Low-Latency Optimizations and Architectures for Compression
Algorithms implemented in (Programmable) Hardware

by

Ing. Matéj Bartik

A dissertation thesis submitted to
the Faculty of Information Technology, Czech Technical University in Prague,
in partial fulfilment of the requirements for the degree of Doctor.

Dissertation degree study programme: Informatics
Department of Digital Design

Prague, April 2021

Supervisor:
Dr. Ing. Sven Ubik
Department of Technology for Network Applications
CESNET z.s.p.o.
Zikova 4
160 00 Prague 6
Czech Republic

Co-Supervisor:
Ing. Pavel Kubalik, Ph.D.
Department of Digital Design
Faculty of Information Technology
Czech Technical University in Prague
Thakurova 9
160 00 Prague 6
Czech Republic

Copyright (©) 2021 Ing. Matéj Bartik

i

Abstract and Contributions

This dissertation thesis focuses on researching which compression algorithms are suitable
for a very specific use case of real-time multimedia transmission systems such as CES-
NET’s MVTP, providing excellent image quality and low-latency operation at the same
time. However, the MVTP’s throughput requirements exceeding the capabilities of used
communication interfaces slightly in certain situations. Because no hardware implement-
ations of universal lossless compression algorithms met the MVTP’s requirements, some
new hardware-based optimizations and architectures had to be discovered. Some of these
optimizations were inspired by software implementations of so-called “fast” lossless com-
pression algorithms, which trade a worse compression ratio for a better compression speed.

In particular, the main contributions of the dissertation thesis are as follows:

1.

Parallel (8-way) & Low-Latency Architecture for “Match Search Unit” capable of
delivering the throughput of 16 Gbps with the latency of only 6 clock cycles.

Memory-optimized data flow, which allows the “Match Search Unit” to generate less
stalls in data processing. The principle is to store a combined entry of data and
data’s original address instead of the original address only.

Technique for masking “Match Length Finding” initial latency to reduce the number
of “stalls”. I propose using the available memory data width to double the actual
performance in certain phases of the compression process.

Novel architecture for implementing a status register, which is commonly used to store

an information, of which memory entry is (in-)valid. The architecture is portable to
any modern FPGAs.

Benchmarking methodology for digital designs using Xilinx synthesis tools, which
helped me with the evaluation of the novel status register architecture.

Keywords: lossless, compression, dictionary, LZ4, LZ77, high-throughput, low-latency,
digital design, architecture, optimization, hardware, FPGA, MVTP.

il

As a collaborator of Ing. Matéj Bartik and a co-author of his papers, I agree with Ing.
Matéj Bartik’s authorship of the research results, as stated in this dissertation thesis.

Ing. Tomas Benes

iv

Acknowledgements

First of all, I would like to express my gratitude to myself because of the strong will, en-
durance, and effort needed to complete my dissertation thesis regardless of my supervisors
and other circumstances. Fulfilling the requirements for obtaining a Ph.D. degree has not
been easy for any doctoral student, even with the aid of a competent supervisor(s) [1].

Therefore, I would like to thank my supervisor Dr. Ing. Sven Ubik for the initial
research topic, which later evolved into a more viable scientific topic summarized by this
dissertation thesis. I am also glad you allowed me a significant flexibility to work on the
research and my assignments in CESNET.

I would like to express my deepest gratitude to my dear colleagues: doc. Ing. Petr
Fiser, Ph.D. and doc. Ing. Jan Schmidt, Ph.D. for their guidance, consultations, valuable
comments and feedback, and proofreading. In fact, they treated me the same way as their
own doctoral students without having any benefits. 1 also would thank the head of the
department of digital design, doc. Ing. Hana Kubatovéa, CSc. for her infinite patience.

I need to mention Ing. Tom&s Benes and Ing. Karel Hynek, my former masters’
students. I had the honor of being their supervisor and had the option to see their progress
towards their academic careers.

Finally, my greatest thanks goes to my family members (especially my dear mother)
for their infinite patience and support.

I would like to thank CESNET z.s.p.o. and Czech Technical University for partial
material and financial support. Besides that, my research has been partially supported by
the Technology Agency of the Czech Republic, grants:

o LM2010005 “Large Infrastructure CESNET”
o EF16.013/0001797 “E-infrastructure CESNET — modernization”

and by the Grant Agency of the Czech Technical University in Prague, grants:

o SGS15/119/OHK3/1T/18 “Attack-Resistant and Fault-Tolerant Architectures Based
on Reconfigurable Devices”

vi

o SGS16/121/OHK3/1T/18 “Dependable architectures suitable for FPGAs”

o SGS17/017/OHK3/3T/18 “Dependable and attack-resistant architectures for pro-
grammable devices”

o SGS20/211/OHK3/3T/18 “Design, programming and verification of embedded sys-
tems”

Life Motto

Obsessed is just a word the lazy use to describe the dedicated.

vil

Contents

[List of Figures| xii
[List of Tables| xiii
L__Abbreviations| XV
[1__Introductionl 1
[L1 Motivation|. e 2
(1.2 Problem Definitionl oo 3
(1.3 Goals of the Dissertation Thesis| 4
(L4 Structure of the Dissertation Thesisl 5

2 Background and State-of-the-Art| 7
[2.1 Serial Digital Intertace] oo 0oL 7
2.2 Modular Video Transmission Platform (MVTP)[. 8
2.2.1 Conversion Process of an SDI Stream into [P Packets 9

2.2.2 IntoPIX JPEG2000 CODEC 10

2.2.5 MVTP Summary| oo 11

[2.3 Fundamentals of Compression Algorithms 11
[2.3.1 Compression Ratio and Compression Dictionary| 12

[2.3.2 Lossless or Lossy?|. 12

[2.3.3 Symmetry| 12

[2.3.4 Number of Input Data Passes Through a Compression Algorithm| . 12

[2.3.5 Suitability for Certain Data Types 12

[2.4 A Briet Comparison of Hardware-Implemented Lossless Compression Al- |

| gorithms| 14
[2.4.1 Summary of Hardware Implementations| 14

[2.5 Modern and “Fast” Software Compression Algorithms|. 15
RETTZA 15

1X

CONTENTS

202 LZOl . . . o 16

2.0.3 Performance and Common Features/ 16

[2.6 The Research Question & Methods| 16

[3 LZ4 Introduction and Analysis from a Hardware Designer Point of |
[View] 19
4 Highly Parallel Match Search Unit Architecture| 25
[> High Throughput and Low Latency LZ4 Compressor on FPGA| 35
[6 Novel Status Register Architecture| 43
[6.1 Alternative Use Case - Histogram Calculation| 44
(6.2 Analysis of LZ4 Suitability for Image Datal 44
[7__Conclusions| 69
(7.1 Summary| 69
[7.2 Contributions of the Dissertation Thesis| 70
[7.2.1 Analysis of “Fast” Lossless Compression Algorithms from Hardware |

| Designer’s Perspective] L0 70
[7.2.2 Demonstration of L.Z4 Suitability for ‘Light” Compression of Image |

I Datal 70
[7.2.3 Parallel & Low-Latency Architecture for Match Search Unit| 70

[7.2.4 Memory Access Optimized Scheme| 70

[7.2.5 Masking “Match Length Finding” Initial Latency| 71

[7.2.6 Novel Status Register Architecture| 71

[7.2.7 Benchmarking Methodology for Digital Designs using Xilinx Syn- |

I thesis Tools 71
(.3 Future Workl. o oo 71
[7.3.1 Literal Length and Match Length Limit Concept Proposal| 71
(Bibliography| s
Rewi [Publicah; Fihe Axil Rel e Thesis 87
|Granted Patents of the Author Relevant to the Thesis 91
[Remaining Reviewed Publications of the Author not Relevant to the Thesis| 93
[Research Projects of the Author]| 97
[Evaluation Activities| 99
[Doctoral Workshop Publications of the Author| 101

Contents

[Appendix A Thesis Results and Related Datal 103

el

List of Figures

(1.1 Latency of an example MV'I'P setup for real-time collaboration.| 4
2.1 Simplified structure of the SDI frame format (2K example). Il 7
2.2 SDIline format. 3] 8
2.3 MTPP pipeline architecture. [4]| oL 9
2.4 The architecture of a JPEG2000 hardware based compressor. |5 13
71 LZ4 sequence structure. [6]l. 72
(7.2 Literals output buffer placement for fixed and variable encoding.|. 73
[7.3 Visualised influence of the proposed concepts.| 74
[7.4 Relation between compression ratio and maximum match length — Part [.| . . 75
[7.5 Relation between compression ratio and maximum match length — Part II| . 76

x1i

List of Tables

[1.1 Typical network latency (in milliseconds) between several cities. [7]] 1

(5.1 The latency of the presented “High Throughput and Low Latency LLZ4 Com- |

| pressor’ FPGA implementation.. 35
IA.1 Performance of “fast” compression algorithms [8].| 104
[A.2 LZ4 compression ratio vs. hash table size vs. color depth and color encoding.|. 105
[A.3 LZ4 compression ratio vs. match length limit,| 106

xiii

Abbreviations

Common Mathematical Functions and Operators

105 Numbers’ radices are designated with a subscript
b Vector b

b; the 7™ element of vector b

Q(x) The big Q notation

O(z) The big O notation

©(z) The big © notation

Miscellaneous Abbreviations

ASIC
BRAM
CAM
CESNET
CODEC
CPU
DDR3
DRAM
DSP
EAV

FF
FIFO
FPGA
FPS
GIF
Gbps
HD

1P

Application Specific Integrated Circuit
Block Random Access Memory

Content Addressable Memory

Czech Educational and Scientific NETwork
COder-DECoder or COmpression-DECompression
Central Processing Unit
Double-Data—Rate 3 SDRAM

Dynamic Random Access Memory

Digital Signal Processor

End of Active Video

Flip—Flop

First In, First Out

Field Programmable Gate Array

Frames per second

Graphics Interchange Format

Gigabit per second

High Definition

Internet Protocol or Intellectual Property

XV

ABBREVIATIONS

Miscellaneous Abbreviations — Continued

Xvi

JPEG
JPEG-XS
L1
LRU
LSIC
LUT
LZ
LZMA
LZO
LZW
Mbps
MLF
MTPP
MSU
MVTP
PC
PCI
PCle
PID
PNG
RAM
RGB
RJ45
RLE
RTP
SAV
SDI
SDRAM
SFP
SMPTE
SRAM
SSD
TICO
UDP
UHD
VolP
XFP

Joint Photographic Experts Group
JPEG eXtra Small or JPEG eXtra Speed
Level 1

Least Recently Used

Linear Small Integer Code

Look-Up Table

Lempel-Ziv

Lempel-Ziv-Markov—-Chain Algorithm
Lempel-Ziv—Oberhumer
Lempel-Ziv—Welch

Megabit per second

Match Length Finder

Modular Traffic Processing Platform
Match Search Unit

Modular Video Transmission Platform
Personal Computer

Peripheral Component Interconnect
Peripheral Component Interconnect Express
Proportional-Integral-Derivative
Portable Network Graphics

Random Access Memory

Red, Green, and Blue

Registered Jack—45

Run-Length Encoding

Real-time Transport Protocol

Start of Active Video

Serial Digital Interface

Synchronous Dynamic Random Access Memory
Small Form—factor Pluggable

Society of Motion Picture and Television Engineers
Static Random Access Memory
Solid—State Drive

TIny COdec

User Datagram Protocol

Ultra High Definition

Voice over Internet Protocol

10 Gigabit Small Form—factor Pluggable

CHAPTER].

Introduction

Communication services are more and more critical for today’s world and society. This
digital era has begun with the invention of the Internet and related services. The develop-
ment has been accelerated by multimedia (motion images and sound) transmission systems
and services, which have allowed participants from opposite sides of the world to collabor-
ate in real-timd] The majority of such systems and services have been using asynchronous
networks.

The requirements and needs of such users have become even harder to satisfy every
year. The demands such as better image resolution, sharper images without compression
artifacts, and clear audio became essential for effective collaboration.

Thus, the communication network bandwidth had to be increased. New (complex)
compression algorithms were invented to satisfy these requirements, although the com-
monly used compression algorithms are usually lossy. The amount of processed data and
the complexity of algorithms consequently have increased latency.

The latency itself does not need to be an issue if it is not excessive above human
senses and abilities. For a (physically) shorter interconnection, several milliseconds’ latency
cannot be observed by a human, and the impact is negligible (VoIP services, for example).
On the other hand, some use case scenarios (such as telesurgery or musical performances)
can be heavily affected by the increased latency.

London | New York | Prague | San Francisco | Santiago | Tokyo
London — 71.4 29.1 133.5 196.1 245.3
New York 71.6 — 99.5 2.7 133.8 176.2
Prague 28.7 99.5 — 168.7 240.1 259.3
San Francisco| 133.2 2.7 168.7 — 1914 109.2
Santiago 196.1 134.0 240.0 191.4 — 323.8
Tokyo 2454 176.3 259.1 109.1 323.9 —

Table 1.1: Typical network latency (in milliseconds) between several cities. [7]

'Even more important during the on-going global pandemic of SARS-CoV-2

1. INTRODUCTION

For such image quality-critical or latency-sensitive systems, the latency should be de-
creased at all costs. In general, some trade-offs must be made, for example:

o An optimized (dedicated) hardware solution is preferred, which tends to be more
expensive than a software counterpart.

o Dedicated network routes (GEANT [9] for example) with no other traffic are often
used, reducing actual network latency by 50% usually [I0] compared to the typical
latency of commercially operated networks (see Table for examples of various
intercontinental and transcontinental Internet routes).

o Less complex and fast compression algorithms are used, therefore trading a compres-
sion ratio for the required network bandwidth. Also, the used compression algorithm
should be (visually-)lossless.

It is complicated and expensive to decrease a network path’s latency between two
(or more) endpoints running a latency-sensitive application. A crucial question arises: is
reducing the latency worth the effort and money? The answer is, it is worthy under some
circumstances, as demonstrated on the new optical fiber route laid out between New York
and Chicago [11], which decreased the latency by three milliseconds.

Therefore, this dissertation thesis aims to invent, implement, and evaluate new optim-
izations to lower the endpoints latency, which will be suitable for hardware-implemented
lossless compression algorithms.

1.1 Motivation

As stated above, some latency-sensitive and image quality-critical use case scenarios exist.
I would like to present an example of CESNET’s MVTP (Modular Video Transmission
Platform) endpoint system for high-quality/low-latency motion image transmissions. The
MVTP has been an experimental broadcast system that allows the transmission and re-
ception of (multiple) video streams in high-quality 4K/UHD resolution.

Besides video streams, transmission and reception of ancillary data as defined in SMPTE
291M [12] has been supported. The system’s capabilities are constrained by a physical net-
working interface (10G Ethernet) because a full 4K/UHD stream requires 12 Gbps of total
throughput usually. There are two modes of operation:

o Uncompressed mode: MVTP expects an incoming stream with reduced image
sub-sampling (4:2:2 instead of full 4:4:4), and auxiliary data like blanking periods
are omitted. Due to the absence of a complex compression, the required bandwidth
can exceed the Ethernet interface capabilities for certain video formats [13].

o JPEG2000 compression mode: the JPEG2000 compression is lossy (but it does
not harm the image quality significantly). However, it supports all 4K/UHD data
features and can compress the stream while requiring less than 1 Gbps of bandwidth.

1.2. Problem Definition

On the other hand, the JPEG2000 CODEC requires three times larger FPGA than
MVTP with uncompressed mode only.

1.2 Problem Definition

The MVTP supports two basic modes of operations: uncompressed or JPEG2000 compres-
sion. There is a significant difference in the data flow demonstrated on a “Full HD” image,
which consists of 1080 pixel lines. In uncompressed mode, the image data are processed
as a line of image pixels. The amount of time (the latency) represented by the line can be
expressed as 1 sec/FPS/Lines ~ 15.4 us for a 60 FPS stream.

However, the used JPEG2000 CODEC implementation requires a complete image (one
frame) to be buffered first prior to the processing. The CODEC can process only one
frame at the same time. Thus the minimal time (latency) of one frame can be expressed as
1 sec/FPS ~ 16.6 ms. In the case of MVTP, a commercial implementation of JPEG2000
provided by intoPix [I4] is used. IntoPix states an average JPEG2000 CODEC implement-
ation has latency of 1.5 frame per operation [14], resulting into added latency of 3 frames
(equivalent to 49.8 ms) for 60 FPS stream. The latency can be further increased, if the
used FPS is lower.

To allow remote collaboration in real-time, overall latency of 100 milliseconds is con-
sidered as a firm limit. For some advanced use cases, such as telesurgery or musical
performances, the maximum latency should be less than 50 ms. The latency of a typical
setup for bidirectional transmission (see Fig. consists of:

o Network latency [7],
o MVTP endpoint latency, depending on used mode,
o Low-latency camera (about 5 ms [15]),

o Low-latency display (about 5 ms; 1-2 ms at best).

Therefore, it is clear the JPEG2000 CODEC latency prevents the requirements of the
latency-sensitive MVTP from being satisfied. The estimated JPEG2000 CODECs’ latency
is almost the same as the requirement for the critical applications.

It is obvious we have no influence on a network’s latency (it is beyond our control) and
little influence on peripheral’s latency. The substantial portion of latency is introduced by
the JPEG2000 CODEC used by the MVTP. The conclusion is rather simple: MVTP needs
a (de-)compression engine with these requirements and properties:

o The compression algorithm does not need to be as powerful as the JPEG2000, thus
saving about 10% of the required bandwidth only is considered to be sufficient [13]
(see Table 3.1) for certain use cases (1080p at 24, 25, and 30 FPS or 4K at 60 FPS).

o Latency should be kept as low as possible.

1. INTRODUCTION

Internet (Latency)

London — New York = 71.6 ms

San Francisco - Tokyo = 109.1 ms

Low-Latency Camera/Display: 5 ms each
MVTP Uncompressed: 1 ms
MVTP JPEG2000: 49.8 ms

Figure 1.1: Latency of an example MVTP setup for real-time collaboration.

o

The compression algorithm should be universal to support various data types, includ-
ing video, audio, subtitles, and other ancillary data as defined in SMPTE 291M [12].

o Low utilization of FPGA resource utilization is preferred, but optional.

1.3 Goals of the Dissertation Thesis

Due to the fact no hardware implementation of a lossless compression algorithm reached
the required throughput of 10 Gbps in 2014, a research needs to be conducted in the
following areas:

1. Analysis of available (lossless) compression algorithms and their (theoretical) prop-
erties and features. A study of the latest trends and innovations in the field of
compression algorithms.

2. Determine which algorithms are viable for the expected payloads types.
3. Survey on a compression algorithm hardware implementations.

4. Invent some optimizations to increase throughput towards the 10 Gbps requirement
(and towards 100 Gbps in the near future) and to decrease the necessary latency to
the minimum at the same time.

1.4. Structure of the Dissertation Thesis

1.4 Structure of the Dissertation Thesis

The thesis is organized into seven chapters, as follows:

1.

2.

Introduction: Describes the motivation behind our effort together with our goals.

Background and State-of-the-Art: Introduces the reader to the necessary theoretical
background and surveys the current state-of-the-art.

LZ4 Introduction and Analysis from a Hardware Designer Point of View: Presents
an initial survey of the LZ4 algorithm (and it’s reference software implementation)
as a representative example of so-called “fast” lossless compression algorithms.

Highly Parallel Match Search Unit Architecture: Explores the hash table based ar-
chitecture and possible optimizations towards increased parallelism of a compression
engine’s “Match Search Unit.”

High Throughput and Low Latency LZj Compressor on FPGA: Describes low-latency
and high-throughput FPGA implementation of the LZ4 compression algorithm. The
implementation uses our “Match Search Unit” architecture while delivering a through-
put of 6 Gbps.

Nowvel Status Register Architecture: Presents a new architecture suitable for imple-
menting a status register. Viable use cases are compression dictionaries and histo-
gram calculations. Also presents a benchmarking methodology for digital designs
using Xilinx synthesis tools, which helped me with the fair evaluation of the novel
status register architecture.

Conclusions: Summarizes the research results, suggests a possible topic for further
research (the literal length and match length limit concept) and concludes the thesis.

CHAPTER 2

Background and State-of-the-Art

This chapter presents a summary of the previous related work comprising the state-of-the-
art associated with this dissertation thesis. The chapter includes the technical background
describing the SDI, the MVTP platform, and describing the fundamental principles and
properties of various compression algorithms and techniques.

2.1 Serial Digital Interface

Serial Digital Interface (SDI) is a digital video interface designed by the “Society of Motion
Picture and Television Engineers” (SMTPE) for professional usage, especially in broadcast-
ing domain. There are plenty of standards dealing with various aspect of SDI to support
high bitrates (starting at 270 Mbps to 12 Gbps), new video formats and so on. Despite the
number of standards, the fundamental frame format (see Fig. has not changed since
the introduction of the first standard in 1989.

41
42

1121
1122
1125

0

2047 2048 2051 2052

2745 24762749

blank period

active period
(visible lines)

EAV

blank period

blank
period

SAV

Figure 2.1: Simplified structure of the SDI frame format (2K example). [2]

2. BACKGROUND AND STATE-OF-THE-ART

The frame consists of defined numbers of lines (depending on used resolution), where
each line (see Fig. consists of several regions such as “start of active video (SAV)”,
“end of active video (EAV)”, line number, checksum, synchronization, and “blanking area”
which is used to embed ancillary data such as embedded audio [3].

Digital
Line
Blanking

Digital Active Line
Active Picture or Data

Figure 2.2: SDI line format. [3]

2.2 Modular Video Transmission Platform (MVTP)

The MVTP is a scalable and modular platform for receiving and transmitting multimedia
streams over an asynchronous network in real-time [2]. The designed system emphas-
ized low-latency/high-throughput communication to satisfy real-time requirements. The
MVTP architecture is based on MTPP (Modular Traffic Processing Platform) [4], a pre-
decessor of the MVTP.

MVTP devices operate in pairs usually, but other network configurations are possible.
All MVTP devices are equipped with multiple SDI interfaces (up to 8 input and 8 output
interfaces) and Ethernet interfaces (10 Gbps XFP/SFP+ and/or 1 Gbps RJ45 connectors).
The key features of MVTP are:

o 4K/UHD resolution (up to a resolution of 4096x2160 pixels),
o up to 60 FPS, interlaced /progressive format,

o up to 3G-SDI [16] interface support (a new generation with 12G-SDI [17] interface
is currently under development),

o each SDI channel is transported independently, but synchronization and variable SDI
channel grouping is optional,

o uncompressed or JPEG2000 compression operation modes (compression engine pro-
cess data at full link speed, e.g., 3 Gbps in case of currently used 3G-SDI standards),

o very low latency of less than 1 ms in the uncompressed mode [I8].

The MVTP receiver side is synchronized to a transmitting device by PID regulators
measuring the time to pass through the receiver’s buffer [I8]. When the receiver and

8

2.2. Modular Video Transmission Platform (MVTP)

transmitter clocks are synchronized to each other, there is theoretically no need for buffering
data in the uncompressed mode of operation. However, some small buffers are still present,
allowing the PID regulator to operate properly. Besides, the buffer masks a network jitter.

2
E
3
=
R=
|
en
2
~
=2 2
S E,
Packet Stream | & 5 8 5 5/ B 5| Packet Stream
2 35 33 £ |%
Y) R=) 15} £ [5)
A% | Packet Stream | A% | Y, | Packet Stream | p4 T ~
=y]
2 =
A~ A~
clock source T [-
! Free ! !Occupied | ! Adding : | Occupied !
Slot | i Slot | | Bew . . Slot

i module ;

Figure 2.3: MTPP pipeline architecture. [4]

2.2.1 Conversion Process of an SDI Stream into IP Packets

An incoming SDI data stream contains multiple channels of multimedia data: the video
payload is represented by luminance and chroma samples and an ancillary data channel
carrying embedded audio, subtitles, and other service information. The incoming SDI
data stream is being processed by an MTPP [4] inspired processing pipeline. The pipeline
consists of several modules (see Fig. , and therefore acts like a systolic array. Such

modules perform:

o extracting video samples (encoded using a 20-bit word coding scheme [19]) and vari-
ous control signals,

o omitting the inactive area, EAV, SAV, and other non-video data from the SDI
frame (Fig. to save some of the required bandwidth; with the exception of an
embedded audio,

o performing (optional) JPEG2000 compression,
o aligning the data for the network processing (a conversion from 20-bit to 64-bit),

o adding protocols headers (RTP, UDP, and IP).

2. BACKGROUND AND STATE-OF-THE-ART

In case the ancillary data (embedded audio) are required to be transmitted, there is a
parallel datapath with the same pipeline stages applied (except compression). Due to the
fact the video and the audio data are in the same line, two consequent IP packets will be
generated.

Lastly, the stream is forwarded to the MVTP network processing part. A Jumbo IP
packets [20] (each packet represents a one-pixel line) are used to minimize a transmission
overhead.

An asynchronous computer network such as the Internet does not guarantee the packets
will be received in the same order as they were transmitted. However, using a dedicated
network route with (almost) no other traffic minimizes the risk of “swapping” packets on
the way (and also helps to keep the network jitter low). Due to the fact the video and
ancillary data from the same pixel line are transmitted in two consecutive packets, the
required size of the receiving buffer could be low. The smaller buffer (and all packets
delivered mostly in-order) lowers the latency on the receiving side.

Therefore, usage of multiple compression algorithms (suitable for a different data type)
will likely lead to:

o IP packets can be generated in a wrong (non-deterministic) order because of the
different (computational) complexity of such compression algorithms,

o the hardware architecture will require multiple compression algorithms to be imple-
mented resulting in a more complex datapath including more complex output packet
multiplexing,

o same applies also to the receiving side, where multiple decompression algorithms
must be implemented as well,

o a larger buffer will be required to properly re-order all incoming packets prior pro-
cessing, which results in increased latency.

However, it is impossible to support and implement a data type specific compression for
all existing data types which can be embedded in the ancillary data region nor to apply a
lossy compression for general binary data. Therefore, only the usage of a universal lossless
compression, which also guarantees the same computational complexity. This behavior
allows IP packets to be generated in order. It is also possible to keep a single datapath
with a single implementation (engine) of such compression algorithm.

2.2.2 IntoPIX JPEG2000 CODEC

The MVTP uses the IntoPIX JPEG 2000 CODEC [14]. The JPEG2000 compression
algorithm is based on a discrete wavelet transformation [21]. Every SDI frame is com-
pressed when an entire frame is buffered completely, therefore affecting the latency. In-
toPix states an average JPEG2000 CODEC implementation has a latency of 1.5 frame per
operation [I4], resulting in an added latency of 3 frames (equivalent to 49.8 ms) for 60

10

2.3. Fundamentals of Compression Algorithms

FPS stream. Some early JPEG2000 implementations (limited to 30 FPS) were capable of
reaching a latency of 6 frames which is approximately 200 ms [22].

The CODEC processing speed is equivalent to the link speed of the source interface
(3G-SDI actually), therefore 4 or 8 CODECs (for 3G-SDI or HD-SDI respectively) are
required to transmit and receive a single image in 4K/UHD resolution. It is not possible
to utilize combining two incoming streams to feed the compressor engine with data.

The IntoPIX JPEG 2000 CODEC allows decreasing the required network bandwidth,
but it also increases significantly the amount of used FPGA resources. It requires more
than twice the FPGA resources than the design with implemented uncompressed mode
only. The IntoPIX JPEG 2000 CODEC also requires some additional DDR3 memory
chips to implement frame buffers.

2.2.3 MVTP Summary

I described the principles of the MVTP platform, including the IntoPIX JPEG2000 CO-
DEC, including aspects that made the CODEC not viable for the defined use case: the
excessive latency, the need for a larger FPGA, and the additional DDR3 memory chips for
the MVTP design. The positive aspect of the JPEG2000 is the bandwidth reduction by
approximately 90%. The lossy compression is also not ideal for certain use cases such as
the transmission of medical images [23] [24], where any color shifts could harm a patient.

Due to these facts, I should be looking for a universal compression algorithm that is
not as powerful as the JPEG2000; however, it will be viable for various data types and will
keep IP packet generated in order. In certain use cases (1080p at 24, 25, and 30 FPS or
4K at 60 FPS), reducing the required bandwidth by 10% is considered to be sufficient [13]
(see Table 3.1) to “squeeze” the network traffic into 1G or 10G Ethernet.

2.3 Fundamentals of Compression Algorithms

Compression is a process of finding and removing redundant information from input and
transforming the input to an output using fewer bits. The basic types of compression
schemes are described in this section [25]. This analysis emphasized finding a compression
algorithm candidate suitable for the presented use case (MVTP). The requirements are:

o Universal compression for every data type (video, audio, general data).
o High throughput at gigabits per second.
o Low-latency for real-time interaction.

Little overhead for incompressible data.

e}

o Good compression ratio is the least important parameter in our case.

A summary of elementary compression techniques, classification, and properties follows.

11

2. BACKGROUND AND STATE-OF-THE-ART

2.3.1 Compression Ratio and Compression Dictionary

The compression ratio is the most common metric for the comparison of compression
algorithms. It is defined as the relation between the sizes of the original and the com-
pressed data. There is a directly proportional relationship between the compression ratio
and the size of a compression dictionary, where a larger dictionary increases the prob-
ability of finding a piece of duplicate information, therefore improving the compression
ratio. The compression ratio is usually evaluated on the “corpora” (such as Calgary [20],
Canterbury [27], and Silesia [28]), which are a set of sample files designed for testing of
compression algorithm properties.

2.3.2 Lossless or Lossy?

The second most common classification of compression algorithms is their ability to recon-
struct original data, e.g., lossless or lossy compression. The lossless compression enables the
restoration of the original content from the compressed data. The lossy compression scheme
uses the imperfection of human senses (vision, hearing) to omit unnecessary information.
The lossy compression algorithms typically reach better compression ratios than lossless
counterparts. Examples of lossless schemes are LZ77 [29], LZ78 [30], LZW [31], Huffman
encoding [32], etc. and examples of lossy schemes (suitable for image compression) are
JPEG [33], H.264 [34], H.265 [35], etc.

2.3.3 Symmetry

The symmetry is one of the elementary properties of compression algorithms. The com-
pression scheme is symmetric when the compression and decompression processes have the
same complexity (algorithmic or time). In the case of different complexity (of encoding and
decoding), the compression scheme is called asymmetric. Asymmetric algorithms are more
common, and the compression phase usually has higher complexity than decompression.

2.3.4 Number of Input Data Passes Through a Compression Algorithm

Another important property is the number of passes required for the input data through the
compression algorithm. As an example, file-based compression tools usually use multiple
compression schemes and each compression scheme can have multiple passes [25] [36]. A
higher number of passes allows to achieve a better compression ratio, but it also increases
the latency. Therefore high number of passes may reduce throughput and makes the scheme
unsuitable for real-time applications (for example, LZMA). Representative examples of
single pass algorithms are LZ77, LZ78, and LZW.

2.3.5 Suitability for Certain Data Types

The first kind of compression scheme is universal algorithms that can compress any data
(text, video, audio, binary files) with usually worse compression ratio than the compression

12

2.3. Fundamentals of Compression Algorithms

JPEG 2000

Video Stream

Input

4:4:4 1 4:2:2
4:2:0/4:0:0
8 up to 16 bits

{ video Input /F
e

H IPEG 2000 Output I/F |

Host
Control

~

Control - Status
Registers I/F

1 UHT-JPEG2K-E

>~
o
-
-
@ O

External Memory I/F

e

SDR/DDRx / QDR
Memory Controller

Figure 2.4: The architecture of a JPEG2000 hardware based compressor. [5]

algorithms designed for specific data types. Data specific algorithms can achieve better
a compression ratio, but these algorithms are typically very complex [37]. The higher
complexity typically means a higher number of passes or more compression algorithms are
used at the same time. Compression algorithms can be further divided into three groups:

o Universal algorithm: typically merges input data into blocks where each block
is compressed separately. A special case of block-based algorithms is the stream
compression algorithm, which uses very small blocks that can be stored in small
buffers closely associated with algorithm processing (e.g., CPU L1 cache). Examples
of such compression algorithms are LZ4 [6] and LZO [3§].

o Frame-based algorithm: designed for the compression of still images. These meth-
ods compress an individual frame/image at once. The most known algorithms are
GIF, JPEG(2000), PNG, etc. The time and algorithmic complexity are usually higher
than for universal algorithms. To lower the latency requirements, some implement-
ations (such as IntoPix TICO [39] or very recent JPEG-XS [40]) were introduced
in recent years. Such implementations are designed to split a frame into smaller
segments (several pixel lines) and to process them independently (see Fig.[2.4). Typ-
ical combined latency for compression and decompression is tens of pixel lines [40].
However, such implementations perform worse in term of compression ratio [41]. Ad-
ditionally, it still requires processing the entire frame to prevent the data from being
corrupted.

13

2. BACKGROUND AND STATE-OF-THE-ART

o Inter-frame algorithm: representative examples are H.264 [34] or H.265 [35]. They
provide the best compression ratio, high compression rates. The basic principle is to
encode the differences between two or more frames. The main issue of inter-frame
compression is an increase in latency caused by the inter-frame principle (holding
multiple frames buffered in memory) and computational complexity.

Therefore, it is evident the compression latency is in the best case directly proportional
to the size of the processed data and the compression algorithm complexity.

2.4 A Brief Comparison of Hardware-lmplemented Lossless
Compression Algorithms

This section presents a brief analysis of various compression algorithms’ most relevant
hardware implementations, describing their common properties, advantages, and disad-
vantages. The analysis summarizes a selection of scientific papers [42], 43| [44], [45] 46, 47,
48, 149, 0] 511, 52, (3] B4l B3 56, (7, B8, 59, 60, 61, 62), 63, 64, [65] 66], 67, 68, [69)].

2.4.1 Summary of Hardware Implementations

Articles published before the year of 2010 were mostly focused on a (re-)implementing
software-implemented compression algorithm in hardware (as an accelerator). Such hard-
ware implementations showed no significant speed improvements because no further (hard-
ware) optimizations were used. Therefore, the “better” speed was an effect of “slow com-
puters” against “hardware with no software overhead” used in that era. The majority
of such articles lack many important results and properties like resource utilization, fre-
quency, compression speed/throughput/latency, used FPGA chip, etc. Therefore, it was
impossible to do a thorough survey of such fragmented information.

o The majority of designs are based on the LZ77 algorithm [29] or derived algorithms
such as LZ78 [30], or LZW [31] implemented in FPGA. ASIC implementations are
rare.

o LZ78 and LZW implementations are significantly slower than LZ77 implementations
due to higher algorithm complexity.

o Only a few implementations are capable of reaching speeds above 2 Gbps.

o The latest designs experiment with new (LZ77-derived) algorithms focused on better
compression ratio (LZMA [47, 48] 49]) or speed (LZ4 [6l 67, 68, [69]).

o The compression speed is improved by massive pipelining or parallelization (systolic
arrays) [59] of the match searching mechanism [70].

14

2.5. Modern and “Fast” Software Compression Algorithms

o The majority of these FPGA implementations use embedded memory blocks (kilo-
bytes in size) rather than external memory [43] such as DRAM or SRAM.

o Compression dictionaries use three fundamental approaches: CAM (Content Ad-
dressed Memory) [71], hash table [72], and small (shift) register array for stream
operating implementations [44, 52, [67], where the dictionary stores just a few pro-
cessed data words.

However, several exceptions with throughput above 2 Gbps exist [44], 64] in 2014. The
respective throughput of the most advanced designs is still below the 10 Gbps requirement;
however, they are very close. Some new accelerators have appeared [65, 66] in the following
decade, thus confirming the supremacy of LZ77 and dictionary-based algorithms for high-
throughput designs. All of these implementations have some common properties:

o Highly optimized and pipelined design,

o Multiple compression engines (many-core principle) or highly parallel match search
algorithm,

o Emphasis on processing more than one bite per clock cycle,

o Throughput is measured “per device” usually, not per engine/core.

There is one additional conclusion: hardware implementations were not evolving fast
enough to keep track of technological progress in communications, such as introduction of
100 Gbps and faster networks.

2.5 Modern and “Fast” Software Compression Algorithms

On the other hand, the world of software-implemented compression algorithms has been
evolving significantly. Therefore, adapting some optimizations and concepts from the soft-
ware world may increase the overall performance of hardware implementations. Thus, it
is essential to analyze the latest trends used in modern compression algorithms and de-
termine which optimizations can be adapted to improve hardware compression algorithm
implementations’ performance. I selected two candidates of such algorithms for a detailed
examination.

2.5.1 LZ4

LZ4 compression algorithm [6] is one of the pioneers of fast algorithms. LZ4 is an LZ77 [29)
derivate, and it is intended for “real-time” compression. Such an example of LZ4 usage
is compression of Linux kernel [73]. Multiple experiments and measurements evaluating
LZ4 for the real-time image and lossless video compression have been described in [74]. In

15

2. BACKGROUND AND STATE-OF-THE-ART

this paper, the authors assessed the suitability of some “fast” compression algorithms for
real-time transmission of a 4K/UHD video stream.

It was demonstrated that LZ4 could be a way to improve the predecessor algorithms
like DEFLATE by replacing the LZ77 front-end with LZ4 to improve the compression
speed [75]. LZ4 can also be a high-performance alternative to ZLIB for scientific-data
compression [76]. The influence of some CPU specific optimizations is described in [77].

25.2 LZO

LZO performs slightly worse than LZ4 in (de)compression speed, but compression speed
is comparable to DEFLATE. An experiment [78] was conducted to prove the suitability of
LZO for lossless image compression. The performance of LZO can be further improved by
using a CPU specific optimization or running LZO with multiple threads [79).

2.5.3 Performance and Common Features

A representative example of a benchmark designed for testing and evaluating “fast” lossless
compression algorithms has been published in [8]. The results are shown in Tab. . The
alternative benchmark focused on all kinds of lossless compression algorithms can be found
on [80]. There are a few shared features among “fast” algorithms:

o They benefit from a massive use of a CPU specific optimization:

— data are processed in the width equal to the word width of the particular CPU,

— memory access is aligned.

o Dictionary is typically small to fit into CPU L1 cache.

2.6 The Research Question & Methods

There are two mutually exclusive approaches from which I had to choose: 1 can implement
a compression algorithm for every desired data type supported by the MVTP architec-
ture (and dealing with several drawbacks) or I can implement a single universal lossless
compression algorithm (because lossy universal compression algorithms seems not to be
feasible [81]).

