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Doc. Ing. Jiří Kléma, PhD.

SUPERVISOR-SPECIALIST:
prof. Ing. Filip Železný, PhD.

[ October 18, 2021 at 17:12 – classicthesis ]



František Malinka: Semantic Biclustering, Doctoral Thesis
Ph.D. Programme:
Electrical Engineering and Information Technology
Branch of study: Artificial Intelligence and Biocybernetics
© September 2021

[ October 18, 2021 at 17:12 – classicthesis ]



A B S T R A C T

This thesis focuses on the problem of finding interpretable and predic-
tive patterns, which are expressed in the form of biclusters, with an
orientation to biological data. The presented methods are collectively
called semantic biclustering, as a subfield of data mining. The term
semantic biclustering is used here because it reflects both a process
of finding coherent subsets of rows and columns in a 2-dimensional
binary matrix and simultaneously takes into account a mutual se-
mantic meaning of elements in such biclusters. In spite of focusing
on applications of algorithms in biological data, the developed algo-
rithms are generally applicable to any other research field, there are
only limitations on the format of the input data.

The thesis introduces two novel, and in that context basic, approaches
for finding semantic biclusters, as Bicluster enrichment analysis and
Rule and tree learning. Since these methods do not exploit the native
hierarchical order of terms of input ontologies, the run-time of algo-
rithms is relatively long in general or an induced hypothesis might
have terms that are redundant. For this reason, a new refinement op-
erator has been invented. The refinement operator was incorporated
into the well-known CN2 algorithm and uses two reduction proce-
dures: Redundant Generalization and Redundant Non-potential, both of
which help to dramatically prune the rule space and consequently,
speed-up the entire process of rule induction in comparison with the
traditional refinement operator as is presented in CN2. The reduction
procedures were published as an R package that we called sem1R.

To show a possible practical usage of semantic biclustering in real bi-
ological problems, the thesis also describes and specifically adapts the
algorithm for two real biological problems. Firstly, we studied a prac-
tical application of sem1R algorithm in an analysis of E-3 ubiquitin
ligase in the gastrointestinal tract with respect to tissue regeneration
potential. Secondly, besides discovering biclusters in gene expression
data, we adapted the sem1R algorithm for a different task, concretely
for finding potentially pathogenic genetic variants in a cohort of pa-
tients.

Keywords: biclustering, symbolic machine learning, ontology, taxon-
omy, gene expression, enrichment analysis, background knowledge,
semantics
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A B S T R A K T

Tato disertační práce se zaměřuje na problém hledání interpretovatel-
ných a prediktivních vzorů, které jsou vyjádřeny formou dvojshluků,
se specializací na biologická data. Prezentované metody jsou souhrnně
označovány jako sémantické dvojshlukování, jedná se o podobor dolování
dat. Termín sémantické dvojshlukování je použit z toho důvodu, že
zohledňuje proces hledání koherentních podmnožin řádků a sloupců,
tedy dvojshluků, v 2-dimensionální binární matici a zároveň bere
také v potaz sémantický význam prvků v těchto dvojshlucích. Ačko-
liv byla práce motivována biologicky orientovanými daty, vyvinuté
algoritmy jsou obecně aplikovatelné v jakémkoli jiném výzkumném
oboru. Je nutné pouze dodržet požadavek na formát vstupních dat.

Disertační práce představuje dva originální a v tomto ohledu i zák-
ladní přístupy pro hledání sémantických dvojshluků, jako je Bicluster
enrichment analysis a Rule a tree learning. Jelikož tyto metody nevyuží-
vají vlastní hierarchické uspořádání termů v daných ontologiích, obecně
je běh těchto algoritmů dlouhý či může docházet k indukci hypotéz
s redundantními termy. Z toho důvodu byl vytvořen nový operá-
tor zjemnění. Tento operátor byl včleněn do dobře známého algo-
ritmu CN2, kde zavádí dvě redukční procedury: Redundant General-
ization a Redundant Non-potential. Obě procedury pomáhají dramat-
icky prořezat prohledávaný prostor pravidel a tím umožňují urychlit
proces indukce pravidel v porovnání s tradičním operátorem zjem-
nění tak, jak je původně prezentován v CN2. Celý algoritmus spolu
s redukčními metodami je publikován ve formě R balíčku, který jsme
nazvali sem1R.

Abychom ukázali i možnost praktického užití metody sémantick-
ého dvojshlukování na reálných biologických problémech, v diser-
tační práci dále popisujeme a specificky upravujeme algoritmus sem1R
pro dvě úlohy. Zaprvé, studujeme praktickou aplikaci algoritmu sem1R
v analýze E-3 ubikvitin ligázy v trávicí soustavě s ohledem na poten-
ciál regenerace tkáně. Zadruhé, kromě objevování dvojshluků v dat-
ech genové exprese, adaptujeme algoritmus sem1R pro hledání poten-
ciálně patogenních genetických variant v kohortě pacientů.

Klíčová slova: dvojshlukování, symbolické strojové učení, ontologie,
taxonomie, genová exprese, analýza obohacení, postranní znalost, sé-
mantika
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1
I N T R O D U C T I O N

Biclustering has become a very popular technique for discovering lo-
cal and hidden patterns. Biclustering was first introduced in 1972 by
Hartigan [70] and was called direct clustering. Recently, it has become
widely applied to biological data [178] in general and gene expression
data in particular. In this field, the main objective is to identify a sub-
set of genes that exhibit coherent expression values across subsets of
experimental conditions. These two-fold patterns are known to pro-
vide a local (and thus better) representation for genes with multiple
functions regulated by several different transcription factors. The first
biclustering application to the area of gene expression understanding
was introduced by Cheng and Church [20] in 2000. Many algorithmic
improvements and applications appeared later [102].

Terminology that refers to the same problem formulation is am-
biguous, the biclustering is also called co-clustering, bi-dimensional
clustering, block-clustering, two-way clustering or subspace cluster-
ing. The task of biclustering is an NP-hard problem as proved by
Tanay et al. [160]. Simultaneously, it is known that one-way cluster-
ing is also an NP-hard problem [63]. Nevertheless, proposing a new
effective heuristic function for biclustering is considerably more diffi-
cult than for one-way clustering.

As we outlined above, the bicluster is defined by a subset of genes
and by a subset of experimental conditions. This biset-based descrip-
tion allows for arbitrary selection of rows and columns. In this the-
sis, we propose to address biclusters in a different way too. The ap-
proach that we call semantic biclustering defines a bicluster as a set of
terms from the given prior knowledge where each term is associated
with a gene or an experimental condition; thereby the bicluster is de-
termined. In other words, the semantic biclustering utilizes a prior
knowledge in the process of seeking homogeneous biclusters. This
could be very helpful in a phase of finding biological interpretations,
in revealing of unknown relationships across genes and experimental
conditions. In addition, the necessary similarity in gene and sample
description can help to reduce noise that is inherently present in the
gene expression data and often leads to discovering biclusters that
are too fragmented [65].

1.1 problem statement

When discussing biclustering, the first issue that has to be addressed
is the quality of biclusters. Although it may not seem difficult at first
glance, the noise inherently present in the data makes the task more
challenging. Secondly, a way of seeking biclusters and their forms
have to be considered as well.

1
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2 introduction

Extending the conventional biclustering by prior knowledge brings
new challenges to the task that we call semantic biclustering. Here,
the essential decision that has to be made first is a definition of a hy-
pothesis form in which biclusters are described. Simply put, a more
complex form of hypothesis allows to describe more complex pat-
terns in data. On the other hand, the more complex form of hypoth-
esis might be problematic in interpretation and validation of results,
especially in biological questions. As an example, we could mention
first-order logic which enables to use predicates or function symbols,
among other things, in the hypothesis form. In contrary, propositional
logic does not provide these elements, thus making the computa-
tional runtime more feasible in general. In this thesis, we focus on
an easily interpretable form of hypothesis. Concretely, only the con-
junction is considered. Even under this simplification, some heuristics
need to be applied for seeking semantic biclusters.

1.2 main contributions

The main contributions of this thesis are novel algorithms for find-
ing biclusters in a gene expression data that take into account both
the gene expression and the semantic similarity of genes/conditions.
Although the algorithms focus on the biological domain, they are ap-
plicable to any other domain that satisfies the required data format
and hold all presented assumptions.

Fundamental theoretical aspects of semantic biclustering and two
initially proposed approaches are introduced at the beginning of this
thesis. Models induced especially by tree learning have usually very
complex forms with high redundancy, which complicates the further
process of data analysis like interpretation or hypothesis validation.
To avoid potential term redundancy in such hypotheses, a new refine-
ment operator has been formulated. This approach, which integrates
the ontology-based refinement operator with CN2 algorithm, is pub-
lished as R package and written in C++. The package is called sem1R
and reports rapid runtime speed-up in comparison to the traditional
refinement operator used in CN2 algorithm.

With certain adjustments, the package sem1R has been used in the
field of ophthalmology for finding potential pathogenic genetic vari-
ants. Another real example of the useability of the proposed package
is manifested in an analysis of E-3 ubiquitin ligase in the gastrointesti-
nal tract.

Besides the semantic biclustering algorithms and their applications
in various fields of biology, this thesis also studies a particular part of
data preprocessing phase in a specific area of research. Concretely,
two algorithms for approximating the correspondence problem of
large-scale untargeted liquid chromatography–mass spectrometry (LC-
MS) experiments are introduced. This method enables to preprocess
considerable numbers of LC-MS experiments easily and then report
the final peak (feature) table as a 2-dimensional matrix which can be
potentially used as the input for the biclustering algorithms.
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1.3 thesis organization

This thesis is organized as follows. In Chapter 2, we introduce the nec-
essary basic formal definitions for general n-dimensional clustering
and then, we focus on the more specific case, 2-dimensional cluster-
ing, where we mention related terms in the context of gene expression
analysis. Moreover, we review structures of biclusters and the most
frequent types of biclusters suitable for general usage or specifically
suitable for gene expression data. In Chapter 3, we introduce prior
knowledge and its widespread representation in biology - ontology.
In addition, we mention some limitations of Gene Set Enrichment
Analysis, the method using the semantics in the form of gene anno-
tations. That motivated us to this work. In Chapter 4, we spread out
the definition of biclustering to the semantic biclustering and subse-
quently introduce two novel approaches that are tested on real gene
expression datasets. Since the proposed tree and rule learning meth-
ods usually induce highly complex and redundant rules which com-
plicate the hypothesis interpretation, in Chapter 5 we introduce a new
refinement operator which eliminates these issues and consequently
dramatically speeds-up runtimes of algorithm. The whole package is
called sem1R. The next two chapters, Chapter 6 and 7, describe ap-
plications of sem1R in two different research areas. Concretely, Chap-
ter 6 describes the application of sem1R on data of the gastrointestinal
tract. In Chapter 7, we describe necessary adaptations of sem1R for
finding common potentially pathogenic genetic variants in cohorts
of patients. In Chapter 8, we propose a novel method for finding
semantic biclusters as a combination of a multi-objective optimiza-
tion technique and finding descriptions of biclusters using sem1R. In
Chapter 9, we introduce an approach for preprocessing a considerable
number of large-scale untargeted liquid chromatography–mass spec-
trometry experiments. The final outcome of the proposed approach is
a 2-dimensional matrix which might be utilized as an input for the se-
mantic biclustering task. Finally, Chapter 10 concludes the thesis. In
addition, the last chapter stores documentation pages of developed
and published R packages.

[ October 18, 2021 at 17:12 – classicthesis ]



[ October 18, 2021 at 17:12 – classicthesis ]



2
B I C L U S T E R I N G

In this section, we introduce a general definition of n-dimensional ma-
trix with the elements being real numbers R. Furthermore, we focus
on a more specific version of the matrix, 2-dimensional matrix. This
type of matrices is frequently used in attribute-value machine learn-
ing for its simplicity and often serves as the standard setting [14].
Then, we formulate a definition of biclustering and compare it with
standard clustering, including its complexity. Besides, we review dif-
ferent types of biclusters and their structures with some correspond-
ing well-established biclustering algorithms.

Many clustering methods have to deal with observed data, often-
times in their rectangular form, 2-dimensional data matrix. Concur-
rently, for biological data it is typical two-way two-mode matrix de-
picted in Table 1. According to [169], two-way concept refers two-
dimensional space and two-mode reports two-way data where the first
and second dimensions refer to distinct sets of entities. For these two
particular reasons, we exclusively restrict to only 2-dimensional ma-
trices. A higher dimensional matrix is disregarded in the thesis.

Consider a new 2-dimensional matrixM that is defined by two sets
R = {r1, r2, . . . , rm} and C = {c1, c2, . . . , cn} that denote a set of rows
and columns, respectively. Moreover, assume that matrix M contains
m rows, n columns and each elementmi,j ∈ R corresponds to a value
representing the matrix element in the ith row and jth column.

From these assumptions, we can define three types of clusters on
the most general level as cluster of rows, cluster of columns, and cluster
of rows and columns known as a bicluster. These types were introduced
in [102] and they are listed and briefly described below. For more
details, we refer to the original paper [102].

A row cluster is a submatrix of M with a subset of rows (I ⊆ R)
defined over all columns C. In other words, a row cluster has a size
of k×n where k 6 m.

Similarly, a column cluster is a submutrix of M with a subset of
columns (J ⊆ C) defined over all rows R. In other words, a column
cluster has a size of m× k where k 6 n.

Finally, a cluster of rows and columns (known as a bicluster) MIJ is
a submatrix of M defined by a subset of rows (I ⊆ R) and a subset
of columns (J ⊆ C). In contrast to the cluster of rows and cluster of
columns, the size of bicluster kr × kc where kr 6 m and kc 6 n de-
pends on two variable values, which are selected based on specific
characteristics of homogeneity. Intuitively, the procedure of selecting
the proper size of a bicluster is non-trivial. For this reason, the compu-
tational complexity of a task of the biclustering is much higher than
in a task of the one-way clustering of rows or columns. The problem
of complexity is discussed in more detail in Section 2.1.

5
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6 biclustering

For the sake of clarity, we stress the main differences between well-
known standard one-way clustering and biclustering. The standard
clustering derives a subset of rows (columns) according to the qual-
ity of cluster homogeneity throughout all columns (rows). In other
words, the final quality of cluster is generally measured as a quantifi-
cation of similar behavior across all rows (columns). However, there
exists an extreme hypothetic situation, where the overall quality of
cluster can be significantly influenced by only one element with ex-
tremely different value. For example, totally different gene expression
values (an outlier) in one sample of gene expression data can dramati-
cally influence the overall homogeneity of genes in the cluster. In [102]
say that clustering derives a global model. On the other hand, biclus-
tering produces a local model because this concept allows excluding
the row, column, or specifically the gene from the previous example
that significantly decreases the overall quality of homogeneity. The
exact characteristics of homogeneity will be discussed in more detail
in Section 2.2.

Condition 1 . . . Condition j . . . Condition n

Gene 1 m1,1 . . . m1,j . . . m1,n

Gene . . . . . . . . . . . . . . . . . .

Gene i mi,1 . . . mi,j . . . mi,n

Gene . . . . . . . . . . . . . . . . . .

Gene m mm,1 . . . mm,j . . . mm,n

Table 1: Gene Expression Data MatrixM with m rows and n columns.

2.1 problem of biclustering complexity

The biclustering complexity specifically depends on the merit func-
tion used to measure the quality of biclusters, where the vast major-
ity of algorithms solving decision variants of this problem are NP-
complete [102].

For exact mathematical proof, we need to utilize a procedure to
transform a biclustering problem defined by 2-dimensional matrix
onto a weighted bipartite graph. This procedure is very straightfor-
ward, we assume the following. A graph G = (V ,E), where V is the
set of vertices and E is the set of edges, is a bipartite graph if and only
if the set of vertices V can be divided into two disjoint sets VR and VC:
V = VR ∪VC and VR ∩VC = ∅ and every edge e ∈ E connects a vertex
in VR to one vertex in VC. Suppose a 2-dimensional matrix B = (R,C)
that can be transformed onto weighted bipartite graph G if each row
r ∈ R corresponds to a node nir ∈ VR and each column c ∈ C corre-
sponds to a node nic ∈ VC. The weight of edge eir,ic ∈ E between
the nodes nir and nic has a value corresponding to the value of el-
ement in the intersection between row ir and column ic in M. Note
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that weight of edges represents a level of expression, in the case of
gene expression data.

For the sake of simplicity, we further assume that matrix M, de-
fined above, is a binary matrix, where every element mi,j has a value
0 or 1. Then a bicluster corresponds to a biclique in the correspond-
ing bipartite graph [102]. In [126], the authors prove that maximum
edge biclique problem, the problem solving whether bipartite graph G
contains a biclique with at least K edges, is NP-complete. Note that
maximum edge biclique problem is equivalent to finding a maximum
size bicluster [102]. In addition, the maximum edge biclique problem is
NP-complete also if each edge of G has positive weight implies that
the matrix may not be binary necessarily [160]. Given this, most of
the well-established algorithms utilize a heuristic function to find an
appropriate bicluster since an exhaustive search of the space of solu-
tions may be infeasible.

2.2 types of biclusters

At the beginning of this chapter, we introduced the term bicluster
as a subset of rows that exhibit similar behavior across a subset of
columns, and vice versa. However, the main question is still unan-
swered: how to determine the quality of bicluster? How to recognize
that bicluster elements exhibit satisfactorily similar pattern? Or sim-
ply, how to find biclusters with regards to a specific application do-
main?

In order to get a correct answer, firstly, we define a function h :

MIJ → R, where the input of h is a bicluster of rows I ⊆ R and
columns J ⊆ C and the real value, as an output of the function h, rep-
resents the overall bicluster quality. Based on the form of function h,
we identify the following classes of biclusters as are presented in [102,
131]:

1. Biclusters with constant values.

2. Biclusters with constant values on rows or columns.

3. Biclusters with coherent values.

4. Biclusters with coherent evolutions.

Several variations of the first four mentioned bicluster classes are
depicted in Figure 1 that is taken from [102]. The first three classes
evaluate the quality of bicluster based on the numerical values in
data matrix. These behaviors can be observed on the rows, columns,
or on both of them, see Figures 1(a), 1(b), 1(c), 1(d), and 1(e). On the
other hand, biclusters with coherent evolutions view the elements in
the data matrix as symbols. These symbols can represent: nominal
values, as in Figures 1(f), 1(g), and 1(h); given order, as in Figures 1(i);
or positive and negative changes relative to a normal value, as in
Figure 1(j) [102].
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1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

2.0 2.0 2.0 2.0

3.0 3.0 3.0 3.0

4.0 4.0 4.0 4.0

1.0 2.0 3.0 4.0

1.0 2.0 3.0 4.0

1.0 2.0 3.0 4.0

1.0 2.0 3.0 4.0

1.0 2.0 5.0 0.0

2.0 3.0 6.0 1.0

4.0 5.0 8.0 3.0

5.0 6.0 9.0 4.0

1.0 2.0 0.5 1.5

2.0 4.0 1.0 3.0

4.0 8.0 2.0 6.0

3.0 6.0 1.5 4.5

(a) (b) (c) (d) (e)

S1 S1 S1 S1

S1 S1 S1 S1

S1 S1 S1 S1

S1 S1 S1 S1

S1 S1 S1 S1

S2 S2 S2 S2

S3 S3 S3 S3

S4 S4 S4 S4

S1 S2 S3 S4

S1 S2 S3 S4

S1 S2 S3 S4

S1 S2 S3 S4

70 13 19 10

49 40 49 35

40 20 27 15

90 15 20 12

↗ ↗ ↘ ↗

↘ ↘ ↗ ↘

↗ ↗ ↘ ↗

↘ ↘ ↗ ↘

(f) (g) (h) (i) (j)

Figure 1: Examples of different types of biclusters. (a) Constant biclus-
ter, (b) constant rows, (c) constant columns, (d) coherent values
(additive model), (e) coherent values (multiplicative model), (f)
overall coherent evolution, (g) coherent evolution on the rows,
(h) coherent evolution on the rows, (i) coherent evolution on the
columns, and (j) coherent sign changes on rows and columns.
Taken from [102].

Here, we briefly introduce only the first type of bicluster because
it is the closest to semantic biclustering. For more details and descrip-
tions, we refer to the original articles [102, 131].

2.2.1 Biclusters with constant values

One of the most straightforward approaches is to find a bicluster or
several biclusters which are identified based on a constant value. In
this case, we assume that the similar values in 2-dimensional matrix
imply similar behavior across the corresponding rows and columns.

We define a perfect constant bicluster [1] as a submatrixMIJ of matrix
Mwhere all elements in perfect bicluster are equal to a constant value
π:

∀i ∈ I,∀j ∈ J :mi,j = π.

This definition of perfect constant bicluster is useful especially for
binary matrix, because for most cases the π value is equal to con-
stant value 1 indicating the interesting behavior (e.g. gene expression).
On the other hand, this definition is not appropriate for matrix con-
taining real values, because constant biclusters are usually masked
by noise. This means that the potential constant bicluster should be
rather identified as π+ ηij, where ηij represents the noise associated
with the value π of mij. Given this, we can say that the evaluation
function h finding constant biclusters can be represented by the vari-
ability. Hartigan [70] published one of the first biclustering algorithms
(originally called direct clustering), although it was not applied to ge-
netic data. The algorithm is based on the splitting approach, where
2-dimensional matrix is partitioned into a set of biclusters according
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2.3 structures of biclusters 9

to the quality of each bicluster MIJ. Variance is used as the evaluation
function h [102, 131]:

VAR(MIJ) =

|I|∑
i=1

|J|∑
j=1

(mi,j − M̄IJ)
2,

where M̄IJ is the mean of all elements in the biclusterMIJ. In order to
avoid that the total number of biclusters would be equal to the total
number of elements in matrix, because, of course, variance will be
equal to zero, Hartigan proposed restriction to the optimal K number
of biclusters. The algorithm stops when the matrix is splitted into
K biclusters with the final quality expressed as the overall variance
across all K biclusters [102]:

VAR(MIJ)K =

K∑
k=1

|I|∑
i=1

|J|∑
j=1

(mi,j − M̄IJ)
2.

In this subchapter, we demonstrated the key problems that need to
be dealt with. The function h must reflect the presence of noise that is
inherently present in data and the proper size and the total number
of biclusters as well. Concerning semantic biclustering, these issues are
addressed in the following chapters.

2.3 structures of biclusters

The second aspect, which is necessary to take into consideration when
the algorithm is selected, is a type of structure of discovered bicluster.
Choosing the bicluster form should be discussed with respect to the
connection with a domain of application. For example, overlapping
biclusters is the more appropriate type for gene expression analysis
because it reflects the specific property that many genes may belong
to several biclusters depending on their influence in the different bio-
logical process [55]. There exists a lot of proposed algorithms utilizing
the various restrictions on the form of bicluster during a process of
its constructing in the task of discovering hidden patterns in gene ex-
pression analysis. Given [102], we can classify the fundamental types
of biclusters in the following categories:

1. single bicluster,

2. exclusive row and column biclusters,

3. exclusive-rows biclusters,

4. exclusive-columns biclusters,

5. overlapping biclusters without restriction.

The types of biclusters are graphically depicted in Figure 2. In Fig-
ure 2(a) is shown only one bicluster that is highlighted by gray color.
Of course, the original positions of rows and columns do not pro-
duce the compact bicluster as in Figure 2(a). For this visualization, it
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10 biclustering

Figure 2: Various types of bicluster. (a) single bicluster, (b) exclusive row
and column bicluster, (c) exclusive rows biclusters, (d) exclusive
columns biclusters, (e) overlapping biclusters without restriction.

is usually necessary to properly rearrange the rows and columns of
the original data matrix.

Firstly, assume that the rows can belong only to one bicluster, while
the appearance of columns in biclusters is not restricted, so columns
can belong to several biclusters. This structure, which is called exclusive-
rows, is presented in Figure 2(c). This structure was used in work [144]
and [161].

Not surprisingly, exclusive-columns bicluster depicted in Figure 2(d),
where rows can belong to several biclusters, can be obtained by apply-
ing the same algorithms as for exclusive-rows, but with the opposite
orientation of matrix.

Exclusive row and column bicluster in Figure 2(b) is a combina-
tion of exclusive row and column types meaning that all rows and
all columns in the matrix belong exclusively to one of all expected
biclusters.

The most general structure is shown in Figure 2(e), where restric-
tions, such as overlapping biclusters or exclusiveness of rows or columns,
are not assumed generally. This general structure was used in work [20],
[58], [161], [9], [119], [160], or [179].

In that context, semantic biclustering focuses on the most general
type of biclusters, i.e., overlapping biclusters without restriction. This
type enables to identify overlapping biclusters which are desirable
for our primary datasets – gene expression datasets. We note that
the task of semantic biclustering is defined over the binary matrix,
therefore, all biclusters might be identified according to the constant
value 1.
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3
S E M A N T I C S I N G E N E E X P R E S S I O N D ATA

In this chapter, we briefly outline a form of the background knowl-
edge representing the semantics in biological data, the ontologies.
Subsequently, we adduce a very popular method, Gene Set Enrich-
ment Analysis (GSEA) [156], which utilizes the semantics for reveal-
ing interesting hypotheses from gene expression data. In this case,
ontologies are not used, but only gene sets. In summary, the method
is the standard in gene expression analysis. Finally, we discuss lim-
itations in the form of hypothesis constructed by GSEA and outline
an extension of the form of hypothesis which eventually leads to our
main topic of the thesis, the semantic biclustering.

Nowadays, omics data analysis that integrates semantics in the
form of external prior knowledge with raw measurements is becom-
ing more and more popular in computational biology [125, 136, 155].
A typical example of integrative gene expression data analysis may
deliver a direct link between a phenotype and existing annotation
terms at different levels of generality. The integration helps scien-
tists to interpret gene expression data easier because it can reveal
gene sets that share common biological properties. Semantic data are
stored in databases, oftentimes in an ontology format. In this area,
an important role is played by The Open Biological and Biomedi-
cal Ontology (OBO) Foundry [145], which provides validation and
assessment of ontologies to ensure their interoperability. Dozens of
ontologies from various biological domains can be downloaded from
http://www.obofoundry.org/.

3.1 ontologies

The ontologies in OBO format consist of a set of terms (or classes or
concepts) and relationships between them. The formal definition of
ontology and associations between ontology terms and some external
elements, oftentimes genes, are elaborated in Section 5.1. A graphical
representation of a small subset of Gene Ontology [3, 29] is shown in
Figure 3. The example shows three terms: peptidyl-amino acid modifi-
cation, negative regulation of kinase activity, and signal transduction and
the more general terms with the corresponding relationships.

3.2 gene set enrichment analysis

One of the most popular methods that works with semantics and
employs gene annotations to interpret gene expression data is enrich-
ment analysis. GSEA represents one of its most frequently used imple-
mentations. The enrichment analysis identifies a list of significantly
enriched ontological terms that are associated with the given set of

11
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12 semantics in gene expression data

Figure 3: An example of a small subset of terms and their relationships that
stems from Gene Ontology. The figure was plotted using OBO-
Edit 2.0 [36].

differentially expressed genes. To discover a certain molecular func-
tion or biological process that is shared over the set of differentially
expressed genes, Gene Ontology is an appropriate and often used
annotation database. In addition, finding enriched biological path-
ways in gene expression data can be done similarly [33], in particular
KEGG [77–79] and Reactome [32] databases are frequently employed
in pathway analysis.

An example of GSEA outcome that is induced from data over the
KEGG database can be the following:

H = {KEGG_WNT_SIGNALING_PATHWAY,
KEGG_VEGF_SIGNALING_PATHWAY,

KEGG_CELL_CYCLE}.

In our view, this GSEA outcome corresponds to a hypothesis that
can be seen as a collection of three simple rules where each rule
has length one and says, independent of the other rules, that the
corresponding term in the rule is significantly enriched in the re-
ported set of genes against a background/control gene set. Unfor-
tunately, GSEA in particular, and enrichment analysis in general, can-
not produce more complex hypotheses. For example, the hypoth-
esis above does not say that KEGG_WNT_SIGNALING_PATHWAY
and KEGG_CELL_CYCLE are enriched simultaneously, in conjunction.
The form of hypothesis only says that these terms are enriched indi-
vidually. On the other hand, let R be the following rule:

KEGG_WNT_SIGNALING_PATHWAY ∧ KEGG_CELL_CYCLE.

R says that simultaneous occurrence of the terms
KEGG_WNT_SIGNALING_PATHWAY and KEGG_CELL_CYCLE in the
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annotation of a gene (frequently) leads to its upregulation. The upreg-
ulation score for the rule R is computed from a gene set where each
gene has to be associated with both terms simultaneously. In our se-
mantic biclustering, and unlike the traditional enrichment analysis, we
will be able to cope with these conjunctive rules.

Moreover, the dimension of biological samples/conditions is dis-
regarded in the enrichment analysis, only the dimension of genes is
taken into consideration when searching for the enriched (ontology)
terms. The enrichment analysis supposes a gene set of interest (e.g.
genes that are differentially expressed) to be a part of the input. Con-
sequently, these methods can only be applied in such biological ex-
periments, where samples are split into two groups, treatments and
controls. However, the treatment and control labels are often not avail-
able. In most cases, the split into groups is unclear, the sample groups
may overlap or form complex taxonomies. Under these conditions,
any set of differentially expressed genes cannot easily be determined.
For this reason, we suppose that samples are described with a rich
ontology of annotation terms (locations, conditions, situations, com-
plex treatments, etc.) and bring an opportunity to further generalize
the rules with extra terms from this ontology that can be added into
the rules. This allows for inducing a rule that self-defines the semanti-
cally coherent joint groups of genes and samples; the genes tend to be
upregulated in the sample group. The induction is fully automated
and driven by the context provided in the measurements and annota-
tion ontologies. In other words, GSEA uses a 1-dimensional space of
deregulated genes to induce a list of significantly enriched annotation
terms. In this work, we expand onto 2-dimensional expression space
and consequently allow for generation of hypotheses that represent a
set of genes upregulated in a specific set of samples/biological condi-
tions. An example of the hypothesis could be the following rule:

H = { KEGG_WNT_SIGNALING_PATHWAY ∧ KEGG_CELL_CYCLE
∧ WING_VEIN_SEGMENT }.

This hypothetical example shows the case where genes belonging to
KEGG_WNT_SIGNALING and KEGG_CELL_CYCLE pathways are fre-
quently upregulated in samples from WING_VEIN_SEGMENT, which
makes a specific body part of Drosophila melanogaster.

In this part of the thesis, readers have been introduced to the basics
of traditional biclustering and with the semantics oftentimes used
in the field of biology. In the next chapter, we put these concepts
together and formulate the core of this thesis - semantic biclustering.
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4
S E M A N T I C B I C L U S T E R I N G

In this chapter, we extend the definition of the ordinary bicluster used
in the context of particular format of gene expression matrix to the
semantic bicluster. Since semantic biclustering approach focuses only
on binary data matrix and also there are various algorithms specifics,
we bring a specific notation taking this into account. Furthermore,
this chapter establishes the fundamental ideas of the thesis, the idea
of semantic biclustering, and consequently outlines evaluation proce-
dures to quantify the ability to seek reliable and predictive semanti-
cally compact biclusters. The next chapters extend the concepts that
are listed here. We note that the content of this chapter has been taken
from our publication [84].

The general goal of biclustering (or block-clustering, co-clustering) [169]
is to find interesting submatrices in a given data matrix. A submatrix
is defined by a subset of rows and a subset of columns of the orig-
inal matrix. In other words, it is a compact rectangular section of a
matrix that can be obtained by permuting the rows and columns (re-
spectively) of the input matrix. There are multiple ways to define the
interestingness of biclusters; the simple view adopted here is that the
biclusters cover as many as possible 1’s within the containing binary
matrix while leaving out as many as possible 0’s. Biclustering has be-
come remarkably popular in bioinformatics [102], especially in gene
expression data analysis tasks [85, 160]. Here, biclustering detects an
expression specific to a subset of genes in a subset of samples (situa-
tions).

Semantic clustering denotes conventional clustering augmented by
the additional requirement that the discovered clusters are charac-
terized through concepts defined as prior domain knowledge. The
characterizations are obviously requested for the sake of easy inter-
pretation of the analysis results. A popular activity in bioinformatics,
where (ordinary) clusters of genes with similar expressions profiles
are first detected and GSEA [156] is subsequently applied on such
clusters, is in fact an example of (‘manual’) semantic clustering. The
two steps in the latter workflow can also be merged into a single
phase as demonstrated in [89, 170]. Semantic clustering is also re-
lated to the subgroup discovery approach [184], although in an un-
supervised setting. The term semantic clustering is also employed in
the software-engineering context [90] and captures a roughly similar
meaning as in the present context.

In this chapter we explore the combination of the two concepts, that
is semantic biclustering. Specifically, we want to be able to detect biclus-
ters as outlined above; however, we also want their elements to share
a joint description as in semantic clustering. In the case of bicluster-
ing, the description pertains to both the rows (that is, genes) as well as
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the columns (that is, situations). We follow this goal because formal
ontologies are frequently available and relevant to either dimension
of the input data matrix. An example of such a data set is the Dresden
ovary table [74]. Simply put, our goal is to design an algorithm able
to detect biclusters characterized e.g. as “glucose metabolism genes
in late developmental stages” whenever such genes in such stages
are uniformly expressed. To the best of our knowledge, the previous
approaches most related to semantic biclustering are [153], where for-
mal knowledge associated with both rows and columns of a data
matrix is used to specify filters for detected patterns and [121, 122],
which aim at biclustering of gene expression data with biclusters co-
herent in terms of gene functional annotation. The authors of [66]
proposed a new iterative bi-clustering algorithm and applied it to a
binary gene set expression dataset, i.e., the dataset where expression
of whole gene sets was captured. They worked with the semantic an-
notation of the original gene expression data, but they employed the
semantics solely in the preprocessing step.

In the rest of the chapter we formalize the problem of semantic
biclustering first. Then, we propose two strategies for semantic bi-
clustering and test them comparatively on two experimental datasets.
Our contributions also include a design of a suitable validation proto-
col, as evaluation criteria are not fully evident in unsupervised data
analysis.

