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Abstrakt: Tato práce se zabývá možnou kombinaćı náhodných rozhodovaćıch les̊u a neuronových śıt́ı,
která by dala vzniknout hybridńım klasifikátor̊um s velkým klasifikačńım potenciálem, využ́ıvaj́ıćıch
přednost́ı obou těchto základńıch model̊u. V práci jsou navrženy čtyři hybridńı klasifikátory, obecně
nazývány jako náhodné neuronové lesy, které jsou vytvořeny na základě transformace rozhodo-
vaćıho stromu na ekvivalentńı dopřednou neuronovou śıt’. Všechny teoretické náležitosti jsou v
práci d̊ukladně popsány a schopnost klasifikace náhodných neuronových les̊u je testována na velkém
množstv́ı klasifikačńıch úloh. Důležitou součást́ı je také analýza parametr̊u náhodných neuronových
les̊u a zkoumáńı jejich vlivu na kvalitu klasifikace. Závěry jsou podpořeny experimentálně jak na
veřejných datových sadách, tak na uměle vytvořených testovaćıch sadách. Náhodné neuronové lesy
jsou mimo jiné testovány na reálné datové sadě zahrnuj́ıćı medićınské záznamy źıskávané projektem
LUCAS. Výstupy experiment̊u naznačily lepš́ı klasifikačńı schopnost náhodných neuronových les̊u
než u jiných testovaných model̊u.
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Abstract: This thesis is focused on the potential combination of random forest classifiers and feed-
forward neural networks into hybrid classifiers, which could benefit from the valuable properties
of these two popular machine learning algorithms and could thus possess a strong classification
ability. We propose four different hybrid classifiers, generally called neural random forests, which
are created on the basis of transformation of a single decision tree into an equivalent feedforward
neural network. We provide substantial theoretical background of related domains and verify the
classification power of neural random forests on numerous classification tasks. Moreover, we analyze
the effect of neural random forest parameters on the overall performance and support the conclu-
sions by evaluating and comparing the performance on public and toy datasets. Additionally, the
performance is tested on a real-world dataset, consisting of medical data collected by the LUCAS
project. The vast majority of experiments suggested the superiority of the proposed neural random
forest models among all tested models.
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Chapter 1

Introduction

Random forests and neural networks have belonged to the most popular machine learning algorithms
for several decades already. They both have a broadband application to numerous classification and
regression tasks, producing a state-of-the-art performance. Neural networks are able to successfully
approximate even very complex, non-linear functions. The main disadvantage of neural networks is
especially the large number of parameters to set and tune. On the contrary, random forest classifiers
have much fewer parameters and are still able to perform at least competitively.

In the last couple of years, attempts to combine these two models have been carried out in
order to create hybrid classifiers which could exploit the advantages of both algorithms (such as to
preserve the perfect learning ability) and compensate for or reduce the effect of disadvantages (such
as to decrease the number of parameters). We can mention paper [1], which describes the way of
using the structure of the decision tree and initiates the architecture of the neural network alike.
Afterwards, the backpropagation algorithm and gradient-based optimization methods are used to
adjust the parameters, which is considered as a better alternative to simple decision tree splits,
eventually producing more complex decision boundaries. Another approach is presented in paper
[2], which redefines the regular split functions of the decision tree and tune their parameters via a
deep neural network.

Our approach is motivated by the theory presented in [3]. It defines the transformation of a
single regression tree into an equally performing neural network. Unfortunately, it is not possible to
equivalently convert this approach to the classification case. Therefore, we propose an alternative
for a classification case and design four different architectures that can be applied to transform a
decision tree classifier into a neural network. The greatest emphasis is put especially on transforming
a random forest classifier into an ensemble of neural networks. This model is called neural random
forest.

Neural random forests combine several beneficial properties of random forests and neural net-
works, which allows them to produce competitive results and often surpass the performance of their
predecessing models. We provide a detailed theoretical derivation of individual models, a verification
of functionality and a thorough analysis and comparison of the performance. Their classification
ability is tested in many experimental tasks, including the application to a real dataset and a
comparison with other competitive models.

Main contributions of this thesis are as follows:
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• We design four different types of neural random forest, including detailed theoretical descrip-
tions and illustrations.

• We compare the performance of neural random forest models to each other and also to other
competitive models, such as random forest, neural network and logistic regression. The per-
formance is evaluated on both public and real datasets with respect to several evaluation
metrics.

• We investigate and describe the effect of neural random forest parameters on the overall
performance, which is tested on different datasets. In addition, the decision boundaries are
depicted on toy datasets, which have been artificially created to simulate various deployments
of data points in R2. The shape of the decision boundaries reveals some of the valuable
properties of different neural random forest models.

• Since we are not aware of any public programming library that deals with neural random
forests of the same kind as we proposed, we develop our own Python library that provides
comfortable tools to train and test the proposed neural random forest models. At the moment,
we have a suboptimal solution, thus we expect a future work in this area.

The thesis is structured into several chapters and two appendixes. Chapter 2 comprises a brief
introductory into basic terminology and classification and also detailed descriptions of different
evaluation metrics.

Chapter 3 and 4 focus mainly on the theory behind random forests and neural networks. It pro-
vides definitions, illustrations and descriptions of related terminology and also addresses theoretical
details and derivations, which are often neglected or omitted in related literature.

Chapter 5 comprises the main theoretical part of the thesis. It describes the transformation
of a single decision tree into a neural network, which is used in all subsequently proposed models.
This chapter contains theoretical details and thorough illustrations, which depict the connection
between a decision tree and the architecture of a neural network and simplify the understanding.

Chapter 6 is closely related to chapter 5. It presents all proposed transformations of a single
decision tree into a neural network, which are later applied to form different neural random forest
models. In this chapter, the transformation of random forest to an ensemble of neural networks is
also explained.

Chapter 7 comprises the experimental part of the thesis. This chapter is divided into several
sections based on the researched topic. It includes experiments on public datasets, experiments on
toy datasets and experiments on real dataset consisting of data from the LUCAS project. An im-
portant part of this chapter is the analysis of neural random forest parameters and the examination
of their influence on the performance. Graphical visualizations related to the experimental part are
shown in a separate appendix and referenced at the corresponding paragraphs in chapter 7.

The conclusion of the thesis is presented in chapter 8.
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Chapter 2

Classification

2.1 Terminology

In this thesis we focus mainly on the task of classification, which embodies the procedure of as-
signing one or more labels to the observations of studied area. Individual labels represent different
classes, which group observations with common features. We distinguish two main categories of
classification - binary and multiclass classification. In the binary case we discriminate 2 classes,
which are generally denoted as 1 and 0 for work purposes. They could represent either a positive
or a negative case. Specifically, we could distinguish for example rain vs no rain, ill vs healthy,
declined vs granted and so on. In the multiclass case we discriminate several different classes (bi-
nary classification is a special case of multiclass classification). In this thesis we focus exclusively
on the classification of instances to only one class (only one label is predicted). There is also a
multi-label classification, which can assign multiple labels to an instance, but we do not use this
type of classification.

Classification can be included among supervised learning, which belongs to the main machine
learning paradigms:

1. Supervised learning: This paradigm comprises machine learning task of learning a func-
tion that maps input value to output value based on delivered input-output evidence. The
input observations are usually vectors lying within input space X ⊂ Rd, where d ∈ N denotes
dimension. X is often referred to as feature space and d corresponds to a number of features.
Vectors belonging to feature space will be referred to as instances (instance of feature space).
Each feature usually represents a certain property of the instance. They can be either nu-
merical, such as weight or age, or categorical, such as gender or marital status. Sometimes we
also work with features that do not provide such straightforward interpretation as previously
mentioned cases. These features are usually produced artificially by special preprocessing
techniques, e.g. dimensionality reduction [4], data compression, etc.

In the case of classification, we must deliver set of labelled instances to the machine learning
model, which then learns a function that maps instances to labels (finite set of discrete values).
This model could be used afterwards on the previously unseen instances from the same feature
space. If the labels are continuous, we talk about regression instead of classification.
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2. Unsupervised learning: Unlike the supervised learning, this paradigm does not work with
previously labelled evidence. Algorithms belonging to this group look for patterns and struc-
tures among a set of unlabelled instances from feature space. Typical representative of this
group are clustering algorithms [5], which create labelled groups among previously unlabelled
data.

3. Reinforcement learning: This paradigm comprises a group of machine learning algorithms,
whose learning is based on feedback. In other words, the algorithm monitors surroundings
and performs actions in order to maximize predefined reward. It does not require labelled
inputs as in the case of supervised learning methods.

Before we train the classification model (to learn the mapping function), we usually divide the
available set of instances into the training subset and the testing subset (occasionally an extra
validation subset). Then, the training subset is used to train the classification model and the
testing subset is used to evaluate its performance. Validation subsets are often used to tune the
parameters of the model (if necessary). When we do not explicitly supply the training and testing
subsets, the standard way is to randomly split the set of instances multiple times and each time
choose one subset as a training set and the other one as a testing set. The example of this procedure
is K-fold cross validation. This procedure divides the dataset into K∈ N disjunct parts (usually of
the same length) and then the K -1 parts are used as the training set and the remaining part is used
for testing. In the next iteration, another K -1 parts are picked for training and the rest for testing.
This procedure is repeated for K times, so in each iteration a different combination of training and
testing set is applied. Then, the evaluation results are usually averaged across all iterations of the
procedure.

Speaking of the classification and machine learning in general, we must mention also two related
problems associated with the training of classification models. The first one is called underfitting.
This problem often arises, when the complexity (usually measured by a number of parameters of
the model) of our model is too low. Simply put, the model is too easy. In this case the model is
unable to fit sufficiently to the training data, which causes a significant testing error on the testing
dataset. We say that the model has high bias and low variance. On the contrary, the overfitting
problem arises, when the complexity of our model is too big and the model is too complicated. In
this case, the performance on the training dataset is perfect, but the performance on the testing
dataset is poor. Overfitted models tend to approximate the training data too accurately, which
substantially degradates their generalization ability. We say that the model has low bias and big
variance. Both problems are undesirable and degradate the performance of our model.

The evaluation of model performance is a crucial part of classification and will be discussed in
the following section.

2.2 Evaluation

This section is focused on the summary and description of evaluation metrics used in the experi-
mental part, alongside the properties of each metric and suitable application. This section includes
only metrics that are applied in the testing phase. The correct choice of evaluation is the main
and crucial task in the case of searching for an optimal classification model. In practice, there are
numerous evaluation methods applied frequently to many classification tasks. Before we choose a
set of evaluation metrics, we must be aware of the processed data and classification model to set our

15



evaluation correctly. Also the purpose and future application scope of our model is significant. If
this foremost analysis of the data and model is neglected or done wrongly, we could end up choosing
bad-shaped evaluation techniques and therefore misinterpret the performance of our model.

In the literature we can find a significant amount of studies addressing the choice of evaluation
metrics in the case of either binary classification [6, 7] or multi-class classification [8, 9].

The classification models in this thesis are tested on multiple datasets, both binary and multi-
class classification oriented. Consequently, there is not any particular property that could discrim-
inate correct (the most correct) setting of evaluation methods in general, unless we study each
dataset separately, which is not the purpose of this thesis at all. We only desire to compare the
classification performance of neural random forests mainly to the performance of regular random
forests and provide evidence of superiority of neural random forests. Therefore we select subset
of worldwide-accepted, well-functional evaluation techniques, summarize them and describe them
separately. A combination of these metrics provides sufficient evaluation to form a conclusion.

Firstly, we define an important notation that is referenced in the upcoming descriptions. This
applies generally to the multi-class classification with arbitrary number of classes. The set of all
classes is denoted as C.

Definition 2.2.1. Positive class c ∈ C is such a label that is in the current scope of interest. Other
classes d 6= c, d ∈ C, are called negative classes.

To clarify 2.2.1, if we test the classification performance of our model with respect to class c ∈ C,
then c is called a positive class and other labels d 6= c, d ∈ C, are called negative classes. It is
important to realize that there could be many positive classes. It depends mainly on the current
scope of interest. For instance, computing classification evaluation of class c1 ∈ C means that c1 is
(currently) a positive class and other classes are negative. In the following, current positive class c
will be put into parentheses (such as TP(c),FN(c) etc.) Instances belonging to the positive, resp.
negative class could also be referred to as positive, resp. negative instances.

TP(c)
number of positive instances (class c ∈ C)

correctly predicted

FP(c)
number of negative instances

predicted incorrectly as positive class c

TN(c)
number of negative instances (with respect to the positive class c)

correctly predicted

FN(c)
number of positive instances (class c ∈ C) incorrectly predicted as negative

class (with respect to the positive class c)

Table 2.1: Definitions of TP,FP,TN and FN.

Accuracy

Accuracy is probably the most frequently applied evaluation metric in the machine learning society,
which provides quick and simple evaluation of the classification performance. The outcome of
this metric is the ratio between the number of correctly classified instances and the number of
all instances. It is usually a single value per classifier (not specific to individual classes) and it is
defined as
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accuracy =
number of correctly classified instances

number of all instances
. (2.1)

Altough accuracy can simply provide an evaluation of the quality of classification, it possesses
some significant drawbacks [8] and therefore relying only on this metric in final evaluation is dan-
gerous. It does not take into account whether the instances belong into a positive or a negative
class. A serious problem arises especially when processing imbalanced data [10], which is the case
of many real-world applications.

For instance, imagine data distributed into two classes, class 0 with 98% occurrence and class
1 with only 2% occurrence. This dataset is clearly significantly imbalanced. Moreover, we give
higher priority to correctly classifying minority class 1 (e.g. consider class 1 as malware type
communication and class 0 as arbitrary safe network communication). We also define a naive
classifier, which constantly classifies any instance as class 0. In this case, accuracy of this model
is Acc = 98%, which is very high. Based only on this value, the classification performance of our
naive model is almost perfect. But claiming that this model is good is wrong, since it completely
fails in classifying minority class, which has the highest priority. So even though accuracy is very
high, the model itself is absolutely useless.

Precision

Another evaluation metric is called precision and is class-sensitive. In contrast to accuracy, it is
computed for any particular class c ∈ C as

precision(c) =
TP(c)

TP(c) + FP(c)
. (2.2)

It expresses the ratio between correctly predicted positive instances and all instances predicted
as positive. In other words, it shows how precise our classification model is in predicting a positive
class.

This metric is also dependent on the rate of imbalance among current data. Let’s suppose that
negative instances are added to the dataset. Then

FPbefore(c) ≤ FPafter(c) =⇒ precisionbefore(c) ≥ precisionafter(c)

So even if our classifier predicts all positive instances correctly, the precision tends to decrease
with the increasing number of negative instances.

Recall

This metric is computed for class c ∈ C as

recall(c) =
TP(c)

TP(c) + FN(c)
. (2.3)

Recall expresses the ratio between the number of correctly classified positive instances and the
number of all positive instances. Clearly, this metric does not depend on the rate of imbalance in
our data and therefore is a suitable choice for the evaluation on imbalance datasets.

In many applications of classification on imbalance datasets, there is a strong emphasis on a
model predicting minority classes as precisely as possible (capture all positive instances, but also do

17



not cause a lot of mistakes on negative instances), because misdetections could lead to a significant
damage (e.g. malware detection). Some studies indicate that a combination of precision and recall
is the appropriate choice to satisfy these requirements and provides reliable evaluation [11].

F-measure

F-measure metric combines precision and recall into a single value as

Fβ(c) =
(1 + β2) · precision(c) · recall(c)
β2 · precision(c) + recall(c)

, (2.4)

where c ∈ C and β is a coefficient which serves to adjust relative importance between precision
and recall (often β = 1). For β = 1 it expresses harmonic mean of precision and recall. As β → 0
the formula considers only precision and as β → ∞ the formula considers only recall. Generally,
β < 1 favors precision and β > 1 favors recall. It depends on each individual application to choose
β appropriately. For β = 1 we refer to the corresponding F-measure as F1-score.

G-measure

G-measure is computed as

G(c) =

√
TP(c)

TP(c) + FN(c)
· TN(c)

TN(c) + FP(c)
, (2.5)

where c ∈ C. The left factor in multiplication under the square root in (2.5) is called sensitivity or
true positive rate (the same as recall) and the right factor is called specificity or true negative rate.

Optimization of this metric secures good balance between the classification performance on
both minority and majority classes. In the case of imbalance, even if the classification performance
on negative instances is perfect, G-measure would end significantly low if classification of positive
instances is poor [12]. This is a valuable property which makes this metric well-applicable to
evaluation of the classification model on imbalanced data.