The MVTP supports multiple data types (image, audio, text, and others) to comply
with SMPTE 291M [12]. However, this standard is being updated every few years to
support new data types and formats. Beside the SMPTE 291M, some other standards
have been introduced such as SMPTE 334M [82] or SMPTE 2108-2 [83]. Therefore, I have
decided an universal algorithm is a viable way to keep the MVTP architecture (forward)
compatible despite introduction of new SMPTE standards in the close future.

On the other hand, it is evident the existing (hardware) implementations of univer-
sal lossless compression algorithms were not feasible for the presented use case (MVTP).

16

2.6. The Research Question & Methods

The reason was the hardware implementations (and their overall performances) were not
evolving fast enough to match the progress of communication technologies. Therefore, is it
possible to invent some new optimization and principles to improve both throughput and
latency of such hardware implementations? Some feasible methods to reach this goal are:

o Determining lossless compression algorithms which have the potential to reach a
throughput higher than 10 Gbps,

o Adopting ideas from the software world, especially from “fast” algorithms,
o Identifying bottlenecks of current hardware implementations,

o Implementing suggested optimizations to evaluate their impact.

17

CHAPTER 3

LZ4 Introduction and Analysis from
a Hardware Designer Point of View

This chapter presents an initial survey of the L.Z4 algorithm as a representative of so-called
“fast” lossless compression algorithms. The LZ4 algorithm (and it’s reference software
implementation) was analyzed from a hardware designer’s point of view to identify a data
path, possible bottlenecks, and other (dis-)advantages. A simple hardware implementation
of the LZ4 algorithm was designed on Xilinx Virtex-6 and 7-Series FPGAs to verify the
analysis results and claims.

Main findings are:

o LZ4 is based on LZ77, therefore L.Z4 is also asymmetrical. This means we can focus
our effort on the compression phase only because the decompression is supposed
to be less complex (by definition) in term of decompression time or decompression
computational complexity.

o LZ4 (and LZ77 as well) requires the input data to be processed only once (a single
pass algorithm), therefore the minimal latency can be halved by definition compared
to two-pass (or multiple-pass) compression algorithms.

o I identified the used hash table design (implementing compression dictionary) has
a significant impact on throughput while clearing the hash table, and data buffers
negatively influence the overall latency.

o I estimated the used hash algorithm can be efficiently implemented in hardware.

The content of this chapter is based on the following paper (which has been cited 21 times):

Bartik, M. and Ubik, S. and Kubalik, P., “LZj Compression Algorithm on FPGA”,
215" IEEE International Conference on Electronics, Circuits, and Systems, ISBN 978-1-
4799-2451-6, pp. 179-182, Cairo, Egypt, 2015 [A.1].

19

LZ4 Compression Algorithm on FPGA

Matéj Bartik
CTU FIT & CESNET
matej.bartik @fit.cvut.cz

Abstract—This paper describes analysis and implementation of
a LZ4 compression algorithm. LZ4 is derived from a standard
LZ77 compression algorithm and is focused on the compres-
sion and decompression speed. The LZ4 lossless compression
algorithm was analyzed regarding its suitability for hardware
implementation. The first step of this research is based on
software implementation of LZ4 with regard to the future
hardware implementation. As a second step, a simple hardware
implementation of LZ4 is evaluated for bottlenecks in the original
LZ4 code. Xilinx Virtex—6 and 7-Series FPGAs are used to obtain
experimental results. These results are compared to the industry
competitor.

I. INTRODUCTION & MOTIVATION

Fast lossless compression algorithms become more impor-
tant than before, even though they do not reach compres-
sion ratios of their predecessors. The main usage of these
algorithms is in reducing bandwidth reqgirements, typically in
multimedia applications, where bandwidth of a multimedia
interface is slighly higher than of a transmission line. For
example [1], it allows transmition of 12G-SDI (4K60p uncom-
pressed video) over 10 Gbit Ethernet or Full HD video can
be fit into a standard metalic gigabit ethernet. The following
parameters are important for such a kind of an application:

o Universal compression for every data type (video, audio,
service informations),

o High throughput for video,

o Low-Latency for real-time interaction,

« Little overhead for uncompressible data,

o Compression ratio is the least important parameter.

There are two algorithms which satisfy these requirements.
The LZ4 compression algorithm, which is mentioned above
and the LZO [2]. The LZ4 better fits our requirements [3].
Our research is focused on the LZ4 compression algorithm.
LZ4 is based on LZ77 (Lempel — Ziv) [4] like other fast
compression algorithms, because LZ77 is one of the few one—
pass compression algorithm [5].

It has been shown that LZ77 can be used in an application,
where throughput up to 9.17 Gbps is required [6], [7]. The
authors also said, that their design can operate on higher
frequencies, when pipelining or loop unrolling will be used.
This will enable to reach 10G+ throughput.

However, this architecture is using extremely small search
and look—ahead buffers (only a few bits wide), that make
the architecture very inappropriate for a practically useful
compression application.

Sven Ubik
CESNET
ubik @cesnet.cz

Pavel Kubalik
CTU FIT
pavel.kubalik @fit.cvut.cz

A. Other Examples of LZ4 Usage

« Fast (de)compression of GNU/Linux kernel [8],

o A new use can be (de)compressing data between Solid—
State Drive (SSD) for increasing throughput. There is a
high probability, that SSD’s vendors are prefering high
throuhput/low latency algorithms based on LZ77.

o The LZ77 is also used for (de)compressing FPGA bit-
streams [9].

o And also for the IP packet compression [10].

II. TEORETICAL BACKGROUND OF THE LZ4

It the following sections we describe main features of the
LZ4 lossless compression algorithm [11], [12] when compared
to the LZ77. The biggest advantages of the LZ4 are a hash
based match search and the support of match overlaping.

A. LZ4 Lossless (De)compression Algorithm

LZ4 itself is not an algorithm in the original meaning. LZ4
only defines an output data format (like LZ77 [13]). This
allows to create various derivates of compression methods
(with different speeds and compression ratios) and also allows
to decompress the LZ4 file format by a single tool, no matter
what compression algorithm was used.

However, the author of LZ4 created a reference code in the
C programming language and this code has been ported to
many other programming languages. The LZ4 code contain
various optimizations for different processor architectures to
achieve maximum performance.

LZ4 as well as LZ77 is an asymmetric compression method,
where decompression is much simplier (and faster) than com-
pression. The decompression process is very similar to LZ77.
It is based on copying literals from the decoded part.

B. Pseudocode of LZ4

A very simplified reference code expect the following
parameters (byte oriented):

o 1 : An input data buffer

e O : An output data buffer
o Isize : Size of input buffer

// address to I
// address to O
// Zeroed

pointer ip = O0;
pointer op = 0;
hash_table HT;

while (ip < Isize-5) {
h_adr = read U32 xip, calculate hash;
read possible match address HT (h_adr);
store current address HT (h_adr)=ip;
if (match found) ||
(distance < offset_limit)
else {
if (ip > Isize-12)

!
! ip++;

break;

// writing to O buffer
encode Token;

encode Literals length;
copy literals;

encode Offset;

encode Match length;

increase input and output pointers;

}

encode last literals;

return output pointer (data size);

ITII. LZ4 ANALYSIS FROM THE HARDWARE DESIGNER
VIEW

In this section we discuss difficulties and advantages when
implementing LZ4 compression algorithm in FPGA. The LZ4
implementation on the standard processor architecture benefits
from high frequencies of CPU (Central Processing Unit) or
RAM (Random Access Memory), instruction and data caches
and software based optimization (software pipelining, loop un-
rolling, usage of compiler/processor specific instructions) [14].
For this evaluation, revision r127 is used for analysis.

A. Hash Table and Hashing Algorithm

The first improvement of LZ4 againts LZ77 is the use of a
hash table for storing reference addresses. LZ77 uses a search-
ing algorithm for match detection with linear complexity. Due
to performance reasons, LZ4 uses the least complex method
for storing addresses, overwriting the previous address in the
hash table. The hash table size is designed to fit the L1 Data
Cache in the standard processor architecture.

One of possible further improvements is to implement the
hash table as a regular cache with the limited degree of
associativity extended with the LRU (Least Recently Used)
algorithm. This may improve the compression ratio without
significant performance loss.

The hash calculation algorithm is based on the Fibonacci
hashing principle [15]. Read value is multiplacated with a
constant 2654435761. This number is the closest Prime to
22 _ 2654435769, where ¢ is the value of the Golden ratio.
This 32-bit constant can be easily multiplicated by four DSP48
slices (and three only after place & route phase) available since

Xilinx Virtex—5 chip generation in 6 clock periods. Generated
IP core is pipelined. The result of multiplication is trimmed
to the highest bits used for hash table address.

The biggest weakness of the LZ4 hashing mechanism is
zeroing of the hash table. A larger RAM implemented by the
on-chip BlockRAM or a distributed RAM does not have a
feature for clearing the entire RAM content by reset. For the
first run, we can benefit from the bitstream loading process,
because the RAM content is part of the bitstream. For next
runs it is necessary to clear the RAM content, for example by
linear passage and clearing memory cell, one by one.

B. Match Search and Memory Access for Reference Addresses

The process of match search starts from reading a reference
address (read from hash table). A 32-bit data are read from
the reference address and from the input pointer address and
then, these values are compared. When the difference between
these two addresses is less than offset limit, a match is found.
Otherwise, the input pointer is increased by one.

However, buffers are byte oriented and LZ4 also sup-
ports 64-bit computing. The memory subsystem of the LZ4
algorithm should support 8-bit, 32-bit and 64-bit (optional
for maximum memory performance) access. This will result
into a complex memory subsystem. Alternatively the memory
subsystem can be 8-bit only and support of the two remaining
modes can be solves by reading portions of 8-bit values. This
also solves problems with unaligned memory access (caused
by increment of input pointer by a one).

The biggest disadvantage of a simple 8-bit memory sub-
system is a massive loss of performance. There is also no
mechanism, that prevents match searching from reference
addresses, that are equal to zeroes. Zeroed address means no
write to a hash table cell and may be skipped.

C. LZ4 Sequence Encoding

The encoding of an LZ4 sequence requires linear passage
through the input buffer byte after byte. However, the literals
can be copied in up to 64-bit data blocks between the input
and output buffer. There are same problems as we discussed
in the previous section.

D. Size of Input and Output Buffers

The LZ4 algorithm adds only a tiny overhead for the
uncompressible data. It is necessary to generate one block
with all literals and with literal match. That is not a problem to
allocate the output buffer slightly bigger (necessary size can be
calculated with the formula o04;,c = 7gi2¢ + ’25% +16) than the
input one. For example the 16kB input buffer will require 273
byte long overhead (0.4% relative). But the FPGA has hard
RAM blocks (BlockRAM) with the limited sizes and limited
bus widths. The most important thing is that all BlockRAMs

have the same size. There are same several ways to solve this:

o The input and the output buffer will have the same size
and pretend that the problem does not exist (buffers are
bigger than limits).

o Limit the size of input buffer.

e Combine BlockRAM and Distributed RAM to provide
additional space with significant complexity increase of
the address decoder.

E. Other Sources of Inefficiency

A standard computer architecture works with memories in a
simple way with one read/write in one clock cycle. However,
FPGA’s BlockRAM has the possibility of using a Dual-Port
BlockRAM to increase memory throughput by reducing the
time to read longer data, for example. That means further
analysis of the LZ4 reference code to create an optimized
code for the Dual-Port BlockRAM and its memory controller.

IV. IMPLEMENTATION OF LZ4 COMPRESSION ALGORITHM

A. Principles of Implementation Platform

CESNETs MVTP—-4K (Modular Video Transmission Plat-
form — 4K) is an FPGA based system, that provides up to 8
input—output pairs of SDI (Serial Digital Interface) interfaces
for transmitting 4K video content with audio. MVTP systems
are communicating over optical version of 10G Ethernet.
Uncompressed 4K transmission takes approximately 5 Gbps
and a Full HD channel takes approximately 1.1 Gbps. The
4K video content is split into four quadrants and transmitted
over four HD-SDI interface separately with synchronization.
Each quadrant frame consist lines with video, audio and
service data. The lengths of a line in each quadrant is less
than the maximum size of an Ethernet jumbo frame payload,
so one packet is created from each SDI line. This way of
transmission allows for easy compensation of lost lines by
duplicating the previous line. This property can be maintained
with line-by-line compression. On the contrary, with inter-
frame compression, the multimedia stream may disintegrate
to the next synchronization frame. Next reason for lossless
compression is to allow raw multimedia stream distribution
between servers without loss of quality.

B. Assumptions for Implementation

o SDI signal is transmitted line by line. The length of one
SDI line is slightly less than the maximum size of an IP
packet payload in a jumbo Ethernet frame.

o We are looking for a block compression for IP packets,
that is up to 9216 bytes. The closest power of 2 greater
then this limit is 16kB. Therefore the size of input and
output buffer will be 16kB.

o We reduce the hash table size from 4096 records (16 kB)
to 1024 records (N = 10) and we reduce the size of buffer
pointers (from 32-bit to 13-bit).

e The current system for video transmission is based on
Xilinx Virtex-6 (XC6VLX240T-2FF1156), therefore de-
sign will be optimized for Virtex—6, but it can be easily
transfered to Xilinx 7-Series FPGAs chips.

C. Implementation and Results

First, we created a simple design without any advanced
features. The design is written and tested in VHDL language.
The goal was to evaluate how LZ4 code exactly works and

to provide information about bottlenecks. The LZ4 code was
divided into a datapath and its control. The control is realized
as a Moore finite state machine, that represents lines of
the original C code. The FPGA resource utilization includes
buffering all input and output signals. The current resource
utilization for multiple Xilinx FPGAs are in Table I.

The required frequency of MVTP system is 156.25 MHz, so
the compression core meets requirements of the MVTP. We
didn’t measure the precise throughput/latency of the imple-
mented LZ4 core yet, because it was designed for evaluation
only (based on the reference LZ4 source code).

The implemented datapath (Fig. 1) contains all important
blocks, but finite state machine used for control is very
complex and slow. The datapath design is also reduced to
support only 8-bit operations, therefore operations with wider
operands has to be split. Even when the design was simplified,
it was sufficient for evaluation and critical parts of LZ4 com-
pression algorithm for hardware implementation were found.
The critical path is a memory controller, where the address
bus is created from cascaded multiplexers (multiple pointers
to the input memory are required by the LZ4 algorithm) and
combined with an adder (for offset support) in the last stage.

D. Comparison with Competitor

The Helion LZRW3 core [16] has been selected for a very
simple comparison. Both algorithms (LZRW and LZ4) are
derived from the LZ77. The Helion LZRW core is a highly
optimized state of the art industry solution. But the current
version of LZ4 (even unoptimized) is comparable to the LZRW
core in resource utilization (usually slightly more LUTs are
taken because of two additional bits in memory subsystem
and we are using three DSP48 blocks). Even that, Virtex—6
implementation take less resources.

The maximum frequency of the LZ4 core is quite higher
(with same speed grades and synthesis technology, with
exception of Artix—7 might be caused by limited routing
capabilities in low—cost FPGAs) then LZRW and there is still
a huge space for optimizations (software based pipelining of
the reference source code caused duplication of all memory
pointer registers).

TABLE 1
COMPARISON WITH HELION LZRW3 CORE [17]

Virtex—6 (XC6VLX75T-2FF784) Resource Utilization
Solution | Slices | LUTs | FFs | BRAMs' | DSP48s | Frequency
LZz4 216 729 404 16 + 12 3 224 MHz
Helion 225 770 N/A 4 0 198 MHz

Kintex-7 (XC7K70T-2FBG676) Resource Utilization
Solution | Slices | LUTs | FFs | BRAMs' | DSP48s | Frequency
LZz4 266 891 441 16 + 12 3 241 MHz
Helion 227 789 N/A 4 0 210 MHz

Artix-7 (XC7A100T-2FGG676) Resource Utilization
Solution | Slices | LUTs | FFs | BRAMs' | DSP48s | Frequency
LZ4 243 764 375 16 + 12 3 146 MHz
Helion 226 789 N/A 4 0 148 MHz

Note 1: LZ4 is using two 16 kB buffers for I/O, Helion is using 2 kB size.
Note 2: One BRAM is dedicated for the hash table for LZ4 design.

=

—_ Mateh Found
e >

* ™S
P - ~ HASH
L= 7 > o
1—} Engine 4} ?:S:
.
ForwardIP = (DSP48)
HASH Input
1P Match
2
i Input Adress Register File Output Adress
8 ‘ P ‘ ‘ Anchor ‘ Register File
3 \ 4
adiin El [Fowardip || Literallen | oP > adr_out
data_in INPUT | iadr OFFSET = OUTPUT data_ou
MEMORY | € ADD/SUB g [Tempp || ten | [Tempor = "
ke
we_in S
g ‘ Match H MatchLen ‘ ‘ Token 4—.}
1 A = - _A
= InputSize 3 ForwardMatch Step Offset 5
£ H
5
+ IEnd °
5 size_out
& N\ >
» MatchLimit 5
s
,Constants" Ey
d
st > Control (Moore FSM) for load/store, offset, register select and enabling counters/ALUs. one
Fig. 1. Architecture of the LZ4 Lossless Compression Algorithm Design.

The LZRW core was synthesized with 25% buffers size,
so we can be expected 20% deterioration of all results, as
mentioned in the documentation of the LZRW core. Parameter
comparison is summarized in Table L.

V. FUTURE WORK

We plan to improve the LZ4 lossless compression algorithm
speed in hardware. Possible improvements may be pipelining
or an advanced memory subsystem. The impact of these
improvements will be measured. We expect a significant
improvement by porting 64-bit CPU specific optimizations
into an FPGA. This should exceed a theoretical (throughput)
limit of current hardware implementations. This limit can
be calculated by multiplying a frequency (200 MHz) and
an operand-width (8-bits), that results into 1.6 Gbps peak
performance [18] per compression core. We also plan to create
and compare HLS (High Level Synthesis) version of the LZ4
reference C source code.

VI. CONCLUSION

We have implemented The LZ4 lossless compression al-
gorithm on FPGA in VHDL (and compared to the industry
solution) from a reference C code (r127). Limitations and bot-
tlenecks hashing table zeroing, software pipelining overhead,
differences between architectures, etc.) of the LZ4 lossless
compression algorithm have been found during the process
of analysis and implementation.

ACKNOWLEDGMENT

This research has been partially supported by the project
SGS15/020/0HK3/1T/18.

REFERENCES

[1] Hafi, L. "Mapping SDI with a Light-Weight Compression for High Frame
Rates and Ultra-HD 4K Transport over SMPTE 2022-5/6" [Online].
Available: tinyurl.com/o31xgcl

[2] Oberhumer, M.:LZO real-time data compression library [Online]. Avail-
able: http://www.oberhumer.com/opensource/lzo/

[3] Ruan Delgado Gomes, Yuri Gonzaga Gonalves da Costa, Lucenildo Lins
Aquino Jnior, Manoel Gomes da Silva Neto, Alexandre Nbrega Duarte,
and Guido Lemos de Souza Filho. 2013. A solution for transmitting
and displaying UHD 3D raw videos using lossless compression. In
Proceedings of the 19th Brazilian symposium on Multimedia and the
web (WebMedia *13). ACM, New York, NY, USA, 173-176.

[4] Rigler, S.; Bishop, W.; Kennings, A., "FPGA-Based Lossless Data Com-
pression using Huffman and LZ77 Algorithms,” Electrical and Computer
Engineering, 2007. CCECE 2007. Canadian Conference on , vol., no.,
pp.1235,1238, 22-26 April 2007

[5]1 J. Ziv and A. Lempel, A Universal Algorithm for Sequential Data
Compression, IEEE Transactions on Information Theory, vol. 23, no. 3,
pp. 337343, 1977.

[6] Mehboob, R.; Khan, S.A.; Ahmed, Z.; Jamal, H.; Shahbaz, M., "Multigig
lossless data compression device,” Consumer Electronics, IEEE Transac-
tions on , vol.56, no.3, pp.1927,1932, Aug. 2010

[7]1 El Ghany, M.A.A.; Salama, A.E.; Khalil, A.H., "Design and Implementa-
tion of FPGA-based Systolic Array for LZ Data Compression,” Circuits
and Systems, 2007. ISCAS 2007. IEEE International Symposium on ,
vol., no., pp.3691,3695, 27-30 May 2007

[8] Lee, K. ”"LZ4 Compression and Improving Boot Time” [Online]. Avail-
able: tinyurl.com/q3p4v2l

[9] Khu, A.: Xilinx FPGA Configuration Data Compression and Decompres-
sion. [Online]. Available: tinyurl.com/nhhgqgbj

[10] Munteanu, D.; Williamson, C.; An FPGA-based Network
Processor for IP Packet Compression. [Online]. Available:
http://pages.cpsc.ucalgary.ca/ carey/papers/2005/FPGA.pdf

[11] Collet, Y.: RealTime Data Compression: Development blog on compres-
sion algorithms. [Online]. Available: tinyurl.com/qc9yve4

[12] Fiedler, O.: LZ-Family Data Compression Methods, Bachelor Thesis,
2014. [Online]. Available: http://tinyurl.com/opmdSsc

13] Solomon, D.: Data Compression: The Complete Reference (Fourth ed.).
20007, Springer. ISBN 9781846286032.

[14] Kane, J.; Yang Q., “Compression Speed Enhancements to LZO for
Multi-core Systems,” Computer Architecture and High Performance Com-
puting (SBAC-PAD), 2012 IEEE 24th International Symposium on , vol.,
no., pp.108,115, 24-26 Oct. 2012

[15] Knuth, D. E.: The Art of Computer Programming, Volume 3: (2Nd
Ed.) Sorting and Searching. Redwood City, CA, USA: Addison Wesley
Longman Publishing Co., Inc., 1998, ISBN 0-201-89685-0.

[16] Helion Technology Limited, LZRW Compression cores. [Online]. Avail-
able: http://www.heliontech.com/comp_lzrw.htm

[17] Xilinx Inc., LZRW1 & LZRW3 Lossless Data Compression (Helion)
[Online]. Available: tinyurl.com/ngmtx25

[18] Naqvi, S.; Naqvi, R.; Riaz, R; Siddiqui, F. Optimized RTL design
and implementation of LZW algorithm for high bandwidth applications
[Online]. Available: http://pe.org.pl/articles/2011/4/68.pdf

CHAPTER 4

Highly Parallel Match Search Unit
Architecture

This chapter further explores the hash table architecture (which is widely used for imple-
menting a compression dictionary) and possible optimizations towards increased parallel-
ism. The parallelism factor of the presented architecture is eight, which allows increasing
throughput (up to 16 Gbps) and decreasing latency to the bare minimum (to just 6 clock
cycles) at the same time. The presented architecture uses a shared dictionary, and it is
suitable for any hardware-implemented LZ77 based compression engine.

The parallelization principle builds on the fact the reference L.Z4 software implement-
ation reads a 4-byte wide word from the byte oriented input buffer to calculate the hash
table address (eg. address in compression dictionary) to find a match. If no match is found
(via readback to the input buffer), the read address to the input buffer is incremented by
one and the process repeats (see Fig. 1).

Therefore, the next word can be constructed as 3-bytes from the previous word plus
a new byte read from the input buffer. Consequently, it is possible to construct multiple
(overlapping) words at the same time by utilizing a wider memory read (16 bytes in this
case instead of 4 byte originally). In the presented case, the total of eight words are read
in a single memory transaction (see Fig. 2). The related hash calculation can be performed
independently for each word. Thanks to the 8-way parallel compression dictionary, the
hash addresses can be written in a single clock cycle.

Finally, I introduced a memory-optimized data flow (see Fig. 3), which allows the Match
Search Unit to completely avoid stalls in the data processing. The fundamental principle is
to store a combined entry of data and data’s original address instead of the original address
only, as it was introduced in the reference L.Z4 software implementation. The reference
software implementation requires a readback to the input buffer (this would cause stalls
in hardware) to determine a match candidate is a true match or just a hash collision.
Therefore, it is possible to determine a hash collision immediately in hardware without
causing any stalls for all eight compression dictionary addresses (see Fig. 4).

25

4. HicHLY PARALLEL MATCH SEARCH UNIT ARCHITECTURE

The content of this chapter is based on the following paper (which has been cited 2 times):
Benes T. and Bartik, M. and Kubalik, P., “Design of a High-Throughput Match
Search Unit for Lossless Compression Algorithms”, The 9% IEEE Annual Computing and
Communication Workshop and Conference (CCWC), ISBN 978-1-7281-0554-3, pp. 732-
738, Las Vegas, USA, 2019 [A.4].

Contributions of Tomas Benes are the implementation, simulation flow, and obtained ex-
perimental results.

26

Design of a High-Throughput Match Search Unit
for Lossless Compression Algorithms

Matéj Bartik
DDD & Department 706
CTU FIT & CESNET a.le.
Prague, Czech republic
matej.bartik @fit.cvut.cz

Abstract—This paper presents an attempt to combine re-
cent research in fields of hardware- and software-based high-
throughput universal lossless compression algorithms and their
implementations, resulting into a case study focusing on one of
the most critical parts of compression algorithms — a Match
Search Unit (MSU) and its parallelization. The presented FPGA
design combines ideas of the LZ4 algorithm (which is derived
from the most common LZ77) with the state of the art hard-
ware architectures for lossless compression also based on LZ77.
This approach might lead to a smaller, better organized or
more efficient ’building block” for modern implementations of
hardware driven lossless compression algorithms. The presented
design focuses on optimization of the main problem of the LZ77
family, namely the construction of and searching in a compression
dictionary. Particularly, we combine a Live Value Table (LVT)
with multi-ported memory in order to improve the bandwidth
of the dictionary and the Fibonacci hashing principle originating
from LZ4 algorithm to decrease latency of the MSU and to
achieve overall higher throughput rate. For the design synthesis
an FPGA of the Xilinx Virtex-7 family was used.

Index Terms—FPGA, high, bandwidth, fast, lossless, com-
pression, algorithm, architecture, LZ4, L.Z77, hash, table, LVT,
multiport, memory, Xilinx, Virtex

I. INTRODUCTION

In recent decades throughput of lossless compression sys-
tems has increased by an order of magnitude [1]. Further
progress requires new and more complex architectures. To
increase performance and decrease consumption of FPGA
logic resources opens the possibility of accelerators with
higher density and frequency on a single chip.

There are many applications of compression algorithms. The
architectures used in those applications are influenced by the
required

« throughput,

o latency and latency guaranties,

e compression ratio,

e assumed corpus, and

« implementation environment with its resources metrics.
All these requirements can be present as hard constraints,
or optimization goals. Consequently, actual implementations
targeted at different requirements are hard if not impossible to
compare.

978-1-7281-0554-3/19/$31.0002019 IEEE

Tomas Benes
DDD
CTU FIT
Prague, Czech republic
benesto3 @fit.cvut.cz

Pavel Kubalik
DDD
CTU FIT
Prague, Czech republic
pavel.kubalik @fit.cvut.cz

Unlike previous efforts, our target is lossless compression
as a way to increase network throughput, without any specific
traffic in mind. Existing architectures [3]-[6] aim mainly
for throughput in different contexts. In our case, the current
emphasis on low network latency [2] puts strict limitations
on compression latency, which differs our architecture from
others.

Network traffic is inversely proportional to compression
ratio without any overhead taken into account. Therefore,
compression ratio is rarely a hard requirement.

Originally, compression algorithms were designed to com-
press human-readable text. This is, for a long time, not the
only case. For network traffic, the actual mix of text, binary
files, video etc. is unknown. The Silesia Corpus [30] seems to
the closest to the assumed traffic.

The rest of the paper is structured as follows. In Section
II we summarize relevant previous works and we analyze
key features of lossless compression algorithms, their software
implementations and current FPGA architectures, which may
have influence on compression performance. In Section III we
propose an optimized FPGA design of a Match Search Unit.
Performance measurements of this design are presented in
Section IV. Finally, we propose further possible improvements
in Section V.

II. STATE OF THE ART & ANALYSIS

The era of an universal lossless compression had begun in
1977 with the introduction of the first Lempel-Ziv algorithm
known as the LZ77 [7]. Principally, the algorithm tries to
match a current sequence with sequences in the past text kept
in a sliding window. When a match is found, it is encoded in a
standardized format. All LZ77 variants process data by blocks,
so that compression of different blocks is independent. The
abstract atomic parts of blocks, called literals in the standards,
are normally bytes. A simple non-parallel architecture [15]
served as the starting point of the analysis.

Several architectures of an LZ77-based compression scheme
in FPGA have been recently presented [3]-[6] and focus
on real-time lossless compression of IP (Internet Protocol)
packets at 10-40 Gbps throughput.

Match search and encoding are two nearly independent
parts of an algorithm of the LZ77 family. As they both

influence compression parameters, they offer opportunities to
tune the algorithm to requirements. For example, the popular
DEFLATE algorithm [9] combines LZ77 match search with
Huffman Encoding [8]. Variants which aim at high com-
pression and especially decompression speed, are LZO [10],
[13] or LZ4 [11], [14]. Their encoding is adapted to efficient
processing in software, at the cost of encoded sequence length.

LZ4 was chosen as a candidate for our design following a
full analysis of LZ4 [14] from a hardware designer’s perspec-
tive. The advantageous characteristics of LZ4 include the high-
est (de-)compression speed among other lossless algorithms,
low latency, resource efficiency and easy implementation in
an FPGA.

The specification of LZ4 deals mainly with the output
format, which all decompressors must understand. It explicitly
states that it is independent of match search algorithms [11].
Some searches require the entire blocks to be present and
parsed, and perform iterative passes through the compressed
sequences. Such searches are typical for the High Compression
(LZ4-HC) category.

It is possible to search for matches in a single pass, with
much less effort but lower compression ratio (for an informal
explanation, see [12]). This is the Fast Compression (LZ4-FC)
category. This category is interesting for hardware low-latency
implementations because encoding latency can be lower and
constant.

Single-pass match searches usually keeps sequences of
given minimum length in a table, usually called the dictionary.
In the case of LZ4, the minimum length is, due to the output
format, 4 bytes. When a match is longer than the minimum
length, the algorithm just accumulates the match length during
input scan and outputs it at the end of the match.

In hardware, the two parts of the algorithm are implemented
as Match Search Unit (MSU) and Encoding Unit (EU). MSU
is usually the most complex part of compression device with
highest impact on its speed. Therefore, we focus entirely on
this unit in the paper.

A. Match Search Unit Architecture and Performance

The data flow of an LZ4 MSU based on hashed dictionary
is in Fig. 1, also implemented in [15]. We see that the critical
path goes through all blocks. It includes two reads from the
input buffer, hash computation, a read and a write from the
hash table, and a data comparison. The data flow therefore
offers no opportunity for parallelization at the level of a single
MSU.

Some authors (e.g., [4] but also [15]) parallelize compres-
sion at the block level. This architecture can accommodate
multi-pass searches. Assuming n copies and block-level par-
allelism, however, we obtain latency of n block transfer times.
Therefore, block-level parallelism is not ideal for low-latency
applications.

We employed parallelism at the MSU level and single-pass
match search. We let multiple MSUs to search for matches on
data that are consecutively offset by 1 byte, and then let the
encoding unit to compose final matches from partial results.

In such an architecture, the MSUs are independent with the
exception of two points. First, the MSUs must be supplied
by input data from the input buffer. Then, the table should
be shared, because any MSU should find a sequence met by
another MSU. The parallel access to the shared dictionary
introduces possible conflicts between writes, which need to
be resolved by implementing priority access.

B. Hash Table

For a single-pass compression algorithm, the theoretical
table size is the algorithm’s window size, with each item
holding a sequence of the minimum length. Such a table would
be implemented e.g. as a CAM. Then, each match present in
the input sequence would be detected and the algorithm would
achieve its best compression ratio.

Such a table is rarely practical. Most designs, e.g., [3], [4],
[14], [15] try to avoid CAMs for cost and area reasons. A fast
search scheme is required, which is solved using a hashing
function. Hashing function leading to non-optimal use of the
table space. Smaller or non-optimally used table causes loss
of matches and worse compression ratio. Therefore, we can
identify two sources of compression ratio loss in the case of
hashed table implementation, for a particular algorithm:

1) the table size used, and

2) the hash function employed, i.e. more collisions than

necessary in a table of the given size.

Their effect is hard to separate, which makes it difficult to learn
from other sources. Therefore, we performed experiments with
software model described in Section IV. We evaluated the
algorithm actually employed, with actual hashing function on
three corpuses (Calgary [28], Canterbury [29], Silesia [30]).
From Tab. I we see that in order to improve the compression
ratio by a constant factor, the table size has to grow almost
exponentially. In the end, we choose the size of 256 (marked
with an asterisk) as a compromise with respect to the intended
application.

TABLE 1
COMPRESSION RATIOS FOR DIFFERENT HT S1ZES
HT Size | Calgary | Canterbury | Silesia

64 1.28 1.40 1.24
128 1.34 1.46 1.28
*256 1.38 1.5 1.31
512 1.39 1.57 1.32
1024 1.47 1.68 1.4
2048 1.54 1.75 1.48
4096 1.61 1.81 1.56

Non-optimal table usage caused by hash function can be
overcome by rehashing, which is common in software im-
plementation. It can be used in hardware designs [15] as
well. However, its latency is larger and, more importantly,
not uniform. Therefore, rehashing is not used in low-latency
and high-throughput compression designs. The penalty on
compression ratio is usually acceptable.

As we cannot assume any particular composition of the
input data, we have to use a universal hash function. From

l Reading 4B Data

P_DATA := IB(CM)
(Previous Data with same HT Address)

Read Data
from 1B

Repeat Until The End Match?

IBA++
(One Byte Shift)

False

IF (P_DATA == DATA
& Within Offset Limit)

Input Buffer from Input Buffer
Address (IBA)
E DATA := IB[IBA]
(St ——————— 4 Bytes
q= = Read Data)
- from 1B
(e . ;
s Reading 4B Old (Candidate) Data
ISR Input Buffer from Input Buffer from Address [CM]
> % Address (CM)
Q.
C

Calculating HASH from
Data to get HT Address

HTA := HASH(DATA)
(Hash Table Address)

Read Old

IBA Pointer
Candidate Match (CM) := HT[HTA]

HT[HTA] := IBA

Read Match Candidate Data
Address and Write The New One

Hash Table
(Memory Pointer Oriented)

Write New
IBA Pointer

True Match Found!
|
(Copy & Encode)

Fig. 1. Data flow of the original LZ4 MSU [14], [15].

the known functions, multiplicative hashes [16] have the
simplest hardware implementation, especially when the table
size is a power of two. Fibonacci hashing [16] uses simple
multiplication with a constant, which is the closest possible
prime number to the golden ratio.

As discussed in Section III-C, the hash table should be
shared between all MSUs working in parallel. Their access
to the table has no regular pattern, so that the table must
be multiported. Concurrent writes to a single item cannot
be avoided. Luckily, the MSUs are naturally ordered by
the ordering of data they process. Hence, the MSU having
the earliest match has the best priority, without any loss of
compression quality.

C. Multiport Memory in FPGAs

As discussed above, multiport memory is essential for
implementation of a shared dictionary. The Live Value Table
(LVT) [18] is the most common approach for creating a
multiport memory from an ordinary single port (or dual port)
memory blocks, such as Xilinx BRAM or Altera M9K blocks.

There is also an alternative approach using an XOR tech-
nique [26], [27] for accessing the latest value. The main advan-
tage of this method is reducing the number of logic elements
and increasing speed for low-depth memories. However, for
larger memories, this method results in lower design frequency
and thus is not well-suited for high throughput designs.

Before the introduction of the LVT, multiport memory
was implemented usually from registers and general re-
configurable logic. There are no hard limits in capacity and
the number of ports. However, it does not scale well. The area
and clock period grow rapidly especially with the number of
ports.

The idea of the LVT is to divide such a memory design
using general re-configurable logic into two parts:

1) Data memory using single or dual port embedded FPGA
memory blocks (BRAMs) where the number of read-
/write ports can be increased by replication, banking and
multipumping [18].

2) Control memory (created from general logic) keeps for
each written address the information in which part of

the data memory is the latest value stored. With each
read operation, this information is used to set output
multiplexers to the location of the latest value written
for the given address.

III. OUR APPROACH

We used the architecture with independent MSUs and shared
dictionary to build a low-latency high-throughput compression
core in an FPGA. It is intended to cooperate with common
10G Ethernet IP cores that use a 64-bit data path clocked
at 156.25 MHz [19]. The selected platform was a member of
the Xilinx 7-Series family, however, the described architecture
can be easily implemented in any modern FPGA. The selected
block size is 9 kB, required by the application.

With 8-bit literals and 64 bit datapath width, we need
8 MSUs in the design. As discussed in Section III-A, the
input buffer is a 16 kB dual port memory with a 64-bit write
port (from the Ethernet core) and a 128 bit read port (to the
MSUs). The shared dictionary is a LVT-based memory of 256
items, with 8 read ports and 8 write ports. Each item contains
an input buffer pointer (up to 16 bits) and a 4-byte sequence
(Section III-C). The control memory of the LVT scheme is
also used for validity flags [14], so that the dictionary needs
not to be cleared between input data blocks (Section III-B).

The optimized MSU follows the data flow in Fig. 1. One
read access to the input buffer is saved as the data are read
from the dictionary (Section III-C). Hashing is performed in
DSP blocks. The optimized data path and latencies are in
Fig. 4.

A. Input Buffer (IB)

For each 4-byte block of memory that is tested for a match,
we need to perform two reads from the input buffer. One read
provides the data to search in the dictionary, the other read
verifies that the data at the pointer found in the dictionary
agree and that a hash collision did not take place.

Usually, the data width of one read operation would be 256
bits for 8 MSUs, where each is capable of processing 32 bits.
In our case, however, the actual data flow is much smaller
— 88 bits, because of the data overlap (see Figure 2). There
are eight 4-byte sequences with 1-byte overlap. The nearest

suitable port size of a double-port memory is 128 bit. Only one
Input Buffer Address (IBA) for reading is required, however,
the memory must be able to read at 64 bit boundaries.

