], who clustered the vectors
containing densities and the ratios of principal strains.

Material stiffness clustering. The most structurally-efficient designs can only be found
when exploiting all available information. For microstructural design, this information
follows from the fourth-order material stiffness tensor. Considering isotropic materials only,
Yang and Li [220] optimized the Poisson ratios of isotropic materials by introducing free
isotropic material optimization. Their work combined a hierarchical clustering algorithm with
a second-order conic formulation in the transformed polyhedral P -Q space, optimizing the
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structural complementary strain energy. A natural generalization, developed by Hu et al.
[88], explored the entire design freedom of positive definite material tensors by free material
optimization (FMO), e.g. [231]. The optimal spatially-varying material tensors were clustered
by a hierarchical clustering and individual micro-structures were obtained using the inverse
homogenization method with embedded physics-based connectivity control.

5.1.4 Wang tilings

In this work, we adopt the concept of Wang tiles—a natural generalization of the PUC—as
a convenient formalism for describing modular assemblies.

Visualized as unit squares with colored edges and a fixed orientation, the concept of Wang
tiles was developed by and is named in honor of Hao Wang to simulate the ∀∃∀ decision
problem of predicate calculus in mathematical logic. In an equivalent domino problem, Wang
[201] assumed an arbitrary but fixed finite set of unitary tiles or dominoes and asked whether
one can determine that their copies can cover an infinite plane while satisfying the domino
rule of matching colors at shared edges of adjacent pieces; see Fig. 5.1 for an illustration.

An answer to the domino problem flourished in the work of Wang’s student Berger [26],
who proved that, in addition to tilesets that can cover the infinite plane by repeating periodic
patterns, aperiodic tilesets also exist which satisfy the tiling objective yet forbid any periodic
arrangement. Hence, the domino problem is not decidable. Since then, numerous aperiodic
tilesets have emerged; see [79, Chapter 11] for a thorough introduction.

Berger’s original proof relied on a reduction of the Turing machine halting problem into
the domino problem. This reduction implies that Wang tiles are Turing-complete, and hence
their (self)-assembly can simulate desired Turing computations. This property has motivated
applications, e.g., at the DNA level [209, 208], and, recently, by Jílek et al. [93] on the
centimeter-scale.

Visually appealing, nonperiodic yet compressed arrangements have impelled the adaptation
of Wang tiles in computer graphics to generate naturally-looking textures [41, 226] and Poisson
disk distributions [41, 86]. Sharing objectives, these applications have inspired the use of Wang
tiles in modeling materials microstructures, both for geometrical representation [143, 56, 58]
and calculations [144, 54, 57, 59]. Because the cardinality of the Wang tileset balances the
computation efficiency of the PUC with precise (micro-)structural description, Wang tilings
also appear to be useful in securing automatic connectivity in the topology optimization of
modular truss structures [192].

(a) (b)

Figure 5.1: Illustration of Wang tiles: (a) a tileset of 8 tiles over two colors, and (b) a random
6× 5 valid tiling satisfying the domino rule.
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5.1.5 Aims and novelty

As follows from the literature survey, the design of modular architectured materials has only
recently become an active research domain in the topology optimization field. Although
several significant results have already appeared, there still remain fundamental questions to
be answered.

Because the overall response of modular structures follows from two constituents, with
the smooth macro-domain response driven by the effective constitutive parameters that are
impaired by the presence of heterogeneities [59] in the form of module topologies, finding an
appropriate assembly plan is the major challenge that, when successfully addresses, would
allow attaining the desired structural effectiveness.

In this contribution, we rely on the clustering approach, recall Section 5.1.3, operating
over material stiffnesses, and a standard single-scale topology optimization [22] extended to
structural modularity. Each of our modules is defined as a quadruple of edge labels, thus
defining a Wang tile, recall Fig. 5.1. In this dual point of view, we ask how do we place at
most m different interface types to make the resulting modular structure behave efficiently?
The answer is indeed in the form of a valid Wang tiling over at most m colors.

To make our setting fully general, our clustering dataset originates from a solution to an FMO
problem, which we extend to handle both minimum-compliance and compliant mechanism
design objectives, Section 5.2.1.1. To the best of our knowledge, the procedures for designing
modular assembly plans in linear elasticity problems have mostly been limited to minimum-
compliance optimization. The only exception we are aware of is [132], optimizing rotations of
a single unit cell for compliant mechanisms via multi-material topology optimization. However,
a more general setting has already been requested [213].

Surprisingly, as we will show in Section 5.2.1.2, the optimal elastic properties obtained
from the FMO problem often contain checkerboard patterns. Nevertheless, this artifact has
not yet been investigated with connection to the FMO problems although it has appeared
in published results, e.g., [88]. Since we only utilize the elastic properties for a heuristic
guidance, we adopt a simple post-processing step and postpone the rigorous treatment of the
checkerboard patterns in FMO to future works.

The objective of the clustering algorithms is to partition a given dataset of points into
a specific number of clusters. However, standard clustering algorithms have several disad-
vantages: they are usually stochastic and, therefore, require multiple evaluations to generate
quality outputs. Moreover, they also generally fail to maintain structural symmetries. To
overcome these shortcomings, we have developed a novel greedy agglomerative clustering
algorithm that is deterministic while preserving structural symmetry of the elasticity field,
when present (Section 5.2.1.3). Using this clustering algorithm on a module interface-based
discretization produces a valid Wang tiling.

For appropriate assembly plans obtained via the clustering procedure, the module topologies
must also be optimized. Unfortunately the emergent optimization problems appear to be
strongly dependent on the provided starting point. To make the initial choice problem-specific
yet well-defined, we propose to use a solution to a macro-scale FMO problem with modularity
to construct initial guesses based on the traces of the optimal stiffness tensors obtained from
FMO (Section 5.2.2.1). A single-scale topology optimization extended to structural modularity
is finally used for a computation of the optimized modular topologies in Section 5.2.2.2.

We illustrate the developed theory on four selected examples, including minimum-compliance
optimization of the MBB beam problem, Section 5.3.1, and three compliant mechanisms:
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inverter (Section 5.3.2), gripper (Section 5.3.3), and a module set reusable among both the
inverter and gripper mechanisms (Section 5.3.4). We conclude that our approach to designing
modular structures provides fairly efficient and well-behaving designs.

In this contribution, we adopt the following notation: scalar variables are written in plain,
lower-case italic letters (a). First- and second-order tensors appear in lower-case, bold italic
(a) and bold regular (a) letters, respectively, and the fourth-order tensors are denoted as bold
capital regular letters (A). Finally, column vectors and matrices appear in sans-serif lower
and upper-case bold characters (a, A).

5.2 Methods

This section is devoted to establishing a sequential method that provides a heuristic solution
to the modular-topology optimization problem with the modular assembly plan parameterized
as valid Wang tilings, recall Section 5.1.4. Our approach to designing modular structures and
mechanisms encompasses six sequential steps: (i) optimum free material design performed
on a module interface-based mesh, Section 5.2.1.1, (ii) removal of potential modules whose
interfaces lack any significant stiffness, (iii) smoothing of the material stiffness field to suppress
the checkerboard patterns, Section 5.2.1.2, and (iv) clustering of elasticity matrices by a newly-
developed agglomerative clustering algorithm to output valid Wang tilings, Section 5.2.1.3.
For the resulting assembly plan, we (v) optimize the material properties of individual modules
via an FMO extended to modularity, Section 5.2.2.1, which provides an appropriate initial
guess for (vi) the standard continuum topology optimization extended to modularity in
Section 5.2.2.2.

5.2.1 Assembly plan design

Based on the inherent bilevel nature of the modular-topology optimization problem, we split
the above six steps into two parts—a heuristic procedure for assembly plan design, and then
topological optimization of the modules. In this section, we aim to answer the question
of how should we design efficient assembly plans? To this goal, we introduce free material
optimization in Section 5.2.1.1, the necessary post-processing steps in Section 5.2.1.2, and
a novel clustering procedure in Section 5.2.1.3.

5.2.1.1 Free material optimization

Let us consider a two-dimensional continuum body Ω under appropriate static and kinematic
boundary conditions. In this domain, the free material optimization (FMO) method seeks
the spatially-varying material elasticity tensors E that make the structural response optimal
with respect to a specified performance functional a(u) [231] of a displacement field u.

In this manuscript, we assume a linear strain-displacement relation

εij(x) = 1
2

(
∂ui(x)
∂xj

+ ∂uj(x)
∂xi

)
, ∀x ∈ Ω , (5.1)

where ε denotes a strain tensor. The sought elastic material properties are represented by the
effective elasticity tensor E that satisfies linear Hooke’s law written in indicial notation as

σij(x) = Eijkl(x) εkl(x), ∀x ∈ Ω , (5.2)
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in which σ is a stress tensor.

In what follows, we adopt the (engineering) Voigt notation that allows us to rewrite the
tensors ε, σ, and E as column and square matrices, respectively. To this goal, let

ε(x) =
(
ε11(x) ε22(x) 2ε12(x)

)T
=
(
ε11(x) ε22(x) γ12(x)

)T
(5.3)

be the strain column matrix, with γ12 being the engineering shear strain, and let

σ(x) =
(
σ11(x) σ22(x) σ12(x)

)T
=
(
σ11(x) σ22(x) τ12(x)

)T
(5.4)

denote the stress matrix. Then, the matrix form of the Hooke law (5.2) reads as

σ(x) = E(x) ε(x) , ∀x ∈ Ω , (5.5)

with the material stiffness matrix

E(x) =

E1111(x) E1122(x) E1112(x)
E1122(x) E2222(x) E2212(x)
E1112(x) E2212(x) E1212(x)

 (5.6)

constructed from the (to-be-optimized) components Eijkl of the forth-order elasticity tensor
E. To simplify the further developments, we introduce a vector form of E as

e(x) =
(
E1111(x)

√
2E1122(x) E2222(x)

√
2E1112(x)

√
2E2212(x) E1212(x)

)T
(5.7)

such that
‖E(x)‖F = ‖e(x)‖2 , (5.8)

where ‖•‖2 denotes the standard Euclidean norm of the vector •, and ‖•‖F is the Frobenius
norm.

Our approach to a numerical solution of the FMO optimization problems relies on ap-
proximate solutions to the governing equation obtained with the finite element method: we
search for the kinematically admissible displacement field u ∈ Rndof satisfying the equilibrium
equations

K
(
E(1), . . . ,E(n`)

)
u = f, (5.9)

where f ∈ Rndof denotes the column matrix of equivalent nodal forces, ndof stands for the
number of degrees of freedom, the super-script •(`) expresses an assignment of • to the element
`, and K

(
E(1), . . . ,E(n`)

)
∈ Sndof
�0 is the symmetric, positive definite structural stiffness matrix—

a function of the discretized field of elasticity matrices E(`) ∈ S3
�0 of n` finite elements. In

this notation, S• refers to a space symmetric square matrices of the size • × •, and � denotes
positive definiteness. In addition, we define X � ε to express that the eigenvalues of X are
grater than or equal to ε.

The structural stiffness matrix follows from an assembly of element stiffness matrices K(`)

based on the element gather matrices L(`) and a design-independent term K0 ∈ Sndof
�0 ,

K
(
E(1), . . . ,E(n`)

)
= K0 +

n∑̀
`=1

L(`)TK(`)(E(`))L(`), (5.10)
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where the element contributions K(`)
(
E(`)

)
∈ S�0 evaluate as

K(`)
(
E(`)

)
=
∫

Ω`
B(`)T(x) E(`)(x) B(`)(x)dΩ. (5.11)

In (5.11), B(`) denotes the strain-displacement matrix arising from the adopted displacement
approximation, and Ω` constitutes the element domain. From now on, we assume E(`) to be
constant over each element, so that K(`) is a linear function of E(`).

In the spirit of standard topology optimization (TO) [22], FMO seeks the most efficient
distribution of a limited amount of material, constrained by Eqs. (5.12c)–(5.12e), that satisfies
the (elastic) equilibrium, Eq. (5.12b). However, compared to TO, the FMO setting opens
up a broader design freedom, because the full material stiffness matrix is the subject of
optimization. Here, we formalize the FMO problems of our interest as

min
s,E(1),...,E(n`)

s (5.12a)

s.t. s− aT
[
K
(
E(1), . . . ,E(n`)

)]−1
f ≥ 0, (5.12b)

V ε
n∑̀
`=1

v(`) −
n∑̀
`=1

[
v(`)Tr

(
E(`)

)]
≥ 0, (5.12c)

ε− Tr
(
E(`)

)
≥ 0, ∀` ∈ {1, . . . , n`}, (5.12d)

E(`) � ε, ∀` ∈ {1, . . . , n`}. (5.12e)
In (5.12), s ∈ R is a slack variable and a ∈ Rndof stands for a fixed vector representing the
discretized performance of the functional a. Furthermore, ε ∈ R>0 and ε ∈ R>0 are lower-
and upper-bounds on the (sum of the) eigenvalues of E(`), ∀` ∈ {1, . . . , n`}, V ∈ 〈0, 1〉 stands
for the volume fraction, v(`) ∈ R>0 represents the volume of the `-th element, and Tr is the
trace operator, amounting to the sum of its argument’s eigenvalues. Notice that in contrast
to established formulations [231, 110, 88], we use an element volume-based weighted average
in (5.12c) to facilitate optimization with non-structured spatial discretizations.

When setting a = f, the slack variable s becomes an upper bound on the compliance
functional, (5.12b), rendering (5.12) to be a compliance minimization problem. Such opti-
mization problem is convex: the functions in (5.12a) and (5.12c)–(5.12e) are linear (matrix)
functions, and (5.12b) possesses a positive definite Hessian, see Appendix 5.B.2, and it is
therefore also convex. For the case of a 6= f, the second term in function (5.12b) amounts to
aTu. Consequently, formulation (5.12) facilitates optimization of compliant mechanisms by
minimizing weighted sums of the displacement vector entries.

Considering Eqs. (5.12c) and (5.12e), a natural question arises of how to choose ε and ε.
Clearly, the lower bound for eigenvalues must be sufficiently small to mimic void materials
but should be large enough to avoid problems with a possibly non-existing inverse in (5.12b).
In our case, we fix ε = 10−3ε. To determine the upper-bound on the sum of eigenvalues,
ε, we link the FMO problem (5.12) with our ultimate goal of designing microstructures
made of a mixture of an isotropic material and void, optimized with standard continuum
topology optimization. Assuming a family of isotropic materials under plane stress that are
parameterized by the Young modulus E(`) ∈ 〈0, 1〉 and a fixed Poisson ratio ν, the trace of
the isotropic material stiffness matrix E(`)

iso amounts to

Tr(E(`)
iso) = 5− ν

2(1− ν2)E
(`). (5.13)
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If the entire design domain is filled with the solid material, V = 1, the trace constraint (5.12c)
implies that

ε = 5− ν
2(1− ν2) . (5.14)

With the theoretical bounds on the Poisson ratio ν ∈ (−1, 0.5〉, Eq. (5.14) implies that for all
solid isotropic materials under plane stress ε ∈ 〈54 +

√
6

2 ,∞).
The optimization problem (5.12) can readily be solved by nonlinear semidefinite program-

ming solvers such as Penlab [62] or Pennon [109]. However, for the special case of a = f,
one can also adopt any of the more widely available (convex) linear semidefinite programming
optimizers. In this contribution, we rely on the Pennon solver kindly provided by its authors.
For compliance minimization problems, we use both the first- and second-order derivatives,
see Appendix 5.B. For compliant mechanism problems, it appeared to be more efficient to use
an identity matrix instead of the exact Hessian term from Eq. (5.48). In addition, practical
computations revealed that it is more beneficial to solve a scaled version of (5.12), we refer
the reader to Appendix 5.C for details.

5.2.1.2 Checkerboard pattern

The FMO generates (locally-)optimal elasticity matrices E(`) that are, however, prone to the
checkerboard pattern phenomenon [52], especially in the case of the bilinear quadrilateral
finite elements, which are the most widely used elements in the TO community [9]. In Fig. 5.2,
we show this emerging issue on traces of the optimal material stiffnesses in compliance
optimization of a bar under uniaxial compression. Please note that while this issue is apparent
at the element stiffness traces in this case, it may be difficult to recognize in general because
FMO operates directly over stiffness components and, hence, it has no scalar unknown field as
in standard density-based TO, and the checkerboard may be lost as a result of visualization.

There are probably multiple reasons why the checkerboard issue occurs. First, we optimize
over element design variables, whereas the finite element system (5.9) operates over a nodal-
based displacement field. Therefore, the output of (5.12) shall be interpreted as optimal

(a) (b)

(c) (d)

Figure 5.2: A bar of length 4 and height 1 under uniaxial compression, designed for V = 0.5
and ε = 1 with visualized traces of elasticity matrices and deformed shape. (a) Optimum design
obtained by solving a FMO problem (sFMO = 32.13) and (c) its projection on a finer mesh
(srefined

FMO = 34.33), and design after post-processing (b) on the optimization mesh (sFMO,f = 32.13)
and (d) projected onto a refined mesh (srefined

FMO,f = 32.13).
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discretized (nodal) stiffnesses in the form of the stiffness matrix K
(
E(1), . . . ,E(n`)

)
, which

seems to be checkerboard-free. However, discretized nodal stiffnesses result from a (weighted)
sum of the stiffnesses of connected elements, recall (5.10). Clearly, the element stiffnesses
do not play any role unless they change a value in their assembled sum K

(
E(1), . . . ,E(n`)

)
.

Hence, the element stiffnesses may indeed form a checkerboard pattern, which is often falsely
recognized in finite element analyses as structurally more efficient [52]. We note here that
associating the design variables with the nodes does not resolve the problem, because the
element stiffnesses (5.11) are usually evaluated at the Gauss points inside the finite element
interior, not at the nodal points. Furthermore, the bilinear quadrilateral elements used in
this manuscript are known to be prone to locking, and, therefore, they tend to overestimate
the shear effects [155, 230]. Again, this may result in a load transfer that is nonphysical.

To our knowledge, the checkerboard issue has not been investigated with connection to the
FMO problem (5.12) yet, probably because only regular orthogonal mesh discretizations have
been adopted, and, in that case, the issue is usually not visually significant but indeed occurs,
see e.g., [88, Figs. 4b and 4e]. For another discretizations, such as the rotated one used in
this manuscript, Fig. 5.2, the checkerboard is more apparent.

Traditionally, two approaches have been adopted in the density-based topology optimization
to mitigate the checkerboard patterns: the sensitivity and density filters [22]. These filters
suppress the checkerboard pattern by a convolution of the first-order derivatives, or of the
pseudo-density field. They can also be applied to the FMO problem directly by filtering the
entries of the elasticity matrices independently because the space of positive semi-definite
matrices is convex. However, we adopt a different, simpler approach. Because we use
FMO as a heuristic tool only, we perform a single post-processing step. In addition to being
computationally more efficient, our post-processing maintains near-optimality in the structural
performance for sufficiently fine discretizations.