Note: Since we compare different classification models and track their overall performance on
various datasets in the experimental part, the main purpose is not to compare metric values for
each individual class, but rather to compare summaries of these evaluation outcomes. For this
reason, we adopt macro/weighted average to represent individual metrics for different classes
as a single value.

For arbitrary (class-sensitive) evaluation metric f , macro/weighted average is defined as

macroAvg(f) =

∑M
l=1 f(cl)

M
(2.6)

weightedAvg(f) =

∑M
l=1 nl · f(cl)∑M

l=1 nl
, (2.7)

where cl, l ∈ {1, 2, ...,M} is l-th class, nl is the number of (testing) instances belonging to cl and
M is the total number of classes.

It is also worth mentioning micro average of precision and recall, which is defined as
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microAvg(precision) =

∑M
l=1 TP(cl)∑M

l=1(TP(cl) + FP(cl))
(2.8)

microAvg(recall) =

∑M
l=1 TP(cl)∑M

l=1(TP(cl) + FN(cl))
. (2.9)

microAvg(precision) computes basically fraction of the number of all correctly predicted in-
stances and the number of all correctly and incorrectly predicted instances, which is the number of
all instances. Therefore, it expresses the same value as accuracy of the model. Furthermore, since∑M
l=1 FN(cl) =

∑M
l=1 FP(cl), both values (2.8) and (2.9) are equal. Note that this may not apply

in the case of multi-label classification.

ROC curve

ROC (receiver operating characteristics) curve [13] is a popular graphical technique used for the
comparison of performance of classifiers mainly in the case of binary classification tasks. It is a two
dimensional visualization showing the true positive rate (TPR) on the vertical axis and the false
positive rate (FPR) on the horizontal axis for all meaningful decision thresholds. In the binary
settings (negative class 0 and positive class 1), TPR and FPR are defined as

TPR =
TP

TP + FN
(2.10)

FPR =
FP

FP + TN
, (2.11)

where we omit parentheses (as defined in Table 2.2.1) since there is only one positive class and one
negative class.

Each threshold represents the decision boundary between a negative and a positive class (in bi-
nary classification) and therefore defines a specific classifier. If the prediction score (e.g. probability)
of the classifier exceeds the given threshold, the prediction is set to a positive class. Otherwise, the
prediction is a negative class. So each threshold defines FPR and TPR pairs which are then drawn
in the 2D visualization.

Meaningful thresholds are meant to be values that define different TP, FP, TN and FN combi-
nations, which determine FPR and TPR pairs. Imagine a model classifying 5 instances belonging
to 2 different classes (class 0 and class 1) labelled as 0,0,1,1,0. The model output probabilities of
positive class for these instances as 0.1, 0.6, 0.8, 0.4, 0.1. Then if we choose the decision threshold
as 0.2, we obtain TP=2, FP=1, TN=2, FN=0. But the same values are also obtained if the decision
threshold is set to 0.3. Therefore, both choices of the decision threshold result in the same FPR and
TPR pair. Thus, only one threshold is used and the other is redundant. One possible procedure
of picking the thresholds would be to select the unique prediction scores (probabilities) first, then
sort them by size, add the limit values below respectively above the lowest respectively the highest
value and, finally, select one value in each outlined interval.

Example of ROC curves is depicted in Figure 2.1. Imagine a random classifier assigning positive
class probability randomly (drawn from uniform distribution between 0 and 1) to each instance.
Then its ROC curve corresponds to the line connecting points [0;0] and [1;1] (red ROC curve in
Figure 2.1) [14]. This can be correctly proven by means of probability, but we can intuitively imagine
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Figure 2.1: This graph shows examples of ROC curves. The blue curve represents ROC curve of
random forest classifier. The red curve represents ROC curve of random classifier and the orange
curve represents ROC curve of perfect classifier.

that each instance is predicted with the positive class probability of 0.5 and therefore there are only
two possible thresholds (below and above 0.5), which corresponds to the [0;0] and [1;1] points in
ROC space, because once everything is classified as negative and once as positive. Classifiers with
ROC curve shape similar to this straight diagonal line perform similarly as random guessing, which
is not very good. On the other hand, a perfect classifier assigning always 1 to positive instances and
0 to negative instances has the same shape as the orange ROC curve in Figure 2.1. This represents
the best possible performance that may be reached in the ROC space. It is generally considered
that the closer the classifier is to the ideal point [0;1] in the ROC space, the better performance it
has.

Apparently, it could be difficult to compare some curves only visually. Another popular tech-
nique to evaluate performance of classifiers is to aggregate ROC curve into a single value by com-
puting the area under the ROC curve (AUC) [13]. Since the ROC curves are closed in the square
with the unit side, the maximum value of AUC is 1 and the minimum value is 0. AUC of the
random classifier is 0.5 and AUC of the perfect classifier is 1. Higher AUC values usually charac-
terize better performance. AUC value could also be statistically interpreted as the probability that
the classifier will give higher score to the randomly chosen positive instance than to the randomly
chosen negative instance [13]. The disadvantage of this method is that even very different ROC
curves could reach the same AUC values.
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Precision-recall curve

The precision-recall (PR) curve also graphically visualizes the performance of classification models.
It depicts recall of the positive class on the horizontal axis and precision of the positive class on the
vertical axis for varying thresholds. It is usually more informative in the case of strongly imbalanced
datasets than ROC, where ROC curves could significantly overestimate the performance.

We can demonstrate this issue on example: consider a dataset of 10 positive instances and
1000 negative instances and a classifier which predicts everything correctly except for 100 negative
instances, which are predicted as positive. Then TP = 10, FP = 100, TN = 900, FN = 0. Therefore,
TPR = 1 and FPR ≈ 0.1, which reaches almost the ideal point [0;1] in ROC space. But precision
of the positive class is only approximately 0.01, which is very poor. So even if the classifier reached
almost the ideal point in ROC space, it could be very far from it in the PR space (the ideal point
in PR space is [1;1]).

There are some technical properties of PR curves, especially regarding the estimate of the first
and the last point of the graph. The first point corresponds to the case when everything is predicted
as negative. Therefore, there are no positive predictions and precision is undefined (denominator is
zero). This issue is usually solved by fixing the first point or estimating it from the second point. It
is done in the way that the curve starts at the vertical axis. On the contrary, the last point could
be determined accurately, because it corresponds to the case of predicting everything as positive.
Therefore, recall is 1 and precision equals P/(P + N), where P denotes the number of all positive
instances and N denotes the number of all negative instances.

The PR curves in our experiments start at the [0;1] point on the vertical axis. As well as that,
only the first point reaching recall = 1 (point with the highest precision and recall = 1) is visualized
and the other points with the same recall are omitted, since they do not add any useful information
to the graph. Example of the PR curve is shown in Figure 2.2.

The PR curve of the random classifier corresponds to the straight line connecting points [0;1]
and [1;P/(P + N)], whereas the PR curve of the perfect classifier corresponds to the straight line
connecting points [0;1] and [1;1] (the line connecting points [1;1] and [1;P/(P + N)] is omitted).

We also compare individual PR curves by a single value (similarly to the case of ROC curves),
but instead of AUC we adopt average precision score (AP) that is computed as the weighted sum
of all precision values obtained for each threshold. It is defined as

AP =
∑
k

(recall(k) − recall(k−1)) · precision(k) , (2.12)

where recall(k) denotes recall value at k-th threshold and analogously for precision. The AP value
will be used to compare individual PR curves in the experimental part. It is a preferred choice
over AUC since [15] suggests that AUC may produce over-optimistic evaluation of performance.
Generally, higher AP values mean better performance.

In [15] is also proven that the ROC and PR curves are closely related. To be more precise, a
curve dominates in the ROC space if and only if it dominates in the PR space (there is one-to-one
relationship).

We also define a special PR curve, which summarizes an overall performance of the classifier
among several independent simulations. It is created simply by concatenation of individual labels
and corresponding prediction scores from all simulations and then visualizing the PR curve of this
entire union. We refer to this curve as the aggregation PR curve and use it in the experimental
part.
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Figure 2.2: This graph shows examples of PR curves. The blue curve represents PR curve of
random forest classifier. The red curve represents PR curve of random classifier and the orange
curve represents PR curve of perfect classifier.

Both the ROC and PR curves can be adapted to the multiclass environment. It is usually
done by applying the one-vs-all scheme (setting one class as positive and other classes as negative)
and then visualizing individual curves. We applied them only on the binary classification in the
experimental part, hence we will not describe the multiclass case in this thesis.
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Chapter 3

Random forest

Random forest algorithm is a popular machine learning method used primarily on classification
and regression tasks. Its functionality is based on collecting predictions from several independent
classifiers (ensemble of decision trees) and merging their outcomes into the final prediction. It
belongs to the group of supervised learning algorithms. In this thesis the usage of random forests
is restricted only to classification tasks, so the theoretical part of this section will be limited only
to random forests used for classification accordingly.

Random forest nowadays is a widespread method exploited frequently in various domains, such
as text classification [16], bioinformatics [17], network threat detection [18] etc. Individual classifiers
- decision trees - could also be used as a clustering algorithm [19]. The popularity of random forests is
caused by good generalization ability and application to wide-ranged spectrum of classification tasks
with registering competitive classification quality in comparison with other state-of-the-art methods,
such as logistic regression [20], support vector machine [21], neural networks etc. Moreover, the
method itself is in its basics quite simple and therefore it is easy to implement and could be analyzed
and interpreted once it has been trained.

Unlike the neural networks, it has fewer parameters to tune and it is better-applicable to small-
sample sized datasets. With the usage of randomization, bagging, bootstrapping and other tech-
niques based on randomness, random forests overcome easily problems of overfitting as well [22].

3.1 Decision tree

As mentioned previously, a random forest consists of independent classifiers called decision trees
(Figure 3.1).

In this thesis, we focus only on binary trees, which means that every node has always 2 child
nodes (following nodes in the hierarchical structure of the tree). The process of applying decision
tree to obtain final prediction is basically described in Figure 3.1. Beginning from the root node,
the input instance x ∈ Rd from d-dimensional input space is iteratively tested by the split functions
associated with every single node in the hierarchical order and based on the result, it is further
sent either to the left or the right child (the split functions usually define hyperplanes in the input
space). This process is repeated until the instance reaches the final node (leaf node). In the leaf
node, there are classification predictions, which are extracted at the end of the procedure.

The work with decision tree could be divided into two major parts:
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Figure 3.1: The left part of the figure illustrates a decision tree with depth = 2. The first circle
in red is called the root node. The two beige circles in the intermediate layer are inner nodes and
the green rectangles are leaf nodes, where probabilities of individual classes are stored . Each input
instance x = (x1, x2)T ∈ R2 starts from the root node and traverses down the tree by applying
subsequent split criteria in nodes until it reaches the leaf node. The right-hand part of the figure
shows segregation of input space by the hyperplanes (defined in root node and inner nodes of the
decision tree) parallel to the axes (black lines).

1. Training stage: In this stage the entire decision tree is built from the scratch on the basis
of predefined criteria and properties. To perform this phase, the training dataset has to be
adopted and used. It is usually selected as a subset of the complete data that are available.
The magnitude of the training dataset depends on the complexity and application of our model
(e.g. if we are about to compare different models, it should be sufficient to use fewer data,
or if we prepare the model for the production application, it is desirable to use as much data
as possible) and on the complexity of the problem. There is not any general consensus that
dictates how large the training dataset should be. It often depends on the available amount of
data, personal preferences and experience and, of course, on the quality of evaluation results.

2. Testing/application stage: After training, the the decision tree is directly applicable and
therefore could be either tested with various evaluation methods or applied in practice. The
usage of the decision tree itself is very straightforward and has already been described earlier.
Therefore, we will focus mainly on the description of merging the individual results from the
ensemble of decision trees and obtaining final predictions. This procedure will be described
later.

Mathematical details of both stages shall be provided below.

3.1.1 Training stage

Consider dataset X = {x1, ...xN}, where xk ∈ Rd and k ∈ {1, ..., N}, where N is the total number
of instances in the dataset and d is the feature space dimension. The goal of the training stage
is to establish a proper decision tree structure and find suitable split functions in every node that
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provides the best class segregation. Splitting continues until some of the predefined stopping criteria
are met.

The training begins always from the root node. Starting with the training set M chosen for the
current decision tree (could be entire dataset or its subset), it interatively splits in each node to
the two disjunct subsets M1 and M2, where M1,M2 ⊂ M,M1 ∪M2 = M. M1 corresponds to the
subset of M sent to the left child and M2 to the right child. Splitting in each node is done via
split functions. The shape of the split functions associated with the nodes is defined in advance.
Generally, it could be expressed as the binary function

s(x,θ) =

{
0, x is sent to the left child

1, x is sent to the right child
. (3.1)

The parameters of the split functions are the input instance x and the parameter vector θ,
which defines geometric separation of the data (e.g. hyperplanes). This comprises thresholds, a
group of data features which will be considered in the split function and other necessary values
needed for complete determination of the split function.

In practice, a widely chosen split function is [23]

ψ(x, i, τ) =

{
0, xi < τ

1, otherwise
. (3.2)

The parameter vector in this case is θ = (i, τ)T , where i ∈ {1, ..., d} represents one feature from
the d-dimensional feature space and τ ∈ R is a threshold. Together, equation xi = τ embodies
hyperplane parallel with one axis. The split function divides the instances into two groups based on
their relative position with respect to this hyperplane. With regard to the fact that our proposed
transformation of the decision tree into the corresponding neural network is built on the usage of
this special split function (3.2), we are not going to focus on the other types of split functions in
this thesis.

In each iteration, the algorithm seeks for the best split, ie. for the parameters of the split
function that provides this split. It is achieved by optimizing a pre-specified split criterion, which
expresses measure of (non)impurity in the corresponding node. Impurity means that if the node
contains instances belonging only to one class, the impurity is 0, whereas it increases if instances
of multiple classes are present in the node.

Among widely applied impurity functions belong Entropy, Gini index, which are adopted in
the heuristic algorithms as C4.5 [24], CART [25] and ID3 [26]. Another possibility is a Classifica-
tion error. They are defined as (in the same order as mentioned)

HE(M) = −
∑
c∈C

p(c) log p(c) (3.3)

HG(M) =
∑
c∈C

p(c)(1− p(c)) (3.4)

HCE(M) = 1−max
c∈C

[p(c)] , (3.5)

where the sum iterates over all classes c ∈ C, C is a set of all classes, and

p(c) =

∑
x∈M 1|x∈c
|M|

, (3.6)
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which is the probability of an instance in M belonging to class c. |M| represents the number of
instances in set M and

1|x∈c =

{
1, x ∈ c
0, otherwise

. (3.7)

These impurity functions are in general exploited in the split criteria, which are then optimized
in order to obtain the best possible split. By optimizing these criteria should decrease the impurity
function value after each split. There are plenty of possibilities to choose a split criterion that suits
our problem, but the most popular choice is often considered to be the Information gain criterion,
which is defined as [23]

I(i, τ,M) = H(M)−
∑

i∈{1,2}

|Mj(i, τ)|
|M|

H(Mj(i, τ)) . (3.8)

H(M) is the arbitrary impurity function (e.g. entropy, gini index etc.) of set M. Mj(i, τ), j ∈
{1, 2}, represent the subsets of M proceeding to the left or right child. It is given in the paren-
theses, that these subsets strictly depend on parameters i, τ of the split function. By maximizing
information gain in each node final parameters i∗, τ∗ are obtained. These are stored and used in
the testing stage. Thus, parameters of the split function of the j-th node are acquired as

θ∗j = (i∗j , τ
∗
j )T = arg max

(i,τ)
I(i, τ,Mj) , (3.9)

where Mj ⊂M is the subset of M in the j-th node.

Figure 3.2 shows a basic simulation of finding the best split.

Horizontal split Vertical split
IG (Entropy) 0.34 0.69

IG (Gini) 0.135 0.25
IG (Classification error) 0.20 0.25

Table 3.1: Values of IG for splits in Figure 3.2.

We can see that the change of the horizontal split into the vertical split resulted in the increase
in values of all studied criteria (see Table 3.1). This suggests that the vertical split divides data
better than the horizontal split, and hence should be preferred.

Apart the split function and the split criterion, another necessary feature must be added to
the decision tree model in advance. We need to define the stopping criterion, which interrupts the
growth of the tree in the current node when the specified condition is met.