B. Hash Table (HT)

The major issue is the parallel access to the HT (Hash
Table) representing a dictionary in this particular case and
the following access operations to IB (readback of candidate
match positions). Data are stored in the HT at nearly random
positions — they are no longer consecutive as the data before
the hashing phase. Therefore all read/write operations in HT
are accessing random addresses.

We decided to implement a shared dictionary (unlike
842B [4] technique or any multibank-based principle), where
all MSUs have access to a single dictionary that behaves as
a single memory. Without such a dictionary, the compression
ratio would be significantly worse, because matching would
occur only between blocks processed by the same /BA pointer.
This decision requires to implement a multiport memory using
the LVT [18] technique.

The MSU calculates Hash Table Address (HTA) from data
at IBA, reads the old IBA at the address and stores a new
one in its place. The FPGA embedded block memory can
perform both operations as a single transaction in a single
clock cycle. The data at the old /BA must be verified, because
a hash collision can occur and a false match can result. This
doubles the number of reads from the input buffer.

Our idea is to reduce the number of IBA accesses by
merging the processed data and the /BA pointer into a single
record inside the Hash Table (see Fig. 3). This approach
removes the need for the following read accesses from IB.
The HT thus becomes the only component where the number
of ports scales with the number of MSUs. The resulting
architecture is simplified because only one LVT based memory
is required.

1) Hash Calculation & Pipelining: The last important part
required for the MSU architecture is the hash calculation
block. Fibonacci hashing is used, the input value is multiplied
by a constant and higher bits are selected to create the Hash
Table Address (HTA) [14].

The Xilinx DSP48 block can be used for the hash cal-
culation. The optimal settings (recommended by the Xilinx
CoreGen tool) for multiplication of two 32-bit numbers are:
four DSP48 blocks and the calculation requires six clock
cycles (estimation made the CoreGen) thus the block will be
able to operate at approximately 700 MHz in case of a Virtex-
7 chip [20]. Pipelining is required to mask the computation
latency and to maximize the throughput. We can also use
higher frequency for the DSP48 blocks than for the rest of
the design, thus reducing the length of the hash calculation
pipeline for to 3 or 2 cycles.

C. MSU Optimized Architecture

The FPGA design expects 8 pairs of /BA pointers and the
related data (32-bit long sequences), both provided by the IB.
These pairs are pipelined along a hash calculation block, where

8 HTAs are calculated. The length of the pipeline must be the
same as the latency of the hash calculation blocks which are
clocked at a higher frequency to decrease the latency. These
pairs will be read and written to the locations specified by
HTAs in the HT with the latency of one clock cycle. Each pair
is also pipelined along the HT representing the compression
algorithm dictionary.

The previous data (P_DATA) are extracted from a candidate
match (CM) pair, which is read from the HT. If the previous
data are equal to the current data which is read from the
pipeline, a match occurs. Both previous and current IBAs will
become a match. The last step is to resolve possible multiple
matches in a single clock to a single match via multiplexers
controlled by a priority encoder (the lower the value of IBA,
the higher the priority).

IV. RESULTS

In this section we discuss measurement setup, resources
usage of our architecture, analysis of achievable compress
ration and latency influence.

A. Measurement Setup & Synthesis Results

The Xilinx ISE 14.7 toolkit was used to synthesize the
presented architecture for the Xilinx Virtex-7 XC7V330T-
2FFG1157 chip. For the synthesis, the optimizations were
adjusted to Speed/High. The FPGA resource utilization for the
routed design is summarized in Table II. We used the random
FPGA pin placement feature available in the Xilinx ISE toolkit
to get a fully routed design. Thus, we were able to measure
the design speed in a more realistic way than with a partially
routed design.

TABLE II
LZ4 MSU RESOURCES UTILIZATION FOR VIRTEX-7 XC7V330T
Slice | LUT | Flip Flop | BRAM | DSP48 | Frequency
4828 | 15014 8530 64 32 250 MHz

B. Resource Usage Comparison

We know that the Xilinx 7-Series logic SLICE block con-
tains four LUT6 (6-input Look Up Table) blocks plus eight
flip-flops [21]. We also know that the Altera Stratix V ALM
contains two LUT6 and 4 flip-flops [23], thus a single Xilinx
Slice can be considered equal to two Altera ALMs.

This simplification allows us to compare our architecture
to the previous work [3]. The PWS=8 w/ HT (Parallelization
Window Size) variant can process 8 bytes per a clock cycle,
therefore we have selected this variant for a brief comparison
(see Tab. III). Our architecture excludes the input and output
buffers and the output sequence encoding part. However, the
amount of FPGA logic resources are comparable (PWS=8 w/
HT variant has 16519 ALMs compared to 9656 ALMs) from
perspective of the used FPGAs.

The overall latency of the [3] is 41 clock cycles. The parts
of the architecture [3] which are implemented also in our
approach include: a hash calculation, a hash table update,
a string match and a match selection. The latency of these

Reading from the Input Buffer (Byte Oriented)

3 4) 6

7

8 O A B C Byte Offset

128-bit Sequence

*IBA+0
| | *IBA+1

Each Cycle -> IBA=IBA+ 8

| *IBA+2 Processing eight (new) bytes per clock.
| *IBA+3
| IBA+ Eight Original LZ4
| FIBAYS 32-bit Sequences

*IBA+6

Total: 88-bit Read Data

*IBA+7

Total: 88-bit Read Data

Fig. 2. Hardware optimized LZ4 memory read schema

Read Data
from IB
DATA := IB[IBA]

(4 Bytes)

Input Buffer
Address (IBA)

(Byte Oriented)

Four Operations =
Single HT (Memory)
Access
1

Read DATA

Related to the
Old IBA Pointer

HTA := HASH(DATA)
(Hash Table Address)

HT[HTA] :=
{IBA + DATA}

IBA Pointer

- =

{CM + P_DATA} = L 3
HT[HTA] Read Old 0O 3
(Candidate Match IBA Pointer M &
Pointer & Data) = &
Write New < !

v 2

£

<

=]

Write DATA
Related to the
New IBA Pointer

e —
IF (P_DATA == DATA

& Within Offset)

True

IBA++
(One Byte Shift)

Match Found!

(Copy & Encode)

Fig. 3. Flow of the (memory access) optimized LZ4 MSU

selected parts was originally 29 clock cycles, whereas our
approach has the latency of 7 clock cycles only, thus the
latency has been decreased approximately four times.

C. Compression Ratio Analysis and Simulation

We developed a functionally equivalent software model of
our hardware architecture. This software model was connected

TABLE III
BRIEF MSU PERFORMANCE COMPARISON
Solution ALMs | Latency [Cycles] | Throughput [Gbps]
Our LZ4 MSU 9656 7 16,0
PWS=8 w/HT [3] | 16519 29 (41) 11,2
LZ4 ASIC [17] N/A 17 4,0
LZ4 8-Bit [15] 690 N/A 2,0

to an existing software LZ4 architecture re-using other parts
of LZA (input buffer, output buffer and the LZ4 encoding
algorithm). The model served two purposes.

First, we used it for functional verification of the design. On
random data, the results of the model and traces from hardware
simulation had to agree. Using software decompression, we
excluded errors common in hardware and the software model.

Second, we assume that the compression ratio of the soft-
ware model equals to the presented hardware architecture. The
software model uses identical dictionary size and identical
hash function. Also the process of output encoding is the same
and cannot affect the compression ratio (see Fig. 5).

We processed three compression corpuses (Calgary [28],
Canterbury [29], Silesia [30]) through our (hardware based)
software model of LZ4 to obtain experimental results. The
compression ratio is scaling up in an expected way in relation
to the size of the hash table (see Tab. I).

The LZ4 8-bit [15] and Software L.Z4 use advanced collision
handling and have better compression ratio. This, however,
comes at a cost. We assume that the LZ4 8-bit architecture
uses 24-bit wide address of the input buffer, thus 32 or 64
BRAMs are used for implementation of the dictionary (the
most feasible configurations). All remaining BRAMs realize
the input and the output buffer. The worst case of 32 BRAMs
is representing the dictionary size of 65536 entries [22] com-
pared to our 256 entries. Furthermore, these designs cannot
guarantee their worst case throughput. LZ4 8-bit [15] is only
providing peak performance throughput, which is derived from
processing 8 bytes per clock. We present an MSU with worst
case performance, which is an essential characteristic of a
stable high-throughput design.

Hash Table Data Processing Pipeline (8X)

=
? Current Address
5 Match Candidate (14-Bit) 2> 0
§ Data Address < = %
£ Pipeline RCICRIREILIN Current Data ~33
S (Latency = 6) Address Pipeline (32-Bit) > @ &
e (Latency = 1) —l
3
9] Match
tg e
v
o (R
Data Pipeline
é] (Latency = 6) — e > Hash Table Previousl Data l
£ HT Datan 256 Entries (32-Bit) -
g (46-Bit) 8x Write Port E Z o
rl —» Split X e = —»
8 8x Read Port NS Previous Address B i 2
i ata Ou .
3 Fibonacci Hashing LUtsmg LYT]_ (46.-5it) Match Candidate
@ Block (DSP48) > (Latency =1) (14-Bit)
(Latency =6) HT Address
(8-Bit)

Fig. 4. Architecture of the new MSU inspired by the (hardware) optimized LZ4 flow

Input Buffer

L Equal Data (Compression Corpuses) l

Hardware Software

Functionally Equal Model

Same Software Based
Output Encoding Function

Output
Encoding

Output
Encoding

Should be Equal as Well

Fig. 5. Experimental simulation flow to obtain compression ratios.

D. Influence of the Latency

An MSU (and overall system) latency affects the system
readiness to accept new data. Lower latency also allows
us to ’squeeze” more data into constant throughput media
by lowering an inter-frame gap, in a packet oriented real-
time systems (with packets processed one by one, not in a
continuously streamed manner), in case that more parallel
blocks are used at the same time.

All MSU architectures designed for high throughput ap-

TABLE IV
BRIEF COMPRESSION RATIO COMPARISON
Solution Calgary | Canterbury | Silesia

Our LZ4 MSU 1,38 1,5 1,31
PWS=8 w/HT [3] 1,82 N/A N/A
L74 ASIC [17] N/A N/A N/A

LZ74 8-Bit [15] Incomplete (1,65 — 2,05)
Ref SW LZ4 226 [211 | 241

plications use pipelining principle where data are processed
alongside control signal or other data (for example hash
calculations or matching) in several stages. The latency reduc-
tion might enable the number of pipeline stages to decrease
resulting in lower usage of logic resources.

V. FUTURE WORK

Several optimizations of the presented architecture are still
possible. The first idea is to design an optimized hash cal-
culation unit which by itself is currently capable of running
at approximately 700 MHz [24] with the latency of 6 clock
cycles, whereas the current design can run up to 250 MHz (and
cannot be further significantly increased). The architecture of a
DSP48 block allows to bypass some pipelining stages to limit
the latency, thus limiting the frequency. We can reduce the
latency to just 3 clock cycles while matching the frequency
of DSP48 blocks to the rest of the MSU design. This way,
we can save additional resources in Data and Data Address
pipelines (see Fig. 4). The reduction in this particular case will
be 50% of flip-flops required for these pipelines.

We can also apply similar principle to an embedded memory
block (also capable of running at approx. 600 MHz [24]) to
implement the multipumping principle [18] in order to save
resources (BRAMSs) required for the LVT based hash table.
However the multipumping principle will increase the amount

of other used FPGA resources. Further optimizations of the
LVT principle will be also explored [25].

We started implementing a system realizing the LZ4 loss-
less compression algorithm with use of the presented MSU
architecture with the aim of minimum 10 Gbps throughput.

VI. CONCLUSION

We presented an architecture of a Match Search Unit
(MSU) inspired by a modern fast LZ4 lossless compression
algorithm suitable for hardware implementations. We proposed
optimizations of the original LZ4 data flow for reducing
the memory read/write accesses towards the implementation
platform (Xilinx Virtex-7 FPGA logic). Match combination in
the Encoding Unit made the MSUs independent, which eased
their parallel operation.

The latency of the presented MSU solution has been reduced
4 times compared to the previous work [3], while the amount
of FPGA logic resources is comparable. In contrast to [15]
our MSU architecture guarantees minimal throughput, has
substantially higher throughput rate with comparable amount
of FPGA resources and achieves slightly lower compression
ratio with the use of significantly smaller dictionary size (just
256 entries against 65536).

The design has the potential for further optimizations in
order to significantly reduce the overall latency and resource
consumption. For the current implementation, the theoretical
throughput is 16 Gbps.

ACKNOWLEDGMENT

This research has been partially supported by the CTU
project SGS17/017/0OHK3/1T/18 “Dependable and attack-
resistant architectures for programmable devices” and by
the project “E-infrastructure CESNET — modernization” no.
CZ.02.1.01/0.0/0.0/16 013/0001797.

REFERENCES

[1] Cisco, “Cisco Visual Networking Index: Forecast and Methodol-
ogy, 2008-2013,” [Online] https://tinyurl.com/yb6wf4k3 [Accessed 15
November 2018]

[2] CESNET, ”Special video transmission,” 2017. [Online] Available:
https://www.cesnet.cz/services/special-video-transmissions/?lang=en [Ac-
cessed 16 November 2018]

[3] J. Fowers, J. Y. Kim, D. Burger and S. Hauck, A scalable high-
bandwidth Architecture for lossless compression on FPGAs,” 2015
IEEE 23rd Annual International Symposium on Field-Programmable
Custom Computing Machines, Vancouver, BC, 2015, pp. 52-59. doi:
10.1109/FCCM.2015.46

[4] B. Sukhwani, B. Abali, B. Brezzo and S. Asaad, "High-throughput, loss-
less data compresion on FPGAs,” 2011 IEEE 19th Annual International
Symposium on Field-Programmable Custom Computing Machines, Salt
Lake City, UT, 2011, pp. 113-116. doi: 10.1109/FCCM.2011.56

[5] R. Mehboob, S. A. Khan, Z. Ahmed, H. Jamal and M. Shahbaz,
“Multigig lossless data compression device,” in IEEE Transactions on
Consumer Electronics, vol. 56, no. 3, pp. 1927-1932, Aug. 2010. doi:
10.1109/TCE.2010.5606348

[6] K. Papadopoulos and I. Papaefstathiou, “Titan-R: A reconfigurable hard-
ware implementation of a high-speed compressor,” 2008 16th Interna-
tional Symposium on Field-Programmable Custom Computing Machines,
Palo Alto, CA, 2008, pp. 216-225. doi: 10.1109/FCCM.2008.14

[7] J. Ziv and A. Lempel, ”A universal algorithm for sequential data com-
pression,” in IEEE Transactions on Information Theory, vol. 23, no. 3,
pp. 337-343, May 1977. doi: 10.1109/TIT.1977.1055714

[8] D. A. Huffman, ”A method for the construction of minimum-redundancy
Codes,” in Proceedings of the IRE, vol. 40, no. 9, pp. 1098-1101, Sept.
1952. doi: 10.1109/JRPROC.1952.273898

[9] D. Harnik, E. Khaitzin, D. Sotnikov and S. Taharlev, A fast implemen-
tation of Deflate,” 2014 Data Compression Conference, Snowbird, UT,
2014, pp. 223-232. doi: 10.1109/DCC.2014.66

[10] M.EX.J Oberhumer, "LZO real-time data compression library””,
2011. [Online]. Available: http://www.oberhumer.com/opensource/lzo/
[Accessed 1 Dec 2018]

[11] Y. Collet, "Real Time Data Compression: LZ4 Explained”, 2011
[Online]. Available: http:/fastcompression.blogspot.ru/2011/05/1z4-
explained.html [Accessed 1 October 2018]

[12] Ticki, ”How L74 works”. [Online]. Available:
http://ticki.github.io/blog/how-1z4-works/ [Accessed 1 Dec 2018]

[13] J. Kane and Q. Yang, “Compression speed enhancements to LZO
for multi-core systems,” 2012 IEEE 24th International Symposium on
Computer Architecture and High Performance Computing, New York,
NY, 2012, pp. 108-115. doi: 10.1109/SBAC-PAD.2012.29

[14] M. Bartik, S. Ubik and P. Kubalik, "LZ4 compression algo-
rithm on FPGA,” 2015 IEEE International Conference on Electron-
ics, Circuits, and Systems (ICECS), Cairo, 2015, pp. 179-182. doi:
10.1109/ICECS.2015.7440278

[15] W. Liu, E. Mei, C. Wang, M. O’Neill and E. E. Swartzlander, "Data
compression device based on modified LZ4 algorithm,” in IEEE Trans-
actions on Consumer Electronics, vol. 64, no. 1, pp. 110-117, Feb. 2018.
doi: 10.1109/TCE.2018.2810480

[16] E. D. Knuth, “The Art of Computer Programming, Volume 3: (2nd
Ed.) Sorting and Searching,” 1998, ISBN 0-201-89685-0. Addison Wesley
Longman Publishing Co., Inc.

[17] S.M. Lee, J.H. Jang, J.H. Oh, J.K. Kim and S.E. Lee, "Design of hard-
ware accelerator for Lempel-Ziv 4 (LZ4) compression,” IEICE Electronics
Express, ISSN 1349-2543 | doi: 10.1587/elex.14.20170399

[18] C. LaForest and S. Gregory, “Efficient Multi-ported Memories for
FPGAs,” Proceedings of the 18th Annual ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, Monterey, CA, 2011,
pp. 41-50. doi: 10.1145/1723112.1723122

[19] Z.Bradac and S. Valach, ”10G bit ethernet phy implementation in FPGA
based systems,” In IFAC Proceedings Volumes, Volume 39, Issue 21,
2006, pp. 427-432, ISSN 1474-6670. doi: 10.1016/S1474-6670(17)30224-
0

[20] 7 Series DSP48E1 Slice User Guide (UG479), Xilinx [Online]. Avail-
able: https://tinyurl.com/ybhx4r93 [Accessed 29th October 2018]

[21] 7 Series FPGAs Configurable Logic Block User Guide (UG474), Xilinx
[Online]. Available: https://tinyurl.com/xug474 [Accessed 29th October
2018]

[22] 7 Series FPGAs Memory Resources (UG473), Xilinx [Online]. Avail-
able: https:/tinyurl.com/y75gctmw [Accessed 29th October 2018]

[23] Stratix V Device Handbook (SV-5V1 2017.12.15), Altera [Online].
Available: https://tinyurl.com/stx5-alm [Accessed 29th October 2018]
[24] Virtex-7 T and XT FPGAs Data Sheet — DC and AC Switching Charac-
teristics (DS183), Xilinx [Online]. Available: https://tinyurl.com/v7-ds183

[Accessed 29th October 2018]

[25] M. Bartik, S. Ubik and P. Kubalik, ”A novel and efficient method to
initialize FPGA embedded memory content in asymptotically constant
time,” 2016 International Conference on ReConFigurable Computing
and FPGAs (ReConFig), Cancun, 2016, pp. 1-6. doi: 10.1109/ReCon-
Fig.2016.7857146

[26] C.E. Laforest, Z. Li, T. O’rourke, M.G. Liu and J.G. Steffan, "Com-
posing multi-ported memories on fpgas,” ACM Trans. Reconfigurable
Technol. Syst., Vol. 7 Issue 3, September 2014. doi: 10.1145/2629629

[27] A. Abdelhadi and G. G.F. Lemieux. "Modular multi-ported sram-
based memories,” In Proceedings of the 2014 ACM/SIGDA International
Symposium on Field-programmable Gate Arrays , FPGA’14, pages 35-44,
New York, NY, USA, 2014. ACM. doi: 10.1145/2554688.2554773

[28] T.C. Bell, I.H. Witten and J.G. Cleary, "Modeling for text compression,”
Computing Surveys 21(4): 557-591; December 1989; ISSN: 0360-0300.
doi: 10.1145/76894.76896

[29] R. Arnold and T. Bell, ”A corpus for the evaluation of lossless compres-
sion algorithms,” Proceedings DCC ’97. Data Compression Conference,
Snowbird, UT, USA, 1997, pp. 201-210. doi: 10.1109/DCC.1997.582019

[30] S. Deorowicz, "Silesia Corpus.” Silesian University of Technology, 2003
[Online] Available: http://sun.aei.polsl.pl/ sdeor/index.php?page=silesia
[Accessed 12 November 2018]

CHAPTER 5

High Throughput and Low Latency LZ4
Compressor on FPGA

This chapter is based on the information and ideas provided by the two previous chapters,
which resulted in a high-throughput and low-latency FPGA implementation of the LZ4
compression algorithm. The implementation uses the architecture of the “Match Search
Unit” and is capable of reaching a throughput of 6 Gbps (evaluated on Calgary [20],
Canterbury [27], and Silesia [28] corpora) in the worst case scenario (very short matches
of several bytes). The actual peak throughput could vary between 10 Gbps (no match was
found) and 20 Gbps (very long repetitive data sequences).

The throughput and latency performances are directly proportional to an average length
of discovered matches. The implementation latency can be expressed as a function related

to the input data size (see Table [5.1)).

Latency [clock cycles]

Start-Up Overall
Data Size 10 Gbps

X
8 Bytes 6 Gbps
to first output data word | to the last output data word

26 26 +

Table 5.1: The latency of the presented “High Throughput and Low Latency LZ4
Compressor” FPGA implementation.

In the case of MVTP uncompressed mode, each processed pixel line is transmitted
as a single IP (jumbo) packet with a maximum payload size of 9000 bytes. Thus, the
required (worst case) latency for each packet can be calculated (by using Formula for
the assumed frequency of 156.25 MHz (the respective period is 6.4 ns). Therefore, the
resulting worst-case latency is just 12.17 ps.

9000 10
Latencyyax = (26 + = X F) X 6.4 ns = 12166, 4 ns ~ 12.17 us (5.1)

35

5. HicH THROUGHPUT AND LOow LATENCY LZ4 COMPRESSOR ON FPGA

Presenting a worst-case performance is a major difference compared to other hardware
implementations (and respective papers) where a peak (maximum) throughput is being
presented instead. The situation with the latency is quite similar. The lower limit for the
latency of an average 1.Z4 hardware implementation (8-bit datapath running at 200 MHz)
is 45 ps (see Formula , which is approximately 3.7 times worse than the presented
architecture (12.17 ps). However, the real difference will be much higher, because the
comparison was made between the worst case and the best case latency for both 64-bit
and 8-bit architectures.

Latencyy iy = 9000 x 5 ns = 45000 ns &~ 45 us (5.2)

The primary invention used in the architecture of “High Throughput and Low Latency
LZ4 Compressor” is to use the entire memory bandwidth, which wasn’t fully utilized by
the “Match Search Unit”. The “Match Search Unit” processes only 64-bit of new data
per clock cycle. To process 64-bit of new data, a memory read of 88-bits is required, thus
leaving 40-bit unused of the 128-bit memory bus.

Therefore I propose to implement an input (and output) buffer with a wider memory
bus than the minimum required memory bus width. The extra memory bandwidth can be
used to mask “Stalls” which occur in a pipeline during data processing. In this particular
case, the double width memory bus (potentially resulting in a 2x speed-up) is used to mask
a “start-up” latency for “Match Length Finding” and “Output Encoding” phases.

The content of this chapter is based on the following paper:

Benes T. and Bartik, M. and Kubalik, P., “High Throughput and Low Latency LZ}
Compressor on FPGA”, The 9*" International Conference on ReConFigurable Computing
and FPGAs, ISBN 978-1-7281-1957-1, pp. 1-5, Cancin, Mexico, 2019 [A.5].

The respective paper is based on the diploma thesis (which I supervised) of Tomas Benes,
“High throughput FPGA implementation of LZj algorithm”, Czech Technical University,
Prague, 2019. The diploma thesis has been cited once.

Contributions of Tom&s Benes are: the implementation, the concept of storing matches
(and their respective lengths) in FIFOs, and the obtained experimental results. The au-
thorship of the “Match Length Finder” architecture is split in half between Tom&s Benes
and me.

36

High Throughput and Low Latency LZ4
Compressor on FPGA

Tomas Benes$
CTU FIT & CESNET a.l.e.
benesto3 @fit.cvut.cz

Abstract—This paper presents an FPGA design implementing a
single L.Z4 lossless compression IP block, providing a throughput
of 6 Gbps combined with extremely low latency, while still
retaining full binary compatibility with the original LZ4 format.
The best-known competitor is capable of processing up to 2 Gbps
per block/engine with unknown latency. The presented design
uses two key features: a low-latency 8-way match search unit
and consequently a match buffer which allows encoding LZ4
sequences independently to reduce stalls in the data processing
pipeline. The design was evaluated on several compression
corpora with an average compression ratio of 1.7.

Index Terms—1.Z4, L1777, lossless, compression,
pipeline, multi-port, memory, match, buffer

FPGA,

I. INTRODUCTION

Universal lossless compression algorithms have been used
for decades for saving space on storage or to save band-
width in communication networks. Most of these currently
used compression algorithms are based on LZ77 [1] (and its
successors such as DEFLATE [2] or LZW) including some
modern “fast” [3] compression algorithms such as LZ4 [4]-
[6] or LZO [7] which trade the compression speed for the
compression ratio. The mentioned algorithms were originally
implemented in software, but as the CPU speed became a
bottleneck, the more recent research focuses on accelerating
them using (programmable) hardware such as FPGAs.

Hardware implementations of LZ77/DEFLATE can reach
the compression speed of 100 Gbps [8]-[10], however rep-
resentative examples of these implementations [11], [12] are
using very small dictionaries to reduce the design complexity.
The throughput of these LZ77 based implementations [9]-
[12] cannot be compared directly to the LZ4 implementation
regarding the fact that the LZ4 format is not suitable for imple-
menting in hardware [5]. Several hardware implementations
of LZ4 exist, with a throughput of 2 Gbps [5] per engine
(0.5 Gbps respectively [6]).

In this paper, we would like to focus on designing an engine
implementing the LZ4 compression suitable for relatively large
data blocks, full binary compatibility [13] with LZ4 (unlike
LZA-Modified [5] variant), and low-latency.

II. MOTIVATION

The latest papers describing a hardware implementation of
a compression algorithm are using two common terms: the
latency and the throughput. It might seem that these terms
have a similar meaning, but it cannot be further from the

978-1-7281-1957-1/19/$31.00 ©2019 |IEEE

Matéj Bartik
CTU FIT & CESNET a.le.
bartik @cesnet.cz

Pavel Kubalik
CTU FIT
pavel.kubalik @fit.cvut.cz

truth. The throughput is usually defined as an amount of
data processed over a specified time (seconds). However, the
high (peak) throughput does not guarantee a low latency of
the processed data. For example, high throughput is reached
by implementing a many-core architecture where each core
(compression engine) can be particularly slow.

On the other hand, the latency is usually defined as the time
required to transform the input data by an algorithm (or a com-
munication media) into the output data. The throughput of the
implemented system could be considered to be independent of
the system’s latency. A particular example of high-throughput
and high-latency system is a hardware implementation which
uses an extreme case of the superpipelining principle. There-
fore, each additional stage increases the system latency. The
pipeline principle also increases the risk of stalls due to the
need of “flushing” old data out of a datapath. The process of
loading new data into a deep(er) pipeline increases the latency,
thus lowering the actual throughput.

Many Core Architecture

>)
o o
< E
- °
g 9 4> o
(sl e] wv
= » 2
u » S L =
S ° °
® 3 ° o
= 3
> -

Minimal Latency = 24 us

Single Core Architecture

Minimal Latency = 3 us

Fig. 1. Two possible attitudes for implementing a high-throughput architecture
with different latency requirements.

In contrast to previous efforts, our target is a lossless com-
pression as a way to increase the network throughput, without

any specific traffic in mind. Existing architectures [9]-[12]
mainly aim at the throughput in different contexts. In our case,
the current emphasis on a low network latency [14] puts strict
limitations on the compression latency (see Fig. 1), which
differentiates our architecture from the others. Fig. 1 also
explains the minimal latency required to process a standard
IP packet. The network traffic is inversely proportional to the
compression ratio, without any overhead taken into account.
Therefore, the compression ratio is rarely a hard requirement.

III. STATE OF THE ART

There are several existing implementations [5], [6], [20],
[21], which are considered the state of the art of LZ4 al-
gorithm. None of them is suited for low-latency and high-
throughput designs.

MLZAC-1 and MLZAC-2 [5] are single-core sequential
architectures using a single dictionary with an 8-bit internal
datapath only. These architectures are using the rehashing
principle to deal with hash collisions; therefore their respective
throughput heavily depends on the respective input data.
Additionally, this implementation introduces a modified LZ4
format, which is not compatible with the reference LZ4
implementation/tools.

The HALZ4 [6] many-core architecture uses multiple in-
dependent dictionaries in each particular core to find multiple
match candidates to select the best candidate. The architecture
is mainly focused on ASICs and does not provide FPGA
resource utilization for a direct comparison.

The Xilinx LZ4 [20] architecture is many-core architecture,
which is using eight cores to achieve its 13.28 Gbps throughput
overall. The architecture uses an 8-bit wide datapath. The
design requires a lot of FPGA resources including memory
blocks called UltraRAMs, which are available only in Xilinx’s
latest (and the most expensive) UltraScale+ FPGAs.

Comparing the compression ratio of given lossless compres-
sion implementations is done by comparing results from the
same test data sets called corpora. These corpora sets usually
contain a wide variety of input data, which should be relative
to real-world usages because most of the compression im-
plementations are data sensitive and their performance should
not be evaluated in a narrow input data set. The most common
compression corpora used by the community are Calgery [17],
Canterbury [18] and Silesia [19].

A. LZ4 Analysis

The first step was to analyze the principles of LZ4 and
how is LZ4 being implemented in hardware. We would like to
summarize the fundamental properties and features of several
existing LZ4 HW/FPGA implementations [5], [20], [21] which
are affecting the overall performance the most.

LZ4 can be divided into four fundamental blocks [4]: an
input buffer, a match search algorithm (unit) including a
compression dictionary (usually implemented as a hash table),
an output encoder, and an output buffer. The buffers are less
complicated than the two remaining blocks; therefore, we will
focus on the most performance affecting parts of LZ4.

1) Match Search Unit (MSU): The original LZ4 reference
C code uses a hash table to implement a compression dictio-
nary. The Fibonacci hashing principle is used due to its speed
and low complexity. The main disadvantage of the method is
that it cannot deal well with produced collisions. This problem
can be solved by using a re-hashing principle (an input data
will be hashed until a free entry in a hash table is found —
increases latency).

The most common methods used in the recent implementa-
tions [5] are the original Fibonacci hashing principle combined
with the rehashing principle. Thus the measured throughput
cannot be guaranteed; therefore, re-hashing introduces addi-
tional stalls in the data processing.

Currently, there is state of the art MSU architecture [16]
for lossless algorithms, which focuses on high throughput and
low latency systems. The MSU uses parallelism with a shared
dictionary to find matches. It is capable of reaching a 10G
throughput and the latency of 8 clock cycles.

LZ4 MSU architecture [16] is reached by introducing par-
allelism (8x factor).

2) LZ4 Sequence Format and the Output Encoder: The LZ4
output format is called a sequence (see Fig. 2). The sequence
does not seem to be complex; however a (hardware) problem
arises due to the method chosen for encoding the match and
the literal length. The LSIC (Linear Small Integer Code) [15]
produces an output with variable word sizes, thus the encoder
has to process the data first to estimate the length to generate
the code word. This also introduces uncertainty in the number
of clock cycles needed for encoding the sequence.

Token LSIC Literal Offset LSIC
t1 to e1 L 0] €2
N~~~ ~— N~~~ N~
4 bits 4 bits If¢; = 15 tit+ei bytess 2bytes If ¢y =15

Fig. 2. LZ4 sequence structure. [15]

Another problem of the LZ4 output format is the number of
items in the sequence. The format has three elements (Token,
Literals, Match Offset), which are written usually in three
different steps (e.g. clock cycles in hardware). This behavior
causes an issue in the worst case for small length matches
up to 12 bytes. These matches will be processed in three
clock cycles, and they will process less than 24 bytes from the
output buffer, which are required to guarantee the throughput
of 10 Gbps. Fortunately, this is a very pessimistic worst-case
scenario, which is very unlikely in real-world applications.

3) Binary (In-)Compatibility: Each block of the LZ4 format
starts with the length of the block. This is the main latency
limitation of the LZ4 format because the application has to
wait until the compression of the whole block is finished
before it can output the beginning of the block. Some im-
plementations [5] are modifying the LZ4 format to avoid this
inconvenience; however, they are no longer compatible with
the official LZ4 tools available in modern PCs.

4) Usage of Trivial Parallelism: All current LZ4 hardware
implementations are using the easiest way to increase the over-
all throughput — multiple independent engines (particularly

Input Matel Matey Output Output
Buffer Ssasl LaflEi Encoder Buffer
Unit [16] Finder + Matc
AXI4 Lengths AXi4
Stream Stream

Fig. 3. The pipelined architecture of our LZ4 compression engine.

slow, typically with 8-bit datapath only) are used instead of
a single engine (which has a significantly wider datapath).
An active engine is being selected by the round-robin scheme
usually.

The main advantage of the single-engine & high-throughput
architecture is its low latency, which is crucial for use in low
latency systems. It can also be used as a base of a multi-core
architecture, which would maintain its low latency feature and
also have the desired throughput.

B. Summary

We have analyzed several LZ4 HW/FPGA implementations,
and we have found four fundamental properties which have a
significant impact to overall to the system throughput and/or
latency.

o High-throughput is reached by a trivial parallelism
(many-core architecture). [20], [6]

« Implementations are not considering the low-latency fea-
ture as a factor (unlike us). [20], [5], [6]

o Re-hashing principle introduces stalls in data flow, thus
it increases the latency. [5]

o Some of the implementations are not binary compatible
with the official LZ4 format. [5]

IV. OUR APPROACH

We decided to explore a non-trivial attitude to the paral-
lelization, which is going to be the primary constraint and
probably the best way to lower a system latency while the
system throughput will remain the same or higher. We further
explored ideas of the work [16], which describes a novel
architecture suitable for high-throughput and low-latency LZ4
hardware implementation.

The high theoretical throughput and low latency (thanks
to its short pipeline) of such LZ4 MSU architecture [16] is
reached by introducing parallelism (8x factor) into the original
LZ4 design [4]. Because the architecture has been already
implemented, we decided to implement the remaining blocks
like buffers and the output encoder.

The LZ4 format specifies the maximum amount of input
data to 64 kB, which easily fits into the Level-1 cache of a
modern processor. However, we decided to reduce the size of
the buffers to 16 kB only; therefore, it is the nearest value
related to the maximum payload size of an IP packet — 9000
bytes. The used MSU architecture [16] requires a buffer with
a 128-bit read port interface. Reducing the buffer size also
limits the theoretical maximum latency of the engine.

Our architecture consists of the Input buffer, Match Search
Unit, Match Length Finder, Encoder, and Output Buffer blocks
which are fully pipelined (see Fig. 3). Two FIFOs connect
such blocks in the pipeline. These FIFOs allow the blocks
to operate independently and continuously without any stalls
or pipeline flushing. The system architecture uses the AXI4-
Stream interface for the input and the output.

A. Match Searching Unit

The architecture of the used Match Searching Unit (MSU)
was introduced in [16]. The main advantages of such MSU
are the pipelined design, throughput of 10 Gbps, and latency
of just 8 clock cycles. The MSU uses eight concurrent hash-
ing units with a shared dictionary implemented in multiport
memory.

The sequential principle used in [4] has to be modified to
utilize the full potential of MSU. The main pitfall of the
sequential principle is the processing of the found match,
which modifies the match searching index accordingly. This
process would require our approach to flush the pipeline of
MSU, which would have a negative impact on the throughput
and latency.

We have decided to process the entire input buffer by
MSU and store the output into a pipelining FIFO. The full
throughput and latency potential of MSU is utilized. MSU
produces match candidate records which are guaranteed to
have a minimum length of 4. MSU is not skipping bytes during
the search to avoid pipeline flushing; therefore it produces
match candidates which can overlap.

B. Match Candidate Filtering and Validation

The match candidate has to be tested for its actual match
length, which can be larger than four bytes. The LZ4 format
allows the worst-case scenario of a sequence with a match
of a length of 4 bytes. This scenario requires each match to
be validated in a single clock cycle to achieve the 10 Gbps
throughput.

This process is handled by Match Length Finder (MLF)
block by utilizing a large memory bus of the Input Buffer
(128 bits - e.g., 16 bytes) and a predictive execution. The
simplified MLF architecture is depicted in Fig. 4.

The MLF block can access the Input Buffer with a latency
of 1 clock cycle, and the match processing is pipelined. MLF
always predicts that the match length will be shorter then
20 bytes and the next read address will be for the next match.
The throughput can be evaluated in the following two cases.

Solution Binary Compatible | Slices | LUTs | LUTMEMs | Regs BRAM | DSP | URAM | Throughput | Frequency
HALZA4 single-core [6] Yes - - - - - - - 0.5 Gbps 75 MHz
MLZAC-1 [5] No 571 1302 - 605 76.5 0 0 0.8 Gbps 120 MHz
Xilinx LZ4 single-core [20] | Yes - 2041 16333 8 525 19.25 0 6 1.66 Gbps 274 MHz
MLZAC-2 [5] No 345 573 - 937 69 4 0 1.92 Gbps 240 MHz
HALZ4 many-core [6] Yes - - - - - - - 4.0 Gbps 75 MHz
Our single-core architecture | Yes - 14076 | 433 2803 82 32 0 6.08 Gbps 156.25 MHz
Xilinx LZ4 many-core [20] | Yes - 71934 | 16333 68201 | 154 1 48 13.28 Gbps | 274 MHz
TABLE I

RESOURCE UTILIZATION AND PERFORMANCE COMPARISON

Corpus 64 128 256 | 512 1024 | 2048 | 4096 | ref.

Cantebury | 1.41 | 1.46 | 1.50 | 1.57 | 1.68 1.75 1.81 2.27

Silesia 124 | 128 | 1.31 | 1.32 | 1.40 1.48 1.56 | 2.42

Calgery 129 | 1.34 | 1.38 | 1.39 | 1.47 1.54 1.61 2.08
TABLE II

RELATION BETWEEN THE NUMBER OF ENTRIES IN THE COMPRESSION DICTIONARY AND THE COMPRESSION RATIO

1) Prediction successful - the current match length is inside
of the current bus width and the next clock will process
the next match. The throughput is in the worst-case
equal to 10 Gbps. Therefore, the MLF is able to process
matches with lengths of 4-20 bytes in a single clock
cycle.