With nn denoting the number of nodes, let F ∈ Rn`×nn
≥0 be a filtering matrix, whose `-th

row is associated with the element ` and j-th column belongs to the node j. Components of
F follow from

F`j =
∫

Ω`
Nj(x)dΩ , (5.15)

where Nj is the shape function associated with the j-th node. Operating coefficient-wise, we
define a vector ek =

(
e

(1)
k , . . . , e

(n`)
k

)T
collecting k-th component across all elements ` and

perform post-processing according to

êk =
[
diag (F1)−1 F

] [
diag

(
FT1

)−1
FT
]

ek, (5.16)

with 1 being an all-one column vector of appropriate dimensions and the diag() operator
constructing a square matrix with its argument vector placed at the major diagonal. The
procedure in (5.16) consists of two projections: interpolating element material stiffnesses
onto nodal material stiffnesses by

[
diag

(
FT1

)−1
FT
]
, and a backwards averaging of nodal

material stiffnesses onto the element ones,
[
diag (F1)−1 F

]
. Because both these projections

are convex, such post-processing preserves the trace value in the resource constraint (5.12c)
and the convex eigenvalue constraints (5.12e) and (5.12d).

Nevertheless, the post-processing step may impair the quality of the objective function
value (5.12a). Our numerical experiments with projecting the originally element-wise constant
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material properties onto a refined mesh, e.g. 800×200 elements in Fig. 5.2c, leads to significant
discrepancy in the predicted objective when the post-processing is not used. On the other
hand, with post-processed densities being projected, the detoriation of the performance is
less pronounced, and more importantly the objective is lower compared to a refined design
based on the non-filtered design. In addition, the increase caused by the post-processing is
mostly aligned with the fineness of the finite element discretization. Because optimal material
designs are locally periodic in the limit [20], we have êk → ek. In fact, a zero increase occurs
for any periodic problem, even with a coarse discretization, recall Fig. 5.2. Therefore, there is
a zero increase in the objective function value for infinitely-fine discretizations.

5.2.1.3 Clustering for modular Wang tile design

Having smoothed the material stiffness field, our next goal is to determine structurally-efficient
modular assemblies in the form of valid Wang tilings. In this work, we follow the direction of
the clustering of the material stiffnesses because it is the most general option: it generalizes
both the density clustering for isotropic materials with a fixed Poisson ratio and the strain-
based clustering for problems possessing optimal design in the form of rank-3 laminates.
Our approach thus extends to the remaining linear elasticity problems including multi-load
designs and compliant mechanisms. To this goal, this section develops a greedy agglomerative
clustering algorithm that maintains structural symmetries when present.

As discussed already in Section 5.1.4, valid Wang tilings are determined uniquely by the
edge color codes. Therefore, instead of the modules, Fig. 5.3a, we must cluster material
stiffnesses corresponding to the horizontal and vertical edges. These stiffnesses are obtained
by solving the free material optimization problem (5.12) on a rotated, module interface-based
finite element mesh, see Fig. 5.3b. When comparing with Fig. 5.3a, it clearly follows that each
of the modules is defined by a quadruple of (edge-related) elements in Fig. 5.3b. Hence, after
clustering, the edge labels automatically define Wang tiles and a valid tiling, see Figs. 5.3g–h.
We note here that a similar approach relying on rotated mesh has been applied to generate
Wang tile-based textures in computer graphics [41] and microstructure modeling [56].

Using the post-processed FMO outputs, it may happen that there would exist modules
without any stiffness in their edges, i.e., the maximum eigenvalue of the edge-related stiffness
tensors is small. Such modules can conversely be interpreted as voids, and we remove them
prior to the clustering procedure and leave their locations empty.

The common aim of the clustering algorithms is to partition a set of points P :={
e(1), . . . , e(n`)

}
into (at most) m groups, such that a specified distance-based criterion

is minimized [68]. Among these algorithms, kmeans is probably the most widely used. It
starts with a random assignment of points to clusters, computes a centroid of each cluster
based on a specified distance function, and re-assigns each point to the cluster with the nearest
centroid. This procedure repeats until convergence, but the resulting clustering strongly
depends on the initial partitioning.

The second group of clustering algorithms, spectral clustering, exploits a representation of
the points P in a graph form. For this representation, one computes the graph Laplacian
matrix and finds a partitioning based on its eigenvectors. Based on our testing (not included),
neither kmeans, nor spectral clustering led to convincing designs.

In this manuscript, we rely on the third class of algorithms, the hierarchical clustering,
because this class may avoid randomization and can be very simply tailored to satisfy additional
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(a)

(b)
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(f)

(g)

(h)

Figure 5.3: Illustration of the proposed heuristic approach to generate efficient valid Wang tilings.
First, we (a) discretize a design domain into modules, and (b) associate a finite element with each
edge: elements belonging to horizontal and vertical edges are shown in gray and white, respectively.
For this mesh, we (c) solve the free material optimization problem (5.12), represented in this figure
by the traces of material stiffnesses, and (d) post-process them. Finally, the material stiffnesses
visualized in the (e) horizontal and (f) vertical edges as envelopes of the stress components σx, σy

and τ induced by arbitrary unit strain vectors, are clustered independently based on the Frobenius
norm, establishing a (g) Wang tiling assembly plan and the (h) module set.

constraints imposed on the clustering data. In particular, the latter feature appears to be
very difficult to achieve with the two previous classes of algorithms. Hierarchical clustering
algorithms can be categorized into divisive clustering—starting with all points belonging
to a single cluster, partitioned recursively—and agglomerative clustering—where each point
initially defines a cluster, and these are joined repetitively based on a linkage criterion.

In our implementation, we follow the agglomerative clustering approach and adopt the
squared Frobenius norm to measure the distances of the material stiffness matrices, which
is equivalent to the Euclidean norm among the stiffness vectors e(`), recall Section 5.2.1.1.
To compute a distance between clusters, we represent each cluster Ci by its centroid with
components

ti,j =
∑
`∈Ci w`e

(`)
j

|Ci|
, (5.17)

where w ∈ Rn`>0 are weights of the input data and |Ci| denotes the cardinality of points in Ci,
and by the cluster cost

ci =
∑
`∈Ci

w`‖ti − e(`)‖22. (5.18)

To determine which clusters shall be merged, we compute for all pairs of clusters (i, j) the
deterioration cost

di,j =
{
ci,j − ci − cj if i and j are allowed to merge,
∞ otherwise, (5.19)
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where ci,j stands for the cost of the cluster Ci∪Cj . We accept the merger that least deteriorates
the objective function. Notice that this linkage criterion is not equivalent to merging the
nearest clusters, as more distant clusters containing fewer points may be cheaper to merge
than the nearer ones with more data points. In this sense, we believe that this clustering
procedure provides a more balanced number of points inside clusters.

Assume now that the material stiffness distribution exhibits symmetry with respect to
a vertical or horizontal axis. For such a setting, we find it reasonable that the resulting
clusterings preserve this symmetry pattern. In our implementation, this can be guaranteed by
restricting which clusters cannot join, i.e., the deterioration cost (5.19) is set to ∞ for some
non-admissible pairs (i, j).

To this goal, we split the material stiffnesses into three groups α, α′ and β. β contains
material stiffnesses of the elements that are either located on the axis of symmetry or do not
have a symmetric counterparts, and groups α and α′ consists of the symmetric complements.
More precisely, let us assume a fixed i ∈ {1, . . . , |C|} and j ∈ {1, . . . , |C|} \ i such that the
entries of these centroids satisfy ti,1 = tj,1, ti,2 = tj,2, ti,3 = tj,3, ti,4 = −tj,4, ti,5 = −tj,5, and
ti,6 = tj,6, which certifies symmetry of the corresponding material stiffness centroids with
respect to the vertical or horizontal axis, cf. Appendix 5.A for details. If no such j exists for
a fixed i or when ti,4 = ti,5 = 0, we set ti ∈ β. If the corresponding pair exists, we set ti ∈ α
if ti,4 > 0 or ti,4 = 0 ∧ ti,5 > 0, and ti ∈ α′ otherwise.

Using these groups, a finite deterioration cost is associated only with (i) a merger of
the corresponding pair i ∈ α and j ∈ α′, producing a cluster belonging to β, (ii) joining
clusters {i, j : i, j ∈ β, i 6= j}, with the result also belonging to β, and (iii) a merger of
{i, j : i, j ∈ α, i 6= j}, which requires to merge concurrently the pairs {i, j : i, j ∈ α′, i 6= j}.
In this last case, the number of clusters is decreased by two, with the merged outputs belonging
to α and α′, respectively. All the possible aggregations are illustrated in Fig. 5.4.

In each iteration, the aggregation procedure reduces |C| by 1 at least, building an aggregation
tree called dendrogram. When |C| ≤ m, the clustering algorithm terminates, see Algorithm 5.1
for the pseudo-code. As an output, we obtain an assignment of the input data (horizontal or
vertical edges) into clusters, Fig. 5.3e–f, and this partitioning is uniquely representable by
a valid Wang tiling over (at most) m colors, Fig. 5.3g–h.

α β α′

α β α′

(a)

α β α′

α β α′

(b)

α β α′

α β α′

(c)

Figure 5.4: Illustration of all allowed cluster aggregations to generate Wang tilings preserving the
symmetric distribution of material stiffness matrices when present. The set β consists of material
stiffnesses of the elements located on the axis of symmetry and those that do not have a symmetric
counterparts, and α with α′ contain the symmetric complements.

88



.............................................. 5.2. Methods

Algorithm 5.1 Pseudo-code of the proposed greedy agglomerative clustering algorithm.
1: α,α′,β, C ← initialize(e)
2: while |C| > m do
3: pair1, cost1 ← findCheapestMerge(α, α′)
4: pair2, cost2 ← findCheapestMerge(β, β)
5: pairs3, cost3 ← findCheapestMerge(α, α, α′, α′)
6: if |C| −m > 1 then
7: α,α′,β, C ← mergeCheapest(pair1, cost1, pair2, cost2, pairs3, cost3/2)
8: else
9: α,α′,β, C ← mergeCheapest(pair1, cost1, pair2, cost2, pairs3, cost3)

10: end if
11: end while
12: return C

5.2.2 Design of topologies of modules

Once an assembly plan—in the form of valid Wang tiling—is obtained, the dimension of
design space in TO usually reduces drastically because nm < n`, with nm being the number of
Wang tiles or modules and n` denoting the number of module positions in Fig. 5.3a. However,
it seems that—at least for compliant mechanism design problems—the landscape of the
objective function used in TO is very complex and optimized topologies depend strongly on
a supplied initial guess. This issue becomes even more relevant when dealing with the design
of modules reusable among multiple structures (Section 5.3.4), since an inappropriate initial
guess may prevent the mechanisms to work at all.

In this section, we first recall a variable linking procedure [192] to describe modular
structures mathematically, and apply it to the FMO problem (5.12), which allows for an
inexpensive computation of the initial guesses for TO based on the element traces, see
Section 5.2.2.1, and also a simple comparison of the efficiency of different assembly plans.
Description of the adopted TO method is given in Section 5.2.2.2.

5.2.2.1 Modular free material optimization

Let nm denote the number of modules and {g ∈ Nn` ,∀` ∈ {1, . . . , n`} : g` ≤ nm} be a group
vector assigning a module number m ∈ {1, . . . , nm} to each element ` ∈ {1, . . . , n`} of the
module scale, recall Fig. 5.3a. In addition, let us define a group matrix G ∈ Bn`×nm as

G`,j =
{

0 if j 6= g`,

1 if j = g`,
∀` ∈ {1, . . . , n`},∀j ∈ {1, . . . , nm}. (5.20)

Using this definition, we can construct the full-domain elasticity properties ek, k ∈ {1, . . . , 6},
by mapping the grouped modular elastic properties eg,k =

(
e
〈1〉
k , . . . , e

〈nm〉
k

)T
using the group

matrix G,
ek = Geg,k, ∀k ∈ {1, . . . , 6}, (5.21)

with the notation •〈m〉 expressing an association of • with the module m. Notice that an
association with an element ` remains denoted by •(`).
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Then, the optimization problem (5.12) extended to structural modularity reads as

min
s,E〈1〉,...,E〈nm〉

s (5.22a)

s.t. s− aT
[
K
(
E〈1〉, . . . ,E〈nm〉

)]−1
f ≥ 0, (5.22b)

V ε
n∑̀
`=1

v(`) −
n∑̀
`=1

[
v(`)Tr

(
E〈g`〉

)]
≥ 0, (5.22c)

ε− Tr
(
E〈m〉

)
≥ 0, ∀m ∈ {1, . . . , nm}, (5.22d)

E〈m〉 � ε, ∀m ∈ {1, . . . , nm}, (5.22e)

with the stiffness matrix assembled as

K
(
E〈1〉, . . . ,E〈nm〉

)
= K0 +

n∑̀
`=1

L(`)TK(`)(E〈g`〉)L(`). (5.23)

Because of nm < n`, the optimization problem (5.22) is usually solved much faster than (5.12).
After its solution, we obtain the optimal elasticity matrices of individual modules, and their
traces are used to build an initial guess for TO as constant pseudo-density fields of individual
modules according to

ρ
〈m〉
init := Tr(E〈m〉)/ε. (5.24)

5.2.2.2 Topology optimization

The above-described procedures based on the free material optimization yield an efficient
assembly plan and related optimal material stiffnesses that are constant over individual
modules. Ultimately, though, we want to obtain explicit design of modules manufactured
from a single material. As mentioned already in Section 5.1, one option is to perform
inverse homogenization for each module separately, optionally with enforcing geometrical or
mechanical continuity across their boundaries [71, 88]. Here, we opted for a different approach
in which the functional continuity is resolved automatically by performing the single-scale
topology optimization with a modularity projection following from the optimized assembly
plan.

In particular, we adopted the widely-used Solid Isotropic Material with Penalization (SIMP)
approach [21, 22]. The design is thus parameterized by a pseudo-density field 0 ≤ ρ(x) ≤ 1
that, in turn, dictates the distribution of the material stiffness according to

E(x) = Emin + ρp(x) (E0 −Emin) , (5.25)

where E0 � 0 and Emin � 0 are the stiffness tensors of the bulk material and void space
(which attain small but positive eigenvalues in order to avoid a singular Hessian), respectively,
and the penalization parameter p = 3 is introduced to promote “black-white” designs [22].
Throughout all the simulations, we assumed an isotropic material under plane stress conditions
with fixed Poisson ratio ν = 0.3; the pseudo-density ρ thus effectively scales only the Young
modulus.

Similarly to the free material optimization problem (5.12), the formulation of the topol-
ogy optimization builds on the finite element discretization of the governing equation of
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linear elasticity with unknown vector ρ containing element-wise constant densities ρ(`).
For notation simplicity, we assume that each of nm modules is discretized with nm` finite
elements. The modularity is then introduced in the formulation via a boolean group ma-
trix GTO ∈ {0, 1}n`×(nm·nm`) which maps the module-related densities collected in vector
ρg =

(
ρ〈1〉, . . . ,ρ〈nm〉

)T
onto full-domain densities ρ,

ρ = GTO ρg , (5.26)

recall Eq. (5.21). Keeping the same structure as in Eq. (5.12), the modular topology opti-
mization is eventually formalized as

min
sTO,ρ=GTOρg

sTO (5.27a)

s.t. sTO − aT [K (ρ)]−1 f ≥ 0, (5.27b)

V
n∑̀
`=1

v(`) −
n∑̀
`=1

ρ(`)v(`) ≥ 0. (5.27c)

1 ≥ ρ(`) ≥ 0, ∀` ∈ {1, . . . , n`}. (5.27d)

The structural stiffness matrix K (ρ) follows from Eq. (5.10) (including the design-independent
part K0) with E(`) depending on ρ(`) through Eq. (5.25). The slack variable sTO is introduced
here only formally to denote the objective. Contrary to the formulation (5.12), the volume
constraint (5.27c) is here formulated directly in element densities ρ(`) and no analogue to the
eigenvalue constraints (5.12d) and (5.12e) is needed because they are already satisfied due to
the interpolation scheme (5.25). On the other hand, this comes at the price of a restricted
design space compared to the FMO in which the whole material stiffness matrix is unknown.

Having effectively only volume and bound constraints, we solve the problem (5.27) with
the first-order Optimality Criteria (OC) method [22] due to its simplicity and practical
performance. Moreover, we modify the standard OC scheme with the gray-scale suppression
proposed by Groenwold and Etman [78] to further promote faster convergence towards designs
with clearly distinguished phases.

The sensitivity of the objective function ∂sTO
∂ρg

under satisfied equality equation (5.27b)
follows from the chain rule

∂sTO
∂ρg

= ∂sTO
∂ρ

∂ρ

∂ρg
, (5.28)

where ∂sTO
∂ρ is obtained similarly to FMO, see Appendix 5.B.1, and ∂ρ

∂ρg
= GTO, recall Eq. (5.26).

The same chain rule applies also to the sensitivity of the volume constraint (5.27b), denoted
as ∂V

∂ρg
further on. In order to avoid mesh-dependency and checkerboard patterns discussed

already in Section 5.2.1.2 for FMO, we opt for the sensitivity filter [178] that modifies the
objective sensitivity by weight averaging. In the discrete setup, where each ρ(`) belongs to
the center of gravity x(`) of the corresponding element `, the filtered non-modular sensitivity
∂̂sTO
∂ρ is defined as

∂̂sTO
∂ρ(i) = 1

ρ(i)∑n`
j=1w(x(i),x(j))

n∑̀
j=1

ρ(j)∂sTO
∂ρ(i) w(x(i),x(j)) , ∀` ∈ {1, . . . , n`} , (5.29)
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which leads to a linear relation

∂̂sTO
∂ρ

= Fw(ρ)∂sTO
∂ρ

, (5.30)

with the filtering matrix Fw following from Eq. (5.29). Here, we assume a linear weight
function

w(x,y) = max(r − ‖x− y‖ , 0) (5.31)

with the radius r.
Denoting the sensitivity vectors gs := ∂̂sTO

∂ρg
= GT

TO Fw(ρ) ∂sTO
∂ρ and gV := ∂V

∂ρg
= GT

TO
∂V
∂ρ for

terseness, the update of the design variables ρg within the modified OC scheme takes the
form

ρnew
g,i =


ρ
i

if (ρg,i (Bi)η)q ≤ ρi ,

ρi if ρi ≥ (ρg,i (Bi)η)q ,

(ρg,i (Bi)η)q otherwise,

(5.32)

where ρ
i

= max(ρg,i − δ, 0.0), ρi = min(ρg,i + δ, 1.0), and Bi = max(− gsi
Λgvi

, µ) . The lower
index •,i denotes the ith component of the appropriate vector •, ranging over the modular
unknowns, i.e. i ∈ {1, . . . , (nm · nm`)}. Coefficients η and δ are the damping factor and the
move limit of the original OC method, respectively, q is the power coefficient pertinent to
the power-law gray-scale suppression, and µ facilitates the inconsistent modification [22] such
that µ is set to −∞ for the compliance minimization and 10−10 for mechanisms. Finally, Λ
denotes the Lagrange multiplier related to the volume constraint (5.27b), whose optimal value
is found with a bisection algorithm; see e.g. [22] for more details.