One natural choice of the stopping criterion is to stop splitting when the corresponding node
contains instances belonging to the same class. Therefore, it does not make sense to continue in
splitting and the growth can be ended. It is not possible to continue either if only one instance
ends in the node. In practice, multiple different criteria are often combined, which helps to avoid
overgrown trees prone to overfitting. If one of them is fulfilled, the growth in the current node is
interrupted. As an example could be mentioned [27]:
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Figure 3.2: The figure depicts two cases of different splits.

• Low information gain: Lower threshold for the information gain is set. When a subsequent
split produces insufficient information gain below specified threshold, the growth is terminated
and the node becomes a leaf node.

• Maximum depth: When the number of splits in the current tree branch reaches the maximum
depth, the current node becomes a leaf node.

• Maximum instances in the leaf : This is a threshold for the maximum number of instances
in the leaf nodes. When the number of instances in the current node is equal or below this
threshold, the node becomes a leaf node.

All of these stopping criteria defined in advance belong to the prepruning methods [27]. The
fact that these methods are defined in advance embodies certain drawback. For instance, we do not
know in advance, if the predefined maximum depth would produce sufficient requirements. Maybe
it is too small and the decision tree will tend to underfit or is too large and the decision tree will
tend to overfit.

For this reason, postpruning methods can be adopted for the large-depth trees which encounter
this issue and solves efficiently the problem of overfitting. They have not been applied in our
experiments, we will provide only their brief overview [28].

• Reduced Error Pruning (REP): The model is pruned by usage of the independent validation
(pruning) dataset different from the training dataset. The subtree starting from the chosen
inner node is replaced by the leaf node and the classification error on the validation dataset is
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measured. If the error is lower than the error in case of the previous non-pruned tree, the tree
is pruned. This procedure runs in the bottom-up manner and is ended when no improvement
in the classification error is observed.

• Pessimistic Error Pruning (PEP): Unlike the REP method, PEP uses entire training dataset
for the pruning procedure. It is based on the continuity correction of the error rate, since
the error rate on the training dataset is significantly biased. Details could be found in [28]
alongside the descriptions of other applied methods.

When the growth of the tree is successfully finished, the class distributions of the instances that
ended in each leaf node form a probability distribution of classes, which is stored in the leaf node.
For probability pj(c) of class c ∈ C in the leaf node j ∈ {1, ..., L}, where L is a total number of leaf
nodes applies

pj(c) =
njc
N j

, (3.10)

where njc is the total number of instances of class c in the leaf node j and N j is the total number
of instances in the entire leaf node j.

3.1.2 Testing/application stage

After the training stage, the decision tree is obtained and could be applied in practice. Starting from
the root node, the testing instance x ∈ X ⊂ Rd is traversed down the tree by iterative application
of the split functions associated with individual nodes. When the instance reaches the leaf node,
the probability distribution of classes in the leaf node is extracted and the values are observed. The
class which has the maximum value is output as the final prediction. Mathematically, the output
of the single decision tree is

c∗ = arg max
c∈C

pj(c) , (3.11)

where j is the leaf node where x ended.

3.2 Ensemble of decision trees

An ensemble of decision trees forms a strong classifier with higher predictive ability than individual
decision trees. The idea behind this is to combine several weak classifiers to create one strong
classifier. Ensembles generally boost performance in comparison with the single classifier (decision
tree). For instance, single classifiers might often get stuck in the local optima when optimizing
different criterions (e.g. minimizing error rate). With more and more data, it could be computa-
tionally unreachable for many classifiers to find the best optimal value. In such cases, application of
ensemble methods is valuable, because training of independent classifiers and merging their output
could approximate the real decision function far better [29].

Ensemble methods also significantly benefit from averaging results from individual classifiers,
especially in the case of insufficient number of training data points. In such a case, the learning
algorithm could find many applicable parameters (e.g. hyperplanes of the decision tree) that will
result in the same accuracy on the training dataset. Combining those models could suppress the
possibility of choosing a wrong classifier [29].

Among popular techniques to create an ensemble of decision trees belong:
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• Bagging: This technique divides the training datasets into several subsets with replacement
(bootstrapping) and each subset is used to train the decision tree. Then the ensemble of
the decision trees is obtained and the result from individual decision trees is combined. This
technique helps to reduce the variance of a single decision tree [30] (the variance means, that
if we compare the models trained on slightly different datasets, they could vary a lot (unlike
the linear regression, for example, which has generally low variance)).

• Boosting This method is based on the idea of iterative boosting of weak classifiers into a
strong one. In each iteration, the algorithm aims to boost the previous-staged classifier by
checking the misclassified instances and attempting to fix these errors. An example of a
popular boosting algorithm is AdaBoost algorithm [31].

In the experimental part of this thesis an entire training dataset is used for tuning individual
decision trees, thus it is a variation of the bagging technique with bootstrapping of N instances,
where N is the total number of instances in the training dataset. To obtain a random forest from
the ensemble obtained by bagging algorithm, randomization of single trees needs to be added into
the process. This technique helps to avoid correlation between individual decision trees and secures
better indepedence of classifiers. The idea is to suppress the influence of strongly distinguishing
features (dimensions) that are natural choice to split by. Occurrence of these features could result
in the correlation of the decision trees, because the algorithm would prefer those features especially
in the early stages of the growing phase and therefore indicates detectable similarity of the trees.
Randomization attempts to obviate this problem and selects random subset of features in each
splitting iteration and only those selected features are used for the current split.

3.2.1 Combining predictions of the decision trees

As mentioned previously, either probability distribution of classes from the leaf node or directly
predicted class label could be extracted from every decision tree. Naturally, there are numerous
possibilities of merging these results. Unless there is a special requirement, two ways are used in
practice. If the outputs are discrete class labels, than the voting scheme is applied and the class
with maximum votes is taken as the final prediction. If the outputs are probability distributions,
those values are averaged and the class with maximum probability is taken. To be more precise,
the final prediction in this case is

c∗ = arg max
cinC

1

|T|
∑
t∈T

pt(c) , (3.12)

where T is a set of all trees in the random forest and pt(c) is a resulting probability distribution
from the tree t ∈ T. In (3.12) a weighted average could be used instead, which is applied e.g. if
predicting a certain class is more preferred over predicting others.
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Chapter 4

Neural network

4.1 Introduction to neural networks (NN)

For thousands of years, people have been pursuing the dream to perfectly simulate human or
animal brains and adopt their ability to solve problems on the daily basis. For this purpose, the
(artificial) neural network was developed and nowadays it is frequently used for solving difficult
data modelling tasks, statistical analysis and many others. Its functionality is based on simplified
version of real brain information processing and reasoning, where single processing units of brain -
neurons - transfer information to other neurons in a predefined structure and get activated based
on the activity status of other adjacent neurons. In the true brain, the signal from the neuron
is transferred to the connected neuron by the synapse. When the neuron accumulates all coming
signals from synapses, then it evaluates this coupled signal and if it exceeds the threshold, the
neuron sends signal through the synapse (connection) to another neuron. This principle is basically
what drives artificial neural networks today.

The beginnings of the artificial neural network date back to the early 1950s, almost simulta-
neously with the development and application of programmable electronic units. In 1943, Warren
McCulloch and Walter Pitts introduced models inspired by real brain neurons and adopted threshold
switches [32]. They provided the evidence that even simple model (network) motivated by this ap-
proach could compute almost any logic or arithmetic function. In 1957-1958, Frank Rosenblatt and
Charles Wightman et al introduced the first successful neurocomputer, Mark I Perceptron, which
could identify 20x20 pixel images of simple patterns. In 1959, Frank Rosenblatt covered different
version of the perceptron and formulated and proved the convergence theorem of the perceptron
(the term of perceptron will be described later). Then Marvin Minsky and Seymour Papert pub-
lished a mathematic paper that studied perceptron in 1969. The conclusion of this paper pointed
out the insufficiency of the single perceptron, which was not able to represent classical boolean
XOR or sets that are not linearly separable [33]. This led to an approximately 15-year black-out
in the field of the neural network research. In 1974 learning algorithm called backpropagation of
error was introduced by Paul Werbos [34]. Suprisingly, this algorithm was fully acknowledged only
approximately ten years later. The backpropagation of error as the learning procedure was fur-
ther developed and expanded in 1986 and widely published by the Parallel Distributed Processing
Group [35]. That time, the non-separability could be effectively solved by multilayer perceptrons
and previous negative conclusions about perceptrons were disproved right away [36]. Since then,
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the development in the field of neural networks and machine learning in general proceeded inten-
sively and it actively continues. It is not even possible to mention all the milestones in this thesis.
Many different neural networks architectures and training algorithms have been tested, resulting
in complex deep learning structures able to handle a massive amount of unlabelled data. They
are sucessfully applied in many challenging tasks as bioinformatics, speech recognition, natural lan-
guage processing etc [37]. Special NN called convolutional neural networks (CNN) are frequently
used especially in the field of image processing.

4.2 Building blocks of ANN

In this section we are going to describe the main components of an artificial neural network. As
we mentioned in the introductory section, architecture of neural network consists of processing
units - neurons, and connections between neurons. A general neuron is associated with so called
propagation function, activation function and output function. These functions process internally
the input from other neurons and build the output of a neuron. The propagation function firstly
considers all inputs to the neuron and the output of the propagation function serves as an input
for the activation function. The activation function transforms this information into an activation
value of current neuron and this activation value is then transformed by the output function and,
subsequently, the output is sent by the connection to the following neuron. The entire process is
illustrated in Figure 4.1.

Figure 4.1: Processing of the input and creating the output of neuron could be formulated as a
composition of three functions - the propagation function, the activation function and the output
function.

As the propagation function is almost solely used a simple weighted sum of all inputs generally
with an addition of a constant (called bias). Consider the input as a vector (if a single neuron
is connected by the connections from multiple neurons) x = (x1, x2, ..., xk)T , where k ∈ N is the
number of inputs to neuron and b ∈ R is a bias and w = (w1, ..., wk)T ∈ Rk are connection weights
used for the weighted sum. Then the output z ∈ R of the propagation function f : Rk → R is

z = f(x) =

k∑
i=1

(wi · xi) + b . (4.1)
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The term weights is crucial for the neural network terminology. Weights are usually associated
with the connections and bias term is associated with the neuron. It depends mainly on personal
preference how to imagine and comprehend the neural network settings.

As the output function of the neuron a simple identity function is used in most cases. This
thesis is not going to focus on details of other possible choices of propagation and output functions,
since a weighted sum for the propagation function and the identity function for the output function
are a common choice in practice and other options are very rarely used.

With these presumptions on the propagation and output function, the output of a neuron is
fully controlled by the activation function, which takes as input the weighted sum of input values
with an added bias. The procedure for the arbitrary activation function φ is visualized in Figure
4.2.

Figure 4.2: The sum of input values x1, ..., xk, where k ∈ N weighted by the weights w1, ..., wk of
connections with an added bias term b is taken as argument of the arbitrary activation function
φ. The resulting value of the activation function embodies the amount of activity produced by the
neuron. The activity value of the neuron is taken as the single output of the neuron and could be
transferred to other connected neurons.

The bias term might be thought as the negative threshold of the neuron (b = −threshold).
When the weighted sum exceeds the absolute value of the threshold, it gets activated. This discrete
behaviour is perfectly simulated by a special neuron - perceptron. Its activation function is so called
threshold function τ : R→ R with a binary output

τ(z) =

{
1 z > 0

0 otherwise
. (4.2)

If the argument of τ is positive (the threshold value for this neuron is 0), the output is 1,
otherwise it is 0. Even though this simple model is applicable to many different tasks, it reli-
ably solves only problems with linearly-separable data. This is due to the determinative equation∑k
i=1(wi · xi) + b = 0, which defines a hyperplane in Rk and divides the space in two half-spaces.

This drawback was surpassed by the application of multilayer perceptrons, which is a term for
interconnected layers of multiple perceptrons (neural network with perceptrons).
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4.3 Architecture of neural network

Since we have defined a general shape of one processing unit of the neural network - neuron, we
could define more complex architectures of neurons that help to solve more complex, non-linear
problems. In this thesis we mainly focus on so called feedforward neural networks [38], which
almost exclusively refer to the topology of multiple layers of neurons and weighted connections only
between neurons of two consecutive layers (no skipping allowed). The first layer is referred to as
the input layer, followed by an arbitrary number of hidden layers and the last layer is called the
output layer. General architecture of the feedforward neural network is shown in Figure 4.3.

Figure 4.3: The figure is an illustration of a general architecture of feedforward neural network.
Connections are only between neurons of two consecutive layers. The input (each neuron usually
receives the value of one feature - neuron j ∈ N of the input layer accepts value of j-th feature
xj of input instance x) of the neural network is inserted into the input layer and the output is
consequently extracted from the output layer.

The universal approximation theorem proved by G. Cybenko [39] states that under a certain
presumption on the activation functions of the neuron (e.g. with the usage of the sigmoid function,
to be described later herein), this neural network structure could approximate any continuous
function on compact subsets of Rn. Later studies also approves that multilayered (even with only
one hidden layer) feedforward neural networks could be considered to be universal approximators.

When speaking about feedforward neural networks, we usually mean full-connected system,
which means, that every single neuron in arbitrary layer l is connected to all neurons in layer
l + 1. If it is necessary to turn down the neurons output to 0 (delete the connection), we force the
connection weight to 0 and therefore suppress the output of the neuron.

There are other possible architectures of neural networks, which are not examined in this thesis,
but which are certainly worth mentioning.

• Shortcut connections architecture: This feedforward setting allows connections to skip
one or more levels. These skipped connections have to be directed towards the output layer
(no backwards skipping). The application of this architecture was successfully exploited for
example in residual networks (ResNet) [40].
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• Direct recurrence networks: Some neurons in networks could influence themselves. The
simple realization is to connect a single neuron with itself, which may therefore adaptively
strenghten or weaken its activation value.

• Indirect recurrence networks If connections are permitted backwards (to the foregoing
layers), we talk about indirect recurrence [36].

Insufficiency of perceptron

When working with neural networks, the usual procedure is to adapt all parameters of neurons
(weights and biases) to force the neural network to behave in the way we require. This procedure is
done by employing a predefined learning strategy (this will be described later in the thesis), which
defines the manner in which neural networks learn on the data and then act independently.

Consider for a moment a feedforward neural network consisting of perceptrons with τ as the
activation function and consider an arbitrary classification problem (for example classification of
digits 0-9). If the neural network encounters a training instance, it adapts the weights and biases
in way that the instance is then correctly classified. But even in the case of a small change in
the weights and biases, the output from τ function could flip vigorously to the opposite value
(1 − previous value) , so to a completely different type of activity of the neuron. This jump may
cause the previous instances to be totally misclassified. So the discontinuity property of threshold
function τ makes it very difficult for neural network to learn correct parameters, especially when
solving more complicated, multiclass problems.

To enable better learning ability of neural networks, it is desirable to ensure that small change
in the weights or biases causes only a small change in the output of the neuron [38]. This is the
property that is not met by τ function. It is the key to employ other types of activation functions
that meet this property in order to establish effective learning procedures.

4.4 Activation functions

This section provides an overview and descriptions of other applied activation functions.

Sigmoid function

One way of solving a discontinuity problem of perceptron is to replace τ with its smooth approxi-
mation - the sigmoid function. It is also called the logistic function. The shape of this function can
be seen in Figure 4.4.

For real input z ∈ R the sigmoid function σ is defined as

σ(z) =
1

1 + e−z
. (4.3)

This function is bounded, nonlinear, differentiable and has positive derivatives. It is successfully
applied especially in the output layers of deep neural networks (output lies within (0,1) range, so in
the case of classification it could be thought as the probability of the instance acquiring a particular
label) or in the shallow neural networks (with 1 or max. 2 hidden layers) [41]. Despite some of
its favourable properties, it suffers from significant drawbacks related to popular training methods.
These drawbacks will be mentioned later once the gradient descent and backpropagation algorithm
for training have been described.
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Figure 4.4: Sigmoid function approximates threshold function τ .

Hyperbolic tangent

Hyperbolic tangent (tanh) is another alternative used as the activation function. The shape of the
tanh is depicted in Figure 4.5.

For real input z ∈ R is defined as

tanh(z) =
ez − e−z

ez + e−z
. (4.4)

Hyperbolic tangent has very similar properties as the sigmoid function, but inherents some
more beneficial properties, e.g. its range lies within (-1,1) and therefore is zero-centered, which
produces advantegous behaviour in backpropagation training. Hyperbolic tangent has also become
a preferred choice over the sigmoid function in the case of multilayer neural networks due to the
fact that it shows usually a better training performance [42].