4.1 problem formalization

We assume a set of genes Γ , a set of situations Σ, and a binary set
of expression indicators {0, 1}. We further assume a joint probability
distribution over these three sets p : {0, 1}× Γ × Σ → [0; 1]. In a gene-
expression assay, a set G ⊆ Γ of genes and set S ⊆ Σ of situations are
selected and expression is sampled for all pairs of the selected genes
and situations. In other words, a matrix A = (ag,s), g ∈ G, s ∈ S is
formed such that ag,s = 1 with p(1|g, s) (0 otherwise).

In standard multivariate analysis of gene expression, A = (ag,s)

represents a sample set in the sense that a sample corresponds to a col-
umn in A. For benefits of statistical inference, it is typically assumed
that samples are independent and identically distributed (i.i.d.); more
precisely, that S is drawn i.i.d.1 from the marginal p(s). In the present
biclustering context, we put genes and situations (rows and columns)
on equal footing. That is to say, a sample corresponds to a single mea-
surement ag,s. Under this view, the sample set {(ag,s,g, s) : g ∈ G, s ∈
S} is not an i.i.d. sample from p(a,g, s) even if both G and S are i.i.d.
samples from the respective marginals p(g) and p(s), which is due
to the sample set’s rectangularity. Indeed, if the latter contains a sam-
ple for a particular pair (g, s), it will necessarily also contain all pairs

1 The drawing is with replacement, so strictly speaking S (and G analogically) is a
multi-set rather than a set. This distinction is however immaterial in the present
context.
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(g ′, s),g ′ ∈ G and all pairs (g, s ′), s ′ ∈ S, so the samples are mutually
dependent.

4.1.1 Ordinary biclusters

A bicluster in matrix A = (ag,s), g ∈ G, s ∈ S is a submatrix defined
by a subset of rows and columns, i.e., a tuple (G ′,S ′) where G ′ ⊆ G
and S ′ ⊆ S. A system of biclusters ofA is B = {(Gk,Sk)} where (Gk,Sk)
are biclusters in A. The extension of B is

ext(B) = {(g, s) : g ∈ G ′, s ∈ S ′, (G ′,S ′) ∈ B} (1)

A usual requirement is that a system of biclusters covers regions
of A that are homogeneous regarding the contained values. This may
be interpreted in multiple ways and here we adhere to the simplest
interpretation that the bicluster system B should ideally include all
1’s present in A and exclude all 0’s. Then a natural quality measure
of B counts 1’s inside its extension and 0’s outside of it∑

(g,s)∈ext(B)

ag,s +
∑

(g,s)∈G×S\ext(B)

1− ag,s (2)

For convenience, we introduce an indicator function b : G× S→ {0, 1}

b(g, s) = 1 iff (g, s) ∈ ext(B) (3)

which allows us to rephrase the above quality measure as |{(g, s) ∈
G × S : ag,s = b(g, s)}|. Normalizing this to the interval [0; 1], one
obtains the formula

Âcc(b) =
|(g, s) ∈ G× S : ag,s = b(g, s)}|

|G||S|

which is known as the training (in-sample) accuracy of b viewed as a
classifier. This quantity provides an empirical approximation to the
true b’s accuracy on G× S, which is p(g, s,b(g, s)|(g, s) ∈ G× S) ac-
cording to our probabilistic model. The conditional part is important
since b’s domain is restrained to G × S. On one hand, this classifi-
cation viewpoint provides an additional motivation to maximize the
ad-hoc formula (2). On the other hand, viewing Âcc as a proxy for
the true accuracy entails certain problems.

First, as we have commented already, the sample set where Âcc
is determined is not i.i.d. as normally required for a training set,
although this could be tolerated if the intended use of Âcc is as a
heuristic guiding the search for B, rather than as an unbiased esti-
mator. Second, Âcc can be trivially maximized by a system of single-
element biclusters covering exactly all 1’s in A. Such an overfitting so-
lution is commonplace in classification and is usually avoided by an
additional regularization term. Here, the latter could penalize small bi-
clusters, or alternatively a high number of them. So one would search
B maximizing

Âcc(b) + λ/|B|
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with λ determining the trade-off between accuracy and the size of the
bicluster system. In fact, a regularizer is normally added to formula 2

in biclustering algorithms [101, 112] to prevent the trivial solution,
irrespectively of any classification context.

The third problem lies in the restriction of b onto the G × S do-
main, which does not enable us to use b on genes and situations
not in the training set. At first sight, this does not seem a problem
if one is not interested in using the bicluster system B for classifi-
cation. However, it makes the assessment of B’s quality problematic
in the following sense. Besides the training accuracy Âcc acting as
a search heuristic, we are also interested in an unbiased estimate of
the quality of the final system B produced by the biclustering algo-
rithm. An ideal quality measure is the true accuracy p(g, s,b(g, s)) of
b, which would normally be estimated using a hold-out or testing data
set Test = {(gk, sk,ak)} drawn i.i.d. from p(g, s,a), as

Acc(b) =
|{(gk, sk,ak) ∈ Test : ak = b(gk, sk)}|

|Test|
(4)

However, this value cannot be established as b is not defined for ar-
guments with values outside the training sample set and—to our best
intelligence—there is no sensible way in which the bicluster system
B could induce a classifier beyond the G× S domain. We will see in
turn that this problem is overcome elegantly by semantic biclusters.

4.1.2 Semantic biclusters

Here we consider biclusters which are not defined by an enumeration
of the selected rows and columns, but rather by enumerating condi-
tions according to which the rows and columns are selected. In par-
ticular, the conditions are represented by semantic annotation terms
pertaining to genes (rows) and situations (columns). Formally, we as-
sume a set of gene annotation terms γ, and analogically situation
annotation terms σ. Furthermore, relations Rγ ⊆ G× γ, Rσ ⊆ S× σ
are defined, associating genes and situations with selected annotation
terms.

For an arbitrary gene set G, a term set Tγ ⊆ γ induces the set {g ∈
G : ∀t ∈ Tγ, (g, t) ∈ Rγ} of exactly those genes in G that comply with
all the terms in Tγ. We denote this induced set as G(Tγ). Similarly
for a situation set S and a situation term set Tσ, S(Tσ) = {s ∈ S : ∀t ∈
Ts, (s, t) ∈ Rσ}.

Thus within a matrix of genes G and situations S, a semantic biclus-
ter (Tγ, Tσ) induces a unique ordinary bicluster (G(Tγ),S(Tσ)) and a
system of semantic biclusters SB = {(Tγk , Tσk )} defines a unique ordinary
system of biclusters B. Due to this correspondence between SB and B,
SB can be searched using the heuristic Âcc(B) we elaborated above.

Unlike the extension of an ordinary system of biclusters (Eq. 1), the
extension ext(SB) of a system of semantic biclusters SB is not confined
to the matrix of genes G and situations S

ext(SB) = {(g, s) : g ∈ Γ(Tγ), s ∈ Σ(Tσ), (Tγ, Tσ) ∈ SB} (5)
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and thus also the indicator function sb : Γ × Σ → {0, 1} defined as
in (3) now has all genes and situations in its domain. (Note that the
restriction of ext(SB) to the matrix G× S coincides with the extension
ext(B) of the ordinary system B of biclusters defined by SB; this is
easy to see by replacing Γ and Σ respectively by G and S in Eq. 5.)

This means that for a system SB of semantic biclusters, we can
obtain an extra-sample (testing) quality estimate Acc(sb) per Eq. 4

which was not possible with ordinary biclusters. Note that the test-
ing sample set Test = {(gk, sk,ak)} needed for the estimate is drawn
i.i.d. from p(g, s,a) and is not expected to form a matrix. This has
a positive practical implication for the evaluation procedure, which
will be commented further in the experimental section.

4.1.3 Soft semantic biclusters

The last extension we introduce is that of soft semantic biclusters, mo-
tivated by the fact that in the terms sets Tγ, Tσ defining a semantic
bicluster (Tγ, Tσ), some of the terms may be more important than
others. The reason for this will follow from the algorithm implemen-
tations elaborated below. Here we simply assume that the sets Tγ, Tσ

consist of pairs (t,w) where t ∈ γ (t ∈ σ) and the weight w ∈ (0; 1].
In this situation, we adapt the classification function to

sb(g, s) = 1 iff (Tγ, Tσ) ∈ SB

and
∑

(t,w)∈Tγ,(g,t)∈Rγ

w > θG

and
∑

(t,w)∈Tσ,(g,t)∈Rσ

w > θS

(6)

where θG, θS ∈ R are some real thresholds (hyper-parameters). In-
formally, the classifiers outputs 1 iff at least one of the biclusters in
SB supports the classified tuple (g, s). The tuple is supported by a bi-
cluster (Tγ, Tσ) if the weights of terms which are simultaneously (i)
assumed by Tγ (Tσ, respectively), (ii) and among the annotations of
g (s), sum up to at least θG (θS). The earlier definitions of Âcc and
Acc apply to this redefined classifier sb as well.

4.2 algorithms

At least two different strategies lend themselves to find a good system
of semantic biclusters SB. The first option is to find a system B of or-
dinary biclusters first, and then identify the characteristic annotation
terms Tγ and Tσ for each of the biclusters in B. The second option
is to search directly in the space of (sets of) semantic biclusters, i.e.
explore systematically various combinations of the annotation terms.
We explore both strategies henceforth. In the first one we employ an
existing biclustering algorithm and subject its results to GSEA [156]
algorithm, revealing annotation terms which are enriched on either
dimension of the produced biclusters. The alternative strategy is ma-
terialized by an arrangement of classical symbolic machine-learning
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techniques known as decision rule and tree learning [138]. It is im-
plemented in terms of two closely related methods that share the
preprocessing step and differ in the consecutive learning step.

4.2.1 Bicluster enrichment analysis

The enrichment approach to semantic biclustering first searches for a
set of ordinary biclusters. The goal is to find a small set of biclusters
that cover as many 1’s as possible and as few 0’s as possible. In other
words, we search for the most concise biset-based description that
minimizes the occurrence of false positives and false negatives. In the
field of biclustering, this is a well-known task that can be tackled with
approximate pattern matching [101, 111, 177], non-negative matrix
decomposition [185, 186], bipartite graph partitioning [38] or heuristic
algorithms [19, 133, 137, 168]. The bicluster semantics are disregarded
for the moment.

In our approach, we employed the popular PANDA+ tool [101]
to accomplish the first step. PANDA+ adopts a greedy search that
iteratively builds a sequence of biclusters. The constructed bicluster
set gradually increases its coverage of the input matrix. This bicluster
set is initially required to be noise-less, i.e. without false positives. In
a subsequent step, PANDA+ extends the biclusters by allowing false
positives. The main guiding parameter is the level of accepted noise
which may be used to balance between the size of the description (the
number of biclusters and their size) and the quality of the description
(the amount of false predictions). A has to be transformed into the
FIMI sparse format [50] before calling PANDA+.

In the second step, the biclusters are annotated in terms of prior
domain knowledge, i.e., their semantics are revealed. In our case, we
use the gene ontology (GO) terms [28, 56] and KEGG terms [77–79]
to annotate the individual genes. The dedicated Drosophila location
ontology (DLO) terms [39] and Drosophila anatomy ontology (DAO)
terms [31] were used to annotate the situations; in particular, these
terms define the developmental stages and anatomical locations of
the sample. Each non-trivial bicluster (comprising more than 1 gene
and 1 stage) is annotated by all the terms (GO+KEGG and situa-
tion/anatomy ontology, respectively) whose enrichment exceeds the
predefined statistical significance threshold. In order to avoid this hy-
perparameter in our workflow, we propose setting the threshold au-
tomatically within the permutation-based test that compares the bi-
cluster enrichment scores with the scores reached in permuted gene
expression matrix. The significance threshold is set to guarantee that
the false discovery rate for annotation terms in real biclusters remains
small. The individual terms are scored proportionally to their statisti-
cal significance, yielding the weights w assumed by the classification
principle in Eq. 6. We employed the topGO Bioconductor package [2]
to find the GO terms and the Fisher test to reveal the KEGG and
location ontology terms enriched in the individual biclusters.
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Algorithmus 1 : Bi-directional enrichment.

input :Am×n, ai,j ∈ {0, 1,NA}; // NAs for testing

fields

Rγ;Rσ; // gene (GO, KEGG) and location

annotation relations

output :ΠS; // the matrix of gene and location

p-values

1 /* Get list of biclusters, i.e., bi-sets of

gene/location indices */

2 A← convertToSparseFIMIFormat(A);
3 B← PANDA+(A); // obtain ordinary biclusters

4 /* Get actual genes and locations, e.g., from A

row/column names */

5 G← getAllGeneNames(A); // all genes in A

6 γ← getAllGeneTerms(Rγ,G); // filter all gene terms

relevant to A

7 S← getAllLocationNames(A); // all locations in A

8 σ← getAllLocationTerms(Rσ,S); // filter all location

terms relevant to A

9 g← |γ|; s← |σ|; ΠS ← 0k×(|γ|+|σ|);
10 /* Annotate the individual biclusters */

11 for k← 1 to |B| do
12 for i← 1 to g do
13 ΠSk,i ← enrichmentGet(Bk,genes,γi,G,Rγ)
14 end
15 for j← 1 to s do
16 ΠSk,g+j ← enrichmentGet(Bk,locs,σj,S,Rσ)
17 end
18 end
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This approach to semantic biclustering could as well be referred
to as bi-directional enrichment. The procedure pseudocode is shown
in Algorithm 1. Despite the NP-complexity of the general problem
of finding the optimal set of biclusters [102], the suboptimal heuris-
tic algorithm is computationally scalable. The size of the input ma-
trix influences mainly the initial bicluster search; time complexity of
PANDA+ is O(|B|mn2) [101] where |B| is the number of biclusters and
m = |G|,n = |S| are the dimensions of the expression matrix. The sizes
|γ|, |σ| of the annotation vocabularies influence solely the annotation
step whose time complexity is O(|B|(|γ| ∗m+ |σ| ∗n)).

4.2.2 Rule and tree learning

The alternative approach is based on a reduction of the problem to
a classification-learning problem. This entails a transformation of the
original data matrix A into an auxiliary binary matrix M of dimen-
sions (|G| · |S|)× (|γ| + |σ| + 1). Matrix A is unrolled into M so that
each row ofM corresponds to one element ai,j of A and has the form

t1, t2, . . . t|γ|, t|γ|+1, t|γ|+2, . . . t|γ|+|σ|, expression (7)

where the first |γ| numbers are binary indicators of annotation terms
(acquiring a value of 1 iff the corresponding term is associated with
gene in i’th row of A), the subsequent |σ| numbers are analogical
indicators of situation ontology-terms for situation in j’th column of
A, and the last number is the expression indicator for the said gene
and situation, and thus equals ai,j. The transformation details are
shown in Algorithm 2.

The next step is learning a classification model to predict expression
from t1, . . . t|γ|+|σ|. To this end, M represents the training data with
individual rows such as (7) corresponding to learning examples with
the last element being the class indicator. The model we search for
takes the form of a list of conjunctive decision rules [138], each of
which acquires the form

∧i∈I ti ∧j∈J tj+|γ| → expression (8)

where the rule conditions I ⊆ [1; |γ|], J ⊆ [1; |σ|] are learned selections
of gene and situation ontology terms. The rule stipulates that a gene
annotated with all the gene-ontology terms indexed by I is likely to
be expressed in situations annotated with all the situation-ontology
terms indexed by J. If no rule in the learned rule set predicts ex-
pression for a pair (g, s), the rule set defaults to the no-expression
prediction.

Consider the set P = G× S containing all the gene-situation pairs
(g, s) satisfying the conditions of rule (8). It is easy to see that P forms
a submatrix of A, i.e., there exists a permutation of A’s rows and
columns making P a rectangular section of A. Indeed, G identifies
a set of rows and S identifies a set of columns. The conjunction in
(8) is satisfied perfectly by the genes in the intersection of G and S,
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Algorithmus 2 : Unrolling A into M.

input :Am×n, ai,j ∈ {0, 1,NA}; // NAs for testing

fields

Rγ; Rσ; // gene (GO, KEGG) and location

annotation relations

output :M(m·n)×(|γ|+|σ|+1), bi,j ∈ {0, 1}

1 /* Genes are represented by a set of FBgn identifiers

*/

2 G← getAllGeneNames(A); // all genes in A

3 γ← getAllGeneTerms(Rγ,G); // list all gene

annotation terms

4 S← getAllLocationNames(A); // all locations in A

5 σ← getAllLocationTerms(Rσ,S); // list all location

terms

6 g← |γ|; s← |σ|;
7 for i← 1 to m do
8 T ← 0|γ|+|σ|+1; // term indicator vector

initialization

9 for j← 1 to g do
10 if (γj,Gi) ∈ Rγ then Tj ← 1;
11 end
12 for k← 1 to n do
13 for j← 1 to s do
14 if (σj,Sk) ∈ Rσ then Tg+j ← 1;
15 end
16 T|γ|+|σ|+1 ← ai,k; // add expression indicator

17 M(i−1)·n+k,∗ ← T ;
18 end
19 end
20 M← filterGeneTerms(M, Θ); // wrt to a given

threshold Θ;
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which is thus a rectangle.2 Therefore, each rule such as (8) identifies
a bicluster in A.

Moreover, a rule set optimized for classification accuracy on train-
ing data such as (7) will produce those biclusters ofAwhich contain a
high number of 1’s. Indeed, perfect training-set accuracy is achieved
if and only if the biclusters represented by the rules in the rule set
collectively cover all the 1’s and no 0’s in A.

Summarizing the two observations, the learned rule set represents
a set of biclusters of A, each of which is homogeneous in that it col-
lects positive indicators of expression. Furthermore, each such biclus-
ter is characterized by the ontology terms G and situation terms S
found in the corresponding rule such as (8). Thus, the procedure de-
scribed does indeed convey the semantic biclustering task.

In addition, we propose a variation to the workflow described, in
which the rule set learner is replaced by a decision tree learner [138].
Each vertex in a learned tree corresponds to one ontology term, and
the test represented by the vertex determines whether the term is
among the annotation of the classified pair of gene and situation.
Since all the attributes (including the class attribute) of the training
data (7) are binary, the learned tree is also binary. Each path from the
root to one positive leaf can be rewritten as a rule in the form (8),
except that some of the literals may be negated. For example, literal
¬t1 expresses the condition that t1 is not among the annotation terms.
So the learned decision tree defines a set of semantic biclusters as the
rule set does, except these biclusters are defined in a more expres-
sive language (allowing negation) than we considered in the original
formalized model.

The main reason for exploring this decision tree alternative is that
it is often claimed that decision trees exhibit performance superior to
that of decision rule sets.

In our implementation of this approach, we used the JRip and J48

algorithms from the WEKA machine-learning software [176] to learn
the rule sets and decision trees, respectively. The JRip algorithm is an
implementation of a propositional rule learner, Repeated Incremental
Pruning to Produce Error Reduction (RIPPER) [27]. J48 is an imple-
mentation of the well-known C4.5 algorithm [135].

The time complexity of this approach is determined by the com-
plexity of converting the A into M, which is O(mn(|γ|+ |σ|)), and the
complexity of the subsequent learning algorithm. In the case of bi-
nary decision trees, the runtime of the heuristic J48 algorithm grows
linearly with the number of training instances and quadratically with
the number of features [106], in our problem it is O(mn(|γ|+ |σ|)2). As
the total number of annotation terms can be large, the actual runtime
of this approach would be much larger than for the bi-directional en-
richment. For this reason, we perform a feature selection step prior to
the learning step. The published JRip’s time complexity [27] implies
the learning complexity for our problems O(mnlog2(mn)). In other

2 Note that this property essentially follows from the propositional-logic form of the
rule and would not hold true for the more general relational rules considered in [184].
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words, a large number of samples in M indicates a time consuming
run if compared to the other methods implemented in our work.

4.3 evaluation procedure

Both biclustering and enrichment analyses are unsupervised data
mining methods and the exact way of validating their performance
is not obvious. For example, perfectly homogeneous biclusters can
usually be found at the cost of their very small size. The size and
homogeneity should thus be traded-off but their relative importance
would have to be set apriori. Similarly, the semantic annotations dis-
covered may either represent genuine characteristics of the biclusters,
or the included terms may be enriched merely by chance. Distinguish-
ing these two effects through a statistical test involves distributional
assumptions which we cannot guarantee.

We solve the latter dilemma by measuring the quality of semantic
biclusters from the point of view of predictive classification, and partic-
ularly using an extra-sample (testing) accuracy estimate as proposed
in Eq. 4. This assumes that the available data is split randomly into a
training partition where the semantic biclusters are found, and a test-
ing partition where they are evaluated. The training split is a (strict)
submatrix of the input matrix and thus its complement (the testing
split) is not a matrix. Fortunately, a matrix form is not required of the
testing split as explained in the Problem formalization section.

As stated already, the strategy based on conventional biclustering
and subsequent enrichment analysis results in a set of soft seman-
tic biclusters inducing the classification principle described by Eq. 6.
The latter depends on the two hyper-parametric thresholds θG and
θS, and their different choices result in different values of the accu-
racy measure (4). In such a situation, it is convenient to visualize the
global performance profile through ROC analysis. Here, the accuracy
measure (4) is decomposed into the false positive rate component FPr
and the true positive rate TPr, both of which are functions of θG and
θS. By varying these hyperparameters, a set of (FPr, TPr) points is
obtained, forming the ROC curve. The area under this curve (termed
AUC) represents the quality of the classifier for the entire range of
the hyperparameters. The semantic biclustering validation procedure
is summarized in Algorithm 3.

The approach based on rule and tree learning produces crisp se-
mantic biclusters, and as such it induces classifiers in the standard
form given by (3). For the sake of unified comparison, we also eval-
uate these classifiers through ROC analysis although they do not
contain explicit threshold parameters. This is made possible by the
employed JRip and J48 algorithms which provide confidence values
along with the expression predictions. We make a positive expression
call only if the corresponding confidence value exceeds a threshold
Θ, and we obtain the ROC curve by varying Θ.
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Algorithmus 3 : Predictive evaluation of bi-directional en-
richment.

input :ΠS;Am×n, ai,j ∈ {0, 1, NA}; // NAs for

training fields

Rγ;Rσ; // gene (GO, KEGG) and location

annotation relations

parameters :θG; θS; // gene and location term score

thresholds

pperm; // p-val permutation threshold

output :Pm×n, pi,j ∈ {0, 1, NA} // the predicted

expressions

1 /* Initialize predicted expressions, zeroes or NAs

only */

2 P← A; P[P == 1]← 0;
3 /* Get GO and KEGG term indication vectors for all

genes */

4 G← getAllGeneNames(A); // all genes in A

5 TG ← getTermsForGenes(Rγ,G); // a binary m×g
incidence matrix

6 /* Get location term indication vectors for all

stages */

7 S← getAllLocationNames(A); // all locations in A

8 TS ← getTermsForStages(Rσ,S); // a binary n×s
incidence matrix

9 /* Apply the individual biclusters */

10 for k← 1 to |ΠS| do
11 /* turn p-values into scores, apply the

permutation threshold */

12 for i← 1 to |γ|+ |σ| do
13 if ΠSk,i < pperm then ΠSk,i = −log10(Π

S
k,i);

14 else ΠSk,i = 0;
15 end
16 /* Search for the genes and stages covered by the

bicluster, use them to fill in P */

17 P[TGΠ
S
k,1...g > θG,TSΠSk,g+1...|γ|+|σ| > θS]← 1

18 end
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4.4 experimental datasets

We conducted our experiments on two real datasets. The first one is
the Dresden ovary table [39]. The table captures the distribution of
different mRNA molecules in various cell types involved in oocyte
production in the ovary of female Drosophila melanogaster flies. The
authors of the table believe [74] that the resource can be used to gain
insight into specific genetic features that control the distribution of
mRNAs and this insight may be instrumental in cracking the ‘RNA
localization code’ and understanding how it affects the activity of pro-
teins in cells. In this problem, the dedicated situation ontology (avail-
able from the same source) describes Drosophila ovary segments and
their developmental stages. The ontology is in fact a location term hi-
erarchy that binds the locations available in the Dresden ovary table
by the relations part_of and develops_from. As such, the hierarchy
deals with 100 terms. The gene ontology was used in its standard
available form [2, 56] including 8,407 GO terms in total. The set of
KEGG terms was considerably smaller, we dealt with 133 terms that
annotated a limited set of 1,605 genes. For this reason, the importance
of KEGG is smaller than that of GO. After minor data cleansing, the
expression matrix has 6,510 rows (genes) and 100 columns (situations)
with 47.5% positive data instances. The detailed data statistics can be
found in Table 2.

The second experimental dataset comes from the same organism,
i.e., Drosophila melanogaster, and captures the spatial gene expres-
sion in the larval imaginal discs (DISC). An imaginal disc is a part of
insect larva from which the adult body parts develop. The dataset is
a binary representation of an automatically processed large collection
of fluorescent in situ 2D hybridization images. The images were col-
lected for more than 1,000 genes in 4 different imaginal discs (wing,
antenna-eye, leg and haltere). About 20 distinct locations (image seg-
ments) were distinguished for each disc, see Figure 4 for further de-
tails. A set of semantically annotated biclusters may help to reveal
and understand the local expression patterns in larval development.
Altogether, the binary imaginal disc dataset contains the expression
of 1,207 genes in 72 different locations with 75.4% positive data en-
tries. The detailed data statistics can be found in Table 3.

Similarly to the Dresden ovary table, we assigned a set of GO and
KEGG terms to each gene. 114 KEGG terms appeared in the annota-
tion records of 423 distinct genes. Furthermore, each segment of a par-
ticular imaginal disc was manually assigned a set of DAO terms. The
DAO consists of over 8,000 terms with broad coverage of Drosophila
anatomy including the descriptions of imaginal discs and their com-
partments, we made use of 148 distinct terms. The summary ontology
term counts are available in Table 4.

For the evaluation purposes, each data set was randomly split into
a submatrix containing 70% of the original matrix elements, and the
complement which was used as the testing set.
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GO KEGG DAO DLO

Ovary 8,407 1,605 - 100

DISC 5,083 423 147 -

Table 4: The number of annotation terms available for our experimental
datasets.

4.5 experimental protocol

The bicluster enrichment method was run with the PANDA+ noise
parameters that minimized the total cost of biclusters in the training
set (i.e., the summarizing criterion that controls both bicluster size
and the number of false positives and negatives). This setting can be
reached in a fully unsupervised way and avoids both too noisy and
too detailed sets of biclusters. For the ovary dataset, the statistical sig-
nificance thresholds were set to 0.05 for genes and 0.1 for situations.
For the imaginal disc dataset, the statistical significance thresholds
were set to 0.01 for genes and 0.1 for situations. The reason for dif-
ferent values between the gene dimension and the situation dimen-
sion is that the number of situations is lower than the number of
genes and the location ontology is less complex than the gene anno-
tation. For this reason, even less significant location terms prove help-
ful when generalizing to unseen data. The method was run repeat-
edly with the following sets of match thresholds: θG ∈ {1, 5, 10, 50}
and θS ∈ {1, 5, 10, 50}. The results in ovary dataset suggested that
precision decreases slowly with decreasing match thresholds while
recall grows quite rapidly. The best precision/recall trade-off is thus
achieved for the minimum match threshold values θG = θS = 1. The
size of bicluster description does not directly change with the match
threshold values, their decrease raises the number of genes and devel-
opmental stages matched by bicluster annotation terms. To the con-
trary, in imaginal discs we were able to find biclusters with strongly
related location terms. For this reason, θS = 50 seems to be the best
threshold as it already provides a sufficient recall and its decrease
only leads to decreasing precision.

The rule and tree learning was performed with the default WEKA
parameters for JRip and J48. In order to work with a reasonable num-
ber of features, feature selection was employed first. All the features
(annotation terms) of the train matrix (originating from theMmatrix)
that occurred in fewer than approximately 1hexpression entries (the
train matrix rows) were removed. The cut-off threshold was found
with the feature frequency histograms. Eventually, we worked with a
train matrix size of 457,548×326 and 60,600×403, respectively. Besides
speeding up the learning process, we avoided the annotation terms
that cannot generalize over a reasonable number of locations.

Table 5 shows the results including the AUROC achieved by the
two proposed strategies (the rule and tree learning strategy is rep-
resented by the rule learning method and the tree learning method,
they are evaluated independently) as well as further information re-

[ October 18, 2021 at 17:12 – classicthesis ]



30 semantic biclustering

Figure 4: Segmentation of an imaginal disc. An example of segmentation
of an imaginal disc (top), altogether with its annotation by the
Drosophila ontology terms (bottom). The disc is split into 20 seg-
ments distinguished in colors, the split was found to best capture
the gene expression patterns observed in the individual in situ hy-
bridization images. The annotation stems from [62].

garding the found biclusters. The table summarizes 10 experimen-
tal runs, each for a different random train-test split. Note that the
traditional cross-validation scenario cannot be applied in the two-
dimensional setting. AUROC evaluates the proposed methods from
the point of view of their generalization ability. Importantly, both the
proposed strategies generalize far better than random. In other words,

[ October 18, 2021 at 17:12 – classicthesis ]



4.6 discussion 31

the semantic descriptions of the biclusters can be used to predict the
expression for combinations of genes and situations not present in
training data.

Dataset Method AUROC # of biclusters # of terms per bicluster

Ovary
BE 0.823±0.006 11.8±1.5 64.8±3.4

JRip 0.636±0.01 102.6±21.5 7.1±0.61

J48 0.659±0.01 109.9±5.2 25.4±2.0

DISC
BE 0.608±0.03 16.4±4.7 47.9±2.13

JRip 0.565±0.01 25.9±6.2 7.89±0.53

J48 0.627±0.05 20.6±11.09 11.01±4.71

Table 5: Evaluation results of the proposed approaches to semantic biclus-
tering. The Bicluster Enrichment method is denoted as BE.

4.6 discussion

The bicluster enrichment method seems to be the most reliable predic-
tive method in datasets that can be described by a coherent biclusters
whose size allows their reliable subsequent annotation. In the ovary
dataset, the mean bicluster size exceeded 30,000 entries and the bi-
clusters proved to generalize well. If given an unseen pair of positive
(present) and negative (absent) expression entries, it correctly guesses
the positive entry with more than a 82% chance. On the other hand,
the method employs a large number of bicluster annotation terms
to reach a reasonable recall. In our experiments, the average number
of GO, KEGG and location terms per bicluster was 59, 2 and 4 re-
spectively (as the KEGG and location ontology deal with a smaller
number of terms). This number of terms may make the interpretation
hard for a human expert. At the same time, in more fragmented and
difficult domains such as the imaginal disc dataset, the mean size
of biclusters drops (we observed the mean bicluster size 3,998 in the
imaginal disc dataset) and the biclusters seem to generalize worse.
J48 proved to be the method that copes well with this increased frag-
mentation. The decision tree grows without an immediate decrease
in its generalization power. JRip outputs the most concise bicluster
description, its disadvantages lie in the low AUROC and by far the
slowest runtime.

The experimental results conform to expectations. The bicluster en-
richment method ignores the semantic description when building the
biclusters. Consequently, they tend to faithfully fit the expression ma-
trix and compactly represent the expression patterns that the matrix
contains. On the other hand, their postponed semantic annotation
may turn out complex and fuzzy. The rule and tree learning does just
the opposite; it directly searches for concise semantic descriptions
that separate positive and negative expression values in training data.
As a result, the descriptions have a tendency to be short and crisp
with potentially lower recall. Table 6 evaluates biological homogene-
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ity of the found biclusters in terms of their enrichment. The table
shows the proportion of generated biclusters that have at least one
enriched annotation term in each dimension at the level of signifi-
cance 0.05. As the rule and tree learning methods directly define bi-
clusters by the annotation terms, their proportions are naturally high.
Biclusters without an annotation in one of the directions may origi-
nate namely if a bicluster is defined solely by one type of terms (ei-
ther gene, or location terms). The proportions of enriched biclusters
reached by bi-directional enrichment are lower but satisfactory too.
We ascribe it to the PANDA’s ability to cope with noise and search
for large and semantically interpretable biclusters. The biological ho-
mogeneity is comparable with the result published in [122], where
homogeneity in gene dimension only was measured.

Dataset Method % enriched

Ovary
Bicluster Enrichment 0.952±0.063

Rules (JRip) 0.981±0.017

Tree (J48) 0.974±0.021

DISC
Bicluster Enrichment 0.851±0.102

Rules (JRip) 0.962±0.041

Tree (J48) 0.931±0.043

Table 6: Biological homogeneity of the found biclusters in terms of their en-
richment.

Figure 5 presents the individual ROC curves. For the bicluster en-
richment method, the curve is constructed as a convex hull for 16

binary classifiers reached for different θG and θS settings. However,
the curve suggests that one of the classifiers (namely the one for
θG = θS = 1) makes the major contribution to the aggregate AU-
ROC while the other classifiers approach the trivial convex hull or
fall under it. J48 and JRip can provide both binary and probabilistic
outcomes. Here, we work with the probabilistic outcome, the curve
is constructed with different probability thresholds for assigning an
example to the positive class.

Eventually, we compared the generalization ability independently
in terms of gene and location annotation terms. Under this evalua-
tion protocol, the test matrices were split into three parts, see Fig-
ure 6. The first submatrix denoted as kG (keepGenes), contains only
the rows whose gene identifiers were already observed in the comple-
mentary train set while its columns correspond to the locations that
were not observed there. Consequently, each biclustering method has
to generalize towards the locations. The second submatrix denoted as
kL (keepLocations), covers the locations already observed in the train
set and the previously unobserved genes. Each biclustering method
has to employ gene annotation terms to be able to predict here. Fi-
nally, the third submatrix bd contains the rest of testing entries. Bi-
directional generalization has to be applied here. The results are sum-
marized in Table 7. The main conclusion is that it is much easier to
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Figure 5: Semantic biclustering ROC curves for Drosophila ovary table (left)
and Imaginal disc dataset (right).

generalize in terms of locations than in terms of genes. The locations
common for a bicluster tend to share location annotation terms ob-
served for other genes with a similar local expression pattern. On
the contrary, the description in terms of genes is often extensive with
more difficult application to external genes. The bicluster enrichment
method provides the best generalization for the bd region, where
both the genes and locations were previously unseen.