The topology optimization described above was implemented in an in-house, object-oriented
C++ code [55], which was linked against Intel R© oneAPI Math Kernel Library and included
Pardiso direct sparse solver.

5.3 Results

We illustrate the presented theoretical developments with three selected classical problems
in topology optimization. In particular, we show the results for the minimum-compliance
optimization of the Messerschmitt-Bölkow-Blohm (MBB) beam in Section 5.3.1, Sections 5.3.2
and 5.3.3 cover the design of compliant mechanisms (an inverter and a gripper, respectively),
and a novel reusable modular gripper-inverter design is demonstrated in Section 5.3.4.

For all these problems, we limited the relative volume with V = 0.4. The empty modules
identified in the FMO part were not explicitly discretized in TO; consequently, the volume
fraction limit considered in TO was modified to match the volume fraction relative to the
original domain size. Modules were discretized with a regular grid of 100× 100 bilinear fully
integrated quadrilateral finite elements. We assumed isotropic, linear-elastic materials under
the plane stress with E = 10−9 and ν = 0.3 for the voids and E = 1 and ν = 0.3 for the
bulk material, which in turn lead to 0 ≤ Tr

(
E(`)

)
≤ ε with the upper-bound on the sum of

eigenvalues ε = 235/91, recall Eq. (5.14). In the topology optimization part, radius r of the
sensitivity filter was set to r = 3.5h` with h` being the length of an element edge. Optimality
Criteria’s parameters were as follows: move limit δ = 0.1, damping coefficient η = 0.5 for
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compliance and η = 0.3 for mechanisms. We used a continuation strategy for the power
coefficient q of the gray-scale suppression; starting with the 20th iteration, the initial value
q = 1.0 was iteratively updated as qnew = min(1.01q, 2.0). Within all examples, the maximal
number of iterations was set to 150. The convergence criteria were based on the change in
the objective, |δsTO| < 10−12, and the change in the design variables, ‖δρg‖∞ < 10−2. To
avoid premature convergence with significant gray areas, quantified with the measure [178]

Mnd =
∑n`
`=1 4ρ(`)(1− ρ(`))

n`
, (5.33)

we added a convergence requirement Mnd < 10−3. All topology optimization problems were
initialized using the module-wise constant guess provided by FMO, as specified in Eq. (5.24).

5.3.1 Messerschmitt-Bölkow-Blohm beam

First, we examine the performance of our scheme for the Messerschmitt-Bölkow-Blohm (MBB)
beam problem, i.e., a simply-supported beam with a vertical unit force at its mid-span. The
beam is 0.375 in height and 1.0 in width, and discretized by 32× 12 equisized square modules
as shown in Fig. 5.5.

We start with discretizing the MBB beam with a rotated mesh, recall Section 5.2.1.3, and
solve the FMO problem (5.12) that provides us with an optimal compliance of sFMO = 5.60. As
is clearly visible in the plot of Tr

(
E(`)

)
in Fig. 5.6a, the obtained design exhibits pronounced

checkerboard pattern near the beam supports indicating that the optimization exploited
the coarseness of the discretization and low order of the used elements. Indeed, when using
the optimal elasticity matrices projected on a finer discretization containing 3, 200× 1, 200
elements, i.e., a discretization that is approximately matching the one used subsequently in
TO, the compliance significantly increases to srefined

FMO = 189.16. When a simple post-processing
step described in Section 5.2.1.2 is performed, see Fig. 5.6b, the objective function increases to
sFMO,f = 6.92 on a coarse mesh, but the refined-mesh compliance amounts to srefined

FMO,f = 16.15
only. We believe that the latter increase is justifiable as the bilinear quadrilateral finite
elements are prone to the shear locking phenomenon, so a very fine mesh is usually required
in the case of structures under bending.

With the post-processed optimized material stiffnesses, we proceed by removing the modules
whose maximum eigenvalue of all edge stiffnesses is below 1% of ε, and follow the clustering
procedure explained in Section 5.2.1.3 for a hierarchical merging of the varying material

0.5 0.5

0.
37

5

1

Figure 5.5: Boundary conditions and considered modular discretization of the MBB beam.

93



5. Modular-topology optimization of structures and mechanisms with FMO and clustering ............

(a) (b) (c)

Figure 5.6: Lower-bound designs for the MBB beam problem: (a) optimal traces of material
stiffness matrices susceptible to the checkerboard issue (sFMO = 5.60), (b) post-processed material
stiffness distribution (sFMO,f = 6.92), and (c) non-modular design obtained by TO (sTO,∞ =
29.08).

stiffness matrices into a predefined number of groups, one to four in our case. This clustering
procedure is applied twice: once for horizontal and once for vertical edges. In the two-
dimensional setting, this process can easily be visualized as follows: the stiffness matrices
E(`) are a linear mapping of the engineering strain vector ε(`) onto the stress vector σ(`),
Eq. (5.2). Hence, a sphere of all unit engineering strains is mapped by the elasticity matrix
onto a 3-dimensional ellipsoid whose surface corresponds to all admissible stresses induced
in the material by arbitrary unit-sized strains, determined using the 2-norm. The clustering
process partitions the ellipsoid of all elements in FMO into a given number of bins, trying
to replace similar ellipsoids with an approximate one corresponding to the cluster centroid.
Consequently, the lengths and orientations of the ellipsoid’s axes characterize the material
stiffness. Partitioning induced by the clustering is denoted by coloring of these ellipsoids, see
first two columns in Fig. 5.7.

After clustering, each module position encompasses a quadruple of edge labels, defining
therefore a Wang tile, and these tiles are placed in an assembly plan satisfying the Wang tiling
formalism, recall Section 5.1.4 and the developments in [41]. For such modular assemblies, we
solve a reduced-sized modular-FMO optimization problem (5.22) to receive effective stiffnesses
of individual modules, and use their traces to construct initial guesses for modular TO, recall
Section 5.2.2.1.

Although the TO algorithm described in Section 5.2.2.2 usually converges to a neighborhood
of a locally-optimal solution, we believe that it is reasonable to assume that the performance
of all modular designs shall be bounded by a PUC solution from above, and by a non-modular
design from below. Please note, however, that despite the fact that we have not observed any
violations of this assumption, it is not guaranteed in general due to the inherent non-convexity
of the optimization problems. Using the parameters of TO listed at the beginning of the
section, we discretize the interior of each module type using a regular 100×100 mesh, implying
that the MBB beam contains 3.84 millions bilinear quadrilateral finite elements. Using the
filter radius of 3.5 elements, standard TO converges to the design in Fig. 5.6c of compliance
sTO,∞ = 29.08. As expected, imposing modularity degrades structural performance: the
worst-case single-module, i.e., PUC, design obtained for a single-color clustering possesses
the compliance sTO,1 = 63.31, see the first row in Fig. 5.7. Using two colors, we obtain
a design in the second row of Fig. 5.7 composed of 14 modules, of an improved compliance
of sTO,2 = 48.18. The three-color-based clustering produces a design with 25 modules,
exhibiting the compliance sTO,3 = 38.26, see the third row in Fig. 5.7. Finally, the four-color
clustering provides us with the design in the fourth row of Fig. 5.7, composed of 46 modules
and compliance sTO,4 = 34.30, which is only 18% more compliant than the non-modular
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Horizontal clustering Vertical clustering Optimized structure Wang module set

Figure 5.7: Modular designs of the MBB beam problem for the numbers of edge colors ranging
from 1 to 4. The first two columns illustrate the partitioning produced by the hierarchical
clustering algorithm, the third and fourth columns visualize optimized modular topologies and
their assembly.

design. We wish to emphasize that, because our hierarchical clustering algorithm respects the
symmetric stiffness distribution, the resulting module sets contain multiple module pairs that
have symmetric topologies.

5.3.2 Force inverter

Our second illustrative problem involves designing a modular force inverter mechanism. We
consider the design domain to be 1.0 both in width and height and to consist of 10 × 10
square-sized modules, as shown in Fig. 5.8a. In this domain, 0.01-long segments at the top
and bottom of the left edge are fixed. For a coarse, module-based mesh adopted in the FMO
problems (5.12) and (5.22), these boundary conditions can not be reproduced exactly, so we
collapse these segments into single corner points. The loading is posed by a horizontal unitary
force acting in the middle of the left edge height. Similarly to [177], we add an horizontal
string of the stiffness kin = 1 to this point of loading and another, output horizontal spring of
the stiffness kout = 0.05 is placed at the mid-height of the right edge of the domain.

For these boundary conditions, we search a material distribution that makes the unitary
input force minimize the motion of the output point to the right, denoted by uout in Fig. 5.8a.
When solving the FMO formulation (5.12) on a rotated mesh and without post-processing,
we receive sFMO = −1.000 on a coarse mesh, Fig. 5.8b, and srefined

FMO = −0.072 on a 100-times
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Figure 5.8: (a) Boundary conditions of the inverter problem and assumed modular discretization,
and lower-bound designs: (b) optimal traces of material stiffness matrices (sFMO = −1.000), (c)
post-processed material stiffness distribution (sFMO,f = −0.282), and (d) non-modular design
obtained by TO (sTO,∞ = −0.354).

refined mesh with accurate boundary conditions. After application of the post-processing step,
we obtain sFMO,f = −0.282 on the coarse mesh, Fig. 5.8c, and srefined

FMO,f = −0.128 on the refined
one. These values indicate that even though any visual checkerboard-like patterns is not
present in the traces of the stiffness matrices in Fig. 5.8b, the design performance is not physical
due to the enormous increase of the output displacement with discretization refinement of
optimal design. With the post-processing step, the output displacement inevitably increases,
but the mesh shows a much more stable response with refinement.

The clustering procedure, illustrated within the first two columns in Fig. 5.9, produced
assembly plans shown in the third column of the same figure. For these assembly plans,
we solved the modular-FMO problem (5.22) to receive the initial guesses for TO. Similarly
to the MBB beam design, we may provide performance bounds of topologically-optimized
designs established by a non-modular design, sTO,∞ = −0.354 in Fig. 5.8d, and a single color
clustering PUC, sTO,1 = 0.000, see the top row of Fig. 5.9 showing that the PUC design does
not connect the unitary input force to the output properly. However, based on our tests,
we believe that such a PUC inverter design does not exist for the selected combination of
materials used in TO and for the given modular discretization. Please note that although
a PUC force inverter was presented in [213] for a symmetric part of the design domain, its
extension to the full domain would require a second module type in our formalism.

As shown in Fig. 5.9, the two-color-based clustering provides a design composed of 8 modules
with the performance sTO,2 = −0.211. Three color-based design possesses sTO,3 = −0.288,
and requires 23 different module types. Finally, 25 module types in the four-color based
clustering leads to the output displacement sTO,4 = −0.290. From the performance point of
view, 3- and 4-color designs result in objectives that are only by 18% worse than that of the
non-modular design.

5.3.3 Gripper

As the third problem, we consider the traditional gripper mechanism design [177]. Similarly
to the force inverter, we adopt a square design domain of the size 1.0× 1.0 and split it using
10× 10 equisized square modules, see Fig. 5.10a. Following [177] and similarly to the force
inverter, we also fix the top and bottom 0.01-long segments of the left edge of the domain,
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Horizontal clustering Vertical clustering Optimized structure Wang module set

Figure 5.9: Modular designs of the force inverter problem for the numbers of edge colors ranging
from 1 to 4. The first two columns illustrate the partitioning produced by the hierarchical
clustering algorithm, the third and fourth columns visualize optimized modular topologies and
their assembly.
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Figure 5.10: Boundary conditions of the gripper problem and assumed modular discretization,
and lower-bound designs: (b) optimal traces of material stiffness matrices (sFMO = −2.096), (c)
post-processed material stiffness distribution (sFMO,f = −0.665), and (d) non-modular design
obtained by TO (sTO,∞ = −0.616).
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and collapse these supports into single points for coarse discretizations adopted in the FMO
problems (5.12) and (5.22).

At the center of the left edge, we place a spring with the stiffness kin = 1 and an input
force of a magnitude 1, both aligned with the horizontal direction. In the central part of the
opposite, right edge, we prescribe an empty space of 2× 4 modules to facilitate a placement
of an item that shall be grasped by the mechanism. The grasping occurs through fixed jaws
placed at the top and bottom of the empty space. These jaws are 0.025 in height and 0.2
in width and made of a solid isotropic material with E = 1 and ν = 0.3, matching so the
material adopted in TO and the maximum trace constraint in FMO (5.12d). We note here
that to use the edge/module-based discretization and these differently-sized fixed elements in
FMO problems, we interpolate their stiffness into the neighboring nodes.

For the mechanism functionality, the input force must trigger closing of the gripper’s jaws,
which we quantify by minimizing the difference of the displacements uo2−uu1 of the rightmost
points of the jaws, each equipped with a stiffness kout = 0.025 in the vertical direction.

Again, we first solve the FMO optimization problem (5.12) on the rotated mesh, providing us
with sFMO = −2.096 on the coarse mesh and srefined

FMO = −0.098 after 100 times refinement. After

Horizontal clustering Vertical clustering Optimized structure Wang module set

Figure 5.11: Modular designs of the gripper problem for the numbers of edge colors ranging
from 1 to 4. The first two columns illustrate the partitioning produced by the hierarchical
clustering algorithm, the third and fourth columns visualize optimized modular topologies and
their assembly.
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the post-processing step, we obtain sFMO,f = −0.665 on the coarse mesh and srefined
FMO,f = −0.411

on the refined mesh; compare Figs. 5.10b and 5.10c for a visualization of the post-processing
step. Similarly to the first two examples, also here the refined mesh certifies the importance
of filtering or post-processing phase to avoid nonphysical designs.

For the case of the gripper mechanism, the non-modular design produces sTO,∞ = −0.616
and the design shown in Fig. 5.10d. The other extreme case, PUC single-color-based clustering
at the top row of Fig. 5.11, possesses sTO,1 = −0.080. While a two-color-based design
contains 7 module types and an objective function sTO,2 = −0.151, a three-color design
encompasses 13 modules that induce sTO,3 = −0.196. Finally, the four-color clustering
possesses sTO,4 = −0.399 and consists of 23 distinct modules; see Fig. 5.11 for a visualization
of all modular designs. Notice that for this problem, four-color clustering led to a 35% loss in
the performance compared to the non-modular design.

5.3.4 Module reusability in gripper and inverter

To demonstrate merits of modularity, we address a reusable simultaneous design of the
previous described inverter and gripper mechanisms as our last example. Based on the
multi-functionality of the resulting module designs, it becomes apparent that modularity
paves a way from structure-based designs to meta-material based ones.

For the reusability design problem, we adopt discretizations and boundary conditions
described in Sections 5.3.2 and 5.3.3. However, the reusable designs add another level of
complexity as they allow for prioritizing of individual subproblems, i.e., they generate a multi-
objective optimization problem. In what follows, we reduce this setting to a single-objective
one by introducing weights winv and wgrip, and write the resulting objective as

s = winvsinv + wgripsgrip, (5.34)

with sinv and sgrip denoting the objective values of the inverter and gripper problems, respec-
tively. Based on a comparison of the objectives of modular gripper and inverter designs and
extensive tests (not included), we believe that the choice of winv = 1.0 and wgrip = 0.60 is
reasonable, because it balances the terms winvsinv and wgripsgrip for the non-modular designs,
recall Sections 5.3.2 and 5.3.3.

The first step in all previous examples was a solution to the FEM problem on the rotated
FE mesh; however, we have already solved these initial steps for both the subproblems in
Sections 5.3.2 and 5.3.3 and, hence, we can recycle them here. Thus, instead of another
solution, we cluster the former material distributions concurrently, Figs. 5.8c and 5.10c.
In the clustering procedure, recall Section 5.2.1.3, we weight the stiffness matrices of the
gripper mechanism by wgrip and of inverter by winv. Similarly to TO, these weights maintain

Figure 5.12: Non-modular design of coupled inverter-gripper mechanisms obtained by TO.
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Horizontal clustering Vertical clustering Optimized structure Wang module set

Figure 5.13: Modular designs of reusable inverter-gripper problem for the numbers of edge
colors ranging from 1 to 4. While the first two columns illustrate the partitioning produced by
the hierarchical clustering algorithm, the third and fourth columns visualize optimized modular
topologies and their assembly.

more balanced performance. Finally, we reach the assembly plans and module sets shown in
Fig. 5.13.

For TO, we aggregate the independent volume constraints and adopt V = 0.4 for the union
of the domains. Then, the optimized non-modular designs in Fig. 5.12 possess sTO,∞ = −0.731
(with sTO,∞,inv = −0.320 and sTO,∞,grip = 0.687), and the single-color-based PUC design in
the first row of Fig. 5.13 provides sTO,1 = −0.043 (with sTO,1,inv = 0 and sTO,1,grip = −0.072).
In both these settings, the performance of reusable designs naturally approach the independent
ones.

The two-color-based design in the second row of Fig. 5.13 contains 12 modules and exhibits
sTO,2 = −0.225 (with sTO,2,inv = −0.189 and sTO,2,grip = −0.060). Here, the resulting
assembly seem to be slightly more effective for the inverter mechanism.

Final improvement is obtained for 3-color clustering, which allows for a design in the
third row of Fig. 5.13 composed of 21 modules and sTO,3 = −0.275 (with sTO,3,inv = −0.205
and sTO,3,grip = −0.118). Interestingly, almost the same performance sTO,4 = −0.279 (with
sTO,4,inv = −0.208 and sTO,4,grip = −0.118) results from 4-color clustering, because the 3- and
4-color module sets result in the same assembly plan.
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5.4 Conclusions

In this contribution, we have developed a novel heuristic sequential framework for designing
modular structures and mechanisms based on Wang tiling formalism. To the best of our
knowledge, this manuscript presents the first study which allows modular compliant mecha-
nisms with non-uniform modules to be designed, thus answering one of the challenges laid
out in [192, 213].

Our strategy relies on a solution to the Free Material Optimization (FMO) problem (5.12) on
a coarse finite element mesh, smoothing the optimal material stiffness field to obtain physical
results, and clustering the resulting elasticity matrices. Topologies of individual modules
in the assembly plans generated by the previous steps are eventually found by standard
Topology Optimization (TO) extended to structural modularity, which we initialize using
a well-defined yet problem-specific initial guess. Compared to our prior study on modular-
topology optimization of truss structures [192], this framework constitutes a computationally
more attractive scheme that neither requires a repetitive solution to the module topology
optimization problem nor its convexity. Consequently, the new approach also applies to
non-convex problems arising, e.g., in continuum topology optimization.