On the other hand, it shares a few drawbacks common with the sigmoid function, e.g. the
vanishing gradient problem, which will be mentioned and described later in the thesis.

Softmax

The last of the exponential-based activation functions mentioned in this section is called the softmax
activation function θ : Rk → Rk. It is defined for the input vector a ∈ Rk and j ∈ {1, ..., k}, where
k ∈ N as

[θ(a)]j =
eaj∑k
i=1 e

ai
. (4.5)
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Figure 4.5: Hyperbolic tangent function. It has similar shape to the sigmoid function, but its range
lies within (-1,1).

The softmax activation function is frequently used especially in the output layers of neural net-
works, because its definition ensures that the output vector of softmax is interpretable as probability
distribution (output components can be added to 1 and the range of softmax is (0,1)).

Rectified Linear Unit (ReLU)

The ReLU activation function was introduced in 2010 by Nair and Hinto [43] and since then it has
belonged to the most popular activation functions worldwide with state-of-the-art results. It is the
most widely used activation function in the field of deep learning. The ReLU function is visualized
in Figure 4.6

It is defined for real input z ∈ R as

ReLU(z) = max{0, z} . (4.6)

For positive values of z it behaves as a simple linear function and for negative values the output value
remains 0. Its similarity to simple linear functions makes it easy to optimize learning algorithms
and therefore the training of ReLU neurons is more effective and quicker (it does not need to
count exponentials and divisions). The generalization ability, speed of convergence and often better
performance in comparison with the sigmoid and tanh functions cause that ReLU functions are
much more often used mainly in the hidden layers than competitive exponentially-based activation
functions [41]. In addition, the ReLU function lacks the vanishing gradient drawback, which will
be discussed later.

The ReLU function also suffers from drawbacks, such as easy inclination to overfitting in com-
parison with the sigmoid function and production of the so called ”dead” neurons. It is inflicted
when the argument of ReLU is negative and ReLU outputs 0. With regard to the fact that the
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Figure 4.6: The left part of the Figure shows the graph of the ReLU function. The right-hand part
of the figure shows the graph of the Leaky ReLU for α = 0.05.

slope of ReLU in the negative part is also 0, it is probable that the output of this neuron will remain
on 0 and will not return back. This neuron has no further effect in determining the output and is
useless. This issue will be covered after the description of gradient-based learning methods.

The problem of dead neurons could be solved by the adoption of the Leaky ReLU activation
function [44], which softens the strict condition of forcing the output to 0 when the input is negative
and replaces constant 0 value in the negative part of the horizontal axis with the linear function of
small slope parameter α ∈ R. Therefore, the gradient will never be 0. It is defined for real input
z ∈ R as

LeakyReLU(z) =

{
z z > 0

αz otherwise
. (4.7)

The values of parameter α should be small, a popular choice is α = 0.01. The shape of the Leaky
ReLU can be seen in the right-hand part of Figure 4.6.

4.5 Training methods

We have already sufficiently defined the neural network architecture and the way it works by
transferring activation values between neurons. What remains is to describe the algorithms which
enable our neural network to learn and adapt to new problems.

Let us define some notation in order to describe this issue more clearly. The notation is inspired
by [38]. We denote the correct (desired) output of neural network as y(x) for input instance x and
real output (estimation) of the neural network as ŷ(x). The quality of performance is evaluated by
the means of minimizing the so called loss function (in literature it can also be found as the objective
function or the cost function). We denote the general loss function as Λ. One typical example of
the loss function is Mean Squared Error (MSE), also known as the quadratic cost function, which
is defined as

Λ(W,B,X) =
1

2n

n∑
i=1

||y(xi)− ŷ(xi)||2 , (4.8)

37



where W is a set of all weights, B is a set of all biases and X = {x1, ...,xn} is a set of all training
instances, where n ∈ N is a number of all training instances. Norm || · || = || · ||2 is Euclidean
norm. It is evident that estimation ŷ(x) depends on x as well as on all weights and biases in the
neural network. Later we will mention other frequently used loss functions with better functionality,
especially in the task of classification.

Now we are going to describe the most popular algorithm used for finding optimal weights and
biases, which optimizes the general loss function Λ - gradient descent.

4.5.1 Gradient descent

Gradient descent algorithm is a popular nonlinear programming technique for a wide range of
minimization tasks. It is considered a benchmark for the minimization of loss functions in the field of
neural networks. Let us consider general loss function Λ(v) depending on vector v. Gradient descent
constructs the sequence of v(k), which for each k ∈ N satisfies the condition Λ(v(k+1)) < Λ(v(k))
(except when v(k) is optimal). The sequence is constructed as

v(k+1) = v(k) + η∆d(k) , (4.9)

where ∆d(k) is a real vector called the step or search direction, with the same dimension as v(k)

and η > 0 is called a learning rate [45]. The question is how to choose ∆d(k) in order to fulfill the
condition Λ(v(k+1)) < Λ(v(k)).

We must choose ∆d(k) in such a way the Λ function decreases in that direction. We could apply
the calculus and search the direction in which the following condition is met:

∇∆d(k)Λ(v(k)) = ∆d(k) · ∇Λ(v(k)) < 0 , (4.10)

where ∇Λ(v(k)) is the gradient of function Λ and is defined for vector v = (v1, ..., vm)T , m ∈ N as

∇Λ(v) = (
∂Λ

∂v1
(v), ...,

∂Λ

∂vm
(v))T . (4.11)

Condition (4.10) expresses derivative of Λ(v(k)) in the direction of ∆d(k). If this derivative is
negative, we can be sure that Λ decreases in that direction.

Suppose choosing ∆d(k) = −∇Λ(v(k)). Then

∆d(k) · ∇Λ(v(k)) = −||∇Λ(v(k))||2 ≤ 0 . (4.12)

Moreover, equality in (4.12) is held only if ∇Λ(v(k)) = 0 and therefore no further update is
performed, so the algorithm could be terminated. In practice, the euclidean norm of gradient is
compared to the small positive threshold ε and the algorithm is terminated when ||∇Λ(v(k))|| ≤ ε
[45].

The final equation for constructing the sequence is therefore

v(k+1) = v(k) − η∇Λ(v(k)) . (4.13)

To provide a more intuitive perspective, the gradient descent algorithm iteratively searches for
directions in which the value of the loss function is decreasing and stops when it is sufficiently close
to the optimum (it can be local or global minimum). The initial (starting) point of the algorithm
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Figure 4.7: Gradient descent algorithm. In each iteration it finds the direction in which the loss
function decreases. In this case, the green point is ”rolling down” towards the global minimum.

needs to be selected in advance. It is usually chosen randomly. The procedure is illustrated in
Figure 4.7.

Of course, the gradient descent is not a universal method which always finds the global min-
imum of the arbitrary function. There are some requirements on the loss function to ensure the
functionality. Especially when the loss function is not ”nice” like the one in Figure 4.7, it can
get stuck in the local minimum instead or even do not converge, which also depends on the initial
point of algorithm. The theory behind the convergence to the global optimum is properly described
almost exclusively for (strictly) convex functions [45].

Another factor that significantly affects convergence is the learning rate η. If it is too small, the
time until convergence could be very long and if it is too big, it could bounce back and forth around
the optimal value and never reach it. Deriving the most suitable learning rate for the particular
application usually requires a bit of experimenting around. There are methods to set the learning
rate or adjust it during the execution. Some of them have been used in the experimental part of
this thesis and will be mentioned later.

We should specify the update rule in the case of modifying weights and biases of the neural
network by gradient descent. Update rules for arbitrary weight w, bias b and k-th iteration of
gradient descent is

w(k+1) = w(k) − η ∂Λ

∂w
(W(k),B(k),X) (4.14)

b(k+1) = b(k) − η ∂Λ

∂b
(W(k),B(k),X) . (4.15)
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4.5.2 Stochastic gradient descent (SGD)

In order to accelerate learning of the neural network, the stochastic gradient descent algorithm was
developed [38]. It is based on estimating the gradient of the loss function instead of computing it
precisely. For instance, we show the algorithm in the case of the quadratic cost function in (4.8).
It could be rewritten as

Λ(W,B,X) =
1

n

n∑
i=1

Λxi
=

1

n

n∑
i=1

||y(xi)− ŷ(xi)||2

2
(4.16)

Λxi =
||y(xi)− ŷ(xi)||2

2
. (4.17)

Therefore, the gradient of the loss function could be written as (we omit the parameters of Λ for
simplification)

∇Λ =
1

n

n∑
i=1

∇Λxi
. (4.18)

Basically, this term is only the average of gradients of Λxi across all training instances. The idea of
the stochastic gradient descent is to replace averaging across all training instances with averaging
only across a randomly sampled mini-batch xi1 , ..., xim of size m < n, m ∈ N. We obtain estimate

∇Λ =
1

n

n∑
i=1

∇Λxi
≈ 1

m

m∑
l=1

∇Λxil
. (4.19)

If the size of the mini-batch is large enough, we can expect that this approximation will be
roughly equal to the real gradient. This algorithm works for loss functions that could be rewritten
in the same manner as quadratic cost function from the example. Of course, there might be some
statistical deviations and the estimation is not always precise, but what we need is to move in the
direction where the loss function is expected to decrease, it does not need to be exactly the direction
of the gradient, so working with an estimation is justified. We shall rewrite the update rule in the
case of SGD as

w(k+1) = w(k) − η

m

m∑
l=1

∂Λxil

∂w
(W(k),B(k),X) (4.20)

b(k+1) = b(k) − η

m

m∑
l=1

∂Λxil

∂b
(W(k),B(k),X) . (4.21)

The algorithm in practice usually runs in several epochs. Each epoch is characterized by random
sampling of mini-batches of given size m and then by training with those mini-batches. When one
epoch is finished, training instances are randomly mixed and the mini-batches are sampled again
and the training continues in a new epoch with new mini-batches.

In (4.20) and (4.21) 1
m factor can be omitted, which corresponds only to the scaling of the

learning rate. Factor 1
n is sometimes omitted also in the definition of MSE in (4.8) [38].
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4.5.3 Other training methods

Altough the gradient descent or SGD are both popular optimization algorithms applied in many
optimization tasks (especially in the training phase of neural networks), they are not entirely flaw-
less. In some situations they could report drawbacks which can make the learning procedure much
more difficult. Especially in the means of the speed of convergence and stucking in suboptimal
(local) minima. Moreover, the overall sensitivity to the learning rate parameter is in the case of
the gradient descent and SGD very high, which also affects the convergence and the poor choice of
the learning rate can even lead to divergence.

To address these issues, several alternatives to the SGD have been proposed [46]. They target
to accelerate the convergence and reduce oscillations. Some of them also adapt the learning rate
parameter at the runtime and thus possess better ability of controlling the direction and amount
of change.

SGD with momentum

This method helps to accelerate the convergence of classic SGD and reduce fluctuations around the
optimal value, which is common for SGD for instance in the valley areas with only slight slope of
decrease at the bottom and steep slopes on sides (basically different slopes in different dimensions).
The example is shown in Figure 4.8.

Figure 4.8: The left figure shows a situation where the classic SGD algorithm is applied. The
right-hand figure represents the case of the SGD with momentum.

The SGD with momentum works in the way that it gradually accumulates fractions of previous
update vectors and uses it for a new update. The update rule is defined with the use of momentum
parameter γ, 0 ≤ γ ≤ 1, which represents the fraction of the previous update vector, and velocity
vector at k-th iteration s(k), which represents the update vector at k-th iteration (s(0) = 0). For
arbitrary loss function Λ = Λ(v) (depending on vector v, which could represent for instance weights
and biases) and learning rate η > 0, the SGD with momentum is defined as

s(k+1) = γs(k) + η∇Λ(v(k)) (4.22)

v(k+1) = v(k) − s(k+1) . (4.23)

This mechanism could also be interpreted in the physical point of view. Imagine ball rolling
down the hill. It gradually accelerates and accumulates momentum, approaching the bottom faster
and faster. It is afterwards more difficult to change suddenly its direction of movement by some
lateral impulses and conversely the impulses in the direction of movement can increase the speed
rapidly. Same reasoning could be applied to our case of optimization, where the effect of gradients
that are deviated from the direction of movement is suppressed. This ensures faster convergence
and smaller fluctuations.

41



The magnitude of momentum parameter γ controls the level of considering previous update
vectors. The higher it is, the stronger influence of accumulated momentum is considered and the
harder it is for new gradients to change its direction.

Even though this algorithm possesses these improvements over the SGD, it sometimes acts too
thoughtlessly. It is intuitively apparent that in some situations it may be beneficial to slow down
and change the direction significantly, not only follow the direction of accumulated gradients. This
is the reason why the Nesterov algorithm has been developed. It is a smarter version of the SGD
with momentum, which roughly anticipates the future position and exploits the gradient computed
in the estimated future point instead of the gradient in the current point. We can roughly estimate
future points as v̂(k+1) = v(k) − γs(k), thus the Nesterov algorithm computes new update vector
s(k+1) with usage of the gradient evaluated in this estimated point. The equations of the SGD with
momentum are modified to

s(k+1) = γs(k) + η∇Λ(v(k) − γs(k)) (4.24)

v(k+1) = v(k) − s(k+1) . (4.25)

Adam

Adam (Adaptive Moment Estimation) belongs to the class of optimization algorithms that adapts
the learning rate for each parameter during runtime. Currently Adam is considered a member of
state-of-the-art optimization methods with a wide scope of application in the context of neural
networks.

The theory behind Adam is slightly complicated and not intuitive as in the case of previous
methods. We only provide a short introduction and a detailed description and analysis can be
found in [47].

Adam at k-th iteration of algorithm updates exponential moving average of gradientm(k), which
estimates the first moment (the mean) of the gradient, and exponential moving average of squared
gradient r(k), which estimates the second raw moment (the uncentered variance) of the gradient.
It turned out that these terms are biased towards zero, so afterwards they are bias-corrected and
applied to update the parameters. The algorithm is parameterized by decay rates 0 ≤ γ1 < 1 and
0 ≤ γ2 < 1. The lower they are, the more the moving average is shifted towards the current values.
There is also a special term ε > 0, which helps to avoid division by zero. For simplification of the
notation we denote the gradient of loss function Λ = Λ(v) with respect to v at k-th iteration as
g(k) (v generally symbolizes any vector of parameters in the current scope of interest). Finally, for
learning rate η, the complete algorithm could be written as (all vector operations are element-wise):
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m(k+1) = γ1m
(k) + (1− γ1)g(k) (4.26)

r(k+1) = γ2r
(k) + (1− γ2)[g(k)]2 (4.27)

m̂(k+1) =
m(k+1)

1− γk+1
1

(4.28)

r̂(k+1) =
r(k+1)

1− γk+1
2

(4.29)

v(k+1) = v(k) − η√
r̂(k+1) + ε

m̂(k+1) . (4.30)

In the (4.26) respectively (4.27), the exponential moving average of gradient respectively squared
gradient is updated. Then both terms are bias-corrected in (4.28) and (4.29) and the final update
of parameters is performed in (4.30). Usually both m(0) = 0 and r(0) = 0. A good default choice
of parameters suggested by [47] is γ1 = 0.9, γ2 = 0.999 and ε = 10−8.

4.6 Backpropagation algorithm

We have already presented the idea of training the neural network via different optimization meth-
ods, but we have not provided the way of computing partial derivatives (gradients) of the loss
function with respect to weights and biases, which are necessary to execute the training algorithm.
This could of course be done by computing the derivatives analytically, which is very uncomfort-
able and almost insane idea, especially when adopting large neural networks. For this reason, the
backpropagation algorithm was developed in order to retrieve partial derivatives with respect to all
weights and biases involved in the neural network in a comfortable and quick way.