Dataset Method kG kL bd

Ovary
Bicluster Enrichment 0.929±0.013 0.677±0.03 0.818±0.014

Rules (JRip) 0.692±0.02 0.583±0.01 0.583±0.02

Tree (J48) 0.725±0.002 0.604±0.01 0.604±0.02

DISC
Bicluster Enrichment 0.705±0.06 0.560±0.02 0.593±0.03

Rules (JRip) 0.588±0.01 0.546±0.01 0.537±0.02

Tree (J48) 0.630±0.06 0.627±0.05 0.602±0.04

Table 7: Generalization in terms of genes and locations. The table compares
the AUROC for three different settings. kG tests the generalization
across locations, kL the generalization across genes and bd the gen-
eralization in both the dimensions.

Runtimes of all the three implemented methods are summarized in
Tables 8 and 9. All tests were performed with the same configuration:
8-core Intel Xeon E5-2630v3 2.40GHz. We measured runtimes in 10 ex-
perimental runs with different random train-test splits. The tables dis-
tinguish the individual subtasks that underlie the implemented meth-
ods. Table 9 for bi-directional enrichment distinguishes the prepara-
tory subtask (data and ontology upload, train-test split preparation),
the model building (biclustering in PANDA+) and the model testing
(annotation of the individual biclusters and their application to test
data). Table 8 splits the runtime between the ARFF building (process
of unrolling the gene expression matrix into the ARFF file), the model
building (learning of decision trees or rule sets) and the model test-
ing (the application of the trees or rules to test data). The runtimes
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Figure 6: Train and test matrices.

show that biclustering enrichment method is in the order of mag-
nitude faster than rule and tree learning. Firstly, it is the result of
large semantic description as discussed during the theoretical com-
plexity analysis. Secondly, it stems from efficient implementation of
PANDA+ in C while the rest of the code runs in R, Perl and Java. Con-
sequently, only the building of ARFF file in rule and tree learning
takes more time than bi-directional enrichment. These two reasons
also contribute to the fact that bicluster annotation and application
to test data is more time consuming than bicluster construction in
bi-directional enrichment. It is also clear that JRip algorithm is much
less computationally efficient than J48.
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4.7 conclusion

We have motivated and defined the task of semantic biclustering and
proposed two strategies to solve the task, based on adaptations of cur-
rent biclustering, enrichment, and rule and tree learning methods. We
compared them in experiments with Drosophila ovary and imaginal
disc gene expression data. Our findings indicate that the bicluster en-
richment method achieves the best performance in terms of the area
under the ROC curve, at the price of employing a large number of
ontology terms to describe the discovered biclusters.

Furthermore, an attempt to develop a new method for semantic
biclustering that combines the complementary advantages of the pro-
posed approaches has been made. The method is described in Chap-
ter 8. In principle, the biclustering enrichment ignores prior knowl-
edge when searching for biclusters. None of the biclusters have to
be interpretable as a result. The rule and tree-based methods directly
stem from prior knowledge and search for the most general conjunc-
tive concepts that fit the training data at the risk of their overfitting.
Besides, a new refinement operator improving the traditional rule
learning operator has been proposed and it is described in Chapter 5.
Finally, a biological interpretation of the results reached in a particu-
lar domain, the domain of gastroenterology, is provided in Chapter 6.

We made the project publicly available through GitHub [143]. The
repository contains source code of both the implemented strategies
as well as both the experimental datasets.
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5
C O N C E P T R U L E L E A R N I N G W I T H A N
O N T O L O G Y- B A S E D R E F I N E M E N T O P E R AT O R

This chapter seamlessly follows the work from the previous chap-
ter and accentuates potential disadvantages and complications that
rise up in the process of seeking biclusters. The evident difficulties
come especially from rule learning techniques such as JRip and J48.
From the previous experiments, we observe that J48 tends to gener-
ate highly complex models (hypotheses) and, simultaneously with
JRip, hypotheses are usually redundant. The redundancy means that
a hypothesis contains such a pair of ontological terms where a rela-
tionship between them exists. Given this, redundant hypothesis does
not improve predictive accuracy in comparison to the corresponding
non-redundant hypothesis; it only makes the hypothesis more com-
plex and therefore difficult to interpret or validate. Hence this chapter
describes adjustments of the traditional refinement operator of CN2

algorithm, the well-known algorithm for rule learning, which lead to
inducing non-redundant hypotheses. Furthermore, we complete the
precise formal definition of background knowledge (ontology) and its
assumptions, and a relationship between background knowledge and
the input 2-dimensional matrix. Concurrently, this chapter represents
an effort to reduce a potentially high number of negative ontologi-
cal terms in the resulting hypothesis since they make it difficult to
interpret the hypothesis in general because it is necessary to know
overall domain of background knowledge. It is therefore an improve-
ment and extension of the originally proposed method for semantic
biclustering. We note that the content of this chapter has been taken
from our publication [103].

We use rule learning to construct the conjunctive hypotheses, to
exemplify, let us consider the same hypothesis we discussed in Chap-
ter 3:

H = { KEGG_WNT_SIGNALING_PATHWAY ∧ KEGG_CELL_CYCLE
∧ WING_VEIN_SEGMENT }.

Rule learning refers to a class of supervised machine learning meth-
ods that induce a set of classification rules from a given set of training
examples [88]. For a binary task, training examples are assigned to
two disjoint sets of positive and negative examples. The rule is an if-
then statement where the antecedent is in the form of a conjunction of
positive or negative logical terms, and the consequent is a class label.
The final decision regarding an unseen example is provided by a set
of rules or their ordered list. The rules are widely used in the fields
of medicine and biology for their easy and clear interpretation [8, 17,
72] contrary to neural networks, for instance.

As previously mentioned, one of the things that can help scientists
interpret their data in a more natural way is background knowledge.

39
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We have already mentioned Gene Ontology [3, 29] and KEGG [77–79],
which can also be interpreted as an ontology or a taxonomy. More-
over, medicine employs Disease Ontology [82, 141] or SNOMED-CT,
natural language processing makes use of WordNet [113] or YAGO [157],
dedicated ontologies are often encountered in industry too.

In our work, these two concepts, rule learning and ontologies or
taxonomies, are combined. We observed that the ontologies reason-
ably increase accuracy and robustness of induced rules. However,
they also reasonably raise the number of logical terms available for
rule construction, which consequently leads to prohibitive growth of
hypothesis space and inefficiency of rule learning. This inefficiency
can reasonably be reduced with consistent utilization of the known
hierarchical relationships between the ontology terms that cannot be
handled with the traditional rule learning methods [26, 27]. In accor-
dance with the previous chapter, we will focus on the binary task
(positive and negative examples, two classes only) and multiple rule
models (the output of the learning algorithm is multiple rules).

The main motivation for this chapter was our work presented in
Chapter 4, in which we introduced a technique called semantic biclus-
tering. This type of biclustering infers a human easily readable form
of hypothesis describing only a single target class (also known as the
target concept). This technique is applied to a gene expression data
where highly expressed genes in corresponding samples are consid-
ered as the target class. One of the proposed methods solves the prob-
lem of semantic biclustering by linearizing a two-dimensional binary
data matrix and a set of ontologies to an attribute-value representa-
tion that can be figured out using one of the well-known rule learning
algorithms such as CN2 [25, 26], RIPPER [27], or PRIM [51]. However,
current ontologies, such as Gene Ontology, contain tens of thousands
of hierarchically ordered terms. As a result, building a classification
model without a preprocessing step is time and memory consum-
ing. For this reason, we introduce a new refinement operator for a
rule learning algorithm that examines properties between given data,
ontologies, and its mutual relations to speed-up and improve the pro-
cess of learning.

One of the related subfields of machine learning that can handle
a large amount of prior knowledge (i.e. ontology or taxonomy) is In-
ductive Logic Programming (ILP) where a key challenge is to prune
a search space. This is caused by the fact that hypotheses are formu-
lated in first-order logic and ILP algorithms have to search over a
large hypothesis space. For its ability to work with this form of prior
knowledge, we were inspired by this subfield. In [183], the authors
proposed a refinement operator to construct conjunctive relational
features that use taxonomies to speed-up the process of propositional-
ization. This algorithm uses taxonomies to exclude conjunction from
the exploration process if the conjunction contains a feature together
with any of its subsumees. In [159], the authors find and prune such
hypotheses that are equivalent to a previously considered hypothesis.
To test such equivalency in given domain theory, they proposed a sat-
uration method for a first-order logic clause with the property that
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two clauses are equivalent whenever their saturations are isomorphic.
However, ILP can build a highly complex hypothesis whose inter-
pretation can prove difficult, especially in a biological domain where
validation of such a hypothesis can hardly be feasible. For this reason,
we decided to focus on the easily interpretable hypotheses produced
by rule learning algorithms.

In this work, we propose a new rule learning algorithm that builds
classifiers, as is usual for rule learning, from given positive and neg-
ative examples. To build such a classifier, we were inspired by the
well-known CN2 algorithm that is based on the Beam search heuris-
tic [26]. A refinement operator of CN2, that is used for a rule space
exploration, extends the current rule by trial adding all features from
a set of features to the antecedent of the rule. For example, with a
set of four features {t1, t2, t3, t4}, the current rule t1∧ t2 → yes (all
the examples with positive values of features t1 and t2 belong to the
positive class) could be extended to two rules t1 ∧ t2 ∧ t3 → yes

and t1 ∧ t2 ∧ t4 → yes1. In particular, we introduce a new refine-
ment operator that, due to ontologies, significantly reduces a search
space of rules and consequently reduces run time of rule learner in
comparison to the traditional refinement operator without a loss of
accuracy. In our example, if knowing that t4 is more general than
t1, the second rule extension can be rejected for redundancy with-
out testing. The proposed ontology-based refinement operator uses
two reduction procedures: a Redundant Generalization that omits can-
didate rules based on a relation generalization-specialization and a
Redundant Non-potential that omits the candidate rules which cannot
improve classification accuracy. We demonstrate effectiveness and ef-
ficiency of our algorithm on three real gene expression datasets: Dres-
den ovary table (DOT) [39, 74], Drosophila imaginal discs (DISC) [12], and
dataset of Strand-specific RNA-seq of nine mouse tissues (m2801) [109].

5.1 problem definition

To start with, we formally define two basic concepts: ontology and
example as inputs of the proposed algorithm.

Firstly, assume ontologies as a partial-ordered set < T ,�>, where T
represents a set of all terms that are presented in the given ontologies
and � is a binary relation defined in T such that (g, s) ∈�⊆ T × T . In
other words, term g is �-related to term s. For example, in the context
of Gene ontology [3, 29], we can say that the term developmental process
is a subtype of term biological process, written as (biological process, de-
velopmental process) ∈�. According to partial-order set definition, the
� relation is reflexive, transitive, and antisymmetric. Consequently,
ontologies cannot contain any cycles. For a better understanding, we
define the following concepts that will be used in this thesis later.

Definition 1. Let x,y ∈ T , x is called a generalization of y (or x is more
general than y) iff x � y.

1 As we deal with the binary class we will skip the right hand side of the rules in the
rest of text and implicitly assume that all the rules target the positive class.
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Definition 2. Let x,y ∈ T , y is called a specialization of x (or y is more
specific than x) iff x � y.

Given these two definitions, we are able to express basic elements
defined over ontologies. As an example, we can define all top ele-
ments in ontologies. In the context of ontology, top elements corre-
spond to roots, i.e. the terms that do not have any ancestors/more
general terms.

Example 1. Let ontology O =< T ,�∗> be a partial-ordered set that is
shown in Figure 7 where T = {t0, t1, t2, t3, t4, t5, t6},�= {(t0, t1), (t0, t2),
(t0, t3), (t1, t4), (t2, t4), (t2, t5), (t3, t5), (t3, t6)}, and �∗ is a reflexive
transitive closure of the relation�. Then t0 is more general than t1, t2, t3, t4, t5
and t6 and simultaneously t0 is a root since there is no other more general
term of t0.

Figure 7: An example of partial-order binary relation � over a set of terms T .
The partial-ordered set is depicted in the form of Hasse diagram.
The terms and relations come from Gene Ontology.

Secondly, every ontology refers to a certain set of ground level ob-
jects. In this work we will call them examples. In the case of gene on-
tology, the examples could be the set of measured genes, in the case of
location ontology it can be the set of body parts from which the mea-
surements come. We define a set of examples E = E+ ∪ E− where E+

represents a set of positive examples (e.g. a set of up-regulated genes
or a gene set of interest) and E− represents a set of negative exam-
ples (e.g. a set of down-regulated genes or a control gene set). Finally,
we define an association between examples and ontology terms and
vice versa. These associations are essential for the novel refinement
operator and for the two reduction procedures.

Since each example is annotated by a subset of terms from an on-
tology, we assume a mapping

M : E→ P(T) (9)

that maps examples from the set of examples E to elements of the
power set of terms T from a given ontology. To illustrate, an example
is represented by the Drosophila’s gene Phosphoenolpyruvate carboxyk-
inase that is annotated by the following Gene ontology terms: GTP
binding, phosphoenolpyruvate carboxykinase activity, gluconeogenesis, and
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mitochondrion. In most cases, this mapping functionM is defined man-
ually by a user based on their expert knowledge, or automatically by
well-known tools that help map a text associated with an example to
an ontology as [182].

On the other hand, there are associations from terms to examples.
For this, we define a reverse mapping

M ′ : T → P(E) (10)

that maps elements from the set of terms T to elements of the power
set of examples E. The formal definition of this function follows:

M ′(t ∈ T) = {∀e ∈ E : t ⊆M(e)}. (11)

Example 2. Suppose the ontology as a partial-order set that is defined in Ex-
ample 1. Let E = {e1, e2, e3} be a set of examples, and the mapping M, that
assigns terms from the ontology O to the specific example, is defined manu-
ally in the following way: M(e1) = {t4},M(e2) = {t5, t6},M(e3) = {t2}.
The mapping M ′ that reversely assigns set of examples to the specific term
from the ontology O is following: M ′(t0) = {∅},M ′(t1) = {∅},M ′(t2) =

{e3},M ′(t3) = {∅},M ′(t4) = {e1},M ′(t5) = {e2},M ′(t6) = {e2}. The
graphical representation of the partial-order set, examples, and their associa-
tions with terms is shown in Figure 8.

Figure 8: The extended version of the original Figure 7. Elements in curly
brackets represent examples that are associated with the terms ac-
cording to the mapping M ′.

Since the associations between examples and terms have been de-
fined, we may propagate these associations to the more general terms.
It holds that if an example associates with a term then by default it
associates with all generalizations of this term as well. The propaga-
tion is shown in Figure 9 and it is concurrently defined in Eq. 12. The
process of spreading information in ontologies is represented by a
mapping S where for each term we firstly find a corresponding set of
all its specializations, and then we unite all examples associated with
them.

S : T → P(E)

S(tr ∈ T) =
⋃

t∈{∀x∈T :x is specialization of tr}

M ′(t) (12)
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Figure 9: An example of spreading information about associations between
examples and terms over the whole ontology. The mapping S was
applied on each term comes from Figure 8 which was defined
previously in Examples 1 and 2.

Example 3. Consider the ontology O from Example 1, M and M ′ from
Example 2. We apply S to each term in O, i.e.

S(t4) =M ′(t4) = {e1}

S(t5) =M ′(t5) = {e2}

S(t6) =M ′(t6) = {e2}

S(t1) =M ′(t1)∪M ′(t4) = {e1}

S(t2) =M ′(t2)∪M ′(t4)∪M ′(t5) = {e1, e2, e3}

S(t3) =M ′(t3)∪M ′(t5)∪M ′(t6) = {e2}

S(t0) =M ′(t0)∪M ′(t1)∪ · · · ∪M ′(t6) = {e1, e2, e3}

The result of this operation is shown in Figure 9. In this example,
the most general term t0 named as biological process is associated with
all examples in E, i.e. e1, e2, and e3. Intuitively, this is an expected
result since other terms (cellular process, single-organism process, devel-
opmental process, single-organism cellular process, single-organism develop-
mental process, and anatomical structure development) are also a biologi-
cal process thanks to the �∗-relation. In other words, the most general
term is associated with all examples that are associated with all spe-
cializations of that term.

Before we introduce a rule space and a corresponding form of
rules, we formulate a cover operator Θ. The cover operator deter-
mines which examples satisfy a rule condition, and we say that the
rule covers such examples. Formally, Θ is a mapping from a power
set of terms T to a power set of examples E, i.e.

Θ : P(T)→ P(E) (13)

and is defined in the following form:

Θ(Tr ⊆ T) =
⋂
t∈Tr

S(t). (14)
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The cover operator Θ takes a set of terms and returns all the exam-
ples concurrently annotated by all the terms from this set. The cover
is applied after the annotation propagation step mentioned above.

Rule space R =< R,�r> is defined as a quasi-ordered set where R
represents a set of rules and a binary relation �r such that �r⊆ R×R
is reflexive and transitive. Further, the rule syntax is restricted on a
conjunction of positive terms. For the sake of simplicity, we omit a
propositional logic notation of rules and represent the conjunction of
positive terms as a set of terms, i.e. propositional logic notation of
rule t1∧ t3∧ t4 is represented as {t1, t3, t4}. Notice that conjunctive
interpretation corresponds to the definition of cover operator as well.

Example 4. Suppose the ontology O from Example 1, mapping M and M ′

from Example 2, and mapping S from Example 3. Let rules be R1 = {t1, t2},
R2 = {t2}, and R3 = {t0}. Then R1 covers Θ(R1) = S(t1) ∩ S(t2) =

{e1} ∩ {e1, e2, e3} = {e1}. We say that example e1 is covered by rule R1.
Equivalently, R2 covers examples e1, e2, e3 and R3 covers the same set of
examples as R2.

The binary relation �r is defined in the set of rules R as follows:

Rf1 �r Rf2 ⇐⇒ Θ(Rf2) ⊆ Θ(Rf1) (15)

where Rf1,Rf2 ∈ R.

Example 5. Suppose the ontology O from Example 1, mapping M and M ′

from Example 2, mapping S from Example 3, and rules from Example 4.
Then the relations between rules are as follows: R2 �r R1, R3 �r R1, R3 �r
R2 and R2 �r R3.

5.2 proposed algorithm

The algorithm proposed in this work induces a hypothesis from data
in the form of a set of rules (conjunctions). To induce a hypothesis
consisting of more rules we apply a covering algorithm that has its
origin in the AQ family of algorithms [110] and it is also used in CN2.
The covering algorithm consists of two steps: (1) induce a single rule
from the current set of examples, (2) exclude the examples that are
covered by this single rule from the current set of examples; these
two steps are iteratively applied starting with the the set of all ex-
amples until all positive examples are covered or a certain number
of induced rules is reached. This process is described in Algorithm 4

and that algorithm we refer to as sem1R. As an input, the following
data are required: a set of positive E+ and negative E− examples, a set
of ontologies O, and a maximal size of the set of induced rules k. An
output is a set of induced rules. An induceSingleRule function returns
the best rule based on selected evaluation function. The function in-
duceSingleRule is described in Algorithm 6, all evaluation functions
can be found in the Evaluation Criteria section.

Contrary to CN2, the sem1R algorithm has the relations over terms
that are explicitly specified in provided ontologies. Intuitively, if this

[ October 18, 2021 at 17:12 – classicthesis ]



46 rule learning with an ontology-based refinement operator

Algorithmus 4 : sem1R
input :E+, E−,O, k
output :H // hypothesis

1 H← ∅
2 foreach i ∈ {1, 2, · · · ,k} do
3 newRule← induceSingleRule(E+, E−, O, k)
4 E+, E− ← removeCoveredExamples(newRule, E+, E−)
5 H← H∪newRule
6 end
7 return H

kind of knowledge were exploited, then we would expect some ben-
efits during the process of inducing rules because the structure of
terms is known. In this case, the main benefit is speeding up the pro-
cess of inducing rules and removing obvious redundancy between
the terms in rules. This was the main motivation for the following
reduction procedures.

5.2.1 Reduction Procedures

In this section, we formulate two procedures that significantly reduce
a rule space in comparison with the traditional rule learning methods
such as CN2.

5.2.2 Redundant Generalization

This reduction method eliminates such terms occurring in a rule
which are more general than any other term of the rule. Such terms
in the rule do not affect a set of examples covered by the rule and
consequently do not change its impact. Evidently, the set of covered
examples is only affected by the most stringent sets of examples ac-
cording to the mapping S.

Theorem 1. Let R1 be a rule and suppose that term t1 ∈ R1 and a term
t2 ∈ R1 where t1 is more general than t2. Then, the rule R1 covers an equal
set of examples as a rule R1 = R1\{t1} that does not contain t1:

Θ(R1) = Θ(R1)

and the rule R1 is called a redundant generalization of R1.

Proof. For simplicity, we take into consideration only rules with car-
dinality 1. Given this, mapping S can be seen as a cover operator Θ
because it only makes an intersection over all sets of examples ac-
cording to S. Also, a rule of cardinality 1 will be denoted as a term
because we do not want to distinguish the relations over the set of
terms and the set of rules. In this case, the � relation over terms is
equivalent to �r relation over rules. This simplification does not lose
generality.
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In Eq. 12, we use the mapping S that finds all specializations for a
term and afterwards, using mapping M’, it unites all the examples as-
signed to these specializations into one set. This is done for each term
in an ontology. Apparently, terms that are more specific cannot be as-
sociated with a higher number of examples than their more general
counterparts. Concurrently, examples associated with a more specific
term make a subset of examples associated with a more general term,
written as t1 � t2 ⇒ S(t2) ⊆ S(t1) where t1, t2 ∈ T . Now, let rule
R1 = {t1, t2} consist of two terms such that t1 � t2 and rule R1 = {t2}

consists of only term t2. Then R1 covers an equal set of examples as
R1. This equality is proven below.

Θ(R1) = Θ(R1)

S(t1)∩ S(t2) = S(t2)

{e ∈ E : S(t2) ⊆ S(t1)} = S(t2)

S(t2) = S(t2).

Example 6. Consider the ontology O from Example 1, mapping M and M ′

from Example 2, and mapping S from Example 3. Let rule R1 = {t0, t2},
term t0 is more general than t2 (t0 � t2) and this rule covers examples
e1, e2, e3 because Θ(R1) = Θ({t0, t2}) = S(t0) ∩ S(t2) = {e1, e2, e3}.
Now, consider a rule R1 = {t2} that also covers examples e1, e2, e3 since
Θ(R1) = S(t2) = {e1, e2, e3} and as we can see, term t0 occurring in
the rule R1 does not influence a set of covered examples. Given this, rule
R1 covers the same set of examples as rule R1. For this reason, rule R1 is
Redundant Generalization and rule R1 is not Redundant Generalization.

To achieve a non-Redundant Generalization rule, i.e. the rule where
the relation � does not exist between any terms in the rule, we have
to apply Redundant Generalization procedure until the relation �
between terms in the rule has not been found. As we can see in Ex-
ample 6, this reduction procedure decreases the cardinality (length)
of the rules.

5.2.3 Redundant Non-potential

In the previous case, the Redundant Generalization method reduces
a rule space as a result of its ability to decrease the cardinality of
rules. Specifically, this reduction capability is applied to the refine-
ment operator that gradually extends rules by adding new terms into
them. Redundant Non-potential method can generate fewer candi-
date rules because terms that are in a relation with another term are
not appended to the refined rule.

Contrary to the previous method, the Redundant Non-potential
method does not utilize relations among terms to reduce a rule space
but compares rules with each other and removes such rules that can-
not reach a higher quality value than the current best rule has. The
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ability to recognize non-potential rules can be used for a direct re-
duction of rules in a rule space and also for eliminating a number
of candidate rules in a process of rules refining. Firstly, we define
two types of evaluation function: Q evaluating a quality of rule based
on the number of covered/uncovered examples, and Qp that eval-
uates a potentially maximum quality of rule that could possibly be
achieved over its future refinements. Examples of Q functions are
depicted in Eq. 23, 25, and 27. Corresponding Qp functions are de-
picted in Eq. 24, 26, and 29. For the moment, we can say that Qp
function expresses an upper boundary of a rule quality. This upper
bound can be reached when we know that rule refinements can only
reduce the set of examples the rule covers. Then, the best potential re-
finement does not lose any positive examples from the current cover
while ceasing to cover all the current negative examples. A Redun-
dant Non-potential rule and all its more specific rules can be safely
disregarded in the single rule induction process because there is a
guarantee that these rules cannot exceed an upper boundary of the
rule quality represented by Qp.

To illustrate, consider an arbitrary rule R1 and its more specific
rule R2 (R1 �r R2) which was created by refinement operator ap-
plication. Given Eq. 15, R2 covers a subset of examples covered by
R1 (Θ(R2) ⊆ Θ(R1)). Unfortunately, ACC or F1-score are not mono-
tone functions, meaning that it is not guaranteed that R2 must always
have a higher ACC or F1-score than R1. For this reason, R2 cannot
be safely pruned from a rule space because it is not obvious whether
other refinements of R2, which are more specific than R2, can poten-
tially achieve a higher score than R1 even though R2 could have a
worse score than R1. To prune the rule space safely, we maintain the
upper bound of rule quality Qp. Given this, if rule R2 (refinement
of R1) has a lower Qp value than R1’s value of Q then R2 is a Re-
dundant Non-potential and this rule, along with all its more specific
extensions/refinements, can be safely pruned from a rule space.

Theorem 2. Let R =< R,�r> be a quasi-ordered set representing a rule
space, where R = {R1,R2,Rbest}. Binary relation �r is defined on R1 and
R2 as �r= {(R1,R2)} meaning that R2 is more specific than R1; relation of
Rbest is disregarded - may be arbitrary. If potential quality (Qp) of the rule
R1 is smaller than the quality Q of rule Rbest then the rule R1 and all its
potential more specific rules, i.e. R2, can be pruned from the set of rules R
thus from the rule space R. Then the rules R1 and R2 are called Redundant
Non-potentials.

Proof. First of all, suppose that a target class is represented by positive
examples. Secondly, suppose an evaluation function whose highest
value is returned when all positive examples and none of the negative
examples are covered. An example of this function can be ACC or
F1-score. Note, that ACC is given by equation TP + TN/(TP + TN+

FP+ FN) (see the Evaluation Criteria section) and the reason, why we
affect only TP and not TN, is simple. An example that is classified
as TP has to be covered by a rule. On the other hand, an example
classified as TN does not have to be covered by a rule. Since we focus
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on the target class, an arbitrary rule reaches a higher score if a new
rule covers the same set of positive examples as a rule and does not
cover any other negative example.

Example 7. Suppose the ontology O from Example 1, mapping M and M ′

from Example 2, mapping S from Example 3, and two rules R1 = {t2} and
R2 = {t3}. Furthermore, we define a set of positive examples E+ = {e1, e3}
and a set of negative examples E− = {e2}. Firstly, we evaluate the quality of
the rules according to ACC measure (see Eq. 23)

QACC(R1) =
TP+ TN

TP+ TN+ FP+ FN
=

2+ 0

2+ 0+ 1+ 0
=
2

3
(16)

QACC(R2) =
TP+ TN

TP+ TN+ FP+ FN
=

0+ 0

0+ 0+ 1+ 2
= 0 (17)

Now, we compute a potential quality score of R2 (see Eq. 24):

Qp_ACC(R2) =
TP+ TN+ FP

TP+ TN+ FP+ FN
=

0+ 0+ 1

0+ 0+ 1+ 2
=
1

3
(18)

Evidently, the potential quality of R2 is smaller than the quality of R1 so we
can exclude the rule R2 and all its more specific rules (e.g. {t5, t6}) from the
rule space. Note that an example of how to compute evaluation measures can
be found in the next section.

To achieve the most effective pruning of rule space, we store a
value of the highest quality rule that has been discovered during the
learning process in RBEST_SCORE variable, see Algorithm 5. If the
potential quality (Qp(R)) of currently examined rule R is less than
the RBEST_SCORE, then the rule R and all its more specifics rules are
Redundant Non-potential and can be excluded from a rule space.

5.3 evaluation criteria

It is necessary to know the quality of each rule because the rule with
the highest value is needed for the final hypothesis. In this case, we
define three evaluation functions: accuracy (ACC), F1-score (F1), area
under the ROC curve (AUC), and their adjusted versions for evaluat-
ing the potentially best results that the current rule can achieve after
refinements in future evaluations. Accuracy works well for balanced
problems (the number of positive examples is similar to the number
of negative ones) and both classes are equally important. F1 and AUC
help when dealing with imbalanced classes, F1 puts more emphasis
on the positive class.

First of all, we define four elements of confusion matrix: number
of true positives (TP), number of false positives (FP), number of false
negatives (FN), and number of true negatives (TN) examples that are
covered by an arbitrary rule R, see Figure 10.

TP is given as a cardinality of the intersection of two sets, a set of
examples that are covered by the rule R and a set of positive examples
E+. FP is given as a cardinality of the intersection of two sets, a set of
examples that are covered by the rule R and a set of negative examples
E−. TN is given as a cardinality of the subtraction of two set, a set of
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P N

R

TP FP

FN

TN

Figure 10: A graph representing a set of positive examples P and negative
examples N and the way they are covered by a rule R assuming
that R is focused on the classification of positive examples. Sub-
spaces corresponding to TP, FP, FN and TN examples are also
depicted.

negative examples E− and a set of examples that are covered by the
rule R. Finally, FN is given as a cardinality of subtraction of two sets,
a set of positive examples E+ and a set of examples that are covered
by the rule R. All equations are shown below.

TP = |Θ(R)∩ E+| (19)

FP = |Θ(R)∩ E−| (20)

TN = |E−\Θ(R)| (21)

FN = |E+\Θ(R)| (22)

Corresponding accuracy (ACC) of an arbitrary rule R can be com-
puted by the widely known equation below:

QACC(R) =
TP+ TN

TP+ TN+ FP+ FN
. (23)

However, the potentially highest accuracy of rule refined from R is
computed differently. In Eq. 23, we see that the eventual accuracy
is given by the numerator (TP and TN) whereas the denominator
has the normalization function. The refinement may improve the rule
quality in such a way that the examples that are classified as FP will
be re-classified to TN, i.e. the numerator of Qp_ACC may at best be
given by the sum of TN,TP, and FP. The equation for the potentially
highest quality reached through refinement follows:

Qp_ACC(R) =
TP+ TN+ FP

TP+ TN+ FP+ FN
(24)

The computation of Qp_ACC in Eq. 24 assumes that the rule R aims
to cover positive examples rather than negative ones. In other words,
examples that are covered by the rule R are classified as positive. Sec-
ondly, we propose another evaluation measure that is based on F1-
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score that implicitly does not take into account the number of TNs.
Its common form is depicted in Eq. 25.

QF1(R) =
2× TP

2× TP+ FP+ FN
(25)

The corresponding version of potentially best accurate rule created
by applying refinement operator to rule R that is based on the F1
measure takes the following form:

Qp_F1(R) =
2× TP

2× TP+ FN
, (26)

where all negative examples covered by rule R (FP) are excluded from
the denominator in comparison with Eq. 25. Since there is still the pos-
sibility of finding such a rule which covers all examples determined
as TP and none of the FPs.

Example 8. Consider the ontology O and mappings M,M ′,S from Exam-
ple 1, and a set of positive (E+) and negative (E−) examples from Example 7.
Furthermore, we define a rule R = {t2}. First of all, we find examples that
are covered by the rule using Θ operator, i.e. Θ({t2}) = S(t2) = {e1, e2, e3}.
Secondly, we compute TP, FP, FN and TN:

TP = |Θ(r)∩ E+| = |{e1, e2, e3}∩ {e1, e3}| = 2

FP = |Θ(r)∩ E−| = |{e1, e2, e3}∩ {e2}| = 1
TN = |E−\Θ(r)| = |{e2}∩ {e1, e2, e3}| = 0
FN = |E+\Θ(r)| = |{e1, e3}∩ {e1, e2, e3}| = 0

Finally, we substitute these numbers in Eq. 23 and 24:

QACC(R) =
TP+ TN

TP+ TN+ FP+ FN
=

2+ 0

2+ 0+ 1+ 0
=
2

3

Qp_ACC(R) =
TP+ TN+ FP

TP+ TN+ FP+ FN
=

0+ 0+ 1

0+ 0+ 1+ 2
=
1

3

The final ACC of rule R over the set of positive and negative examples is 23
and the potential best ACC for the set rule and the set of examples is 13 .

Finally, let us give the rule quality in terms of AUC. The area under
the curve can be computed easily. Since only the single rule is taken
into consideration, its quality is determined by a single point in the
ROC plot and it can be computed as a sum of areas of two triangles
and one rectangle using an Eq. 27.

QAUC(R) = FPR× TPR+ (1− FPR)× TPR+ (1− FPR)× (1− TPR)

2
(27)

TPR (true positive rate) and FPR (false positive rate) are calculated as
follows:

TPR =
TP

TP+ FN
, FPR =

FP

FP+ TN
(28)

Qp_AUC(R) = TPR+
(1− TPR)

2
(29)

The adjusted version of AUC computing a potentially best AUC
that a rule can achieve is shown in Eq. 29. In contrast to Eq. 27,
Qp_AUC supposes that FPR goes to zero.
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5.3.1 Feature Construction

In the Problem definition section, we defined the rule space R as a
quasi-ordered set that is expressed as a pair of a set of rules and
the relation �r between rules. In addition, the form of rules is deter-
mined by propositional logic; more precisely, the rule is restricted to
a conjunction of positive terms, i.e.

R = t1∧ t2 = {t1, t2}, t1, t2 ∈ O.

The first step in the rule learning process is feature construction
because rule learning employs features as their basic building blocks.
In this work, features are constructed trivially from a set of terms T
which comes from the ontology O where each ontology term corre-
sponds to one feature.

5.3.2 Feature Selection

Oftentimes, a constructed feature set is extremely large and also re-
dundant since it contains many features that are not associated with
any example. For this reason, a feature selection method is highly
recommended. Given this, we propose three various feature selection
methods.