2) Prediction unsuccessful - the current match is outside of
the current bus width, flush memory pipeline, and issue
the next address. The next match will be validated in
3 clock cycles in total, which will have the throughput
greater than 10 Gbps (20 Gbps actually due to the
doubled memory bus width). This respective speed-up
allows to compensate the initial latency.

This process can be repeated until the full match length is
determined. The issue with overlapping matches is then solved
by skipping match candidates based upon the last validated
match.

C. Format Encoding

The last step in generating the LZ4 format is to encode
the validated matches and unmatched literals. This step is not
optimized to match the 10 Gbps performance in the worst-case,
which does not occur in the real-life application. However, the
throughput is being increased by using a 20 Gbps memory bus
for the literal transfer. The memory bus allows to temporally
increase the performance of the most used operation during
encoding. It also allows us to overcome the performance loss
during some other operations.

V. RESULTS

In this section, our architecture is compared with other
FPGA implementations of the LZ4 algorithm. The designs
were compared by their frequency, resource utilization, and
throughput in Table I. The respective implementation plat-
forms (FPGAs) are found comparable in terms of resources
and/or frequency due to its similarity. The comparison includes
MLZAC-1 [5], MLZAC-2 [5], HALZA4 [6] and Xilinx LZ4 [20]
official implementation from Xilinx.

The implementation of our single-core architecture is the
most compact one among others, and it has the best throughput
out of the existing solutions (MLZ4C-1, MLZ4C-2, HALZA4,

Xilinx LZ4). In case the provided results of many-core ar-
chitectures are not showing the resource utilization for a
single core, a simple division estimated the resource utilization
of such core. This attitude has no impact on a single core
throughput.

Our single-core architecture can be used to create a trivial
many-core architecture thanks to its high throughput and low
latency, which can be compared to the many-core architecture
Xilinx LZ4. It would have a comparable throughput, lower
latency factor of 4x, and its resource usage would be just a
fraction of the resources used by the Xilinx LZ4 architecture.
Therefore, it would also outperform HALZ4.

The compression ratios of our architecture for all of the
commonly used corpora Calgery [17], Canterbury [18] and
Silesia [19] are shown in Table II. The compression ratio
depends on the size (number of entries) of the dictionary used
inside the architecture. The official implementation of the LZ4
algorithm is used as reference [22].

VI. FUTURE WORK

We would like to improve our single-core architecture to
reach the throughput of 10 Gbps, which could be used to
create trivial many-core architecture capable of 100 Gbps com-
pression speed while maintaining the same latency. Further
optimizations that can be applied to the compression dictionary
will be also explored [23].

VII. CONCLUSION

We have presented a single-core architecture implementing
the LZ4 compression algorithm. Our architecture is optimized
for low-latency and high-throughput systems. It outperforms
existing single-core architectures by 300% thanks to its inter-
nal parallelism with an 8x factor. Our architecture also requires
the least amount of FPGA resources while it keeps the full
binary compatibility with the LZ4 format. The minimum width
of the datapath is 64-bits compared to other implementation
using an 8-bit datapath only. The architecture can be used
for the implementation of a many-core architecture by using
trivial parallelism. The resulting architecture would have a
comparable throughput, lower latency at least by a factor
of 4, and a lower resource usage than existing many-core

2x128b
Read Ports

Input Buffer

'

< © o el
4 _ |8 & £3
X Y= [0
o3& |3 a5 98
Q>) < 9."“ €5
= o © = ot
2 g |8 o 3 S=23
S e &5 |f——]—» € 2 > o2 5 B
2 k= = 9|2 N L3 - &
= W c O jo O o S S o ©
o 3 — i < w8 o z
e 2 o & o3 B] &
o - O = c
© o < T o) © £ s w2
[T S 3 3 k<1
3 < @ o2 o
n 2 o g o o = 5 ¢
g
§ A . 5 g
2 05 =]
gé oo — @ - s o =
T 2 |o sP¢E S o o tEg
X (g £] 33 s-2
w = |5 ©38%3 588 < B o New Match Fla
£ 5 [SH- Ve2im 2E2 g8 5§02 ew Match Flag
c 9 (= >=23 §54% S5 28 Vector = OxFF
- = pat = & ° s] c o3
c O |2 Saa 8= < SEQL
o | ° =S8 St = 85%
§> =3 g o =z

—>

=<
o
&

Fig. 4. Simplified architecture of Match Length Finder block

architectures. We have also proposed the idea of reducing
the latency of a compression system by only increasing the
throughput of a used elementary engine.

ACKNOWLEDGMENT

This research has been partially supported by the CTU
project SGS17/017/0HK3/1T/18 “Dependable and attack-
resistant architectures for programmable devices” and by
the project “E-infrastructure CESNET — modernization” no.
CZ.02.1.01/0.0/0.0/16 013/0001797.

(1]

(2]

(3]

(4]

[5]

(el

(7]

(8l

(91

REFERENCES

J. Ziv and A. Lempel, ”A universal algorithm for sequential data
compression,” in IEEE Transactions on Information Theory, vol. 23,
no. 3, pp. 337-343, May 1977. doi: 10.1109/TIT.1977.1055714

D. Harnik, E. Khaitzin, D. Sotnikov and S. Taharlev, ”A fast implemen-
tation of Deflate,” 2014 Data Compression Conference, Snowbird, UT,
2014, pp. 223-232. doi: 10.1109/DCC.2014.66

M.E.X.J Oberhumer, "LZO real-time data compression library””, 2011.
[Online]. Available: http://www.oberhumer.com/opensource/lzo/

M. Bartik, S. Ubik and P. Kubalik, "LZ4 compression algorithm
on FPGA,” 2015 IEEE International Conference on Electronics,
Circuits, and Systems (ICECS), Cairo, 2015, pp. 179-182. doi:
10.1109/ICECS.2015.7440278

W. Liu, E. Mei, C. Wang, M. O’Neill and E. E. Swartzlander, "Data
compression device based on modified LZ4 algorithm,” in IEEE Trans-
actions on Consumer Electronics, vol. 64, no. 1, pp. 110-117, Feb. 2018.
doi: 10.1109/TCE.2018.2810480

S.M. Lee, J.H. Jang, JH. Oh, J.K. Kim and S.E. Lee, "Design of
hardware accelerator for Lempel-Ziv 4 (LZ4) compression,” IEICE
Electronics Express, ISSN 1349-2543 | doi: 10.1587/elex.14.20170399
J. Kane and Q. Yang, "Compression speed enhancements to LZO
for multi-core systems,” 2012 IEEE 24th International Symposium on
Computer Architecture and High Performance Computing, New York,
NY, 2012, pp. 108-115. doi: 10.1109/SBAC-PAD.2012.29

ZipAccel-C, GZIP/ZLIB/Deflate Data Compression Core [Online]
Available: http://www.cast-inc.com/ip-cores/data/zipaccel-c/cast-
zipaccel-c-x.pdf

J. Fowers, J. Y. Kim, D. Burger and S. Hauck, A scalable high-
bandwidth Architecture for lossless compression on FPGAs,” 2015
IEEE 23rd Annual International Symposium on Field-Programmable
Custom Computing Machines, Vancouver, BC, 2015, pp. 52-59. doi:
10.1109/FCCM.2015.46

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

B. Sukhwani, B. Abali, B. Brezzo and S. Asaad, “High-throughput, loss-
less data compresion on FPGAs,” 2011 IEEE 19th Annual International
Symposium on Field-Programmable Custom Computing Machines, Salt
Lake City, UT, 2011, pp. 113-116. doi: 10.1109/FCCM.2011.56

R. Mehboob, S. A. Khan, Z. Ahmed, H. Jamal and M. Shahbaz,
“Multigig lossless data compression device,” in IEEE Transactions on
Consumer Electronics, vol. 56, no. 3, pp. 1927-1932, Aug. 2010. doi:
10.1109/TCE.2010.5606348

K. Papadopoulos and I. Papaefstathiou, “Titan-R: A reconfigurable
hardware implementation of a high-speed compressor,” 2008 16th Inter-
national Symposium on Field-Programmable Custom Computing Ma-
chines, Palo Alto, CA, 2008, pp. 216-225. doi: 10.1109/FCCM.2008.14
Y. Collet, "Real Time Data Compression: LZ4 Explained”, 2011

[Online]. Available: http://fastcompression.blogspot.ru/2011/05/1z4-
explained.html
CESNET, ”Special video transmission,” 2017. [Online] Available:

https://www.cesnet.cz/services/special-video-transmissions/?lang=en
Ticki, “How L74 works”. [Online]. Available:
http://ticki.github.io/blog/how-1z4-works/

M. Bartik, T. Bene§ and P. Kubalik, “Design of a High-Throughput
Match Search Unit for Lossless Compression Algorithms,” 2019 IEEE
9th Annual Computing and Communication Workshop and Confer-
ence (CCWC), Las Vegas, NV, USA, 2019, pp. 0732-0738. doi:
10.1109/CCWC.2019.8666521

T.C. Bell, .LH. Witten and J.G. Cleary, "Modeling for text compression,”
Computing Surveys 21(4): 557-591; December 1989; ISSN: 0360-0300.
doi: 10.1145/76894.76896

R. Arnold and T. Bell, A corpus for the evaluation of lossless compres-
sion algorithms,” Proceedings DCC *97. Data Compression Conference,
Snowbird, UT, USA, 1997, pp. 201-210. doi: 10.1109/DCC.1997.582019
S. Deorowicz, "Silesia Corpus.” Silesian University of Technology, 2003
[Online] Available: http://sun.aei.polsl.pl/ sdeor/index.php?page=silesia
LZ4 compression/decompression is FPGA based implementation of
standard LZ4, Xilinx [Online]. Available: https:/tinyurl.com/y58dwo25
Kim, Jeehong & Cho, Jundong. (2019). Hardware-accelerated Fast
Lossless Compression Based on LZ4 Algorithm. 65-68. doi:
10.1145/3316551.3316564.
LZ4 - Extremely fast
https://github.com/1z4/1z4

M. Bartik, S. Ubik and P. Kubalik, ”A novel and efficient method to
initialize FPGA embedded memory content in asymptotically constant
time,” 2016 International Conference on ReConFigurable Computing
and FPGAs (ReConFig), Cancun, 2016, pp. 1-6. doi: 10.1109/ReCon-
Fig.2016.7857146

compression [Online]. Available:

CHAPTER 6

Novel Status Register Architecture

This chapter describes and summarizes a novel architecture suitable for implementing a
status register, which is commonly used to store information, of which memory entry is valid
or invalid. Such memory-based data structures (a compression dictionary, for example) are
often cleared or initialized to a default value between individual runs of an implemented
algorithm (not particularly limited to compression algorithms only). With the aid of a
status register, we can determine a value occupying a specific address is the default value
(no write occurred) or the written value is the same as the default one. For example, it is
difficult to differentiate between a memory address value 0z0000, because it can represent
a valid address (the first cell of an array) or an uninitialized value at the same time.

Two state-of-the-art techniques (sequential zeroing and assigning a flip-flop logic gate
to each memory cell) are commonly used; however, they were found unsuitable from the
perspective of latency or resource utilization. A medium-sized memory has been defined
as a memory consisting of several BlockRAMs, e.g., several kilobytes of RAM. This range
(and memory type) is often used to implement a compression dictionary (among other
suitable data structures). The range is viable for the presented use-case, the IP packet
lossless compression in real-time.

The novel architecture supersedes the flip-flop based principle. The entire address
range (array of flip-flops) is split into smaller chunks segments of 64-bits. Each segment is
replaced by “Look-Up Table” (a fundamental block in FPGAs realizing logic gates), which
is configured as “Distributed Memory”, and can hold the same individually addressable
64 bits. Because of FPGA organization, the amount of resources is lowered 64 times.
Therefore, the design is more dense with a significantly reduced number of interconnections.
Consequently, this results in an easier design placement and routing which allows running
the respective design on a higher frequency. However, some additional logic is required to
perform reset. The time required for the reset is 64 clock cycles, which is the only minor
disadvantage.

Overall, the presented status register architecture combines the advantages of both
predecessors to improve overall performance without any significant disadvantage. The
architecture is portable to any modern FPGAs.

43

6. NOVEL STATUS REGISTER ARCHITECTURE

At last, a benchmark with multiple phases was developed to evaluate the architecture
in a fair way. The benchmark uses randomized pin placement to decrease the influence
of respective tools and actual hardware configuration of computers used for the synthesis
process.

6.1 Alternative Use Case - Histogram Calculation

The use case of a compression dictionary is not the only one, which can benefit from the
“Distributed” technique. The technique is suitable for any (larger) temporary memory
structures, which has to be often (re-)initialized. A histogram calculation (with several
thousands of bins) [84] [85] [86] can be the alternative use case.

For example, the presented technique could be great in a combination of this particular
paper [87], which could further reduce the number of activated memory banks for read
accesses only (the banks that haven’t been written into doesn’t need to be activated;
therefore, they are not consuming power).

6.2 Analysis of LZ4 Suitability for Image Data

To justify the required size of a compression dictionary (and the need to introduce a new
status register architecture), I performed an experiment to show the ability of LZ4 to com-
press image data with respect to different color depths and encodings. The used “Corpus”
consisted of eight uncompressed images representing typical scenes with a different com-
plexity taken by a digital camera. This dataset was provided by the CineGrid [88, 89].
The last dataset is a captured traffic from an MVTP device (several real-world recordings
in a loop).

The results (see Table indicate LZ4 could save approximately 13% of the required
network bandwidth in our primary use case of broadcasting SDI data streams while using
a decently sized compression dictionary. Therefore, the LZ4 compression algorithm can
be considered viable to fulfill the initial requirement of the “Light” compression to save
approximately 10%. The suitability of LZ4 for image compression was independently
confirmed by another research [74].

The content of this chapter is based on the following papers:

Bartik, M. and Ubik, S. and Kubalik, P., “A Novel and Efficient Method to Maintain
FPGA Embedded Memory Content with an Asymptotically Constant Time (Re)Initialization
Designed for an IP Packet Lossless Compression”, International Conference on ReCon-
Figurable Computing and FPGAs (ReConFig 2016), ISBN 978-1-5090-3707-0, pp. 1-6,
Canctn, Mexico, 2016 [A.2].

Bartik, M. and Benes T. and Kubalik, P., “An In-sight into How Compression
Dictionary Architecture can Affect the Ouverall Performance in FPGAs”, IEEE Access,

44

6.2. Analysis of LZ4 Suitability for Image Data

2020 (8), pp. 183101183116, ISSN 2169-3536, 2020 [A.6].

Contributions of Tom&s Bene§ are bash scripts to automate experiments and to extract
presented results.

45

A Novel and Efficient Method to Initialize FPGA
Embedded Memory Content in Asymptotically
Constant Time

Matéj Bartik
CTU FIT & CESNET a.le.
matej.bartik @fit.cvut.cz

Abstract—This paper describes analysis and implementation of
a new method for maintaining valid content of FPGA memory
blocks with an asymptotically constant time synchronous clear
ability, that can be useful for (re)initialization to one default
value. A particular application can be for high-speed real-time
LZ77 [1] lossless compression algorithms, where a dictionary
has to be (re)initialized before each run of the implemented
compression algorithm.

The method is based on two most widely used techniques for
clearing the memory content: a linear passage of the memory
and clearing each cell by writing a default value and creating
a register field providing an (in)valid bit for each memory
cell. Our solution combines these two techniques together with
the use of FPGA distributed memory blocks implemented in
LUTs (Look-Up Tables) to overcome negative features of each
previous method without losing the most of positive features. Our
solution provides a balance between the two previous techniques
and exceeds them in speed, resources utilization and latency of
(re)initialization.

I. INTRODUCTION & MOTIVATION

Fast lossless compression algorithms become very popular,
even though they do not reach compression ratios of their
predecessors like LZ77 [1]. An important application of these
algorithms is for reducing bandwidth requirements of fast real-
time network transmissions. A typical target use are IP packet
compression devices like [2]-[5].

A. Fast Lossless Compression Algorithms

These algorithms have been designed to favor the com-
pression speed (compression time) over a compression ratio,
because in some cases it is more important to meet through-
put requirements rather than the compression ratio. These
algorithms have to be lossless because of the fundamental
principles of packet network communication.

The most widely known representative examples of modern
fast lossless compression algorithms are LZ4 [6], LZO [7],
Snappy [8], QuickLZ [9], etc.. All of these algorithms are
based on the Lempel-Ziv (LZ77) lossless compression schema,
which means that all algorithms are using a dictionary for
searching a match of processed data. The speed improvements
are achieved by the use of many CPU (Central Processing
Unit) optimizations or general computer architecture optimiza-
tions (an efficient memory access) respectively [10], [11].

978-1-5090-3707-0/16/$31.00 ©2016 IEEE

Sven Ubik
CESNET a.l.e.
ubik @cesnet.cz

Pavel Kubalik
CTU FIT
pavel kubalik @fit.cvut.cz

B. LZ77 Lossless Compression Scheme

LZ77 [1] is the fundamental lossless compression scheme
used in many further algorithms like GIF or DEFLATE [12].
LZ77 introduced the sliding window principle, where the
sliding window is usually divided into a search buffer (a
dictionary) and a look-ahead buffer. The found longest prefix
of the look-ahead buffer starting in the search buffer is encoded
as a triplet (i, j, X), where i is the distance of the beginning
of the found prefix from the end of the search buffer, j is the
length of the found prefix and X is the first character after the
prefix in the look-ahead buffer.

C. LZ77 Based IP Packet Compression

The LZ77 algorithm and LZ77 derivatives are widely used
in IP packets compression devices like [2]-[5]. The re-
search [13], [14] in the last 20 years has shown LZ77 abilities
to reach high throughput of tens of gigabits per second when
implemented in hardware (FPGA). Some of the hardware
implementations have adopted the SIMD (Single Instruction
Multiple Data) principle and introduced an implementation
with wider processed words like 64 or 128 bits per one
clock cycle. Other hardware implementations rely on multiple
independent compression blocks.

D. LZA4 Fast Lossless Compress Algorithm

LZ4 [6] is a representative example [11] of a modern
and fast lossless compression algorithm. The main difference
to LZ77 is the use of hash-based search algorithm [16].
Reference addresses of 32-bit data words are stored in a
hash table, which realizes a dictionary. This dictionary has
to be (re)initialized (to all zeros) before each run of the LZ4
algorithm and it is designed to fit in a L1 CPU cache. LZ4 is
designed to process data in an efficient way, most of data flow
operations are processed in 32-bit (hash calculation) or 64-
bit (memory access) words to exploit the maximum memory
bandwidth. However, memory buffers are byte oriented and
the memory subsystem of the LZ4 algorithm has to support
8-bit unaligned memory access. This results into a complex
memory subsystem [16].

E. Evaluation of LZ4 for Multimedia Use

There were some attempts to use a modern lossless com-
pression algorithm for multimedia streams (4K/UHD in this
particular example [17]) under real-time conditions with av-
erage reduction of 23% of the required bandwidth. This
particular example was measured using a software version of
LZ4 running on a high-performance PC equipped with Dual
Xeon E5620 (8 cores in total) and 32 GB RAM.

Based on previous results, we did our experiments [18]
with the LZ4 algorithm, setting LZ4 parameters (and thus its
behavior) to be more suitable for a hardware implementation
in FPGA. We assumed the following properties:

o Hardware implementation will be focused on IP packet
lossless compression, where packets are carrying multi-
media data split into jumbo packets of the maximum size
9216 bytes [19].

o The hash table (dictionary) will be implemented in the
FPGA embedded memory (such as BlockRAM in Xil-
inx FPGAs), thus limiting its size to several kilobytes.
Larger hash tables will be unsuitable for this hardware
implementation.

« We will measure LZ4 compression ratios on multimedia
testing datasets with different color depths and color
encodings. Testing data sets were from the CineGrid
database [20] with the exception of the SDI format, where
the real transmission data were used.

The measured results are shown in Table I and visualized
in Figure 1. N parameter represents the number of hash table
records, where each record is a 4 byte wide (32-bit memory
pointer) resulting in LZ4 hash table size formula 2V+2. The
compression ratio is changing according to the change of the
N parameter. A sweet spot has been found for the N parameter
in the range of 12-14 (4096-16384 records respectively).

TABLE 1
AVERAGE LZ4 COMPRESSION RATIO VS. HASH TABLE SIZE VS. IMAGE
COLOR DEPTH AND COLOR ENCODING [18].

Encoding N 8 10 11 12 13 14
8-bit RGB 0,686 | 0,669 | 0,655 | 0,643 | 0,636 | 0,632
24-bit RGB 0,914 | 0,905 | 0,902 | 0,899 | 0,898 | 0,897
32-bit RGB 0,863 | 0,850 | 0,845 | 0,841 | 0,839 | 0,838
48-bit RGB 0,991 | 0,989 | 0,988 | 0,988 | 0,988 | 0,987

SDI 20-bit YCbCr | 0,883 | 0,878 | 0,874 | 0,871 | 0,868 | 0,867

F. LZ4 for IP Packet Compression

LZ77 (and the successors like LZ4) can achieve [2]-[4],
[13], [14] the throughput of 10 Gbps or more. The minimal
requirement for 10 Gbps throughput in an FPGA design is
a 64-bit data bus clocked at 156.25 MHz. We have to ensure
that the compression design will be able to process 64-bit data
in each clock cycle.

The maximum time for data loading into an input buffer
will be 1150 clock cycles (9000 byte is the maximum payload
size [15] of a jumbo packet further divided by 64-bit datapath
size). The hash table sweet spot begins at 1024 records and

Commpression Ratio vs. Image Color Depth

Simulation of IP Jumbo Packet Compression

Average Compression Ratio

8 10 12 14 16 18 20
N -Hash Table Size Parameter (Formula 2(N+2))

=@ 48-bit RGB == 32-bit RGB 24-bit RGB == 8-bit RGB =#== SDI 20-bit YchCr

Fig. 1. The dependency of the compression ratio and the dictionary size
during the simulated LZ4 compression of IP jumbo packets [18].

ends at 4096 records. Its unreasonable to create a hash table
larger than the input buffer. The size of 1024 records is the
largest hash table (dictionary) suitable for (re)initializing by
the linear memory passage (a simple counter can be used)
with the minimum impact to FPGA resources. For larger hash
table sizes, status flags indicating that a given table item has
been written can be used, but the impact on FPGA resources is
much bigger, causing the overall design size to be increased by
300% (for N = 10). For a higher N parameter, the overhead
will be even much higher.

G. Problem Definition

Our research is focused on low-latency and high-throughput
real-time multimedia compression applications. Our assump-
tions and experiments with the hardware based version of the
LZ4 compression algorithm resulted in to the data flow and
dependency analysis. This analysis has shown the dictionary
initialization process a weak spot that increases the latency
significantly.

II. METHODS FOR MAINTAINING VALID DICTIONARY
CONTENT

There are two fundamental methods for maintaining valid
dictionary records [21], the linear passage and the status
register field. Both methods are widely used in FPGA de-
signs. They differ to each other in speed (design frequency),
(re)initialization time (latency), required resources and suit-
ability for particular use cases. We assume that the evaluated
dictionary (memory) is initialized with one constant value.

A. Linear Passage

The linear memory passage is a fundamental method for
(re)initializing memory to a default (constant) value [22]. The
fundamental part is a counter with the same width as the mem-
ory address vector, thus all addresses are generated (including
other control signals like write enable) for the (re)initialization
purpose. The data input port (vector) is multiplexed by the
default value during the (re)initialization process.

Advantages of the linear passage method are: a simple
and straightforward design and low resources requirement.

Disadvantages are: that the (re)initialization process requires
a lot of clock cycles to pass through all addresses and that the
adder used by a counter has a long carry chain that limits the
maximum design frequency. These two disadvantages increase
latency of the design.

B. Flip-Flop Based Status Register File

The second approach [21] is flip-flop based status register
file, where each flip-flop preserves a bit wide flag indicating
the status of the related memory cell (written or not written).
When a memory read occurs before a write operation, the
memory output will be multiplexed to the default read value.

Advantages of the flip-flop based approach are higher op-
erating frequency than with the linear passage and the latency
of one clock cycle, because all flip-flops can be effectively
cleared in parallel. Disadvantages are the exponential growth
of required resources with respect to the memory address
vector width. When a large memory is used, the operating
frequency will drop significantly due to FPGA routing and
synthesis issues.

III. OUR APPROACH

In this section, we present an alternative way for storing
informations inside FPGA without using flip-flops and we
describe our approach in detail .

A. Alternative Ways for Storing Information Inside FPGA

Flip-flops are not the only way for storing information
inside FPGA. We designed our solution with Xilinx FPGA
resources [23], but there are no restrictions for the use with
Altera FPGAs. A Configuration Logic Block (CLB) is an
elementary FPGA block, consisting of two slices. Each slice
consists of four Look-Up Tables (LUTs) and eight flip-flops.

30% of LUTs in Xilinx FPGAs have three modes of
operation [23]. The first is the default look-up table designed
for realizing a combinatorial logic with up to 6 inputs and one
output. The second mode is a SRL mode where the LUT is
transformed into a shift register with up to 32-bits without set
or reset abilities. This can be considered as a disadvantage.
The last mode of operation is distributed memory, where the
LUT is turned into a small RAM consisting up to 64x1-bit
single port memory. The memory capacity and the access port
count can be scaled up to 256x1-bit single port or 64x1-bit
quad port distributed memory within one slice [23].

B. Distributed Memory Based Solution

Distributed memory features a higher density (256 bits)
per slice than flip-flops (8 bits). The amount of resources is
doubled when a CLB is considered. The high dense design
will make a routing process easier.

Distributed memory can not be cleared in one clock cycle
like a flip-flop based approach and requires a linear passage for
clearing all bits. The latency of the distributed memory based
design is limited to 64 clock cycles in our particular example.
The limit can be computed as Latency = 2-UTImputs Dye
to FPGA parallelism, all distributed memory blocks can be
cleared in parallel.

The asymptotic computational complexity is the same as in
the flip-flop based approach because the latency is independent
from the problem size (memory address vector width). The
same idea can be applied to the consumed resources, when
both methods require an exponential amount of resources
related to the memory address vector width. Both methods are
equivalent from the asymptotic complexity point of view [24].

C. Elementary Block Design

The elementary block (EB) design (depicted in Figure 2)
consists from a distributed memory block of 64-bit size, where
each bit represents the status flag (written or not written). The
second part is an address multiplexer, where one address input
is used to the standard operation mode and the second input
is dedicated to the (re)initialization mode. The reset signal is
used for switching the multiplexer, the write enable and the
input data signal during the process of (re)initialization.

ADR STD 6

L X-LEEN el sag AR

RESET @ {>ODI§4X[:3LC?UT WRITTEN
v o OR [—fwe

cx >cLk

Fig. 2. The inner architecture of the elementary block.

D. Architecture of the Status System

The architecture of the status system consists from five main
blocks.The block diagram of the architecture is depicted in
Figure 3. The first part is a set of multiple elementary blocks
corresponding to the required main memory (dictionary) size.
The second part is the output selection logic used for picking
the right elementary block output (by masking outputs).

The third part is the memory address splitter for splitting the
memory address vector into two parts. The lower part (6 bits
according to the number of LUT input ports) is forwarded
directly to the elementary blocks as the standard operation
mode address. The upper part is forwarded to the fourth block
denoted as EB SEL. The EB SEL is an acronym for the
elementary block selector, thus EB SEL is the address decoder.

The fifth and the last block is the modulo 64 counter
generating the address range for all elementary blocks during
the (re)initialization process.

E. Testing Setup

We developed the design implementing all the three men-
tioned approaches (linear passage, flip-flop array and dis-
tributed memory based approach) with a unified interface (see
Program 1).

CE(n..0)

CE(n)
0

=

EB
SEL

A

L

— o
[/ fon

(w61

CE(0)

ADR_STD
3

SPLIT

(w0 ADR(5..0)

WR|TTEN
S

CNT
M64

RST EN CLK]|

ADR_CLR
5

RESET
o

\A 4

=
CLK

Fig. 3. Architecture of the LUT based status flag system.

Program 1 A unified VHDL interface for all implementation

types.

entity top is port (
clk, reset, we in std_logic;
adri in std_logic_vector (W-1 downto 0);
din in std_logic_vector (35 downto 0);
dout out std_logic_vector (35 downto 0);
written out std_logic);

end top;

The implementation type and some other parameters (such
as LUT size) are set by generic constants. The design proper-
ties and assumptions are the following:

e LUT has 6 inputs,

e A memory cell width is 36 bits (one of the native
BlockRAM widths [25], intended for simulating a 32-
bit memory pointer like software version of LZ4 does,
this dictionary cell width has been used elsewhere [26]),

o W parameter stands for the intended memory address
vector width and defines the memory capacity (2" =
36bits),

« The output multiplexer is not implemented in the flip-flop
based approach and distributed memory based approach
(we prefer the status flag to the default value for handling
by a control finite state machine). The default value de-
tector is not implemented in the linear passage approach
as a compensation,

o The design input and output signals are buffered with
flip-flops,

o The synthesis strategy favors the design speed,

Frequency [MHz]

6 8 10 12 14 16 18 20

Memory address vector width "W" [b]

® DISTRIBUTED
¢ LINEAR
FLIP-FLOP

—— Approximation of the DISTRIBUTED approach
——— Approximation of the LINEAR approach
Approximation of the FLIP-FLOP approach

Fig. 4. The relation between maximum design frequency and the W parameter
across all approaches.

1000000
100000
10000

1000

Slices [1]

=
o
o

=
o

[

6 8 10 12 14 16 18 20

Memory address vector width "W" [b]

® DISTRIBUTED
¢ LINEAR
FLIP-FLOP

—— Approximation of the DISTRIBUTED approach
—— Approximation of the LINEAR approach
Approximation of the FLIP-FLOP approach

Fig. 5. A relationship between the design FPGA resources consumption and
the W parameter across all approaches.

o The frequency is measured on a fully routed design.

The design has been synthesized by the Xilinx ISE toolset
(14.7 version) on a 6-core Intel Xeon E5-1650 v3 (15 MB
Cache, 3.50 GHz), 32 GB DDR4 and SSD drive. The selected
FPGA chip has been Virtex-7 690T (XC7V690T-2FFG1158).
This chip is the highest density FPGA included in our Xilinx
ISE license.

F. Results

The resource consumption, achieved frequency and latency
are summarized in Table II and visualized in charts Figure 4
(speed comparison) and Figure 5 (FPGA resources consump-
tion).

The evaluation can be divided into three parts based on
value of the W parameter. For W in the range 6-10 we see an
advantage of the distributed memory based solution, beating
other approaches in the maximum achieved frequency and it
consumes the same or less amount of resources. For W in
the range of 11-15 the distributed memory based solution has
an advantage to the flip-flop based approach in the maximum
frequency and lower FPGA resources utilization.

The flip-flop based solution can not even be synthesized if
the W parameter was equal or greater than 16. This behavior
was probably caused by the inefficiency of the synthesis tool
(Xilinx XST) to synthesize such a large design. When the W
parameter was equal or greater than 17, a significant drop of

Linear passage approach
Address width ”W” 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Slices 96 85 93 100 111 110 112 118 122 249 287 393 194 631 347
LUTs 179 185 191 196 197 | 203 | 206 211 215 386 457 533 299 805 568
Registers 50 52 54 56 59 61 63 65 67 75 76 95 79 90 91
Frequency [MHz] 543,8 | 543,8 | 543,8 | 477,3 | 543,8 | 529,7 | 489,5 | 444,0 | 388,7 | 395,6 | 328,3| 200,5| 2223 182,0 163,5
Latency [Cycles] 64 128 | 256 | 512| 1024 | 2048 | 4096 | 8192 | 16384 | 32768 | 65536 | 131072 | 262144 | 524288 | 1048576

Flip—flop based approach
Address width ”W” 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Slices 89 137 155 | 268 | 453 | 1157 | 2205 | 3776 | 10108 | 15774
LUTs 221 309 | 478 837 | 1542 | 3417 | 6562 | 13850 | 31750 | 57582
Registers 111 176 | 303 | 594 | 1148 | 2223 | 4157 | 8270 | 16607 | 32928
Frequency [MHz] 543,8 | 523,8 | 495,3 | 408,8 | 340,8 | 268,2 | 171,5 | 167,1 | 161,1 | 126,0
Latency [Cycles] 1

Distributed memory based approach
Address width ”W” 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Slices 73 79 77 75 98 123 | 206 337 488 984 2364 3686 7033 13104 24987
LUTs 146 151 159 171 209 | 235 | 377 471 912 | 1889 3657 6737 | 13341 25227 55607
Registers 54 57 63 73 91 129 195 239 619 | 1118 2176 71 72 190 74
Frequency [MHz] 543,8 | 543,8 | 543,8 | 477,3 | 543,8 | 543,8 | 512,6 | 508,6 | 480,1 | 4374 | 3432 1234 1243 108,9 50,2
Latency [Cycles] 64
*Grey colored results has been extrapolated due to inability of Xilinx XST to synthesize such a large design.
TABLE II

PROPERTIES OF MEASURED DESIGN LIKE LOGIC GATES COUNT, FREQUENCY, ECT. DEPENDING ON THE W PARAMETER.

frequency and register count occurred. The synthesis tool (the
Xilinx XST from Xilinx ISE 14.7 toolset) probably broke the
locality of the references principle (counter modulo 64 was
not replicated as for designs with the W parameter smaller
than 16).

The linear passage approach shows the best results of
resource consumption and decent frequency for higher values
of the W parameter, but the latency (2" clock cycles) is
enormous across the whole range. The latency is 1 clock cycle
for the flip-flop based approach and 64 clock cycles for the
distributed memory approach.

Although the latency of our approach 64 clock cycles is
higher than in the flip-flop based approach is still smaller
than the latency of the compression block. The compression
time (loading data + compression itself + unloading data) will
usually take more time than the dictionary (re)initialization in
our case where jumbo packets have been used. The latency of
the linear passage approach will not satisfy the requirements
for higher values of the W parameter, which are typical for
desired dictionary capacities (the latency should be less than
1150 clock cycles, but the less, the better).

IV. CONCLUSION

We presented a novel approach for maintaining valid con-
tent of an FPGA embedded memories, which is suitable for
implementing a dictionary for lossless compression algorithms
like LZ77 or LZ4, which is suitable for real-time IP packet
compression applications. We analyzed the most widely used
approaches (flip-flop array and linear passage) and their ad-
vantages and disadvantages. The novel approach is based on
a distributed memory mode of a Xilinx LUT blocks and it
combines the advantages of both previously known approaches
with only one minor disadvantage.

Our approach has the same asymptotic time complexity
as the flip-flop approach. However, our approach has better
performance, resource utilization and synthesis abilities

Our approach outperforms the linear passage based ap-
proach in the achieved frequency (with the exception of
synthesis issues for address width over 16) and the latency
across the measured range. The linear passage approach is out-
performed even in resource utilization, when the W parameter
is equal or less than 10.

The only minor disadvantage of our approach is a slightly
increased latency of 64 clock cycles when compared to the
1 clock cycle of the flip-flop based approach, but this not an
issue issue for the target application in lossless compression
algorithms.

Our approach can be used for the effective implementation
of a dictionary for compression algorithms in a mid-density
memory like Xilinx UltraRAM feature [27], which has in-
creased the FPGA memory density by 600%. This particular
use case can be covered by the range 15-20 of the W param-
eter. Our approach can be used for FPGAs of other vendors
like Altera. We plan to continue with our measurements on
different platforms (Altera based) or synthesis tools such as
Xilinx Vivado or Altera Quartus.

ACKNOWLEDGMENT

This work has been partially supported by the CESNET
Large Infrastructure project (LM2010005) financed by the
Ministry of Education, Youth and Sport of the Czech Republic
and by the grant SGS16/121/OHK3/1T/18.

REFERENCES

[1] J. Ziv and A. Lempel, ”A universal algorithm for sequential data com-
pression,” in IEEE Transactions on Information Theory, vol. 23, no. 3,
pp. 337-343, May 1977. doi: 10.1109/TIT.1977.1055714

[2] Mehboob, R.; Khan, S.A.; Ahmed, Z.; Jamal, H.; Shahbaz, M.,
“Multigig lossless data compression device,” Consumer Electronics,
IEEE Transactions on , vol.56, no.3, pp.1927,1932, Aug. 2010, doi:
10.1109/TCE.2010.5606348

[3] El Ghany, M.A.A.; Salama, A.E.; Khalil, A.H., "Design and Imple-
mentation of FPGA-based Systolic Array for LZ Data Compression,”
Circuits and Systems, 2007. ISCAS 2007. IEEE International Sympo-
sium on , vol., no., pp.3691,3695, 27-30 May 2007, doi: 10.1109/IS-
CAS.2007.378644

[4] Papadopoulos, K.; Papaefstathiou, I.,
Hardware Implementation of a High-Speed Compressor,”

“Titan-R: A Reconfigurable
Field-

Programmable Custom Computing Machines, 2008. FCCM ’08.
16th International Symposium on , vol, no., pp.216,225, 14-
15 April 2008 doi: 10.1109/FCCM.2008.14 [Online]. Available:

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4724904

[S] M. Stohanzl, Z. Fedra and M. Bobula 1 Gbps Ethernet TCP/IP and
UDP/IP Header Compression in FPGA, in Proceedings of The Seventh
International Conference on Systems and Networks Communications,
ICSNC 2012, Lisbon, 2012, pp. 136142.

[6] Collet, Y.: RealTime Data Compression: Development blog on compres-
sion algorithms. [Online]. Available: tinyurl.com/qc9yve4

[7] Oberhumer, M.:LZO real-time data compression library [Online]. Avail-
able: http://www.oberhumer.com/opensource/lzo/

[8] Google Inc.: Snappy - A fast compressor/decompressor. [Online]. Avail-
able: https://google.github.io/snappy/

[9] Seipp, A.: QuickLZ 1.5.x compression library [Online]. Available:
http://www.quicklz.com/

[10] J. Kane and Q. Yang, "Compression Speed Enhancements to LZO
for Multi-core Systems,” Computer Architecture and High Performance
Computing (SBAC-PAD), 2012 IEEE 24th International Symposium on,
New York, NY, 2012, pp. 108-115. doi: 10.1109/SBAC-PAD.2012.29

[11] Fiedler, O.: LZ-Family Data Compression Methods, Bachelor Thesis,
2014. Available: https://dspace.cvut.cz/handle/10467/24453

[12] Solomon, D.: Data Compression: The Complete Reference (Fourth ed.).
20007, Springer. ISBN 978-1-84628-602-5.