The derivation and description of the backpropagation algorithm is motivated by papers [48]
and [38]. We define some helpful notation in advance in order to simplify the derivation. Let us
denote the output from l-th layer of the neural network and j-th neuron of that layer as alj , the

entire output vector of l-th layer will be denoted as al. Term wljk denotes weight of the connection
going from neuron k in the previous layer (l − 1) to neuron j in layer l (it is in reversed order
on purpose, it will simplify further notation with respect to the matrix multiplication) and term
Wl = (wljk)j,k denotes matrix of weights directed from layer (l− 1) to l. The bias of node j in layer

l is denoted as blj and biases folded into vector of biases of layer l is bl. By applying this notation,
we could write comfortably a feedforward dependency for the output from layer l as

al = φ(Wlal−1 + bl) , (4.31)

where φ is the arbitrary activation function used in neurons of layer l (this definition apparently
depends on the current layer l, but we omit notation of this dependence for simplification), which
is applied in element-wise fashion. We also denote argument of φ in (4.31) as

zl = Wlal−1 + bl . (4.32)

The aim of the backpropagation algorithm is to compute ∂Λ
∂w and ∂Λ

∂b (we will omit arguments of the
functions for simplification, all of them are evaluated in the values of current weights, biases and
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training instances) with respect to arbitrary weight w and bias b. These partial derivatives express,
how much the loss function changes when w or b is changed. Of course, the main goal is to find
optimal weights and biases, which corresponds to the local (global) minimum of the loss function.
Intuitively, we could imagine that in each layer of the neural network a certain error arises (from
imperfection of current weights and biases), which causes flaws in the output layer. Furthermore,
we could say that even individual neurons produce these errors, which consequently leads to a
corrupted output. But what we can measure is only the deviation of the current output (extracted
from the output layer) of the neural network from the desired value, because we do not know in
advance the ”correct” output (activation values) of other layers. Basically, what backpropagation
really does is that it backpropagates an error from the output layer to the previous layers and then
from these error terms computes corresponding partial derivatives ∂Λ

∂w and ∂Λ
∂b .

We will now define this error term heuristically. The output of j-th neuron of layer l could
be written as alj = φ(zlj). Let’s imagine for a moment that layer l has a corrupted output (not

corresponding to the optimal value) denoted as âlj . This corrupted value could be written as

âlj = φ(ẑlj) = φ(zlj + ∆zlj), where ∆zlj expresses the deviation of argument zlj from the optimal
value. In case that other weights and biases are already optimal, the difference between the optimal
cost and the ”corrupted” cost would be approximately ∂Λ

∂zlj
∆zlj (from Taylor expansion, we suppose

that ∆zlj is ”small enough”). The deviation is getting larger, when value of ∂Λ
∂zlj

is getting larger.

On the other hand, when the value of ∂Λ
∂zlj

is close to 0, then the neuron is very close to the optimal

state. Therefore, we could define the error term as

δlj =
∂Λ

∂zlj
. (4.33)

This is a heuristic derivation and of course, it is not absolutely precise and certainly requires deeper
math behind (e.g. we omitted trade-off between ∂Λ

∂zlj
and ∆zlj in estimating the deviation), but this

derivation serves mainly for the description of intuitive behaviour of δlj . What is more important

is the fact that δlj is only a provisional term, which will lead us to the derivation of values of real

interest - ∂Λ
∂w and ∂Λ

∂b .
The algorithm always backpropagates the error of single training instance x (we can use only

one training instance at a time), so what it really computes is ∂Λx

∂w and ∂Λx

∂b . Therefore, the loss
function Λ needs to be rewritten in the same manner as in (4.18), which we assume. From now on,
we will omit the subscript and denote Λx simply as Λ. Another assumption on the loss function is
that it can be expressed as the function of output aL from the output layer, where L denotes the
output layer. We need Λ = Λ(aL), but it may also depend on other variables. This assumption
will be explained later. For instance, both assumptions are met by the quadratic cost function and
also by other loss functions presented later in this thesis.

Since we have defined δlj , we now need to find equations for values of real interest, ig. partial
derivatives of the loss function with respect to weights and biases. The entire backpropagation
algorithm stands on 4 equations, which allow us to compute values of real interest from errors
in individual layers of the neural network. They can be simply derived by careful application of
the chain rule from multivariate calculus. Note that all of these equations are specifically written
for arbitrary activation functions φ : R1 → R1 (tanh, sigmoid, ReLU). This corresponds to our
experiments since we used such functions in the hidden layers of our networks (it is also common
in practice). The only exception was the case of the output layer, where we used both sigmoid
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and softmax. But softmax is a vector function and therefore the general equation (4.34) should
be slightly modified as a special case for softmax (or vector functions in general). Other equa-
tions remain the same. We will mention this special shape for softmax in the commentary to the
corresponding equation.

1. Equation to calculate error δL of the output layer L:

δLj =
∂Λ

∂aLj
φ′(zLj ) . (4.34)

As mentioned before, the backpropagation algorithm runs backwards. First, we need to
compute error in the output layer. It is calculated by multiplication of partial derivative of
the loss function with respect to the output aLj of j-th neuron of layer L and derivative of the

activation function φ in zLj . This equation is perfectly intuitively understandable, because
the error term is basically expressed as the trade-off between ”how much the loss function
changes with respect to the output from the neuron (represented by ∂Λ

∂aLj
)” and ”how much

the output of the neuron changes with respect to the input value to the activation function
(represented by φ′(zLj ))”. If any of these values are low, then the error of that neuron is
also low. Furthermore, both values could easily be retrieved and the shape of derivatives is
usually computed analytically (obviously depending on the shape of the loss function and
the activation function). We may also notice that the partial derivative of Λ is computed
with respect to aLj . This is the reason why we need the assumption of Λ depending on aL.
Note that this shape corresponds to the sigmoid function σ used in the output layer (or any
arbitrary scalar function with the scalar input). For softmax function θ it would be

δLj =

|C|∑
k=1

∂Λ

∂aLk

∂[θ(zL)]k
∂zLj

, (4.35)

since ∀k ∈ {1, ..., |C|}, the function [θ(zL)]k depends on zLj where |C| denotes the number of
neurons in the output layer, which is the same as the number of classes (C denotes a set of
all classes).

2. Equation to backpropagate the error from layer (l + 1) to previous layer l

δlj = [(W(l+1))T δ(l+1)]jφ
′(zlj) . (4.36)

This equation gives us a way to backpropagate the error backwards. Together with (4.34),
we can compute δl (vector of errors δlj of neurons in layer l) in the arbitrary layer l. It is

obtained by multiplying the transpose of weight matrix W(l+1) with vector of errors of (l+ 1)

layer δ(l+1). This could be thought as a ”projection” of error to the previous layer. Then the
result is multiplied by φ′(zlj), similarly to the case (4.34), because the error is also influenced
by the speed of change of the activation function.

3. Equation to calculate ∂Λ
∂blj

∂Λ

∂blj
= δlj . (4.37)
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This first value of real interest could be determined easily, because equation (4.37) states that
it is equal directly to the error term. And (4.34) and (4.36) already give us tools to compute
the error in the arbitrary layer.

4. Equation to calculate ∂Λ
∂wl

jk

∂Λ

∂wljk
= a

(l−1)
k δlj . (4.38)

This equation computes the partial derivative of the loss function with respect to any weight.
It depends on the activation (output) of k-th neuron of layer (l− 1) and error of j-th neuron
of the consecutive layer l.

By applying these 4 equations, we can compute all values of interest easily. These equations could
also be in some cases fully rewritten into the vector (matrix) shape and therefore solved in a fast
and efficient way (some libraries often effectively compute and manipulate with matrix-organized
data, such as Numpy1). More information on the derivation of these equations can be found in [38].

Problems related to activation functions

In this part we shortly summarize and describe some properties of different activation functions
related to the backpropagation that influence the entire training procedure.

First we are going to focus on so called vanishing gradient problem. This problem occurs espe-
cially in the case of multi-layer neural networks. Consider equations (4.34) and (4.36) mentioned
in the previous part. These equations include the derivatives of activation functions in the corre-
sponding layers. If the error backpropagates recursively from the output layer to previous layers
as in the (4.36), then more and more derivative terms are multiplied together. If some of them are
close to zero, than the final term is supposed to be low as well. The gradients of the loss function
are computed with the usage of the error term (as suggested in (4.37) and (4.38)) and therefore
the update of parameters could be insignificant in early layers due to small gradients. This is often
the case of sigmoid activation function. The derivative of sigmoid is σ′(z) = σ(z)(1 − σ(z)) [49]
and therefore it reaches the maximum value of 0.25. Multiplication of multiple sigmoid derivatives
could result in a significant reduction in gradients in early layers of the neural network due to chain
interaction of individual derivatives.

The situation is slightly better in the case of the tanh activation function, whose derivative lies
within 0 and 1, but still the vanishing gradient problem occurs, because values are often less than
1. Especially when the sigmoid or tanh output values close to the asymptotic tails, the derivative is
close to 0 and therefore there will probably be only a small update of weight and bias which hardly
change the current behaviour of a neuron. This state is called saturation. Vanishing gradient and
saturation make the training procedure more difficult and could negatively affect the quality of
performance.

The problem of the vanishing gradient could be considerably suppressed by the adoption of the
(Leaky) ReLU activation function. In the case of the ReLU, the derivative is always either 1 or
0. When the ReLU operates in the positive area, the derivatives are always 1 and therefore no
vanishing gradient occurs. A problem arises when the ReLU moves to the negative area, where
the derivative is 0. This produces so called dead neurons, because the derivative is 0 and the error
is not backpropagated from this neuron. Aditionally, it is not likely to recover from this state as

1 Available at https://numpy.org/
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the training proceeds. This is the reason why the Leaky ReLU was introduced as it has not-null
derivative in the negative area and therefore allows the neuron to recover. This prevents producing
dead neurons.

4.7 Loss functions

In this section we summarize popular loss functions among neural network context and discuss their
properties. We have already defined the quadratic cost function (MSE) in (4.8). It is widely-applied
in the machine learning area, but it has some drawbacks related to the backpropagation algorithm.
Specifically, we refer to the learning slowdown problem [38, 50], which is the issue especially in the
case of classification.

We demonstrate this problem on the quadratic cost function and sigmoid in the output layer.
Since the quadratic cost function is a sum of functions defined in (4.18), we are justified to work only
with these single functions. We are going to slightly simplify the notation and use some notation
defined in the section 4.6. Let us denote the MSE single function as

Λ =
||y − aL||2

2
, (4.39)

where y denotes the correct output and aL denotes the output of the neural network (which is the
same as the output from the output layer aL). Now we will express the derivatives of loss function
Λ with respect to weights and biases in the output layer L with usage of backpropagation equations.
First we compute the error term for node j in the output layer as in (4.34). Since ∂Λ

∂aLj
= yj − aLj ,

the error term is

δLj = (yj − aLj )φ′(zLj ) . (4.40)

Now we substitute this term in the equations (4.37) and (4.38).

∂Λ

∂bLj
= (yj − aLj )φ′(zLj ) (4.41)

∂Λ

∂wLjk
= a

(L−1)
k (yj − aLj )φ′(zLj ) . (4.42)

In these equations occur derivatives of the activation function (sigmoid in this example) in the
output layer. Consequently, this causes the learning slowdown problem. If the values of sigmoid
are close to 0 or 1 (asymptotic tails), the derivative is very close to 0 and therefore it produces very
low updates, since the corresponding partial derivatives are low. Switching the values in the output
layer, which are close to asymptotic tails of sigmoid (if this is incorrect state), is very slow, hence
the learning slowdown.

It would be similar in the case of MSE combined with softmax. It is easy to derive that derivative
of softmax fulfills the equation [49]

∂[[θ(zL)]k
∂zLj

= [θ(zL)]k(δjk − [θ(zL)]j) , (4.43)
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where δjk is Kronecker delta. Since softmax produces probability distribution, so if the value
for specific k is close to 1, then other values are close to 0 and therefore ∀k the derivative in (4.43)
is close to 0. Thus the error term in (4.35) would also be low.

To fix this drawback, the Cross Entropy loss function can be exploited, which results in the
absence of the learning slowdown problem.

Cross Entropy loss function

Cross Entropy loss function is often a preferred choice among loss functions in the case of classifi-
cation. It is frequently applied in combination with softmax or sigmoid in the output layer. It is
defined as

ΛCE(W,B,X) = − 1

n

∑
x∈X

|C|∑
i=1

yi(x) ln ŷi(x) , (4.44)

where X is a set of input instances, n = |X|, |C| denotes number of neurons in the output layer
(equal to the number of classes), yi(x) is i-th component of y(x), which denotes the correct output
for single instance x and ŷi(x) denotes the i-th component of the prediction of neural network
ŷ(x) for single instance x. We also explicitly mark the dependence on a set of weights W and a
set of biases B. The definition in (4.44) acts as an overall loss across multiple instances (averaging
similarly as in the case of the quadratic cost function). Cross Entropy of single instance x is
therefore

ΛCE(W,B,x) = −
|C|∑
i=1

yi(x) ln ŷi(x) . (4.45)

It measures the similarity between the correct label distribution and the predicted label dis-
tribution for x. Since there is only one i ∈ {1, ..., |C|} (corresponding to the ground-truth label),
where yi(x) = 1 (all other components are 0), then the sum in (4.45) reduces only to one summand.
Therefore the Cross Entropy of single instance x decreases if the predicted value corresponding to
the ground-truth label of x increases and vice versa, which is the favourable behaviour in the task
of classification.

Now we will demonstrate that combination of the Cross Entropy loss function and softmax in
the output layer prevents the learning slowdown problem. We compute the error term for softmax
as in (4.35) and show that it does not depend on the derivatives of softmax. We will also use the
notation from the section 4.6 and denote aLi = ŷi. The parentheses with dependencies of ΛCE are
omitted for simplification.

δLj =
∂ΛCE

∂zLj
=

|C|∑
k=1

∂ΛCE

∂aLk

∂[θ(zL)]k
∂zLj

=

|C|∑
k=1

(− yk
[θ(zL)]k

)[θ(zL)]k(δkj − [θ(zL)]j) =

=

|C|∑
k=1

(−ykδkj) +

|C|∑
k=1

yk[θ(zL)]j = −yj + [θ(zL)]j = aLj − yj = ŷj − yj

We can see that δLj is fully controlled only by the difference between the predicted and the
correct value and no derivative of activation function occurs in the final equation. Therefore, this
approach is not affected by the learning slowdown problem as in the case of MSE.
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There are also other loss functions applied in the neural network context, but none of them are
more popular than MSE and Cross Entropy. Other loss functions can be found in [51].

4.8 Regularization

Regularization is a crucial term, which is almost indispensable among machine learning in general
nowadays. It addresses the problem of overfitting and introduces some solutions to attain better
generalization ability of machine learning models. Neural networks are able to approximate even
very complicated, non-linear functions and hence are prone to overfitting quite easily. This is
especially true for large networks. We are going to focus on regularization specifically in terms of
neural networks and describe some popular regularization techniques.

Modification of the loss function

This technique works in such a way that it adds a special regularization term to the loss function,
which usually restricts the size of weights and penalizes the loss function for large weights. A
heuristic idea behind this is that weight is allowed to be large only if it has a distinctive influence
on decreasing the loss function by the improvement of the output of the neural network. Thus, it is
more likely that the model increases only those weights that have high general effect on estimating
the output and does not increase weights to gain only minor improvement of results by learning a
noise in data [52].

We distinguish the representatives of this group based on different regularization terms that are
added to the loss function. Among the most popular belong L2 and L1 regularization, which are
defined as follows:

L2 regularization : Λ(W,B,X) = Λ0(W,B,X) +
λ

2n

∑
w∈W

|w|2

∂Λ

∂w
=
∂Λ0

∂w
+
λ

n
w (4.46)

Update rule : w(k+1) = (1− η λ
n

)w(k) − η ∂Λ0

∂w
(W(k),B(k),X)

L1 regularization : Λ(W,B,X) = Λ0(W,B,X) +
λ

n

∑
w∈W

|w|

∂Λ

∂w
=
∂Λ0

∂w
+
λ

n
sgn(w) (4.47)

Update rule : w(k+1) = w(k) − η λ
n

sgn(w(k))− η ∂Λ0

∂w
(W(k),B(k),X) ,

where n = |X|, Λ0 denotes the original loss function and Λ denotes the loss function after
the addition of the regularization term. The effect of the regularization term is controlled by
the magnitude of regularization parameter λ ≥ 0. The larger λ is, the larger penalty is put on
weights and vice versa. Both variants penalize large weights in a slightly different way. The
difference is perfectly visible from the individual update rules of weights for gradient descent (or
SGD) in (4.46) or (4.47). We can see that in the case of L2 regularization the weights are gradually
decreased proportionally to the magnitude of the corresponding weight, whereas in the case of L1
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regularization the weights are modified by the value of constant magnitude. This means that L2
regularization tends to shrink larger weights more than L1. L2 regularization is sometimes referred
to as a weight decay.

In the experimental part we adopt mainly L2 regularization as a regularization technique. It
could also be used in adaptive optimization algorithms, such as Adam. Generally accepted approach
is to replace gradient ∇Λ0 with ∇Λ for initializing corresponding terms (e.g. equations (4.26) and
(4.27)), as we did also in the case of SGD. There has been some criticism to this approach related to
the adaptive algorithms [53], which led to some proposals and improvements, but they are beyond
the scope of this thesis and we will not mention them. In our experiments we use replacement of
gradients as suggested above.