5.3.2.1 FS_atLeastOne

The first feature selection method excludes such terms from a con-
structed feature set which are not associated with at least one exam-
ple from a set E+ ∪ E−. In other words, this feature selection method
removes such terms that are highly specific or do not cover any ex-
ample. This method guarantees that removed terms cannot positively
affect the final evaluation score of a rule because these terms cover an
empty set of examples. For this reason, if such terms appeared in a
rule then the rule would cover an empty set of examples.

5.3.2.2 FS_onlySig

The second feature selection method preserves only features whose
terms are significant. P-values are calculated using a Likelihood Ratio
Statistic (LRS) as is presented in [26]. The LRS for the two-class prob-
lem measures differences between two distributions: the positive and
negative class probability distribution within the set of covered exam-
ples and the distribution over the whole example set. It is computed
as follows:

LRS(r) = 2×
(
TP× log2

TP
TP+TN
TP+FN

|E|

+ TN× log2
TN

TP+TN
FP+TN

|E|

)
(30)

This measure is distributed approximately as χ2 distribution with 1

degree of freedom for two classes. If the LRS is above the specific
significance threshold, then the term is considered significant.
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5.3.2.3 FS_sigAtLeastOne

The third feature selection method combines the two previous fea-
ture selection methods. A term that belongs to the feature set has to
satisfy two conditions: 1) that term covers at least one example, and
2) the term is significant which is calculated by the LRS or the term
is a generalization of some significant term. This method combines
requirements from the previous two selection methods, its selectivity
will be experimentally verified later.

5.3.3 Rule Construction

Rule construction is the second step which aims to find a rule that
optimizes a given quality criterion in the search space of rules.

The description of the algorithm for single rule learning is depicted
in Algorithm 5 where input is a set of positive examples E+, a set of
negative examples E−, a set of ontologies O, a function buildMapping
that creates a link between the ontology and the set of examples E
(E = E+ ∪ E−), and a parameter k that represents the maximal length
of induced rules. Note that this function is defined manually by a user.
The first step in Algorithm 5 is to find all features. This operation is
represented by the function featureConstruction at line 4 that assigns
all terms from the set of ontologies O to a set of features F. To remove
irrelevant features from the set of features F, we propose a function
featureSelection at line 5. Here, three various feature selection methods
are provided as we mentioned in the Feature Selection section, i.e.
FS_atLeastOne, FS_onlySig, and FS_sigAtLeastOne.

The main part of this algorithm is presented in lines 8-24. In this
while loop, candidate rules are gradually refined until the maximal
length of the rule is reached (l variable represents the current length
of rule) or there is nothing to refine, i.e. the algorithm did not cre-
ate any new rule in the previous iteration. In the for loop (lines
11-21), new candidate rules are generated using the application of
the refinement operator on the corresponding parental rules. The al-
gorithm iterates over each rule that is presented in the set of rules
R. To this rule, we apply a new ontology-based refinement operator
which is represented at line 12 by the function refineRule that uses the
Redundant Generalization and Redundant Non-potential reduction
procedures. Similar to the traditional CN2 refinement operator, the
ontology-based refinement operator appends a feature to the refined
rule. For example, in the case of a conjunction of terms R = {t1, t2, t3},
a new rule is created as the union of term t4 and terms in rule R,
i.e. R_new = {t1, t2, t3} ∪ {t4}. A new refinement operator requires
the following inputs: rule r to refine, a set of features F, an ontol-
ogy O for information about relationships, a score of the best rule
RBEST_SCORE that has been discovered, a set of positive and neg-
ative examples E, and a mapping M ′ that represents a connection
between ontologies and examples. The operator returns a set of all
refined rules that are not Redundant Generalizations nor Redundant
Non-potentials and assigns them to newCandidates set.
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Algorithmus 5 : induceSingleRule
input :E+, E−, O, k
output :RBEST // conjunction of selectors

1 RBEST ← ∅
2 RBEST_SCORE ← 0, l← 0

3 M ′ ← buildMapping(O, E+, E−)
4 F← featureConstruction(O)

5 F← featureSelection(F, E+,E−, O, M ′)
6 R← F

7 // discover rules until stopConditions

8 while R 6= ∅ and l < k do
9 Rnew ← ∅
10 // Refine all rules in R

11 foreach r ∈ R do
12 newCandidates← refineRule(r, F,O,

RBEST_SCORE, E+ ∪ E−, M ′)
13 Rnew ← Rnew ∪newCandidates
14 // Find the best rule

15 foreach nc ∈ newCandidates do
16 score←evaluateCandidate(nc, E+, E−, O, M ′)
17 if score > RBEST_SCORE AND isSignificant(nc,

E+, E−, O, M ′) then
18 RBEST ← nc

19 RBEST_SCORE ← score

20 end
21 end
22 R←filterRules(Rnew)

23 l← l+ 1 // increment the rule length by one

24 end
25 return RBEST

The refineRule function that is described in Algorithm 6 starts with
an empty set S where a content of this set will be returned at the
end of the function at line 10. The cycle from lines 3 to 6 appends
every feature to the rule that should be refined. Up to this part, the
algorithm is similar to the traditional refinement operator. However,
all rules that are not Redundant Generalization are excluded from the
set S using the ontology O that provides relationships among terms.
This is done by calling a function removeRedundGeneralizations at line
8. The function removeRedundNonPotentials removes such rules that
satisfy the definition of Redundant Non-potential rules. In this case,
the function continuously checks the following: 1) R �r ∀s ∈ S ∪ R.
This is true since each element s represents a rule that is created as a
refinement of rule R. 2) For each s, if its potential quality Qp(s) is less
than the quality Q(RBEST ) then remove s and all its more specific
rules from the set S. In other words, all rules in S whose potential
quality can be greater than the rule with the greatest quality RBEST
are preserved.
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Algorithmus 6 : refineRule
input : r, F,O, RBEST_SCORE, E, M ′

output :S // set of refined rules

1 S← ∅
2 // Append all features to the rule

3 foreach f ∈ F do
4 newRule← r∪ f
5 S← S∪newRule
6 end
7 // Filter rules

8 S←removeRedundGeneralizations(S, O)
9 S←removeRedundNonPotentials(S, r, O, RBEST_SCORE, E,
M ′)

10 return S

All candidate rules that were generated in refineRule function are
assigned to the set of new rules Rnew. In addition, all newCandidates
are evaluated by the function evaluateCandidate and its corresponding
quality score is compared to the rule with the highest quality stored
in a RBEST_SCORE. If such a compared rule has a better quality then
this rule is assigned to the RBEST variable and the score is stored in
the RBEST_SCORE variable. Simultaneously, the rule has to be signif-
icant. To compute this significance, we use LRS as we did in feature
selection.

At the end of the algorithm, the best rule of the all rules that have
been discovered is returned. If the function filterRules at line 22 is
omitted then the Algorithm 5 is called a brute-force exhaustive search
that explores the whole search space and leads to a combinatorial ex-
plosion. For this reason, an appropriate heuristic should be provided
for reducing the search space. In this work, we use Beam search that
expands only the most promising rules based on the evaluation func-
tion. Other rules are disregarded.

5.4 results and discussion

In this section, we propose an evaluation procedure that experimen-
tally confirms the efficiency of the new ontology-based refinement op-
erator using two reduction procedures: the Redundant Generalization
and the Redundant Non-potential. The algorithm with the ontology-
based operator is called sem1R and it is compared against the tra-
ditional refinement operator used in CN2, which does not exploit
any external knowledge during the rule refining process. Here, it is
called exhaustive refinement. The ability to reduce a search space is
tested on three different datasets with three feature selection meth-
ods (FS_atLeastOne, FS_onlySig, and FS_sigAtLeastOne) and with three
different evaluation functions (ACC, AUC, and F1-score). Observed
parameters as a total number of explored rules, which must be re-
fined to find the best rule, and also run times, were measured for the
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sem1R and exhaustive refinement. All presented algorithms are imple-
mented in C++ and work with the Open Biological and Biomedical
Ontology (OBO) format. Note that the algorithms require at least one
ontology.

Because the proposed algorithm requires three inputs, we define
their format as it is used in our R package. The datasets are repre-
sented as a two-dimensional binary matrix D with i rows, j columns,
a set of row ontologies R, and a set of column ontologies C. The
mapping M ′ is constructed such that each row and column is asso-
ciated with a subset of ontology terms. This construction step has to
be done manually by a user based on expert knowledge. In practice,
it is necessary to have specific identifiers for rows and columns and
these identifiers are associated with corresponding ontology terms.
In gene expression analysis, such an identifier can be gene ID (e.g.
FBgn for Drosophila melanogaster, ENSB for human or mouse mus-
culus) for rows and sample ID (e.g. FBbt for anatomy compartments
of Drosophila melanogaster or Experimental Factor Ontology for ex-
periment metadata) for columns.

To transform a dataset from a two-dimensional binary matrix to
the set of positive and negative examples, we design the following
procedure. First of all, we suppose that each element of the matrix D
represents one example. Then all matrix elements containing 1s are
assigned to the set of positive examples E+ and elements with 0s are
assigned to the set of negative examples E−. For a non-binary matrix
D, binarization is necessary.

The first tested dataset comes from [12] and describes the gene ex-
pression of imaginal discs of Drosophila melanogaster (DISC) where
rows of the dataset correspond to genes and columns correspond to
samples. Note that this format is used for all tested datasets. Rows
(genes) of DISC dataset are described by Gene ontology [3, 29] and
KEGG BRITE database. Columns (samples) are described by Drosophila
anatomy ontology (DAO) [31]. The second dataset called Dresden
Ovary Table (DOT) [39, 74] describes gene expression and RNA lo-
calization in fly ovaries using Gene ontology, KEGG BRITE database,
and an ontology provided by the authors is freely available at [39],
respectively. Note that DOT and DISC are originally formed as a bi-
nary matrix. Last but not least, the third dataset was downloaded via
Expression Atlas [129] where it is called Strand-specific RNA-seq of nine
mouse tissues[109] (m2801) and using Gene ontology and Experimen-
tal Factor Ontology (EFO) [105]. For binarization, we set up cutoff
to 0.5 TPM (Transcripts Per Kilobase Million) because it is presented
as a default value in Expression Atlas and it maintains comparable
numbers of positive and negative examples. If a value in the matrix
is higher than 0.5 TPM then the value is set to 1 and the element is as-
signed as a positive example otherwise the value is 0 and the element
goes to the set of negative examples E−.

Also, it may be desirable to find descriptive rules only for pre-
defined rows (genes) or columns (samples) that are relevant to spe-
cific research. Specifically, it can be significantly expressed genes in
a treatment group against the control group. In this case, the matrix
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D has only is rows corresponding to significantly expressed genes
and jt columns corresponding to samples belonging to the treatment
group and jc columns belong the control group. Here, each of the
elements belonging to the treatment group is set up to 1 and is con-
sidered to be positive, others are 0 which means negatives. The total
number of examples is is × jt and is × jc for positive and negative
examples, respectively.

Basic statistics of tested datasets, as a number of rows and columns,
a number of positive and negative examples, and a number of on-
tology terms for given ontologies, are depicted in Table 10. Because
there are some terms that do not associate with any example and such
terms are not good candidates to be a feature since they do not cover
any example, the final feature sets can be given by one of the three
feature selection methods mentioned in the Feature Selection section.
The numbers of features that were used for each rule induction step
are shown in Figure 11.

These experiments clearly confirm our presumptions, defined in
the Feature Selection section, where we assumed that the most re-
ducing feature selection method is FS_onlySig. On the other hand,
the most benevolent or conservative method is FS_atLeastOne, which
guarantees that any of the relevant features possibly positively affect-
ing the quality score of the hypothesis will not be discarded from the
feature set. The FS_sigAtLeastOne demonstrates a similar behavior to
FS_atLeastOne. Concretely, the FS_sigAtLeastOne method produces a
smaller feature set than FS_atLeastOne. However, the differences are
not huge.

To avoid a combinatorial explosion problem in exploring the rule
space, we use a Beam search which is represented by filterRules func-
tion in Algorithm 5. The width of the beam was set no higher than
the 100 best rules, the rules are sorted according to their quality score
calculated with one of the given evaluation functions. We decided
to use this threshold, because greater beam widths result in huge run
times in exhaustive refinement. Higher beam widths also increase mem-
ory requirements. At the same time, the ability of sem1R to reduce the
search space and consequently reduce run time is obvious even below
the beam width of 100. Theoretically, it is anticipated that the ability
to reduce a search space grows with the beam width since there are
potentially more rules to prune especially for Redundant Non-potential
procedure.

Total run time and total number of explored rules were observed
for rules with the maximum length of 10 because longer rules can
be more difficult to interpret in real problems, especially in a biology
domain. The total number of induced rules for each dataset was set
to 10, for the same reason as previously mentioned. The final results
of experiments as total run time in seconds and total number of ex-
plored rules are depicted in Table 11 for sem1R and in Table 12 for
exhaustive refinement.

A graphical representation is shown in Figure 12 and Figure 13.
The first one shows run times in logarithmic scale depending on the
number of induced rules for sem1R (dashed line) and exhaustive re-
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finement (full line). Run time was measured for three datasets with
three different evaluation functions and with three different feature
selection methods. Evidently, in all cases, the run time of sem1R is sig-
nificantly lower. Figure 13 shows the total number of rules that have
been evaluated in a logarithmic scale that depends on the number of
rules. As in the previous figure, the number of rules was measured
for three datasets with three different evaluation functions and with
three different feature selection methods. But even in this case, sem1R
with its Redundant Generalization and Redundant Non-potential proce-
dures prunes the rule space more rapidly in comparison with the
traditional exhaustive refinement. Note that using FS_onlySig method,
the smallest number of rules is evaluated. This corresponds to the
results in Figure 11.

In all various experimental settings, both exhaustive refinement and
sem1R induce rules with the same quality score across corresponding
experiments. The level of significance was set to 99% for feature se-
lection method FS_onlySig and FS_sigAtLeastOne and also the same
significance level for finding the best rule in induceSingleRule func-
tion. From Figures 12 and 13 it is obvious that F1-score prunes the
search space most and the run of the algorithm is fastest. One of the
reasons is that only TP, FP, and FN must be calculated here. On the
other hand, AUC is less strict in the pruning of the search space and
it is also the slowest, because Eqs. 27, 28 and 29 have to be calculated
for every candidate solution and the algorithm has to evaluate the
highest number of candidate rules. There is a clear trade-off between
the efficiency and complexity of evaluation that stands behind AUC.
All results of the experiments are appended to Additional file 1 of the
original article [103].

For illustration and better understanding, we present an example
of 2-terms long rule induced from the DISC dataset, where each term
comes from a different ontology. The rule is following: GO:0002181

AND FBbt:00000015. This reported rule is enriched (it covers far more
positive examples than expected by random). The FBbt identifier refers
to a term from Drosophila anatomy ontology and the GO identifier
refers to a term from Gene ontology. In this particular case, the rule
says that all genes that are associated with a cytoplasmic translation
process (the chemical reactions and pathways resulting in the forma-
tion of a protein in the cytoplasm) tend to be over-represented in
thorax segment of Drosophila melanogaster.
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5.5 conclusion 65

5.5 conclusion

We proposed and implemented a new rule learning algorithm that
induces a set of rules related to ontologies or taxonomies. Using
two novel reduction procedures Redundant Generalization and Redun-
dant Non-potential, which are part of the proposed ontology-based
refinement operator, we dramatically reduce the search space. Conse-
quently, runtime of the algorithm is decreased rapidly as well. These
procedures guarantee that any removed rule cannot positively affect
the quality of the final hypothesis. Also, three various feature selec-
tion methods that help to increase the efficiency of the algorithm were
proposed. The algorithm is implemented in C++ and it is available at
http://github.com/fmalinka/sem1r as R package. We demonstrated
our algorithm on three real gene expression datasets, however, it
is generally applicable to any learning task that combines measure-
ments and ontologies, including metabolomics, etc.
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6
S E M A N T I C C L U S T E R I N G A N A LY S I S O F
E 3 - U B I Q U I T I N L I G A S E S I N G A S T R O I N T E S T I N A L
T R A C T

In this chapter, we accommodate the general framework of the seman-
tic biclustering algorithm for finding tissue-specific gene expression
patterns. The established protocol that incorporates the semantic bi-
clustering algorithm exploiting the semantic of genes shows the po-
tential to reveal interesting patterns in data. Simply put, this chapter
describes a recipe to design and modify the specific data to run the
sem1R algorithm and interpret the results.

Here, in contrast to the previous chapter, we denote the proposed
approach as a semantic clustering, not the semantic biclustering as usual.
The reason behind this decision comes from the fact that we control
the sample dimension in this real experiment. Practically, we assign
the samples to groups manually according to the requirements of bi-
ologists who interpret the data. Then, for each group, we find clusters
of genes with respect to gene expression and their semantic similarity.
This helps the biologists to recognize promising patterns in the data
more easily.

As we show below, the sem1R is a practically applicable tool that
formulates relevant biologically related hypotheses. In this chapter,
the sem1R is being meaningful for studying redundancy of enzymes
belonging to other families, like proteases or phosphatases. In com-
parison to the conventional GSEA method [156] which is oftentimes
used as well, the sem1R easily defines rules/hypotheses using terms
of various ontologies that extensive a hypothesis language and conse-
quently oftentimes improve the predictive accuracy.

This chapter has been created with the cooperation of scientists
from Czech Centre for Phenogenomics. I give my thanks to them. Note
that this work is being considered for publication as [73].

6.1 background

Ubiquitination [48] is the most common post-translational protein
modification, during which small protein ubiquitin (Ub) is covalently
attached to the substrate. Ubiquitination can either direct proteins for
degradation to the proteasome system or modulate their intracellu-
lar localization, vesicular trafficking, activation of signaling pathways
and alteration of DNA transcription [54, 139]. The enzymes responsi-
ble for transferring ubiquitin to protein are called E3 Ub-ligases. To
ensure high specificity during selection of target proteins there have
been predicted more than 600 genes encoding E3-Ub ligases in hu-
man genome [98, 108]. They are divided into three basic classes, the

67
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68 semantic clustering analysis of e3-ubiquitin ligases

RING, HECT, and RBR according to the conserved domains and the
mechanism of transfer of the Ub from E2 ubiquitin-conjugation en-
zyme to the substrate [10, 98, 117]. The E3 Ub-ligases are involved
in all regulatory pathways in cellular signaling, physiology regula-
tion and metabolism. Individual Ub-ligases recognize their targets in
strictly regulated manner and without any respect to their sequence
similarities. Depicting of regulatory roles of Ub-ligases within com-
plex regulatory network can be hampered by strong parallel com-
pensation mechanisms among Ub-ligases either recognizing the same
substrate or affecting different nodes of same regulatory pathway [87,
139]. This makes it very hard to predict alternative compensating en-
zyme in reverse genetics approach. Thus, more functional classifica-
tion of Ub-ligases is needed.

The way of classification of E3 ubiquitin ligases according to their
function uses the Gene ontology [3], which describes three aspects
of the biological domain as molecular function, cellular component,
and biological process [108]. In addition, there are hundreds of other
ontologies that do not specialize only onto genes and their properties.
Such ontologies can describe developmental stages or influence of
treatment and environment. The most popular method that employs
this type of classification was GSEA. However, this type of analysis is
limited by restriction to specific type of evaluation, and provides only
a sorted list of genes together with their ontological annotation [103].
For this reason, semantic analysis methods were introduced in Chap-
ters 4 and 5 that allow to determine and describe semantically com-
prehensive gene biclusters. So, these methods provide a more com-
plete picture of functional gene classification for specific cell type in
the tissue. We note that some differences between GSEA and the se-
mantic biclustering methods have been already discussed in Chapter 3.

The gastrointestinal tract (GIT) is a system with high rate of re-
generation. It consists of variety of diverse epithelial cell populations
with different morphology and function, such as nutrients absorp-
tion, hormone production, barrier function, responding to microor-
ganisms, coordination of immune response and self-renewing [140,
151]. Those features are determined by unique gene signature and reg-
ulatory pathway cooperation that is individual for specific cell type,
and can be found in their RNA profile [67]. Therefore, GIT represents
a valuable model system to study parallel regulatory networks in
the context of tissue homeostasis, regeneration and response during
pathogenic processes. In addition to different population of epithelial
cells, stem cells and mucosa-associated lymphoid tissue can be found
along the gastrointestinal tract [52, 142]. Tissue specific stem cells are
of epithelial origin and they continuously divide, proliferate and dif-
ferentiate to ensure the turnover of cells and the overall tissue home-
ostasis [7]. The multiple signaling pathways, such as Wnt, Notch or
EphrB3, have been known to be critical for regulation of stem cell
niche and differentiation of progeny cells [11, 151]. However, little is
known about how ubiquitin ligases are involved in such physiologi-
cal regulatory processes despite increasing evidence that an aberrant
function or dysregulation of the expression of the E3 Ub-ligases can
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cause pathological changes resulting in dysplasia, metaplasia or even
cancer.

Thereby, in this chapter we aim to identify GIT specific Ub-ligases
and their role in tissue homeostasis. Here we provide a semantic
clustering method combined with the expression profiling of E3 Ub-
ligases in stomach, small intestine and colon parts of gastrointestinal
tract in order to specify dominant biological roles and their possible
prediction for alternative compensation in different part of GIT and
during tissue homeostasis and regeneration. Also, by using already
published single-cell RNA sequencing data [30], we make an attempt
to identify cell-specific Ub-ligases in colon. We demonstrate that the
individual Ub-ligase may be typical for several cell types, but its ex-
pression is determined by the tissue homeostasis status and could
differ during injury response or regeneration.

6.2 methods

6.2.1 Animals

For this chapter were used C57BL/6NCrl mice (Charles River Labo-
ratories). For the expressional profiling were used three 12-week-old
C57BL/6NCrl males. Stomach, small intestine and colon were dis-
sected and immediately proceeded for RNA isolation.

We refer readers to the original article [73] for a detailed review of
data preparation methods.

6.2.2 Statistical analysis

qPCR data were normalized on Hsp gene expression. Missing data
were replaced by maximum value +2 for a given gene, recalculated to
relative quantities and log transformed. The ANOVA test with Tukey
post test was used for analyzing different gene expression in different
GIT parts. As significance level we used p-value = 0.01. Comparison
of DSS treated and untreated distal colon was not performed due to
small sample size. As primary criterion for selection potential inter-
esting genes, the absolute difference higher than 1.25 delta Cq was
used and all values from one had to be higher/smaller compare to
any value from the second group. Fisher test was used for compari-
son of category data (distribution of ontology terms in different tissue
and structural groups).

6.2.3 Ontology and semantic analysis

Ontologies that were used in all experiments are the following: Gene
ontology [3], Pathway ontology [128], and KEGG Brite database [77–
79]. These ontologies contained 45044, 2601, and 63263 ontological
terms, respectively. Entire gene set of 370 genes was split into three
groups according to the samples as follows: Small intestine vs colon -
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Group A, stomach vs colon Group B, and stomach vs small intestine
Group C. Then, the enrichment score (statistical significance) of each
ontological term of all presented ontologies was calculated for each
group of genes (Group A, Group B, Group C) separately. For this anal-
ysis, the sem1R package [103] was used with computeTermsEnrichment
function. The results are presented in the original article [73].

6.2.4 Semantic cluster analysis

To perform a semantic cluster analysis, sem1R algorithm was used
in this chapter. The algorithm induces a set of predictive rules that
describe coherent biclusters using ontology terms from input data.
In this case, the input data mean a gene set of significant and non-
significant differentially expressed genes for each comparison (Small
intestine vs colon - Group A, stomach vs colon Group B and stom-
ach vs small intestine Group C), and a set of ontologies. Each rule
was formulated as a conjunction of ontology terms where a group
of genes covered by the rule had to be associated with all ontology
terms appearing in that rule.

The concept of semantic cluster analysis is illustrated in Figure 14.
The figure shows a process of inducing hypotheses for each set of sig-
nificantly and non-significantly expressed genes of the original qPCR
dataset that is divided into three groups of samples, i.e. Group A,
Group B, and Group C.

Figure 14: A scheme of semantic cluster analysis using sem1R algorithm.

6.2.5 Selection rules definition

The selected groups of genes were sorted according to the t-score and
number of differences between significant and non-significant differ-
entially expressed genes (minimum difference was set up arbitrarily
equal to 3) for each ontology level. For each group (Group A, Group
B, and Group C) we run sem1R algorithm that is restricted to find
maximum 10 best rules (groups of genes) according to an evaluation
function. To get more different rules and consequently more different
covered groups of genes, all supported evaluation functions (ACC,
AUC, and F1-score) were used in the process of rule learning. To con-
trol a level of specificity of rules, ‘minLevel’ parameter was set up to
0, 2, 3, 4, 5, and 6 for all runs of sem1R algorithm. Defining a minimal
level of specificity prevents to induce too general or too specific rules
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that cover too many or too few genes, respectively. From all of these
runs of various settings, interesting rules and corresponding groups
of genes were selected.

6.3 results

6.3.1 Organ-specific gene combinations

The expression profiling of E3-Ub ligases was performed in stomach,
small intestine and colon of WT mice, respectively. We found that
each organ has their specific set of up- and downregulated genes (Fig-
ure 15), suggesting their organ specific role. For further analysis, the
genes were divided into three groups. Colon upregulated 118 genes
(sum of genes which were upregulated in colon over intestine or stom-
ach), intestine upregulated 22 (sum of genes which were upregulated
in intestine compared to colon or stomach) and stomach upregulated
78 (sum of genes which were upregulated in stomach compared to
colon or intestine). No significant difference was found in the repre-
sentation of individual structural classes with p-value 0.736 for up-
regulated genes in each organ. Genes from this cluster expressed at
the same level in stomach, small intestine and colon and might have
the same functional activity for each organ.

Figure 15: Representative distribution of upregulated genes in stomach,
small intestine and colon divided into main Ub-ligase classes.
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In the next step, we found ontology terms for each gene and com-
pared distribution of ontology terms with theoretical distribution. We
found 26 significantly enriched terms for genes, which were differen-
tially expressed in the specific part of GIT [73]. These ontology terms
displayed specific functions of given genes.

Ontology clusters of stomach represent genes that are involved in
stress response by regulating various intracellular signal transduction
with association of SCF ubiquitin ligase [166]. Ontology groups dis-
plays that small intestine is mostly represented by genes playing roles
in immune and inflammatory response. This group is represented
by the suppressor of cytokine signaling (SOCS) family of protein en-
coded genes – Socs1 and Socs3. Those genes responsible for negative
regulation of cytokine signaling through the JAK/STAT3 pathway
and was mentioned as a probable substrate recognition component
of a SCF-like ECS E3 ubiquitin-protein ligase complex [49, 76]. Next,
there was a group of upregulated genes in small intestine (14% out
of all upregulated) which are responsible for negative regulation of
insulin receptor signaling pathway [73]. The most representative gene
for this group was Cish, which is also a member of SOCS family [21].

As for colon, ontology clustering of colon upregulated genes show-
ing us enrichment for DNA repair, apoptosis and catabolic processes
specific genes. For instance, upregulation of E3 ubiquitin-protein lig-
ase Trim62 works as positive regulation in I-kappaB kinase/NF-kappaB
signaling and DNA-binding of transcription factors (for more details,
see [73]) [167]. Mul1 and Trim13 (also known as Ret finger protein 2,
RFP2), among others, take a role in a positive regulation of cell death
modulating innate immune response against viruses [75].

By applying semantic ontology analysis, we were able to find the
groups of genes which belonged to the same ontology cluster but
which had unique tissue expression pattern. This kind of analysis
allowed us to identify possible genes which can share similar function
in parallel regulatory networks.

In few following paragraphs, several cases of the ontology term
combinations will be shown: GO:0018193: peptidyl-amino acid modi-
fication and GO:0042326: negative regulation of phosphorylation that
includes five genes: Socs4, Socs5, Cbl, Socs1, Socs3 (Figure 16 A, B). In-
side this ontology, group genes Socs1, Socs3 are upregulated in small
intestine and downregulated in colon, whereas genes Socs5 and Cbl
exhibited the opposite expression. On the contrary, Socs4 does not
show significant difference in expression for colon and small intes-
tine.

Ontology term combination GO:0045309: protein phosphorylated
amino acid binding and GO:0044267: cellular protein metabolic pro-
cess unite Fbxw7, Nedd4, Btrc, Cblb and Socs3 genes (Figure 16 C,
D). In this group, Socs3 is upregulated in small intestine and down-
regulated in colon, while genes Nedd4, Btrc, Cblb are characterized
by the opposite expression pattern. Expression of Fbxw7 did not
significantly differ between small intestine and colon. Interestingly,
the same gene set (with additional Cbl gene, which is a paralog of
Cblb) belongs to another ontology term combination GO:0045309:
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Figure 16: Selected examples of ontologically related genes in GIT.
Heatmaps for genes that are annotated simultaneously by
ontology terms GO:0018193: peptidyl-amino acid modifica-
tion and GO:0042326: negative regulation of phosphorylation
(A), GO:0045309: protein phosphorylated amino acid binding
and GO:0044267: cellular protein metabolic process (C), and
GO:0045309: protein phosphorylated amino acid binding and
PW:0000417: ubiquitin, ubiquitin like/proteasome degradation
pathway (E). Schematic visualization of gene ontology and
their more general terms for GO:0018193 and GO:0042326 (B),
GO:0045309 and GO:0044267 (D), GO:0045309 and PW:0000417

(F). Selected ontologies illustrate the ability of semantical cluster-
ing to group genes that are carry the same biological function
in different parts of the organ. Scheme showing the relationships
among ontology terms related to biological processes.

protein phosphorylated amino acid binding and PW:0000417: ubiq-
uitin, ubiquitin-like/proteasome degradation pathway. For this ontol-
ogy group they perform similar tissue expression pattern (Figure 16

E, F) representing that the same genes might share similar functions
in multiple regulatory pathways.
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Besides, Socs genes represented the most illustrative expression
pattern in the GIT, particularly Socs1, Socs3, Socs4 and Socs5. Those
genes appeared in 9 out of 10 ontology combinations. Thus, Socs5 was
always downregulated in small intestine and upregulated in colon
and stomach. Socs1 and Socs3 showed upregulation in small intes-
tine and downregulation in colon. Also, Socs1 was downregulated in
the stomach tissue, while Socs4 did not show any difference in ex-
pression between SI and colon, what indicates its equal contribution
for homeostasis of these tissues.

6.3.2 Epithelial damage in colon

In order to reveal possible parallel networks, we used model of ep-
ithelial regeneration. We hypothesized that the genes involved in tis-
sue regeneration might be masked by steady state homeostasis and
their function thus might become apparent after tissue challenged
conditions, such as epithelia inflammatory damage. For this purpose,
we induced epithelial damage by treating mice with dextran sulfate
sodium (DSS), a chemical compound that is widely used for mouse
colitis models [42]. The expression site of 35 Ub-ligase genes was mon-
itored in the DSS treated and untreated distal colon tissue. It was
observed that most of the tested genes changed their expression pat-
tern top-body-base along the colon crypt, which might in accordance
with disruption of cell balance in the crypt after treatment (Figure 17

A). For untreated colon 22 out of 35 Ub-ligases were detected on the
crypt top, whereas after DSS treatment only 12 genes remained at
the same expression position and others – translocated either to the
crypt base or spread over the crypt body (Figure 17 B-D). This could
be associated with the damaged and missing cells at the apical site
due to the treatment. Similar situation was observed for the genes
that originally expressed in the crypt base.

As for the crypt body expression site, we observed more genes that
had expression in the affected area, some of which showed strong sig-
nal (Cbl, Fbxl5, Rnf19b, Apc2) (Figure 17 B-E). This observation might
be a result of inflammation and/or robust regeneration that occurs af-
ter treatment. Besides, there were genes with significantly decreased
expression after treatment. Some of them kept their original intra-
mucosal location of expression (for example, Trim25, Smurf2, Brcc3,
Trim11), another – doesn’t showed visible expression area (such as
Bmi1, Asb11, March7, Btrc).

We further focused on the response of genes that were grouped into
the same ontology term combination GO:0045309 and GO:0044267,
GO:0045309 and PW:0000417 (for more details, see [73]). On the on-
tology combination table, see [73], Socs1 and Socs3 genes were down-
regulated for colon and Btrc, Bmi1, Cbl – upregulated. With the help
of in situ hybridization we identified specific expression region in
colon for each of these genes. Also we saw that expression region
can differ under pathological conditions (Figure 17 E). In homeosta-
sis Btrc was highly expressed by the cells of the crypt apex, but its
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Figure 17: Differential expression of Ub-ligases of the same ontology group
after induced epithelial damage. A Schematic illustration of the
cell type distribution in colon in homeostasis (based on [30,
34, 57, 180]). B-D Epithelial damage causes a switch of ubiq-
uitin ligases expression pattern in distal colon crypt in the
top-body-base manner. e In situ hybridization images of the DSS
treated and untreated colon demonstrate changes in expression of
genes obtained from the ontology combination GO:0045309 and
GO:0044267, GO:0045309 and PW:0000417. Scale = 50 um.

expression went remarkably down after injury. Similar situation was
observed for Bmi1 originally present in the crypt top and crypt base,
respectively. Socs1 and Socs3 are localized to the crypt apex. In the
damaged or regenerated tissue, they keep the place of expression, but
their expression level appears much lower because of either missing
or re-structured epithelia (Figure 17 E).

On the contrary, Cbl showed high expression both at the crypt top
and the crypt base but the DSS-induced damage significantly upreg-
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ulated its expression through the entire crypt body. This could be
explained by the potential communication of Cbl with signaling path-
ways maintaining stem/progenitor/mature cell balance during tissue
regeneration (for example, protein tyrosine kinases mediated signal-
ing) [115].