[13] B. Sukhwani, B. Abali, B. Brezzo and S. Asaad, "High-Throughput,
Lossless Data Compresion on FPGAs,” Field-Programmable Custom
Computing Machines (FCCM), 2011 IEEE 19th Annual Interna-
tional Symposium on, Salt Lake City, UT, 2011, pp. 113-116. doi:
10.1109/FCCM.2011.56

[14] J. Fowers, J. Y. Kim, D. Burger and S. Hauck, A Scalable High-
Bandwidth Architecture for Lossless Compression on FPGAs,” Field-
Programmable Custom Computing Machines (FCCM), 2015 IEEE 23rd
Annual International Symposium on, Vancouver, BC, 2015, pp. 52-59.
doi: 10.1109/FCCM.2015.46

[15] M. Bencivenni et al., "Performance of 10 Gigabit Ethernet Using
Commodity Hardware,” in IEEE Transactions on Nuclear Science, vol.
57, no. 2, pp. 630-641, April 2010. doi: 10.1109/TNS.2009.2032264

[16] M. Bartik, S. Ubik and P. Kubalik, “LZ4 compression algo-
rithm on FPGA,” 2015 IEEE International Conference on Electron-
ics, Circuits, and Systems (ICECS), Cairo, 2015, pp. 179-182. doi:
10.1109/ICECS.2015.7440278

[17] Ruan Delgado Gomes, Yuri Gonzaga Gonalves da Costa, Lucenildo
Lins Aquino Jnior, Manoel Gomes da Silva Neto, Alexandre Nbrega
Duarte, and Guido Lemos de Souza Filho. 2013. A solution for trans-
mitting and displaying UHD 3D raw videos using lossless compression.
In Proceedings of the 19th Brazilian symposium on Multimedia and
the web (WebMedia ’13). ACM, New York, NY, USA, 173-176. doi:
10.1145/2526188.2526228

[18] Bartik, M.; Ubik, S.; Kubalik, P., "Rychlé bezztratové kompresni al-
goritmy,” Sbornik piispévki PAD 2015, ISBN 978-80-7454-522-1, pp.
31-36, 2—4. September 2015

[19] Jiri Halak, Michal Krsek, Sven Ubik, Petr Zejdl, and Felix Nevrela.
Real-time long-distance transfer of uncompressed 4k video for remote
collaboration. Future Generation Computer Systems, 27(7), pp. 886-892,
2011. CineGrid: Super high definition media over optical networks. doi:
10.1016/j.future.2010.11.014

[20] CineGrid Exchange. [Online]. Available: http://cinegrid.org/

[21] M. Stohanzl and Z. Fedra, "The FPGA implementation of dictionary;
HW consumption versus latency,” Telecommunications and Signal Pro-
cessing (TSP), 2013 36th International Conference on, Rome, 2013, pp.
82-85. doi: 10.1109/TSP.2013.6613896

[22] Rigler, S.; Bishop, W.; Kennings, A., "FPGA-Based Lossless Data Com-
pression using Huffman and LZ77 Algorithms,” Electrical and Computer
Engineering, 2007. CCECE 2007. Canadian Conference on, vol., no.,
pp.1235,1238, 22-26 April 2007, doi: 10.1109/CCECE.2007.315

[23] Xilinx Inc.: UG474 - 7 Series FPGAs Configurable Logic Block.
[Online]. Available: http://tinyurl.com/jzt3dlc

[24] Tvrdik, P.: Parallel algorithms and computing (Second ed.). Prague:
CTU, 2009. ISBN 978-80-01-04333-2.

[25] Xilinx Inc.: UG473 - 7 Series FPGAs Memory Resources. [Online].
Available: http://tinyurl.com/zufgh9w

[26] NAQVI S. Optimized RTL design and implementation of LZW
algorithm for high bandwidth applications. [Online]. Available:
pe.org.pl/articles/2011/4/68.pdf

[27] Xilinx Inc.. WP447 - UlraRAM: Breakthrough Embedded
Memory Integration on UltraScale+ Devices. [Online]. Available:
http://www.xilinx.com/support/documentation/white_papers/wp477-
ultraram.pdf

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received September 12, 2020, accepted September 27, 2020, date of publication October 8, 2020, date of current version October 19, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3029691

An In-Sight Into How Compression Dictionary
Architecture Can Affect the Overall
Performance in FPGAs

MATEJ BARTIK /12, (Member, IEEE), TOMAS BENES', (Student Member, IEEE),
AND PAVEL KUBALIK'

I Department of Digital Design, Faculty of Information Technology, Czech Technical University in Prague, 160 00 Prague, Czech Republic
2Department of Technology for Network Applications, CESNET, 160 00 Prague, Czech Republic

Corresponding author: Matéj Bartik (bartimat@fit.cvut.cz)
This work was supported in part by the Czech Technical University Project Design, Programming and Verification of Embedded Systems

under Grant SGS20/211/0HK3/3T/18, and in part by the project E-infrastructure CESNET — Modernization under Grant
CZ.02.1.01/0.0/0.0/16013/0001797.

ABSTRACT This paper presents a detailed analysis of various approaches to hardware implemented
compression algorithm dictionaries, including our optimized method. To obtain comprehensive and detailed
results, we introduced a method for the fair comparison of programmable hardware architectures to show the
benefits of our approach from the perspective of logic resources, frequency, and latency. We compared two
generally used methods with our optimized method, which was found to be more suitable for maintaining
the memory content via (in)valid bits in any mid-density memory structures, which are implemented in
programmable hardware such as FPGAs (Field Programmable Gate Array). The benefits of our new method
based on a “Distributed Memory” technique are shown on a particular example of compression dictionary
but the method is also suitable for another use cases requiring a fast (re-)initialization of the used memory
structures before each run of an algorithm with minimum time and logic resources consumption. The
performance evaluation of the respective approaches has been made in Xilinx ISE and Xilinx Vivado toolkits
for the Virtex-7 FPGA family. However the proposed approach is compatible with 99% of modern FPGAs.

INDEX TERMS Compression algorithm, compression dictionary, FPGA, hash table, .Z4, 1L.Z77, memory

architecture, performance comparison, status register.

I. INTRODUCTION

Lossy or lossless high-speed and low-latency compression
is important for many applications in real-time networking,
video transmissions or disk storage. The research in lossless
compression has led to the development of new types of
devices that perform compression in real-time. Over the last
decade, the throughput of these devices has increased up to
44.8 Gbps (Gigabit per second) [1] from a gigabit speed. The
progress has been made by improving designs step by step
with new techniques or tweaks that have made these designs
more efficient in terms of speed, logic resources utilization
or compression ratio. We focus on the improvement of the
specific area of compression algorithms — compression dic-
tionaries and how to increase their overall performance.

The associate editor coordinating the review of this manuscript and

approving it for publication was Remigiusz Wisniewski

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Il. BRIEF MOTIVATION AND CONTRIBUTIONS

In this paper, we focused on exploring new ways of improving
the overall performance of hardware-implemented compres-
sion algorithms. We put emphasis on these design properties:

« maximum throughput,

o maximum frequency,

o resources utilization,

« computation latency,

« predictability.

The mentioned design properties have no direct impact on
the compression ratio; however, they may have an indirect
effect, such as using an original amount of logic resources
to implement a larger dictionary when a resource-efficient
architecture was selected over the original one (due to saved
resources).

In some specific use cases, the compression ratio may
be less important than the design throughput, latency, and
predictability. These requirements are considered to be

183101

IEEE Access

M. Bartik et al.: In-Sight Into How Compression Dictionary Architecture Can Affect the Overall Performance in FPGAs

fundamental for Real-Time systems [2]. To achieve a great
compression ratio, some sophisticated techniques for a match
search are usually used (re-hashing principle, for example).
On the other hand, these sophisticated techniques introduce
variability in data processing, which results in stalls in a
compression engine datapath; thus, computation latency is
variable and unpredictable.

Several hardware architectures focused on maximizing
the design throughput have been introduced in the past few
years [1], [3], [4]. On the other hand, no current architecture
has emphasized lowering an architecture overhead to reduce
the respective architecture computation latency or resource
utilization. It has been identified [5] that the overhead (a
compression dictionary initialization) necessary for the com-
pression process (computation phase) could require more
time than the compression itself.

Our goal is to reduce the computation latency and resource
utilization while increasing the operating frequency by
improving the compression dictionary architecture.

The contributions of the paper are:
o« We analyzed three existing techniques suitable for

implementing a compression algorithm dictionary,
including our new technique [5].

« We created a new methodology for evaluating the ana-
lyzed techniques.

« We performed an experimental test to obtain results.

e A conclusion has been made that our method (““Dis-
tributed Memory”’) shows better results than the other
techniques in terms of maximum frequency, computa-
tion latency, and amount of required logic gates for our
specific use case. This statement has been supported by
quantitative analysis and experimental results.

Ill. THEORETICAL BACKGROUND

Implementations of lossless compression algorithms in hard-
ware (in both FPGAs and ASICs — Application Spe-
cific Integrated Circuit) appeared right after the moment
when software implementations were unable to satisfy the
desired performance requirements such as throughput or
latency. In the last two decades, a device realizing real-time
compression of network communication using IP (Internet
Protocol) principles became a widespread use case. The
authors would like to summarize the properties of such
implementations [1], [3], [7]-[32] as follows:

o« The majority of designs are based on the LZ77
algorithm [33] or derived algorithms such as LZ78 [34]
or LZW [35].

o The Ilatest designs experiment with new derived
algorithms focused on better compression ratio
(LZMA [12]-[14], [36]) or speed (LZ4 [4], [31], [32],
[37D.

o The compression speed is improved by massive pipelin-
ing or parallelization (systolic arrays) [24] of the match
searching mechanism [38].

o There is a direct proportion between the compression
ratio and the size of a compression dictionary. However,

183102

most of the mentioned implementations use (FPGA)
embedded memory blocks (kilobytes in size) rather than
external memory [8] such as DRAM (Dynamic Ran-
dom Access Memory) or SRAM (Static Random Access
Memory) chips.

o Compression dictionaries use three fundamental
approaches: CAM (Content Addressed Memory) [39],
hash table [40], and small (shift) register array for stream
operating implementations [9], [17], [32], where the
dictionary stores a few processed data words.

e Many implementations have small (size of kilobytes
on average) input/output buffers optimized towards a
block-oriented compression that makes them suitable for

IP packet oriented compression [31].
A representative example of a hardware implementation of

a lossless compression algorithm has the following features:
It is based on LZ77 with massive parallelization of a match
search mechanism with particularly small data/compression
dictionary buffers.

A. LZ77 PRINCIPLES AND THE IMPACT

OF THE DICTIONARY

LZ77 is a universal compression algorithm that is asym-
metrical (the compression requires more time or resources
than decompression) and single pass (data to be compressed
are processed only once). LZ77 is a fundamental lossless
compression scheme used in many further algorithms such as
DEFLATE [41] or GIF (Graphics Interchange Format). The
technique of the “Sliding Window™ [6] for searching match
candidates is used by the LZ77 algorithm (see Fig. 1).

The sliding window is usually divided into a search buffer
(a dictionary) and a look-ahead buffer. The longest found
prefix of the look-ahead buffer starting in the search buffer
is encoded as a triplet (i, j, X), where i is the distance of
the beginning of the found prefix from the end of the search
buffer; j is the length of the found prefix; and X is the first
character after the prefix in the look-ahead buffer. The size
(and the architecture) of the dictionary has a great influence
on the compression ratio. A larger or better organized dic-
tionary improves the compression ratio of the implemented
compression algorithm because of the increased probability
of finding a match over the larger sliding window [5].

There are three most common architectures of a dictionary.
We would like to summarize their advantages and disadvan-
tages from the perspective of their suitability for IP packet
compression.

1) SHIFT REGISTERS FOR STREAM OPERATING
IMPLEMENTATIONS

This type of a dictionary focuses on maximum performance
in terms of operating frequency and the implementation
architecture is carefully designed to process data in a (deep)
pipeline to achieve maximum throughput. This seems to
be an optimal solution for IP packets aware compression
(a continuous stream of IP packets) with minimal latency
[9]. [32], but the compression ratio is quite low compared to

VOLUME 8, 2020

M. Bartik et al.: In-Sight Into How Compression Dictionary Architecture Can Affect the Overall Performance in FPGAs

IEEE Access

Dictionary

l

InpUt — _ NOt enCOded sequence

{

Sliding window

FIGURE 1. LZ77 sliding window technique. [6].

other approaches. The depth of the pipeline limits the sliding
window of the dictionary to several words of processed data.
The dictionary content does not have to be initialized because
the match is only being searched in the pipelined data.

2) CONTENT ADDRESSED MEMORY (CAM)

The CAM based approach utilizes data spacial locality
where the dictionary can accommodate more entries if the
processed data are highly repetitive. The disadvantage is
that each CAM memory cell is usually implemented by
flip-flops and requires its own comparator for searching a
match, requiring many logic resources. Therefore the enor-
mous logic consumption consequently slows down the entire
design by reducing the maximal operating frequency of such
design [42].

Several techniques [42], [43] were introduced to improve
some design properties such as reducing the amount
of (some) required logic resources via the usage of other
design primitives like embedded memory block. Another
disadvantage is a latency of five clock cycles for a search
operation.

On the contrary, a CAM based dictionary could easily be
initialized via a dedicated reset/clear input of these flip-flops.
Overall, we found the usage of CAM based dictionary not
viable for our specific case requiring low-latency operations.

3) HASH TABLE

The hash table principle became popular when fast, modern
compression algorithms (LZ4 [37], LZO [44]) appeared. The
common idea of these algorithms is improving the throughput
by increasing the width of the processed data word (the word
width is 32 or 64 bits to match the ALU (Arithmetic Logic
Unit) register width in modern processors [45]). These word
widths are too large to be used as a direct address to the
dictionary (the dictionary will have 4 gigabytes for the 32-bit
word width). The CAM technique will make these algorithms
slower [46] but fairly large dictionaries became required for
a decent compression ratio. This led to implementing the
dictionary as a hash table [1], [3]. The important features of
a hash table implementation are the following:

« The hash algorithm can be extremely fast (just a constant
multiplication in LZ4 [31], [47], the result is trimmed
to an appropriate number of address bits to match the
dictionary size).

VOLUME 8, 2020

e Produced hashes can collide with each other reduc-
ing the compression ratio a little (but saving memory
required for the dictionary).

« Dictionaries are usually implemented in embedded
memory blocks. In our particular example, the used
Xilinx BlockRAMs are RAM based blocks with den-
sities of 36 kilobits [48]. The content (a dictionary)
in embedded/DRAM memory cannot be cleared in a
single clock cycle [48], [49] like flip-flop (SRAM)
based memory. This embedded memory block design
is a trade-off between the memory capacity and the
number of transistors required for the memory cell
matrix [48].

« [P Packet optimized designs require clearing the entire
dictionary before each run of the implemented com-
pression algorithm (each IP packet is considered as one
block).

B. REQUIREMENTS FOR THE DICTIONARY DESIGN

The requirements are set with emphasis to the particular
use case: the IP protocol packet compression accelerators
implementing LZ77 algorithm.

o The dictionary design should be suitable for IP packet
compression (block compression oriented).

¢ The maximum payload will be 9 kB (the maximum size
of a jumbo packet) [50].

o 10 Gbps throughput requirement leads to a 64-bit dat-
apath clocked at 156.25 MHz at least because a design
with 8-bit datapath will require a 1.25 GHz system clock
which is significantly above the FPGA limits.

o The time required for loading the processed data from
the buffer is 1150 clock cycles in the worst case.

o The dictionary size should be in the range of 1k—16k of
entries (larger dictionary makes no sense compared to
input/output buffer size).

o The dictionary will be implemented as a hash table.
Therefore, we have to deal with the problem of poten-
tially slow (re-)initialization.

The problem to be solved: the dictionary will be imple-
mented as embedded/DRAM based memory. We have to find
an efficient method (in terms of time) for (re-)initialization
of the dictionary content. The efficiency in terms of logic
resources can lead to a trade-off with a time sub-optimal
solution.

183103

IEEE Access

M. Bartik et al.: In-Sight Into How Compression Dictionary Architecture Can Affect the Overall Performance in FPGAs

Offloading
data and
compression
block
clean-up

FIGURE 2. Common phases of a hardware implemented compression algorithm.

C. COMPUTATION TIME OF A COMPRESSION
HARDWARE BLOCK

A general (hardware) implementation of a compression algo-
rithm has several phases where most of them are not orig-
inally related to the compression itself. However, they are
needed for proper operation of the compression block. Some
of these phases (see Fig. 2) can overlap each other because
they were implemented [1], [3], [17], [26] in a smart way.
Further details about each phase follow:

1) LOADING DATA INTO AN INPUT BUFFER

The time required for storing data into the input buffer is
dependent on the type of application, and on the size and
throughput of the respective buffer. The (maximum) required
time [51] can easily be determined as a ratio between the
throughput and the size. This phase can run in parallel with
the next phase (initialization); however this phase is essential
for proper operation of the compression block.

2) COMPRESSION BLOCK INITIALIZATION

The initialization of the compression block is intended to
set-up default values of design registers or any other data
structures like a compression dictionary, acquiring the size
of the data, etc.

Despite the fact that the initialization phase can run in
parallel with the data loading phase, the computational time
of this phase is heavily affected by the overall architecture of
the particular design. Initialization of complex data structures
(used by a compression dictionary, for example) could easily
be more time consuming than the data loading phase.

3) COMPRESSION

The most important phase is the compression itself, which is
supposed to search for matches in a compression dictionary
and encode respective output with particular examples of LZ
based algorithms [38]. The maximum computation time can
be estimated as the ratio between the input buffer size and the
respective throughput of the compression phase. The compu-
tational time could be lower than the time of the initialization
phase in our particular case (see Section I1I-B).

4) SAVING COMPRESSED DATA TO AN OUTPUT BUFFER

This phase is intended to store the compressed data into an
output buffer. This functionality is usually implemented in
the compression phase, therefore, these phases can overlap.
In certain situations, the compression ended, but some data

183104

are still not copied to the output buffer. It is obvious that the
computational time will be low.

D. SUMMARY

The conclusion is quite simple — calculating the overall
latency is not simple, because it involves latencies of some
other phases besides the compression phase as the primary
function. The time (latency) required for transferring the
processed data to/from input/output buffers has the same
lower bound asymptotic complexity as the compression itself,
the Q(n). The question is, which compression dictionary
architecture can match or decrease such lower bound asymp-
totic complexity, especially when the required dictionary can
be larger than the buffers [5]?

IV. STATE OF THE ART - EVALUATED METHODS FOR
INITIALIZING A DRAM BASED MEMORY STRUCTURES

We have selected a hash table for implementing a dictio-
nary for a lossless compression algorithm. The choice has
been made based on the analysis in the previous chapter.
We are looking for a design for IP packet compression
based on LZ77 with a minimum throughput of 10 Gbps per
implemented block for applications in 10 gigabit ethernet
networks. We put emphasis on the latency of the dictionary
(re-)initialization phase.

We assume optimizations and techniques introduced by
modern fast lossless compression, such as L.Z4, can improve
the ratio between logic gates count and throughput. This
might allow implementing multiple compression blocks in
a single FPGA. In the following sections, we will discuss
three alternative techniques suitable for the hash table (imple-
mented using BlockRAMs) based compression dictionary
architecture. These techniques can be used in other architec-
tures that are also BlockRAM based.

A. LINEAR PASSAGE APPROACH
The linear memory passage is a fundamental method for
initializing memory to a default (constant) value [7].

The fundamental part is a counter with the same width as
the memory address vector, thus all addresses are generated
(including other control signals like write enable) for the
(re-)initialization purpose. The data input port (vector) is
multiplexed by the default value during the (re-)initialization
process.

Advantages of the linear passage method are a simple
and straightforward design and low resource requirements.

VOLUME 8, 2020

M. Bartik et al.: In-Sight Into How Compression Dictionary Architecture Can Affect the Overall Performance in FPGAs

IEEE Access

ADR STD s 6
DRCOR) Mox +>IADDiF;tRAM

RESET @ {>OD|S4X§<?UT WRITTEN
E y OR|—pue

cx >{cLk

FIGURE 3. Architecture of the “Elementary Block". [5].

Disadvantages are that the initialization process requires a
lot of clock cycles to pass through all addresses and that the
adder used by the counter has a long carry chain that limits
the maximum design frequency. These two disadvantages
increase the latency of the design. This method is the only
suitable approach for clearing a high density memory (with
millions of entries) such as entire (external) DRAM [52]
chips.

B. FLIP FLOP BASED APPROACH FOR A STATUS REGISTER
The second approach [53] uses a flip-flop based status register
file, where each flip-flop preserves a single-bit wide flag
indicating the status of the related memory cell (written or
not written). When a memory read occurs before a write
operation, the memory output will be multiplexed to the
default read value.

Advantages of the flip-flop based approach are a higher
operating frequency than with the linear passage and the
latency of one clock cycle, because all flip-flops can be effec-
tively cleared in parallel. Disadvantages are the exponential
growth of required resources with respect to the memory
address vector width. When a large memory is used, the oper-
ating frequency will drop significantly due to FPGA routing
and synthesis issues.

C. DISTRIBUTED MEMORY BASED APPROACH

FOR A STATUS REGISTER

We proposed an approach [5], [54] that combines previ-
ous approaches to get as many advantages (like the same
asymptotic complexity [51] requiring less FPGA resources
than the flip flop based approach) and to mitigate as many
disadvantages from both techniques. The idea is to use an
alternative way of storing data in an FPGA-based design
instead of ordinary flip-flops, using the distributed memory
block [55] in our particular case. This approach is comparable
to the LVT (Live Value Table) [56], [57], where the idea is to
split the design into two parts. Each part uses a different type
of memory (flip-flop & BlockRAM) instead of a single type
(flip-flop).

The flip flop based array of single-bit wide flag registers
is split into small segments with the same size as a single
distributed memory block (64-bits for the Xilinx 7-series
architecture). The distributed memory block based design is

VOLUME 8, 2020

divided into two parts: the “Elementary Block™ (EB) and the
“Address Control Logic” (ACL).

1) ELEMENTARY BLOCK

The EB (see Fig. 3) is composed of one distributed memory
block with the size of 64 individual bits (the maximum size
for a single 6-input LUT (Look-Up Table) [55] implementa-
tion). The distributed memory block has to be cleared (ini-
tialized) by the linear passage approach requiring 64 clock
cycles. The linear passage approach also requires a multi-
plexer for switching address vectors between the standard
and initialization mode (selected via the reset signal). The
standard address vector input of the EB is the last (low-
est) six bits of the address range for the status register.
The second (initialization mode) address vector input is ded-
icated to the logic of the linear passage of the ACL block.
The “Written” signal represents the information indicating
whether a particular memory cell had a write request and
the related record in a dictionary contains valid data. The
default value for the initialization of the ‘“Written” signal
is logic zero (therefore, all bits in the distributed memory
block).

2) ADDRESS CONTROL LOGIC
The ACL architecture (see Fig. 4) shows four individual parts

of the status register:
e “CNT M64”— The 6-bits wide counter (counting as

modulo 64) for generating the address vector for the
elementary blocks while the initialization mode is active.

e “SPLIT”& “EB SEL” — The “SPLIT” block splits
the address vector input into the upper and lower part.
The lower part has six bits to match the address range
of the EB. The upper part is forwarded to “EB SEL”
implementing an address decoder. The address decoder
is generating the “Chip Enable” (CE) encoded as one-
hot value for each EB in the design. Consequently, only
one EB is selected at each clock cycle.

o Output Masking — Only the output of the chosen EB is
passed to the “Written” signal via AND/OR logic gates.
Outputs of rest EBs are masked.

V. A QUANTITATIVE ANALYSIS

This section presents a discussion about which design param-
eters have an impact on such compression dictionary design.
The general observed properties for a hardware accelerator
implementing a compression algorithm are:

e compression ratio,

« throughput,

« latency,

« operating frequency,

« amount of logic resources.

As stated earlier in Section III-A, the compression dic-
tionary size significantly affects the respective compression
ratio. In the case of a hardware accelerator, input/output
buffers and compression dictionary are often implemented
using embedded memory blocks (called BlockRAM/M9K

183105

IEEE Access

M. Bartik et al.: In-Sight Into How Compression Dictionary Architecture Can Affect the Overall Performance in FPGAs

EB
=

CE(n..0)
> ADR_STD
\—’ ADR_CLR
CE(n) —————————>reset wrirrenf—>] AND |——]
WE o 2
S| EB ¢ 7
s CE(n)
SEL | 1o
AR ceo <
P>lreser wrmmenf—> AND —]
ADR ADR STD | GE
/
(w-1..0) S P LIT ADR(5..0) (_— P
CE(n-1)
WRITTEN
P| ~0r 510)_|>
OR
P|cor_cir
C NT éDRﬁR [>reser wrirenl——>] AND b——]
L >ck
M64 '
RST EN CLK ™
5; A A . CE(n-2)
RESET <
\H\ [>{ReseT wRiTT > AND >
r_J >ck
> we
CLK CE(0)

FIGURE 4. Architecture of the “Status Register” based on EBs and the ACL. [5].

in the case of Xilinx and Intel/Altera FPGAs, respectively).
Therefore the sizes of (the example) dictionaries in our case
are simulated by modifying the “W”” parameter [5], which
stands for a memory address bus width. The relation between
memory capacity (which accommodates a compression dic-
tionary, for example) and the address width can be expressed
as formula (1). The formula assumes a digital system. There-
fore, the address is a binary number, and the number of entries
is also a power of two (cases where an address range does not
match a number of entries are not considered because they
are rare in digital design).

Memory capacity
W = log; ;
Memory entry width
= logr(Number of memory entries) (D)

183106

The operating frequency and the amount of used logic
resources are also affected by the used FPGA type (techno-
logical parameters).

A. ARCHITECTURE INFLUENCE
The particular architecture of such a dictionary affects the
remaining observed properties, which usually depend on the
used FPGA. In general, the architecture complexity affects
the number of logic resources needed for an implementation
in hardware and properties as such the latency required for
clearing them off. It is assumed that more complex architec-
tures will require a higher amount of logic resources. There
is no such assumption on (theoretical) architecture latency.
These logic resources have to be placed (“floor-
planned”’) [58] in the 2D space of the integrated circuit and

VOLUME 8, 2020

M. Bartik et al.: In-Sight Into How Compression Dictionary Architecture Can Affect the Overall Performance in FPGAs

IEEE Access

interconnected by wires. It is clear that a higher number of
logic resources must occupy a larger area in a silicon. There-
fore the higher the area occupied, the longer the respective
wires will be, and they will contain more junctions.

Consequently, the increased wire lengths and increased
logic gate output load will increase the signal propagation
delay, and thus the maximum operating frequency of such
accelerator will be limited by the “slowest” signal [59]. The
reduced frequency will also reduce the respective throughput
of a compression accelerator.

In the particular case of a hardware compression accelera-
tor, it is a common attitude to design the accelerator to min-
imize the number of (system) clocks; only one clock signal
is being used in most cases. Such a compression accelerator
usually consists of several smaller “building blocks”, for
example: input and output buffers, compression dictionary,
match search unit [38], encoding unit, etc. It is obvious that
the lowest frequency of these “‘building blocks™ will be the
resulting operating frequency of the particular accelerator.
Therefore, the motivation is to design an accelerator where
all blocks are close to each other in terms of frequency to
improve the overall accelerator frequency, thus improving the
performance.

From this perspective, the architecture used for implement-
ing a compression dictionary has an impact on the amount of
required logic resources, thus frequency, and thus the overall
accelerator performance. In case the respective architecture
saves a lot of logic resources (against previously used com-
pression dictionary architecture), it will increase the overall
accelerator frequency. Despite the fact that there is no direct
influence on the compression ratio, a more resource-efficient
architecture could allow hardware designers to implement a
bigger dictionary with the same amount of resources as it was
originally, using to achieve a better compression ratio [5],
[38]. On the other hand, the extra logic resources can also
be used for implementing multiple accelerators with a higher
overall throughput while keeping the same (constrained) area
of an integrated circuit.

B. ESTIMATIONS

The amount of logic resources needed is affected by the
“W?” parameter and the capabilities of the used FPGA for
this estimation. The frequency parameter is usually indirectly
proportional to the amount of logic resources. The latency of
initialization of a compression dictionary is architecture spe-
cific. The compression ratio parameter cannot be estimated
in this particular case.

1) XILINX CONFIGURABLE LOGIC BLOCK (CLB)
ARCHITECTURE

As an abbreviation, FPGA is quite self-explanatory. It is a
giant array of fundamental blocks (CLBs [55] in the Xilinx
case) interconnected by a matrix of wires (FPGA fabric)
which can realize a desired logic function. This principle has
been shared among all major FPGA vendors. CLB can be
divided further into two slices. Each slice consists of four

VOLUME 8, 2020

LUTs and eight flip-flops (registers) plus an interconnection
fabric.

The most common LUT width is 6 bits in most FPGAs
(LUT6). However, some older FPGAs had 4-bit LUTSs
only. Some LUTs have available alternative use cases
such as distributed memory blocks or wide shift registers.
The 6-bit LUT can usually be split further into two 5-bit
LUTs, which are more suitable for implementing less com-
plex logic functions. It seems a wider LUT is not going to
be introduced by FPGA vendors in the near future. Not all
elements in a CLB have to be utilized.

2) LINEAR PASSAGE APPROACH

As stated in the above text, the approach uses a counter
(counter width is equal to the “W” parameter) generating
all addresses (4), which is connected to the BlockRAMs
address input via a multiplexer. The multiplexer switches the
normal and reset operation addresses. The amount of logic
resources can be estimated [59] in the following way: the
counter will require at least “W?” LUTSs and “W?” regis-
ters. The multiplexer will require “W?”” LUTSs only for the
implementation. Therefore the linear passage approach will
likely require several LUTs (2) and registers (3) in total.

LUTpinear = 2% W ()
REGLinear =W (3)
Latencyrinear = 2V,)

3) FLIP-FLOP BASED APPROACH

This approach requires generating an array of registers equal
to the number of entries in a dictionary (2" in our case).
An address decoder is also required to select the individual
register during the operation. Therefore at least one LUT
will be required for each register resulting in estimations (5)
and (6)

LUTFgiip—Fiop = [loge(W)] x 2" o)
REGFip—Fiop = 2" (©6)
LatencyFlip—Flop =1 (7)

4) DISTRIBUTED MEMORY BASED APPROACH

The numbers of required LUTs and registers are expressed
in formulas (8) and (9); thus they can be described as a
difference between the Distributed and the Flip-Flop based
approach:

o Each EB replaces 64 flip-flops; therefore, the total num-
ber of EBs is 2V 6.

« Individual address decoder for each EB is less complex
because it decodes 6 fewer address bits, which are omit-
ted by the SPLIT function.

o Each EB consists of 7 LUTs.

o The output masking function uses the 2-input AND
logic gates, which can be packed into the OR logic gate
(loge(W — 6) originally).

183107

IEEE Access

M. Bartik et al.: In-Sight Into How Compression Dictionary Architecture Can Affect the Overall Performance in FPGAs

TABLE 1. Estimated properties for all techniques depending on the “W"
parameter.

LUTs
Address width "W”| 6| 7| 8| 9| 10| 11| 12| 13] 14| 15
Linear 12| 14] 16| 18| 20| 22| 24[26| 28] 30
Flip-Flop 64]256(512|1024(2048(4096 8192 1638432768 65536
Distributed 15| 22| 38| 71| 135| 263| 519| 1159| 2311| 4615
Registers
Address width "W”| 6| 7| 8| 9| 10| 11| 12| 13] 14| 15
Linear 6| 7| 8| o 10| 1| 12| 13] 14| 15
Flip-Flop 64]128(256| 512[1024(2048|4096| 8192(16384|32768
Distributed 6
Latency [Cycles]
Address width "W”| 6| 7| 8| 9| 10| 11| 12| 13] 14| 15
Linear 64[128(256| 512[1024|2048(4096| 8192|16384 32768
Flip-Flop 1
Distributed 64

e CNT64 requires only 6 LUTs and 6 registers in total.
However, the counter itself might be replicated several
times by a synthesis tool (principle of locality [60]).

Therefore, the number of logic resources for the Dis-
tributed approach can be expressed in the following way:

LUTpiy = [logs(W — 6)] 2" =0 47 5 2(W=0)
+2x [logs(W — 6)] + 6

~ [loge(W — 6)] %2V =0 (8)
REGpjs; =6 9)
Latencypis = 20 — 64. (10)

5) ESTIMATION DISCUSSION AND SUMMARY

We estimated several properties (latency, resource utilization)
of respective techniques (see Table 1) by using formulas
mentioned in the previous section. Therefore we discussed
our expectations (design complexity and frequency) for indi-
vidual techniques.

The Linear Passage technique requires the least amount
of logic resources and also has the potential to reach high
frequencies. However, the latency will grow exponentially,
and this prevents this technique from being suitable for com-
pression dictionaries unless a large external memory is used
(memory is initialized only once during a power-up phase, for
example), and the latency of initialization is not an issue.

Therefore, the Flip-Flop and Distributed based techniques
were found suitable for implementations requiring dictionar-
ies to be (re-)initialized before each run of a compression
accelerator where the low latency is one of the requirements.

The Flip-Flop based approach having the best latency of
one clock cycle is redeemed by enormous logic consumption
(both LUTSs and registers), which grows exponentially. The
Distributed memory based approach seems to have the same
advantage (constant latency) and disadvantage (the number of
logic resources growing exponentially), however, the amount
of required logic resources is decreased by a factor of 64.

183108

TABLE 2. Brief estimations and expectations.

Technique Linear | Flip-Flop Distributed
Resources Minimal | Enormous Moderate
Design complexity Low Moderate High
Frequency High Moderate High
Latency Enormous | Minimal Fair
Suitability’ Low Fair Great

Note 1: For hash table based compression dictionary architecture.

On the other hand, the latency is increased by the same factor
to 64 clock cycles.

Thus the Distributed memory technique consumes less
logic resources than the Flip-Flop technique, and it is
assumed the frequencies will be higher in favor of the
Distributed memory technique. The respectively increased
latency will not be an issue in our case because the com-
pression dictionary initialization could run in parallel with
the loading data phase (see section III-C1). We assume this
phase will take more clock cycles than the compression dic-
tionary initialization phase for both Distributed and Flip-Flop
techniques.

The general expectations for all approaches are summa-
rized in Table 2. We assume the combination of latency, logic
resources consumption, and frequency in the “sweet spot”
range [5] (““W” between 6 to 15) will favor the Distributed
technique. It is assumed that the final properties and results
of individual techniques will change after implementation
due to the various optimization used by synthesis tools [58],
[59], such as resource sharing [61], [62], logic duplication,
or register balancing [63] may be applied.

VI. THE DISADVANTAGE OF THE PREVIOUSLY

USED METHODOLOGY

The initial set of measurements [5] was performed on a single
computer with the Xilinx ISE toolset using the same initial
conditions as those discussed in the following section VII-B.
We used the “Random PAR” (Place & Route) mode in
ISE, which allows to synthesize and PAR the design without
setting-up physical constraints such as FPGA pins assign-
ment. The creation of timing constraints such as a clock
period is not affected by this mode. The disadvantage of this
procedure is that designs (representing different approaches)
with the same value of the ““W”’ parameter have different pin
placements. The observed randomness of the pin placements
may affect the process of the synthesis, the PAR, and the STA
in the final consequence. This might make an advantage (pins
can be placed closer to an evaluated design) for one approach
and penalize other approaches. This led us to prepare a new
workflow to prevent this issue and to be supported by both
ISE and Vivado.

VIi. OUR APPROACH

We decided to choose a universal FPGA (in term of support
in the Xilinx tools) to perform objective measurements. Thus
we have selected the Xilinx Virtex-7 690T (XC7V690T-
2FFG1158) due to its size and being a representative

VOLUME 8, 2020

M. Bartik et al.: In-Sight Into How Compression Dictionary Architecture Can Affect the Overall Performance in FPGAs

IEEE Access

TABLE 3. Computer systems used for the evaluation.

System/Platform CPU C/TI| RAM
Sun SunFire X4150 2x Intel Xeon L5420 8/8 |64 GB
Supermicro HSDME-2 | 2x AMD Opteron 2382 | 8/8 |64 GB

HP DL360 G6 2x Intel Xeon E5530 | 8/16 |64 GB
Dell PowerEdge T620 | 2x Intel Xeon E5-2640 |12/24|48 GB
ASRock B450M PRO4 | 1x AMD Ryzen 7 1700X | 8/16 |64 GB
Note 1: Cores/Threads

Implemented Test Design

Unconstrained Paths to I/O Pins
(No Impact to Timing)

Constrained Design
(Extracted Timing)

Evaluated
Technique

Linear WRITEN

Flip-Flop
Distributed

(%]
—
(9]
-
=4
an
()
[~3

Registers

FIGURE 5. Architecture of the design wrapper.

example of the Xilinx 7-Series FPGAs. The 7-Series archi-
tecture is the basis for the latest Xilinx FPGAs, such as the
UltraScale(+) [64] platform. An advantage of Virtex-7 is
that it is supported by both Xilinx development toolsets: the
Xilinx ISE (Integrated System Environment) and the Xilinx
Vivado in latest versions (version 14.7 and 2017.2 respec-
tively). The reason to chose both tools is that the research
started in 2015 (on Virtex-6 platform) when Vivado wasn‘t
recognized as a “mature” product. Usage of the ISE also
allows us to evaluate and compare the synthesis process
against Vivado without violating Xilinx ISE license [65].
All tests were performed on several computer systems (see
Table 3) representing trends in the last decade.

The synthesis process uses randomized algorithms;
however, each system has it‘'s own ‘“seed’. Therefore,
we included the information that the used computer systems
were different (and their respective configuration).

All systems have been following the requirements for
Xilinx ISE [66] and Xilinx Vivado [67].