Early stopping

Early stopping is possibly the most natural regularization technique. It basically terminates the
training phase of the neural network if the model starts to deteriorate its generalization ability.
It is usually demonstrated at some epoch of training by degradation (stagnation) of performance
on the validation dataset, while the performance on the training dataset is still improving. The
performance is usually measured by monitoring the accuracy or loss on the validation dataset.
There is a patience constant, which determines the number of epochs the algorithm waits for the
improvement. If no improvement occurs, the training is terminated.

Dropout

Dropout is a popular regularization technique among neural networks, which has shown state-of-the-
art results in many applications. The algorithm basically works as follows: During the training of
neural network is randomly dropped half of the neurons (temporarily) in each hidden layer for each
mini-batch. Then the forward pass and backward pass is performed through the subnetwork and
the weights and biases of the subnetwork are updated [54]. The dropped neurons are then recovered
and the same procedure is repeated for the following mini-batches as the training continues. More
generally, the neurons could be dropped with probability p, but at least one neuron must stay in
each hidden layer in order to conduct meaningful updates.

For a testing phase the entire network with all neurons is applied, but (in the case of dropping
half of the neurons in each iteration) we need to halve all weights of connections outgoing from
the hidden neurons since we operate with twice as many hidden neurons as the subnetworks were
trained with.

There are not many theoretical researches that would clarify the functionality of this method,
but there are plenty of heuristic explanations. The first possible explanation of its functionality is
that Dropout basically ”average” several different neural networks, and therefore the full network
is supposed to have a higher generalization ability than single networks. The second one is that this
technique reduces the influence and dependencies between individual neurons and thus the neurons
are forced to learn more robust features rather than relying on the outputs of particular neurons.

We have mentioned three different regularization techniques frequently used among neural net-
works and machine learning in general. Other regularization techniques are for instance dataset
augmentation, parameter sharing, etc. The descriptions of other methods can be found in [52]. It is
also common to combine individual regularization techniques to ensure even higher generalization
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ability, but they must be applied carefully since the regularizers can be more decisive in training
than the data themselves.
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Chapter 5

Decision tree to neural network
transformation

In this section we provide a detailed derivation of the neural network architecture, which is further
employed in all subsequently proposed models. The main idea is built on the article [3] describing
one-to-one transformation of the arbitrary regression tree to the specifically designed neural network.

Unfortunately, the approach presented in [3] is not uniformly convertible to the classification
problem. Based on this issue, alternative architecture and initial settings are proposed in order to
simulate the exact behaviour of corresponding decision tree classifier.

This reformulation provides a sensible opportunity to enhance the decision tree performance,
because parameters of the newly constructed neural network could be better adapted with the usage
of the backpropagation algorithm of neural networks and therefore achieve superior classification.

5.1 Architecture and initial settings

The initial weights and biases of neurons and architecture of the input layer and the first two hidden
layers will remain same among all proposed models. A sample of such architecture (only the input
layer and first two hidden layers) is illustrated in Figure 5.2 copying the decisions of the decision
tree depicted in Figure 5.1, which splits the space by two hyperplanes as illustrated also in 5.1.
Let’s first consider neurons in the first and second hidden layers of the network as perceptrons. In
our case, the activation function is specific threshold function

τ(x) = 21x≥0 − 1 , (5.1)

where all math operations on instance x are element-wise. Also

(1x≥0)i =

{
1, if xi ≥ 0

0, otherwise
, (5.2)

where (1x≥0)i is i-th element of 1x≥0.
So perceptrons from the first and second hidden layers output +1 or −1. Why it is chosen in

such manner will be clear from further explanations.
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Figure 5.1: The left figure illustrates 3 color-coded classes divided by the decision tree in the right-
hand figure, that are separated by two hyperplanes: x1 − 2 = 0 and x2 − 1 = 0. Inner nodes of the
decision tree are green colored with corresponding split function next to them, whereas the leaves
are red colored. All nodes are numbered.

5.1.1 First hidden layer

The first hidden layer should copy the decisions of all inner nodes present in the corresponding
decision tree. The first hidden layer has the same number of neurons as the number of inner nodes
in the decision tree. As explained in the chapter about decision trees and random forests, each
inner node k ∈ {1, ..., L − 1} of the decision tree, where L − 1 is the total number of inner nodes
(in fact, if L− 1 is the total number of inner nodes, then L is the total number of leaves present in
the decision tree), possesses split function with parameters jk ∈ {1, ..., n}, which is one dimension
in a n-dimensional space that is used for split and also αjk , which is a threshold. Let us also define
function sk as

sk(x) = xjk − αjk . (5.3)

It is apparent that equation sk(x) = 0 defines a hyperplane in Rn, which splits the space in inner
node k.

In order to obtain all decisions of inner nodes in the corresponding neurons of our neural network,
we initialize weights of connections pointing from the input layer to the first hidden layer in neuron
k as (0, .., 0, 1, 0, .., 0)T with single 1 in jk-th position and 0 otherwise. Bias is set to −αjk . Hence,
the output of the first hidden layer is (τ(s1(x)), τ(s2(x)), ..., τ(sL−1(x))T and it precisely copies
the decisions of inner nodes, with +1 indicating that the input instance belongs to the right side
of the hyperplane and -1 otherwise (and +1 if it belongs to the hyperplane). This is also done for
the inner nodes outside the decision tree path of the input instance. The illustration can be seen
in Figure 5.3.
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Figure 5.2: Transformation of the decision tree in Figure 5.1 to the neural network with two hidden
layers. The first hidden layer detects the decisions of inner nodes with the same numbers as in 5.1.
The second hidden layer retrieves leaf membership of the input instance similarly to the decision
tree. Not null connections between neurons are in bold with corresponding weights. Biases are
written next to the neurons. All dashed connections indicate null connections (weight equals 0).

5.1.2 Second hidden layer

From all inner node decisions obtained by the first hidden layer, it should be possible to reconstruct
the exact leaf membership of input instance x. This is the main task to accomplish by the second
hidden layer. If there are L − 1 neurons in the first hidden layer, then the second hidden layer
consists of L neurons, each one corresponding to one individual leaf in the decision tree.

We connect neuron m in the first hidden layer to neuron m′ in the second hidden layer with not
null weight if and only if the inner node corresponding to neuron m belongs to the path from the
root node to the leaf corresponding to neuron m′. The weight is initialized to +1 if the split by
inner node m is to the right child and -1 otherwise. If neuron m is not part of the path from the
root node to the leaf, the weight is always initialized to 0.

Based on this setting, it could be simply deduced that the number of not null weights of con-
nections from the first hidden layer to arbitrary neuron m′ in the second hidden layer is the same
as the length of the path from the root node to leaf m′. This is illustrated in Figure 5.4.

If the output from the first hidden layer is v = (±1,±1, ....,±1)T , which encodes all decisions
of inner nodes of the decision tree, then the output of neuron m′ in the second hidden layer is
τ(
∑L−1
i=1 (wm

′

i vi) + bias(m′)), where

wm′
= (wm

′

1 , wm
′

2 , ..., wm
′

L−1)T is a vector of weights for connections to neuron m′. These weights
are not null if the corresponding inner node is involved in the path from the root node to leaf m′

and are +1 if it is sent to the right child and -1 otherwise. For all inner nodes that are not involved
in the root-leaf path the weights are initialized to 0.

Desired behaviour of the neuron m′ in the second hidden layer is to output +1 if the input
instance ends in leaf m′ and -1 otherwise. For this purpose, bias(m′) must be correctly set. To

do so, it is sufficient to notice that the sum
∑L−1
i=1 (wm

′

i vi) as the first term in the argument of τ
function equals to the length of the path from the root node to leaf m′ if and only if the input
ends in leaf m′. For convenience, let us denote this length as l(m′). It is a simple consequence of
the fact that the number of not null weights wm

′

ik
is the same as l(m′) and also they have the same
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Figure 5.3: Space in the left figure is divided by red (in inner node number 1) and black (in inner
node number 2) hyperplanes. If we consider point x = (x1, x2)T = (2.75, 0.45)T highlighted in the
left figure, the output from the first hidden layer is +1 from neuron 1 (corresponding to the red
hyperplane) and -1 from neuron 2 (corresponding to the black hyperplane).

magnitude (|wm′

ik
| = 1) and same sign as vik , where ik ∈ {1, ..., L − 1}, wm′

ik
6= 0. Therefore, each

member of the sum
∑L−1
i=1 (wm

′

i vi) =
∑L−1

ik=1,wm′
ik
6=0

(wm
′

ik
vik) equals to +1 and all members sum up

to l(m′).

Moreover, if the input does not end in leaf m′, then in the sum
∑L−1
i=1 (wm

′

i vi) exists a not null
member, in which 2 integers (ones) with different signs interfere, resulting in -1. Hence, it is clear

that if the input does not end in leaf m′, the sum holds inequality
∑L−1
i=1 (wm

′

i vi) ≤ l(m′)−1 < l(m′).
For more precise intuition, the illustration is provided in Figure 5.5.

After these considerations, a reasonable choice of bias(m′) is

bias(m′) = −l(m′) + 0.5 (5.4)

and then
∑L−1
i=1 (wm

′

i vi) + bias(m′) has the following property:

L−1∑
i=1

(wm
′

i vi) + bias(m′)

{
> 0, if input ends in leaf m′

< 0, otherwise
. (5.5)

With respect to this property, the second hidden layer outputs (−1, ...,−1,+1,−1, ...,−1)T after
the application of τ , with a single positive +1 indicating the correct leaf membership of the input.

To retain (5.5), it is sufficient to choose any other arbitrary constant in (5.4) in range (0, 1)
instead of 0.5. But to stay consistent with [3], we also used the proposed value of 0.5 in conducted
experiments.

At this stage, we have already defined the architecture and initial weights and biases settings of
the first two hidden layers in order to transform the decision tree into the neural network with the
same properties. All that remains to do is to gain classification predictions from the second hidden
layer.

5.1.3 Output layer

In this section we propose the architecture and initial setting for the output layer, which will gain
the same predictions as the decision tree. Unfortunately, the method proposed for regression trees
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Figure 5.4: In the left figure a path from the root node 1 to leaf 3 is highlighted in blue. This has
length 1 and there is only one initialized not null connection from the first hidden layer, because
only the root node is part of the path. In the remaining figures the paths for other leaves (blue
colored) from the root node are shown (except for leaf 6, which is in same depth as leaf 7). It
is easy to see that there is always equality between the length of the path from the root node
to the particular leaf and the number of not null connections from the first hidden layer to the
corresponding neuron.

in [3] is not directly applicable in the classification case. Therefore, we propose an alternative for
the classification case, that gives the same classification outcomes as the corresponding decision
tree.

The output layer will be constructed as follows: The number of neurons in the output layer is
equal to the number of classes we desire to classify. Each neuron corresponds to only one particular
class (one label). A neuron with the highest activation represents the predicted class of neural
network. In the experiments, we primarily applied softmax activation function in the output layer.
To get the same performance as the decision tree, we must retrieve probability distributions stored
in leaves from the leaf membership encoded in the second hidden layer. If the output layer outcomes
the same probability values for classes as the decision tree, hence the neural network performs alike.

Let us denote the output of the second hidden layer as r = (−1, ...,−1,+1,−1, ...,−1)T , where
the position of +1 indicates the leaf which the input falls in. For each leaf l ∈ {1, ..., L} we denote
a probability vector pl = (pl1, p

l
2, ..., p

l
|C|)

T with probabilities of individual classes that are stored in

leaf l, where |C| is the total number of classes. If r has +1 as the first element (corresponding to
the first leaf), i.e. r1 = +1, the output layer should outcome p1. If r2 = +1, the outcome should
be p2 etc.

If we initialize biases in the output layer to 0, then the appropriate initialization weights can be
obtained by solving the system of linear equations with a regular matrix A

A =



1 −1 −1 −1 . . . −1
−1 1 −1 −1 . . . −1
−1 −1 1 −1 . . . −1

...
...

. . .
. . .

. . .
...

−1 −1 . . . −1 1 −1
−1 −1 . . . −1 −1 1


. (5.6)
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Figure 5.5: Demonstration of inequality
∑L−1
i=1 (wm

′

i vi) ≤ l(m′) − 1 < l(m′) in case of leaf number
7 (corresponding to one neuron in the second hidden layer of our network), if the input does not
end in leaf m′. The red path in the picture indicates the real path of the input in the decision tree.
Our sample input ends in leaf number 6, as can be seen from the illustration. The output from the
first hidden layer would therefore be v = (v1, v2, v3)T = (+1,−1,−1)T . But weights corresponding
to neuron 7 (leaf 7) are w7 = (w7

1, w
7
2, w

7
3)T = (+1,−1,+1)T . After multiplying the values in red

circles and summing the results up, we obtain
∑L−1
i=1 (w7

i vi) = 2 < 3, where 3 means the length of
the root-leaf path. The decrease is caused by the interference of different signs in the grey circle.

Matrix A ∈ RL×L, where L is the total number of leaves in the decision tree. The determinant
of matrix A is

detA =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 −1 −1 . . . −1
−1 1 −1 −1 . . . −1
−1 −1 1 −1 . . . −1

...
...

. . .
. . .

. . .
...

−1 −1 . . . −1 1 −1
−1 −1 . . . −1 −1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)2L−3 · 2L−1 · (L− 2) . (5.7)

For the proof of (5.7) see Proof 1 in Appendix B. Matrix A is therefore always regular with the
exception of L = 2. In this case, detA = 0 and matrix A is singular. But for L = 2, the decision
tree has only the root node and 2 leaves, which is rarely a well-functional model in practical use. It
could have a good performance almost only in case of data with significantly unambigous geometric
deployment, where occurs only 2 classes and exists one hyperplane that sufficiently separates them.
In practice, we will almost never encounter such an elementary model.
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In case of invertible activation function φ in the output layer, we obtain appropriate weights for
neuron c ∈ {1, ..., |C|} in the output layer after solving the following system of linear equations:

A


wc1
wc2
...
wcL

 = φ−1(


p1
c

p2
c
...
pLc

) , (5.8)

where wc = (wc1, ..., w
c
L)T are weights of connections from the second hidden layer to neuron c

in the output layer and φ−1 is inverse function of φ. We used simplified notation and φ denotes
either vector functions (e.g. softmax) or scalar functions applied in element-wise fashion (sigmoid).

In other words, the appropriate weights for neuron c in the output layer are obtained as
wc1
wc2
...
wcL

 = A−1(φ−1(


p1
c

p2
c
...
pLc

)) . (5.9)

This is perfectly feasible for sigmoid or the Leaky ReLU, which are both invertible. The situation
is a little bit problematic in case of softmax. It could easily be derived that softmax inversion is
not unique. More specifically, if we consider vector w and ŵ, where ∀i ∈ {1, ..., L}, ŵi = wi + r
for arbitrary real constant r, then the application of softmax on both variants would produce
∀k ∈ {1, ..., L} the same result, which follows from:

[θ(ŵ)]k =
ewk+r∑
i e
wi+r

=
erewk

er
∑
i e
wi

=
ewk∑
i e
wi

= [θ(w)]k .

Fortunately, we are interested in the arbitrary solution, which would produce probability vector
after the application of softmax. Thus, we define (one-sided) inversion of softmax ∀k ∈ {1, ..., L},
∀z, where ∀k ∈ {1, ..., L}, 0 < zk ≤ 1,

∑
k zk = 1, as

[θ−1(z)]k = ln(zk) . (5.10)

This definition fulfills condition θ(θ−1(z)) = z, because ∀k ∈ {1, ..., L} applies

eln zk∑
i e

ln zi
=

zk∑
i zi

= zk ,

because
∑
i zi = 1. Note that this only holds when the original softmax is applied on the

inversion defined in (5.10). It does not work in reverse order. We can sometimes come across
the situation when ∃k ∈ {1, ..., L}, zk = 0. In such case we slightly modify the original value to
10−3, which ensures only negligible deviation from the original probabilities and (in vast majority
of cases) does not affect predictions of the model.