As the first step of our method, we proposed solving the FMO problem (5.12) on a module-
interface-based mesh discretization: using the Pennon [109] optimizer, we solve for the
(locally-)optimal elasticity matrices in the discretized domain. Interestingly, they are often
prone to the checkerboard phenomenon, at least when the most common bilinear quadrilateral
finite elements are employed. Although the resulting degradation of structural responses is
very significant and can be verified simply by projecting the optimal material properties onto
a refined mesh, the checkerboard issue has surprisingly never been studied or even reported
with connection to FMO problems, and thus it remains open to rigorous examination. The
reason behind this can be attributed to the fact that the checkerboard patterns in tensorial
field are hard to identify in general—contrary to, e.g., the scalar density fields in TO. However,
the checkerboard issue in FMO is often discernible when visualizing traces of the optimized
material stiffnesses, recall Figs. 5.2 or cf. [88, Figs. 4b and 4e].

Because we use the FMO problem (5.12) only as a heuristic tool only, we eliminate the
checkerboard using a single, computationally inexpensive post-processing step performed
on the optimization outputs. The essence of post-processing adopts the idea of averaging
discretized element stiffnesses onto nodal ones and a backward projection onto element
stiffnesses. Because these mappings eliminate the checkerboard-like distribution of stiffnesses,
the post-processed designs are more robust with respect to mesh refinement. Furthermore,
due to its convexity, the post-processing step preserves both volume and the convex eigenvalue-
based constraints. Admittedly, however, the objective function usually increases with the
increase magnitude depending on the level of refinement, approaching zero for infinitely fine
discretizations.

The particular shape of the finite element discretization used in the problem (5.12) was
adopted to provide a simple interface-based definition of individual modules, i.e., each module
being defined by four edges and the corresponding quadruple of elasticity matrices. This
definition, which is equivalent to Wang tiles, allows us to control the number of interface
types among the modules. In this manuscript, we have forbidden rotations of modules, so the
clustering of the vertical and horizontal edges were performed independently.

To this goal, we developed a deterministic agglomerative clustering algorithm tailored
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to satisfy structural symmetries when present. While in very specific instances of linear
elasticity one may rely on partitioning simpler datasets than the stiffness tensors, recall
Section 5.1.3, our clustering covers the most general class of problems and, therefore, also
applies to multiple-load case minimum-compliance optimization or compliant mechanism
design problems.

The resulting clustered designs form modular assembly plans in the form of valid Wang
tilings, and their performance can readily be assessed using FMO formulation extended to
structural modularity (5.22). However, the modular FMO problem also appears appealing
from another viewpoint: its outputs in the form of the traces of module stiffnesses can be
advantageously supplied to TO as initial guesses. Subsequently, TO—with the Optimality
Criteria method with sensitivity filtering and a continuation—was used to arrive at optimized
topologies.

We demonstrated the applicability of the developed framework on three classical problems:
design of a minimum-compliant modular MBB beam, a force inverter, and a modular gripper
mechanism. Ultimately, we introduced a new problem of designing topologies and assembly
of modules that can be reused in both the gripper and inverter mechanisms.

For all these problems, we have shown that with an increasing number of colors, the number
of module types not only grows, but the overall structural performance also improves. In the
ultimate limit, we would reach the performance of a non-modular design.

This work can be extended in several directions. In addition to the straightforward
extension to three-dimensional problems, we plan to focus on the proper handling of the
checkerboard phenomenon, e.g., via a filtering scheme inside FMO or by using higher-order
finite elements. With simpler manufacturability being one benefit of modularity, we will try
to develop constraints to secure a continuous material distribution inside individual modules.
Another promising extension constitutes the design of multi-functional mechanisms under
finite strains. Such extension, however, would require extending the clustering procedure
in Section 5.2.1.3 to deal with time-dependent datasets. In addition, modularity can also
be exploited inside optimization and in finite element analyses by efficient preconditioners
or domain decomposition methods. Finally, we plan to manufacture the selected modular
designs and validate the structural response of the prototypes against predictions made by
the model.

5.A Material stiffness matrix in symmetric designs

Let σ(i), ε(i), and σ(j), ε(j) be the stress and engineering strain column vectors in the element
i and j, respectively. Consider now a symmetric distribution of material stiffnesses and
displacement fields in a design domain, and the axis of symmetry aligned with the 1 or 2
axis. Then, for the two elements i and j corresponding to each other in the symmetry, we
have σ(i)

11 = σ
(j)
11 , σ

(i)
22 = σ

(j)
22 , but σ

(i)
12 = −σ(j)

12 . The strains possess similar symmetries, i.e.,
ε

(i)
11 = ε

(j)
11 , ε

(i)
22 = ε

(j)
22 , and γ

(i)
12 = −γ(j)

12 .
Considering five test symmetric strain column vectors, the stress symmetry requires

E(i)

ε
(i)
11 0 0 ε

(i)
11 ε

(i)
11

0 ε
(i)
22 0 ε

(i)
22 ε

(i)
22

0 0 γ
(i)
12 0 γ

(i)
12

 = E(j)

ε
(i)
11 0 0 ε

(i)
11 ε

(i)
11

0 ε
(i)
22 0 ε

(i)
22 ε

(i)
22

0 0 −(−γ(i)
12 ) 0 −(−γ(i)

12 )

 . (5.35)
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From the first three test strain fields it follows that the diagonal entries of the elastic material
stiffness matrix must match, i.e., e(i)

1111 = e
(j)
1111, e

(i)
2222 = e

(j)
2222, and e

(i)
1212 = e

(j)
1212. Using this

observation, the fourth test strain yields e(i)
1122 = e

(j)
1122. The relation of the two remaining

components of the elastic tensor are determined from the stress balance induced by the fifth
field. Then, e(i)

1112 = −e(j)
1112 and e(i)

2212 = −e(j)
2212.

5.B Derivation of sensitivities

Let us assume an unknown field denoted by y, which encompasses the elements of E in the
case of (5.12) and ρ in (5.27). In addition we define

a (y) := aTK(y)−1f − s, (5.36)

so that the inequalities (5.12b) or (5.27b) are equivalent to

a(y) ≤ 0. (5.37)

In the following subsections, we derive analytical expressions for the first- and second-order
derivatives of a(y) with respect to y.

5.B.1 Gradient

From Eq. (5.36) it follows that

∂a(y)
∂yi

= aT∂K(y)−1

∂yi
f. (5.38)

After differentiating the identity
I = K(y)−1K(y), (5.39)

with respect to yi and re-arranging the terms, we obtain

∂K(y)−1

∂yi
= −K(y)−1∂K(y)

∂yi
K(y)−1. (5.40)

Inserting (5.40) into (5.38), we obtain

∂a(y)
∂yi

= −aTK(y)−1∂K(y)
∂yi

K(y)−1f = −λT∂K(y)
∂yi

u, (5.41)

with λ and u being solutions to

K(y)u = f, (5.42a)
K(y)λ = a. (5.42b)
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5.B.2 Hessian

In order to compute the Hessian matrix, which we apply only in solutions of the FMO
problems (5.12) and (5.22), we first differentiate (5.38) with respect to yj , i.e.,

∂2a(y)
∂yi∂yj

= aT∂
2K(y)−1

∂yi∂yj
f (5.43)

To compute ∂K(y)−1

∂yi∂yj
, we differentiate (5.40) with respect to yj to obtain

∂2K(y)−1

∂yi∂yj
= −∂K(y)−1

∂yj

∂K(y)
∂yi

K(y)−1−K(y)−1∂K(y)
∂yi

∂K(y)−1

∂yj
−K(y)−1∂

2K(y)
∂yi∂yj

K(y)−1. (5.44)

Using the identity (5.40) and exploiting that the stiffness matrix is symmetric, we receive

∂2K(y)−1

∂yi∂yj
= 2K(y)−1∂K(y)

∂yi
K(y)−1∂K(y)

∂yj
K(y)−1 − K(y)−1∂

2K(y)
∂yi∂yj

K(y)−1. (5.45)

In the FMO problem (5.12), the stiffness matrix is a linear function of y, so the second term
vanishes. Therefore, equations (5.40), (5.45) combined with (5.43) yield

∂2a(y)
∂yi∂yj

= 2aTK(y)−1∂K(y)
∂yi

K(y)−1∂K(y)
∂yj

K(y)−1f = 2λT∂K(y)
∂yi

K(y)−1∂K(y)
∂yj

u. (5.46)

Let us now define matrices U,Λ with the i-th columns computed as

Ui(y) = ∂K(y)
∂yi

u, (5.47a)

Λi(y) = ∂K(y)
∂yi

λ. (5.47b)

Then, the Hessian matrix H(y) reads as

H(y) = 2 [Λ(y)]T K(y)−1U(y). (5.48)

When (5.12b) or (5.27b) is a compliance constraint, Λ(y) = U(y). Because K(y)−1 � 0, we
also have H(y) � 0 for all y. Consequently, the constraint (5.12b) is convex.

5.C Scaling of the optimization problem

In the case of f 6= a, numerical solution to (5.12) appears to be sensitive to scaling of the
design variables. To make the solution process more robust, we substitute E(`) with εẼ(`),
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which implies that Tr(Ẽ(`)) ∈ 〈3ε/ε, 1〉. Consequently, we arrive at the modified formulation

min
ssc,Ẽ(1),...,Ẽ(n`)

ssc (5.49a)

s.t. ssc − aT
[

K0
ε

+
n∑̀
`=1

K(`)
(
Ẽ(`)

)]−1

f ≥ 0, (5.49b)

∑n`
`=1 v

(`)

V
−

n∑̀
`=1

v(`)Tr
(
Ẽ(`)

)
V

≥ 0, (5.49c)

1− Tr
(
Ẽ(`)

)
≥ 0, ∀e ∈ {1, . . . , n`}, (5.49d)

Ẽ(`) � ε/ε, ∀e ∈ {1, . . . , n`}, (5.49e)

from which the (locally) optimal solution is recovered as

s = ssc/ε (5.50a)
E(`) = εẼ(`), ∀e ∈ {1, . . . , n`}. (5.50b)
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Chapter 6
Conclusions

This thesis aimed at developing methods for modular-topology optimization of structures and
mechanisms, with the ultimate goal of bringing sustainability into topology optimization. In
particular, we asked..1. How should the module topologies look like?..2. How to encode the compatibility information of modules?..3. How to arrange the modules in an assembly plan?

We provided partial answer to these questions in the form of the collection of five manuscripts.
In the first manuscript in Chapter 2, we considered Question 1 alone and investigated

an industrial problem of designing a segmented minimum-weight truss internal structure
of a thin-walled composite beam susceptible to elastic wall instabilities. To limit these
instabilities manifested in low shear and wall buckling free-vibration eigenfrequencies, we
have developed a linear semidefinite programming formulation to design a lightweight internal
structure increasing the fundamental eigenfrequency and carrying the manufacturing loads.
To accelerate the optimization, we proposed condensation of the beam surface stiffnesses
with the Schur complement lemma. The optimization output—optimal segmented internal
structure—was manufactured by 3D printing, assembled, and wound with carbon fibers
saturated with the epoxy resin. After curing and finalizing the beam surface, we verified the
model against industrial finite element equivalent, and validated it with the roving hammer
test. We concluded that the accuracy was within the error range that is expected for composite
structures. Thus, the modular prototype effectively reduced the occurrence of wall instabilities.
The CompoTech company, which manufactured the beam prototype, exhibited the beam at
several industrial expositions, including EMO 2017 in Hannover and JEC World 2019 in Paris.
At the latter exhibition, the beam prototype was selected within the three finalists in the
Additive Manufacturing category of the JEC World Innovation Awards competition1.

The theme of Chapter 3 flourished from the outcomes of Chapter 2, where we modeled the
internal structure using the truss finite elements. Although the truss elements underestimate
structural stiffness when compared to frames (and thereby deliver reliable), we refer the reader
to Section 3.A, modeling with frames would have been more accurate. Interestingly, we found
that the topology optimization problems incorporating bending stiffnesses parameterized with
continuous cross-section properties were unresolved. To circumvent this in Chapter 3, we
derived a non-linear semidefinite programming formulation, minimizing a linear function over

1https://www.jec-world.events/essential_grid/optimised-3d-printed-internal-beam-structure/

107

https://www.jec-world.events/essential_grid/optimised-3d-printed-internal-beam-structure/


6. Conclusions .............................................
a compact semi-algebraic feasible set. The resulting optimization problem can be solved to
certified global optimality using the moment-sum-of-squares (Lasserre) hierarchy. In addition,
we showed how to project the relaxed solutions onto the feasible set, hence generating feasible
upper bounds. The lower bounds emergent in the relaxations and the projected upper bounds
produced a simple and computationally inexpensive certificate of global ε-optimality. Finally,
we have shown that the optimality gap approaches zero in the limit if there is a unique
global minimizer.2 We demonstrated the method capabilities on several illustrative minimum-
compliance optimization problems with extensions towards the multiple loads and self-weight
settings. In all our test cases, the convergence of hierarchy was finite, all global solutions were
extracted, and only a low relaxation degree was required.

In Chapter 4, we dealt with Questions 1–3 concurrently for the first time, thus introducing
the modular-topology optimization concept. We adopted the corner Wang tiling formalism—
defining a fixed-sized module set with a predefined connectivity—to describe the modular
assembly plans. Similarly to Chapter 2, we discretized the module interiors with a truss ground
structure to allow for a global solution to the lower-level module design problem. However,
here we formalized it as a second-order conic program that incorporated the minimum-
compliance optimization, multiple load cases, constraints on axial stresses, and module
reusability within multiple structures. Thanks to its convexity, the performance of individual
assembly plans was assessed uniquely. To account for the bilevel problem structure, we
developed a metaheuristics-mathematical programming framework, where a genetic algorithm
optimized the assembly plans. We illustrated our method with several problems, ultimately
including module reusability within L-shaped and simply-supported beam structures. The
illustrative problems revealed that while modularity degrades structural performance, the
loss is fairly small for optimized assemblies.

Our final exposition towards modular-topology optimization in Chapter 5 aimed to overcome
two shortcomings of the method from Chapter 4: convexity assumption for the module topology
design problem, and computationally intensive bilevel optimization. To these goals, we have
developed a sequential heuristic method by combining the free material design, clustering,
and continuum topology optimization. As its first step, we proposed solving the free material
optimization on an module-interface-based discretization. However, its output of (locally-
)optimal constitutive parameters exhibited checkerboard patterns. Although these patterns
also appear in published literature, surprisingly, to the best of our knowledge, this discretization
issue has neither been considered nor commented with the free material optimization problems
yet. In Chapter 5, we developed a single post-processing step to eliminate the checkerboards.
The post-processed elasticity matrices were subsequently partitioned into a predefined number
of groups by a novel hierarchical clustering algorithm accounting for symmetric distribution
of the elastic properties when present. After interpreting the cluster labels as the colors of
Wang tiles, the clustering produces an assembly plan in the form of Wang tilings. Finally,
starting with an initial guess based on the free material optimization, we adopted conventional
continuum topology optimization extended to modularity to arrive at optimized module
topologies. We illustrated this procedure with a problem set covering the design of modular
structures and compliant mechanisms, both possibly supplemented with module reusability.

In contrast to Chapter 2 that searched for module topologies only, in Appendix A, we
have considered solely the assembly plan design problem (Question 3). Observing that

2After publication, we observed that the assumption for the zero optimality gap can be generalized with
the same argument to requiring the set of the global minimizers to be convex.
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generation of bounded Wang tilings is generally NP-complete, we developed four integer
programming formulations for the tiling production: a decision variant, maximum rectangular
tiling, maximum cover, and maximum adjacency constraint satisfaction. For the maximum
cover version, which seems to be the closest to our requirements in Chapter 5, we proposed
a simple heuristic scheme initialized with one of three developed algorithms. Among them,
one was shown to provide the 1/2 approximation guarantee for arbitrary tilesets, and another
a 2/3 guarantee for tilesets with cyclic transducers. While concluding the chapter with
numerical performance of the formulations and of the heuristic algorithms, we revealed two
unexpected errors in well-known aperiodic tilesets: an unusable tile in the Knuth tile set [103],
and periodicity of the Lagae et al. [121] corner tileset.

6.1 Perspectives for future research

The content of this thesis suggests several possible future extensions. Considering modular-
topology optimization, these extensions may involve finite strains, multi-stable and multi-
functional complaint mechanisms, approaching mechanical computers or digital metama-
terials [90]. With respect to practical applicability, manufacturing constraints need to be
incorporated and the approach generalized to 3D.

Second direction of future research may extend the developments in Chapter 3. Although
the history of the topology optimization field can be traced back by more than a century
[136], several important problems still remain for which no global solution method has been
developed, e.g., the forced and free-vibration problems of bending-resistant structures. We
believe that the moment-sum-of-squares approach may be a viable option for their solution.
However, also scalability of the solution method must be considered, e.g., by exploiting the
optimization problem structure [107, 82].

Finally, we believe that the checkerboard issue in free material optimization deserves a more
rigorous investigation and treatment, beyond the heuristic procedure introduced in Chapter 5.
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Appendix A
On bounded Wang tilings

Abstract: Determining tilability of a fixed domain with Wang tiles is known to be an NP-
complete problem. Driven by emerging applications in materials engineering, we develop
four novel integer programming formulations to generate valid or nearly-valid Wang tilings:
a decision, maximum-rectangular tiling, maximum cover, and maximum adjacency constraint
satisfaction variants. Furthermore, we supplement these programs with practical extensions
to tile-based, color-based, packing, and variable-sized periodic constraints to facilitate a more
delicate control over the resulting tilings. Second, we introduce an efficient heuristic algorithm
for the maximum-cover optimization variant and derive simple modifications to (i) provide
a 1/2 approximation guarantee for arbitrary tile sets, and (ii) a 2/3 approximation factor
for tile sets with cyclic transducers. Finally, we assess the performance of the integer
programming formulations and of the heuristic algorithms, showing that the heuristics provides
very competitive outputs. We conclude with two theoretical discoveries: the Knuth tile set
contains a tile unusable in two-way infinite tilings, and the Lagae corner tile set is not aperiodic
as was claimed.
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A.1 Introduction

Wang tiles, non-rotatable unit squares with colored edges, constitute a formalism introduced
by Wang to popularize the ∀∃∀ decidability problem of predicate calculus [202]. Formulating
an equivalent domino problem, Wang considered an infinite number of copies of an arbitrary
set of Wang tiles and investigated whether there exists a simply-connected valid tiling of the
infinite plane.