A. EXPERIMENTAL SETUP

We developed the design implementing all three mentioned
approaches (linear passage, flip-flop array and distributed
memory based approach) with a unified interface (see Pro-
gram 1) in VHDL language.

The implemented approach and some other parameters
(such as LUT size and the address vector width “W?”) are
set by generic constants. We assume the following design
properties:

VOLUME 8, 2020

o Xilinx 7-Series architecture with 6-input LUTs.

o A memory cell width of 36 bits (one of the native
BlockRAM widths [48], intended for simulating a 32-bit
memory pointer like software version of L.Z4 does. This
dictionary cell width has also been used elsewhere [16]),

o “W?” parameter stands for the intended memory address
vector width and defines the memory capacity (36%2%
bits).

As a 1)3recaution, we designed a test “Wrapper”, which
embeds an evaluated technique into a register array. The
architecture (see Fig. 5) of the “Wrapper” will prevent the
paths between physical FPGA I/O pins and the respective log-
ical signals to have any impact on timing analysis. Therefore
any path length could be virtually unlimited. Thus the tech-
nique designs can be substantially dense and floorplanned
almost anywhere in an FPGA.

Program 1 A Unified VHDL Interface for All Implementa-
tion Types. [5]

entity top is port (

clk, reset, we: in std_logic;

adri: in std_logic_vector (W-1 downto 0);
din: in std_logic_vector (35 downto 0);
dout: out std_logic_vector (35 downto 0);
written: out std_logic);

end top;

B. ADDITIONAL SETTINGS FOR SYNTHESIS TOOLS
We changed some of the parameters from the defaults for
Xilinx ISE and Xilinx Vivado to force the tools to favor the
design speed instead of area. Some additional parameters
were set to overcome some of the synthesis issues, such as
a memory overflow.

1) Xilinx ISE [63]

o Synthesis — Optimization Effort = Fast (Synthe-
sis consumes less memory allowing synthesis of
larger designs without a crash of Xilinx XST).

« Synthesis — Register Balancing = Yes

o Map — Register Duplication = On

e Map - Allow Logic Optimization Across
Hierarchy = Yes

2) Xilinx Vivado (Strategies) [68]

o Synthesis — PerfOptimized_High

o Implementation — Performance
_ExplorePostRoutePhysOpt

C. OUR TEST METHODOLOGY WITH THE LINEAR
PASSAGE APPROACH AS AN EXAMPLE

The new workflow improves the original workflow [5] by
removing of the observed randomness of physical con-
straints via fixing the used constraints across all implemented
approaches. The new workflow is depicted in Fig. 6, and
some of these phases will be described in an example (the
Linear Passage technique in our case) in a more detailed way.

183109

I EEE ACCGSS ' M. Bartik et al.: In-Sight Into How Compression Dictionary Architecture Can Affect the Overall Performance in FPGAs

Generic
/) - Configured
SJW“=6..15
{ } h
Distributed - 1C
Configured
Approach
i
a Xilinx ISE
© Random Place & Route
< Best
o Timing?
Distributed Linear Distributed Linear
o Xilinx ISE
) PAR with Extracted Constraints
(%) Best
JC:U Timing?
o
3 a a g and R 0 e
A Presented
&, 4 O O 2d pproa
> : - Xilinx ISE
0 (i (10 O U O 9| Results
e a ed e De approa
N
Xilinx Vivado PAR with Extracted
Constraints from ISE
Best
Timing?
o
(D}
(%]
©
e
o
Extracted Timing and Resource Presented
Consumption for each Approach Xilinx Vivado
(three fixed constraints per Approach) Results

FIGURE 6. The test flow used for experimental measurements.

183110 VOLUME 8, 2020

M. Bartik et al.: In-Sight Into How Compression Dictionary Architecture Can Affect the Overall Performance in FPGAs

IEEE Access

The respective workflow paths for Linear Passage, Flip-Flop,
and Distributed methods are highlighted with colors (blue,
orange, and green).

1) PHASE ONE

The source files (HDL and initial timing constraints) are
generated for implementation in Xilinx ISE. The best-reached
clock period is extracted from the STA (Static Timing Analy-
sis) report of the fully (randomly) routed design. The clock
period is decreased by 0.05 ns (the smallest available step
recognized by the Xilinx ISE) for the next iteration. The pre-
vious step is repeated until timing errors occur. The physical
constraints (pin placement) and other reports (such as STA
and PAR resources utilization report) are extracted at the end
of phase one.

2) PHASE TWO

Phase two uses the extracted physical constraints (of the
Linear Passage) to perform the implementation of the two
remaining approaches (Flip-Flop and Distributed Memory
based Status Register). The search for the best timing is the
same as in phase one. The result of phase two is a set of
three designs representing all approaches with their timing
& physical constraints and resources utilization. These best
frequencies (of the measured designs) are averaged over all
approaches to reduce the influence of the random pin place-
ment.

3) PHASE THREE
The collected ISE constraints are converted to a constraints
format suitable for Xilinx Vivado. The designs are evaluated

in the same manner as in phase one and phase two in Xilinx
ISE.

D. COLLECTED DATA SETS

Nine data sets were collected after all three phases in the
Xilinx ISE. Each approach had its own subset of three mea-
surements:

o Linear Passage

— Native constraints set (randomly generated)
— Flip-Flop constraints set (fixed)
— Distributed memory constraints (fixed)

« Flip—Flop

— Native constraints set (randomly generated)
— Linear Passage constraints set (fixed)
— Distributed memory constraints (fixed)

o Distributed Memory
— Native constraints set (randomly generated)
— Linear Passage constraints (fixed)
— Flip-Flop constraints set (fixed)

Each measurement had 10 fully routed designs with the
STA report ranging the addresses with the “W?”’ parameter
from 6 to 15 bits. The measured datasets from the Xilinx
Vivado had the same structure as the Xilinx ISE datasets.

VOLUME 8, 2020

TABLE 4. Properties of measured designs like logic gates count,
frequency, etc. depending on the “W" parameter.

Linear passage approach
Address width "W”| 6| 7| 8] o[10| 1| 12| 13] 14] 15
Latency [Cycles] | 64]128|256]512[1024|2048]4096] 8192|16384] 32768

Xilinx ISE
Slices 70| 92| 98| 90| 103| 84| 111| 112| 114| 109
LUTs 159/164(170(174| 197| 201| 206| 210| 215 219
Registers 86| 88| 90| 92| 58| 60| 62| 64| 66| 68

Frequency [MHz] [402(402|402|402| 593| 590| 588| 585| 582 578
Xilinx Vivado

Slices 18| 25| 26| 27| 26| 36| 36 49 52 60
LUTs 50| 52| 54| 56| 58| 60| 62 64 66 69
Registers 38| 47| 50| 45| 52| 61| 51 51 53 54

Frequency [MHz] |571|534|483|557| 481| 441| 298| 229| 238 258

Flip—flop based approach
6| 7] 8[of 1] u] 12] 18] 1] 15

Address width ”W”

Latency [Cycles] 1

Xilinx ISE
Slices 92(134|157|304| 577| 932|2275| 4506|10026| 17503
LUTs 221(309|478|840|1544|3250|6495(13912|31747| 57586
Registers 145(210|339|615[1073|2167[4147| 8244|16461| 32955

Frequency [MHz] |402|373(395(297| 260| 245| 218| 204| 176 161
Xilinx Vivado

Slices 421 69(121(234| 418| 792[1563| 2978| 5888|12342
LUTs 109|174|317|596|1095|2145|4237| 8312|16584|33573
Registers 89(178(340(713|1361|2690(5316|10577 {21025 |42303

Frequency [MHz] [472(292{295(232| 230| 234| 224| 194 207 207

Distributed memory based approach
Address width "W»[6] 7] 8] o[10]] 12[13[1] 15

Latency [Cycles] 64

Xilinx ISE
Slices 61| 82| 96[118| 144| 255| 416 716| 1382| 2608
LUTs S1| 58| 71| 96| 145| 245| 439| 839| 1635| 3235
Registers 87| 94[107|132| 145| 242| 435| 820| 1589| 3126

Frequency [MHz] |402|402(402{402| 399| 330| 283| 265| 272 217
Xilinx Vivado

Slices 18| 23| 36| 55| 93| 179| 333| 631| 1206| 2422
LUTs 142(158|189(255| 372| 605(1037| 1991| 3696| 7491
Registers 16| 32| 62|123| 245| 494| 986| 1971| 3941| 7866

Frequency [MHz] [510|545(380(322| 263| 230| 253| 220| 215 220

VIIl. EXPERIMENTAL RESULTS

We evaluate and comment on the measured data (see Table 4)
in terms of design speed, FPGA resources utilization, and
suitability for compression dictionary design. These results
are also visualised as graphs (Figures 7a, 7b, 8a, 8b).

A. LINEAR PASSAGE APPROACH

The Xilinx Vivado seems to be a better tool for implement-
ing the linear passage approach in terms of chip area, thus
consuming less FPGA resources in all cases. A synthesis
or implementation issue appears to be in the Xilinx ISE.
There is an unexpected ““step” in the ISE frequencies, and
results do not scale down in relation to the “W”” parame-
ter. The use of fast carry logic between neighboring slices
might be the reason when no DSP48 [69] blocks are used

183111

IEEE Access

M. Bartik et al.: In-Sight Into How Compression Dictionary Architecture Can Affect the Overall Performance in FPGAs

700

600

500

400 I

300

Frequency [MHz]

200

100

10 11 12 13 14 15

Address width "W" [bit]

== Linear passage — ISE

Flip-Flops — ISE
=—4— Linear passage — Vivado === Flip-Flops — Vivado

=P Distributed — ISE
Distributed — Vivado

(a) Reached maximum frequency for all approaches (both ISE and Vivado).

100000

10000

1000

Slices [1]

100

\ ¢
4

10
6 7 8 9

o o —
jA/_./-f
10 11 12 13 14 15

Address width "W" [bit]

== Linear passage — ISE

Flip-Flops — ISE
== Linear passage — Vivado === Flip-Flops — Vivado

=P Distributed — ISE
Distributed — Vivado

(b) Slice consumption for all approaches (both ISE and Vivado).

FIGURE 7. Overall results, part I.

(the number of DSP48 blocks used is zero after PAR). How-
ever we were unable to determine the actual reason for the
“step” even with a detailed analysis of respective floor-
planned designs. It seems the implementation of such small
designs in the such a large FPGA can lead to unpredictable
results.

The initial results [5] showed that higher (better) frequen-
cies were reached for the entire range while the graph curve
is converging down for the Xilinx Vivado frequencies. This
behavior needs to be further analyzed by performing the
measurements on multiple computers.

This approach is not suitable for larger dictionaries due to
the enormous latency (growing exponentially) required for

183112

memory initialization. The approach is optimal in terms of
used chip area.

B. FLIP-FLOP APPROACH

Implemented designs based on the flip-flop approach are
comparable in terms of frequency for both Xilinx toolsets.
The Xilinx ISE frequencies start on a lower point than Vivado,
but convergence is slower compared to the Vivado results.
The Xilinx Vivado is a better tool in terms of used FPGA
resources saving 15%-55% of used slices with 32.5% on
average. The solution of the flip-flop based status register is
optimal in terms of latency (a single clock cycle, and it is
constant for the entire range of the “W?” parameter).

VOLUME 8, 2020

M. Bartik et al.: In-Sight Into How Compression Dictionary Architecture Can Affect the Overall Performance in FPGAs

IEEE Access

100000

10000

1000

LUTs [1]

100

10
6 7 8 9

11 12 13 14 15

Address width "W" [bit]

== Linear passage — ISE

Flip-Flops — ISE
== Linear passage — Vivado === Flip-Flops — Vivado

=P Distributed — ISE
Distributed — Vivado

(a) LUT consumption for all approaches (both ISE and Vivado).

100000

10000

1000

Registers [1]

100

11 12 13 14 15

Address width "W" [bit]

== Linear passage — ISE

Flip-Flops — ISE
== Linear passage — Vivado ==& Flip-Flops — Vivado

=P Distributed — ISE
Distributed — Vivado

(b) Register consumption for all approaches (both ISE and Vivado).

FIGURE 8. Overall results, part II.

C. DISTRIBUTED MEMORY APPROACH

The last evaluation deals with the distributed memory
approach of a status register. We prepared an additional table
(see Table 5) to show the differences between the Xilinx ISE
and the Xilinx Vivado results (see Fig. 9). The formula (11)
used for calculating the differences follows

Vivado
ISE

The Xilinx ISE results show that the frequency start lower

than Vivado for the first two smallest designs, but for the rest

of the measured range, ISE is better than Vivado in terms of
speed. On the other hand, the Xilinx Vivado has better results

Difference = (1 —) * 100 [%]. (11D

VOLUME 8, 2020

in terms of resource consumption over the entire range, but
the advantage of Vivado is gradually diminishing (we assume
the Xilinx ISE will be better for “W?” parameter above the
value of 15). There is no obvious winner in the end, because
any single advantage of ISE or Vivado converges to zero
while the “W?” parameter rises (see Fig. 9).

D. SUITABILITY FOR A DICTIONARY DESIGN

We evaluated all approaches with respect to the requirements
discussed in Section III-B. All approaches satisfy the require-
ment of the minimum design speed of 156.25 MHz. We have
to exclude the linear passage approach due to its latency (it
didn’t meet the requirements, and it was too high compared

183113

IEEE Access

M. Bartik et al.: In-Sight Into How Compression Dictionary Architecture Can Affect the Overall Performance in FPGAs

Distributed Memory Approach

Differences between Xilinx ISE and Xilinx Vivado

Difference [%]

-60,0

Address vector width "W" [1]

+ Slice (the higher the better)

—— Slice Approximation

X Frequency (the lower the better) —— Frequency Approximation

FIGURE 9. Differences for distributed memory approach.

TABLE 5. Differences between Vivado and ISE for distributed memory
approach related to the “W" parameter - positive values represents the
Vivado advantage.

Distributed Memory Approach
“W” 6 7 8 9/ 10| 11| 12| 13| 14|15
Slices [%] 70.5| 72.0(62.5|54.6|35.4(29.8|20.0(11.9|12.7|7.4
Frequency [%]|-27.0|-35.6| 5.4|18.5[34.2{30.1|10.8|17.0(21.0|1.8

TABLE 6. Advantage of distributed memory approach compared to
flip-flop for the Xilinx Vivado results.

FPGA Resources — Distributed Memory vs. Flip-Flop
“W» 6 7 8 9/ 10| 11| 12| 13| 14| 15
Area [%]|57.1]66.7|70.2|76.9|77.8|77.4|78.7|78.8|79.5|80.3

to the other two approaches). The flip-flop approach and the
distributed memory approaches are comparable in terms of
latency. The asymptotic complexity of both approaches is
constant (1 respectively 64 clock cycles). The minor disad-
vantage of the distributed memory approach (the latency is
slightly higher, but meets the requirements) is balanced by its
better speed (higher frequencies are reached over the entire
range), and less FPGA resources are consumed (see Table 6).

The average saving was 75% in terms of FPGA resources
for the distributed memory approach. The issue of the flip-
flop approach is the FPGA resources required for implemen-
tations. For example, the flip-flop approach will consume
almost all resources in the Xilinx Virtex-7 690T FPGA for
the “W” parameter equal to 20 (such design will support 1
million entries in a dictionary). The flip-flop approach cannot
be used effectively with larger embedded memory such as the
Xilinx UltraRAM feature [70], which increases the amount of
FPGA embedded memory available by 600% from previous
FPGA generations.

183114

E. THE “DISTRIBUTED MEMORY” METHOD
COMPATIBILITY WITH OTHER FPGA VENDORS
We considered four different FPGA vendors (Xilinx,
Intel/Altera, Lattice, Microsemi/Actel) for compatibility with
our method. Xilinx seems to have the most comprehensive
support of LUT based “Distributed Memory” feature since
the introduction of the very first Virtex/Spartan FPGAs [71].
Intel/Altera’s FPGA support for the “Distributed Mem-
ory” feature varies across families. In general, modern and
expensive FPGAs [72] do support the feature, while low-
cost oriented and older families lack the support for the fea-
ture [73], [74]. Some FPGAs of Lattice and Microsemi/Actel
also support the feature in certain more recent families
[75], [76]. Due to the fact that these four vendors have 99%
market share [77], our technique can be ported to nearly every
modern FPGA.

IX. CONCLUSION

We presented a comprehensive analysis of three methods
(linear passage, flip-flop, and distributed memory) suitable
for initializing memory oriented data structures, including
our distributed memory based approach. A performance com-
parison was performed in terms of the maximum reached
operating frequency, FPGA resources consumption, and the
requirements of the lossless compression dictionary design.

All approaches were measured over the range of hash table
sizes suitable for IP compression devices. We presented the
new test flow to support the Xilinx ISE and the Xilinx Vivado
toolkits in the measurement process.

According to our methodology, the distributed memory
approach shows the best combined performance against
remaining techniques. This method is probably the only
technique to satisfy the needs of future FPGA based

VOLUME 8, 2020

M. Bartik et al.: In-Sight Into How Compression Dictionary Architecture Can Affect the Overall Performance in FPGAs

IEEE Access

implementations of various compression algorithms where a
larger embedded memory such as the Xilinx UltraRAM fea-
ture is used. The presented technique is compatible and can
be ported to any modern SRAM based FPGA architecture.

REFERENCES

(1]

(2]

(3]

[4]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

J. Fowers, J. Y. Kim, D. Burger, and S. Hauck, “A scalable high-
bandwidth architecture for lossless compression on FPGAs,” in Proc.
IEEE 23rd Annu. Int. Symp. Field-Program. Custom Comput. Mach.
(FCCM), May 2015, pp. 52-59.

G. C. Buttazzo, Hard Real-Time Computing Systems: Predictable Schedul-
ing Algorithms and Applications, 3rd ed. New York, NY, USA: Springer,
2011.

B. Sukhwani, B. Abali, B. Brezzo, and S. Asaad, ‘“High-throughput,
lossless data compresion on FPGAs,” in Proc. IEEE 19th Annu. Int. Symp.
Field-Program. Custom Comput. Mach. (FCCM), May 2011, pp. 113-116.
T. Benes§, M. Bartik, and P. Kubaldk, “High throughput and low latency
LZ4 compressor on FPGA,” in Proc. Int. Conf. ReConFigurable Comput.
FPGAs (ReConFig), Dec. 2019, pp. 1-5.

M. Bartik, S. Ubik, and P. Kubalik, “A novel and efficient method to
initialize FPGA embedded memory content in asymptotically constant
time,” in Proc. Int. Conf. ReConFigurable Comput. FPGAs (ReConFig),
Nov. 2016, pp. 1-6.

P. E. Bender and J. K. Wolf, “An improved sliding window data compres-
sion algorithm based on the Lempel-Ziv data compression algorithm [mag-
netic recording],” in Proc. Global Telecommun. Conf. Exhib. Commun.
Connecting Future (GLOBECOM), Dec. 1990, pp. 1773-1777 vol. 3.

S. Rigler, W. Bishop, and A. Kennings, “FPGA-based lossless data com-
pression using Huffman and LZ77 algorithms,” in Proc. Can. Conf. Electr.
Comput. Eng., Apr. 2007, pp. 1235-1238.

S. Rigler, “FPGA-based lossless data compression using GNU Zip,”
M.S. thesis, Dept. Elect. Comput. Eng., Univ. Waterloo, Waterloo, ON,
Canada, 2007. [Online]. Available: http://hdl.handle.net/10012/2692

R. Mehboob, S. A. Khan, Z. Ahmed, H. Jamal, and M. Shahbaz, “Multi-
gig lossless data compression device,” IEEE Trans. Consum. Electron.,
vol. 56, no. 3, pp. 1927-1932, Aug. 2010.

R. Mehboob, S. A. Khan, and Z. Ahmed, “High speed lossless data
compression architecture,” in Proc. IEEE Int. Multitopic Conf., Dec. 2006,
pp. 84-88.

1. Shcherbakov, C. Weis, and N. Wehn, ““A high-performance FPGA-based
implementation of the LZSS compression algorithm,” in Proc. IEEE 26th
Int. Parallel Distrib. Process. Symp. Workshops PhD Forum (IPDPSW),
May 2012, pp. 449-453.

E. J. Leavline and D. A. A. G. Singh, “Hardware implementation of
LZMA data compression algorithm,” Int. J. Appl. Inf. Syst., vol. 5, no. 4,
pp. 51-56, 2013.

B. Li, L. Zhang, Z. Shang, and Q. Dong, “Implementation of LZMA
compression algorithm on FPGA,” Electron. Lett., vol. 50, no. 21,
pp- 15221524, Oct. 2014.

P. M. Parekar and S. S. Thakare, ‘“‘Hardware implementation of lossless
LZMA data compression algorithm,” Prog. In Sci. Eng. Res. J., vol. 2,
no. 3, pp. 201-205, May-Jun. 2014.

M. Morales-Sandoval and C. Feregrino-Uribe, ““‘On the design and imple-
mentation of an FPGA-based lossless data compressor,” in Proc. Sociedad
Mexicana Ciencias Computacion (ReConFig), 2004, pp. 29-38. [Online].
Available: https://www.tamps.cinvestav.mx/~mmorales/research.html

S. Nagvi, R. Nagvi, R. A. Riaz, and F. Siddiqui, “Optimized RTL design
and implementation of LZW algorithm for high bandwidth applications,”
Przeglqd Elektrotechniczny Elect. Rev., vol. 87, no. 4, pp. 279-285, 2011.
J.L.Nunez, S. Jones, and S. Bateman, “X-MatchPRO: A high performance
full-duplex lossless data compressor on a ProASIC FPGA,” in Proc. Int.
Workshop Intell. Data Acquisition Adv. Comput. Syst. Technol. Appl., 2001,
pp. 56-60.

J. L. Nunez and S. Jones, “Gbit/s lossless data compression hard-
ware,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 11, no. 3,
pp- 499-510, Jun. 2003.

J. L. Nunez, C. Feregrino, S. Bateman, and S. Jones, “The X-MatchLITE
FPGA-based data compressor,” in Proc. 25th EUROMICRO Conf., vol. 1,
1999, pp. 126-132.

J. L. Nunez and S. Jones, “Lossless data compression programmable
hardware for high-speed data networks,” in Proc. IEEE Int. Conf. Field-
Program. Technol. (FPT), Dec. 2002, pp. 290-293.

VOLUME 8, 2020

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]
[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

M. Milward, J. L. Nunez, and D. Mulvaney, “Design and implementation
of a lossless parallel high-speed data compression system,” IEEE Trans.
Farallel Distrib. Syst., vol. 15, no. 6, pp. 481-490, Jun. 2004.

J. L. Nunez-Yanez and V. A. Chouliaras, ““‘Gigabyte per second streaming
lossless data compression hardware based on a configurable variable-
geometry CAM dictionary,” IEE Proc.-Comput. Digit. Techn., vol. 153,
no. 1, pp. 47-58, Jan. 2006.

Helion Technology. LZRW Compression Cores. Accessed: Aug. 21, 2020.
[Online]. Available: http://www.heliontech.com/comp_lzrw.htm

M. A. A.El ghany, A. E. Salama, and A. H. Khalil, “Design and implemen-
tation of FPGA-based systolic array for LZ data compression,” in Proc.
IEEE Int. Symp. Circuits Syst., May 2007, pp. 3691-3695.

M. A. A. El ghany, A. E. Magdy, and A. E. Salama, Design and Implemen-
tation of FPGA-Based Systolic Array for LZ Data Compression. Rijeka,
Croatia: InTech, 2010, pp. 75-92.

K. Papadopoulos and I. Papaefstathiou, ‘“Titan-R: A multigigabit reconfig-
urable combined compression/decompression unit,” ACM Trans. Recon-
figurable Technol. Syst., vol. 3, no. 2, pp. 7:1-7:25, May 2010.

W. J. Huang, N. Saxena, and E. J. McCluskey, “A reliable LZ data
compressor on reconfigurable coprocessors,” in Proc. IEEE Symp. Field-
Program. Custom Comput. Mach., Apr. 2000, pp. 249-258.

M. Morales-Sandoval and C. Feregrino-Uribe, “A hardware architec-
ture for elliptic curve cryptography and lossless data compression,” in
Proc. 15th Int. Conf. Electron., Commun. Comput. (CONIELECOMP),
Feb. 2005, pp. 113-118.

K. Papadopoulos and I. Papaefstathiou, “Titan-R: A reconfigurable hard-
ware implementation of a high-speed compressor,” in Proc. 16th Int. Symp.
Field-Program. Custom Comput. Mach. (FCCM), Apr. 2008, pp. 216-225.
A. Khu. (Sep. 25, 2001). Xilinx FPGA Configuration Data Compres-
sion and Decompression. Accessed: Aug. 21, 2020. [Online]. Available:
http://www.xilinx.com/support/documentation/white_papers/wp152.pdf
M. Bartik, S. Ubik, and P. Kubalik, “LZ4 compression algorithm on
FPGA,” in Proc. IEEE Int. Conf. Electron., Circuits, Syst. (ICECS),
Dec. 2015, pp. 179-182.

S. M. Lee, J. H. Jang, J. H. Oh, J. K. Kim, and S. E. Lee, “Design
of hardware accelerator for Lempel-Ziv 4 (LZ4) compression,” IEICE
Electron. Exp., vol. 14, no. 11, p. 6, 2017.

J. Ziv and A. Lempel, “‘A universal algorithm for sequential data compres-
sion,” IEEE Trans. Inf. Theory, vol. IT-23, no. 3, pp. 337-343, May 1977.
J. Ziv and A. Lempel, ‘“Compression of individual sequences via variable-
rate coding,” IEEE Trans. Inf. Theory, vol. IT-24, no. 5, pp. 530-536,
Sep. 1978.

T. A. Welch, “A technique for high-performance data compression,” Comi-
puter, vol. 17, no. 6, pp. 8-19, Jun. 1984.

1. Pavlov. (2016). LZMA SDK. Accessed: Aug. 21, 2020. [Online]. Avail-
able: http://www.7-zip.org/sdk.html

Y. Collet. (May 26, 2011). LZ4 Explained. Accessed: Aug. 21, 2020.
[Online]. Available: http://fastcompression.blogspot.cz/2011/05/1z4-
explained.html

T. Bene$, M. Bartik, and P. Kubaldk, “Design of a high-throughput match
search unit for lossless compression algorithms,” in Proc. IEEE 9th Annu.
Comput. Commun. Workshop Conf. (CCWC), Jan. 2019, pp. 0732-0738.
W. A. Crofut and M. R. Sottile, “‘Design techniques of a delay-line content-
addressed memory,” IEEE Trans. Electron. Comput., vol. EC-15, no. 4,
pp. 529-534, Aug. 1966.

F. J. Burkowski, “‘A hardware hashing scheme in the design of a multiterm
string comparator,” IEEE Trans. Comput., vol. C-31, no. 9, pp. 825-834,
Sep. 1982.

D. Salomon, Data Compression: The Complete Reference. Berlin,
Germany: Springer-Verlag, 2007.

Z. Ullah, M. K. Jaiswal, and R. C. C. Cheung, “Z-TCAM: An SRAM-
based architecture for TCAM,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 23, no. 2, pp. 402-406, Feb. 2015.

Z. Ullah, K. Ilgon, and S. Baeg, “Hybrid partitioned SRAM-based ternary
content addressable memory,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 59, no. 12, pp. 2969-2979, Dec. 2012.

M. E. Oberhumer. Lempel-Ziv-Oberhumer. Accessed: Aug. 21, 2020.
[Online]. Available: http://www.oberhumer.com/opensource/lzo/

J. Kane and Q. Yang, “Compression speed enhancements to LZO for
multi-core systems,” in Proc. IEEE 24th Int. Symp. Comput. Archit. High
Perform. Comput., Oct. 2012, pp. 108-115.

O. Fiedler, “LZ-family data compression methods,” M.S. thesis, Dept.
Theor. Comput. Sci., CTU FIT, Prague, Czechia, 2014.

183115

IEEE Access

M. Bartik et al.: In-Sight Into How Compression Dictionary Architecture Can Affect the Overall Performance in FPGAs

[47]

[48]

[49]

[50]
[51]
[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]
[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

D. E. Knuth, The Art of Computer Programming: Sorting and Searching,
vol. 3, 2nd ed. Redwood City, CA, USA: Addison Wesley, 1998.

Xilinx Inc. (2019). UG473 (v1.14)—7-Series FPGAs Memory Resources.
Accessed: Aug. 21, 2020. [Online]. Available: https://www.xilinx.com/
support/documentation/user_guides/ug473_7Series_Memory_
Resources.pdf

F. E. Goetting and T. J. Bauer, “Block RAM with reset,” U.S.
Patent 6101 132 A, Feb. 3, 1999. [Online]. Available: https://patents.
google.com/patent/US6101132

M. Bencivenni et al, “Performance of 10 gigabit Ethernet using commodity
hardware,” IEEE Trans. Nucl. Sci., vol. 57, no. 2, pp. 630-641, Apr. 2010.
J. Hartmanis and R. E. Stearns, “On the computational complexity of
algorithms,” Trans. Amer. Math. Soc., vol. 117, pp. 285-306, May 1965.
C. Yoo, “High-speed DRAM interface,” IEEE Potentials, vol. 20, no. 5,
pp. 33-34, Dec. 2002.

M. Stohanzl and Z. Fedra, “The FPGA implementation of dictionary; HW
consumption versus latency,” in Proc. 36th Int. Conf. Telecommun. Signal
Process. (TSP), Jul. 2013, pp. 82-85.

M. Bartik and S. Ubik, “System for implementation of a hash
table,” U.S. Patent 10262702, May 3, 2019. [Online]. Available:
https://patents.google.com/patent/US10262702B2/en

Xilinx Inc. (2016). UG474—7-Series FPGAs Configurable Logic Block.
Accessed: Aug. 21, 2020. [Online]. Available: https://www.xilinx.com/
support/documentation/user_guides/ug474_7Series_CLB.pdf

C. E. LaForest and J. G. Steffan, “Efficient multi-ported memories for
FPGAs,” in Proc. 18th Annu. ACM/SIGDA Int. Symp. Field Program. Gate
Arrays (FPGA), New York, NY, USA, 2010, pp. 41-50.

C. E. LaForest, Z. Li, T. O’'Rourke, M. G. Liu, and J. G. Steffan, “Com-
posing multi-ported memories on FPGAs,” ACM Trans. Reconfigurable
Technol. Syst., vol. 7, no. 3, pp. 16:1-16:23, Sep. 2014.

V. Sklyarov, I. Skliarova, A. Barkalov, and L. Titarenko, Synthesis and
Optimization of FPGA-Based Systems. Cham, Switzerland: Springer,
2014.

C. Woods and B. Holdsworth, Digital Logic Design, 4th ed. Burlington,
MA, USA: Newnes, 2002.

J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative
Approach, 6th ed. San Francisco, CA, USA: Morgan Kaufmann, 2017.

B. Ronak and S. A. Fahmy, “Improved resource sharing for FPGA
DSP blocks,” in Proc. 26th Int. Conf. Field Program. Log. Appl. (FPL),
Aug. 2016, pp. 1-4.

S. Hadjis, A. Canis, J. H. Anderson, J. Choi, K. Nam, S. Brown, and
T. Czajkowski, “Impact of FPGA architecture on resource sharing in high-
level synthesis,” in Proc. ACM/SIGDA Int. Symp. Field Program. Gate
Arrays (FPGA), New York, NY, USA, 2012, pp. 111-114.

Xilinx Inc. (2013). UG627-XST User Guide for Virtex-4, Virtex-5, Spartan-
3 and Newer CPLD Devices. Accessed: Aug. 21,2020. [Online]. Available:
https://www.xilinx.com/support/documentation/sw_manuals/xilinx 14_
T/xst.pdf

Xilinx Inc. (2017). DS890—UltraScale Architecture and Product
Data Sheet: Overview. Accessed: Aug. 21, 2020. [Online]. Available:
https://www.xilinx.com/support/documentation/data_sheets/ds890-
ultrascale-overview.pdf

Xilinx ISE 14.7 EULA, Xilinx, San Jose, CA, USA, 2013.

Xilinx Inc. FPGA Memory Recommendations Using the ISE Design Suite
14. Accessed: Aug. 21, 2020. [Online]. Available: https://www.xilinx.com/
products/design-tools/ise-design-suite/memory.html

Xilinx Inc. FPGA Memory Recommendations Using the Vivado Design
Suite. Accessed: Aug. 21, 2020. [Online]. Available: https://www.xilinx.
com/products/design-tools/vivado/memory.html

Xilinx Inc. (2017). UG904—Vivado Design Suite User Guide—
Implementation. Accessed: Aug. 21, 2020. [Online]. Available: https://
www.xilinx.com/support/documentation/sw_manuals/xilinx2017_
2/ug904-vivado-implementation.pdf

Xilinx Inc. (2018). UG497—7 Ser. DSP48EIl Slice User Guide.
Accessed: Aug. 21, 2020. [Online]. Available: https://www.xilinx.
com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
Xilinx Inc. (2016). WP447—UltraRAM: Breakthrough Embedded
Memory Integration on UltraScale+ Devices. Accessed:
Aug. 21, 2020. [Online]. Available: https://www.xilinx.com/support/
documentation/white_papers/wp477-ultraram.pdf

Xilinx Inc. (2005). XAPP464 (v2.0)—Using Look-Up Tables
as Distrib. RAM in Spartan-3 Generation FPGAs. Accessed:
Aug. 21, 2020. [Online]. Available: https://www.xilinx.com/support/
documentation/application_notes/xapp464.pdf

183116

[72]

[73]

[74]

[75]

[76]

[77]

Altera Corporation. (2011). Logic Array Blocks and Adaptive Logic
Modules in Stratix V Devices. Accessed: Aug. 21, 2020. [Online].
Available: http://www2.engr.arizona.edu/~ece506/readings/project-
reading/6-cad/stx5_51002.pdf

N. Pramstaller and J. Wolkerstorfer, ““A universal and efficient AES co-
processor for field programmable logic arrays,” in Field Programmable
Logic and Application, J. Becker, M. Platzner, and S. Vernalde, Eds. Berlin,
Germany: Springer, 2004, pp. 565-574.

Altera Corporation. (2011). Memory Blocks Cyclone IV Devices.
Accessed: Aug. 21, 2020. [Online]. Available: https://www.intel.com/
content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-
iv/cyiv-51003.pdf

Lattice ~ Semiconductor Corporation. (2013). Technical — Note
TN1201—Memory Usage Guide for MachXO2 Devices. Accessed:
Aug. 21, 2020. [Online]. Available: https://www.latticesemi.com/-/media/
LatticeSemi/Documents/ApplicationNotes/MO/MemoryUsageGuidefor
MachXO2Devices.ashx?document_id=39082

Lattice Semiconductor Corporation. (2018). AC476 Application
Note—Design Migration Guidelines From Xilinx 7-Series to
PolarFire. Accessed: Aug. 21, 2020. [Online]. Available: https://www.
microsemi.com/document-portal/doc_download/1243552-ac476-design-
migration-guidelines-from-xilinx-7-series-to-polarfire

J. Johnson. (Jul. 15, 2011). List and Comparison of FPGA Com-
panies. Accessed: Aug. 21, 2020. [Online]. Available: http://www.
fpgadeveloper.com/2011/07/list-and-comparison-of-fpga-companies.html

MATEJ BARTIK (Member, IEEE) was born in
Prague, Czech Republic. He received the B.Sc.
degree in computer science from the Faculty of
Electrical Engineering, Czech Technical Univer-
sity in Prague, in 2012, and the M.Sc. degree in
informatics from the Faculty of Information Tech-
nology, Czech Technical University in Prague,
in 2014, where he is currently pursuing the Ph.D.
degree.

He joined CESNET, as an FPGA and an Elec-

tronics Designer, in 2014. His research interests include electronic and PCB
design, embedded system design, including embedded safety and security
topics, and low-level FPGA optimizations.

TOMAS BENES (Student Member, IEEE) was
born in Prague, Czech Republic. He received the
B.Sc. and M.Sc. degrees in informatics from the
Faculty of Information Technology, Czech Techni-
cal University in Prague, in 2017 and 2019, respec-
tively, where he is currently pursuing the Ph.D.
degree.

Since 2016, he has been an FPGA Hard-
ware Designer with the Research and Develop-
ment Department, CESNET. His research interests

include hardware design, low-level optimization, and hardware network
monitoring.

PAVEL KUBALIK was born in Hofice, Czech
Republic. He received the M.Sc. and Ph.D. degrees
in informatics from the Faculty of Electrical Engi-
neering, Czech Technical University in Prague,
in 2002 and 2007, respectively.

From 2004 to 2009, he was an Assistant Pro-
fessor with the Faculty of Electrical Engineering,
Czech Technical University in Prague. Since 2009,
he has been an Assistant Professor with the Fac-
ulty of Information Technology, Czech Technical

University in Prague. His research interests include fault-tolerant design in
FPGA, digital design in FPGA, self-testing circuits-based on FPGA, HW
design of networks, high-speed wireless networks, arithmetic in FPGA, error
control, and self-repair codes in FPGA.

VOLUME 8, 2020

CHAPTER 7

Conclusions

This chapter summarizes the contributions of this dissertation thesis and briefly suggests
possible future work.

7.1 Summary

In this dissertation thesis, I discuss the relationship between communication latency and
throughput. It is a common misinterpretation that (overall) latency can be lowered by
simply increasing the throughput. At a certain point (physical limitations such as the
system’s maximum operating frequency), the latency can not be further reduced without
a complex optimization (non-trivial parallelization) of such algorithms and systems.

This problem was demonstrated on the example of the MVTP system and its demand
to reduce the latency of the “JPEG2000 compression mode” by replacing the JPEG2000
IP core with a different compression technique. The JPEG2000 compression engine was
limited to 3 Gbps of throughput by the chosen standards (3G-SDI) as physical interfaces.
One instance of JPEG2000 engine is required per SDI interface.

To reduce the overall number of implemented data-specific compression algorithms
(which can be expressed as number of SDI interfaces multiplied by a number of supported
data types), I chose to implement a single lossless universal compression algorithm with
the aim towards throughput 10 Gbps or above. There also was a strong emphasis on low-
latency operation. Such compression engine was supposed to be placed in the MVTPs’
networking part, acting as real-time IP packet compression.