After initialization of biases in the output layer to 0 and solving the system of linear equations in
(5.9) for all neurons in the output layer (or computing the inverse of matrix A) and for appropriate
activation function chosen in advance, we also gain all initialization weights. This initial setting
causes the neural network to output the same predictions as from the corresponding decision tree
and hence to get an equally performing classification model.
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Chapter 6

Decision-tree-motivated models

6.1 Threshold function replacement

In order to apply a reasonable training procedure with the backpropagation algorithm to the pro-
posed method, it is suitable to replace the perceptron activation function τ (threshold function)
with its smooth approximation. For this purpose, the hyperbolic tangent function was adopted.
This affects the original transformation, because due to this approximation the resulting neural
network is no longer one-to-one transformation to the former decision tree. But still under certain
conditions (especially the transition slope from the negative part of the tanh function to the posi-
tive one - the more upright, the better approximation we get) it could come fairly close to τ and
therefore entire model performance remains unchanged with respect to the decision tree. Usage
of tanh in the first and the second hidden layer is necessary with respect to the transformation
procedure, even that tanh has some drawbacks as activation function (described in section 4.6).
Using other activation functions in this case is not appropriate, because it will lack any decision
tree relationship.

The closeness of tanh to the threshold function in our experiments is controlled with β ≥ 1
parameter.

tanh(βx) =
e2βx−1

e2βx + 1
(6.1)

The higher β is, the better approximation of perceptron activation function is observed. With
β → ∞, tanh converges to τ . In the experiments were exploited two parameters, β1 in the first
hidden layer and β2 in the second hidden layer, each to control transitions of tanh to τ in the
corresponding hidden layers. We will refer to them as transition parameters. Their effect on overall
performance will be examined in further chapters. The influence of these parameters on the shape
is depicted in Figure 6.1.

6.2 Competitive decision-tree-motivated models

In this section, an overview of all decision-tree-motivated models examined in the experimental
part of the thesis is provided. Alongside the reference model proposed in chapter 5, we propose
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Figure 6.1: The shape of hyperbolic tangent for different β parameters.

other competitive models motivated by the original decision tree structure. These models exploit
knowledge acquired by training the decision tree and use it for setting the proper weights and biases,
but not all of them. They especially relax conditions on weights and biases corresponding to the
output layer (the reference model has deterministic weights and biases gained from the decision
tree in all layers) and initialize them randomly. This does not provide accurate decision tree
transformation as our reference model but instead gives neural network more space to adapt in its
own direction. Generally, in the experimental part were all random weights of connections pointing
from arbitrary layer l to following layer (l + 1) initialized randomly from Gaussian distribution of
mean equal to 0 and standard deviation equal to 1√

nl
, where nl denotes the number of neurons in

layer l. All biases were initialized randomly from normalized Gaussian distribution of mean equal
to 0 and standard deviation equal to 1. This random weight initialization was inspired by the
recommendation from [38].

Reference model (NT)

Acquisition of this model is described in chapter 5. Its main purpose is to simulate corresponding
decision tree behaviour as good as possible from the very beginning (the quality of simulation is
controlled by β1 and β2 transition parameters of hyperbolic tangent in the first and second hidden
layer). With both βs approaching infinity, the reference model gives the same predictions as the
decision tree. Essentially, with respect to the predicting procedure of the decision tree based on
picking the label with the highest probability, it could converge to predicting the same results with βs
only ”high enough”. After transformation, the neural network is already a sufficient model capable
of making relevant predictions, because it could produce similar predictions as the corresponding
decision tree. This fact causes the neural network to share resembling features as the decision
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tree, mainly regarding the adjustments of decisions, inclination to overfitting, etc. The closeness of
this model to the corresponding decision tree provides a good opportunity to enhance performance
of the decision tree by further backpropagation training, achieving improvement only after a few
epochs of training. Analysis of these issues will be included in later chapters.

NT basic

The first competitive model has weights and biases corresponding to the first and second hidden
layer initialized similarly as the same layers in the reference model. The difference is in setting
weights and biases corresponding to the output layer. In this case we initialize weights and biases
randomly, as is depicted in Figure 6.2.

This modification should reveal some properties related to advantages or disadvantages of sim-
ulating the decision tree already before the beginning of backpropagation or leaving the output
layer relaxed with space for the neural network to adapt it in its own way. Also, the sensitivity
to different neural network or decision tree hyperparameters may vary. These questions will be
examined and tested in the experimental part.

Figure 6.2: NT basic. In contrast with the reference model, the weights and biases corresponding
to the output layer are initialized randomly.

NT EL

Next competitive model adds an extra layer of neurons between the second hidden layer and the
output layer of the reference model. The weights and biases corresponding to all layers up to this
new extra layer are initialized in the same manner as in the case of the NT (the extra layer now
corresponds to the output layer of the NT). This makes the extra layer to output the same results as
the output layer of NT. Finally, the weights and biases corresponding to the output layer of NT EL
are initialized randomly. In the extra layer, the Leaky ReLU is used as the activation function.
This model is illustrated in Figure 6.3.

Adding an extra layer increases complexity, but could have a positive impact on the final per-
formance and outperform previous models.
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Figure 6.3: NT EL. The weights and biases corresponding to the extra layer are initialized deter-
ministically like in the case of the NT model. Other weights and biases are initialized randomly.

NT EL DW

This model is motivated by the NT EL model. The weights and biases up to the extra layer are
initialized in the same way as in the case of the NT EL model. On the contrary, the weights and
biases corresponding to the output layer are initialized deterministically. The goal is to adjust the
weights in a way that neural network can output the same predictions as the decision tree already at
the beginning of backpropagation (for sufficiently high transition parameters β1 and β2), similarly
as the reference model. Since the extra layer can output the same probabilities as the decision tree,
it would be sufficient to traverse the output of the extra layer to the output layer. We achieve
this by initializing the weights of connections from the extra layer to the output layer by identity
matrix. In other words, the weight of the connection from the j-th neuron of the extra layer to the
j-th neuron of the output layer is initialized to 1 and other weights pointing from the j-th neuron
to the output layer are initialized to 0. This procedure is applied to each neuron of the extra layer.
The biases corresponding to the output layer are initialized to 0. If we then use softmax in the
output layer, the probabilities would be modified, but the order of these values would remain the
same. Since the final prediction corresponds to the class with the highest probability, we end up
with the same predictions as the decision tree even though the individual values are not exactly the
same as in the case of the decision tree.

6.3 Neural random forest

We have already defined several transformations of a single decision tree into the neural network.
Our main interest is primarily to transform an ensemble of decision trees to an ensemble of neural
networks. More specifically, we focus on transforming a random forest classifier into an ensemble
of neural networks, which we refer to as neural random forest (NF).

Neural random forest is obtained by transforming each decision tree into a neural network by
predefined procedure (we described 4 different ways in the previous section). All neural networks
are then trained by backpropagation and gradient-based methods.

To extract the final prediction, we combine decisions from individual neural networks. We
adopted two different ways to extract predictions.
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1. Voting: This procedure extracts predictions from individual neural networks and then out-
puts the label of the most frequently represented class. If two or more equally represented
classes occur among predictions, then the averaging procedure should be applied.

2. Averaging: This works similarly as it does in the case of random forest. We average prob-
ability predictions of individual neural networks and then the neural random forest outputs
the label corresponding to the highest averaged probability.

Commentary on the complexity

Neural random forests have to be initialized by a trained random forest in order to establish the
architecture of individual neural networks. This fact naturally increases the time and space com-
plexity in comparison with the initialization random forest. Also the number of hyperparameters
of neural random forest is larger than in the case of the random forest. On the other hand, since
the architecture is defined beforehand, we significantly reduce the number of hyperparameters in
comparison with regular feedforward neural network.

The substantial inconvenience of neural random forest is caused by the subsequent training of ev-
ery single neural network in an ensemble after the initialization. This operation is computationally
very expensive. Fortunately, we can parallelize the training procedure, since the training of indi-
vidual neural networks is completely independent. Moreover, we can accelerate the matrix-based
operations (matrix multiplications, etc.) in the backpropagation algorithm by usage of graph-
ics processing units (GPU), which is already a common practice among neural networks. These
optimizations significantly accelerate the training time and therefore reduce the training time re-
quirements of the neural random forests. On a sufficiently powerful machine, we can roughly match
a training time of neural random forest (after initialization) to a training time of a single feedfor-
ward neural network of similar architecture as the individual estimators in an ensemble. This is
already a fine compensation, which makes the neural random forests well-applicable to a wide range
of applications.
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Chapter 7

Experiments

This chapter focuses on the experimental part of the thesis. Proposed models were applied to
several experimental datasets under various parametric settings. The performances were analysed
among all models to provide a quantitative comparison of quality and stability of the outcomes.
The main emphasis is put especially on the comparison of the neural random forest (NF) models
with the corresponding random forest (RF) models. Moreover, the results of the NF and RF models
are also compared to the performance of other popular classification algorithms, such as the logistic
regression (LR) and the feedforward neural network (NN). The experiments are divided into three
separate parts.

The first part is dedicated to the evaluation on the pre-selected public datasets. All proposed
NF models are evaluated on these datasets and compared with RF and other models. Additionally,
the effect of the NF and RF hyperparameters on the classification performance is examined and
visualized on the supporting graphs.

The second part comprises various studies of the NF parameters that could be highly influential
on the overall performance of the models. The experiments are conducted on the so called ”toy”
datasets - artificially created datasets that simulate different benefitial or disadvantegous features,
which are more or less favourable to the RF or NF. These experiments reveal some patterns and
features of the NF models that could be exploited in the practical application.

In the last part, the best NF models are applied to the classification task on the real dataset
consisting of medical data from the LUCAS project. The LUCAS project collaborates with medical
institutions and hospitals in order to collect data of patients diagnosed with lung cancer. These
data combine personal information about the patients together with their diagnostic and treatment
records. The classification task is to predict the first treatment based on the patient’s input di-
agnostic data. Generally, the early correct treatments play a crucial role in the overall survival of
the patient with such diagnosis. This classification task is characterized by high-dimensionality,
sparsity and the lack of significant records, which makes it challenging for a lot of classification
algorithms.

7.1 Public dataset experiments

This section provides a comparison of the NF and competitive models evaluated on the set of
public datasets selected in advance. Also the effect of the choice of the NF parameters on the
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overall performance is examined and visualized.

MODEL DESCRIPTION HYPERPARAMETERS

LR Logistic regression model -

NN Neural network with 2 hidden layers

Number of epochs = 30,
Mini-batch size = 10

Learning rate η = 0.01
Number of neurons in 1st hidd. layer = 60
Number of neurons in 2nd hidd. layer = 60

RF20 Random forest with 20 estimators

Number of estimators = 20
Maximum depth = 6

Num. of features used for split = b
√
dc

(d ∈ N denotes total number of features)

RF30 Random forest with 30 estimators

Number of estimators = 30
Maximum depth = 6

Num. of features used for split = b
√
dc

(d ∈ N denotes total number of features)

RF50 Random forest with 50 estimators

Number of estimators = 50
Maximum depth = 6

Num. of features used for split = b
√
dc

(d ∈ N denotes total number of features)

NRF Neural random forest consisting of
NT basic defined in chapter 6

Number of epochs = 30
Mini-batch size = 10

Learning rate η = 0.002
Initial random forest = RF20

Transition parameters β1 = 1, β2 = 1

NRF DW Neural random forest consisting of
NT defined in chapter 6

Number of epochs = 30
Mini-batch size = 10

Learning rate η = 0.0035
Initial random forest = RF20

Transition parameters β1 = 1, β2 = 1

NRF EL Neural random forest consisting of
NT EL defined in chapter 6

Number of epochs = 30
Mini-batch size = 10

Learning rate η = 0.005
Initial random forest = RF20

Transition parameters β1 = 1, β2 = 1

NRF EL DW Neural random forest consisting of
NT EL DW defined in chapter 6

Number of epochs = 30
Mini-batch size = 10

Learning rate η = 0.0045
Initial random forest = RF20

Transition parameters β1 = 1, β2 = 1

Table 7.1: Shortcut notation of the individual models and basic descriptions with the choice of
hyperparameters.

7.1.1 Overall results

The models are compared with respect to the accuracy and macro-average of F1-score on all
datasets. Both values are presented in terms of mean value and standard deviation after two

65



subsequent 5-fold cross validations (10 iterations in total) in order to limit statistical fluctuations
and gain higher robustness of the outcome.

All applied models are summarized in Table 7.1 with their shortcut notations (column MODEL).

Models in Table 7.1 are color-coded into three different areas. The yellow area includes com-
petitive models to the RF and NF models. We adopted logistic regression with L2 regularization
and neural network with ReLU activation function in the hidden layers and softmax in the output
layer. We apply Cross Entropy as loss function and optimization is done via Adam optimization
algorithm (Adam had superior results in comparison with the stochastic gradient descent). The
hyperparameters of Adam was chosen as follows: γ1 = 0.9, γ2 = 0.99, ε = 10−8. We use same
notation as defined in subsection 4.5.3. The implementation of the LR and NN was taken from
Python modules - Scikit learn [55] and Keras [56].

The green area comprises the RF models. We adopted three variations with different numbers
of estimators. All decision trees were trained with the entire training dataset and we use entropy
as the impurity function in the information gain criterion. We use the implementation from Scikit
learn.

The orange area includes all NF models. We tested many different combinations of hyperparam-
eters and choices of different loss functions and activation functions (in layers where it is possible)
and we present the best obtained solution. All NF models were built from the RF20 model and use
Cross Entropy as loss function and softmax in the output layer of all individual neural networks.
Transition parameters β1 and β2 in the first and second hidden layer were set to 1. Learning rates
were chosen as a compromise through a grid search so it is as suitable as possible for all our datasets.
We use Adam as optimization algorithm instead of SGD since the results were more favourable.
The parameters of Adam were selected equally as in the case of NN: γ1 = 0.9, γ2 = 0.99, ε = 10−8.
Single neural network estimators in the NF models were trained for 30 epochs each. We added L2
regularization term to the loss function with regularization constant λ = 0.01. Finally, the vot-
ing scheme is applied as an ensemble method to obtain final predictions from the NF (differences
between results obtained by voting or averaging were negligible).

We use our own implementation of the NF models in Python. Datasets used in the experiments
are summarized in Table 7.2. All categorical features were one-hot encoded, ie. transformed by
function ζ : {k1, ..., km} → Rm, where {k1, ..., km} is a set of categories and m ∈ N is a number of
categories. It is defined ∀j, l ∈ {1, ...,m} as

[ζ(kj)]l =

{
1, j = l

0, otherwise
. (7.1)

Eventually, all dataset features (including the newly created ones by one-hot encoding) were stan-
dardized (normalized to mean equals 0 and standard deviation equals 1) to ensure the better
numerical stability. It is done by formula x̂j =

xj−µj

σj
, where xj is a single realization of the j-th

feature, x̂j is a new value of this realization, µ is the mean value of realizations of j-th feature
and σj is the standard deviation of realizations of the j-th feature. This normalization also had
a positive effect on performance since all evaluation metrics were more favourable in the case of
normalization than without normalization.

The final results of macro-average of F1-score resp. accuracy are presented in Table 7.3 resp.
Table 7.4 (the results in both tables correspond to the original values multiplied by 100).
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ID DATASET #instances #features #classes feature type

1 Bank1 4521 16 2 categorical and numerical

2 Cars2 1728 6 4 categorical

3 Diabetes3 768 8 2 numerical

4 Messidor4 1151 19 2 numerical

5 USPS5 9298 256 10 numerical

6 Vehicle6 846 18 4 numerical

7 Wine7 178 13 3 numerical

8 OBS8 1075 21 4 categorical and numerical

Table 7.2: Public datasets.

DATASET NN LR RF20 RF30 RF50 NRF DW NRF NRF EL NRF EL DW

Bank 69.3± 1.8 68.6± 2.5 55.5± 2.0 55.7± 2.2 54.6± 2.4 71.9± 3.2 71.6± 1.5 71.7± 2.6 71.9± 2.7

Cars 99.8± 0.4 66.6± 5.4 61.5± 6.4 59.5± 4.9 60.1± 6.3 100± 0.0 100± 0.0 100± 0.0 100± 0.0

Diabetes 68.9± 3.0 73.0± 4.8 72.7± 4.7 72.3± 2.8 72.7± 2.9 71.6± 3.9 72.7± 2.4 72.3± 3.1 71.6± 5.2

Messidor 71.3± 3.0 72.0± 1.5 67.4± 3.0 70.0± 3.7 65.7± 2.1 73.8± 2.6 73.5± 1.0 73.7± 2.3 73.6± 3.7

USPS 94.0± 1.9 92.6± 1.2 90.2± 1.8 90.9± 1.7 90.9± 1.3 97.3± 1.4 97.1± 1.5 97.0± 1.4 97.0± 1.3

Vehicle 81.3± 3.3 77.3± 2.5 71.8± 3.5 72.1± 1.9 71.4± 3.0 84.2± 3.5 84.2± 2.3 83.2± 3.1 83.9± 3.0

Wine 97.7± 1.9 98.2± 2.1 97.9± 2.0 97.5± 3.0 97.9± 2.0 97.9± 2.3 97.9± 2.4 97.5± 2.0 98.5± 2.1

OBS 99.4± 0.4 99.2± 1.0 90.2± 2.0 91.9± 1.9 92.4± 1.8 99.8± 0.4 99.9± 0.3 99.6± 1.0 99.9± 0.2

Table 7.3: Macro average of F1-score.