Wang conjectured that only the tile sets that form a torus, i.e., cover a periodic simply-
connected rectangular domain with identical coloring of the opposite edges, generate infinite
valid tilings [201]. However, Berger [26] disproved the conjecture by finding a tile set that
covers the infinite plane only aperiodically by exploiting Kahr’s reduction of the Turing
(machine) halting problem [190, 46] to the origin-constrained domino problem [94]. Hence, the
domino problem was proven to be undecidable and, consequently, no general finite algorithm
for producing infinite valid tilings exists.

Far less attention has been paid to the finite version of the domino problem, bounded tiling,
i.e., searching for a fixed-sized valid tiling generated by an arbitrary tile set. Although the
problem is known to be NP-complete in general [125] and [124, Theorem 7.2.1]—and indeed
decidable—most of the available approaches exploit specific properties of particular tile sets,
e.g., [41, 50, 118, 150]. However, several closely related works address the (tile) packing
problem for edge-matching puzzles, in which all tiles from the tile set are placed exactly once,
see [114, 120, 166] and [168] for an approach aiming at the famous Eternity II puzzle.

In this chapter, we investigate the bounded Wang tiling problem in its full generality.
To this goal, we first survey the most significant aperiodic tile sets in Section A.1.1 and
applications of Wang tiles in Section A.1.2. In Section A.1.3, we list available algorithms for
generation of Wang tilings. Finally, our aims and contributions appear summarized in Section
A.1.4.

A.1.1 Aperiodic tile sets

The originally unexpected property of Wang tile sets—aperiodicity—resulted in a long-term
competition among scientists in mathematical logic, computer science, discrete mathematics,
and even recreational mathematicians to find the aperiodic tile set of the minimum cardinality
[79, Chapter 11]. Starting from the Berger tile set containing 20, 426 tiles in 1964 [25, 26], it
took almost 50 years until the two sets of 11 tiles were found and proved to be minimal [92];
see Fig. A.1 for a graphical overview of the selected historical developments.

In 1966, Läuchli sent to Wang an aperiodic set of 40 tiles over 16 colors, but it remained
unpublished until 1975 [204]. Meanwhile, unaware of the Läuchli’s result, Knuth [103]
simplified Berger’s set to 92 tiles over 26 colors; and Robinson developed sets of 104 and
52 tiles over 8 colors in 1967 [154], of 56 tiles over 12 colors in 1971 [161], and noted an
existence of a set of 35 tiles [161].

In 1973, Penrose developed a new approach based on kites and darts tiling, leading to a set
of 34 tiles. Robinson, being in contact with Penrose, modified the Penrose’s approach to reach
a reduced set of 32 tiles over 16 colors [79]. Using the same technique together with Penrose
rhombs tiling, Grünbaum and Shephard [79] obtained a set of 24 tiles over 9 colors in 1987.

Another two tile sets were discovered by Ammann. In 1978, he used the so-called Ammann
bars to reach 16 tiles over 6 colors [162]. Building on the Ammann’s A2 tiling, see, e.g., [79],
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1964 20, 426 and 104 Wang tiles by Berger [25, 26]
1966 40 Wang tiles over 16 colors by Läuchli [204]
1967 104 and 52 Wang tiles over 8 colors by Robinson [160, 154]
1968 92 Wang tiles over 26 colors by Knuth [103] (reducible to 86 tiles [105])
1971 56 Wang tiles over 12 colors and 35 tiles by Robinson [161]
1973 34 Wang tiles by Penrose [79]
1973 32 Wang tiles over 16 colors by Robinson [79]
1977 24 Wang tiles over 24 colors by Robinson [79]
1978 16 Wang tiles over 6 colors by Ammann [162]
1987 24 Wang tiles over 9 colors by Grünbaum and Shephard [79]
1995 64 Wang tiles by Senechal [172]
1996 14 Wang tiles over 6 colors by Kari [98]
1996 13 Wang tiles over 5 colors by Čulík [44]
1999 696 Wang tiles by Kari and Papasoglu [99] (deterministic tile set)
2008 104 Wang tiles by Ollinger [150]
2018 19 Wang tiles over 16 colors by Labbé [117] (self-similar tile set)
2021 11 Wang tiles over 5 and 4 colors by Jeandel and Rao [92]

Figure A.1: List of aperiodic Wang tile sets.

Robinson obtained a set of 24 tiles over 24 colors in 1977.
Subsequent size reduction of the smallest aperiodic set occurred in 1996, as Kari [98]

developed a new method based on Mealy machines multiplying Beatty sequences, and
presented a set of 14 tiles over 6 colors. Čulík [44], using the same approach, reduced the set
even further to 13 tiles over 5 colors.

The search for the minimal aperiodic set has been concluded by Jeandel and Rao [92], who
used an enumeration approach to find aperiodic sets of 11 tiles over 4 and 5 colors and proved
non-existence of an aperiodic set either containing 10 or fewer tiles or labeled by less than 4
colors.

In addition to the original edge-based Wang tiles, in 2006 Lagae and Dutré [119] described
a subset of the Wang tiles, the corner tiles (we refer to Appendix A.A for their relation to
edge-based Wang tiles), with the matching information stored in the colored corners instead
of the edges. In the same year, they constructed multiple aperiodic sets of corner tiles [121],
out of which the set of 44 corner tiles over 6 colors was the smallest one. The set was
further simplified by Nurmi [145] to 30 corner tiles over 6 colors and both were claimed to be
aperiodic.

A.1.2 Applications of Wang Tiles

Thanks to the property of particular tile sets to generate aperiodic tilings, Wang tiles gained
interest among several disciplines. Building on the original purpose of Wang tiles, proofs
in the first-order logic [201], they were also used in cellular automata theory [97], topology,
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group theory [42], and symbolic dynamical systems [139].

In computer graphics, Stam [181] adopted Wang tiles to generate aperiodic textures. After
Cohen et al. [41] recognized that stochastic nonperiodic tilings are easier to handle, the
Wang-tile-based approach to generating seamless textures became popular, including also the
generation of point patterns [41, 86].

In science, Wang tiles and other related aperiodic tilings served as the key tool to un-
derstand the 5-fold symmetry of electron diffraction patterns of quasicrystals [158, 172].
Another applications at the nanoscale involve molecular DNA-based realization of Wang tiles,
introduced by Winfree et al. [209], which provided a self-assembly of biological nanostructures
into aperiodic patterns. The self-assembly process of DNA Wang tiles also powered custom
DNA-based computations [171], fueled by Turing completeness of Wang tiles [26, 204].

Besides nanoscale, Wang tiles were also used for efficient compression [143] and recon-
struction [56] of nonperiodic microstructures, speeding up finite element analyses of random
heterogeneous materials [58], such as open-cell metal foams [54]. Furthermore, we have devel-
oped a bilevel optimization approach to design modular truss materials based on the corner
Wang tiling formalism (Chapter 4) and a clustering-based method for designing modular
structures and mechanisms with continuum topology optimization (Chapter 5). Finally, Jílek
et al. [93] developed a centimeter-scale self-assembly procedure.

A.1.3 Wang tiling generation algorithms

To the best of our knowledge, nor general approaches to solving the bounded tiling problem
have been reported in the literature; the only available results are specific to a single family
of tile sets [41, 50, 118, 150], or consider infinite thin strips [92].

In what follows, we describe the gist of three tiling algorithms: substitution-based, stochastic,
and transducer-based.

A.1.3.1 Substitution-based tiling algorithm

Substitution is a map S : T 7→ T that assigns a tiling Tk to each tile k ∈ T . Consequently,
arbitrary-sized tilings are generated by placing a single tile k, and then repeating iteratively
the substitution rule on all tiles that have already been placed [150]. Hence, the tiling “grows”
in each iteration. Clearly, such procedure has a low complexity, but only very specific tile
sets allow for a substitution rule that generates valid tilings.

A.1.3.2 Stochastic tiling algorithms

In computer graphics, Wang tiles are mostly used for a generation of visually appealing
yet compressed textures. To this goal, it is essential to generate these nonperiodic patterns
quickly, which is best achieved with stochastic tile sets—usually containing all combinations
of edge labels for a given number of colors. For example, in the stochastic tiling algorithm [41]
the tiling is generated row-wise, such that the neighbor of any tile that has already been
placed can always be selected from at least two tiles at random. This approach was further
extended towards the hash-based direct stochastic tiling algorithm [118]. Note that stochastic
algorithms enable straightforward enforcement of several tile- or edge-based constraints.
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A.1.3.3 Transducer-based tiling algorithm

The transducer-based tiling algorithm [92] builds on the fact that the 1D domino problem is
decidable and can be solved in a polynomial time because the bi-infinite path is formed by an
arbitrary cycle in the transducer graph Gt,h, see Section A.2 for clarification. To generate
valid tilings of multiple rows, it is required, however, to compute the product of several
transducers. Hence, we must enumerate all feasible valid tilings of requested height and unit
width, and then find a path of the given length in the transducer graph of the just-formed
tile set. Obviously, this approach works well for tiling of thin strips; however, it is impractical
for larger nearly-square domain.

A.1.4 Aims and novelty

In this contribution, we consider the bounded Wang tiling in its general form, thereby allowing
for an arbitrary tile set and control over the resulting tilings. As follows from the above
state-of-the-art survey, no such algorithm has been published yet.

We believe that development of such algorithms is important from multiple reasons. First,
we have already investigated modeling of non-periodic and stochastic microstructures with
Wang tilings, e.g., [143, 56, 54, 57, 58]. We hope that extension of our methods to more general
tile sets would allow characterizing a broader class of non-periodic conventional materials and
meta-materials [43, 219, 141].

In the reverse direction, we have also applied the Wang tiling formalism to perform a bi-level
design of modular materials and structures [192].

Our current results remain limited to stochastic tile sets and broadening the design space
has the potential to improve upon the performance of optimized designs.

Apart from emerging applications in materials engineering, we believe that developing
a unified methodology is of independent interest, e.g., for the verification of available results
there, we justify this claim by finding two errors in well-established aperiodic tile sets.

To these goals, we first provide the necessary definitions in Section A.2 to make the chapter
self-contained. The subsequent part of the chapter is devoted to four integer programming
formulations for generation of valid tilings: decision variant in Section A.3.1, maximum
rectangular valid tiling in Section A.3.2, maximum-cover in Section A.3.3, and maximum
adjacency constraint satisfaction in Section A.3.4. To allow for a delicate control over the
resulting tilings, we also include simple extensions to prescribe tile- and color-based boundary
conditions, (a variable-sized) periodic constraint, and the tile-packing constraint, Section
A.3.5.

Due to the complexity of the proposed formulations, in Section A.4 we propose a heuristic
graph-based algorithm to tackle the maximum-cover optimization variant from Section A.3.3.
The developed algorithm relies on solutions to shortest path problems in directed acyclic
graphs, hence possesses a low asymptotic complexity. Further, we show that the algorithm
provides an approximation ratio of 2/3 for the tile sets whose transducer graphs are cyclic.

Section A.5.1 collects results on the computational assessment of the integer programming
formulations and heuristics (Section A.4), and on the benchmarking of the periodic tile
packing formulation against the algorithm of Lagae and Dutré [120] in Section A.5.3. We close
the section with two surprising observations when using integer programming formulations for
two well-known aperiodic tile sets: the Knuth [103] tile set of 92 tiles contains a tile unusable
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in infinite simply-connected valid tilings, Section A.5.4, and the Lagae et al. [121] tile set of 44
corner tiles is not aperiodic, Section A.5.5. Finally, we summarize our results in Section A.6.

A.2 Notation and preliminaries

Assuming a finite set of color codes C = {1, 2, . . . , nc} ⊂ N, the (Wang) tile k is a quadruple
of the color codes (cn

k, c
w
k , c

s
k, c

e
k), with cn

k, c
w
k , c

s
k, and ce

k ∈ C standing for the color codes of
the north, west, south, and east edge of the tile k, respectively. Tiles can, therefore, be
represented graphically as non-rotatable squares shown in Fig. A.2. Without loss of generality,
we further consider these squares to be of the unit size.

(cn
k, c

w
k , c

s
k, c

e
k) ⇔

cn
k

cw
k
cs
k

ce
k

Figure A.2: Graphical representation of a Wang tile k.

A tile set T represents a finite collection of nt tiles, see Fig. A.3. When ∀(cn, cw, cs, ce) ∈ C4 :
(cn, cw, cs, ce) ∈ T , we call the tile set complete.

T =
{

cn
1

cw
1
cs

1

ce
1 ,

cn
2

cw
2
cs

2

ce
2 , . . . ,

cn
nt

cw
nt
cs
nt

ce
nt

}

Figure A.3: A tile set T .

Using the notation •̃ = • ∩N2 to denote an intersection of the set • with the integer lattice
points, tiling TA of a bounded domain A ⊃ Ã = H×W, where H ⊂ N and W ⊂ N denote
the set of vertical (height) and horizontal (width) coordinates, constitutes an arrangement of
copies of the tiles from the tile set T such that the tiles are placed at Ã, they are contiguous,
do not overlap, and cover the entire domain, cf. Fig. A.4. More formally, tiling is a mapping
M : Ã → T assigning a single tile k ∈ T to every (i, j) ∈ Ã coordinate. Consequently, we call
tilings TA simply connected iff the domain A is so.

The tiling TA is rectangular if ∀i ∈ {1, . . . , nh},∀j ∈ {1, . . . , nw} it holds that (i, j) ∈ Ã.
A valid tiling (Wang tiling) of A, denoted by TAv , is a tiling with equal color codes at

the shared edges between all pairs of adjoining tiles. Therefore, the mapping Mv : Ã → T
satisfies, in addition to the requirements for M , the additional constraints

cs
Mv(i,j) = cn

Mv(i+1,j), ∀i ∈ H \ {nh},∀j ∈ W, (A.1a)

ce
Mv(i,j) = cw

Mv(i,j+1), ∀i ∈ H,∀j ∈ W \ {nw}, (A.1b)

provided that the axes are oriented accordingly to Fig. A.4. If Mv exists, we say that the
domain A admits a valid T -tiling, or that it is tileable by T .

Consider that B ⊆ A and Bmax rect ⊆ A are simply connected, rectangular, and T -tileable.
Then, the maximum rectangular valid tiling TAv,max rect is a valid tiling of the domain Bmax rect,
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Figure A.4: Color matching among tiles p, q, and r ∈ T .

where {Bmax rect ⊆ A, ∀B ⊆ A : |B̃max rect| ≥ |B̃|}. Here, the notation |•| denotes cardinality
of the set •.

The maximum cover TAv,max cov is a valid tiling of Bmax cov, where B and Bmax cov are arbitrary
T -tileable subdomains in A and {Bmax cov ⊆ A, ∀B ⊆ A : |B̃max cov| ≥ |B̃|}.

A rectangular valid tiling is said to be periodic, if the color codes at the opposite sides of
the rectangle match. If the valid tiling is not periodic, but the considered tile set allows for
at least one periodic pattern to emerge, we call it nonperiodic. Finally, if no such periodic
pattern exists and the tile set still allows for a valid tiling of the infinite plane, it is referred
to as aperiodic. Similarly, the tile set T is periodic if it permits periodic valid tilings; and
aperiodic if all feasible valid tilings are aperiodic.

Transducer graph[98] Gt,h of the tile set T is a directed (multi-)graph representation of
a Mealy machine without any initial nor terminal state. It consists of |C| states (graph
vertices) and |T | transitions (directed edges) Eh, where

Eh :=
⋃
k∈T

(
cw
k

cs
k|c

n
k−−−→ ce

k

)
. (A.2)

For the dual transducer graph Gt,v, composed of the dual Wang tiles [117] reflecting T along
the major diagonal of the tiles, the edge set is defined as

Ev :=
⋃
k∈T

(
cn
k

ce
k|c

w
k−−−→ cs

k

)
. (A.3)

To illustrate the construction, we include a visual example in Fig. A.5.

T =
{

0
1

1
0 ,

0
1

0
1 ,

1
0

0
1

}

(a)

0 1

0|1

1|0

0|0

(b)

0 1

0|1

1|0

1|1

(c)

Figure A.5: (b) Transducer and (c) dual transducer graphs of the tile set (a).
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A.3 Integer programming formulations

In this section, we introduce four integer programming formulations for the generation of valid
tilings. The first one, in Section A.3.1, develops a decision variant. In the later sections, we
investigate the maximum rectangular tiling (Section A.3.2), maximum cover (Section A.3.3),
and the maximum adjacency constraints satisfaction (Section A.3.4). Finally, Section A.3.5
proposes several extensions to facilitate finer control over the resulting tilings.

A.3.1 Rectangular valid tiling

Let us now consider the fundamental problem of finding TAv or proving it does not exist.
From now on, we restrict A to be rectangular to simplify notation. However, the presented
approach also extends to the general unrestricted case.

To this goal, we introduce ∀(i, j, k) ∈ H ×W × T a binary decision variable xi,j,k ∈ {0, 1}
denoting the placement of the tile k at the (i, j) coordinate such that

xi,j,k =
{

1 iff the tile k lies at coordinate (i, j),
0 otherwise. (A.4)

Consequently, the mapping M(i, j) is expressed as

M(i, j) =
∑
k∈T

kxi,j,k, (A.5)

together with the requirement that every (i, j) coordinate is occupied by one tile,∑
k∈T

xi,j,k = 1, ∀(i, j) ∈ H ×W. (A.6)

Similarly, the color codes of a tile placed at (i, j) are expressed using the binary variables as

cn
M(i,j) =

∑
k∈T

cn
kxi,j,k, (A.7a)

cw
M(i,j) =

∑
k∈T

cw
k xi,j,k, (A.7b)

cs
M(i,j) =

∑
k∈T

cs
kxi,j,k, (A.7c)

ce
M(i,j) =

∑
k∈T

ce
kxi,j,k. (A.7d)

Inserting (A.7) into (A.1a) and (A.1b) leads to the horizontal and vertical adjacency constraints
expressed in terms of the decision variables, hence∑

k∈T
cs
kxi,j,k −

∑
k∈T

cn
kxi+1,j,k = 0, ∀(i, j) ∈ H \ {nh} ×W, (A.8a)

∑
k∈T

ce
kxi,j,k −

∑
k∈T

cw
k xi,j+1,k = 0, ∀(i, j) ∈ H ×W \ {nw}. (A.8b)
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Combining (A.4), (A.5), (A.6), and (A.8) then provides us with a complete binary linear
programming representation of Mv.