6.3.3 Contemporary distribution in several cell types

To determine cell type specific distribution of Ub-ligases in the colon,
we used published single-cell RNA sequencing data of murine colon
as a reference [30]. Only Ub-ligase related genes were chosen from the
global scRNA-seq dataset (n=367) and were processed by Seurat pack-
age. For a cell subtype visualization, we performed principal compo-
nent analysis (PCA), then the 10 most significant principal compo-
nents were projected to two dimensions with UMAP, and the cells
were colored by their classification label [16]. We used established
cell markers to determine cell types in proximal and distal colon,
including enterocytes (Krt20+, Slc26a3+) [34], goblet cells (Atoh1+,
Spdef+) [64, 180], tuft cells (Dclk1+) [57], chromaffin (also known
as enteroendocrine) cells (Chga+, Chgb+) [45], proliferating (Lgr5-,
Mki67+) and non-proliferating (Lgr5+, Mki67-) stem cells (SCs) [7].
With the help of UMAP visualization we showed that Ub-ligases can
be grouped into several clusters that demonstrate cell specificity (Fig-
ure 18 A). However, there is not very strict tissue specificity between
distal and proximal parts of colon, and clusters there demonstrate
some overlapping.

To see the more detailed Ub-ligase distribution throughout the
colon, we focused on genes that were clustered into the same ontol-
ogy combination groups GO:0018193 and GO:0042326, GO:0045309

and GO:0044267, GO:0045309 and PW:0000417 (for more details, see [73]).
Those genes showed a differential expression after DSS-induced in-
flammation (Figure 17 E). Thus, Socs1 and Socs3 were mostly ex-
pressed by stem cells that clustered as Lgr5+ undifferentiated, Lgr5+
amplifying undifferentiated SCs and goblet cells both in proximal
and distal colon, together with enterocyte cells of proximal colon (Fig-
ure 18 D, E). Besides this, Socs3 were typical for Lgr5- undifferenti-
ated SCs cluster (Figure 18 E).

Gene Btrc was abundant in the clusters of goblet cells, Lgr5+ am-
plifying undifferentiated and Lgr5+ undifferentiated SCs (Figure 18

B). Also, it was spotted in chromaffin, enterocyte, and tuft cell clus-
ters. As for Cbl, it displayed similar distribution in all cell clusters
with the higher concentration in the enterocyte and Lgr5+ undifferen-
tiated SCs clusters, respectively (Figure 18 C). Finally, Bmi1 showed
the lowest cell cluster specificity with equal distribution through all
clusters (Figure 18 F). These results illustrate the fact that Ub-ligases
are not present solely in one given cell type, but they seem to be
expressed by various cell types along the tissue. Yet, the discussed
Ub-ligases could carry out different functions or could be expressed
under specific conditions (as was observed after the colon injury).
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Figure 18: Distribution of Ub-ligases in colon. A UMAP analysis demon-
strates that the colon Ub-ligases may be grouped into 13 cell spe-
cific clusters (labeled by colors). B-F Ub-ligases from the same
ontology combination group displaying distributional expression
between several cell types.

6.4 discussion

Up to date, there have been published many reports on E3 Ub-ligases
based on in vitro investigation. It gives valuable data regarding cel-
lular physiology and homeostasis such as proliferation, cell growth,
apoptosis, nucleic acids maintenance, metabolism, cell cycle etc., with
either overexpressed or absent E3 Ub-ligases [10, 98, 108]. However,
contextual information about their effect on a complex tissue, organ
and organism, including reciprocal regulations within subpopulation
of cells is missing in such models. Therefore, studying E3 Ub-ligases
in vivo gives more information about the biological role of these en-
zymes and their implementation in the physiology of the entire or-
ganism. Yet, in vivo models are subjected to strong regulatory mech-
anisms relying on compensatory effects of alternative pathways.

The ability of biological system to maintain homeostasis in the pres-
ence of mutations is described by the term genetic robustness. This
feature is evolutionarily essential for the organism surviving in case
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of gene misfunction and can be achieved via regulatory pathways in-
tercommunication [43, 44]. However, this could cause difficulties for
researches to analyze the animal models, when gene targeting does
not lead to the expected abundant or severe phenotype. After being
first reported in Drosophila as transcriptional dosage compensation
of X chromosome [118], genetic robustness was then described in
many model organisms from yeast [60] to mammals [175]. To explain
genetic robustness phenomenon, researchers proposed several mech-
anisms, such as functional redundancy of homologous genes [162],
adaptive mutations [163], rewriting of genetic network [6], genetic
compensation, and transcriptional adaptation [44].

To gain deeper understanding of genetic compensation, we pro-
posed the usage of Semantic biclustering analysis (presented in Chap-
ters 4 and 5) to statistically predict and describe semantically coherent
gene biclusters in the context of functional gene classification for spe-
cific cell type in the tissue. In this manner, E3 ubiquitin ligases have
been chosen as the testing model of our hypothesis. We compared
expression of E3 ubiquitin ligases in three main segments of the gas-
trointestinal tract, i.e. in stomach, small intestine and colon. As first
outcome, small intestine appears having all the ligases expressed at
the lowest level. Knowing this, we used expression in small intestine
as a reference level for stomach and colon for the ontology analyses
dividing expressed genes according to their function in cells and tis-
sues. These analyses revealed that small intestine is characterized by
genes involved in maintenance of the immune system, and that genes
playing roles in the catabolic processes are typical for colon. It has
been discussed if compensatory activity of redundant genes may or
may not correlate with their similarities in sequence or structure and
in common origin [18]. These facts complicate compensatory path-
ways identification. Taking into account the theory above, by apply-
ing semantic clustering analysis we were able to reveal ten groups of
Ub-ligases that share the same ontologies, but that carry the unique
tissue expression pattern. Notably, the genes from the same ontol-
ogy combination group were not described before as redundant what
gives an interesting hint for detailed studying those genes together.

In order to test identified possible parallel networks in biological
system, we used mouse model of epithelial regeneration. We hypoth-
esized that genes involved in tissue regeneration might be masked
by steady state homeostasis, but expose their function after tissue
challenged conditions. Therefore, we induced epithelial damage by
treating mice with DSS. We observed that epithelial damage in colon
activated intracellular signaling transduction with activation of genes
different from that functioning in homeostasis. This suggestion was
also supported by our approach classifying Ub-ligases based on their
cell specificity. We have not observed a strict cell specificity and tested
Ub-ligases were found present in various cell types playing different
roles. This observation refers to the ability of Ub-ligases to partic-
ipate in regulation of several signaling pathways in specific clusters.
Yet, such regulation can be significantly different depending on tissue
type, developmental stage and homeostatic condition.

[ October 18, 2021 at 17:12 – classicthesis ]



6.5 conclusion 79

Taken together, the important outcome of our study was that se-
mantic clustering analysis of GIT specific Ub-ligases allows us to sta-
tistically define compensatory genes clusters consisting of the same
genes involved in the distinct regulatory pathways vs few different
genes playing roles in the functionally similar signaling pathways.
Such an approach could find potential application in the cancer ther-
apy development as genetic redundancy has also been described dur-
ing cancerogenesis. In this case redundant genes cover potential harm-
ful effect of mutation and cancer progression depends on the effec-
tive functional setup between defective genes and their compensatory
partners [18]. The most illustrative expression pattern in GIT seman-
tic ontologies combinations showed members of Socs family. Besides
their role in the immune response regulation as suppressors of cy-
tokine signaling, some members of the Socs family were described to
participate in tumor progression [59]. For instance, SOCS1 downreg-
ulation was described in hepatocellular carcinoma [181], cervical [83],
ovarian and breast cancer [158]. Aberrant expression of SOCS1 and
SOCS3 has been described in human colorectal cancer, when SOCS3

overexpression inhibits proliferation, migration and invasiveness of
tumor cells [24], while SOCS1 overexpression has pro-oncogenic ac-
tivity [165]. In this manner, it would be meaningful to further study
Socs genes together with other genes from the same ontology group
in terms of compensatory behavior during cancerogenesis and other
GIT diseases progression.

Having obtained our overview of Ub-ligases clustering, it seems
to be meaningful to apply semantic clustering approach for studying
redundancy of enzymes belonging to other families, like proteases,
phosphatases, kinases etc. Their important biological roles indirectly
suggest their high compensatory potential. Operating with the knowl-
edge of ontology relationship among genes will help to choose the
relevant animal model for study of a particular disease and future
therapy development.

6.5 conclusion

The aim of this chapter was to explore gastrointestinal tract specific
Ub-ligases, define their dominant biological roles at homeostasis and
possible contribution to alternative compensatory networks. By ap-
plying improved ontology-based clustering method sem1R, we per-
formed Ub-ligases profiling and revealed ten ontology combination
of Ub-ligases groups that potentially exhibit redundant features in
GIT. The compensatory biological networks identified through test-
ing showed that genes from the same ontology cluster alter their ex-
pression pattern after induced epithelial damage exposing their com-
pensatory activity during tissue regeneration.

Besides the biological interpretations, we provide guidance of us-
ing the sem1R algorithm for this specific GIT experimental design.
Hence, our previous research effort introduced in the previous chap-
ters lead to the practical application in biology.
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7
S E M A N T I C B I C L U S T E R I N G F O R R E V E A L I N G
PAT H O G E N I C L O W- F R E Q U E N C Y G E N E T I C
VA R I A N T S I N A C O H O RT O F PAT I E N T S

An application of the semantic biclustering technique may not be nec-
essarily restricted only to gene expression datasets. Another biolog-
ical application may aim at genetic variant data. In this chapter, we
will demonstrate suitability of semantic biclustering for finding poten-
tial disease-causing genetic variants inferred from an observed cohort
of affected ophthalmological patients. The implementation of the con-
cept rule learning algorithm with an ontology-based refinement oper-
ator, called sem1R, is potentially applicable for solving that task only
with partial algorithmic adjustments. The ability of the algorithm to
find relevant results will be discussed in this chapter. Moreover, we
will describe the conceptual adaptations of the original sem1R algo-
rithm that are necessary to make for solving such a specific task.

The idea of adapting the sem1R algorithm was initiated by our work
presented in [40] where we focus on revealing genetic mutations that
cause posterior polymorphous corneal dystrophy. Generally speak-
ing, finding pathogenic genetic variants across individuals who share
the same symptoms of the disease might be problematic from at least
two aspects. Firstly, from a biological aspect, there is no only one
biological model explaining disease risk in a population, various bi-
ological models are currently taken into consideration [61]. Secondly,
from a computer scientist’s point of view, searching in the space of
hypotheses is time-consuming, especially for large cohorts. For this
reason, we established a software tool that helps to find common
pathogenic variants in a cohort of rare disease patients.

The proposed tool was developed for an analysis of all variants
that were discovered in the process of variant calling and it might
be generally useful for finding interesting mutations in any kind of
disease. For the variant analysis, we were inspired by our previous
work presented in Chapter 5. This algorithm was originally devel-
oped for finding hidden and nontrivial patterns in gene expression
data; however, it might be utilized generally for any kind of binary
classification problem. Only a binary matrix and at least one ontol-
ogy is required for input. For adapting the original algorithm sem1R
to the problem of finding common/shared rare genetic variants in an
arbitrary genome, it is necessary to rebuild the required algorithm’s
input as a binary matrix, ontology, or any other hierarchically ordered
structure in the proper data format.

BioBin algorithm [116] automates the process of binning low fre-
quency variants for association testing. In contrast to BioBin, we in-
troduce the algorithm which enables to form genomic boundaries us-
ing genomic locations and their mutual intersections as well. Further-
more, the proposed algorithm may perform gene enrichment analysis
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[ October 18, 2021 at 17:12 – classicthesis ]



82 semantic biclustering for revealing pathogenic variants

Figure 19: A scheme showing the process of constructing the matrix M.

to reveal the enriched genomic regions of gene-based associations us-
ing Gene ontology or any other ontology like the biological Pathway
ontology.

7.1 data matrix

Since sem1R utilizes two sets of examples for hypothesis induction,
the proper format has to be defined first. All learning examples are
decoded into a 2-dimensional binary matrixM, where rows represent
preselected variants from an explored genome. Each variant is given
by its genome coordinates, i.e., chromosome, start, and end position
of variant. Columns of the matrix M represent samples/individuals
who share the same disease or the same symptoms. The presence of
a variant in the matrix M is expressed by one in the corresponding
row and column, respectively. Otherwise, the absence of a variant
in a sample is expressed by zero. Note that the matrix M contains
all preselected variants that were discovered by any of variant calling
methods together in the given samples/individuals.

Figure 19 shows a scheme of constructing the matrix M from three
samples where each sample is firstly preprocessed by any of the avail-
able tools, see Section 7.6. Then, all variants are combined into one
binary matrix.

Practically, M is the sparse matrix because the number of equiva-
lent variants that match with each other across different samples is
small. Generally, this we consider to be a problem of variant granu-
larity; variants are generally too specific for their common presence
across various samples/individuals. In practical applications, it is less
probable that a specific rare variant would be spread over all samples
in a large cohort of individuals. Besides biological reasons, one tech-
nical explanation of false positives or negatives might be the fact that
the results of variant calling highly vary, among the other things, on
input data quality, value of hyper-parameters, or type of pipeline. For
this reason, we propose to extend the hypothesis language by arbi-
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trary genomic elements on a different level of details. This extension
brings an opportunity to cover more than one variant easily. For il-
lustration, suppose only such elements that are defined according to
gene coordinates. Then, only genes would be described and covered.
Therefore, a common gene pattern might be found easily because a
gene can be associated with many variants - many samples from the
cohort of individuals can be covered. On the other hand, the pattern
description might be too general - many other samples from the con-
trol group are covered as well.

Another example, the extreme case from the other side, is consid-
ering chromosomes, the top elements in the genome hierarchy, as the
only genome regions of the hypothesis language. Then, the matrix M
will be formed by the same number of rows as how many chromo-
somes the given samples contain. In that case, one will be assigned to
the element of the matrix M if at least one variant appears in the cor-
responding chromosome. However, this information does not bring
new nontrivial knowledge. The probability that at least one variant
occurs in a chromosome is thus extremely high. Therefore, this con-
sidering is useless in results interpretation.

Various genomic regions and their generalizations/specializations
relationships can be represented by an ontology as the set of partially-
ordered elements. An example of a small subset of genomic elements
and their relationships among them is depicted in Figure 20. The on-
tology was constructed from the real GFF file of the human genome,
restricted to chromosome 10.

Figure 20: An example of ontology constructed from the real GFF file show-
ing relationships among various genomic elements.

7.2 form of hypothesis

For finding the most significant hypothesis covering a large number
of examples from a data matrix, it is necessary to extend the hypoth-
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Figure 21: An example of selected genomic features of human gene ZEB1.
All of shown features are various exons on chromosome 10.

esis language by some elements which can positively improve the
generalization in the context of machine learning and making eas-
ier interpretation and further validation of the final hypothesis. As
a good candidate for extending the hypothesis language, we con-
sidered a GFF3 (General Feature Format) file format that annotates
all different features in the selected genome. These genomic features
are described by their type (e.g., gene, transcript, exon, miRNA, etc.)
and coordinate. The coordinates are basically expressed by their chro-
mosome number, start, and end positions. In addition, all of these
features can be ordered based on a subinterval relation, denoted as
vSINT . This binary relation is reflexive, antisymmetric, and transi-
tive. Formally vSINT is defined as follows: let a genomic feature a
be a = (ch1, s1, e1) ∈ CH×N+ ×N+ and a genomic feature b be
b = (ch2, s2, e2) ∈ CH×N+×N+ where CH is a set of chromosome
identifiers (i.e. chr1, chr2, etc. for human genome GRCh37). s1, s2
represent the start position of the feature, and finally e1, e2 repre-
sent the end position of the feature. Then, a vSINT b if and only
if ch1 = ch2 ∧ s1 > s2 ∧ e1 6 e2 . All presented genomic features
F and the relation vSINT correspond to the required definition for
background knowledge given from sem1R. Since F and vSINT are
considered as the partial-ordered set < F,vSINT>. For this reason,
the algorithm sem1R and both of the proposed reduction procedures
can be applied to this kind of problem. An example of selected ge-
nomic features of human gene ZEB1 (from human reference genome
GRCh37) is shown in Figure 21.

Since hypothesis induction is the process of learning from exam-
ples, a set of examples has to be established from the given data ma-
trix firstly. Here, the set of all examples counts n×m elements, where
n/m is the total number of rows/columns of the matrix M, respec-
tively. Elements containing ones are considered as positive examples.
Otherwise, elements are considered as negative examples. Note that
positive examples are referred also as a target class, because only such
target class is described by the induced rule. In more detail, an exam-
ple is a variant which is determined by its coordinates (chromosome,
start and end position) in genome.

Both, the example and the genomic feature, use the same coordi-
nate system (the same notation of position in an arbitrary genome)
and therefore they can be compared to each other using the relation
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vSINT . This property allows to formulate a cover operator easily. For
sake of clarity, the cover operator says whether an example is or is
not covered by a rule. This knowledge is essential for a rule quality
evaluation. It is essential to determine false positives, false negatives,
true positives, or true negatives in binary classification.

Example 9. Suppose a hypothesis H containing a one-term rule
r = {(chr10, 31608151, 31816222)} and a set of examples E = {e1, e2, e3}
where e1 = (chr10, 31803516, 31803516), e2 = (chr10, 31810012, 31810013),
and e3 = (chr16, 69973127, 69973127). Then, the rule r covers the exam-
ples e1, e2 and does not cover e3.

However, an one-term rule cannot explain more complicated pat-
terns in data because the hypothesis language is limited by the pre-
defined genomic features and theirs coordinates. Therefore, a more
sophisticated form of rules is needed to bring new genomic regions
into account. As a good trade-off between the complexity of a rule’s
form and its interpretability, it seems to be a rule in the form of con-
junctions. Here, the conjunction can be interpreted as an intersection
of two genomic intervals, so the new interval is introduced into the
hypothesis space, and thereafter the new interval can be exploited for
a pattern explanation.

Example 10. For example, let rule r2 that contains two genomic features
in the conjunction is defined as r2 = {(chr1, s1, e1), (chr1, s2, e2)} and if
chr1 = chr1 and {x ∈N+|s1 < x < e1∧ s2 < x < e2} 6= ∅, then the final
interval is the following: (chr1,max(s1, s2),min(e1, e2)).

7.3 program settings scenario

The original sem1R works in a simple scenario: induce a set of rules
that covers as many positive examples as possible and concurrently
covers a minimum of negative examples, according to the chosen eval-
uation function. However, this scenario does not allow to take into
account the natural distribution of genetic variations in a population
and therefore the discovered genetic variants do not have to be rare
disease-causing. These variants are too widespread across population
in general. To include control/background samples into the process
of induction, we define and develop the second scenario. The con-
trol samples help to eliminate frequent variants. Both scenarios are
described in more detail below.

7.3.1 Scenario 1 - no background samples available

The first scenario handles data in the same way as the original sem1R
algorithm. No additional improvements were needed. The input ma-
trix contains only the samples of interest, the samples showing similar
symptoms of disease. Given this, positive examples are such variants
that appear in the provided samples. Intuitively, negative examples
are variants that do not appear in the samples. Notice once again that
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the induced rule set covers the maximum positive examples and min-
imum negative examples. Practically, this scenario does not meet the
fundamental criteria that are required for the task, i.e., discovering
patterns that try to explain a common disease throughout the rare
variants of individuals. The problematic part is the determination of
negative examples because, in this case, the algorithm penalizes even
variants which should have neutral effects in the context of quantifi-
cation of rule quality (i.e. does not positively or negatively affect the
quality of the tested rule). This is shown in Example 11.

Example 11. Suppose the binary data matrix represented by Table 13 that
contains two variants v1 and v2, and two samples s1 and s2, where v1 is
present in sample s1 and variant v2 is present in sample s2. Furthermore,

sample s1 sample s2
variant v1 1 0

variant v2 0 1

Table 13: An example of data matrix.

suppose a genomic region g such that v1 vSINT g and v2 vSINT g. In
other words, g covers both variants and we can consider it to be the ideal
rule because it covers all affected samples s1 and s2. More precisely, the rule
g covers two positive examples (variant v1 of sample s1 and variant v2 of
sample s2) and two negative examples (variant v1 of sample s2 and variant
v2 of sample s1). Consequently, for PN evaluation function, that is given
as the number of positive examples minus the number of negative examples
covered by a rule, the score of rule g is 0. Note that a rule which does not
cover any example has PN score equal to 0 as well.

The Scenario 1 serves as a motivation to incorporate additional
changes into sem1R algorithm that would address the mentioned sci-
entific question in a better way.

7.3.2 Scenario 2 - background samples available

The second scenario eliminates shortcomings that arise from Scenario
1. In order to make sem1R algorithm more useful in discovering po-
tentially interesting variants, we provide an opportunity to add back-
ground samples that allow to filter out false positive variants. The
background samples represent individuals unaffected by a disease
that we are interested in. In comparison with the Scenario 1, the sec-
ond scenario differs in determining positive and negative examples.
Practically, the input matrix stays the same, but a vector of binary
numbers is added as the required information which determines as-
signments to a cohort of individuals having the same symptoms of
disease of interest. Certainly, the input matrix includes background
samples. The set of positive examples contains only variants occur-
ring in the samples of interest, while negative examples are repre-
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sented by variants occurring in the background samples. An extended
version of Table 13, is presented below in Example 12.

Example 12. Suppose an extended version of binary data matrix presented
in Example 11. The binary matrix and a vector of binary values, represented
here in a row format, depicting whether the corresponding sample belongs to
the background samples or not, are both depicted in Table 14. Then, the set

sample s1 sample s2 sample s3 sample s4
assignments 1 1 0 0

variant v1 1 0 0 1

variant v2 0 1 1 1

Table 14: An extended version of data matrix where samples s1 and s2 that
belong to the cohort of samples that are in interest, and a sample
s3 and s4 that both belong to the background samples.

of positive examples consists of variant v1 (sample s1) and v2 (sample s2).
On the other hand, the set of negatives consists of three examples: variant
v1 of sample s4 and variant v2 of samples s3 and s4. Moreover, suppose
a rule demonstrating an arbitrary genomic region g covering both variants
v1 and v2, i.e., v1 vSINT g and v2 vSINT g. Then, g covers two positive
examples and three negative examples. PN evaluation function thus returns
a score equal to minus one.

This example shows that background samples can decrease the
score of PN evaluation function and thus only such rule that signifi-
cantly favorizes variants in non-background samples can be revealed.
Note that all zeros appearing in the input binary matrix are omitted;
it is completely in contrast to the first mentioned scenario.

7.4 bicluster form

A further aspect of the sem1R algorithm, that needs to be discussed,
is the form of biclusters. Here, a bicluster is formulated as a subset
of variants occurring in a subset of samples that are covered by an
induced rule. According to the requirements specified in Scenario 2,
a perfect bicluster should contain all samples of interest because all
of these samples/patients report symptoms of a disease. Thus they
should be included into one coherent bicluster. However, this would
assume that false negative and false positive variants are not present
in M. Nowadays, this is an unfulfillable presumption because there
are many steps in the whole variant calling pipeline and at each step
noise can be added into the data. For example, loss of true positive
variants in variant calling is inevitable, especially using hard filter-
ing (GATK hard filtering [4]). Thus, some important variants can be
filtered out because of inappropriate values of parameters. For this
reason, a crisp and strict partitioning of biclusters containing all sam-
ples of interest is not a good idea. Therefore, we need to establish
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a more flexible form of bicluster taking into account the presence of
false positives or negatives in the sample dimension.

In the sem1R algorithm, the form of biclusters, rows and columns,
is generated natively according to one of the proposed evaluation
functions (ACC or F1-score). More precisely, first of all, the rule with
the highest score of the evaluation function is selected. Then, the ex-
amples that are covered by the rule form the bicluster.

To control the sample dimension of biclusters, we have introduced
modified versions of the evaluation functions of sem1R. Without the
modifications, the original algorithm had a tendency to induce biclus-
ters that cover only a few samples. Simply, there is not a huge pres-
ence of common variants across samples regardless of the scenario.
The equation for computing ACC of rule R is newly formulated as
the following:

QACC(R) =
(TP+ TN)×w

TP+ TN+ FP+ FN
(31)

The equation to compute the potential quality of rule R is adjusted
on the following:

Qp_ACC(R) =
(TP+ TN+ TP)×w
TP+ TN+ FP+ FN

(32)

Both equations (Eq. 31 and 32) contain newly introduced variable
w that is a real number from the range [0, 1]. Here, w plays a role
of penalization element where the quality of the rule is linearly pe-
nalized according to the number of noncovered samples of interest.
More precisely, w is defined as a ration between the number of cov-
ered samples of interest and the total number of samples of interest.
It means that for a rule that covers all samples that belong to the ex-
amined set of individuals, w is equal to 1. On the other hand, for a
rule that does not cover any such sample, w is equal to 0 and thus
the total quality score is equal to 0.

In the same principle, the corresponding equations for F1-score are
adapted on the following form:

QF1(R) =
2× TP×w

2× TP+ FP+ FN
(33)

Qp_F1(R) =
2× TP×w
2× TP+ FN

(34)

In summary, the introduced element w effectively controls the size
of biclusters regarding the sample dimension, that is for both pre-
sented scenarios. It allows us to consider even such rules that do not
cover all samples of interest because of false negative error, i.e., a vari-
ant is not present in a list of variants for a sample that belongs to the
sample group of interest.

7.5 variant filtering

Since this chapter targets rare human diseases, it is highly reason-
able to filter-out variants that are highly frequent in a population be-
cause evidently, by definition, the occurrence of rare diseases in the
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human population should be infrequent. For this reason, Genome
Aggregation Database (gnomAD) [80] that collects structural variants
from 14,891 genomes across diverse global populations seems to be
an appropriate tool to filter-out too frequent variants.

To accommodate the information of variant frequency from gno-
mAD into our framework, we propose the same approach for both
scenarios. As positive examples, we considered only such variants
that are present in no more than 5% of the human population, and
simultaneously these variants belong to at least one sample from the
sample of interest. On the contrary, negative examples are all variants
in samples from a set of background samples. There are no restric-
tions on the frequency of variants in human populations. Generally,
this approach tends to create a relatively small set of positive highly
specific examples, i.e., less common variants from the samples of in-
terest, contrary to a large set of negative examples that represent the
background samples. The large negative set of examples can help to
eliminate false positives, especially.

7.6 whole workflow

To provide a complete overview of the process of variant calling
and the following incorporation of sem1R algorithm into the whole
pipeline, we established the following steps that are going from se-
quenced data/reads to the induction of the most significant variants
for the given cohort and a control group of individuals (background
samples). The overview arises from GATK Best Practices [4]. In Fig-
ure 22, we depicted the whole pipeline that is divided into the follow-
ing three phases that have to be performed sequentially:

1. raw data pre-processing phase handles NGS data from phys-
ical DNA samples to the file in BAM format. Noise in data,
that has not been removed here, negatively affects the results of
the following phases [164]. The input samples might be whole-
genome sequencing (WGS) or whole-exome sequencing (WES)
data. After reads were sequenced, raw data quality in the fastq
format is verified and only appropriate data continue in the
pipeline. To reconstruct the full DNA sequence from fragments,
reads are aligned to the reference human genome using some
aligner, e.g. Burrows-Wheeler Aligner (bwa) [96, 97]. Because
some DNA molecules can be sequenced more times due to the
polymerase chain reaction (PCR) [95] and their multiple count-
ing might affect the process of variant calling negatively, read
duplicates are located, marked, and eventually filtered out by
Samtools software. In order to efficient accesses and manipu-
lation, the data are sorted by their coordinates using Picard
command-line tool MarkDuplicates. The final step Base recali-
bration empirically recalibrates the quality score of each base
hence the original raw quality score does not reflect the true
base-calling error rates [124]. The importance of base recalibra-
tion is emphasized by the fact that variant calling algorithms,

[ October 18, 2021 at 17:12 – classicthesis ]



90 semantic biclustering for revealing pathogenic variants

Figure 22: Variant discovery pipeline. The overview of variant discovering
pipeline that consists of three phases: raw data pre-processing,
variant discovery, and evaluation.

such as GATK BaseRecalibrator, utilize quality score as an im-
portant base feature to making their decision. Simply put, base
recalibration improves variant calling accuracy [124].

2. variant discovery phase contains three sequentially ordered pro-
cedures that from the given individual bam files generate even-
tually one multiple VCF (Variant Call Format) file. All these
steps are implemented and provided by GATK. Firstly, to iden-
tify variants in the complex genome, Haplotype caller is a popular
choice since is capable of calling both variants, SNPs and indels,
using denovo local assembly [4]. Haplotype caller works on the
per-sample approach so it is necessary to run the algorithm for
each bam file separately. Subsequently, Join Genotype unions all
vcf files into one huge multi vcf file and prepare the file for hard
filtering represented here by Variant recalibration step.

3. evaluation phase requires three tools. Firstly, we transform the
multiple VCF file to corresponding csv files, each csv describes
variants for one sample. For transformation to csv files we sug-
gest ANNOVAR [173] tool. A further used tool is gnomAD which
serves to append information about the frequencies of variants
to csv files. As we mentioned in Variant filtering section, frequen-
cies are used to filter out variants that are too common in the
population. The last step requires to determine a design of the
experiment, i.e. a set of samples that belongs to the cohort of in-
terest (individuals with the same disease). Or alternatively, for
Scenario 2, a set of samples representing control samples need
to be provided too. Then, sem1R algorithm is ready to use.
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7.7 experiments

In this section, we evaluate the ability of the sem1R algorithm to dis-
cover potentially interesting genomic regions in a cohort of individ-
uals that share the same symptoms of the disease. Accordingly, we
present an evaluation procedure that estimates this ability in vari-
ous real experiments in which variants, specifically for some diseases,
have been reported and published by our collaborators from the oph-
thalmology field. For the experiments, we report basic statistics as
a number of samples and variants, a number of terms appearing in
ontologies, etc. In addition to measuring the accuracy of predicted
variants, we also measure the speed of induction. All these measure-
ments are performed simultaneously for the two different scenarios,
for two various evaluation functions (ACC and F1-score), and three
various feature selection methods (FS_atLeastOne, FS_onlySig, and
FS_sigAtLeastOne). The evaluation functions and the feature selec-
tion methods were introduced in Section 5.3.

7.7.1 Evaluation procedure

For the evaluation of the proposed algorithm, we collect and consider
only a set of experiments where pathogenic variants are known for
each sample. Firstly, all of these samples were preprocessed by the
given pipeline depicted in Figure 22. After files are reached in variant
annotation step, then the sem1R algorithm is run with various settings
meaning evaluation functions, feature selection methods, and in one
of the two scenarios. In addition to the sample files, sem1R requires
GFF file that defines genomic regions of the human genome. Note
that GFF can be manually edited and thus user-defined regions can
be appended easily.

The evaluation procedure is defined in the following steps. Firstly,
the final hypothesis, in the form of ordered rule set, is induced ac-
cording to Scenario 1 or Scenario 2. Then, each rule in the rule set is
compared with the manually labeled experimental pathologic variant.
If the genomic interval of the rule is a superset of the labeled variant,
the order of the rule in the rule set is reported as the final distance.
Otherwise, the next rule in the rule set is compared.

We note that this evaluation procedure reflects the ability of an al-
gorithm to reveal and report the genomic region where the manually
labeled variant appears. Better position of the variant in the rule set
enables its earlier verification since less computation time is required.

7.7.2 ZEB1 experiment

ZEB1 experiment consists of 6 WES samples sharing the same symp-
toms of the disease. Firstly, all of these samples were preprocessed
by the pipeline depicted in Figure 22. Then, we performed two previ-
ously mentioned scenarios. Both scenarios are more specified below.
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1. Scenario 1 considers only 6 WES samples on the input, namely,
Ko1, Ko2, S1910, S1930, S1937, and S2406. No background sam-
ples are available. To prevent too common variants in the hu-
man population, we filtered out non-significant variants that
are given by the gnomAD database. A list of presented samples
(denoted as Cohort) is summarized in Figure 23 where num-
bers of significant and non-significant variants are highlighted.
As we can see, significant variants constitute a small portion of
all presented variants. For the first scenario, most variants are
disregarded in considering.

For estimating the importance of using various genomic regions
as predictive rules where the regions have different levels of
specificity, we examined the common variants across all sam-
ples in the cohort. The most largest sets of intersections of vari-
ants are shown in Figure 24 using Upset plot [94] which is a
suitable form of plots for finding and visualizing intersections
for more than three sets. It is a good alternative to the Venn dia-
gram. As we can see in that figure, the same variants are spread
across all samples very rarely. More precisely, samples Ko1 and
Ko2 share 6,051 variants in the whole human genome, however,
only 1,706 variants are shared across the three samples S1910,
S1930, and S1937. Subsequently, only 673 variants are shared
across S1910, S1930, S1937, and S2406. The sample S1910 con-
tains 12,490 variants that are only specific for this sample, i.e.,
such variants that are not present in any other sample. In addi-
tion, there is no variant that is shared simultaneously over all
six samples. Therefore, a rule consisting of only variants or their
conjunctions cannot cover all samples in that example. Variants
are too specific in this case. Given this, it is inevitable to extend
the hypothesis language by various more general genomic ele-
ments.

To see the distribution of rare variants across samples, we es-
tablished a binary matrix that has been previously defined in
Introduction section. The matrix M was constructed from the in-
put WES files restricted to chromosome 10. The other human
chromosomes were disregarded, since Zeb1 gene occurs only in
chromosome 10. Totally, M has 2,734 rows and 6 columns. The
rows represent particular variants occurring on chromosome 10.
The columns represent the input files. Ones in the matrix ex-
press the appearance of particular variants in the corresponding
samples. Otherwise, the elements in M are equal to zero.

The cardinality of the set of positive examples is equal to 3,468,
the negative set of samples contains 12,936 examples. The total
number of terms, i.e. genomic regions, introduced into the pro-
cess of induction is equal to 42,086, that is, only for chromosome
10. However, many terms are disregarded from consideration
because of the feature selection methods that reduce a feature
space dramatically. Because the sem1R algorithm uses the cov-
ering algorithm to induce multiple rule sets, feature selection
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Figure 23: Number of variants in samples. Bar plot shows numbers of vari-
ants, significant and non-significant, in input files. Files are sep-
arated into two groups. The cohort represents the group of sam-
ples of interest, the background represents control samples. Sig-
nificance is determined by the gnomAD database.
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Figure 24: Upset plot shows the top 20 most large sets of intersections of
variants across the samples of interest for Scenario 1. Note that
non-significant variants were filtered out and thus are not shown.
Dark circles in the matrix below the bars indicate sets that are
part of the intersection.

methods are called before every single rule induction step. At
first sight, this is reasonable for rules covering a relatively large
number of examples since due to the covering algorithm, the set
of examples might be reduced more dramatically. Then, a fea-
ture selection method might subsequently reduce a number of
terms going to the induction process. Otherwise, for rules cover-
ing a small number of examples, the feature selection methods
might slow down the speed of the algorithm since the selection
methods are time consuming.