Because there was no suitable (hardware) implementation of a universal lossless com-
pression algorithm fulfilling the initial requirements, LZ4 (among others) was evaluated
and found suitable for desired use case(s) and later on, it served as source of inspiration to
develop new hardware specific optimization techniques and architectures which I propose.

An FPGA implementation of LZ4 was developed to prove the impact of such optimiz-
ations and architectures. The implementation features the best single-engine compression
throughput (with worst case performance of 6 Gbps), while the latency was decreased to
the 12.17 ps for a IP jumbo packet (9000 bytes of payload) which in case of the MVTP

69

7. (CONCLUSIONS

contains an entire SDI pixel line. The latency has been reduced by a factor of 3.7 com-
pared to other hardware implementations using 8-bit wide datapath. Despite the fact the
actual implementation did not reach the required 10 Gbps throughput, its datapath width
(64-bit originally) can be easily scaled up to 128, or 256, or even more bits to reach higher
throughput.

7.2 Contributions of the Dissertation Thesis

7.2.1 Analysis of “Fast” Lossless Compression Algorithms from Hard-
ware Designer’s Perspective

The detailed survey, how the software implementations of LZ4 works, what are common
features and properties of LZ4 and other “fast” lossless compression algorithms (and their
relation to LZ77). Each phase of LZ4 was analyzed from the perspective of the hardware
designer, pointing out possible problems and bottlenecks using simple hardware architec-
ture implemented in FPGA.

7.2.2 Demonstration of LZ4 Suitability for ‘Light” Compression of
Image Data

The results (see Table indicate LZ4 could save approximately 13% of the required
network bandwidth in our primary use case of broadcasting SDI data streams while using
a decently sized compression dictionary. Therefore, the LZ4 compression algorithm can
be considered viable to fulfill the initial requirement of the “Light” compression to save
approximately 10%.

7.2.3 Parallel & Low-Latency Architecture for Match Search Unit

Non-trivial parallelism has been found to be the only way for increasing throughput to
overcome the physical limits of various hardware implementations. The proposed 8-way
architecture for the “Match Search Unit” phase of compression algorithms is capable of
processing 64-bit wide words. The architecture can process data at a throughput of 16 Gbps
with a latency of only 6 clock cycles. The architecture uses a hash table as a compression
dictionary, which is shared among all MSUs.

7.2.4 Memory Access Optimized Scheme

I introduced memory access optimized data flow, which allows the “Match Search Unit”
to generate fewer stalls in the data processing. The principle is to store a combined entry
of data and data’s original address instead of the original address only, as introduced in
the reference LZ4 software implementation. Therefore, it is possible to determine a hash
collision immediately preventing “Stalls” from occurring.

70

7.3. Future Work

7.2.5 Masking “Match Length Finding” Initial Latency

To reduce the number of “stalls” even further, I propose using available memory data bus
width to double the actual performance in certain phases (“Match Length Finding” and
“Copying Literals”) to mask start-up latency of such phases. This idea was demonstrated
on our high-throughput/low-latency LZ4 hardware implementation, which is designed to
process (new) 64 bits per clock cycle (the required memory read width is 88 bits, rounded
up to the 128 bits, the value of the nearest power of two); however, the mentioned phases
are processing 128 bits per clock cycle.

7.2.6 Novel Status Register Architecture

A novel architecture for implementing a status register was introduced. The status register
is commonly used to store information of which memory entry is (in-)valid. Such memory-
based data structures are often cleared or initialized to a default value between individual
runs of an implemented algorithm (not particularly limited to compression algorithms
only). The architecture is portable to any modern FPGAs.

7.2.7 Benchmarking Methodology for Digital Designs using Xilinx
Synthesis Tools

To evaluate our status register architecture in a fair way, I created the benchmark with
multiple phases, including randomized pin placement to decrease the influence of respective
tools and actual hardware configuration of computers used for the synthesis process.

7.3 Future Work

The LZ4 output format (sequences) was found ineffective for hardware implementations.
Therefore, 1 propose a concept of “Literal Length and Match Length Limit”, which re-
veals the fact the main (software) advantage of the LZ4 is also it’s biggest (hardware)
disadvantage. The sequence format was designed with an emphasis on its decompression
speed (in software). Therefore I suggest exploring in-depth the field of output formats
used by compression algorithms implementations and to propose a new compression out-
put format suitable and effective for both hardware and software implementations at the
same time. LZ77-based algorithms are asymmetrical; thus, I propose emphasizing coding
at high speed. I assume the research conducted in this are is highly probably worth of
another dissertation thesis.

7.3.1 Literal Length and Match Length Limit Concept Proposal

This section presents an unpublished proposal of limiting a match length to achieve better
predictability and overall performance. The concept does not provide an extensive quant-

71

7. (CONCLUSIONS

itative survey; however, this wasn’t the goal. The data format of LZ4 was selected for a
brief evaluation and to demonstrate the ideas.

7.3.1.1 LZ4 Sequence Format and the Output Encoder

The LZ4 output format is called a sequence (see Fig. . The sequence does not seem to
be complex; however, a (hardware) problem arises due to the method chosen for encoding
the match and the literal length. The LSIC (Linear Small Integer Code) [6] produces an
output with variable word sizes; thus, the encoder has to process the data first to estimate
the length to generate the codeword. This also introduces uncertainty in the number of
clock cycles needed for encoding the sequence.

Token LSIC Literal Offset LSIC
— e A A~ =~ A~ A
tl t2 €1 L O €9
~— ~— N—— S~ ~—

4 bits 4 bits If¢t; =15 ti+er bytes 2 bytes If ¢, =15

Figure 7.1: LZ4 sequence structure. [6]

7.3.1.2 Modified LZ4 Sequence Format

Some of the LZ4 hardware implementations [90, O1] introduced a modified LZ4 format
to make it more suitable for hardware implementation to overcome the issue. The modi-
fication [90] is intended to “swap” fields “Literals Length” (t; plus e;) and “Literals”.
Fields to and ey represent a “Match Length” while “Offset” represents “Match” location
within “Literals” including recently encoded ones. In addition, the “Literals Length” no
longer uses a code with variable codeword length. On the other hand, these fields can
repeat (virtually unlimited) within one L.Z4 sequence. The modified LZ4 sequence format
is no longer compatible with the original format; therefore, this can be considered a major
disadvantage.

The modified format’s main advantage is that the output encode function latency can
be predicted in a more precise way (see Fig. because the encode function can copy
literals on the fly. When a variable coding is used for “Literals Length”, the number of
bytes necessary for encoded LSIC code word of each LZ4 sequence could vary between 1
and 256 bytes [68] for the minimal (respectively, for the maximum of 64 kiB) size of an
LZ4 input block.

7.3.1.3 Introducing Literals Length Limit

I propose adjusting a maximal length of “Literals” to a fixed value. There are two com-
plementary cases of LZ4 sequences: with “Literals” and without them (only a “Match”
related fields are present). Therefore a found “Match” is located within actual “Literals”
and the “Literals Length” has to be determined prior encoding an LZ4 sequence. In the
second case (only “Match” is present), it is clear the “Literals Length” will be zero.

I assume the limit of fewer than 15 bytes (which can be encoded in the “Token” field
only) can be considered as too short to be practical due to increased overhead. On the

72

7.3. Future Work

Reserved for Literals Length
Literals can be copied on the fly.

Output Buffer
M Ll A C G
Frestrcotng) - BEEEREEE

Literals

SNEEEE - F

OUtDUtBUffer LL AB | BC | CD EF | FG | GH H
(Variable Encoding) | © | 7| T | 7

Literals can not be copied before Literals Length is determined,
thus requiring a second memory access to the Input Buffer.

Figure 7.2: Literals output buffer placement for fixed and variable encoding.

other hand, increasing limit to 15+254=269 bytes (15 encoded by the token plus one extra
byte which represents t; field, thus 2 bytes in total). For the case of the real-time IP packet
compression with a maximum payload of 9000 bytes (Jumbo packet), a single encoded LZ4
sequence requires (9000 — 15) : 255 ~ 36 bytes. In the case where “limited” sequences are
used, 9000 : (15+254) x 2 &~ 66 bytes are required. The difference of 30 bytes results in the
extra 0,33% worst-case overhead. For the maximum payload size of 1500 bytes (a standard
packet), the extra overhead is 0,25%. Therefore, for shorter blocks and for compressible
data, the extra overhead will become negligible (due to the fact the “Matches” will generate
more sequences to the output).

The proposed “Semi-Variable” (requiring one or two bytes only) “Literals Length”
encoding retains full compatibility with the original LZ4 sequence format, which can be
considered as an advantage.

In the case an L.Z4 hardware implementation is capable of processing 8 bytes per clock
cycle [70, [69], the number of the required bytes (in the output buffer) can be determined
in two clock cycles; thus, these bytes can be allocated in advance and respective “Literals”
can be copied right after them. This solution has virtually no disadvantages. The extra
encoding overhead is considered negligible and slightly increased latency (just two clock
cycles that can be masked). This seems to be worthy of increased predictability (no stalls)
resulting in a (further) significant saving in terms of latency (see Fig. [7.3]).

7.3.1.4 Introducing Match Length Limit

Another possible way to make the computation more predictable (therefore reducing the
latency) might be splitting a “Match” into several smaller ones (see Fig.|7.3)). The “Match”
encoding process uses LSIC encoding for a “Match Length” in the original L.Z4 sequence

73

7. (CONCLUSIONS

Original LZ4 Flow with Variable Encoding

Processed data Unprocessed data

Encoding Encoding
Start End

Match Length Limit with Variable Encoding

Processed data Match | Match | Match Unprocessed data

Encoding | Encoding | Encoding E(Lazt)
Start Start Start "CE(:] d'”g

Match Length Limit with Semi-Variable Encoding

Processed data Match | Match | Match Unprocessed data

Encoding | Encoding | Encoding (Last.)
Start Start Start E”CE"Z'”g
n

Match Length Limit with Fixed Encoding

Processed data Match | Match | Match Unprocessed data

Encoding | Encoding | Encoding El:';sz:i]
Start Start Start o &

Latency Difference
-t P

Figure 7.3: Visualised influence of the proposed concepts.

format. Therefore, the field “Offset” can not be written to the output buffer before the
“Match Length” is determined. The problem (and a possible solution) is the same as in
the case of “Literals Length”.

Therefore, I propose limiting the “Match Length” in the same way as is proposed in
the case of “Literals Length”. This solution uses the “Semi-Variable” principle, which
allows allocating space for a sequence in advance. Therefore, a compression algorithm
implementation could encode multiple “Matches” concurrently (some kind of a “Matches”
buffer might be necessary [69]). The usage of the “Semi-Variable” principle also retains
the compatibility with the original LZ4 sequence format.

The results (see Table and Fig. indicate the overall compression ratio is
very slightly reduced for the “Match Length” limit of 256 bytes (which requires only one
additional byte to be reserved while “Semi-Variable” encoding is used).

74

7.3. Future Work

Calgary corpus

=
2
S
c
]
[}
o
[oX
IS
o
8]
0,9
4 8 16 32 64 128 256 512
Maximum match length [B]
== bib === hook1 book2 === geo P NEWS obj1
=p¢= 0bj2 paperl =@= paper2 paper3 =é= paperd === paper5
b= DAPEIG === piC progc == progl === progp trans

(a) Compression ratio of Calgary corpus.

Cantebury corpus

=
2
o g g »
S —i - A
8 —
g < < X
A E——
128 256 512
Maximum match length [B]
== alice29.txt === asyoulik.txt cp.html === fields.c
=P grammar.lsp kennedy.xls === [cetl10.txt plrabn12.txt

== Dtt5 sum =3é= xargs.1l

(b) Compression ratio of Cantebury corpus.

Figure 7.4: Relation between compression ratio and maximum match length — Part I.

5

7. (CONCLUSIONS

Silesia corpus

1,9
1,8
1,7
1,6
15
1,4
1,3
1,2
11

< LAY

Compression ratio [1]

o 'Y
o 'Y
o 'Y
o\

0,9
Maximal match length [B]

== dickens === mozilla Mr === nci =P o0ffice osdb
=)¢= reymont samba =—@=sao == webster === xml —f— X-ray

(a) Compression ratio of Silesia corpus.

Overall corpora

1,9
1,8
1,7
1,6
1,5
14
1,3
1,2
1,1

<h»>

Compression ratio [1]

0,9
4 8 16 32 64 128 256 512

Maximum match length [B]

== All corpora === Silesia Calgary === Cantebury

(b) Overall compression ratio of all corpora.

Figure 7.5: Relation between compression ratio and maximum match length — Part II.

76

Bibliography

Fang, J. Database Acceleration on FPGAs. Dissertation thesis, Delft University of
Technology, ISBN 978-94-028-1868-0, 2019, doi: 10.4233/uuid:84dfc577-cabf-43ea-
9b24-4dc160c10315.

Halak, J.; Krsek, M.; Ubik, S.; et al. Real-time long-distance transfer of uncompressed
4K video for remote collaboration. Future Generation Computer Systems, volume 27,
no. 7, 2011: pp. 886 — 892, ISSN 0167-739X, doi: 10.1016/j.future.2010.11.014.

Tektronix. A Guide to Standard and High-Definition Di-
gital ~ Video Measurements. [Online; accessed 8-Apr-2021]. Avail-
able from: https://www.appliedelectronics.com/documents/
GuidetoStandardHDDigitalVideoMeasurements.pdf

Halak, J.; Ubik, S. MTPP - Modular Traffic Processing Platform. In Design and Dia-
gnostics of Electronic Circuits Systems, 2009. DDECS ’09. 12th International Sym-
posium on, April 2009, pp. 170-173.

Alma Technologies s.a. Scalable Ultra-High Throughput Lossy and Lossless JPEG
2000 Encoder. [Online; accessed 8-Apr-2021]. Available from: https://www.alma-
technologies.com/ip-core.UHT-JPEG2K-E

Collet, Y. LZ4 explained. http://fastcompression.blogspot.cz/2011/05/1z4-
explained.html, May 26, 2011, [Online; accessed 8-Apr-2021].

WonderNetwork. Global Ping Statistics. [Online; accessed 8-Apr-2021]. Available from:
https://wondernetwork.com/pings

In-memory benchmark with fastest LZSS (QuickLZ, Snappy) compressors.
http://encode.ru/threads/1266-In-memory-benchmark-with-fastest-LZSS-
(QuickLZ-Snappy)-compressors/page3?s=b2da7f50c8181fb016eb919d33133ede,
Nov 6, 2015, [Online; accessed 15-May-2016].

77

https://www.appliedelectronics.com/documents/Guide to Standard HD Digital Video Measurements.pdf
https://www.appliedelectronics.com/documents/Guide to Standard HD Digital Video Measurements.pdf
https://www.alma-technologies.com/ip-core.UHT-JPEG2K-E
https://www.alma-technologies.com/ip-core.UHT-JPEG2K-E
http://fastcompression.blogspot.cz/2011/05/lz4-explained.html
http://fastcompression.blogspot.cz/2011/05/lz4-explained.html
https://wondernetwork.com/pings
http://encode.ru/threads/1266-In-memory-benchmark-with-fastest-LZSS-(QuickLZ-Snappy)-compressors/page3?s=b2da7f50c8181fb016eb919d33133ede
http://encode.ru/threads/1266-In-memory-benchmark-with-fastest-LZSS-(QuickLZ-Snappy)-compressors/page3?s=b2da7f50c8181fb016eb919d33133ede

BIBLIOGRAPHY

[9]

[10]

[12]

[13]

[14]

[15]

[19]

[20]

78

Farina, F.; Szegedi, P.; Sobieski, J. GEAN T world testbed facility: Federated and dis-
tributed testbeds as a service facility of GEANT. In 201/ 26th International Teletraffic
Congress (ITC), 2014, pp. 1-6, doi: 10.1109/ITC.2014.6932972.

Ubik, S.; Halak, J.; Melnikov, J.; et al. Ultra-Low-Latency Video Transmissions for
Delay Sensitive Collaboration. In 2020 9th Mediterranean Conference on Embedded
Computing (MECO), 2020, pp. 1-4, doi: 10.1109/MEC049872.2020.9134361.

Krugman, P. Three Expensive Milliseconds. https://www.nytimes.com/2014/04/14/

opinion/krugman-three-expensive-milliseconds.html, April 13, 2014, [Online;
accessed 8-Apr-2021].

ST 291-1:2011 - SMPTE Standard - Ancillary Data Packet and Space Formatting. ST
291-1:2011, 2011: pp. 1-17, doi: 10.5594/SMPTE.ST291-1.2011.

Halék, J. Extendable and Scalable FPGA-based High-speed Packet Processing. Dis-
sertation thesis, Faculty of Information Technology, Czech Technical University in
Prague, 2013.

intoPIX s.a. JPEG 2000 - Reliable Video Quality from Production to Archiving . 2018,
[Online; accessed 8-Apr-2021]. Available from: https://www.intopix.com/blogs/
post/JPEG-2000-Reliable-Video-Quality-from-Production-to-Archiving

Ubik, S.; Pospisilik, J. Video Camera Latency Analysis and Measurement. IEEE
Transactions on Circuits and Systems for Video Technology, 2020: pp. 1-1, doi:
10.1109/TCSVT.2020.2978057.

ST 424:2012 - SMPTE Standard - 3 Gb/s Signal/Data Serial Interface. SMPTE ST
424:2012, Oct 2012: pp. 1-10, doi: 10.5594/SMPTE.ST424.2012.

ST 2082-10:2015 - SMPTE Standard - 2160-line Source Image and Ancillary Data
Mapping for 12G-SDI. SMPTE ST 2082-10:2015, March 2015: pp. 1-21, doi: 10.5594/
SMPTE.ST2082-10.2015.

Haldk, J.; Ubik, S.; Zejdl, P. Receiver synchronization in video streaming with short
latency over asynchronous networks. In Design and Diagnostics of Electronic Circuits
and Systems (DDECS), 2010 IEEE 18th International Symposium on, April 2010, pp.
403-405, doi: 10.1109/DDECS.2010.5491745.

ST 292-0:2011 - SMPTE Overview Document - SMPTE Bit-Serial Interfaces at 1.5
Gb/s x2014; Roadmap for the 292 Document Suite. SMPTE ST 292-0:2011, March
2011: pp. 1-2, doi: 10.5594/SMPTE.ST292-0.2011.

Stohanzl, M.; Fedra, Z. The FPGA implementation of dictionary; HW consumption
versus latency. In 2013 36th International Conference on Telecommunications and
Signal Processing (TSP), July 2013, pp. 82-85.

https://www.nytimes.com/2014/04/14/opinion/krugman-three-expensive-milliseconds.html
https://www.nytimes.com/2014/04/14/opinion/krugman-three-expensive-milliseconds.html
https://www.intopix.com/blogs/post/JPEG-2000-Reliable-Video-Quality-from-Production-to-Archiving
https://www.intopix.com/blogs/post/JPEG-2000-Reliable-Video-Quality-from-Production-to-Archiving

Bibliography

[21]

[22]

23]

[25]

[20]

[27]

[28]

[29]

[30]

[31]

Charrier, M.; Cruz, D. S.; Larsson, M. JPEG2000, the next millennium com-
pression standard for still images. In Multimedia Computing and Systems, 1999.
IEEE International Conference on, volume 1, Jul 1999, pp. 131-132 vol.1, doi:
10.1109/MMCS.1999.779134.

Zejdl, P. Low-Latency Video Transmissions for Real-Time Collaboration with a Scal-
able Hardware Acceleration. Dissertation thesis, Faculty of Information Technology,
Czech Technical University in Prague, 2014.

Pinto, S. J.; Gawande, J. P. Performance analysis of medical image compression tech-
niques. In 2012 Third Asian Himalayas International Conference on Internet, Nov
2012, ISSN 1089-7801, pp. 14, doi: 10.1109/AHICI.2012.6408455.

Oh, H.; Bilgin, A.; Marcellin, M. W. Visually Lossless Encoding for JPEG2000. I[EEE
Transactions on Image Processing, volume 22, no. 1, Jan 2013: pp. 189-201, ISSN
1057-7149, doi: 10.1109/T1P.2012.2215616.

Salomon, D. Data Compression: The Complete Reference. Berlin, Germany / Heidel-
berg, Germany / London, UK / etc.: Springer-Verlag, 2007, ISBN 1-84628-602-6, xxv
+ 1092 pp., doi: 10.1007/978-1-84628-603-2.

Bell, T.; Witten, I.; Cleary, J. Modeling for Text Compression. ACM Computing
Surveys, volume 21, no. 4, Dec. 1989: pp. 557-591, ISSN 0360-0300, doi: 10.1145/
76894.76896.

Arnold, R.; Bell, T. A corpus for the evaluation of lossless compression algorithms. In
Proceedings DCC °97. Data Compression Conference, 1997, pp. 201-210.

Deorowicz, S. Unwversal lossless data compression algorithms. Dissertation thesis,
Silesian University of Technology, Faculty of Automatic Control, Electronics and
Computer Science, Institute of Computer Science, 2003. Available from: http:
//sun.aei.polsl.pl/~sdeor/pub/deo03.pdf

Ziv, J.; Lempel, A. A universal algorithm for sequential data compression. I[FEFE
Transactions on Information Theory, volume 23, no. 3, May 1977: pp. 337-343, ISSN
0018-9448, doi: 10.1109/TIT.1977.1055714.

J. Ziv; A. Lempel. Compression of individual sequences via variable-rate coding. IEFEFE
Transactions on Information Theory, volume 24, no. 5, Sep 1978: pp. 530-536, ISSN
0018-9448, doi: 10.1109/TTT.1978.1055934.

Welch, T. A. A Technique for High-Performance Data Compression. Computer,
volume 17, mno. 6, June 1984: pp. 8-19, ISSN 0018-9162, doi: 10.1109/
MC.1984.1659158.

79

http://sun.aei.polsl.pl/~sdeor/pub/deo03.pdf
http://sun.aei.polsl.pl/~sdeor/pub/deo03.pdf

BIBLIOGRAPHY

[32]

[33]

[43]

80

Huffman, D. A. A Method for the Construction of Minimum-Redundancy Codes.
Proceedings of the IRE, volume 40, no. 9, Sept 1952: pp. 1098-1101, ISSN 0096-8390,
doi: 10.1109/JRPROC.1952.273898.

ITU T.81 : Information technology - Digital compression and coding of continuous-
tone still images (ITU-T SG16). https://www.itu.int/rec/T-REC-T.81-199209-1/
en, 1992-09-18, [Online; accessed 8-Apr-2021].

ISO/IEC 14496-10. http://www.iso.org/iso/catalogue detail.htm?csnumber=
66069, 2004-10-01, information technology — Coding of audio-visual objects — Part
10: Advanced Video Coding.

ITU-T H.265 : High efficiency video coding. https://www.itu.int/rec/T-REC-H.265,
4/2014, [Online; accessed 8-Apr-2021].

Feldspar, ~A. An Explanation of the DEFLATE Algorithm. https:
//www.cs.ucdavis.edu/~martel/122a/deflate.html, 23 August 1997, [Online;
accessed 8-Apr-2021].

Jahaya, B. A.; Rehman, A. U.; Defilippis, I. Hardware implementation of JPEG2000
encoder for video compression. In Intelligent and Advanced Systems, 2007. ICIAS
2007. International Conference on, Nov 2007, pp. 1296-1299, doi: 10.1109/
ICTAS.2007.4658594.

Oberhumer, M. F. Lempel - Ziv - Oberhumer. http://www.oberhumer.com/
opensource/1zo/, Mar 01, 2017, [Online; accessed 8-Apr-2021].

intoPIX s.a. TICO-RAW is the new RAW ! [Online; accessed 8-Apr-2021]. Available

from: https://www.intopix.com/tico-raw-fpga-asic-ip-cores

Descampe, A.; Keinert, J.; Richter, T.; et al. JPEG XS, a new standard for visually
lossless low-latency lightweight image compression. In Applications of Digital Image
Processing XL, volume 10396, edited by A. G. Tescher, International Society for Optics

and Photonics, SPIE, 2017, pp. 68 — 79, doi: 10.1117/12.2273625.

KOBAYASHI, H.; KIYA, H. Extension of JPEG XS for Two-Layer Lossless Coding.
In 2020 IEEE 9th Global Conference on Consumer Electronics (GCCE), 2020, pp.
94-97, doi: 10.1109/GCCE50665.2020.9291824.

Rigler, S.; Bishop, W.; Kennings, A. FPGA-Based Lossless Data Compression us-
ing Huffman and LZ77 Algorithms. In 2007 Canadian Conference on FElectrical
and Computer FEngineering, April 2007, ISSN 0840-7789, pp. 1235-1238, doi:
10.1109/CCECE.2007.315.

S. Rigler. FPGA-Based Lossless Data Compression Using GNU Zip. Master’s thesis,
University of Waterloo, 2007. Available from: http://hdl.handle.net/10012/2692

https://www.itu.int/rec/T-REC-T.81-199209-I/en
https://www.itu.int/rec/T-REC-T.81-199209-I/en
http://www.iso.org/iso/catalogue_detail.htm?csnumber=66069
http://www.iso.org/iso/catalogue_detail.htm?csnumber=66069
https://www.itu.int/rec/T-REC-H.265
https://www.cs.ucdavis.edu/~martel/122a/deflate.html
https://www.cs.ucdavis.edu/~martel/122a/deflate.html
http://www.oberhumer.com/opensource/lzo/
http://www.oberhumer.com/opensource/lzo/
https://www.intopix.com/tico-raw-fpga-asic-ip-cores
http://hdl.handle.net/10012/2692

Bibliography

[44]

[45]

[48]

[49]

[53]

[54]

Mehboob, R.; Khan, S. A.; Ahmed, Z.; et al. Multigig lossless data compression
device. IEEFE Transactions on Consumer Electronics, volume 56, no. 3, Aug 2010: pp.
1927-1932, ISSN 0098-3063, doi: 10.1109/TCE.2010.5606348.

Mehboob, R.; Khan, S. A.; Ahmed, Z. High Speed Lossless Data Compression Archi-
tecture. In 2006 IEEFE International Multitopic Conference, Dec 2006, pp. 84-88, doi:
10.1109/INMIC.2006.358141.

Shcherbakov, I.; Weis, C.; Wehn, N. A High-Performance FPGA-Based Implement-
ation of the LZSS Compression Algorithm. In Parallel and Distributed Processing
Symposium Workshops PhD Forum (IPDPSW), 2012 IEEE 26th International, May
2012, pp. 449453, doi: 10.1109/TPDPSW.2012.58.

Leavline, E. J.; Singh, D. A. A. G. Hardware Implementation of LZMA Data Com-
pression Algorithm. International Journal of Applied Information Systems (IJAIS),
volume 5, 2013: pp. H1-56.

Li, B.; Zhang, L.; Shang, Z.; et al. Implementation of LZMA compression algorithm
on FPGA. Electronics Letters, volume 50, no. 21, October 2014: pp. 1522-1524, ISSN
0013-5194, doi: 10.1049/el.2014.1734.

Parekar, P. M.; Thakare, S. S. Hardware Implementation Of Lossless LZMA Data
Compression Algorithm. Progress In Science and Engineering Research Journal,
volume 2, no. 3, May-June 2014: pp. 201-205, ISSN 2347-6680.

Morales-Sandoval, M.; Feregrino-Uribe, C. On the Design and Implementation of an
FPGA-based Lossless Data Compressor. Sociedad Mexicana de Chiencias de la Com-
putacion, 2004: pp. 29-38, doi: 10.1.1.211.9098.

Naqvi, S.; Naqvi, R.; Riaz, R. A.; et al. Optimized RTL design and implementation
of LZW algorithm for high bandwidth applications. PRZEGLAD ELEKTROTECH-
NICZNY (Electrical Review), volume 87, no. 4, 2011: pp. 279-285, ISSN 0033-2097.

Nunez, J. L.; Jones, S.; Bateman, S. X-MatchPRO: a high performance full-duplex
lossless data compressor on a ProASIC FPGA. In Intelligent Data Acquisition and

Advanced Computing Systems: Technology and Applications, International Workshop
on, 2001., 2001, pp. 56-60, doi: 10.1109/IDAACS.2001.941979.

Nunez, J. L.; Jones, S. Gbit/s lossless data compression hardware. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, volume 11, no. 3, June 2003: pp.
499-510, ISSN 1063-8210, doi: 10.1109/TVLSI.2003.812288.

Nunez, J. L.; Feregrino, C.; Bateman, S.; et al. The X-MatchLITE FPGA-based data
compressor. In FUROMICRO Conference, 1999. Proceedings. 25th, volume 1, 1999,
ISSN 1089-6503, pp. 126-132 vol.1, doi: 10.1109/EURMIC.1999.794458.

81

BIBLIOGRAPHY

[55]

[56]

[58]

[59]

[60]

[61]

[62]

[63]

82

Nunez, J. L.; Jones, S. Lossless data compression programmable hardware for
high-speed data networks. In Field-Programmable Technology, 2002. (FPT). Pro-
ceedings. 2002 IEEE International Conference on, Dec 2002, pp. 290-293, doi:
10.1109/FPT.2002.1188694.

Milward, M.; Nunez, J. L.; Mulvaney, D. Design and implementation of a lossless
parallel high-speed data compression system. IEEE Transactions on Parallel and Dis-
tributed Systems, volume 15, no. 6, June 2004: pp. 481-490, ISSN 1045-9219, doi:
10.1109/TPDS.2004.7.

Nunez-Yanez, J. L.; Chouliaras, V. A. Gigabyte per second streaming lossless data
compression hardware based on a configurable variable-geometry CAM dictionary.
IEE Proceedings - Computers and Digital Techniques, volume 153, no. 1, Jan 2006:
pp. 47-58, ISSN 1350-2387.

Helion Technology ltd. LZRW Compression cores. [Online; accessed 8-Apr-2021].
Available from: http://www.heliontech.com/comp_lzrw.htm

El ghany, M. A. A.; Salama, A. E.; Khalil, A. H. Design and Implementation of
FPGA-based Systolic Array for LZ Data Compression. In 2007 IEEE International
Symposium on Circuits and Systems, May 2007, ISSN 0271-4302, pp. 3691-3695, doi:
10.1109/ISCAS.2007.378644.

El ghany, M. A. A.; Magdy, A. E.; Salama, A. E. Design and Implementation of
FPGA-based Systolic Array for LZ Data Compression. InTech, 2010, ISBN 978-953-
307-063-6, pp. 75-92, doi: 10.5772/8872.

Papadopoulos, K.; Papaefstathiou, I. Titan-R: A Multigigabit Reconfigurable Com-
bined Compression/Decompression Unit. ACM Transactions on Reconfigurable Tech-
nology and Systems, volume 3, no. 2, May 2010: pp. 7:1-7:25, ISSN 1936-7406, doi:
10.1145/1754386.1754388.

Huang, W. J.; Saxena, N.; McCluskey, E. J. A reliable LZ data compressor on reconfig-
urable coprocessors. In Field-Programmable Custom Computing Machines, 2000 IEEE
Symposium on, 2000, pp. 249-258, doi: 10.1109/FPGA.2000.903412.

Sandoval, M. M.; Feregrino-Uribe, C. A Hardware Architecture for Elliptic Curve
Cryptography and Lossless Data Compression. In 15th International Conference on
FElectronics, Communications and Computers (CONIELECOMP’05), Feb 2005, pp.
113-118, doi: 10.1109/CONIEL.2005.8.

Papadopoulos, K.; Papaefstathiou, I. Titan-R: A Reconfigurable Hardware Imple-
mentation of a High-Speed Compressor. In Field-Programmable Custom Computing
Machines, 2008. FCCM ’08. 16th International Symposium on, April 2008, pp. 216—
225, doi: 10.1109/FCCM.2008.14.

http://www.heliontech.com/comp_lzrw.htm

Bibliography

[65]

[66]

[70]

Sukhwani, B.; Abali, B.; Brezzo, B.; et al. High-Throughput, Lossless Data Com-
presion on FPGAs. In Field-Programmable Custom Computing Machines (FCCM),
2011 IEEFE 19th Annual International Symposium on, May 2011, pp. 113-116, doi:
10.1109/FCCM.2011.56.

Fowers, J.; Kim, J. Y.; Burger, D.; et al. A Scalable High-Bandwidth Architecture
for Lossless Compression on FPGAs. In Field-Programmable Custom Computing Ma-
chines (FCCM), 2015 IEEE 23rd Annual International Symposium on, May 2015, pp.
52-59, doi: 10.1109/FCCM.2015.46.

Lee, S. M.; Jang, J. H.; Oh, J. H.; et al. Design of Hardware Accelerator for Lempel-
Ziv 4 (LZ4) Compression. IEICE Electronics Ezxpress, volume 14, no. 11, 2017: p. 6,
doi: 10.1587 /elex.14.20170399.

Bartik, M.; Ubik, S.; Kubalik, P. LZ4 compression algorithm on FPGA. In 2015 IEEFE
International Conference on Electronics, Circuits, and Systems (ICECS), Dec 2015,
pp. 179-182, doi: 10.1109/ICECS.2015.7440278.

Benes, T.; Bartik, M.; Kubalik, P. High Throughput and Low Latency LZ4 Com-
pressor on FPGA. In 2019 International Conference on ReConFigurable Comput-
ing and FPGAs (ReConFig’19), Dec 2019, ISBN 978-1-7281-1957-1, pp. 1-5, doi:
10.1109/ReConFigd8160.2019.8994794.

Bartik, M.; Benes, T.; Kubalik, P. Design of a High-Throughput Match Search Unit
for Lossless Compression Algorithms. In 2019 IEEFE 9th Annual Computing and Com-
munication Workshop and Conference (CCWC), Jan 2019, ISBN 9781728105543, pp.
0732-0738, doi: 10.1109/CCWC.2019.8666521.

Crofut, W. A.; Sottile, M. R. Design Techniques of a Delay-Line Content-Addressed
Memory. IEEE Transactions on FElectronic Computers, volume EC-15, no. 4, Aug
1966: pp. 529-534, ISSN 0367-7508, doi: 10.1109/PGEC.1966.264360.

Burkowski, F. J. A Hardware Hashing Scheme in the Design of a Multiterm String
Comparator. IEEE Transactions on Computers, volume C-31, no. 9, Sept 1982: pp.
825-834, ISSN 0018-9340, doi: 10.1109/TC.1982.1676098.

Lee, K. LZ4 Compression and Improving Boot Time. https://
events.static.linuxfound.org/sites/events/files/lcjpcojpl3_klee.pdf,
[Online; accessed 8-Apr-2021].

Gomes, R. D.; Costa, Y. G. G. d.; Aquino Junior, L. L.; et al. A Solution for Trans-
mitting and Displaying UHD 3D Raw Videos Using Lossless Compression. In Pro-
ceedings of the 19th Brazilian Symposium on Multimedia and the Web, WebMedia
13, New York, NY, USA: ACM, 2013, ISBN 978-1-4503-2559-2, pp. 173-176, doi:
10.1145/2526188.2526228.

83

https://events.static.linuxfound.org/sites/events/files/lcjpcojp13_klee.pdf
https://events.static.linuxfound.org/sites/events/files/lcjpcojp13_klee.pdf

BIBLIOGRAPHY

[75]

[76]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

84

Harnik, D.; Khaitzin, E.; Sotnikov, D.; et al. A Fast Implementation of DEFLATE. In
2014 Data Compression Conference, March 2014, ISSN 1068-0314, pp. 223-232, doi:
10.1109/DCC.2014.66.

Almeida, S.; Oliveira, V.; Pina, A.; et al. Computational Science and Its Applications
— ICCSA 2014: 14th International Conference, Guimaraes, Portugal, June 30 — July
3, 2014, Proceedings, Part IV, chapter Two High-Performance Alternatives to ZLIB
Scientific-Data Compression. Cham: Springer International Publishing, 2014, ISBN
978-3-319-09147-1, pp. 623-638, doi: 10.1007/978-3-319-09147-1_45.

Fiedler, O. LZ-family data compression methods. Master’s thesis, CTU FIT, 2014.

Siedelmann, H.; Wender, A.; Fuchs, M. Pattern Recognition: 37th German Confer-
ence, GCPR 2015, Aachen, Germany, October 7-10, 2015, Proceedings, chapter High

Speed Lossless Image Compression. Cham: Springer International Publishing, 2015,
ISBN 978-3-319-24947-6, pp. 343-355, doi: 10.1007/978-3-319-24947-6_28.

Kane, J.; Yang, Q. Compression Speed Enhancements to LZO for Multi-core Sys-
tems. In Computer Architecture and High Performance Computing (SBAC-PAD),
2012 IEEE 2jth International Symposium on, Oct 2012, ISSN 1550-6533, pp. 108—
115, doi: 10.1109/SBAC-PAD.2012.29.

CompressionRatings.Com - Summary (brief results). http://
compressionratings.com/sort.cgi?rating sum.brief+6n, [Online; accessed
21-Aug-2020].

Shkel, Y.; Raginsky, M.; Verdud, S. Universal lossy compression under logarithmic

loss. In 2017 IEEE International Symposium on Information Theory (ISIT), 2017,
pp. 11571161, doi: 10.1109/ISIT.2017.8006710.

ST 334-1:2015 - SMPTE Standard - Vertical Ancillary Data Mapping of Caption Data
and Other Related Data. ST 334-1:2015, 2015: pp. 1-8, doi: 10.5594/SMPTE.ST334-
1.2015.

ST 2108-2:2019 - SMPTE Standard - Vertical Ancillary Data Mapping of KLV
Formatted HDR/WCG Metadata. ST 2108-2:2019, 2019: pp. 1-13, doi: 10.5594/
SMPTE.ST2108-2.2019.

Khan, A.; Khan, M. U. K.; Bilal, M.; et al. Hardware architecture and optimization
of sliding window based pedestrian detection on FPGA for high resolution images by
varying local features. In 2015 IFIP/IEEE International Conference on Very Large
Scale Integration (VLSI-SoC), Oct 2015, ISSN 2324-8432, pp. 142-148, doi: 10.1109/
VLSI-SoC.2015.7314406.