For computational reasons, it proved to be advantageous to consider a tighter representation
of the feasible design space and organize the constraints according to the color codes:∑

k∈T
xi,j,k[cs

k = `]−
∑
k∈T

xi+1,j,k[cn
k = `] = 0, ∀(i, j, `) ∈ H \ {nh} ×W × C, (A.9a)

∑
k∈T

xi,j,k[ce
k = `]−

∑
k∈T

xi,j+1,k[cw
k = `] = 0, ∀(i, j, `) ∈ H ×W \ {nw} × C, (A.9b)

where the Iverson notation [104]
∑
k∈T xi,j,k [cs

k = `] expresses that xi,j,k is added to the sum
if and only if cs

k = `.
The constraint (A.9a) requires that the number of tiles at (i, j) with the south edge colored

by ` equals to the number of tiles at (i + 1, j) with the north edge marked by the same `,
for all ` ∈ C. Because of (A.6) there are either no tiles with the shared edge colored by `,
or a single tile at each of the coordinates with its common edge labeled by `. Analogously
to the vertical adjacency constraint, also the horizontal constraint (A.9b) enforces equality
among the number of tiles at (i, j) with the east edge colored by ` and the number of tiles at
(i, j + 1) having the west edge colored by identical `.

Finally, combining (A.4), (A.6), and (A.9), while noticing that the constraints (A.6)
naturally propagate with the adjacency constraints from the domain boundaries (compare
(A.10d,A.10e with (A.6)), leads to the binary programming formulation

find x (A.10a)
s.t.

∑
k∈T

xi,j,k[cs
k = `]−

∑
k∈T

xi+1,j,k[cn
k = `] = 0, ∀(i, j, `) ∈ H \ {nh} ×W × C, (A.10b)∑

k∈T
xi,j,k[ce

k = `]−
∑
k∈T

xi,j+1,k[cw
k = `] = 0, ∀(i, j, `) ∈ H ×W \ {nw} × C, (A.10c)∑

k∈T
xi,j,k = 1, ∀(i, j) ∈ {1, nh} ×W, (A.10d)

∑
k∈T

xi,j,k = 1, ∀(i, j) ∈ H × {1, nw}, (A.10e)

xi,j,k ∈ {0, 1}, ∀(i, j, k) ∈ H ×W × T , (A.10f)

that provides a complete representation of the bounded tiling problem, i.e., all valid tilings
solve the integer program, and conversely, all feasible solutions to (A.10) are valid tilings.
Moreover, observe that the problem consists of two totally unimodular constraints if considered
independently: (A.10c,A.10e) representing row tilings, and (A.10b,A.10d) being column tilings.
When considered simultaneously, the resulting problem becomes NP-complete [125, 124].

A.3.2 Maximum rectangular valid tiling

In certain cases, when solution to (A.10) cannot be found in acceptable time or when no such
solution exists, one can resort to relaxing the requirement of a valid tiling of A and search for
a valid tiling of the as large rectangular subdomain as possible. Clearly, the most notable
such subdomain is the largest one, as its valid tiling also solves (A.10) in the case that A is
T -tileable.
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Without loss of generality, let us assume that the maximum rectangular valid tiling always

contains an anchor tile placed at (1, 1), i.e.,∑
k∈T

x1,1,k = 1. (A.11)

On the other hand, all the other coordinates may contain a tile, or be empty, thus∑
k∈T

xi,j,k ≤ 1, ∀(i, j) ∈ Ã \ (1, 1). (A.12)

Let us now pick two vertically adjacent coordinates (i, j) and (i+ 1, j). If there is a tile
q placed at (i + 1, j), another tile p has to be placed at (i, j), as, otherwise, there is no
simply-connected rectangular tiling containing both the tiles at (1, 1) and at (i+1, j). Validity
of the tiling further requires identical color codes at the shared edges. On the other hand,
if no tile is placed at (i + 1, j), a coordinate (i, j) may be either occupied, or empty. The
allowed and forbidden combinations are shown in Fig. A.6a–A.6d. Formally stated in terms
of the decision variables, these considerations are expressed as∑

k∈T
xi,j,k[cs

k = `]−
∑
k∈T

xi+1,j,k[cn
k = `] ≥ 0, ∀(i, j, `) ∈ H \ {nh} ×W × C. (A.13)

Similar considerations also apply to the case of the coordinates (i, j) and (i, j+ 1), resulting
in the constraints∑

k∈T
xi,j,k[ce

k = `]−
∑
k∈T

xi,j+1,k[cw
k = `] ≥ 0, ∀(i, j, `) ∈ H ×W \ {nw} × C. (A.14)

For the graphical representation of the allowed and forbidden combinations, see Fig. A.6e–
A.6h.

The developed constraints (A.11)–(A.14) enforce simple connectedness; however, they do
not guarantee that the resulting tiling will be rectangular. For any 4 adjacent tiles p, q, r,
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Figure A.6: Admissible tile placements (a)–(c) and (e)–(g), and forbidden placements (d) and (h)
in the maximum rectangular valid tiling formulation.
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Figure A.7: Possible placement of tiles p, q, r, and s. The combination (b) cannot appear in any
rectangular tiling.

and s placed at (i, j), (i+ 1, j), (i, j + 1), and at (i+ 1, j + 1), respectively, these constraints
allow for the assemblies shown in Fig. A.7. Because the combination A.7b cannot appear in
any simply-connected rectangular tiling, we must exclude it from the feasible set,∑

k∈T
xi+1,j,k +

∑
k∈T

xi,j+1,k −
∑
k∈T

xi+1,j+1,k ≤ 1, ∀(i, j) ∈ H \ {nh} ×W \ {nw}. (A.15)

Finally, combining Eqs. (A.4), (A.11), (A.12), (A.13), (A.14), and (A.15) together with an
objective function to maximize |B̃max rect| provides us with the binary optimization program

max
x

∑
i∈H

∑
j∈W

∑
k∈T

xi,j,k (A.16a)

s.t.
∑
k∈T

xi,j,k[cs
k = `]−

∑
k∈T

xi+1,j,k[cn
k = `] ≥ 0, ∀(i, j, `) ∈ H \ {nh} ×W × C, (A.16b)∑

k∈T
xi,j,k[ce

k = `]−
∑
k∈T

xi,j+1,k[cw
k = `] ≥ 0, ∀(i, j, `) ∈ H ×W \ {nw} × C, (A.16c)∑

k∈T
xi+1,j,k +

∑
k∈T

xi,j+1,k −
∑
k∈T

xi+1,j+1,k ≤ 1, ∀(i, j) ∈ H \ {nh} ×W \ {nw},

(A.16d)∑
k∈T

x1,1,k = 1, (A.16e)

∑
k∈T

xi,j,k ≤ 1, ∀(i, j) ∈ Ã \ (1, 1), (A.16f)

xi,j,k ∈ {0, 1}, ∀(i, j, k) ∈ H ×W × T . (A.16g)

In contrast to (A.10), a feasible solution to the optimization program (A.16) can be found
in a polynomial time, e.g., by tiling the first row or column of the one-dimensional bounded
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tiling problem. However, obtaining an optimal solution to (A.16) is NP-hard, because the
optimization problem (A.16) is reducible to the decision version (A.10) by fixing the value
of the objective function to |Ã|. Indeed, this objective function value enforces equalities in
(A.16b), (A.16c), and (A.16f), making consequently the constraint (A.16d) always satisfied,
and thus redundant.

A.3.3 Maximum cover

Another option to avoid the infeasibility of (A.10) rests in neglecting the requirement of
(simple) connectedness, hence allowing for a placement of empty tiles (voids). In this section,
we therefore search the maximum cover of A, or equivalently a valid tiling of the (possibly
disconnected) domain Bmax cov ⊆ A.

For the maximum cover formulation, we assume that any two adjacent tiles satisfy the
edge-matching constraints of valid tilings, but these are also satisfied by any of the tile-void,
void-tile, or void-void combination, where

∑
k∈T xi,j,k = 0 for a void located at (i, j) ∈ Ã.

Thus, each coordinate (i, j) is occupied either by a tile or a void, implying that∑
k∈T

xi,j,k ≤ 1, ∀(i, j) ∈ H ×W, (A.17)

and the vertical and horizontal edge matching conditions become∑
k∈T

xi,j,k[ce
k = `] +

∑
k∈T

xi,j+1,k[cw
k 6= `] ≤ 1, ∀(i, j, `) ∈ H ×W \ {nw} × C, (A.18a)

∑
k∈T

xi,j,k[cs
k = `] +

∑
k∈T

xi+1,j,k[cn
k 6= `] ≤ 1, ∀(i, j, `) ∈ H \ {nh} ×W × C. (A.18b)

Finally, the combination of Eqs. (A.17), (A.18a), (A.18b) with the objective function to
maximize |B̃max cov| leads to the binary optimization problem

max
x

∑
i∈H

∑
j∈W

∑
k∈T

xi,j,k (A.19a)

s.t.
∑
k∈T

xi,j,k[ce
k = `] +

∑
k∈T

xi,j+1,k[cw
k 6= `] ≤ 1, ∀(i, j, `) ∈ H ×W \ {nw} × C, (A.19b)∑

k∈T
xi,j,k[cs

k = `] +
∑
k∈T

xi+1,j,k[cn
k 6= `] ≤ 1, ∀(i, j, `) ∈ H \ {nh} ×W × C, (A.19c)∑

k∈T
xi,j,k ≤ 1, ∀(i, j) ∈ H ×W, (A.19d)

xi,j,k ∈ {0, 1}, ∀(i, j, k) ∈ H ×W × T . (A.19e)

The program (A.19) is trivially NP-hard: Requiring the objective function (A.19a) to be
at least |Ã| implies that ∑

k∈T
xi,j,k = 1, ∀(i, j) ∈ H ×W, (A.20)

i.e., all positions are occupied by a Wang tile. Moreover, (A.19b) and (A.19c) require for all
adjacent tiles to share the color codes at their common edges. Consequently, the resulting
tiling is void-free and valid, and solves the NP-complete bounded tiling problem.
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A.3.4 Maximum adjacency constraints satisfaction

Because the decision problem (A.10) also constitutes a specific instance of the constraint
satisfaction problem (CSP), another optimization variant comes from the formulation of the
max-CSP problem, maximizing the number of satisfied clauses, color matches in our case.

Therefore, for each vertical and horizontal edge we introduce a new variable hv
i,j ∈ R≥0,

where (i, j) ∈ H × W \ nw, and hh
i,j ∈ R≥0, with (i, j) ∈ H \ nh × W, respectively. The

adjacency constraints (A.9) are then relaxed by considering∣∣∣∣∣∣
∑
k∈T

xi,j,k[cs
k = `]−

∑
k∈T

xi+1,j,k[cn
k = `]

∣∣∣∣∣∣ ≤ hh
i,j , ∀(i, j, `) ∈ H \ {nh} ×W × C, (A.21a)

∣∣∣∣∣∣
∑
k∈T

xi,j,k[ce
k = `]−

∑
k∈T

xi,j+1,k[cw
k = `]

∣∣∣∣∣∣ ≤ hv
i,j , ∀(i, j, `) ∈ H ×W \ {nw} × C (A.21b)

instead. Indeed, if hh
i,j = 0, the edge-matching requirement of the neighboring tiles at (i, j)

and (i + 1, j) is satisfied; and it is violated otherwise. Similarly, hv
i,j = 0 guarantees color

matches among the tiles at (i, j) and (i, j + 1).
Finally, rewriting (A.21) without absolute values while supplying an objective function to

maximize the number of color matches yields the binary optimization problem

max
x

∑
i∈H

∑
j∈W\nw

(
1− hv

i,j

)
+

∑
i∈H\nh

∑
j∈W

(
1− hh

i,j

)
(A.22a)

s.t.
∑
k∈T

xi,j,k[cs
k = `]−

∑
k∈T

xi+1,j,k[cn
k = `] ≤ hh

i,j , ∀(i, j, `) ∈ H \ {nh} ×W × C, (A.22b)∑
k∈T

xi+1,j,k[cn
k = `]−

∑
k∈T

xi,j,k[cs
k = `] ≤ hh

i,j , ∀(i, j, `) ∈ H \ {nh} ×W × C, (A.22c)∑
k∈T

xi,j,k[ce
k = `]−

∑
k∈T

xi,j+1,k[cw
k = `] ≤ hv

i,j , ∀(i, j, `) ∈ H ×W \ {nw} × C, (A.22d)∑
k∈T

xi,j+1,k[cw
k = `]−

∑
k∈T

xi,j,k[ce
k = `] ≤ hv

i,j , ∀(i, j, `) ∈ H ×W \ {nw} × C, (A.22e)∑
k∈T

xi,j,k = 1, ∀(i, j) ∈ H ×W, (A.22f)

xi,j,k ∈ {0, 1}, ∀(i, j, k) ∈ H ×W × T , (A.22g)

that is NP-hard due to the reduction to (A.10) after fixing all hv
i,j and hh

i,j to zeros. A simple
feasible solution can be found in a polynomial time by finding valid row/column tilings for
each row/column, so that either the term

∑
i∈H

∑
j∈W\nw h

v
i,j , or

∑
i∈H\nh

∑
j∈W hh

i,j equals
zero.

A.3.5 Extensions

Until now, we have focused solely on the (re)formulations of the bounded tiling problem,
searching for arbitrary valid tilings. However, it may be of interest for potential applications
to have more detailed control over the resulting tilings. Thus, in this section, we state some
simple extensions to enforce tile- and color-based boundary conditions, to solve the tile packing
problem [120], and to enforce (variable-sized) periodic boundary conditions.
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A.3.5.1 Tile-based boundary conditions

At first, we consider boundary conditions in the form of prescribed tiles. As the simplest one,
we enforce the placement of a tile k at (i, j):

xi,j,k = 1, (i, j, k) ∈ H ×W × T . (A.23)

Similarly, we may prevent the tile k to be placed there:

xi,j,k = 0, (i, j, k) ∈ H ×W × T . (A.24)

Placement of an identical tile at the coordinates (i, j) ∈ Ã and (p, q) ∈ Ã requires

xi,j,k − xp,q,k = 0, {i, p} ∈ H, {j, q} ∈ W,∀k ∈ T . (A.25)

Conversely, different tiles at these coordinates are secured with

xi,j,k + xp,q,k ≤ 1, {i, p} ∈ H, {j, q} ∈ W,∀k ∈ T . (A.26)

A.3.5.2 Color-based boundary conditions

In addition to the tile-based constraints, we may also enforce specific color codes of individual
edges. To this goal, color of the north edge at (i, j) ∈ Ã is set to ` by∑

k∈T
xi,j,k[nk = `] = 1, (i, j, `) ∈ H ×W × C. (A.27)

On the contrary, we may prevent this color by using∑
k∈T

xi,j,k[nk = `] = 0, (i, j, `) ∈ H ×W × C. (A.28)

Further, the same color codes at the north edge of (i, j) ∈ Ã and at the west edge of (p, q) ∈ Ã
are established by∑

k∈T
xi,j,k[nk = `]−

∑
k∈T

xp,q,k[wk = `] = 0, {i, p} ∈ H, {j, q} ∈ W, ∀` ∈ C, (A.29)

and a different color with∑
k∈T

xi,j,k[nk = `] +
∑
k∈T

xp,q,k[wk = `] ≤ 1, {i, p} ∈ H, {j, q} ∈ W, ∀` ∈ C. (A.30)

A.3.5.3 Periodic tiling

In the domino problem, Wang [202] investigated existence of tile sets admitting an infinite
aperiodic tilings. Here, we consider a similar setting for the finite domain A: examining
periodicity through periodic color-based boundary conditions.

We begin with a simpler setting of requiring equal coloring at the fixed opposite domain
boundaries,∑

k∈T
x1,j,k[nk = `]−

∑
k∈T

xnt,h,j,k[sk = `] = 0, ∀(j, `) ∈ W × C, (A.31a)

∑
k∈T

xi,1,k[wk = `]−
∑
k∈T

xi,nt,w,k[ek = `] = 0, ∀(i, `) ∈ H × C. (A.31b)
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When adding (A.31) to the decision problem (A.10), we thus ask for an existence of a fixed-
sized periodic Wang tiling.

In a natural generalization, we ask for an existence of bounded-sized periodic Wang tilings,
relying so on the maximum rectangular valid tiling formulation (A.16). Naturally, the
boundaries are not known in this case. Therefore, we must consider the constraints of the
form ∑

k∈T
xi,j,k[ek 6= `] +

∑
k∈T

xi,1,k[wk = `]−
∑
k∈T

xi,j+1,k[j < nt,w] ≤ 1,

∀(i, j, `) ∈ H ×W × C,
(A.32a)

∑
k∈T

xi,j,k[sk 6= `] +
∑
k∈T

x1,j,k[nk = `]−
∑
k∈T

xi+1,j,k[i < nt,h] ≤ 1,

∀(i, j, `) ∈ H ×W × C.
(A.32b)

Here, (A.32a) prevents a color mismatch of the north edge of (1, j) ∈ Ã and the south edge
of (i, j) ∈ A iff there is no tile placed at (i, j + 1) ∈ Ã. Similarly, in the case of (A.32b), we
prevent a color mismatch of the west edge at (i, 1) ∈ Ã and the east edge at (i, j) ∈ Ã iff the
position (i+ 1, j) ∈ Ã is empty.

Finally, when adding the constraints (A.32) to (A.16), we usually search for the smallest
periodic pattern rather than the largest,

min
x

∑
i∈H

∑
j∈W

∑
k∈T

xi,j,k. (A.33)

A.3.5.4 Tile packing problem

Our last extension constitutes the setting of the tile-packing problem [120]: we require each
tile to be placed exactly once yet form a fixed-sized valid tiling,∑

i∈H

∑
j∈W

xi,j,k = 1, ∀k ∈ T . (A.34)

Note here that this extension requires that |T | = |Ã| as, otherwise, no solution exists.

A.4 Heuristic algorithm for the maximum cover tiling problem

In the previous sections, we have introduced several integer programming formulations for
the bounded Wang tiling problem and their extensions. Because finding a valid tiling for
a general tile set is NP-complete, we further develop a simple heuristic algorithm for one of
the optimization variants, the maximum cover.

A.4.1 Maximum cover tiling of rows

Let us start with revising the decision program (A.10). In this formulation, neglecting any
pair of the constraints (A.10b, A.10d), or (A.10c,A.10e), provides a totally unimodular
constraint matrix, recall Section A.3.1. Consequently, such simplified problems are solvable
deterministically using the simplex method. Moreover, this setting agrees with the maximum
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flow problem structure, as (A.10d) and (A.10e) are the flow balances in the source and
sink, and (A.10b) with (A.10c) the Kirchhoff law equations. Further complexity reduction
is possible by recognizing the (shortest) path problem structure, since the source and sink
capacities equal to one, allowing only a single source-to-sink path with positive flow to emerge.
Omitting any of these constraint pairs actually produces valid tilings of (finite) stripes, i.e., of
rows or columns. However, the edges shared by the neighboring stripes may not comply with
the edge matching rules. Starting with this observation, we first focus on a formulation of an
efficient approach to generate valid tilings of the stripes, i.e. rows.