The cardinalities of feature sets according to the feature selec-
tion methods are depicted for each induced rule in Figure 25.
Evidently, FS_atLeastOne method is not so radical in prunning
of feature space than FS_onlySig and FS_sigAtLeastOne. There-
fore, FS_atLeastOne is able to induce more rules. Concretely, the
sem1R algorithm induced only 3 (resp. 7) rules for FS_onlySig
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(resp. FS_sigAtLeastOne) feature selection method. Then, the al-
gorithm was terminated since the feature set has been empty.
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Figure 25: Cardinality of the feature sets that were established during the
process of induction of 10 rules for the human chromosome 10 in
the Scenario 1 setting.

The run times of the sem1R algorithm for different feature se-
lection methods and evaluation functions are depicted in Fig-
ure 26. In contrary to the previous results presented in Figure 12,
FS_atLeastOne method is the fastest. The reason for this behavior
is the different time requirements of the feature selection meth-
ods. Intuitively, without any exact proof, FS_atLeastOne should
be the fastest because makes only a binary decision whether
a term is covered by at least one example or not. FS_onlySig
should be slower because a more complicated formula that com-
putes a Likelihood Ratio Statistic (LRS) defined in Eq. 30 needs
to be computed. Finally, the slowest method should be FS_sigAtLeastOne
since firstly the algorithm computes LRS for each term and then
is examined whether they are covered by at least one exam-
ple. The thesis is supported by the collected data shown in Fig-
ures 26 and 28.

The estimated times needed for the feature selection methods
are represented by the area in the plot where the curves grow
relatively enormously in comparison to the rest. In summary,
the implemented feature selection methods take a relatively large
amount of time compared to the induction process itself. We ex-
plain this by the fact that the genomic region-related ontology
is wider than deeper and generally the hypothesis language is
more limited in a sence of relations than we suppose originally
in the sem1R algorithm. Then, the induced rule covers fewer ex-
amples, and therefore the size of the set of examples that goes
to the next iteration will not change dramatically. To support
this, make a comparison with Figures 25 and 11.

The result showing the ability of the algorithm to recognize and
describe genomic regions that are specific for the cohort of in-
dividuals is summarized in Table 15. For the given parameter
settings, a rule set is induced by the sem1R algorithm and sub-
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Figure 26: Total run time for the induction of 10 rules for the human chro-
mosome 10 in the Scenario 1 setting. The algorithm performed
for different evaluation functions and different feature selection
methods.

Evaluation function Feature selection Position in the rule set

ACC
FS_atLeastOne 17

FS_onlySig NA

FS_sigAtLeastOne NA

F1-score
FS_atLeastOne 32

FS_onlySig NA

FS_sigAtLeastOne NA

Table 15: Results for the Scenario 1 where positions of rules that cover the
manually labeled genomic region are reported. Better position of
the rule in the rule set enables its earlier verification. The size of
the rule set was restricted to 50.

sequently, the order of the rule that covers the region manually
specified for each sample, the reference variant, is recorded in
the table. NA value means that no rule that covers such a re-
gion has been found in the rule set. The lower the number is,
the rule is more significant and consequently, it is faster and
easier to find it.

Evidently, the suitable evaluation function for this kind of sce-
nario is ACC since the discovered corresponding rule is on the
17th position in the rule set in contrast to the 32nd position for
F1-score. Furthermore, the experiments where FS_onlySig and
FS_sigAtLeastOne were used did not discover the region of in-
terest. Additionally, both of them reduce the feature space too
radically and consequently did not induce the required rule set
of 10 rules.

2. Scenario 2 considers the same 6 WES samples on the input as
in the case of Scenario 1, i.e., Ko1, Ko2, S1910, S1930, S1937, and
S2406. However, there are also 62 samples that play the role
of control samples. Similarly to the previous scenario, we fil-
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tered out non-significant variants with a p-value > 0.05 given
the gnomAD database. The numbers of variants for the samples
of interest and the control samples are summarized in Figure 23.
Contrary to the Scenario 1, variants in the control samples are
used both significant and non-significant. This leads to a dis-
proportion between the size of positive and negative examples.

The matrix M was constructed from the input WES files includ-
ing the samples of interest and the control samples. In both
cases, they are restricted to chromosome 10. M has 27,273 rows
and 68 columns. The interpretation of rows, columns, and ele-
ments is the same as the previous scenario.

The number of positive examples is equal to 3,468 examples, the
negative examples are 287,577. The total number of terms intro-
duced into the process of induction is equal to 66,625 for chro-
mosome 10. The cardinalities of feature sets given by feature
selection methods are depicted for each induced rule in Fig-
ure 27. Moreover, the same trend of pruning that we described
for Scenario 1, we observed even for Scenario 2. FS_atLeastOne
method prunes the feature space not so radically as FS_onlySig
or FS_sigAtLeastOne. Although using Scenario 1 induced only 3

(resp. 7) rules for FS_onlySig (resp. FS_sigAtLeastOne) feature se-
lection method, for Scenario 2 the algorithm induced all 10 rules
that were required for all proposed feature selection methods.
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Figure 27: Cardinality of the feature sets that were established during the
process of induction of 10 rules for the human chromosome 10 in
the Scenario 2 setting.

The runtimes of the algorithm for different feature selection
methods and evaluation functions are depicted in Figure 28.
The trends in the measured runtimes correspond to the trend
that we observed in Scenario 1. This means that FS_atLeastOne
method is the fastest, FS_onlySig reaches the runtime in the
middle, and FS_sigAtLeastOne is the slowest method. Even in
Scenario 2 that contains much more negative examples, the run-
time of the feature selection method plays a dominant part of
the total runtime in that particular task.
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Figure 28: Total run time for the induction of 10 rules for the human chro-
mosome 10 in the Scenario 2 setting. The algorithm performed
for different evaluation functions and different feature selection
methods.

The results of discovering the region of interest for Scenario 2 re-
stricted to chromosome 10 are summarized in Table 16. Indeed,
the added control samples help to control too common vari-
ants in a population and improve the ability to find the region
of interest for all evaluation functions and all feature selection
methods. Using ACC, the induced rule that covers the region
of interest was reached on the second position in the rule set.
The same position in the rule set we got for each feature se-
lection method. In other words, for ACC, the feature selection
methods do not influence the position of the rule that covers
the region of interest. In the case of experiments where F1-score
was used as the evaluation function, the position of the rule in
the rule set reached a higher/better position for FS_onlySig and
FS_sigAtLeastOne in comparison to the experiments of Scenario
1. However, using FS_atLeastOne the rule was found on the 35th
position. Clearly, F1-score does not get better results than ACC
in any feature selection method. This we explain by the fact
that F1-score focuses more on the positive examples than ACC.
More precisely, F1-score does not take into account examples
classified as true negative in the evaluation formula.

To see the distribution of variants across genomic coordinates
of a particular rule, we plot the distribution via a density plot
in Figure 29. The figure was created for Scenario 2 using ACC
and FS_atLeastOne and the whole dataset was restricted only to
chromosome 10. The figure shows the distribution of significant
variants, denoted as positives (yellow color), and both signifi-
cant and non-significant variants of control samples. For exam-
ple, rule 2 covers variants in a genomic region that appears on
the following coordinate: chr10:31,650,000:31,800,000. A yellow
peak on the right side of the figure highlights a small region
where a significant number of variants that belong to the set of
positive examples are accumulated. Simultaneously, a subset of
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Evaluation function Feature selection Position in the rule set

ACC
FS_atLeastOne 2

FS_onlySig 2

FS_sigAtLeastOne 2

F1-score
FS_atLeastOne 35

FS_onlySig 17

FS_sigAtLeastOne 17

Table 16: Results for the Scenario 2 where positions of rules that cover the
manually labeled genomic region are reported. Better position of
the rule in the rule set enables its earlier verification. The size of
the rule set was restricted to 50.

negative variants is accumulated on the left side of the region
of positive examples. In spite of the dominance of negative ex-
amples, the rule is considered significant since the cardinality
of positive and negative sets is unbalanced.

7.7.3 Algorithm acceleration

The sem1R algorithm as described in Chapter 5 defines repeatedly a
feature set in each iteration step when inducing a single rule. Calling
featureConstruction and featureSelection function has its own rationality.

In contrast to the common variant discovery task, the originally for-
mulated algorithm and the three gene expression datasets presented
in Chapter 5 exploit Gene ontology which is able to construct rules
that cover a relatively large number of examples. For these experi-
ments, the average number of features across DIST, DOT, and m2801

datasets is depicted in Figure 11. In this case, the cardinality of fea-
ture sets drops down relatively fast with the number of induced rules.
This, we explain by the fact that the induced rules cover a huge num-
ber of examples that are associated with many ontology terms. These
terms are further excluded from the induction process in the next
iteration. However, in the case of variant discovery, the number of
covered examples is much lower for each iteration than the number
of covered examples of the originally motivated task. This also re-
flects the cardinality of the feature set that is depicted in Figures 25

and 27 for Scenario 1 and Scenario 2, respectively.
Since the feature set itself does not change rapidly during the pro-

cess of rule induction, we move buildMapping, featureConstruction, and
featureSelection functions outside of induceSingleRule function. The ad-
justed version of the sem1R algorithm, named variant-sem1R, is pre-
sented in Algorithm 7. Three functions, buildMapping, featureConstruc-
tion, and featureSelection, are now located in lines 2-4. These time-
consuming functions are called only once when the algorithm is run-
ning.

In contrast to the original sem1R algorithm, when a new rule is
induced, only positive examples that are covered by the rule are re-
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Figure 29: Density plot for the top 10 rules induced by the algorithm for Sce-
nario 2 using ACC and FS_atLeastOne feature selection method.

moved from the set of positive examples E+. The covered negative
examples are not removed from the set of negative examples E− be-
cause they are still being considered as control samples that serve to
filter out too common variants. There is no rational reason for restric-
tion of the set of control samples.

Moreover, the new version of the function responsible for single
rule induction, the variant-induceSingleRule, is shown in Algorithm 8.
This function remains almost the same, only two algorithm inputs,
R and F, are added to make the algorithm coherent. For this reason,
further algorithm explanation is redundant. For more details of the
original work, see Algorithm 5.
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Algorithmus 7 : variant-sem1R
input :E+, E−,O, k
output :H // hypothesis

1 H← ∅
2 M ′ ← buildMapping(O, E+, E−)
3 F← featureConstruction(O)

4 F← featureSelection(F, E+,E−, O, M ′)
5 R← F

6 foreach i ∈ {1, 2, · · · ,k} do
7 newR← variant-induceSingleRule(E+, E−, O, k, R, F)
8 E+ ← removeCoveredExamples(newR, E+)
9 H← H∪newR

10 end
11 return H

Algorithmus 8 : variant-induceSingleRule
input :E+, E−, O, k, R, F
output :RBEST // conjunction of selectors

1 RBEST ← ∅
2 RBEST_SCORE ← 0, l← 0

3 // discover rules until stopConditions

4 while R 6= ∅ and l < k do
5 Rnew ← ∅
6 // Refine all rules in R

7 foreach r ∈ R do
8 newCandidates← refineRule(r, F,O,

RBEST_SCORE, E+ ∪ E−, M ′)
9 Rnew ← Rnew ∪newCandidates
10 // Find the best rule

11 foreach nc ∈ newCandidates do
12 score←evaluateCandidate(nc, E+, E−, O, M ′)
13 if score > RBEST_SCORE AND isSignificant(nc,

E+, E−, O, M ′) then
14 RBEST ← nc

15 RBEST_SCORE ← score

16 end
17 end
18 R←filterRules(Rnew)

19 l← l+ 1 // increment the rule length by one

20 end
21 return RBEST

As we can see in both Figures 30 and 31, these improvements ac-
celerate the algorithm dramatically. Equally important is the fact that
changes in the algorithm do not change the accuracy nor the order of
the induced rules.
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Figure 30: Total run time for the induction of 10 rules for the human chro-
mosome 10 in the Scenario 1 setting with the accelerated version
of sem1R algorithm. The algorithm performed for different evalu-
ation functions and different feature selection methods.
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Figure 31: Total run time for the induction of 10 rules for the human chro-
mosome 10 in the Scenario 2 setting with the accelerated version
of sem1R algorithm. The algorithm performed for different evalu-
ation functions and different feature selection methods.

7.8 results

In order to make the results and the algorithm itself more understand-
able for a wider audience, we bring an example of induced rules. The
rule that we present in this section covers the region of interest in
Zeb1 gene and it is on the second position in the ordered rule set
for ACC evaluation function using FS_atLeastOne feature selection
method, see Table 16. The rule has the following form:

mRNA:10:31608151-31816222 and
processed_transcript:10:31608141-31812935

where the first gene region represents mRNA in chromosome 10 which
starts at 31608151 and ends at 31816222 position. The second region
represents a transcript that does not contain an open reading frame
and starts at 31608141 and ends at 31812935 position on chromosome
10 as well. Here, the conjunction ("and") can be interpreted as the
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grand intersection of all regions appearing in the rule. Specifically,
the rule covers variants in a region that starts at 31608151 and ends at
31812935 position on chromosome 10. In this case, the covered vari-
ants have appeared in the region of interest in all samples of the
cohort.

7.9 conclusion

We adapted the original version of sem1R algorithm to discover com-
mon genomic regions that are shared over a set of individuals that
have the same symptoms. Moreover, we propose two various scenar-
ios that handle the input data in a different way. Scenario 1 requires
only a set of individuals that have the same symptoms, and then the
algorithm finds genomic regions, or their intersections, where vari-
ants are enriched. On the contrary, Scenario 2 admits adding back-
ground (control) samples that are used to filter out variants that are
too widely spread in the population. If control samples are available,
Scenario 2 is recommended.

The ability to determine genomic regions of interest was confirmed
in a real study that focused on mutations in ZEB1 gene. Expectedly,
a better performance was shown by Scenario 2 that reports a rule that
covers variants of interest on the second position of the ordered rule
set. This increases the chance of discovering interesting pathogenic
variants.

Contrary to the original framework sem1R, we have proposed a
new acceleration approach that significantly reduces the runtime of
the algorithm for this particular application without changing the
results at all.

The new adjusted algorithm is written in C++ and is called variant-
sem1R algorithm. The whole framework is published as an R package
freely available at http://github.com/fmalinka/variant-sem1R.

[ October 18, 2021 at 17:12 – classicthesis ]

http://github.com/fmalinka/variant-sem1R


[ October 18, 2021 at 17:12 – classicthesis ]



8
M U LT I O B J E C T I V E S E M A N T I C B I C L U S T E R I N G I N
O M I C S D ATA

This chapter addresses and extends one of the main ideas that has
been presented in Chapter 4. In that chapter, we proposed two differ-
ent approaches to handle the semantic biclustering task that are called
bi-directional enrichment and rule and tree learning. Here, we introduce a
new method that combines both previously mentioned methods into
one with an ambition to reduce their disadvantages.

8.1 background

Indeed, bi-directional enrichment method consists of two consecutive
phases that are partially dependent; the first phase affects the second
phase, however, information from the second phase does not affect
processes of the first phase. The first step forms a set of coherent
biclusters, the following phase finds out the descriptions of these bi-
clusters. Intuitively, this scheme has an evident drawback: when the
first phase is finished, the second phase utilizes only the inputs that
are provided. When the biclusters have been defined inappropriately
in the first phase, the second phase can never reconstruct them. The
optimal way would be to iterate or rather merge both the phases.
However, this kind of iteration would be extremely time and compu-
tationally exhaustive regarding the number of ontological terms and
the number of elements in the 2D binary matrix that increase the com-
plexity as well. At the same time, the phase merge opens numerous
non-trivial design issues.

In order to address the requirements for establishing the principle
of feedback between the phases which would be feasible in a rela-
tively short time, we come up with an idea to incorporate a type of
heuristic, or oraculum, into the process of forming biclusters which
might increase a chance to discover a better description of biclusters.
Since the final description is in the form of conjunctions of ontol-
ogy terms, we intercorporate their mutual semantic similarity into
the process of yielding biclusters. This would help to reveal more se-
mantically coherent biclusters and thus a more suitable description.

8.1.1 Biclustering as an optimization task

In general, the problem of clustering or biclustering can be posed as
an optimization task. The objective/objectives to be optimized can
reflect various cluster or bicluster characteristics. A good example of
such objectives can be the homogeneity of clusters/biclusters. How-
ever, the meaning of cluster/bicluster homogeneity varies on the type
of clusters/biclusters that we are seeking. It also depends on how the

105
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original research task is formulated or which type of data we are us-
ing. Especially in the bioinformatics field, various types of biclusters
as for example biclusters with constant values or biclusters with corre-
lations are considered. We briefly mentioned some of them in Sec-
tion 2.2. Simply put, for the binarized datasets that are used through-
out this dissertation thesis, i.e., DOT, DISC, and m2801, we can con-
sider the form of biclusters as biclusters with constant values. For other
RNA-Seq datasets with normalized continuous values representing
gene expression by quantifying the amount of messenger RNA tran-
scripts, we can consider biclusters with correlations, for example.

As we have already addressed in Chapters 4 and 5, numbers of
examples and ontology terms for DOT, DISC, and m2801 datasets
are enormous, see Table 10. Although some clustering/biclustering
algorithms might be computationally efficient, they often get stuck at
some local optima depending on chosen parameters [107]. A good ex-
ample that illustrates the usual trend of stucking at the local optima
might be the usage of K-means algorithm which is highly dependent
on the choice of the initial cluster centers. To overcome the issue of
local optima and simultaneously reaching the global optima, some ge-
netic algorithms are widely used across computer science [107] since
they yield high-quality outcomes for a hard combinatorial optimiza-
tion problem. For this reason, genetic algorithms seem to be a rea-
sonably applicable approach in that task. Besides, we chose to exploit
the principle of genetic algorithms for their relatively easy implemen-
tation and easy adaptation for solving multi-objective optimization
tasks.

The proper objectives to be optimized and the techniques to reach
the global optima are discussed in more detail in the following sec-
tions.

8.1.2 Multi objective optimization

Incorporating a further objective being optimized comes from the sim-
ple idea to connect the two separated phases of semantic biclustering,
i.e., the phase of bicluster formulation and the phase of finding their
descriptions. If the biclusters were also sufficiently semantically co-
herent and not only coherent in their values (gene expression, genetic
variants, etc.), then the ontology description would be more under-
standable and easily interpretable since each bicluster would be de-
termined by elements having more similar properties. On the other
hand, semantically incoherent biclusters would report a description
having less similar terms, e.g., nonsimilar ontology terms associated
with genes of different biological functions. Furthermore, finding a
description for coherent groups of elements would generate shorter
rules. Consequently, a hypothesis validation would be much easier.
These assumptions give rise to the idea of extending single objective
optimization to multiple objective optimization.

Integrating biological knowledge for searching biclusters using some
evolutionary inspired approaches is not an untouched scientific topic.
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In [121], the authors present a scatter search metaheuristic for biclus-
tering that optimizes three objectives. The authors proposed a fitness
function to evaluate a bicluster B as follows:

f(B) =M1 × f1(B) +M2 × f2(B) +M3 × f3(B) (35)

where f1 measures a size of the bicluster B, f2 evaluates the patterns
found in the bicluster B, and f3 evaluates the semantic similarity of
terms in the bicluster B from the biological point of view. Further-
more, weights represented by M1, M2, and M3 show a relevance of
the corresponding functions f1, f2, and f3.

The transformation of multi-objective optimization tasks to single-
objective optimization tasks using Eq. 35 is a very straightforward
approach. On the other hand, the parameters M1, M2, and M3 have
to be defined apriori before the algorithm starts. This supposes that
these parameters are known a priori or it brings a necessity to esti-
mate their relevance manually or by any other technique.

To eliminate the defining relevance of the functions a priori, we
solve the multi-objective optimization problem via a different ap-
proach that will be mentioned later in Section 8.2.

8.1.3 Semantic similarity

As we mentioned in Eq. 35 in the previous section, the function f3
measures the bicluster coherency from the biological point of view.
Here, because ontologies are available, we approximate the biologi-
cal relevance by ontology-based semantic similarity measures. There
is plenty of various semantic measures which use ontologies to es-
timate the similarity as edge-based or node-based approaches [69]. For
the sake of simplicity, we firstly focus on gene-pairwise measures of
terms from Gene ontology reviewed in [123] and originally presented
in [127]. SimUI is a graph-based approach that estimates biological
relevance by counting a number of common ontology terms and nor-
malized by a number of terms that are in relationship "a more general
term" with the compared initial terms. Although the SimUI is intro-
duced as a similarity measure for estimating the gene similarity in
Gene ontology, generally it is applicable to any other ontologies that
are in the form of directed acyclic graph. We present SimUI measure
for two terms t1 and t2 as follows:

SimUI(t1, t2) =
|mg(t1)∩mg(t2)|
|mg(t1)∪mg(t2|

(36)

where mg represents a function that returns all terms in the given
ontology that are more general than the corresponding term t1 or t2.
To fully understand the concept of "more general term", we note that
the necessary definitions including the definition of ontology have
been introduced in Section 5.1.

Although there are many other similarity measures [68] or already
implemented toolkits (e.g. The Semantic Measures Library Toolkit online
available at https://www.semantic-measures-library.org/), we de-
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cided to use SimUI measure because of its efficient and easy incor-
poration into the original algorithm sem1R. Note that the core of the
sem1R algorithm is used also for the currently described algorithm
solving the multi-objective optimization problem. For more details
see Section 8.2.7.

8.2 methods

In this section, we describe the proposed algorithm in more detail.
The algorithm consists of two separate phases, where the first phase
deals with multi-objective optimization problem for forming biclus-
ters and the second phase addresses the process of hypothesis or
model induction.

8.2.1 Bicluster forming

To avoid specifying manually the particular values of the selected ob-
jectives and thus their relevance (weights), we aim our research to
develop a method that does not require an external user interven-
tion in this manner. A well-known genetic algorithm dealing with
the multiple optimization problem that is used in our research is
called Nondominated Sorting Genetic Algorithm II (NSGA-II) [37].
NSGA-II yields the final best solution in the format of nondominated
Pareto optimal solutions. However, the main characteristic of these
kinds of algorithms is a large number of produced Pareto optimal
solutions [107] since the objectives are usually conflicting and there-
fore there is no one optimal solution. The problem of identifying "the
best" solution from the whole Pareto optimal set has been addressed
in several papers [13, 35] where the authors suggest approaches to fo-
cus the search on "the best" solutions from the region of interest, also
known as knee of the Pareto curve. An example of identifying knees in
a three-objective problem is depicted in Figure 36.

This problem and the proposed solution are discussed in Section 8.2.7.
Now, go back to the bicluster forming phase and thus the application
of NSGA-II.

8.2.2 NSGA-II algorithm

We outlined the fundamental steps of NSGA-II as the following:

1. Initialize a population randomly.

2. Sort the population based on a non-dominated sorting (see [37]).

3. Do binary tournament selection.

4. Do recombination and mutation to create the offspring popula-
tion.

5. Combine parent and children population.
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Figure 32: Three-objective problem with knees labeled by red color. Dashed
lines represent the Pareto area that contains a large number of
solutions in comparison with the number of knees. The figure is
taken from [13].

6. Select the best individuals that go to the next generation by non-
dominated sorting.

To fully accommodate the semantic biclustering problem, we firstly
define an individual and its encoding into a chromosome representa-
tion. Moreover, we introduce three objectives to be optimized in more
detail.

8.2.3 Conventional Encoding (representation)

In evolutionary inspired techniques, one of the fundamental steps
that need to be solved is to encode a given solution of a task into a
chromosome. In [114], the authors represent a bicluster with a chro-
mosome as a fixed-sized binary vector which is divided into two
parts. The first part of the whole vector is dedicated to determining
rows of a bicluster, the second part focuses on its column dimension.
A binary element in the vector is set to 1 if the corresponding row
and/or column is present in the bicluster. Otherwise, the element is
set to 0. An example of such type of bicluster representation is de-
picted in Figure 33.

Figure 33: An example of chromosome representing a bicluster.

Computing the outer product of the two vectors, column and row
vectors, gives arise to a matrix where 1’s represent the elements that
belong to the constructed bicluster. An example is presented below.
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Example 13. Suppose two vectors from Figure 33, let r =



0

1

0

1

1

0


and c =


0

1

1

0

 Then, the bicluster B is determined as follows:

B = r× cT =



0

1

0

1

1

0


×
[
0 1 1 0

]
=


0 0 0 0 0 0

0 1 0 1 1 0

0 1 0 1 1 0

0 0 0 0 0 0



where 1’s in the matrix represent the elements that belong to the biclus-
ter. Note that biclusters are usually illustrated in their sorted form, i.e., the
form where columns/rows are shuffled to create a matrix where the elements
belonging to the bicluster are next to each other. In this example, we keep the
order of columns/rows in the original unchanged format.

8.2.4 Extended encoding version

Since the previous conventional encoding allows to handle only one
bicluster - thus one individual - at the moment, we extend the orig-
inal encoding with the ability to determine more biclusters encoded
together as one individual/vector. This extension brings a new oppor-
tunity to formulate more biclusters with similar properties. For more
details see Section 8.2.5. On the other hand, it requires more com-
putational resources since the length of the chromosome is generally
larger.

To encode k biclusters into one individual, each of the k biclusters
is encoded in the same way as in the conventional approach. How-
ever, the corresponding biclusters are appended sequentially into one
fixed-sized chromosome. In comparison to the previous encoding ver-
sion, the extended version prolongs the chromosome k times as is
depicted in Figure 34.

Figure 34: An example of chromosome that represents k various biclusters.

For the extended encoding version, the binary matrix is computed
as in the previous encoding version but for each pair of rows and
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columns individually. Then, a pairwise logical OR operator is applied
to the corresponding matrices. This yields the binary matrix indicat-
ing all elements that belong to any of k biclusters. An example is
appended below.

Example 14. Suppose two vectors r and c from Example 13. Furthermore,

suppose vectors r2 =



1

1

1

1

1

1


and c2 =


0

0

1

1

 Then, the final matrix is deter-

mined as follows:
0 0 0 0 0 0

0 1 0 1 1 0

0 1 0 1 1 0

0 0 0 0 0 0

%OR%


0 0 0 0 1 1

0 0 0 0 1 1

0 0 0 0 1 1

0 0 0 0 1 1

=


0 0 0 0 1 1

0 1 0 1 1 1

0 1 0 1 1 1

0 0 0 0 1 1


where %OR% is a pairwise logical OR operator.

Finally, we note that the conventional encoding version is the ex-
ample of the extreme case of extended encoding for k = 1. In that case,
the chromosomes are identical.

8.2.5 Pareto set of multiple objectives

A further aspect that has to be accommodated to NSGA-II algorithm
is a definition of tested problem. Here, the tested problem means to
gather a list of steps that have to be done to formulate a bicluster
using NSGA-II algorithm. We formulate these steps as follows:

1. specify objectives to be optimized and the corresponding eval-
uation functions to approximate these objectives (collectively
called fitness function),

2. set up an approach to handle the evaluation functions in the
encoding of solutions in the chromosome.

As we outline in Section 8.1.2, we consider three objectives to be opti-
mized simultaneously, i.e., a size of bicluster — to discover the appro-
priate size of the bicluster (not so big – too general, or not so small
– too specific), a coherence of bicluster — to consider even the noise in
biclusters introduced by the elements, and finally a semantic similarity
— how the elements in the bicluster are biologically related.

To approximate the size of bicluster B of the original (input) binary
matrix M with r rows and c columns, we introduce the function as
follows:

fcor(B) = −

r∑
i=1

c∑
j=1

(bij ×mij) (37)
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Here, we use the notation presented in this chapter in Section 8.2.3.
A bicluster B is defined by row and column vectors where the outer
product of these two vectors formed a binary matrix. 1’s in the matrix
denote that the elements belong to the bicluster (see Example 13).
The function fcor returns a number of elements that are common for
both matrices, for the bicluster B and for the original input matrix
M. Here, we do not use the expected meaning of the expression "size
of bicluster". Conventionally, the size is given as a multiplication of
numbers of rows and columns. However, we focus on the number
of 1’s because of the subsequent Model induction phase where the
set of targeted examples is given by the elements of the matrix with
its value equal to 1. Moreover, since NSGA-II supposes to minimize
objective functions, the minus sign was added into the formula.

The second function that captures the bicluster incoherence com-
putes a number of elements with the different value of the bicluster
B and the original input matrix M.

fxor(B) =

r∑
i=1

c∑
j=1

|(bij −mij)| (38)

Finally, the third function evaluates the semantic similarity of el-
ements that occur in the bicluster B. All ontology terms associated
with elements of the bicluster are separated based on their ontology
membership and assigned as an element in a set O. The final simi-
larity measure is given as an average value of the semantic similarity
across terms in the particular ontology. The term similarity across
different ontologies is not considered since the similarity is equal to
zero indeed. The formula is shown below. We note that SimUI is an
average value of SimUI across terms in elements of the set O.

fsim(B) =

∑
s1∈O

∑
s2∈O,s1 6=s2 SimUI(s1, s2)

2×
(
|O|
2

) (39)

In summary, we optimize the size and coherence of values in a bi-
cluster calculating fcor that reflects the number of correctly classified
elements in the bicluster and fxor that reflects incorrectly classified
elements. To maximize the objective fcor, we append the minus sign
since all objectives in NSGA-II are minimized. Using these two func-
tions simultaneously, it enables to form biclusters with reasonable
size and their coherence. Moreover, we take into account the seman-
tic similarity of terms that leads to form a bicluster that is biologically
coherent.

For the sake of simplicity, we firstly considered the conventional
encoding, i.e., a chromosome represents one solution and it encodes
one bicluster. Let b be a bicluster, then the objectives are computed
easily as follows:

cor = fcor(b)

xor = fxor(b)

sim = fsim(b)
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For the extended encoding version, the situation is a bit complicated.
Intuitively, it is possible to extend the list of objectives and thus sug-
gest optimizing the objectives by functions fcor, fxor, and fsim for
each individual bicluster encoded in the chromosome. However, this
leads to 3× k objectives to optimize, where k is the number of biclus-
ters encoded in the chromosome. In the case of Pareto optimization,
the final Pareto set is usually large in our case. To simplify that, we
suggest reporting only 3 objectives where the corresponding values of
the objectives are computed as the average values of the correspond-
ing objectives across each bicluster in the chromosome. Simply put,
the objectives report an average property over k biclusters encoded in
the chromosome.

8.2.6 Improving the initialization of population

In the original NSGA-II algorithm, the initial population is generated
randomly from an uniform distribution. In our concept of bicluster-
ing, this means that values of rows/columns encoding a bicluster are
randomly set up to 1 or 0 with the same probability.

However, as we observed, using this approach converges to satis-
factory solutions disproportionately slowly. The reason for the slow
convergence is evident. Especially for a sparse matrix, the original
initialization method generates individuals of the population which
focus on a few 1’s or, in the extreme case, on none of them. To avoid
searching in the space of unpromising solutions and simultaneously
do not prune the search space too much to keep the diversity of the
population, we evolved a simple heuristic initialization approach that
satisfies these requirements and speeds-up the convergence.

The heuristic initialization approach has the following steps:

1. Split the population into 2 halves.

2. Individuals in the first half are generated randomly from an
uniform distribution (the same way as in the NSGA-II).

3. Individuals in the second half are generated randomly but with
a nonuniform distribution. The value of rows (resp. columns)
encoding a bicluster is set up to 1 if a random value pr ∈ [0, 1]
is smaller than a value ph. Otherwise, the row (resp. column) is
set up to 0. The ph is computed as a number of 1’s in the corre-
sponding row (resp. column) divided by a number of elements
in the row (resp. column). This eliminates rows (resp. columns)
with a few or none of 1’s and favorizes rows (resp. columns)
with many 1’s; these are potentially interesting.

In summary, a set of Pareto optimal solutions has been found by the
multi-objective optimization algorithm NSGA-II where an individual
solution corresponds to a bicluster (the original encoding) or a set of
biclusters (the extended encoding version). To achieve sufficient results
that reflect biological relevance and measured gene expression, we
suppose to use the following functions: fcor, fxor, and fsim.
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After the Pareto set of biclusters is established, the process of model
construction follows. This phase is described in the following section.

8.2.7 Model induction

Since the extremely fast method for multiple rules induction called
sem1R has been developed in our previous work described in Chap-
ter 5, currently it is time feasible to run the sem1R algorithm and
induce a rule set for each particular bicluster in the Pareto set. This
was not possible until the rapid algorithm exploiting biological on-
tologies has been developed. However, this brings a new problem of
how to work with all induced rules; how to combine them and build
a global model. For this reason, a new procedure that would build an
arbitrary global model needs to be defined.

To establish a convenient approach, we follow a generic Lego frame-
work [86] that utilizes local pattern discovery techniques for global
modeling. A graphical scheme illustrating particular phases of the
framework is depicted in Figure 35 where local patterns are discov-
ered in a data source by local patterns discovery techniques, e.g., us-
ing subgroup discovery techniques. Then, the local patterns are pre-
selected using a pattern set selection technique and upon these pat-
terns, a global model is built.

Figure 35: Lego framework stems from [53].

To adapt the generic Lego framework to the specific semantic bi-
clustering task, we redefine and adjust the original meaning of each
Lego phase from Figure 35 as the following:

1. Local Pattern Discovery discovers a set of local patterns from
data. To generate a set of rules that describe local patterns in
omics data in general, we firstly generate a Pareto optimal set
of biclusters that are coherent enough not only by its values (in
our work typically gene expression profiles) but semantically as
well. Since the multi-objective optimization is applied, the out-
put Pareto optimal biclusters would be easier to be described
by ontological terms because particular elements of biclusters
are "sufficiently" similar when semantic is taken into account.
For example, each bicluster can contain only functionally simi-
lar genes regarding Gene Ontology. Afterwards, the sem1R algo-
rithm is run for each bicluster to induce a set of rules describing
local patterns.
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2. Pattern Set Selection reduces a set of local patterns. Since some
discovered biclusters might be very similar and then the rules
describing them might have the same form, we simply propose
to remove the identical rules from the pattern set.