Touil, L.; Ben Abdelali, A.; Abdelatif, M. A hardware acceleration of a real time video
processing. In 2012 16th IEEE Mediterranean FElectrotechnical Conference, March
2012, ISSN 2158-8473, pp. 862-865, doi: 10.1109/MELCON.2012.6196565.

http://compressionratings.com/sort.cgi?rating_sum.brief+6n
http://compressionratings.com/sort.cgi?rating_sum.brief+6n

Bibliography

[36]

Mondal, P.; Banerjee, S. A Reconfigurable Memory-Based Fast VLSI Architec-
ture for Computation of the Histogram. IEEE Transactions on Consumer Electron-
ics, volume 65, no. 2, May 2019: pp. 128-133, ISSN 1558-4127, doi: 10.1109/
TCE.2019.2900541.

Sanny, A.; Yang, Y. E.; Prasanna, V. K. Energy-efficient histogram on FPGA. In 201/
International Conference on ReConFigurable Computing and FPGAs (ReConFigl/),
Dec 2014, ISSN 2325-6532, pp. 1-6, doi: 10.1109/ReConFig.2014.7032517.

Liu, S.; Schulze, J. P.; Herr, L.; et al. CineGrid Exchange: A workflow-based
peta-scale distributed storage platform on a high-speed network. Future Generation
Computer Systems, volume 27, no. 7, 2011: pp. 966-976, ISSN 0167-739X, doi:
https://doi.org/10.1016/j.future.2010.11.017, cineGrid: Super high definition media
over optical networks. Available from: https://www.sciencedirect.com/science/
article/pii/S0167739X10002372

CineGrid Exchange. cinegrid.org, [Online; accessed 15-May-2016].

Liu, W.; Mei, F.; Wang, C.; et al. Data Compression Device Based on Modified LZ4
Algorithm. IEEFE Transactions on Consumer Electronics, volume 64, no. 1, 2018: pp.
110-117, doi: 10.1109/TCE.2018.2810480.

Kim, J.; Cho, J. Hardware-Accelerated Fast Lossless Compression Based on LZ4 Al-
gorithm. In Proceedings of the 2019 3rd International Conference on Digital Signal
Processing, ICDSP 2019, New York, NY, USA: Association for Computing Machinery,
2019, ISBN 9781450362047, p. 65-68, doi: 10.1145/3316551.3316564.

85

https://www.sciencedirect.com/science/article/pii/S0167739X10002372
https://www.sciencedirect.com/science/article/pii/S0167739X10002372
cinegrid.org

Reviewed Publications of the Author
Relevant to the Thesis

[A.1] Bartik, M. and Ubik, S. and Kubalik, P. LZj Compression Algorithm on FPGA,
21st IEEE International Conference on Electronics, Circuits, and Systems, 978-1-
4799-2451-6, pp. 179 - 182, Cairo, Egypt, 2015.

The paper has been cited (21[[) in:

o Cheng, L.; Guo, S.; Wang, Y.; Yang, Y. Lifting Wavelet Compression Based
Data Aggregation in Big Data Wireless Sensor Networks; IEEE 22nd Interna-
tional Conference On Parallel And Distributed Systems (ICPADS), pp. 561 -
568, 2016. ISSN 1521-9097.

o Lin Tao, X.; Cai Wenting, X.; Chen Xianyi, X.; Zhou Kailun, X.; Wang Shuhui,
X. Lossless Compression Algorithm Based on String Matching with High Per-
formance and Low Complexity for Screen Content Coding; Journal of Elec-
tronics & Information Technology, vol. 39, no. 2, pp. 351 - 359, 2017. ISSN
1009-5896.

o Reeks, Christian Sensing and Human Pose FEstimation in FEzxtreme
Industrial — Environments for Physical ~Human Robot Interaction;
http://hdl.handle.net/10453/123281, 2017.

o Anu, V.R; Sherly, E Optimized delta compression in live migration of virtual
machines; International Conference on Energy, Communication, Data Analytics
and Soft Computing (ICECDS), Chennai, 2017, pp. 2866-2872.

o Liu, W.; Mei, F.; Wang, C.; O’Neill, M.; Swartzlander, Earl E. Data Compres-
sion Device Based on Modified LZj Algorithm; IEEE Transactions On Con-
sumer Electronics, vol. 64, no. 1, pp. 110 - 117, 2018. ISSN 0098-3063.

! Auto-citations are excluded for all listed publications.

87

REVIEWED PUBLICATIONS OF THE AUTHOR RELEVANT TO THE THESIS

88

e}

Rawal, Bharat S. Cloud-based Distributed Nth Order Binary Encoding redefines
the limit of lossless compression; 2018 IEEE International Conference On Smart
Cloud (SMARTCLOUD), pp. 99 - 104, 2018.

Moreira, A.; Ivson, P.; Celes, W. Hybrid Cloud Rendering System for Massive
CAD Models; Proceedings 2018 31st SIBGRAPI Conference on Graphics, Pat-
terns and Images (SIBGRAPI), pp. 234 - 241, 2018. ISSN 1530-1834.

Asamoah Owusu, D. Modeling Outputs of Efficient Compressibility Estimat-
ors; 2018 Retrieved from the University of Minnesota Digital Conservancy,
http://hdl.handle.net/11299/200159.

Fuzong, W.; Helin, G.; Jian, Z. Dynamic Data Compression Algorithm Selection
for Big Data Processing on Local File System; ACM CSAI ’18: Proceedings
of the 2018 2nd International Conference on Computer Science and Artificial
Intelligence, ISBN 978-1-4503-6606-9/18/12

Kim, J.; Cho, J. Hardware-accelerated Fast Lossless Compression Based on
LZ4 Algorithm; 2019 3rd International Conference on Digital Signal Processing
(ICDSP 2019), pp. 65 - 68, 2019.

Santos, B.; Cruz, N.; Fernandes, A.; Carvalho, P. F.; Sousa, J.; Goncalves, B.;
Riva, M.; Pollastrone, F. et al. Real-Time Data Compression for Data Acquisi-
tion Systems Applied to the ITER Radial Neutron Camera; IEEE Transactions
on Nuclear Science, vol. 66, no. 7, pp. 1324 - 1329, 2019. ISSN 0018-9499.

Fang, J.; Mulder, Yvo T. B.; Hidders, J.; Lee, J.; Hofstee, H. In-memory data-
base acceleration on FPGAs: a survey; VLDB Journal, 2019. ISSN 1066-8888.

Fang J.; Chen J.; Lee J.; Al-Ars Z.; Hofstee H. P. Refine and Recycle: A Method
to Increase Decompression Parallelism; 2019 IEEE 30th International Confer-

ence on Application-specific Systems, Architectures and Processors (ASAP),
New York, NY, USA, 2019, pp. 272-280.

Fang, J. Database Acceleration on FPGAs; Delft University of Technology, 2019,
pp. 1-110, ISBN 978-94-028-1868-0.

Jiang, H.; Lin, S.-J. A Rolling Hash Algorithm and the Implementation to LZ}
Data Compression; IEEE Access, vol. 8, pp. 35529-35534, 2020. ISSN 2169-
3536.

Song, Y.; Zhu, Y.; Hou, J.; Du, S.; Song, S. Astronomical Data Preprocessing
Implementation Based on FPGA and Data Transformation Strategy for the
FAST Telescope as a Giant CPS; IEEE Access, vol. 8, pp. 56837 - 56846, 2020.
ISSN 2169-3536.

Szabarin, B.; Kiss, A. Word pattern prediction using Big Data frameworks;,
Acta Universitatis Sapientiae, Informatica, vol 12., no. 1, pp. 51-69, 2020, ISSN
2066-7760.

Reviewed Publications of the Author Relevant to the Thesis

A.2]

o Fang J.; Chen J.; Lee J.; Al-Ars Z.; Hofstee H. P. An Efficient High- Throughput
LZ77-Based Decompressor in Reconfigurable Logic; Journal of Signal Processing
Systems, vol. 92, pp. 931-947, 2020, ISSN 1939-8115.

o Sriraman, A.; Dhanotia, A. Accelerometer: Understanding Acceleration Oppor-
tunities for Data Center Overheads at Hyperscale; ACM ASPLOS ’20: Proceed-
ings of the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 733-750, 2020, ISBN 978-
1-4503-7102-5/20/03.

o Sanchez-Gallegos, D.D., Carrizales-Espinoza, D., Reyes-Anastacio, H.G.,
Gonzalez-Compean, J.L., Carretero, J., Morales-Sandoval, M., Galaviz-
Mosqueda, A. From the edge to the cloud: A continuous delivery and preparation
model for processing big IoT data Simulation Modelling Practice and Theory
(2020), 105, art. no. 102136, ISSN: 1569-190X.

o Choi, D. Y.; Oh, J. H. ; Kim, J. K.; Lee, S. E. Energy Efficient and Low-
Cost Server Architecture for Hadoop Storage Appliance KSII Transactions on

Internet and Information Systems, Volume 14, Issue 12, 31 December 2020,
Pages 4648-4663 ISSN: 1976-7277.

Bartik, M. and Ubik, S. and Kubalik, P. A Novel and Efficient Method to Main-
tain FPGA Embedded Memory Content with an Asymptotically Constant Time
(Re)Initialization Designed for an IP Packet Lossless Compression; International
Conference on ReConFigurable Computing and FPGAs (ReConFig 2016), 978-1-
5090-3707-0, pp. 1 - 6, Cancun, Mexico. 2016.

Bartik, M. and Ubik, S. and Kubalik, P. and Benes, T. Performance Comparison
of Multiple Approaches of Status Register for Medium Density Memory Suitable for
Implementation of a Lossless Compression Dictionary (Abstract); Proceedings of the
2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
(FPGA 2018), 978-1-4503-5614-5, p. 290, Monterey, USA. 2018.

Bartik, M. and Benes T. and Kubalik, P. Design of a High- Throughput Match Search
Unit for Lossless Compression Algorithms; The 9th IEEE Annual Computing and
Communication Workshop and Conference (CCWC), ISBN 978-1-7281-0554-3, pp.
732 - 738, Las Vegas, USA. 2019.

The paper has been cited (2) in:

o Loukil, H.; Abbas, M.; Algahtani, A.; Kessentini, A.; Muneer, P.; Ijyas,
T.; Wase, M. Role of Nanotechnology in Lossless Video Compression Coding:;
Nanoscience And Nanotechnology Letters, vol. 11, no. 12, pp. 1617 - 1632, 2019.
ISSN 1941-4900.

o Zhou, Q.; Cai, S.; Zhang, Y. Parallel Heuristic Community Detection Method
Based on Node Similarity; IEEE Access, vol. 7, pp. 184145 - 184159, 2019. ISSN
2169-3536.

89

REVIEWED PUBLICATIONS OF THE AUTHOR RELEVANT TO THE THESIS

[A.5] Benes T. and Bartik, M. and Kubalik, P. High Throughput and Low Latency LZ}
Compressor on FPGA; 2019 International Conference on ReConFigurable Comput-
ing and FPGAs, ISSN 2640-0472. ISBN 978-1-7281-1957-1, pp. 1 - 5, Cancin, Mexico
2019.

[A.6] Bartik, M. (50%) and Benes T. (25%) and Kubalik, P. (25%) An In-sight into How
Compression Dictionary Architecture can Affect the Overall Performance in FPGAs;
IEEE Access, 2020 (8), pp. 183101 - 183116. ISSN 2169-3536. 2020.

90

Granted Patents of the Author Relevant
to the Thesis

[A.7] Bartik, M. (75%) and Ubik, S. (25%) Systém pro realizaci rozptylovaci tabulky;
CZ306787, 24™ May 2017,

[A.8] Bartik, M. (75%) and Ubik, S. (25%) System for implementation of a hash table;
EP3244324, 12" September 2018,

[A.9] Bartik, M. (75%) and Ubik, S. (25%) System for Implementation of a Hash Table;
US10262702B2, 26t April 2019,

91

Remaining Reviewed Publications of the
Author not Relevant to the Thesis

[A.10] Bartik, M. (75%) and and Novotny, M. (25%) Advanced control unit for linear
motor for precise measurements in biomechanics; 4th Embedded Computing. Medi-
terranean Conference (MECO 2015), pp. 129-133. ISBN 978-1-4799-8999-7. 2015.

The paper has been cited (1) in:

o Soares, M.; Almeida Junior, A.; Canuto Alves, T.; Neto, L. LIM Control
Strategy Supported by Genetic Algorithm with Unbalanced AC Source; Inter-

national Journal Of Emerging Electric Power Systems, vol. 19, no. 4, 2018.
ISSN 1553-779X.

[A.11] Bartik, M. and Pichlova, D. and Kubétovéa, H. Hardware-software co-design: A
practical course for future embedded engineers; Proceedings of the 5th Mediterranean
Conference on Embedded Computing (MECO 2016), p. 347-350, ISSN 2377-5475,
ISBN 978-1-5090-2221-2. 2016.

The paper has been cited (3) in:

o Hung, P.D.; Nam, L.H.; Van Thang, H. Flexible development for embedded
system software; 4th International Conference on Research in Intelligent and
Computing in Engineering, RICE 2019, 2019, ISBN 978-981152779-1.

o Pfundt, B.; Reichenbach, M.; Fey, D. Comprehensive curriculum for reconfig-
urable heterogeneous computer architecture education; IET Circuits Devices &
Systems, vol. 11, no. 4, pp. 292 - 298, 2017. ISSN 1751-858X.

o Mite-Baidal, K; Delgado-Vera, C; Aguirre-Munizaga, M; Calle-Romero, K Pro-
totype of an Embedded System for Irrigation and Fertilization in Greenhouses;

Technologies and Innovation. CITI 2019. Communications in Computer and
Information Science, vol 1124, 2019, ISBN 978-3-030-34988-2.

93

REMAINING REVIEWED PUBLICATIONS OF THE AUTHOR NOT RELEVANT TO THE
THESIS

[A.12] Bartik, M. and Bucek, J. A Low-Cost Multi-Purpose Experimental FPGA Board
for Cryptography Applications; TEEE 4th Workshop on Advances in Information,
Electronic and Electrical Engineering (AIEEE), pp. 1-6, ISBN 978-1-5090-4473-3.
2016.

The paper has been cited (7) in:

o

Socha, P.; Novotny., M; Towards High-Level Synthesis of Polymorphic Side-
Channel Countermeasures; 2020 23rd Euromicro Conference on Digital System
Design (DSD), Kranj, Slovenia, 2020, pp. 193-199, ISBN 978-1-7281-9535-3.

Socha, P.; Miskovsky, V.; Kubatova, H.; Novotny., M; Efficient algorithmic
evaluation of correlation power analysis: Key distinguisher based on the correla-

tion trace derivative; Microprocessors and Microsystems, Volume 71, November
2019, ISSN 0141-9331.

Miskovsky, V. Side-Channel Analysis: Efficient Attacks and Fault-Tolerant
Countermeasures; dissertation thesis, 2020, https://ddd.fit.cvut.cz/PhD/
PhDThesis_Miskovsky.pdf

Tybura, M. Evolutionary algorithms with and without adaptive mutation in Al
based cryptography; I'TM Web Conf. Volume 21, 2018, Computing in Science
and Technology (CST 2018), ISSN 2271-2097.

Socha, P.; Miskovsky, V.; Novotny., M; Kubatova, H. Correlation power ana-
lysis distinguisher based on the correlation trace derivative; 21st Euromicro Con-
ference on Digital System Design (DSD), Prague, 2018, pp. 565-568, ISBN 978-
1-5386-7377-5.

Socha, P.; Miskovsky, V.; Novotny., M; Kubatova, H. Speeding up differential
power analysis using integrated power traces; 7th Mediterranean Conference on
Embedded Computing (MECO), Budva, 2018, pp. 1-5, ISBN 978-1-5386-5683-9.

Miskovsky, V. Fault tolerance and resistance against side channel attacks in
FPGA; 2017, https://hwlab.fit.cvut.cz/ media/gacr/publikace/report-
miskovsky.pdf

[A.13] Bartik, M. Clock Domain Crossing — An Advanced Course for Future Digital Design
Engineers; Tth Mediterranean Conference on Embedded Computing (MECO), pp.
76-80, ISBN 978-1-5386-5683-9. 2018.

[A.14] Socha, P.; Brejnik, J.; Bartik, M. Attacking AES Implementations Using Correlation
Power Analysis on ZYBO Zyng-7000 SoC Board; 7Tth Mediterranean Conference on
Embedded Computing (MECO), pp. 29-32, ISBN 978-1-5386-5683-9. 2018.

The paper has been cited (3) in:

94

o

De Los Reyes, E.M.; Sison, A.M.; Medina, R.P. Modified AES cipher round
and key schedule; Indonesian Journal of Electrical Engineering and Informatics
(IJEEI), vol. 7, pp. 29 - 36, 2019. ISSN 2089-3272

https://ddd.fit.cvut.cz/PhD/PhDThesis_Miskovsky.pdf
https://ddd.fit.cvut.cz/PhD/PhDThesis_Miskovsky.pdf
https://hwlab.fit.cvut.cz/_media/gacr/publikace/report-miskovsky.pdf
https://hwlab.fit.cvut.cz/_media/gacr/publikace/report-miskovsky.pdf

Remaining Reviewed Publications of the Author not Relevant to the Thesis

o Gui, Y.; Tamore, S. M.; Siddiqui, A.S.; Saqib, F. A Key Update Scheme for
Side-Channel Attack Mitigation; 16th International Conference on Smart Cities:
Improving Quality of Life Using ICT & IoT and Al (HONET-ICT), 2019. ISBN
978-1-7281-3971-5. ISSN 1949-4092.

o Prinetto, P; Roascio, G Hardware Security, Vulnerabilities, and Attacks: A

Comprehensive Taxonomy; Proceedings of the Fourth Italian Conference on
Cyber Security (ITASEC 2020), vol. 2597, pp. 177 - 189, 2020. ISSN 1613-0073.

[A.15] Hynek, K. and Benes, T. and Bartik, M. and Kubalik, P. Ultra High Resolution
Jitter Measurement Method for Ethernet Based Networks; 9th IEEE Annual Com-
puting and Communication Workshop and Conference (CCWC), pp. 847-851, ISBN
978-1-7281-0554-3. 2019.

[A.16] Bartik, M. and Benes, T. and Hynek, K. An Example of PCB Reverse Engineering -
Reconstruction of Digilent JTAG SMTS8 Schematic; Tth IEEE Workshop on Advances
in Information, Electronic and Electrical Engineering, pp. 1-6, ISBN 978-1-7281-
6730-5. 2019.

[A.17] Bartik, M. Reverse Engineering of Arrow USB Programmer?2 JTAG Adapter for
Intel/Altera FPGAs; 9th Mediterranean Conference on Embedded Computing
(MECO), pp. 1-4, ISSN 2637-9511, ISBN 978-1-7281-6949-1. 2020.

[A.18] Bartik, M. Ezternal Power Gating Technique — An Inappropriate Solution for Low
Power Devices; 11th IEEE Annual Information Technology, Electronics and Mobile
Communication Conference (IEMCON), pp. 241-245, ISSN 2644-3163, ISBN 978-1-
7281-8416-6. 2020.

95

[A.19]

[A.20]

A.21]

[A.29]

[A.23]

[A.24]

[A.25]

Research Projects of the Author

Large Infrastructure CESNET LM2010005, Ministry of Education, Youth and
Sports; member of a research team; 2011-2015;
Available: https://starfos.tacr.cz/en/project/LM2010005

The Optimalization of Physical Characteristics of Vascular Substitutes for Low Flow
NT13302, Ministry of Health; technical support; 2012-2015;
Available: https://starfos.tacr.cz/en/project/NT13302

Attack-Resistant and Fault-Tolerant Architectures Based on Reconfigurable Devices
SGS15/119/0OHK3/1T/18, Czech Technical University; member of a research team;
2015;

Dependable architectures suitable for FPGAs SGS16/121/OHK3/1T/18, Czech
Technical University; member of a research team; 2016;

Fault-Tolerant and Attack-Resistant Architectures Based on Programmable
Devices: Research of Interplay and Common Features GA16-05179S, Czech Science
Foundation; member of a research team; 2016-2018;

Available: https://starfos.tacr.cz/en/project/GA16-05179S

8K Studio over IP bridge 7D16005, Ministry of FEducation, Youth and Sports
and FEurostars project (as part of Horizon 2020); member of a research team;
2016-2018;

Available: https://www.era-learn.eu/network-information/networks/
eurostars-2/eurostars-cut-off-17-09.2015/8k-studio-over-ip-bridge

Dependable and attack-resistant architectures for programmable devices
SGS17/213/OHKS3/3T/18, Czech Technical University; member of a research
team; 2017-2019;

97

https://starfos.tacr.cz/en/project/LM2010005
https://starfos.tacr.cz/en/project/NT13302
https://starfos.tacr.cz/en/project/GA16-05179S
https://www.era-learn.eu/network-information/networks/eurostars-2/eurostars-cut-off-17-09.2015/8k-studio-over-ip-bridge
https://www.era-learn.eu/network-information/networks/eurostars-2/eurostars-cut-off-17-09.2015/8k-studio-over-ip-bridge

RESEARCH PROJECTS OF THE AUTHOR

[A.26] CESNET E-Infrastructure - Modernisation EF16-013/0001797, Ministry of Edu-
cation, Youth and Sports; member of a research team; 2017-2020;
Available: https://starfos.tacr.cz/en/project/EF16_013%2F0001797

[A.27] Monitoring of sensitive objects using the Internet of Things FV30192, Ministry of
Industry and Trade; member of a research team; 2018-2020;
Available: https://starfos.tacr.cz/en/project/FV30192

[A.28] Distance collaboration in education in performing arts with modern telecommunic-
ation technologies TL01000106, Technology Agency of the Czech Republic; member
of a research team; 2018-2021;
Available: https://starfos.tacr.cz/en/project/TL01000106

[A.29] Device for low-latency video transmissions in JPEG XS format FW01010230, Tech-
nology Agency of the Czech Republic; member of a research team; 2020-2023;
Available: https://starfos.tacr.cz/en/project/FW01010230

98

https://starfos.tacr.cz/en/project/EF16_013%2F0001797
https://starfos.tacr.cz/en/project/FV30192
https://starfos.tacr.cz/en/project/TL01000106
https://starfos.tacr.cz/en/project/FW01010230

[A.30]

[A.31]

[A.32]

[A.33]

[A.34]

Evaluation Activities

Organizing committee of the Prague Embedded Systems Workshop (PESW), 2015,
available: https://pesw.fit.cvut.cz/2015/

Conference paper reviews (6x) for the IEEE International Symposium on Circuits
and Systems (ISCAS), 2015

Conference paper reviews (5x) for the Mediterranean Conference on Embedded Com-
puting (MECO), 2015-2021, Available: http://embeddedcomputing.meconet.me/

Journal article review for the Integration, the VLSI Journal, 2020, ISSN: 0167-9260,
Available: https://www.journals.elsevier.com/integration

Journal article reviews (4x) for the Microprocessors and Microsystems,
2020-2021, ISSN: 0141-9331, Available: https://www.journals.elsevier.com/
microprocessors—and-microsystems

99

https://pesw.fit.cvut.cz/2015/
http://embeddedcomputing.meconet.me/
https://www.journals.elsevier.com/integration
https://www.journals.elsevier.com/microprocessors-and-microsystems
https://www.journals.elsevier.com/microprocessors-and-microsystems

Doctoral Workshop Publications of the
Author

[A.35] Bartik, M. Practical use of FPGA Chips for Implementation; Proceedings of the
284 Prague Embedded Systems Workshop (PESW 2014), pp. 15. 2014.

[A.36] Bartik, M. and Ubik, S. and Kubalik, P. Rychlé bezztrdtové kompresni algoritmy;
Pocitacové architektury a diagnostika — Sbornik prispévku (PAD 2015), pp. 31-36.
ISBN 978-80-7454-522-1. 2015.

[A.37] Bartik, M. and Ubik, S. and Kubalik, P. Novd a efektivni metoda pro zajisteni
platnosti dat ve vestavnich pamétech FPGA se zamérenim na kompresi IP packeti
v redlném case; Pocitacové architektury a diagnostika — Sbornik prispévku (PAD
2016), p. 89-92. ISBN 978-80-214-5376-0. 2016.

[A.38] Bartik, M. and Pichlovd, D. Development of a sound recording system for audio
cassette duplication on an industrial scale; Proceedings of the 4" Prague Embedded
Systems Workshop (PESW 2016), pp. 2-3. ISBN 978-80-01-05984-5. 2016.

[A.39] Bartik, M. and Bucek, J. A Low-Cost Unified Experimental FPGA Board for Cryp-
tography Applications; TRUDEVICE 2016 Final Conference, pp. 75-80. 2016.

[A.40] Bartik, M. Xilinz 7-Series FPGA Based Evaluation Platform for Physically Un-
clonable Function; TRUDEVICE 2018, p. 2. 2018.

101

APPENDIX A

Thesis Results and Related Data

103

A. Tuesis RESULTS AND RELATED DATA

Compressor name Compression | Decompression | Compr. size | Ratio
memcpy 4786 MB/s 4764 MB/s 1073450940 | 100.00
brotli 2015-10-29 level 1 144 MB/s 529 MB/s 246271300 | 22.94
brotli 2015-10-29 level 2 122 MB/s 546 MB/s 242682971 | 22.61
fastlz 0.1 level 1 370 MB/s 697 MB/s 424460100 | 39.54
fastlz 0.1 level 2 356 MB/s 702 MB/s 396926168 | 36.98
1z4 r131 602 MB/s 3003 MB/s 410592728 | 38.25
lz4fast r131 acc=3 677 MB/s 2936 MB/s 449111230 | 41.84
lz4fast r131 acc=17 1075 MB/s 3541 MB/s 632585278 | 58.93
1z5 r131b 403 MB/s 1239 MB/s 319290041 | 29.74
lzf level 0 373 MB/s 669 MB/s 436283836 | 40.64
lzf level 1 379 MB/s 685 MB/s 417005148 | 38.85
lzjb 2010 330 MB/s 609 MB/s 558864581 | 52.06
1zolb 2.09 -1 297 MB/s 742 MB/s 396101254 | 36.90
lzolb 2.09 -9 177 MB/s 771 MB/s 357517128 | 33.31
1zolb 2.09 -99 145 MB/s 791 MB/s 341665725 | 31.83
lzrwl 318 MB/s 583 MB/s 492971960 | 45.92
lzrwla 338 MB/s 620 MB/s 484531017 | 45.14
lzrw2 337 MB/s 670 MB/s 437177676 | 40.73
lzrw3 350 MB/s 572 MB/s 410412696 | 38.23
lzrw3a 178 MB/s 643 MB/s 376266574 | 35.05
pithy 2011-12-24 level 0 565 MB/s 1819 MB/s 400800683 | 37.34
pithy 2011-12-24 level 9 421 MB/s 2039 MB/s 333923449 | 31.11
quicklz 1.5.0 -1 496 MB/s 698 MB/s 353272969 | 32.91
quicklz 1.5.1 b7 -1 544 MB/s 670 MB/s 353272969 | 32.91
snappy 1.1.3 441 MB/s 1523 MB/s 421117004 | 39.23
tornado 0.6a -1 391 MB/s 537 MB/s 404475734 | 37.68
tornado 0.6a -2 326 MB/s 482 MB/s 328041309 | 30.56
tornado 0.6a -3 218 MB/s 347 MB/s 267889476 | 24.96
tornado 0.6a -4 197 MB/s 373 MB/s 251555844 | 23.43
wilz 2015-09-16 358 MB/s 914 MB/s 459671278 | 42.82
yappy 1 154 MB/s 2393 MB/s 425838645 | 39.67
yappy 10 121 MB/s 2490 MB/s 414283056 | 38.59
yappy 100 108 MB/s 2501 MB/s 412713445 | 38.45
zlib 1.2.8 -1 114 MB/s 387 MB/s 316582284 | 29.49
zstd v0.3 371 MB/s 865 MB/s 271782671 | 25.32
zstd_HC v0.3 -1 370 MB/s 859 MB/s 271782671 | 25.32
zstd_HC v0.3 -5 121 MB/s ERROR 228623205 | 21.30

104

Table A.1: Performance of “fast” compression algorithms [g].

8-bit (RGB)
File| N 8 10 | 11 | 12 | 13 | 14
00000050.%if || 0,113 | 0,109 | 0,108 | 0,108 | 0,108 | 0,107
00000200.tif || 0,628 | 0,614 | 0,601 | 0,591 | 0,585 | 0,583
00001000.tif || 0,572 | 0,556 | 0,545 | 0,536 | 0,531 | 0,529
00005000.¢if || 0,743 | 0,720 | 0,608 | 0,679 | 0,670 | 0,666
00010000.tif || 0,819 | 0,802 | 0,787 | 0,772 | 0,763 | 0,758
00015000.tif || 0,623 | 0,607 | 0,598 | 0,590 | 0,585 | 0,582
00020000.¢if || 0,729 | 0,712 | 0,701 | 0,680 | 0,680 | 0,676
Average | 0,686 | 0,669 | 0,655 | 0,643 | 0,636 | 0,632
24-bit (RGB)
File| N 8 10 | 11 | 12 | 13 | 14
00000050.¢if || 0,181 | 0,176 | 0,174 | 0,173 | 0,172 | 0,172
00000200.tif || 0,854 | 0,844 | 0,840 | 0,337 | 0,335 | 0,834
00001000.tif || 0,850 | 0,836 | 0,331 | 0,827 | 0,826 | 0,825
00005000.tif || 0,072 | 0,061 | 0,955 | 0,951 | 0,948 | 0,947
00010000.tif || 0,078 | 0,973 | 0,970 | 0,968 | 0,966 | 0,966
00015000.tif || 0,887 | 0,875 | 0,871 | 0,869 | 0,869 | 0,869
00020000.tif || 0,045 | 0,043 | 0,943 | 0,941 | 0,941 | 0,941
Average | 0,914 | 0,005 | 0,002 | 0,899 | 0,398 | 0,897
32-bit (RGB)
File| N 8 10 | 11 | 12 | 13 | 14
00000050.¢if || 0,168 | 0,165 | 0,165 | 0,165 | 0,165 | 0,165
00000200.tif || 0,792 | 0,778 | 0,772 | 0,768 | 0,766 | 0,764
00001000.¢if || 0,768 | 0,750 | 0,747 | 0,743 | 0,741 | 0,740
00005000.tif || 0,930 | 0,915 | 0,907 | 0,901 | 0,898 | 0,897
00010000.tif || 0,051 | 0,041 | 0,934 | 0,929 | 0,926 | 0,924
00015000.¢if || 0,823 | 0,808 | 0,304 | 0,302 | 0,801 | 0,800
00020000.tif || 0,014 | 0,009 | 0,907 | 0,905 | 0,904 | 0,904
Average | 0,863 | 0,850 | 0,845 | 0,841 | 0,339 | 0,338
48-bit (RGB)
File| N 8 10 | 11 | 12 | 13 | 14
00000050.if || 0,249 | 0,244 | 0,243 | 0,241 | 0,241 | 0,241
00000200.¢if || 0,058 | 0,055 | 0,954 | 0,954 | 0,953 | 0,953
00001000.tif || 0,092 | 0,089 | 0,987 | 0,986 | 0,986 | 0,985
00005000.¢if || 1,003 | 1,003 | 1,002 | 1,002 | 1,002 | 1,002
00010000.tif || 1,001 | 1,000 | 0,999 | 0,998 | 0,998 | 0,998
00015000.tif || 0,090 | 0,089 | 0,988 | 0,988 | 0,987 | 0,987
00020000.¢if || 1,002 | 0,009 | 0,999 | 0,999 | 0,999 | 0,999
Average | 0,991 | 0,089 | 0,088 | 0,988 | 0,988 | 0,987

SDI 20-bit (YCbCr)
File | N 8 | 10 | 11 | 12 | 13 | 14
Average || 0,883 | 0,878 | 0,874 | 0,871 | 0,868 | 0,867

Table A.2: LLZ4 compression ratio vs. hash table size vs. color depth and color encoding.
105

A. Tuesis RESULTS AND RELATED DATA

106

Silesia
File / MML| 4 8 16 32 64 | 128 | 256 | 512
dickens 1.01 [1.03 [1.04 [1.04 |1.04 [1.04 [1.04 |1.04
mozilla 1.09 |1.3 [1.42 [1.46 |1.48 |[1.48 [1.48 |1.49
mr 1.08 |1.22 [1.3 [1.33 |1.36 [1.38 [1.39 [1.39
nci 1.1 [1.44 [1.86 [2.09 |2.38 [2.39 [2.39 [|2.39
ooffice 1.03 |1.11 |1.14 |1.15 |1.15 |1.15 [1.15 [1.15
osdb 1 1.01 [1.02 [1.02 [1.02 |1.02 [1.02 |1.02
reymont 1.06 |1.16 |{1.18 [1.19 |1.19 |1.19 [1.19 |1.19
samba 1.08 |1.27 [1.42 |1.5 |1.53 |1.55 [1.55 |1.56
sao 1 1 1 1 1 1 1 1
webster 1.02 |1.09 |1.13 [1.15 |1.15 |1.15 [1.15 [1.15
xml 1.09 1.3 |1.43 [1.5 |1.54 [1.55 |1.57 |1.57
X-ray 0.99710.997]0.99710.997[0.997{0.997[0.997]0.997
Calgary
File / MML| 4 8 16 | 32 | 64 | 128 | 256 | 512
bib 1.02 [1.08 |[1.11 |1.12 [1.12 [1.12 |1.12 [1.12
book1 1 1.02 [1.02 |1.02 [1.02 |1.02 [1.02 |1.02
book?2 1.01 [1.06 |[1.07 [1.08 [1.08 [1.08 [1.08 [1.08
geo 0.9991 1 1.01 |1.01 |1.01 |1.01 |1.01
news 1.02 |1.08 |1.11 (1.12 |1.13 |1.13 [1.13 [1.13
objl 1.07 [1.22 |1.32 [1.34 |1.36 [1.37 |[1.37 |1.37
obj2 1.07 |1.23 |1.32 [1.36 |1.39 |14 |14 |1.41
paperl 1.02 |1.07 {1.09 [1.1 1.1 1.1 |1.1 |1.1
paper2 1.01 [1.03 [1.04 [1.04 [1.05 [1.05 [1.05 [1.05
paper3 1.01 |1.04 {1.04 [1.04 |1.04 |1.04 [1.04 |1.04
paper4 1.01 [1.05 |1.06 [1.07 |1.07 [1.07 |[1.07 |1.07
paperb 1.02 |1.07 |1.1 (1.1 (1.1 |1.1 |1.1 |1.1
paper6 1.02 |1.08 {1.1 |1.11 |1.11 |1.11 |1.11 |1.11
pic 1.25 [1.99 [2.78 [3.21 |3.73 [4.02 [4.19 [4.23
progc 1.05 [1.15 [1.2 [1.22 [1.22 [1.22 [1.22 [1.22
progl 1.06 |1.2 |1.28 [1.31 |1.33 [1.34 [1.35 |[1.35
progp 1.08 [1.28 [1.38 [1.43 [1.46 [1.48 [1.49 |1.5
trans 1.05 |1.18 |{1.26 [1.29 |1.31 |1.33 [1.33 |1.34
Cantebury

File / MML| 4 8 16 32 64 | 128 | 256 | 512
alice29.txt 1.01 [1.05 |1.07 |1.07 |1.07 [1.07 |1.07 |1.07
asyoulik.txt {1.01 {1.05 |1.07 |1.07 [1.07 [1.07 |1.07 |1.07
cp.html 1.02 |1.11 |[1.18 |1.21 [1.22 [1.22 [1.22 [1.22
fields.c 1.08 |1.25 [1.33 [1.36 |1.37 |1.38 [1.38 |1.38
grammar.lsp [1.08 [1.3 [1.41 [1.46 [1.49 [1.49 |1.49 [1.49
kennedy.xls [1.16 [1.54 [1.82 |1.82 [1.82 [1.82 [1.82 [1.82
lcet10.txt 1.01 |1.05 |1.07 {1.07 |1.07 |[1.07 |1.07 |1.07
plrabn12.txt |1 1.02 [1.02 [1.02 [1.02 |1.02 [1.02 |1.02
ptth 1.25 [1.99 [2.78 [3.21 |3.73 [4.02 [4.19 [4.23
sum 1.06 |1.17 |1.21 [1.22 |1.22 |1.23 [1.23 |1.23
xargs. 1 1.03 |1.11 |1.15 |1.15 [1.15 [1.15 [1.15 [1.15

Table A.3: LZ4 compression ratio vs. match length limit.

	List of Figures
	List of Tables
	 Abbreviations
	Introduction
	Motivation
	Problem Definition
	Goals of the Dissertation Thesis
	Structure of the Dissertation Thesis

	Background and State-of-the-Art
	Serial Digital Interface
	Modular Video Transmission Platform (MVTP)
	Conversion Process of an SDI Stream into IP Packets
	IntoPIX JPEG2000 CODEC
	MVTP Summary

	Fundamentals of Compression Algorithms
	Compression Ratio and Compression Dictionary
	Lossless or Lossy?
	Symmetry
	Number of Input Data Passes Through a Compression Algorithm
	Suitability for Certain Data Types

	A Brief Comparison of Hardware-Implemented Lossless Compression Algorithms
	Summary of Hardware Implementations

	Modern and ``Fast'' Software Compression Algorithms
	LZ4
	LZO
	Performance and Common Features

	The Research Question & Methods

	LZ4 Introduction and Analysis from a Hardware Designer Point of View
	Highly Parallel Match Search Unit Architecture
	High Throughput and Low Latency LZ4 Compressor on FPGA
	Novel Status Register Architecture
	Alternative Use Case - Histogram Calculation
	Analysis of LZ4 Suitability for Image Data

	Conclusions
	Summary
	Contributions of the Dissertation Thesis
	Analysis of ``Fast'' Lossless Compression Algorithms from Hardware Designer's Perspective
	Demonstration of LZ4 Suitability for `Light'' Compression of Image Data
	Parallel & Low-Latency Architecture for Match Search Unit
	Memory Access Optimized Scheme
	Masking ``Match Length Finding'' Initial Latency
	Novel Status Register Architecture
	Benchmarking Methodology for Digital Designs using Xilinx Synthesis Tools

	Future Work
	Literal Length and Match Length Limit Concept Proposal

	Bibliography
	Reviewed Publications of the Author Relevant to the Thesis
	Granted Patents of the Author Relevant to the Thesis
	Remaining Reviewed Publications of the Author not Relevant to the Thesis
	Research Projects of the Author
	Evaluation Activities
	Doctoral Workshop Publications of the Author
	Thesis Results and Related Data