As follows from Section A.2, any valid tiling of a row can be visualized as a |W|-long path in
the transducer graph Gt,h. To simplify subsequent developments, we represent the row-tiling
problem by a transducer-based directed acyclic graph (DAG) composed of |W| + 3 vertex
layers. While both the first and the last layer contain only a single vertex (the source and
terminal), the intermediate layers include |C| vertices to represent the vertical (east and west)
color codes of the tiles, i.e., the states in the Gt,h transducer graph. The source vertex is
connected to all vertices in the second layer, facilitating an arbitrary coloring of the west
edge of the first tile, and, similarly, all the vertices in the penultimate layer are linked to the
terminal to allow for all colors in the last east edge. The intermediate layers are bridged with
the transducer edges Eh; see Fig. A.8 for a scheme. Consequently, any s− t path in the yet
established directed graph forms a valid tiling of the row, and conversely, all valid tilings
build a s− t path.

However, such paths do not exist for tile sets not admitting a valid tiling of the row, so
we also need to incorporate voids. Clearly, we can add “void” tiles as edges that would
interconnect the layers, i.e., any two consecutive layers would form a complete bipartite graph.
However, such approach requires to add at most |W||C|2 edges to the graph. Therefore, we add
supplementary intermediate layers with a single vertex only, symbolizing the “void” tile type,
and connect it to all vertices in the preceding and subsequent layer, see the dashed vertices
and edges in Fig. A.9. Consequently, we generate at most 2|W||C| new edges altogether.

In addition, we assign unitary costs to the edges incoming to the void vertices and zero
costs elsewhere. Hence, the path costs are equivalent to the number of voids in the row
tiling. Furthermore, because the emergent graph is acyclic and single-sourced, the maximum
row-cover tiling is found in O(|V|+ |E|) time using the DAG-shortest-path algorithm, where
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Figure A.8: Transducer-based directed acyclic graph for generation of valid row tilings.
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Figure A.9: Transducer-based directed acyclic graph for computing the maximum row cover.

V denotes the set of the graph vertices and E the set of the graph edges. In our case, we have

|V| = 2 + (|W|+ 1)|C|+ |W| = 2 + |W|+ |C|+ |W||C|, (A.35a)
|E| = 2|C|+ 2|W||C|+ |W||T |. (A.35b)

Thus, the overall asymptotic complexity to generate a maximum row cover tiling evaluates as

O(|V|+ |E|) = O(2 + |W|+ 3|C|+ 3|W||C|+ |W||T |) = O(|W||C|+ |W||T |). (A.36)

Interestingly, the running time (but not the asymptotic complexity) of the DAG-shortest-path
algorithm can be improved by recognizing that the topological order of the graph vertices—
which is required for the DAG-shortest-path algorithm—is known from the graph construction
method in advance.

Any path of the total cost ct contain exactly ct voids in the row tiling. Because the shortest
path algorithm therefore minimizes the number of voids, it generates the maximum row cover
as its output. These considerations are summarized in the following.
Proposition A.1. The shortest path in graph in Fig. A.9 is equivalent to the maximum row
cover.

A.4.2 Tiling consecutive rows

Assuming already covered rows i− 1 and i+ 1, e.g., initially by voids, we aim to generate
the maximum cover of the i-th row. Interestingly, this requires only a minor modification of
graph in Fig. A.9.

To this goal, we first check the north-east compatibility for each tile k ∈ T placed at (i, j).
Notice that the compatibility is never violated when the neighbors are voids. For the cases of
color mismatches, we remove the edges denoting these incompatible tiles from the graph.

Assume that the rows (i − 1) and (i + 1) are voids. Then, clearly, inappropriate tiles
at the i-th row may prevent the vertically-adjacent positions to be populated by tiles. To
limit the appearance of such introduced voids, we include a penalization of a small cost
ε = 0.5(|W|+ 1)−1 to the tiles that admit a single vertical neighbor only, and ε = (|W|+ 1)−1

to tiles not admitting any vertical neighbor. Notice that these costs are selected such that,
in the worst case, the total penalization due to these void-preventing weights amounts to
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Algorithm A.1 Simple maximum cover heuristics
1: function simpleMaximumCoverHeuristics(T , A)
2: T ← initializeVoidTiling(A)
3: Gt,h ← getTransducerGraph(T )
4: for row ← {1, . . . , |H|} do
5: GDAG ← constructWeightedDAG(Gt,h, T , T, row)
6: shortestPath ← solveDAGShortestPathProblem(GDAG)
7: T ← updateTiling(T, shortestPath, row)
8: end for
9: return T

10: end function

|W|/(|W|+ 1) < 1, i.e., the maximum-row-cover property (for a given north and south edge
coloring) in Proposition A.1 remains satisfied.

Consequently, we can build a simple heuristic algorithm, Algorithm A.1, that requires |H|
maximum row-cover iterations, rendering the overall complexity to be O(|Ã||C|+ |Ã||T |).

Although Algorithm A.1 usually generates relatively large ratio of the number of placed
tiles |B̃cov| to |Ã|, it probably lacks a guaranteed lower bound. Such bounds can, however, be
provided by fairly straightforward modifications introduced next.

A.4.3 1/2-approximation algorithm for general tile sets

In this section, we modify Algorithm A.1 to maintain the 1/2 approximation ratio. To this
goal, we start with the following observation:
Proposition A.2. Consider the maximum row-cover tiling of the odd rows of the initially void
domain A given in Section A.4.1. Then, |B̃cov| ≥ 0.5|B̃max cov|.
Proof. Consider that the maximum row-cover problem alone terminates with |B̃max rowcov|
tiles. Based on the maximum row-cover property in Proposition A.1, none of the rows of A
admits a tiling by more than |B̃max rowcov| tiles. Hence, we have |B̃cov| ≥ d0.5|H|e|B̃max rowcov|
and |B̃max cov| ≤ |H||B̃max rowcov|, so that |B̃cov| ≥ d0.5|H|e|B̃max rowcov| ≥ 0.5|H||B̃max rowcov| ≥
0.5|B̃max cov|.

To exploit Proposition A.2 in Algorithm A.1, we modify the row processing order as
{1, 3, 2, 5, 4 . . . }. Indeed, then each odd row contains exactly |B̃max rowcov| tiles. Nevertheless,
covering the i-th (odd) row without acknowledging which tiles are placed in the (i− 2)-th row
may result in an unnecessarily empty (i−1)-th row. To avoid such situations, we do not check
for the compatibility with the (i− 1)-th row voids, but based on the dual transducer graph
with the tiles in the (i− 2)-th row. To this goal, for each south color code in the (i− 2)-th
row, we find admissible colors (states) in the dual transducer graph as the states reachable
by an edge-long path. Indeed, the reached states are exactly the admissible north colors of
compatible tiles in the i-th row. For the special case of voids in the (i− 2)-th row, all color
codes are assumed to be compatible. Finally, we penalize the incompatibilities with the cost
ε = 0.5(|W|+ 1)−1 as before. The final algorithm then reads as Algorithm A.2, allowing us to
state the following, slightly stronger result:
Proposition A.3. Assume a tile set T with the longest path in its transducer graph Gt,h at
least 2. Then, Algorithm A.2 terminates with |B̃cov| ≥ 0.5|Ã|.
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Algorithm A.2 1/2-approximation algorithm
1: function maximumCoverApproximation050(T , A)
2: T ← initializeVoidTiling(A)
3: Gt,h ← getTransducerGraph(T )
4: Gt,v ← getDualTransducerGraph(T )
5: for row ← {1, 3, 2, 5, 4, . . . } do
6: if row even then
7: GDAG ← constructWeightedDAG(Gt,h, T , T, row)
8: else
9: GDAG ← constructWeightedDAGFromDTransducer(Gt,h, Gt,v, T, row, 1)

10: end if
11: shortestPath ← solveDAGShortestPathProblem(GDAG)
12: T ← updateTiling(T, shortestPath, row)
13: end for
14: return T
15: end function

Proof. When |B̃max rowcov| = |W|, the proof follows directly from Proposition A.2. For the
other cases, the odd rows must contain |B̃max rowcov| tiles due to Proposition A.1. Because
these row-covers are maximal, the sequence of consecutive voids in these rows cannot exceed
two, as we could have placed an additional tile otherwise, contradicting with the maximum
row-cover property. Moreover, without loss of generality, the length of the shortest path in
the i-th row is at most |B̃max rowcov|+ (|W| − |B̃max rowcov|)ε, which occurs when the (i− 2)-th
and i-th row have the same tile-void patterns. Because the longest void sequence is at most
two and the longest path in Gt,h is at least two, we can always place tiles to the north of the
voids of the i-th row.

A.4.4 2/3-approximation algorithm for tilesets with cyclic transducers

Another improvement in the approximation factor of Algorithm A.2 follows from a further
restriction to tile sets with all the states in the transducer graphs Gt,h and Gt,v being within
at least one graph cycle. Notice that such situation occurs for all tile sets that tile the infinite
plane.

To this goal, we modify the costs, and the row processing order to {1, 4, 3, 2, 3, 7, 6, 5, 6, . . . }.
We begin with (i) tiling the maximum row-cover of the first row. Then, we (ii) find the
maximum row-cover of the 4-th row such that we penalize possible incompatibilities with the
first row based on the dual transducer graph by ε. The step (iii) encompasses finding a cover
of the 3-rd row with penalized incompatibilities with the first row and enforced voids at even
positions. Finally, we find the maximum covers of the rows 2 and 3. We repeat the procedure
for the row numbers iteratively increased by 3, see Algorithm A.3. Then, we can make the
following statement:
Lemma A.4. Consider that all states in the transducer graphs Gt,h and Gt,v lie in cycles.
Then, Algorithm A.3 terminates with at least 2

3 |Ã| placed tiles.

Proof. Since the tile set allows for valid tiling of the row, the {1, 4, . . . } rows are occupied
by exactly |W| tiles. The {3, 6, . . . } rows are then populated by at least 0.5|W| tiles because
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Algorithm A.3 2/3-approximation algorithm
1: function maximumCoverApproximation067(T , A)
2: T ← initializeVoidTiling(A)
3: Gt,h ← getTransducerGraph(T )
4: Gt,v ← getDualTransducerGraph(T )
5: setRowsNotVisited()
6: for row ← {1, 4, 3, 2, 3, 7, 6, 5, 6 . . . } do
7: if mod(row−1,3)== 0 then
8: GDAG ← constructWeightedDAGFromDTransducer(Gt,h, Gt,v, T, row, 2)
9: else if mod(row−2,3)== 0 then

10: if rowVisited(row)==false then
11: GDAG ← constructWeightedDAGFromDTransducer(Gt,h, Gt,v, T, row, 1)
12: GDAG ← removeTilesAtEvenPositions(GDAG)
13: else
14: GDAG ← constructWeightedDAG(Gt,h, T , T, row)
15: end if
16: else
17: GDAG ← constructWeightedDAG(Gt,h, T , T, row)
18: end if
19: shortestPath ← solveDAGShortestPathProblem(GDAG)
20: T ← updateTiling(T, shortestPath, row)
21: setRowVisited(row)
22: end for
23: return T
24: end function

each tile from the rows {4, 7, . . . } admits a vertical neighbor. Finally, the {2, 5, . . . } rows
contain at least the complement of the number of tiles used in the preceding row, because
the tiles in the {1, 4, 6, . . . } row admit a south neighbor. Depending on the row number, the
algorithm places at least

|B̃cov| ≥ min{|Ã|, 3
4 |Ã|,

2
3 |Ã|,

3
4 |Ã|,

7
10 |Ã|,

2
3 |Ã|, . . . } = 2

3 |Ã| (A.37)

tiles.
Remark A.5. If the tile set T allows for tiling the infinite plane, Algorithm A.3 terminates
with |B̃cov| ≥ 2

3 |Ã| based on Lemma A.4.

A.4.5 Iterative improvements

Similarly to finding the maximum row covers, we can search for the maximum cover of
columns. When combining these two methods, we end up with our final algorithm that has
the O(|Ã|2|C|+ |Ã|2|T |+ |C|2) complexity and provides the approximation ratios adjustable
by algorithm choice (Algorithms A.1,A.2 or A.3) at line 2 of Algorithm A.4.
Proposition A.6. Algorithm A.4 runs in a polynomial time and terminates in a finite number
of steps.
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Algorithm A.4 Final maximum cover heuristics
1: function finalMaximumCoverHeuristics(T , A)
2: T ← generateInitialCover(T ,A)
3: Gt,h ← getTransducerGraph(T )
4: Gt,v ← getDualTransducerGraph(T )
5: improvement ← ∞
6: method ← “columns”
7: while improvement > 0 do
8: numVoidsOld ← getNumVoids(T)
9: if method==“rows” then

10: for row ← {1, . . . , |H|} do
11: GDAG ← constructSimpleDAG(Gt,h, T, row)
12: shortestPath ← solveDAGShortestPathProblem(GDAG)
13: T ← updateTiling(T, shortestPath, row)
14: method ← “columns”
15: end for
16: else
17: for column ← {1, . . . , |W|} do
18: GDAG ← constructSimpleDAG(Gt,v, T, column)
19: shortestPath ← solveDAGShortestPathProblem(GDAG)
20: T ← updateTiling(T, shortestPath, column)
21: method ← “rows”
22: end for
23: end if
24: improvement ← numVoidsOld − getNumVoids(T)
25: end while
26: return T
27: end function

Proof. We have already shown that finding a maximum row-cover has O(|W||C|+ |W||T |)
complexity. Further, finding the 2-long paths in the transducer graph possesses the |C|2
complexity and can be run only once, prior to the algorithm main loop. Altogether, Algorithm
A.3 requires at most 4/3|H| inner iterations, so that we have the O(|Ã||C|+ |Ã||T |+ |C|2)
overall complexity.

Regardless of the method at line 2 of Algorithm A.4, the improving loop runs at most
|Ã| times. Consequently, the algorithm is finite and possesses the O(|Ã|2|C|+ |Ã|2|T |+ |C|2)
complexity.

A.5 Results

Having developed several exact and heuristic methods, this section is devoted to their
numerical examination. We begin with assessing the performance of the integer programming
formulations in Section A.5.1. Then, in Section A.4, we also relate these results with the
outputs of the heuristic algorithms.

Extensions of the integer programs are investigated in subsequent sections. First, we
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demonstrate the usefulness of the packing constraint by comparing the efficiency of solution
to the tile-packing problem using our method with the times reported by Lagae and Dutré
[120], Section A.5.3. Subsequently, we also reveal two unexpected discoveries observed during
extensive tests of the formulations: the Knuth [103] tile set contains a tile unusable in infinite
tilings, Section A.5.4, and the Lagae et al. [121] tile set of 44 corner tiles lacks aperiodicity,
Section A.5.5.

We implemented all the above described methods in C++. As the integer programming
solver, we adopt the state-of-the-art optimizer Gurobi 9.0, dynamically linked to the compiled
binary. Numerical tests were evaluated on a workstation running the Ubuntu 16.04 operating
system, equipped with 128 GB of RAM and Intel R© Xeon R© E5-2630v3 CPU clocked at
2.40 GHz.

A.5.1 Integer programming formulation

In this section, we investigate the performance of all integer programming formulations from
Section A.3, i.e., the decision program (A.10), the maximum rectangular tiling (A.16), the
maximum cover (A.19), and the maximum adjacency constraint satisfaction problem (A.22).

Unfortunately, there does not exist any standard set of bounded tiling problems, except
for specific, mostly aperiodic tile sets listed in the literature, recall Section A.1.1. Hence,
we consider a set of benchmark problems consisting of five aperiodic tile sets (11 tiles over
4 colors by Jeandel and Rao [92], 13 tiles over 5 colors by Čulík [44], 14 tiles over 6 colors
by Kari [98], 16 tiles over 6 colors by Ammann [79], and 56 tiles over 12 colors by Robinson
[161]), two stochastic tile sets introduced in computer graphics (8 tiles over 2 colors by Cohen
et al. [41] and a set of 16 tiles over 4 edge colors by Lagae and Dutré [119]), two periodic tile
sets (10 tiles over 4 colors by Wang [204], and the set of 30 tiles over 17 edge colors by Lagae
et al. [121] and Nurmi [145]). In addition, in Fig. A.10, we introduce two tile sets that do not
allow for a valid tiling of the infinite domain.

For all these tile sets, we aimed at generating valid tilings of the respective sizes 20× 20,
25× 25, and 30× 30. The running time of the Gurobi solver was limited by 300 seconds while
running in the single-threaded mode.

The results shown in Table A.1 illustrate that the performance of the decision program
(A.10) surpasses any of the optimization variants. However, it failed four times to find
a feasible solution in the time limit. In these cases, the output of the optimization problems
(A.16, A.19, A.22) provides more usable data. Interestingly, the decision problem (A.10) also
showed to be more efficient in the case of proving that the domain |A| lacks T -tilability.

Comparison of the optimization variants hints that the maximum cover (A.19) and the
maximum adjacency constraint satisfaction problem (A.22) are easier to manage than the
maximum rectangular tiling (A.16). Indeed, generating any smaller rectangular domain
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Figure A.10: New tile sets (a) Finite1 of 7 tiles over 4 colors, and (b) Finite2 of 16 tiles over 16
colors used in our algorithmic tests.
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Tile set Size Dec. prog. (A.10) Max. rect. (A.16) Max. cov. (A.19) Max. CSP (A.22)
Time [s] Objective Time [s] Objective Time [s] Objective Time [s] Objective

Aperiodic1
(11/4) [92]

20× 20 0.130 0 172.836 400 300.052 ∗385 300.079 ∗752
25× 25 99.698 0 300.060 ∗125 300.101 ∗596 300.110 ∗1108
30× 30 300.060 ∗infeasible 300.133 ∗60 300.160 ∗854 300.135 ∗1536

Aperiodic2
(13/5) [44]

20× 20 0.184 0 300.067 ∗300 300.064 ∗399 300.090 ∗688
25× 25 32.383 0 300.116 ∗225 300.071 ∗611 300.135 ∗1174
30× 30 300.051 ∗infeasible 300.096 ∗60 300.147 ∗878 300.168 ∗1539

Aperiodic3
(14/6) [98]

20× 20 14.743 0 300.067 ∗300 300.047 ∗395 300.052 ∗743
25× 25 300.045 ∗infeasible 300.067 ∗75 300.079 ∗612 300.083 ∗1108
30× 30 300.079 ∗infeasible 300.096 ∗90 300.099 ∗873 300.101 ∗1547

Aperiodic4
(16/6) [79]

20× 20 0.189 0 256.778 400 300.072 ∗391 137.843 760
25× 25 0.161 0 300.298 ∗100 300.089 ∗543 300.091 ∗1028
30× 30 0.267 0 300.103 30 300.125 ∗784 300.133 ∗1529

Aperiodic5
(56/12) [161]

20× 20 0.341 0 300.151 ∗20 300.293 ∗350 300.177 ∗616
25× 25 0.562 0 300.234 ∗25 300.429 553 300.230 ∗1017
30× 30 0.619 0 300.297 ∗30 300.613 ∗795 300.360 ∗1521

Stochastic1
(8/2) [41]

20× 20 0.042 0 0.070 400 0.045 400 3.945 760
25× 25 0.059 0 0.085 625 0.067 625 5.711 1200
30× 30 0.081 0 0.204 900 0.094 900 13.035 1740

Stochastic2
(16/4) [119]

20× 20 0.110 0 0.101 400 0.177 400 4.453 760
25× 25 0.163 0 0.155 625 0.276 625 5.429 1200
30× 30 0.228 0 0.221 900 0.430 900 10.194 1740

Periodic1
(10/4) [204]

20× 20 0.085 0 44.474 400 37.095 400 38.462 760
25× 25 0.125 0 300.053 ∗50 168.901 625 300.060 ∗1084
30× 30 0.207 0 300.083 ∗90 300.112 ∗783 300.175 ∗1599

Periodic2
(30/17) [145]

20× 20 0.821 0 195.723 400 300.244 ∗328 262.167 760
25× 25 1.079 0 300.143 ∗25 300.393 ∗508 187.188 1200
30× 30 1.328 0 300.198 ∗30 300.538 ∗733 300.436 ∗1522

Finite1
(7/4)

20× 20 0.046 infeasible 300.028 ∗100 300.029 ∗379 300.033 ∗723
25× 25 0.069 infeasible 300.041 ∗125 300.054 ∗584 300.048 ∗1108
30× 30 0.086 infeasible 300.056 ∗60 300.059 ∗834 300.068 ∗1628

Finite2
(16/16)

20× 20 0.081 infeasible 300.059 ∗60 300.269 ∗323 300.075 ∗682
25× 25 0.125 infeasible 300.084 ∗25 300.120 ∗493 300.124 ∗1027
30× 30 0.179 infeasible 300.120 ∗30 300.171 ∗690 300.135 ∗1525

Table A.1: Benchmark results. Values marked by an asterisk denote a premature termination of
the solver.

remains NP-complete, preventing any polynomial-time approximation algorithm to exist.
On the other hand, both the formulations (A.19) and (A.22) admit a polynomial time
approximation, recall Section A.3.