3. Global Modeling constructs the final classification model over
the pattern set that describes the input omics data. To build
an accurate and easily interpretable model, we transform the
induced rules and the input data into the attribute-value rep-
resentation. This enables us to use a well-established machine
learning framework, e.g. WEKA [176], for model construction.

The machine learning attribute-value representation is expressed
by 2-dimensional matrix with a finite number of rows and columns,
where a row generally represents an example and a column rep-
resents an attribute, also called a feature. In considering the se-
mantic biclustering task, the attribute-value matrix is a binary
matrix where an example corresponds to an element of the in-
put binary matrix and an attribute corresponds to a rule that is a
part of the pattern set. If the given example is covered by a rule,
then the value 1 is assigned to the corresponding position in
the attribute-value matrix, otherwise zero is assigned. We note
that in the case of WEKA, the attribute-value matrix binds an
extra column that represents a membership to the target class.
Here, the target class contains such elements which their value
is equal to one in the input binary matrix. If an element belongs
to the target class, then the value 1 is assigned to the last column
of the corresponding row position. Otherwise, 0 is assigned to
that position.

8.3 experiments

To evaluate the overall performance of the proposed algorithm on the
datasets that are established throughout the thesis, we decided to test
the performance of the algorithm in two separate levels. The sepa-
ration brings a better option to explain the impact of the algorithm
regarding the ability to induce a model which should be able to gen-
eralize sufficiently and prevent overfitting. We test the following:

1. Bicluster forming An ability to reveal homogeneous biclusters
that are simultaneously semantically coherent.

2. Global model construction An ability to induce a set of ontol-
ogy rules describing biclusters and an ability to construct the
global model that prevents overfitting.

At this moment, for practical reasons, we disregard DOT and m2801

datasets from the experimental evaluation because the expected run-
time of constructing a predictive model is longer than for DISC dataset.
This is evident from the experiment conclusions presented in Chap-
ters 4 and 5. Furthermore, the predictive accuracy for DISC is lower
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than for the other dataset as is shown in Table 7. Then, any improve-
ments in the predictive capabilities of the new model could be more
noticeable.

Since the ability to build a good predictive classification model is as-
sociated with an ability to predict correctly previously unknown data,
we follow the evaluation procedure presented in Section 4.3 where
datasets are splitted into train and test datasets. Because AUC is used
as the main criterion for the prediction accuracy of the global model,
the same optimization criterion, i.e. AUC, was chosen for the first
phase which forms biclusters. ACC and F1-score were disregarded in
our experimental protocol, although the framework enables to used
them as the optimization criterion.

Algorithm Parameter Value

NSGA-II

popsize 240

ngen 2500

kbics 1,2,3,4,5

pcross 0.7

pmut 0.01

sem1R

objective auc

nrules 1,2,3,4,5

minLevel 2

ruleDepth 4

Table 17: Parameters of NSGA-II and sem1R used in the experiment. The
meaning of parameters can be found in [37] or [103], respectively.

Parameters of the algorithms that were used in all experiments are
depicted in Table 17. The parameters of NSGA-II were chosen to get a
sufficient number of diverse biclusters in feasible runtime. For sem1R,
the parameters were chosen to obtain easily interpretable hypotheses
in a reasonable runtime. Basic characteristics of biclusters from the
first step, as the bicluster forming step, are shown in Figure 36. Fig-
ure 36 A shows a distribution of values representing a portion of over-
lapping elements between biclusters. For example, 0% of overlapping
clusters means that there is no common element in any bicluster ap-
pearing in a Pareto set. In opposite, 100% overlapping clusters means
that all biclusters in the Pareto set are identical. This distribution is
measured for a kbics parameter (the number of biclusters in chromo-
some) which values are equal to a numeric range 1-5. Here, the kbics
parameter helps to discover biclusters with more various elements
across the biclusters of the final Pareto set.

Figures 36 B-D show a distribution of scores of fcor, fxor, and fsem
functions as optimization criterions, respectively. In summary, kbics=
1 leads to bigger and significantly overlapping biclusters with higher
semantic similarity.

However, highly overlapping biclusters contain redundant elements
for which the algorithm must find their description. At least, finding
a description for the same elements does not bring a piece of new
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helpful knowledge in the context of classification. In other words,
building a global model which captures only a small portion of the
total aspects of the input data does not help to improve the classifica-
tion accuracy at all. Simply, many other relevant elements are omitted.
This proposition is supported by experimental results which are de-
picted in Figure 37 A.

Figure 37 A shows AUC on the test data for four different machine
learning algorithms that were used for building a global classifica-
tion model. The algorithms are the following: J48, JRip, OneR, and
Random tree. All of them are implemented and presented in WEKA.
The other shown parameters are kbics and nrule parameters. The first
one represents a number of rules that are encoded into one solution
in the bicluster forming phase. The second one determines a number
of rules that are induced for one bicluster in the global model con-
structing phase. For all machine learning models, we use the default
parameters.

OneR algorithm [176] is a simple classification algorithm which
selects the rule with the smallest total error so the global model is
defined by only one rule. As is shown in Figure 37 A, even the rule
with the smallest total error does not report a sufficient capability of
generalization. The resulting AUC on the test dataset very slightly
goes beyond 0.5 in a few cases. The smallest AUC is equal to 0.43

and the highest is equal to 0.51. In summary, it can be stated that
OneR is not a suitable method in that task, since only one rule has
not enough generalization ability. For inducing more sophisticated
hypotheses having a potential to improve the overall AUC, a more
complex machine learning model has to be used.

The other machine learning algorithms such as J48, JRip, and Ran-
dom Tree were chosen for comparison with the results presented in
Chapter 4. As in the previous case of OneR algorithm, the results for
J48, JRip, and Random Tree are depicted in Figure 37 A. From these al-
gorithms, the worst AUC is achieved by JRip where the highest AUC
is 0.55 for kbics equal to 1 and nrule equal to 3. In comparison with the
results of JRip in Table 5, the new method inspired by multiple ob-
jective optimization does not bring better results. On the other hand,
J48 algorithm reached the overall highest AUC 0.69 for kbics equal to
3 and nrule equal to 4. This AUC outperformed the corresponding
results of our original work presented in Table 5. Moreover, Random
Tree algorithm achieved better results, in general, compared to the
corresponding results in Table 5.

Besides the classification accuracy, the other important aspect of
machine learning algorithms is their runtime, especially for time-
exhaustive tasks. For this reason, we measured the runtime of the pro-
posed algorithm for each important algorithm step separately. Com-
parison of the cumulative runtime is shown in Figure 37 B. NSGA-
II POS (resp. NSGA-II NEG) denotes a step of bicluster forming us-
ing positive (resp. negative) examples. sem1R POS (resp. sem1R NEG)
denotes a step for finding descriptions of biclusters formed in the
previous NSGA-II POS (resp. NSGA-II NEG) step. model preparing de-
notes a step that converts C++ data structures into ARFF, a native
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format of the data mining tool WEKA. Finally, model building denotes
a step of building a specific machine learning model. Clearly, the most
time-consuming phase is for description finding, i.e., sem1R POS and
sem1R NEG. From the measured parameters, kbics has the most neg-
ative impact on the run-time because the total number of biclusters,
which must be described using the sem1R algorithm, is increased by
kbics times. In comparison with the runtimes of the previous work
depicted in Table 8 and 9, the algorithm which is presented here does
not outperform neither bi-directional enrichment nor rule and tree learn-
ing approaches.

The time complexity of building a machine learning model is as-
sociated with the number of examples/instances and a number of
features. The numbers of features that are used to build the global
model according to nrule parameter are shown in Figure 37 C. Note
that redundant features, i.e., rules which are in equal form, are re-
moved from the feature set. For this reason, the values represented
by the dashed orange line are not three times greater than the corre-
sponding values lying on the green line.

8.4 conclusion

Considering the main characteristics of the original bi-directional en-
richment and rule and tree learning algorithms that were presented in
Chapter 4 and taking into account their disadvantages, we developed
a new algorithm having the potential to improve the overall classifica-
tion accuracy and interpretability of the results. Although we tested
the performance of the new algorithm using only Drosophila imag-
inal disc dataset, we can conclude that the new algorithm does not
significantly outperform both bi-directional enrichment and rule and tree
learning algorithms at once. In spite of the better interpretability of re-
sults, the classification accuracy is not significantly higher than for
the methods from our previous research. Additionally, runtimes dra-
matically grow up. This is caused by a large number of biclusters
for which the process of induction is started. In spite of the negative
conclusions, we consider the approach of combining multi-objective
optimization with the rule learning algorithm sem1R very interesting
still having the potential to overcome the current state-of-the-art re-
sults.
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Figure 36: Violin plots showing a percentage of overlaps in biclusters, abso-
lute values of fcor, fxor, and fsem functions for different values of
kbics parameter in DISC dataset.
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Figure 37: A Comparison of the algorithm performance on the test dataset.
B Cumulative runtimes of the algorithm for various parameters.
C Numbers of features according to nrule parameter. All depicted
results are related to DISC dataset.
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9
T O WA R D S L A R G E U N TA R G E T E D L C - M S D ATA S E T S
F O R S E M A N T I C B I C L U S T E R I N G : B AT C H
A L I G N M E N T V I A R E T E N T I O N O R D E R S

Although the previous chapters and also most of our work have
been focused on mining patterns from biological data and their fol-
lowing interpretations or evaluations, here, we have changed the fo-
cus to a data preprocessing phase. In this case, we use untargeted
metabolomics data using liquid chromatography–mass spectrometry
technique. One of the reasons why we address the issue of preprocess-
ing such kind of data is their potential to gather an enormous number
of features and samples collectively formed into a matrix. This exten-
sive matrix is a good candidate for finding biclusters using semantic
biclustering approach. However, a suitable preprocessing method for
handling liquid chromatography-mass spectrometry data has to be
invented before adjusting semantic biclustering onto this specific ap-
plication. In this chapter, we introduce such a method. Unfortunately,
creating a suitable large-scale dataset is time-consuming and there-
fore the concrete application of semantic biclustering approach on
liquid chromatography–mass spectrometry data has not been men-
tioned in this thesis. This issue is left for future research.

This chapter has been created with the cooperation of scientists
from Czech Centre for Phenogenomics. I give my thanks to them. Note
that this work is being considered for publication as [104].

Our present work introduces two algorithms that address the prob-
lem of aligning and combining individually preprocessed batches in
multi-batch LC–MS data, taking into account the existence of reten-
tion order swaps. These algorithms help minimize information loss
during the preprocessing of individual batches. The first algorithm
consists of two phases, constructing a global feature alignment and a
subsequent correction step that merges retention order swaps. The
second algorithm incorporates these two phases into one using a
decomposition into subsequences of length k, known as k-mers. Al-
gorithms were tested on six sets of simulated and six sets of real
datasets.

9.1 background

Untargeted metabolomics is a widely used strategy in disease biomarker
discovery, metabolic profiling, and metabolic pathway studies. Un-
like targeted metabolomics where only a predefined set of known
metabolites are the focus of analysis, untargeted metabolomics em-
phasizes the study of the global metabolome by measuring ions from
thousands of metabolites within a wide mass range [99, 171]. One of
the most common techniques in untargeted metabolomics is liquid
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chromatography–mass spectrometry (LC-MS), offering high sensitiv-
ity and broad metabolite coverage [46].

Monitoring and investigating changes in metabolites and identify-
ing evolving biomarkers over time, which is made possible by large-
scale multi-batch LC–MS experiments, provide indispensable insights
in such studies as cancer development and aging [154, 172]. As large-
scale LC–MS studies comprise hundreds of samples, it is infeasible for
them to be measured in a single LC-MS run, and for this reason such
experiments are commonly divided into several batches and span
long time periods. Over time, runs become susceptible to dramatic
mass, retention time, and intensity shifts due to sensitivity to random
effects and external factors [15, 174]. Obtained results may then show
a large variance even when repeated on the same analytical platform
or machine. Although problems such as intensity drift and retention
time shift can be more pervasive in multi-batch experiments [130], cer-
tain LC–MS problems, such as elution order and retention time swap,
are pronounced also on a run-to-run basis and accordingly in single-
batch experiments, and hence not specific to large-scale multi-batch
studies. Elution order and retention time swaps (hereafter collectively
denoted as retention order swap in this thesis) are well-known charac-
teristics of LC–MS data and prevalent in untargeted experiments [92,
93, 149, 152]. Although several algorithms are available to tackle the
resulting side issues, several aspects of the problem remain unad-
dressed. In [148, 149], the authors have demonstrated that existing
algorithms either hold the incorrect assumption that elution order
is preserved across runs or fail to account for problems that arise
from elution order swaps after alignment and data processing (e.g.
’distortions reversing the elution order’). Since retention order swaps
occur in single-batch experiments as well as across different batches
in multi-batch experiments, this places a high demand on improving
existing sequence alignment algorithms that are commonly used to
address the peak correspondence problem to also take into account
the effects of retention order swaps [149].

LC-MS datasets are analyzed as a single batch in most preprocess-
ing pipelines (e.g. XCMS [146] and MZmine [81]) where the user se-
lects a set of parameters that are fitting for all samples. In large-scale
multi-batch experiments, issues such as between-batch variation and
retention time shift make it especially difficult to find a set of pa-
rameters that are equally fitting for samples in all batches. Such an
approach may also result in information loss in some batches. As
an example, when signal-to-noise ratio (S/N) varies among batches,
choosing a large S/N can result in skipping small peaks in some
batches with lower background noise, whereas a low S/N may result
in picking lots of background noise in others. Preprocessing batches
separately, with batch-specific parameters can alleviate said problems.
However, for further downstream analysis (e.g. in MetaboAnalyst [22,
23]), algorithms for aligning and combining batches are required.

Conventional LC-MS alignment algorithms aim to solve the corre-
spondence problem across all samples of a multi-batch experiment
at once. In other words, such algorithms do not take the multi-batch
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design into account and do not align the batches. Examples of such al-
gorithms are OBI-Warp [134] and MetAlign [100]. Several other align-
ment algorithms are examined in [149]. However, none of these algo-
rithms aim to find corresponding peaks among individual batches in
multi-batch experiments.

To the best of our knowledge, probably the first and most signifi-
cant attempt to monitor and correct between-batch variability in large-
scale untargeted LC-MS metabolomics data has been introduced by [15].
The authors similarly to us work with feature alignments between
batches. To reduce between-batch variability, features are merged ac-
cording to their mutual correspondence specified by user-defined pa-
rameters. However, the method proposed by [15] does not implicitly
allow the user to preprocess each batch individually with a specific
set of parameter values that are tuned according to individual batch
property. That is to say, [15] exploits one aggregated multi-batch fea-
ture matrix. Evidently, the necessity to set the global parameters that
fit all batches might be problematic. For this reason, the proposed
methods avoid this multi-batch processing. Moreover, we extend their
work by proposing a method for estimating retention order swaps,
deletions, and insertions in misalignments between batches in authen-
tic datasets.

9.2 materials and methods

In this section, we first define the notations and clarify the terms used
in this work to avoid misunderstanding as many terms, such as peak
and feature, are used interchangeably in literature and the intended
meaning might be unclear to the reader [147]. We then present two
approaches to combining LC-MS batches in a pairwise fashion and
further formulate a heuristic to accommodate multiple alignments.

9.2.1 Notation and Definitions

We define the LC–MS batch experiment B as a set of m samples; B =

{S1,S2, · · · ,Sm}. As a common approach, the raw data of such un-
processed batch experiment is transformed onto a 2D matrix of pro-
cessed data LB = {(f, s) : f ∈ F, s ∈ B}, where F is the set of features
that are associated with the samples in B. It is not possible to interpret
the experiment and validate results without defining associations be-
tween features and samples. Assuming that LB consists of n features,
m samples, and each element LBi,j ∈ R>0 represents the intensity
of feature i in sample j, then the transformation from B to LB can be
done via one of the many available LC–MS preprocessing tools which
typically match chromatographic peaks across samples by solving a
peak correspondence problem ensuing peak detection and alignment.

A feature is formally defined as a tuple of two values: m/z and re-
tention time. We also introduce the binary relation 6RT to denote the
mutual order of features given by their retention time order. Accord-
ingly, assume a set of features F with a totally (linearly) ordered set
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6RT that encodes the more general relation. Note that the feature is
associated with one or more chromatographic peaks in the raw data.
This means that mass-to-charge ratio (m/z) and retention time (rt)
values of a feature are given by the aggregation (e.g. median) of cor-
responding values from associated peaks. From this point onward,
we will use the term feature, instead of peak, to emphasize that we
work with already preprocessed LC-MS data, denoted as LB.

An LC–MS experiment may comprise several batches; each mea-
sured by the LC–MS instrument at different time points. Experiments
with multiple batches include information about the time (date) of
the run for each batch. We can think of every batch as an experi-
ment on its own which can be defined as a set of samples according
to our earlier definition of batch experiment B. Thus, we define the
set of batches of a multi-batch experiment as a totally ordered set
E = (E,6T ), where E represents a set of batch experiments and 6T is
a binary relation over the times when the batches were measured.

9.2.2 Peak Correspondence

Peak correspondence can be formulated as the problem of match-
ing detected chromatographic peaks across samples and occasionally
within samples for adjacent peaks. We consider peaks to be in corre-
spondence when their m/z values lie within a predefined threshold of
one another and elute in a predetermined overlapping time window.

The same problem with similar consequences also needs to be re-
solved on a feature-level basis—we refer to it as the feature correspon-
dence problem. According to the relation 6RT , each two features are
comparable and as a result, features in LB can be ordered sequen-
tially. The feature correspondence problem can be, thus, transformed
into a sequence alignment problem by reorganizing features into a
sequence of features, where the feature correspondence method takes
this ordered sequence as input. Smith-Waterman [150] and Needleman-
Wunsch [120] sequence alignment algorithms align protein and nu-
cleotide sequences on the basis of substitutions, insertions, and dele-
tions, where the latter two introduce gaps in the aligned sequence.
Adapting these algorithms for LC–MS data, where feature transposi-
tions, and likewise elution and peak order swaps, are present, would
not yield an ideal alignment without alternative scoring functions [132]
or additional computational steps, such as warping functions [134].

Conventional sequence alignment methods, which normally ap-
proximate the correspondence problem, do not reflect the real prop-
erties and characteristics of LC–MS data and thus do not take into
account retention order swaps.

9.2.3 Algorithms

We propose two algorithms for aligning and aggregating batches into
a 2D matrix for subsequent downstream analysis. Both algorithms
employ dynamic programming and approximate the correspondence
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problem with respect to sequence alignment. The first proposed algo-
rithm separates the process of alignment construction and retention
order correction from each other, whereas the second algorithm in-
tegrates these two steps together. As both algorithms operate on the
principle of pairwise alignment, we employ a heuristic approach in-
spired by progressive ([47]) and iterative alignment methods ([41, 71])
to accommodate multiple alignments.

9.2.3.1 Pairwise rtcorrectedAlignment

Taking cues from global alignment, Algorithm 9 operates in two phases:
1. global alignment is performed (Needleman-Wunsch algorithm); 2.
retention order swaps are corrected via the rtCorrection function.

The globalAlignment function constructs a pairwise alignment using
the global approach and supposes two linearly ordered feature sets
on input. Source feature set src is aligned to target feature set tgt,
both feature sets referring to input batches. This function returns an
alignment and assigns it to the align variable. Since every two features
are comparable due to the relation 6RT , a linearly ordered sequence
of features can be used as the input for the conventional dynamic pro-
gramming approach. Features in sequences are considered as matched
if their corresponding m/z values are sufficiently similar, otherwise
features are considered unmatched.

Algorithmus 9 : Pairwise rtcorrectedAlignment algorithm

input : src, tgt, nRT // two feature sets referring batches, window

size parameter

output :matrix // feature matrix in LB format

1 Function rtCorrection(align, nRT):
2 i← 0

3 foreach elm ∈ align do
4 w← getSubset(elm, i, nRT) // correct. window

5 if elm in w then
6 // merge matched features in the window

7 alignment← mergeFeatures(align, i, nRT)
8 i← i+ 1

9 end
10 return alignment
11 End Function

12 // alignment of source and target feature sets

13 align← globalAlignment(src, tgt)
14 // retention time correction with nRT value

15 alignment← rtCorrection(align, nRT)
16 // building the feature matrix from the alignment

17 matrix← buildMatrix(alignment)

18 return matrix

Since conventional sequence alignment approaches primarily do
not solve the issue of retention order swaps, the constructed align-
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Figure 38: An example demonstrating the modus operandi of the two pro-
posed approaches; rtcorrectedAlignment and kmersAlign. Both algo-
rithms align feature sets F1 and F2 taking into account retention
order swaps. A shows two phases of the rtcorrectedAlignment al-
gorithm, i.e. making a global alignment and then correction by
rtCorrection function with window size nRT = 3. B demonstrates
the usage of kmersAlign algorithm. Three 3-mers of F1 are locally
aligned to F2 and then combined to form one final alignment.

ment needs to be corrected via the rtCorrection function, which re-
quires two inputs: a global alignment (align) and window size pa-
rameter (nRT ). The correction algorithm is described in Algorithm 9

in lines 1-11. For each element1 of the input alignment at unique posi-
tion i, a subset w that contains elements at positions i+ 1, · · · , i+nRT
of the ordered alignment is considered. If the element at position
i occurs in the subset w, then features with sufficiently similar m/z
values are merged into one feature at the position i. Otherwise, i is in-
cremented by one. The process of merging features is represented by
the function mergeFeatures and the corrected alignment is appended
to the end of the alignment vector. These steps are repeated until end
of the alignment is reached. Finally, function buildMatrix transforms
the final alignment onto a 2D matrix in LB format.

An illustrative example of the pairwise rtcorrectedAlignment algo-
rithm is depicted in Figure 38 A where the initial global alignment of
two feature sets, F1 and F2, and the final resulting alignment achieved
by the rtCorrection function with window size nRT = 3 are shown.

9.2.3.2 Pairwise kmersAlignment

Global alignment is susceptible to generating incorrect alignments,
especially when sequences contain repeated subsequences. Further-
more, choosing an appropriate threshold for the retention order cor-
rection parameter nRT is an equivocal task which can dramatically im-
pact the final alignment. We have developed the pairwise kmersAlign-

1 Element of the alignment can be seen as a pair of corresponding features of the
alignment.
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ment algorithm, which avoids the necessity of separating alignment
and retention order correction phases, to address the aforementioned
problems. This algorithm takes retention order swaps into account
and does not assume that they are rare in multi-batch LC–MS data.

kmersAlignment (Algorithm 10) requires as input two linearly or-
dered feature sets, src and tgt both refering to input batches, and
a wsize parameter. First, all possible k-mers of the linearly ordered
feature set src are generated by the createKmers function where the
length of the k-mer is determined based on the input wsize param-
eter. Each k-mer is then aligned with the linearly ordered target tgt
feature set using the Smith-Waterman local alignment algorithm rep-
resented by the localAlignment function. As each k-mer partially shares
a common fragment with the previous one, usage of k-mers allows the
algorithm to generate and evaluate all possible variations of features
near the given k-mer and take into account feature transpositions. All
alignments are assigned to the aligns variable.

At a later stage, the algorithm combines all different alignments
into one which comprises only features that are matched (in corre-
spondence) at least in one local alignment. If a feature can be as-
signed to several different positions in tgt with regards to the used
k-mer then the feature is assigned to a position according to the ma-
jority voting rule. For an ambiguous decision scenario where majority
voting rule does not apply, the feature is assigned to a position in the
alignment that is closest to its original feature position in the src fea-
ture set. Ultimately, unmatched features are appended to their corre-
sponding position in the alignment. The process of combining various
alignments into one final alignment is represented by buildAlignment
function. Similar to Algorithm 9, function buildMatrix transforms the
final alignment onto a 2D matrix in LB format.

An example making use of the kmersAlignment algorithm is shown
in Figure 38 B where three 3-mers are aligned to the reference feature
set F2 and then combined into one final alignment.

9.2.4 Biological data

Each real data set contains data from plasma analysis from 16-week
old WT mice (strain C57Bl/6NCrl) and KO (same genetic background
as WT) mice, where one gene was ablated. The name of the dataset
represents the ablated gene. There are always two biological groups
in the datasets. Information regarding the number of samples and
features in each dataset is shown in Table 18. Biological difference
between groups of the mice is above scope of this article.

9.3 results

To evaluate and test our proposed algorithms, we used a set of real
and synthetic datasets. Since it is impossible to accurately determine
the true number of retention order swaps in real LC–MS data, the
utilization of synthetic data with known qualities and properties al-
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Algorithmus 10 : Pairwise kmersAlignment algorithm

input : src, tgt, wsize // two feature sets referring batches, k-mer

parameter

output :matrix // feature matrix in LB format

1 // create a set of k-mers from src

2 allkmers←createKmers(src, wsize)
3 aligns← ∅ // empty set of alignments

4 // local alignemnts of each k-mer and tgt

5 foreach kmer ∈ allkmers do
6 align← localAlignment(kmer, tgt)
7 aligns← aligns∪ align
8 end
9 // combine alignments into the final one

10 alignment← buildAlignment(aligns, tgt)
11 // building the feature matrix from the alignment

12 matrix← buildMatrix(alignment)

13 return matrix

# of features # of samples (WT/KO)

1 Klk8 3,459 24 (12/12)

2 Tmem60 C18 5,138 23 (8/15)

3 Tmem60 C30 8,562 23 (8/15)

4 Trim9 3,860 25 (14/11)

5 Wiz C18 8,737 20 (6/14)

6 Wiz C30 403 20 (6/14)

Table 18: First column shows the number of features in the final feature ma-
trix generated by xcms for each dataset. Second column shows the
total number of samples followed by the number of WT and KO
samples in brackets.

lowed us to assess the quality of the final alignment and better com-
pare and study the limitations and differences of the two algorithms
under various settings.

9.3.1 Synthetic data

We used authentic LC-MS datasets from real experiments as the basis
for generating synthetic datasets that accurately reflect the character-
istics of LC-MS data and demonstrate realistic feature distributions
across samples. Each authentic LC-MS dataset was randomly divided
into two sub-datasets where both fragments had the same number
of samples. Each sub-dataset was then pre-processed by the XCMS
package and the results were used as references for generating its syn-
thetic variants. The following operations were used to introduce noise
in a reference sub-dataset to create a synthetic version of it: insert fea-
ture, insert feature with existing m/z value, delete feature, swap feature,
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and do_nothing. For each feature in the reference sub-dataset, in the
order given by the relation 6RT , one operation is randomly selected
from the uniform distribution and applied to the feature, where insert
feature inserts a feature with a random m/z value, unique across the
reference dataset, drawn from the uniform distribution in the interval
of m/z values present in the real reference dataset; insert feature with
existing m/z inserts a randomly selected m/z value already present
in the reference dataset; delete feature skips the feature and does not
insert it into the synthetic dataset; swap feature swaps the current fea-
ture with a feature whose position is given by a rounded number
drawn from the normal distribution; and finally, do_nothing copies
the current feature from reference data to the synthetic dataset with-
out modifications.

To model synthetic datasets after real LC-MS datasets and control
the degree of similarity between each reference dataset with its syn-
thetic variants, we define the probabilities for each operation in ad-
vance. Probabilities of operations insert feature, insert feature with exist-
ing m/z value, delete feature, swap feature and do_nothing are denoted as
pins, pinse, pdel, pswap, and pnothing, respectively, with the sum
of all probabilities being equal to one. The process of generating syn-
thetic datasets from both sub-datasets of each of the six real LC-MS
datasets (Klk8 C18, Tmem60 C18, Tmem60 C30, Trim9 C30, Wiz C18,
and Wiz C30) was repeated ten times for each combination of prob-
abilities of the aforementioned operations. To avoid unrealistic com-
binations that are unrepresentative of the properties of real LC-MS
data, we restricted the interval of probabilities to [0,0.3] for each oper-
ation. Standard deviation of normal distribution reflecting a distance
of feature swaps was set to 9.99 according to Klk8 dataset. Ultimately,
all synthetic datasets were concurrently aligned by rtcorrectedAlign-
ment and kmersAlignment against their corresponding reference real
LC-MS dataset and the quality of the final alignments were evaluated.
A schematic diagram representing the evaluation process is depicted
in Figure 41 A.

To evaluate the performance and applicability of both proposed
algorithms on synthetic data, we established a distance score D. This
score quantifies the amount of differences in the two distributions
of m/z values. In the case of synthetic experiments, we compare the
m/z distributions of the expected ideal alignment and the alignment
by proposed algorithms. This means that mishandling of retention
order swaps are reflected in the proposed distance score. To bring
the formal definition of D, we extend our formalism by multisets.
Suppose two multisets S1 = (M1,m1) and S2 = (M2,m2) where
S1 and S2 represents feature sets. M1 and M2 are sets of m/z values
that are presented in the corresponding feature set. m1 (resp. m2) is a
function from M1 (resp. M2) to the set of the positive integers, giving
the number of occurrences. Given this, D is computed as follows:

D(S1,S2) =
∑

x∈M1∪M2
(|m1(x) −m2(x)|)
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We measured the performance of rtcorrectedAlignment and kmer-
sAlignment algorithms and for each probability setting compared the
results of the algorithms. This comparison on six different datasets is
depicted in Figure 39 where each violin plot shows the distribution of
differences in kmersAlignment and rtcorrectedAlignment distance scores
for equal parameter settings (i.e. distance scores for the same proba-
bility setting for each algorithm were subtracted from each other).
Details regarding outliers are provided in Supplementary Material of
the original article [104]. In all cases, kmersAlignment was run with the
same default parameters, i.e. wsize = 5. The default value of wsize
parameter was determined in order to finish the run of the algorithm
in a reasonable time and with an adequate score. To show the effect of
wsize parameter on the performance of the algorithm and run time,
the distance score D and run time of kmersAlignment was measured
with wsize equal to 5, 10, 50, and 100 for the six datasets. The results
in the form of violin plots are provided in Supplementary Material of
the original article [104]. In summary, wsize = 5 reached a promis-
ing distance score and concurrently run times are the fastest. For
this reason, the shortest runtime and good performance, we choose
wsize = 5 as the default parameter.

We generally consider the performance of rtcorrectedAlignment on
our synthetic datasets to be overfitted as the value of window size
parameter nRT was chosen for each dataset according to an approx-
imated minimum distance score across all examined combinations
of probabilities. The distance score was measured for different win-
dow sizes in the interval [0,300] for each combination of probabilities.
These are reported in Figure 40 where curves represent general trends
of distance scores according to the window size parameter nRT for
each dataset. The lowest point on each curve estimates the optimal
window size for a particular dataset.

We used a linear mixed model for the estimation of effects pdel,
pins, pswap and pinse and their double interactions on the differ-
ence of kmersAlignment and rtcorrectedAlignment scores. The model
was applied on all synthetic datasets using the following formula:

F = pdel + pins + pswap + pinse + pdel ∗ pins+
pswap ∗ pinse + pdel ∗ pswap + pinse ∗ pins+

pdel ∗ pinse + pins ∗ pswap + (1|ID)

where (1|ID) reflects the random effect of different datasets. A pos-
itive value for F expresses that rtcorrectedAlignment has outperformed
kmersAlignment, whereas a negative F expresses the dominance of km-
ersAlignment. The R package lmerTest ([91]) was used for this analy-
sis.

Our linear mixed-effects analysis uncovered a strong inverse effect
on F from the interaction pdel:pswap, where with the increasing prob-
ability of pdel and pswap the value of F becomes significantly smaller
(p-value = 3.18E-8). We observed the same effect for the interaction
pins:pswap (p-value < 2E-16). On the other hand, the pins:pinse in-
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Figure 40: The distance score D according to the window size parameter of
rtcorrectedAlignment algorithm computed for different combina-
tions of probabilities. Curves illustrate the trends in each dataset,
and were computed by LOESS smoothing. Dashed lines represent
the minimum distance score for each curve and the correspond-
ing window size.

teraction was shown to have a positive correlation with F, i.e. with a
higher probability of pins and pinse the value of F becomes signifi-
cantly greater (p-value < 4.3E-5).

9.3.2 Real data

We used six independent sets of untargeted LC-MS experiments (Klk8
C18, Tmem60 C18, Tmem60 C30, Trim9 C30, Wiz C18, and Wiz C30) to
assess the performance and applicability of our proposed algorithms
on real-world datasets while also examining how well a 2D matrix
constructed (aligned and combined) by the two algorithms from indi-
vidually preprocessed batches would correspond to the same dataset
preprocessed as a single batch. In all cases, the data were from LC-
MS experiments that did not comprise multiple batches but were in-
stead measured as a single batch. Every original one-batch experi-
ment was first preprocessed by XCMS and the resulting 2D matrix
of LB format was taken as ground truth for the corresponding ex-
periment. Afterwards, every original experiment was randomly di-
vided into two parts (i.e. two sub-experiments or pseudo-batches)
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using stratified bootstrapping (the only criterion was the equal dis-
tribution of samples from biological groups between batches). This
procedure was repeated ten times for every experiment. The two re-
sulting sub-experiments were preprocessed by XCMS (using the same
parameters used to preprocess the original experiment, i.e. ground
truth) and the final 2D matrices (and linearly ordered feature sets)
from the batches were aligned and aggregated into a final 2D ma-
trix of LB format by rtcorrectedAlignment and kmersAlignment. The
evaluation process is graphically depicted in Figure 41 B. Ultimately,
distance scores between the original matrix of one-batch experiments
and the corresponding alignments/matrices by rtcorrectedAlignment
and kmersAlignment were calculated. Distance score D here measures
the ability of the algorithm to reconstruct the original one-batch exper-
iment from its randomly divided and separately preprocessed parts.
In other words, distance score D assesses how well the aligned sub-
experiments correspond to the ground truth matrix, where a distance
score of zero represents identical results. Furthermore, the distance
score here reflects not only mishandling of retention order swaps
but also inserted and deleted features. For this reason, here distance
scores are generally much higher than in the case of synthetic experi-
ments.