A.5.2 Heuristic algorithms

Second, we compare the performance of the maximum cover formulation (A.19) with the
heuristic Algorithm A.4 supplied with three different initial coverings, i.e., based on Algorithms
A.1, A.2 and A.3.

Algorithm A.4 ran sequentially. In order to limit the dependence of the heuristic algorithm
on ordering of tiles, we made it stochastic by randomizing edge order in the directed acyclic
graphs. Thus, we evaluated Algorithm A.4 100 times for each of the tested option. The best,
worst, and mean results are listed in Table A.2.

From Table A.2, it follows that the initialization with the cover from Algorithm A.1 is the
most efficient for the tested tile sets—both in terms of speed and performance. The remaining
two initializations seem to be fairly comparable on average. While for Algorithm A.1, at
least 82% tiles were always placed, only more than 60% followed from Algorithm A.2. Using
Algorithm A.3, we obtained at least 70% tiles.

133



A. On bounded Wang tilings .......................................
Tile set Size Alg. A.4 with Alg. A.1 Alg. A.4 with Alg. A.2 Alg. A.4 with Alg. A.3

t [s] min avg max t [s] min avg max t [s] min avg max

Aperiodic1
(11/4) [92]

20× 20 0.338 357 368.99 381 0.752 241 350.87 374 0.728 334 357.56 378
25× 25 0.472 566 576.99 588 1.237 376 550.28 580 1.214 526 556.18 577
30× 30 0.699 815 829.97 845 1.783 544 806.07 838 1.751 784 807.86 830

Aperiodic2
(13/5) [44]

20× 20 0.462 359 370.46 378 0.756 308 360.34 377 0.625 301 342.38 368
25× 25 0.728 559 577.18 592 1.219 442 565.81 584 1.004 470 543.94 580
30× 30 1.080 815 831.93 852 1.641 668 814.39 838 1.581 756 787.72 829

Aperiodic3
(14/6) [98]

20× 20 0.353 361 375.74 387 0.582 340 363.89 381 0.601 353 373.17 385
25× 25 0.566 566 586.71 604 0.903 528 570.58 589 0.955 567 584.40 602
30× 30 0.947 819 846.96 864 1.404 759 825.40 854 1.418 824 846.90 866

Aperiodic4
(16/6) [79]

20× 20 0.307 355 367.20 382 1.026 297 343.01 365 1.069 296 345.38 363
25× 25 0.509 551 572.00 592 1.604 510 537.40 560 1.771 519 543.94 562
30× 30 0.766 803 824.54 849 2.385 757 776.87 799 2.531 752 785.05 810

Aperiodic5
(56/12) [161]

20× 20 0.320 344 360.17 381 1.014 268 342.27 363 1.205 295 333.03 347
25× 25 0.450 544 562.12 589 1.513 399 531.13 568 2.202 495 527.95 547
30× 30 0.730 790 808.30 840 2.488 586 782.18 815 3.032 723 759.31 793

Stochastic1
(8/2) [41]

20× 20 0.144 400 400.00 400 0.132 400 400.00 400 0.164 400 400.00 400
25× 25 0.155 625 625.00 625 0.155 625 625.00 625 0.188 625 625.00 625
30× 30 0.192 900 900.00 900 0.182 900 900.00 900 0.224 900 900.00 900

Stochastic2
(16/4) [119]

20× 20 0.130 400 400.00 400 0.128 400 400.00 400 0.165 400 400.00 400
25× 25 0.158 625 625.00 625 0.157 625 625.00 625 0.197 625 625.00 625
30× 30 0.179 900 900.00 900 0.183 900 900.00 900 0.223 900 900.00 900

Periodic1
(10/4) [204]

20× 20 0.319 342 354.13 378 0.946 298 337.34 352 0.936 304 341.29 354
25× 25 0.529 539 552.72 582 1.497 512 529.03 547 1.406 511 533.52 552
30× 30 0.704 775 796.05 835 2.068 736 761.70 786 1.945 751 771.05 800

Periodic2
(30/17) [145]

20× 20 0.262 361 380.41 397 1.375 313 336.23 353 1.205 283 346.38 365
25× 25 0.412 559 595.54 619 2.232 504 532.26 553 1.858 545 564.73 579
30× 30 0.563 831 858.33 888 3.263 718 761.81 793 2.851 761 800.81 823

Finite1
(7/4)

20× 20 0.291 353 360.06 367 0.660 346 358.55 369 0.764 322 355.54 370
25× 25 0.406 551 561.29 573 0.983 542 557.60 570 1.231 540 554.43 566
30× 30 0.587 795 806.85 821 1.369 782 802.77 814 1.731 776 805.31 820

Finite2
(16/16)

20× 20 0.353 329 344.48 360 0.726 287 331.45 350 0.642 294 327.90 353
25× 25 0.536 513 536.23 549 1.066 494 530.95 547 0.656 507 542.91 559
30× 30 0.856 748 771.18 796 1.783 688 760.92 782 1.667 701 751.80 791

Table A.2: Numerical tests of the maximum-cover heuristic, Algorithm A.4, initialized based on
Algorithms A.1, A.2, and A.3.

When comparing Table A.1 with Table A.2, few patterns emerge. First, the heuristic
algorithm always generates valid tilings if (any of) the stochastic tile sets are used. For
aperiodic and periodic tile sets, Gurobi required considerably longer time to reach the
solutions of a similar quality, but usually surpassed the developed algorithms in the time
limit of 300 s. In the case of Algorithm A.1, it can be seen that the resulting covers are very
competitive to the outputs of (A.19), and also obtained in much shorter times.

A.5.3 Periodic tile packing problem

As the second numerical example, we consider the periodic tile packing problem investigated
in computer graphics applications [120]. Considering a complete edge tile set, the authors
searched for a periodic square valid tiling with each tile from the tile set used exactly once.
Clearly, such tilings not only contain the entire (textural) information stored in individual
tiles but also maintain compatibility with the traditional periodic arrangement.

While Lagae and Dutré [120] proposed a backtracking-based algorithm to generate periodic
packings, we rely here on a solution to the decision program (A.10) supplemented with the
packing (A.34) and fixed periodicity (A.31) constraints. The resulting core times spent in the
search for a single feasible solution (Table A.3) clearly illustrate higher effectiveness of our
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method.

Tile set Time Time
(A.10,A.31,A.34) Lagae and Dutré [120]

Stochastic edge (16/2) < 1 sec. < 1 sec.
Stochastic edge (81/3) < 1 sec. < 1 sec.
Stochastic edge (256/4) 9 sec. 140 days
Stochastic edge (625/5) 4 days -

Table A.3: Periodic tile packing problem: comparison of core time needed to find a single feasible
solution by integer programming (second column) and by the backtracking method (third column)
proposed in Lagae and Dutré [120] to find a feasible solution.

Figure A.11: Periodic packing of a complete set of 625 tiles over 5 colors.

A.5.4 Unusable tile in the Knuth tile set

One of the oldest aperiodic tile sets, containing 92 tiles over 26 colors, is due to Knuth [103,
Exercise 5 in Section 2.3.4.3]. Generating valid tilings from the Knuth tile set using the
decision program (A.10) together with the tile-based boundary conditions, recall Section
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A.3.5.1, led to an unexpected observation that enforced placement of the βUS tile makes the
program (A.10) infeasible under certain circumstances.

After a careful investigation, it indeed turned out that there does not exist any 2× 2 valid
tiling with the βUS tile placed at (2, 2). Moreover, there also does not exist any 4× 3 valid
tiling with the βUS tile placed at (3, 1). Thus, using the maximum-cover optimization variant
(A.19) and the βUS tile enforced at the respective coordinate, there exist exactly 31 optimal
solutions with the objective function equal to 3, and 498 optimal solutions with the objective
function equal to 11, respectively.

Consequently, the βUS tile can appear only in the strip of at most 3 consecutive infinite
columns, and does not allow for simply-connected valid tilings of the infinite plane. In private
communication, Knuth confirmed the issue, and discovered another 5 tiles that are unnecessary
but usable in infinite valid tilings, allowing for a possible reduction of the tile set to 86 tiles.
For more information, we refer the interested reader to Knuth’s discussion about the reduced
tile set [105, Exercise 221 in Section 7.2.2.1].

A.5.5 Periodicity of the Lagae corner tile set

Analogously to the Wang tiles, with the connectivity information stored in the edges, Lagae
and Dutré [119] introduced the corner tiles with colored corners. As Wang [204] noted in
1975, these formalisms are interchangeable if the (infinite) domino problem is considered,
because every set of Wang tiles can be represented by sets of corner tiles with greater or equal
cardinality [121]. However, the corner tiles avoid the so-called corner problem of Wang tiles
in computer graphics [119], motivating Lagae et al. [121] to develop conversion methods for
transforming Wang tiles to the corner tiles, and vice versa.

A direct product of these conversion methods are aperiodic tile sets of the corner tiles [121].
Among other well-settled approaches, two of the methods—called horizontal, and vertical
translations—were used to convert the Ammann set of 16 Wang tiles over 6 colors [79] to the
set of 44 corner tiles over 6 colors, and the resulting isomorphic corner tile sets were claimed
aperiodic [121]. In 2016, Nurmi [145] noticed that, in this set, 14 tiles are unusable in infinite
valid tilings, and reduced the corner tile set to 30 tiles over 6 colors. Quite surprisingly, neither
Lagae et. al. nor Nurmi have recognized that the tile set forms a torus, and is therefore
periodic! To this goal, we show the construction of the smallest periodic pattern next.

Instead of developing a new formulation for another type of tiles, we first notice that the
corner tiles are actually a subset of the Wang tiles, and therefore every set of corner tiles is
represented equivalently by a set of Wang tiles of the same cardinality, see Appendix A.A.
For these tiles, we solve the rectangular tiling formulation (A.16) with periodic boundary
conditions (A.32) and an objective function to find the smallest tiling (A.33). As its output,
we receive the optimal value of 6 and 12 optimal periodic rectangular tilings of the size 2× 3.
Not surprisingly, all these solutions follow from only two periodic patterns shown in Fig. A.12
by translations over the infinite plane.

Having revealed the smallest periodic solutions, it remains to be shown why the Lagae
conversion methods failed. To this goal, Lagae et al. [121] mentioned that their methods lack
bijectiveness in general but assumed it is not the case here. Therefore, we believe it is useful
to state the conditions under which the methods are bijective, and show that they are not
satisfied for the Ammann tile set.
Lemma A.7. The horizontal translation method of Lagae et al. [121] is bijective iff the dual
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Figure A.12: Rectangular periodic valid tilings. Translating a 2×3 rectangle over the infinite valid
tiling generated from (a) or (b) leads to 6 different periodic patterns of the same size. Consequently,
the tile set allows for 12 periodic rectangles of the size 2× 3.

transducer graph GT,v of the input tile set T does not contain any parallel arcs.
Proof. The horizontal translation method is formally a mapping T × T 7→ Tcorner that
generates ∀(p, q) ∈ T 2 : ce

p = cw
q a corner tile (cn

p , c
s
p, c

s
q, c

n
q ). To be bijective, the cardinality of

the output needs to be equal to the cardinality of the input, and the mapping has to produce
unique output for each input. Consequently, all the tiles p ∈ T in the original tile set must
be uniquely determined by cn

p and cs
p, as the color codes of the vertical edges of T are avoided

in the construction of Tcorner.
Let us now consider that the dual transducer graph contains a parallel arc connecting the

state cn with cs. Then, there may exist two tiles colored by (cn, cw
p , c

s, ce
p) and (cn, cw

q , c
s, ce

q)
that are indistinguishable in Tcorner, which contradicts the bijection. For the other option,
if the transducer graph does not contain any parallel arcs, then each cn

q , cs
q identifies with

a single arc labeled by cw
q |ce

q, i.e., with a single tile, which completes the proof.
Similarly to Proposition A.7, we also formulate the conditions for bijection of the vertical

translation method:
Lemma A.8. The vertical translation method of Lagae et al. [121] is bijective iff the transducer
graph GT,h of the input tile set T does not contain any parallel arcs.
Proof. Proof as in Proposition A.7 with the tile set rotated by 90 degrees.
Remark A.9. If the input tile set is the Wang tile representation of the corner tile set, then
both the horizontal and vertical translations on this set are bijective.

For the Ammann tile set, we obtain the transducer graph GT,h = GT,v shown in Fig. A.13.
Clearly, there exist parallel arcs 1 → 0. Moreover, using the same approach, we can show
that the horizontal translation method also fails for the Robinson tile set of 24 tiles over
24 colors [79], contrary to the claims in [121], and the corresponding corner tile set is also
periodic.

A.6 Conclusions

In this contribution, we investigated methods generating bounded Wang tilings for arbitrary
tile sets. To this goal, we developed an NP-complete binary linear programming formulation
(A.10), as well as its NP-hard optimization variants relaxing some of the initial assumptions:
tilability of the entire rectangular domain leading to the maximum rectangular tiling formula-
tion (A.16), simple-connectedness to the maximum-cover program (A.19), and tiling validity
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Figure A.13: Transducer graph of the Ammann set of 16 Wang tiles over 6 colors.

to the maximum constraint satisfaction problem (A.22). In addition, we supplemented these
formulations enabling for a control over individual tiles and their colors, included a tile-packing
constraint to enable generation of periodic tile packings, and introduced the variable-sized
periodic constraints to facilitate a computation of the smallest periodic patterns.

Motivated by the NP-hardness of the optimization formulations, we developed simple yet
efficient heuristic algorithms for the maximum-cover variant (A.19). These algorithms rely on
the fact that generating the maximum row cover is equivalent to finding the shortest path in
a directed acyclic graph. Moreover, well-chosen costs of the graph edges also maintain color
matches with the neighboring rows. Thus, in the simplest case, a heuristic solution follows
from a sequential generation of row-cover tilings. Moreover, with simple modifications to the
row processing order, we showed how to provide a 1/2 approximation factor for general tile
sets and a 2/3 guarantee for tile sets whose transducer graphs are cyclic.

We illustrated the effectiveness of these methods on a collection of 11 tile sets. Generating
tilings of the respective sizes 20 × 20, 25 × 25, and 30 × 30 revealed that the decision
program (A.10) is the most efficient for our test problems. However, when a time limit is
imposed or if the tile set does not allow for a valid tiling of the entire domain, then the
maximum cover (A.19) and maximum adjacency constraint satisfaction problems (A.22)
appear to be similarly efficient. The remaining formulation—maximum rectangular tiling
(A.16)—exhibits the worst performance as it is NP-hard to find any rectangular tilings except
for a single row or column.

The usefulness of integer programming extensions was demonstrated by means of three
illustrative problems: showing a better solution efficiency to the tile packing problem than
the backtracking approach of Lagae and Dutré [120], revealing an unusable tile in the Knuth
[103] tile set, and proving that the Lagae et al. [121] tile set of corner tiles lacks aperiodicity.
For the latter case, we also included an explanation why the tile set construction method
failed.

Furthermore, we also tested the performance of developed heuristic algorithms against the
outputs generated by Gurobi optimizer solving the problem (A.19) for 300 s. The testing
revealed that the simplest setup of Algorithm A.4 initialized with the cover generated by
Algorithm A.1 produces the best results that are obtained faster yet in most cases competitive
with the output of Gurobi. Somewhat surprisingly, the variants with guaranteed lower bounds
exhibited slightly worse performance on average.

Having summarized our contributions, we believe that this chapter has not only founded
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new methods that can possibly be applied in materials engineering, but also a simple and
quite extensible framework to verify theoretical results in Wang tilings.

A.A Corner tiles represented as Wang tiles

Each corner tile in the corner tile set is defined by a quadruple of color codes (cnw
k , csw

k , c
se
k , c

ne
k ),

with cnw
k , csw

k , cse
k , and cne

k denoting the colors of the northwest, southwest, southeast, and
northeast corner of the k-th tile. Similarly to Wang tiles, corner tiles are assembled such that
the color codes at the adjoining corners match.

This is, however, also maintained if we denote their edges by labels in the form of tuples of
the corner codes, (cnw

k , cne
k ), (cnw

k , csw
k ), (csw

k , c
se
k ), and (cne

k , c
se
k ), each of which denotes a single

edge label of the north, west, south, and east edge, respectively. Consequently, we can
compute a unique color codes as

cn
k = cnw

k + cne
k nvc, (A.38a)

cw
k = cnw

k + csw
k nvc, (A.38b)

cs
k = csw

k + cse
k nvc, (A.38c)

ce
k = cne

k + cse
k nvc, (A.38d)

where nvc stands for the number of colors used in the corner tile set. Graphical illustration of
the corner-edge tile equivalence is shown in Fig. A.14.

cnw
k

csw
k cse

k

cne
k ⇔

(cnw
k , cne

k )

(cnw
k , csw

k )

(csw
k , cse

k )

(cne
k , c

se
k )

Figure A.14: A corner tile expressed using the edge formalism.
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