The results from all ten iterations of each real experiment were
averaged and are reported in Table 19. For the rtcorrectedAlignment
algorithm, we are additionally reporting the results for cases when
window size parameter nRT was set to 0, 27, 30, 38, 46, 49, 100, and
150. Except 0, 100, and 150, the rest of these numbers stem from our
extensive experiments done on synthetic datasets shown in Figure 40.
Here, 0 plays the role of baseline, and only a global alignment is con-
sidered. In every scenario, kmersAlignment either outperformed rtcor-
rectedAlignment or was extremely similar in performance to it except
in the case of the Wiz C30 experiment where it was shown that the
uncorrected experiment (i.e. without the application of rtCorrection
function) was most similar to the ground truth.

9.3.3 Batch property estimation

The existence of retention order swaps in untargeted LC-MS data is
one of the essential assumptions that we hold in this paper. However,
it is important to also estimate the number of retention order swaps
because they affect the alignment and an increase in the number of
swaps complicate algorithm development. To estimate the number
of retention order swaps in batches, we use the procedure already
outlined in Section 9.3.2.

Number of insertions or deletions are easy to highlight as they are
simply the number of features which have no corresponding features
in the other dataset. To estimate the number of retention order swaps
between a sub-experiment and the full experiment, we used the rtCor-
rection function (Algorithm 9). Value of the window size parameter
nRT was selected according to the minimal distance score D between
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Figure 41: A scheme for evaluation of the two types of experiments used
in our study: synthetic and real experiment. Note that features
are notated in the same way as in Figure 38. A shows the pro-
cess of generating synthetic feature set S2 from the original S1 by
introducing one swap, one deletion, and one insertion. Distance
D was then measured for the ideal alignment and the alignment
that was reconstructed by any of the proposed algorithms. In this
case, distance D is equal to zero; alignments are identical. B illus-
trates the comparison of the alignment of two individually pre-
processed sub-experiments B1 and B2 and the preprocessed full
experiment B. Here, distance D is equal to one.

the sub-experiment (batch) and the full original experiment. For each
experiment, we have found the average number of features that are
between two closest swapped feature. Table 20 demonstrates these av-
erage number of features between swapped features (µDist) in addi-
tion to the probabilities of deletions, insertions, swaps, and insertions
with m/z values that are already present in the experiment.

Experiment µDist pins pdel pswap pinse

Klk8 C18 12.84 0.04 0.08 0.26 0.02

Tmem60 C18 35.00 0.12 0.21 0.22 0.03

Tmem60 C30 55.84 0.09 0.14 0.27 0.03

Trim9 C30 16.39 0.04 0.14 0.25 0.02

Wiz C18 25.01 0.06 0.12 0.27 0.03

Wiz C30 168.92 0.08 0.33 0.27 0.01

Table 20: Average number of features between swapped features, probability
of insertion, deletion, swap, and insertion of the same features for
features in six authentic LC-MS datasets.

9.4 discussion

We have developed rtcorrectedAlignment and kmersAlignment algorithms
for aligning and combining batches in multi-batch LC-MS experi-
ments. Primarily, this tackles the need for finding global parameter
values for data preprocessing for all samples in multi-batch experi-
ments because each batch is preprocessed separately with more ap-
propriate and sensitive parameters. It is easier to find global parame-
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ter values for the samples belonging to the same batch since retention
time and m/z shift is smaller within batches. Furthermore, these al-
gorithms allow batches within a large-scale multi-batch experiment
to be continuously preprocessed and evaluated as new data appears
from the runs over time. This resolves the need for preprocessing
older batches which have already been preprocessed while reducing
the amount of computing resources required.

Our results show that kmersAlignment is a more robust algorithm
compared to rtcorrectedAlignment; it constructs more reliable 2D ma-
trices in LB format and works effectively in the accuracy and run-
time with the default parameter wsize = 5, thus rendering it much
easier to operate. In all of tested synthetic datasets, the default pa-
rameter wsize = 5 performs sufficiently with the faster run of the al-
gorithm since the time complexity of the kmersAlignment algorithm
is O(K×wsize × |tgt|) where K is the total number of k-mers in the
source feature set, tgt denotes the target feature set. Especially due to
the nature of time complexity, we recommend to use smaller values
of wsize parameter or values which are closer to the default value.
On the other hand, the results of the rtcorrectedAlignment algorithm
are highly dependent on the value of the window size parameter nRT ,
estimation of which is a non-trivial task as we have shown. In some of
the tested synthetic datasets, the distance score increases steeply with
only small changes in the windows size parameter nRT . This demon-
strates that even a small change in the window size value can lead the
rtcorrectedAlignment algorithm to introduce a considerable amount of
noise to the final 2D matrix LB. On the other hand, rtcorrectedAlign-
ment achieves a smaller distance score D in datasets where retention
order swaps are absent or scarce. This behavior was examined via an
analysis with linear mixed models which showed the dominance of
the kmersAlignment for interactions where pswap is present, precisely
for pins:pswap and pdel:pswap. Although finding the proper value
of nRT might be challenging, we conclude that it is better to use a
higher value than a smaller one in general. This is supported by the
curves in Figure 40 where the corresponding curves on the left side
from the optimal points grow more steeply in contrast to the right
side.

Our experiments on real datasets confirm the superiority of the
kmersAlignment algorithm, where in most cases it achieved a better
score than rtcorrectedAlignment even when the optimal window size
parameter nRT leading to the best score was selected. Also, we note
that in a real untargeted LC-MS multi-batch experiment it is difficult
to find the best value for the window size parameter nRT because
any reference solution is missing. However, in comparison with syn-
thetic experiments, changes in the window size parameter nRT of
rtcorrectedAlignment do not impact distance score as dramatically. Al-
though, in the case of Wiz C30, the kmersAlignment algorithm achieves
a lower distance score compared to rtcorrectedAlignment when the
rtCorrection function is applied, a non-corrected alignment of rtcor-
rectedAlignment gets the lowest distance score. This trend has not been
observed in any of the other real datasets and the anomaly in this par-
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ticular dataset, i.e. Wiz C30, can be explained by the distribution of
features along the retention time axis. The distribution of features
in the two Wiz C30 batches is considerably different in comparison
to the rest of the experiments. A significantly different number of
features across batches in a particular interval of retention time de-
creases the ability of the algorithm to compensate for retention order
swaps because it shrinks the number of possibly affected features ac-
cording to the retention time axis. This issue cannot be easily resolved
by establishing the size of the correction window according to reten-
tion time, since the values on the retention time axis can be shifted
across batches. The decision for leveraging the order of features and
not their precise retention times for solving the correspondence prob-
lem is supported by ([5]) who claim that retention order is better
conserved across instruments than retention time is. Accordingly, we
suggest that when using proposed algorithms, feature distribution
and the total number of features for each batch are examined and
controlled so that they are as similar as possible.

Both developed algorithms, kmersAlignment and rtcorrectedAlignment,
were written in C++ and are freely available as an open-source R pack-
age (metaboCombineR): http://www.github.com/fmalinka/metaboCombineR.
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C O N C L U S I O N S

Conventional biclustering is a complex task with a considerable num-
ber of possible applications. One of the research fields where biclus-
tering has its own substantiation is biology. In that field, the bicluster-
ing technique is currently well-established, which is evidenced by the
fact that for gene expression data the biclustering was first introduced
in 2000 and tens of well-known biclustering tools have been devel-
oped since then [178]. Nowadays, incorporating background knowl-
edge into the data analysis is, in general, a desirable trend in bioin-
formatics. For this reason, a combination of conventional bicluster-
ing and methods dealing with background knowledge was the main
motivation for this thesis. This combination we refer to as semantic
biclustering.

The main idea of semantic biclustering is to find biologically inter-
esting and easily interpretable biclusters which are described by pre-
dictive rules. The assumption of an easily interpretable and human-
readable form of pattern description is accomplished by a rule in the
form of a conjunction of ontological terms. More sophisticated forms
of pattern description have been also considered. However, first-order
logic, which is used in inductive logic programming for example, has
been eventually decided as hardly interpretable because of predicates
or function symbols appearing in the hypothesis. In addition, another
disadvantage of inductive logic programming is runtime of the algo-
rithms, which is unacceptably slow, especially for high-throughput
genomic datasets.

The first bi-directional enrichment and rule and tree learning approaches
introduced reported promising results in the beginning of our re-
search. Therefore, the research has continued in this direction extend-
ing the proposed algorithms. However, the rule and tree learning show
some particular disadvantages which make the hypothesis interpreta-
tion complicated. The rule learning approach does not guarantee that
the hypothesis is non-redundant. Moreover, the tree learning approach
produces a complex form of hypotheses that contain redundant terms
too, similar to the previous approach.

To avoid the redundancy in a rule, we developed a new refinement
operator which utilizes the existence of relationships over terms in
ontologies. This operator is incorporated into the rule learning al-
gorithm CN2 and it is published as the R package called sem1R. In
comparison with the traditional refinement operator, the proposed
operator dramatically speeds-up the runtime of the algorithm since
it prunes a rule space safely. Two reduction procedures of the oper-
ator guarantee that a potential best rule, the rule with the highest
score of chosen evaluation criteria, will not be excluded from the rule
evaluation process. Furthermore, we proposed a new method for find-
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ing biclusters that combines a multi-objective optimization approach
with the presented ontology-based refinement operator.

Besides the application of the sem1R in omics data, the thesis fo-
cuses on more specific use cases too. The first algorithm adaptation
is called variant-sem1R and is determined to find genomic regions
which are shared over a cohort of patients. This serves to discover a
list of potential pathogenic variants causing rare diseases. The second
application shows a concrete scenario of using the sem1R package in
analysis of E3-ubiquitin ligase in the gastrointestinal tract with re-
spect to tissue regeneration potential.

Besides the main contributions which are the algorithms for seman-
tic biclustering and their specific versions for two different biological
research areas, another algorithm for preprocessing a large number of
LC-MS experiments was introduced. Since the output of the LC-MS
algorithm fits the requirements on the inputs of our semantic biclus-
tering packages, the semantic biclustering seems to be a promising
approach for analysis of LC-MS data. However, this issue has not
been addressed by this dissertation thesis because of the lack of time
which is necessary for measuring an enormous number of samples.
In addition, some other aspects must be discussed in more depth, e.g.
the form of ontology, discretization, etc. This task, we let open for
future research.

Finally, we would like to mention some issues that we faced during
the development of semantic biclustering employing gene expression
data. As a current challenge, we consider imbalances of specificity of
associated ontological terms, especially in sample/condition-related
ontologies. Generally speaking, the ontologies associated with sam-
ples of gene expression data are usually not eminently large, or on-
tological terms associated with the samples are relatively general. In
this case, such terms of sample ontologies occur in induced rules less
frequently or not at all. The nonexistence of sample terms in rules
leads to biclusters which are formulated through all samples, and
thus might complicate their biological interpretation, or be unwanted
in specific cases. To solve this issue and introduce terms of sample on-
tologies into rules and hypotheses some additional effort is required
by a researcher, such as hyperparameter tuning, choosing a different
evaluation function, or appending more relevant ontologies. Further-
more, the reason for the less specificity of associated terms in the
sample ontologies or their relevant subparts might be: 1) a total num-
ber of samples is dramatically different in comparison to thousands
or ten thousands genes, and 2) for a specific domain some sample on-
tologies are manually created which is time-exhaustive, e.g. Dresden
Ovary Table. On the other hand, there is a relatively new RNA se-
quencing method for profiling gene expression in cells that is capable
of measuring thousands of samples and some well-defined ontologies
are currently available too. The capability to measure a tremendous
number of samples with different annotations enables us to eliminate
a discrepancy between the size of gene and sample dimensions and
then induce rules with a more balanced ratio of gene and sample on-
tological terms. According to the results that we have shown in Chap-
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ter 6, the single-cell RNA-seq method [30] seems to be a promising
and interesting application of our semantic biclustering algorithms.

Furthermore, negative ontology terms - in the sense of proposi-
tional logic - play an important role in predictive accuracy. For this
reason, some specific version of the new refinement operator which
would be able to deal with negative terms could be developed. In that
case, inducing rules with negative terms might speed-up the process
of rule refining once more. This may constitute the object of future
studies.
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A
S E M 1 R PA C K A G E

The following text stems from the author’s handbook available

at GitHub https://github.com/fmalinka/sem1r.

sem1R is a machine learning algorithm that finds interesting, hid-
den, and non-trivial semantic patterns in omics data. The algorithm
produces a set of prediction rules that form data into clusters or bi-
clusters, this depends on the type of ontologies used (column, row, or
both). Here, we make distinctions between two types of ontologies:
an ontology describing rows (e.g. genes) and columns (e.g. samples).
Practically, for gene expression data, where rows represent genes and
column represent samples, we recommend to use Gene ontology or
any pathway ontologies as a row ontology. Choosing a proper column
ontology depends on the type of experiment, e.g. OBO Foundry pro-
vides almost two hundreds ontologies and many of them are domain
specific so some anatomical ontologies can be used as well. An exam-
ple of gene expression dataset that addresses simultaneously column
and row ontologies is DOT (Dresden Ovary Table) at http://tomancak-
srv1.mpi-cbg.de/DOT/main.html.

The sem1R is based on rule learning methods, where two reduction
procedures make the algorithm extremely fast and efficient in com-
parison with the traditional CN2 approach. Additionally, it is easy to
use, because all important methods are included into this R package.

a.1 getting started

The algorithm is implemented in C++ and provided as R package.
The following instructions will show you how to install all prereq-
uisites and the sem1R package as well into your local machine. Af-
terwards, we will demonstrate the sem1R on real gene expression
dataset.

a.1.1 Prerequisites

We required to use R in version 3.4. All prerequisites R packages
that are needed for the sem1R package are the following: Rcpp (>=
0.12.6), RcppProgress, RcppArmadillo (>= 0.7.800.2.0), and BH (>=
1.72.0-3). All of these packages come from CRAN, so install them by
install.packages function in R.

Or, for easier installation, we recommend to install ’devtools’ that
can download and install the project instantly from GitHub using
only one command.
For installing ’devtools’ package run R and type the following:
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1 install.packages("devtools")

a.1.2 Installing

If you choose installation via devtools, you would go to the terminal,
run R and then the following commands:

library(devtools)

install_github("fmalinka/sem1R")

All prerequisites packages should be installed automatically.

Or for non-devtools users, download the sem1R package and extract
it to your arbitrary folder. Run the terminal, go to the folder and
install all prerequisites using install.packages R’s function. Finally,
build the package.

cd /my/path/to/package

R CMD build .

The package in tar.gz format will be named as ‘sem1R_[version].tar.gz’.
The concrete name depends on the package version. Then, install the
sem1R package.

R CMD INSTALL sem1R\_[version].tar.gz

And finally, check whether the sem1R package has been installed.
Run R and load the package.

library(sem1R)

a.2 running the example

Running example that we present here comes from Dresden Ovary Ta-
ble (DOT) located at http://tomancak-srv1.mpi-cbg.de/DOT/main.html.
Since the original data matrix is to complex for a brief algorithm ex-
hibition, we will work just with a submatrix of the original matrix
in this tutorial. All necessary files for this example are stored at inst
folder.

a.2.1 Data matrix

A file dotmatrix.csv contains binary information about gene expres-
sion of the fruit fly adult ovary in many locations. The matrix is
two-dimensional where rows represent genes and columns represent
samples (locations). Each dimension has own identifier, i.e. genes are
described by FBgn (FlyBase) identifiers and columns by your notation.
Ones in the matrix mean "expressed" and zeros mean "non-expressed"
in the given positions. Obviously, process of binarization has to be
done if your data are not in the binary format. Look below how the
matrix looks like.
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X1.8.somatic.cells X1.9.germline.cells X1.10.terminal.filament

FBgn0033019 1 1 1

FBgn0263251 1 1 1

FBgn0037224 1 1 1

FBgn0038013 1 1 1

FBgn0037358 1 1 1

a.2.2 Ontologies

Ontologies are the second type of input that has to be given to sem1R
algorithm. Ontology has to be in OBO format (https://owlcollab.
github.io/oboformat/doc/GO.format.obo-1_4.html) and relationships
of terms must be acyclic (usually OBO ontologies are acyclic). For
many other interesting ontologies look at OBO Foundry (http://obofoundry.org).
In our running example, we provide two type of different ontologies.
Gene ontology, located at inst/extdata/go-basic-reduced.obo, aims
to rows of the data matrix and DOT ontology (http://tomancak-
srv1.mpi-cbg.de/cgi-bin-public/ovary_annotation_hierarchy.pl), located
at inst/extdata/dotOntology.obo, focuses on the columns.

a.2.3 Connection between the data matrix and the ontologies

Now, the last step is to establish an annotation, a connection be-
tween our data matrix and all given ontologies. Firstly, we look at
the rows which are described by the FBGN identifiers. Result of
mapping from FBGN identifiers to Gene ontology terms id is pro-
vided at inst/extdata/initRowDot_reduced.csv file. File showing a
mapping from data matrix columns to DOT ontology can be found
at inst/extdata/initColDot.csv file.

a.2.4 Run sem1R

Finally, let’s run the example!

First of all, load the R library and create a new class sem1R. Then, we
load the example data containing all necessary files described above.

library(sem1R)

mysem1R <- new(sem1R)

myExample <- getDatasetExample()

Now, we load the data matrix to the sem1R class. Be sure, that the
data matrix is a ’matrix’ R type and has named rows and columns.
It is important! Note that public methods of the class are call by $
symbol.

mysem1R$setDataset(myExample$datamatrix)

Then, we load all ontologies. For this, use createCOLOntology or cre-
ateROWOntology methods, it depends on your matrix design gen-
erally. The first argument of these methods is name of ontolgy, the
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second argument set up path to the corresponding obo file, and the
last one is a list of vectors representing the connection between rows/-
columns and ontologies. For the proper format look at one of the ex-
amples (myExample$colOntologyDesc or myExample$rowOntologyDesc).
When you have more than one ontology, just call the corresponding
method one again. However, the name of ontology must be unique!

mysem1R$createCOLOntology("DOT", myExample$colOntologyPath,

myExample$colOntologyDesc)

mysem1R$createROWOntology("GO", myExample$rowOntologyPath,

myExample$rowOntologyDesc)

Now, we set all algorithm parameters (see R manual).

mysem1R$filterTh <- 50

mysem1R$objective <- "auc"
3 mysem1R$ruleDepth <- 3

mysem1R$nrules <- 2

mysem1R$featureSelectionMethod <- 0

mysem1R$minLevel <- 2

If you want to check out correctness of the connection of data matrix
and the ontologies, call ’mysem1R$checkRowDescription()’ or ’my-
sem1R$checkColDescription()’.

Finally, run the algorithm and save the results!

myhypothesis <- mysem1R$findDescription()

When it ends ...

[sem1R SETTINGS]

filter threshold: 50

rule depth: 3

significance threshold: 6.635

objective function: auc

number of rules: 2

featureSelectionMethod: 0

ruleFormat: both

0% 10 20 30 40 50 60 70 80 90 100%

[----|----|----|----|----|----|----|----|----|----|

**************************************************|

... your final rule set will be printed on STDOUT.

******************************************************************

************************** FINAL RULESET *************************
===== RULE 1=====

STATS: score 0.536225 t-score: 2182.28 POSITIVE: 23351 NEGATIVE: 11649

RULE: GO:0044763 AND GO:0043229

DETAILS:

ID: GO:0044763

NAME: single-organism cellular process

DEF: "Any process that is carried out at the cellular level, occurring

within a single organism." [GOC:jl]

[October 18, 2021 at 17:12 - classicthesis ]



A.2 running the example 149

level: 2

ID: GO:0043229

NAME: intracellular organelle

DEF: "Organized structure of distinctive morphology and function,

occurring within the cell. Includes the nucleus, mitochondria,

plastids, vacuoles, vesicles, ribosomes and the cytoskeleton.

Excludes the plasma membrane." [GOC:go_curators]

level: 2

COVERED:

POSITIVE:

X1.8.somatic.cells, X1.9.germline.cells, X1.11.cap.cells,

X1.13.follicle.stem.cells, X1.15.interfollicular.stalk.cells,

X1.18.germline.stem.cells, X1.20.presumptive.nurse.cells,

X2.26.oocyte, X4.29.oocyte, X5.30.oocyte, X3.32.nurse.cells,

X5.34.nurse.cells, X2.35.somatic.cells, X4.37.somatic.cells,

X2.39.follicle.cells, X3.40.follicle.cells, X5.42.follicle.cells,

X3.44.interfollicular.stalk.cells, X5.46.interfollicular.stalk.cells,

X3.48.anterior.follicle.cells, X4.49.border.cells,

X2.58.posterior.follicle.cells, X4.60.posterior.follicle.cells,

X5.62.centripetally.migrating.follicle.cells,

X2.64.anterior.restriction, X2.66.nurse.cells_nuclear.foci,

X2.69.cytoplasmic.foci, X3.71.anterior.restriction,

X5.74.anterior.restriction, X3.75.posterior.restriction,

X5.77.posterior.restriction, X5.81.cortical.enrichment,

X3.82.nurse.cells_nuclear.foci, X5.84.nurse.cells_nuclear.foci,

X4.86.nurse.cells_perinuclear, X3.105.basal.restrictrion,

X4.106.basal.restrictrion, X3.108.apical.restriction,

X5.110.apical.restriction, X4.112.cytoplasmic.foci,

X5.113.cytoplasmic.foci, X3.115.cytoplasmic.foci,

X5.117.cytoplasmic.foci, X3.119.cytoplasmic.foci,

X4.120.cytoplasmic.foci, X2.128.nuclear.foci, X4.130.nuclear.foci,

X4.139.anterior.follicle.cell, X5.140.squamous.follicle.cells,

X4.143.cortical.enrichment, X2.145.cortical.enrichment,

X4.147.cortical.enrichment, X5.149.follicle.cells.overlaying.the.oocyte,

X2.164.perinuclear, X4.166.perinuclear, X3.168.oocyte.nucleus,

X5.170.oocyte.nucleus,

NEGATIVE:

X1.8.somatic.cells, X1.10.terminal.filament, X1.12.escort.cells,

X1.14.follicle.cells, X1.17.posterior.follicle.cells,

X1.19.cystoblast, X1.21.presumptive.oocyte, X4.29.oocyte,

X2.31.nurse.cells, X5.34.nurse.cells, X3.36.somatic.cells,

X5.38.somatic.cells, X4.41.follicle.cells,

X2.43.interfollicular.stalk.cells, X4.45.interfollicular.stalk.cells,

X3.48.anterior.follicle.cells, X5.50.border.cells,

X3.59.posterior.follicle.cells,

X5.62.centripetally.migrating.follicle.cells,

X2.65.posterior.restriction, X2.67.nurse.cells_perinuclear,

X2.70.apical.restriction, X5.74.anterior.restriction,
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X4.76.posterior.restriction, X4.80.cortical.enrichment,

X4.83.nurse.cells_nuclear.foci, X3.85.nurse.cells_perinuclear,

X3.105.basal.restrictrion, X5.107.basal.restrictrion,

X4.109.apical.restriction, X4.112.cytoplasmic.foci,

X2.114.cytoplasmic.foci, X4.116.cytoplasmic.foci,

X3.119.cytoplasmic.foci, X5.121.cytoplasmic.foci,

X4.130.nuclear.foci, X4.139.anterior.follicle.cell,

X3.142.cortical.enrichment, X5.144.cortical.enrichment,

X4.147.cortical.enrichment,

X5.149.follicle.cells.overlaying.the.oocyte, X3.165.perinuclear,

X3.168.oocyte.nucleus, X5.170.oocyte.nucleus,

===== =====

And the structure of returned hypothesis is the following:

str(myhypothesis[[1]])

List of 9

$ ruleID : int 1

$ score : num 0.536

$ tscore : num 2182

$ nCoveredPOS: int 23351

$ nCoveredNEG: int 11649

$ rules : chr [1:2] "GO:0044763" "GO:0043229"

$ details : chr [1:6] "ID: GO:0044763" "NAME: single-organism

cellular process"

"DEF: \"Any process that is carried out

at the cellular level, occurring

within a single organism.\"

[GOC:jl]" "ID: GO:0043229" ...

$ coveredPOS : chr [1:23351] "FBgn0039115,X1.8.somatic.cells"

"FBgn0022238,X1.8.somatic.cells"

"FBgn0262601,X1.8.somatic.cells"

"FBgn0029134,X1.8.somatic.cells" ...

$ coveredNEG : chr [1:11649] "FBgn0026737,X1.8.somatic.cells"

"FBgn0003087,X1.8.somatic.cells"

"FBgn0031873,X1.8.somatic.cells"

"FBgn0003514,X1.8.somatic.cells" ...

where ruleID represents order of the induced rule, score represents
quality of the rule depends on the type of evaluation function, tscore
represents chi-square score of the rule, positive and negative covered
is a number of examples covered by the rule, rules represents a con-
junction of ontological terms, details provides additional information
about the terms in conjunction, and finally covered represents cov-
ered examples expressed by their position in the matrix.
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The following text stems from the author’s handbook available

at GitHub https://github.com/fmalinka/metabocombiner.

metaboCombineR is an R package written in C++ that focuses on
large-scale untargeted LC-MS experiments. The package allows to
preprocess each batch of samples separately using an arbitrary pre-
processing program, such as XCMS. The main pro is a possibility to
handle and observed results of experiments during the time and pro-
gram parameter tuning should be easier since within-batch variability
is smaller than between-batch variability. The package contains two
different approaches called kmersAlignment and rtcorrectedAlignment
that were both published in [104].

b.1 getting started

b.1.1 Prerequisites

Only one external R package is required: Rcpp (>= 0.12.16). For com-
piling vignette, we suggest rmarkdown package.

b.1.2 Installing

The simplest way to install metaboCombineR package is via devtools
that allows to download and install the project instantly from GitHub
using only one command. For the package installation, run R and
type:

library(devtools)

install_github("fmalinka/metaboCombineR")

b.2 running the example

For an illustration, we prepared four authentic real datasets. For load-
ing them to workspace, type the following:

library(metaboCombineR)

data(metaboExp1)

3 data(metaboExp2)

data(metaboExp3)

data(metaboExp4)

Presented datasets are in 2-dimensional matrix format where rows
represent features and each row has it own name which m/z value
is prefixed by M and rt by T. Columns represent samples. Names of
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all samples/features must be filled by colnames/rownames function
through R. To see an example of dataset format, type head(metaboExp1).

MetaboCombineR enables to define assignments of samples to some
groups, typically as treatment and control groups. To provide this in-
formation, add a vector of assignments as the first row to the input
data.frame. The row must be named as group. If the group label is
present in a dataset it must be present in all other datasets. Inconsis-
tencies are not allowed. An example of dataset with three samples
(two treatments and one control) and 2 features is depicted below.

X064.EPK83_m_Mzb1_ESI.mzML X064.EPK88_m_Mzb1_ESI.mzML

group treatment treatment

M57.0813T1428.187 -0.321542424867644 0.286250559905367

M57.2355T1428.090 0.408813652123444 -1.0100177456997

X064.EPK94_m_Mzb1_ESI.mzML

group control

M57.0811T1428.187 1.17078411764221

M57.2355T1428.090 -0.153473421445439

To combine all of these experiments into one table, call runMetaboCombiner
function, where the first argument is supposed to be a list of experi-
ments, mzprecision argument defines a number of digits considered
for peaks, and algorithm selects one of the proposed algorithms. The
algorithm argument supposes only two values on input: kmer and rt-
cor. The default algorithm is kmersAlignment. windowsize argument
represents the size of the window for rtcorrectedAlignment algorithm.
For kmersAlignment algorithm, the same argument represents the k-
mer value.

mytableKmer <- runMetaboCombiner(list(metaboExp1, metaboExp2,

metaboExp3, metaboExp4), mzprecision = 2, algorithm="kmer",
windowsize = 5)

mytableRtcor <- runMetaboCombiner(list(metaboExp1, metaboExp2,

metaboExp3, metaboExp4), mzprecision = 2, algorithm=" rtcor ",
windowsize = 50)

Then, the result matrix is stored in mytableKmer/mytableRtcor vari-
able, respectively.
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[12] Jiří Borovec and Jan Kybic. “Binary pattern dictionary learn-
ing for gene expression representation in drosophila imaginal
discs.” In: Asian Conference on Computer Vision. Springer. Cham,
Switzerland: Springer, 2017, pp. 555–569.

[13] Jürgen Branke, Kalyanmoy Deb, Henning Dierolf, and Matthias
Osswald. “Finding knees in multi-objective optimization.” In:
International conference on parallel problem solving from nature.
Springer. 2004, pp. 722–731.

[14] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard
A Olshen. Classification and regression trees. CRC press, 1984.

[15] Carl Brunius, Lin Shi, and Rikard Landberg. “Large-scale un-
targeted LC-MS metabolomics data correction using between-
batch feature alignment and cluster-based within-batch signal
intensity drift correction.” In: Metabolomics 12.11 (2016), pp. 1–
13.

[16] Andrew Butler, Paul Hoffman, Peter Smibert, Efthymia Pa-
palexi, and Rahul Satija. “Integrating single-cell transcriptomic
data across different conditions, technologies, and species.” In:
Nature biotechnology 36.5 (2018), pp. 411–420.

[17] Laurence Calzone, Nathalie Chabrier-Rivier, François Fages,
and Sylvain Soliman. “Machine learning biochemical networks
from temporal logic properties.” In: Transactions on Computa-
tional Systems Biology VI. Berlin, Heidelberg: Springer, 2006,
pp. 68–94.

[18] Matteo Cereda, Thanos P Mourikis, and Francesca D Ciccarelli.
“Genetic redundancy, functional compensation, and cancer vul-
nerability.” In: Trends in cancer 2.4 (2016), pp. 160–162.

[19] Hung-Chia Chen, Wen Zou, Yin-Jing Tien, and James J Chen.
“Identification of bicluster regions in a binary matrix and its
applications.” In: PloS one 8.8 (2013), e71680.

[20] Yizong Cheng and George M Church. “Biclustering of expres-
sion data.” In: Ismb. Vol. 8. 2000, pp. 93–103.

[21] Shunsuke Chikuma, Mitsuhiro Kanamori, Setsuko Mise-Omata,
and Akihiko Yoshimura. “Suppressors of cytokine signaling:
potential immune checkpoint molecules for cancer immunother-
apy.” In: Cancer science 108.4 (2017), pp. 574–580.

[22] Jasmine Chong, Othman Soufan, Carin Li, Iurie Caraus, Shuzhao
Li, Guillaume Bourque, David S Wishart, and Jianguo Xia.
“MetaboAnalyst 4.0: towards more transparent and integrative
metabolomics analysis.” In: Nucleic acids research 46.W1 (2018),
W486–W494.

[23] Jasmine Chong, Mai Yamamoto, and Jianguo Xia. “MetaboAn-
alystR 2.0: from raw spectra to biological insights.” In: Metabo-
lites 9.3 (2019), p. 57.

[ October 18, 2021 at 17:12 – classicthesis ]



bibliography 155

[24] Qinjun Chu, Dan Shen, Long He, Hongwei Wang, Chunlan
Liu, and Wei Zhang. “Prognostic significance of SOCS3 and
its biological function in colorectal cancer.” In: Gene 627 (2017),
pp. 114–122.

[25] Peter Clark and Robin Boswell. “Rule induction with CN2:
Some recent improvements.” In: European Working Session on
Learning. Springer. 1991, pp. 151–163.

[26] Peter Clark and Tim Niblett. “The CN2 induction algorithm.”
In: Machine learning 3.4 (1989), pp. 261–283.

[27] William W Cohen. “Fast effective rule induction.” In: Proceed-
ings of the twelfth international conference on machine learning.
1995, pp. 115–123.

[28] Gene Ontology Consortium. “Gene ontology consortium: go-
ing forward.” In: Nucleic acids research 43.D1 (2015), pp. D1049–
D1056.

[29] Gene Ontology Consortium. “Expansion of the Gene Ontology
knowledgebase and resources.” In: Nucleic acids research 45.D1

(2016), pp. D331–D338.

[30] Tabula Muris Consortium et al. “Single-cell transcriptomics of
20 mouse organs creates a Tabula Muris.” In: Nature 562.7727

(2018), pp. 367–372.

[31] Marta Costa, Simon Reeve, Gary Grumbling, and David Osumi-
Sutherland. “The Drosophila anatomy ontology.” In: Journal of
biomedical semantics 4.1 (2013), p. 32.

[32] David Croft, Antonio Fabregat Mundo, Robin Haw, Marija
Milacic, Joel Weiser, Guanming Wu, Michael Caudy, Phani
Garapati, Marc Gillespie, Maulik R Kamdar, et al. “The Reac-
tome pathway knowledgebase.” In: Nucleic acids research 42.D1

(2013), pp. D472–D477.

[33] R Keira Curtis, Matej Orešič, and Antonio Vidal-Puig. “Path-
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[84] Jiří Kléma, František Malinka, and Filip Železný. “Semantic Bi-
clustering: A New Way to Analyze and Interpret Gene Expres-
sion Data.” In: Bioinformatics Research and Applications (2016),
p. 332.

[85] Yuval Kluger, Ronen Basri, Joseph T Chang, and Mark Ger-
stein. “Spectral biclustering of microarray data: coclustering
genes and conditions.” In: Genome research 13.4 (2003), pp. 703–
716.

[86] Arno Knobbe, Bruno Crémilleux, Johannes Fürnkranz, and
Martin Scholz. “From local patterns to global models: the LeGo
approach to data mining.” In: LeGo 8 (2008), pp. 1–16.

[87] David Komander and Michael Rape. “The ubiquitin code.” In:
Annual review of biochemistry 81 (2012), pp. 203–229.

[88] Sotiris B Kotsiantis, I Zaharakis, and P Pintelas. “Supervised
machine learning: A review of classification techniques.” In:
Emerging artificial intelligence applications in computer engineering
160 (2007), pp. 3–24.
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