DATASET NN LR RF20 RF30 RF50 NRF DW NRF NRF EL NRF EL DW

Bank 88.1± 1.0 90.0± 1.4 89.1± 0.8 89.1± 0.8 89.1± 1.0 89.6± 0.6 89.4± 0.7 89.8± 0.8 89.5± 1.0

Cars 99.9± 0.2 88.5± 1.8 89.6± 1.3 89.6± 1.5 90.2± 2.1 100± 0.0 100± 0.0 100± 0.0 100± 0.0

Diabetes 71.9± 3.1 76.9± 4.4 76.4± 4.1 76.2± 2.0 76.7± 2.2 74.6± 3.7 75.8± 2.6 75.0± 2.8 74.3± 5.1

Messidor 71.3± 2.9 72.1± 1.5 67.5± 2.9 67.1± 3.7 65.9± 1.9 73.8± 2.7 73.5± 1.0 73.8± 2.3 73.7± 3.6

USPS 94.6± 1.9 93.4± 1.2 91.3± 1.8 91.9± 1.7 91.9± 1.4 97.6± 1.4 97.4± 1.4 97.3± 1.3 97.3± 1.2

Vehicle 81.4± 3.1 77.9± 2.6 73.2± 4.1 73.5± 1.7 72.8± 3.1 84.1± 4.1 84.3± 2.3 83.3± 2.4 83.9± 3.0

Wine 97.7± 1.8 98.3± 2.0 97.8± 3.2 97.8± 2.9 98.0± 1.9 97.8± 2.2 98.0± 2.3 97.5± 2.1 98.6± 2.0

OBS 99.3± 0.5 99.1± 0.9 87.7± 2.5 89.5± 2.6 90.2± 2.5 99.7± 0.6 99.9± 0.4 99.6± 0.9 99.9± 0.3

Table 7.4: Accuracy.

In the first observation we may notice that all models performed very similarly on the majority
of datasets with respect to both researched evaluation metrics. Essentially, the overall performance
of the NF models in comparison with other competitive models is in fact equal or slightly better

1 Available at: mldata.io/dataset-details/bank marketing/
2 Available at: mldata.io/dataset-details/cars/
3 Available at: data.world/data-society/pima-indians-diabetes-database
4 Available at: archive.ics.uci.edu/ml/datasets/Diabetic+Retinopathy+Debrecen+Data+Set
5 Available at: kaggle.com/bistaumanga/usps-dataset
6 Available at: mldata.io/dataset-details/vehicle silhouette/
7 Available at: scikit-learn.org/stable/modules/generated/sklearn.datasets.load wine.html
8 Available at: archive.ics.uci.edu/ml/datasets/Burst+Header+Packet+%28BHP%29+

flooding+attack+on+Optical+Burst+Switching+%28OBS%29+Network
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than in case of concurrent models. There is no significant deterioration of any of the NF models
compared to other models, especially compared to the RF models. On the contrary, we can see
enhancement of values of the NF models in most cases.

The most significant differences between the NF models and the RF models could be seen in
the cases of the Cars, Messidor, USPS, Vehicle and OBS datasets, where the NF models have a
superior performance in comparison with the RF models. On the Bank dataset, the performance of
the NF models is basically equal or only slightly better. The only exception is visible in the case of
the Diabetes dataset, where the NF models do not produce any improvement and perform similarly
or sligthly worse than the RF models. It could be caused by many influencing factors, especially
the inappropriate choice of hyperparameters of the NF models. The effect of hyperparameters on
final performance will be researched later.

The NF models among themselves produce very similar results. NRF DW and NRF EL DW
have almost the same performance on all datasets with very small differences, which is a good sign,
since they both aim to simulate random forest already before training individual estimators with
backpropagation and therefore have comparable initial conditions. Moreover, NRF DW has one
hidden layer less, so stacking more layers does not necessarily mean better performance. NRF and
NRF EL have relaxing layers with random weights, so there is more space left for individual neural
networks to modify decision tree initial knowledge and adapt in its own way. This could be beneficial
especially in those cases where the RF models produce a superior performance in comparison with
other models, and therefore, there is not much space for further significant improvement if the
RF model is imitated. This is nicely demonstrated in the case of the Diabetes dataset, where the
RF models produce fine results in the beginning and then NRF DW and NRF EL DW are not
successful in further improvements. It even reached slightly ”worse” results (note the quotation
marks since there is a relatively high standard deviation, which makes it hard to distinguish the
better model from the worse one). On the other hand, NRF and NRF EL managed to come fairly
close to the RF model performance or even equalize it and have a slightly better and more stable
(lower standard deviations) performance than NRF DW and NRF EL DW in this case. Of course,
a better choice of hyperparameters of NRF DW and NRF EL DW (especially number of training
epochs and transition parameters β1 and β2 which control the quality of imitation of a single decision
tree) could lead eventually to surpassing even the well-performing RF. This issue will be studied
later in the thesis.

7.1.2 The effect of hyperparameters

In this section, various combinations of hyperparameters of the NF and RF models are studied
and different visualizations are provided to compare the results. Prior knowledge of the RF model
features and the NF model could define the suitable range of hyperparameter values, which could
result in correct choice and superior performance of the model.

We use the Vehicle and Diabetes datasets to analyze performance based on hyperparameter
choice. The RF model performed faintly on the Vehicle dataset and finely on the Diabetes dataset
in comparison with other models, thus the NF models initialized with the RF models trained on
those two datasets cover situations that could arise in practical use: boosting the well-performing
RF or the poor-performing RF by the NF. If we choose bad hyperparameters in the case of the poor
RF, the resulting NF could be poor as well, and if we choose bad hyperparameters in the case of the
fine RF, the resulting NF could perform worse than the corresponding RF, which is undesirable.

68



All graphical visualizations are presented in Appendix A and referenced in this section. Un-
less stated otherwise, all experiments were performed as 2 subsequent independent 5-fold cross
validations (10 iterations in total) and the outcomes are shown in the form ”mean ± std” in the
corresponding figures. Also, if the results of the RF models are presented together with the results
of the NF models in one figure, then these RF models were used to initialize all coresponding NF
models in the same figure. In all following experiments, the hyperparameters and settings of models
which are not examined at the time remain same as defined in Table 7.1 and subsection 7.1.1.

Learning rate

Learning rate stands for one of the most crucial hyperparameters that need to be set conscientiously
in order to achieve quality performance. This choice usually depends on the model type and the
dataset itself. It is done almost exclusively by exhaustive grid search on a specific validation dataset
before picking a suitable value for the training phase. It is not possible to state a versatile learning
rate optimal for all applications.

We study different settings for learning rates in our model and research the sensitivity of the
NF models to the learning rate choice. We compare this sensitivity with the same feedforward NN
as applied on public dataset experiments (defined in Table 7.1).

Other hyperparameters of the NF and RF models except for learning rate remain the same as
defined in Table 7.1. NF and RF have 20 estimators.

Graphs for varying learning rates are presented in Figure A1 for the case of the Vehicle dataset.
Graphs for the Diabetes dataset are in Figure A2. We present only accuracy results, since both
visualizations of accuracy and F1-score have very similar trend and shape. Moreover, both datasets
are balanced or have very low degree of imbalance between classes, so referring to accuracy is safe
in this case.

Based on Figure A1, we can see that in all cases, the optimal value for learning rates could
be found close to zero, approximately in the range (0.001, 0.02). With an increasing value of the
learning rate, the performance of models is declining. The steepest downfall is registered in the
case of the NN model, where for the learning rate equals 0.1 drops accuracy to approximately 50%
of maximum reached accuracy. On the other hand, the NF models did not suffer from such eminent
decrease in the given range. This experiment suggests that the NF models could be slightly less
sensitive to the learning rate than the single NN, but it really depends on the specific application.
A resembling trend could be seen in Figure A2 on the Diabetes dataset, altough not that vigorous.
In this case the accuracy of the NF models fluctuates a bit around an almost constant value (a
mild decrease at the end of the range) in the given range of learning rates, whereas in the case of
the NN, we can notice an early decrease of accuracy in the range (0.001, 0.12) and then it remains
basically constant. Consequently, we could choose suitable learning rates from a wider range in the
case of the NF models than in the case of the single NN.

Number of epochs and number of estimators

Another important hyperparameter of NF is the number of training epochs. Especially in the
case of the NF models which simulate RF behaviour from the beginning, they could improve the
performance of the initial RF after a few epochs already, which could be time-efficient. We will
investigate this issue alongside the effect of the number of estimators in NF (RF), because the high
number of estimators could compensate for the low number of training epochs and vice versa. The
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hyperparameters (except for the number of epochs and number of estimators) of NF and RF remain
the same as defined in Table 7.1.

First we will focus on the experiments on the Vehicle dataset showed in Figure A3. This is the
case when the RF model does not perform well in comparison with other models, as was already
seen in Tables 7.3 and 7.4. One may notice an apparent pattern that the increase of number of
training epochs causes enhancement of accuracy. This happens among all NF models and also in the
case of the single NN. NRF DW and NRF EL DW models could outperform the initial RF already
after 5 epochs of training and reach slightly higher values of accuracy than the NF models with one
layer of random weights until 30 epochs of training. For the higher number of epochs, the results
are very similar among all NF models except for NRF EL, which has a slightly lower accuracy.
Also, NRF DW and NRF EL DW converge faster to the maximum values of accuracy, acquiring
it at approximately 30 epochs of training, whereas other NF models still register an increase of
accuracy with the higher number of training epochs. It could be due to the nature of individual
models, where NRF DW and NRF EL DW imitate RF more precisely than other NF models and
therefore could be closer to some optimal value of loss function than NRF and NRF EL from the
beginning. Therefore they are more likely to reach their optimal performance earlier.

We can see only small differences in accuracy values with the varying number of estimators. With
the increasing number of estimators the accuracy values usually also increase, but the number of
epochs is a more distinguishing factor.

A different situation occurs in the case of the Diabetes dataset, as is illustrated in Figure A4.
This is the case of the RF model performing well in comparison with other models.

In this case, quite an opposite situation than in the previous case on the Vehicle dataset arises.
With an increasing number of training epochs, accuracy of the NF models decreases. All NF models
except for NRF EL outperform RF with any number of estimators in the given range after 5 epochs
of training already. They also reach their maximum accuracy in the given range of epochs. With
a higher number of epochs, the accuracy decreases, eventually ending up with a worse model than
the initial RF. It could be caused by the problem of overfitting, which will be examined later.
Especially in the case of NRF DW and NRF EL DW, the accuracy decreases quickly. In the case
of NRF EL, the accuracy acquires its maximum value at approximately 20 epochs and then slowly
decreases. It would be beneficial to use early stopping during training the NF models to avoid this
problem. Moreover, the single NN model follows the same pattern of a decreasing accuracy with
an increasing number of epochs as the NF models, which suggests that neural networks in this case
converge quickly to an optimal solution and with an increasing number of epochs overfit to the
problem. One noticeable fact is that the performance of the NF models degradates more slowly
than the single NN model, which may be caused by the benefit of ensemble voting (or averaging)
of NF.

Maximum depth of trees in RF

Another examined hyperparameter of NF is the number of neurons in the first and second hidden
layer of the individual neural networks. This number is fully controlled by the depth of the corre-
sponding tree. We will examine the influence of maximum depth of trees in RF (which is set before
the training of RF) on performance of NF. Especially for overgrown trees, there is a significant
risk of overfitting either in the case of the decision tree or subsequently in the case of transformed
neural network, which will be tested. We also add the number of training epochs of NF as another
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variable. RF and subsequent NF have 20 estimators. Other hyperparameters of all models remain
the same as defined in Table 7.1.

We only present graphs created on the Diabetes dataset for NRF DW and NRF, because for the
NF models with an extra added layer, the trend has turned out to be same. We also added values
of Cross Entropy loss function on testing datasets in order to demonstrate overfitting. Accuracy
and values of loss function depending on the maximum depth and number of epochs are depicted
in Figure A5.

It can be seen in the graphs that the NRF DW model is much more prone to overfitting than
NRF model, which is logical, since NRF DW model simulates RF behaviour better already before
training with backpropagation. This applies especially to larger maximum depths (starting from
maximum depth equal to 6), where we can notice a fast decrease in accuracy and increase in loss
function with the increasing number of training epochs. In the case of NRF, this decrease is not
that vigorous and straightforward, but for larger depths, it is still visible.

In Figure A6, the same models with a regularization constant increased to λ = 10, which
intensifies the influence of regularization term in the loss function, are illustrated. We can see
that this modification prevents the models from significant decrease of accuracy especially for the
larger numbers of epochs, but in the majority of depth values, the maximum reached accuracy
among those two variants remains favourable in the first case, as is clear from Figure A5. Still, the
differences are very small.

Transition parameters β1 and β2

Transition parameters β1 and β2 (defined in section 6.2) control the degree of transition of RF
to NF. The higher both values are, the better approximation of RF is obtained by NF. Under
certain circumstances, it could be advantegous to increase those parameters and approximate RF
accurately, especially when RF produces competitive results. Both RF and NF have 20 estimators
and other hyperparameters except for transition parameters remain the same as defined in Table
7.1. Accuracy depending on both transition parameters is depicted for the Vehicle dataset resp.
the Diabetes dataset in Figure A7 resp. Figure A8.

In the case of the Vehicle dataset, we can observe that it is not beneficial to increase β1 and β2

since the highest reached accuracy belongs to the point β1 = 1 and β2 = 1 among all NF models.
Since the RF model performs badly in comparison with other models, this suggests that copying this
RF model makes the subsequent NF model performs worse than it could when β1 and β2 are kept
low and the NF model is more relaxed. Increasing both values simultaneously causes deterioration
of the results almost monotonically.

The situation is different in the case of the Diabetes dataset in Figure A8. In contrast with the
Vehicle dataset, we may observe some pairs of β1 and β2 other than [1;1] that are more beneficial
in terms of higher accuracy. Even points [12;12] perform more favourably in the most cases of NF
models than point [1;1]. This suggests that taking advantage of simulating the well-performing RF
model more accurately is the step towards a better performance of NF.

Be aware of the problem of choosing transition parameters too high since it could negatively
affect optimization process of neural networks. For high transition parameters the tanh functions
approximate threshold functions too precisely and therefore the neurons in the first and second
hidden layer could suffer from early saturation. Consequently, this could make the learning process
of neural networks more difficult.
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Number of features considered in the split

We also examined the number of features considered in the split during the RF training and its
influence on the performance of NF. Standardly, we leave this hyperparameter on the value b

√
dc,

where d ∈ N represents the number of features in the dataset. We tested the NF performance for
values of max. considered features set to 0.2, 0.4, 0.6, 0.8 and 1, where each number symbolizes
the fraction of the considered features with respect to d. The number of estimators was set to 20
and we add maximum depth as another variable. Other hyperparameters remain same as defined
in Table 7.1.

So far we can claim from the performed experiments on the Vehicle dataset and the Diabetes
dataset, the effect of this hyperparameter is not very significant and the differences between various
settings of this hyperparameter are negligible. We present the visualizations for the Vehicle dataset
in Figure A9.

Summary of the previous observations

In this part, we shortly sum up the provisional experiments with NF and RF hyperparameters
performed in the previous paragraphs of this section.

We saw that the sensitivity of the learning rate has been slightly lower in the case of the
NF models than in the case of the single NN. This could be due to the ensemble nature of NF
with variety of single specific NN estimators, each differently sensitive to the current learning rate
value. An overall sensitivity of the NF model to the learning rate is then ”averaged” over single
NN estimators and therefore could be reduced in comparison with only single NN. Note that this
comparison has been done for other parameters fixed and the sensitivity to the learning rate could
correlate with other hyperparameters too, mainly with the transition parameters β1 and β2. So the
most suitable learning rate should be picked after some grid search on the validation dataset with
other hyperparameters set beforehand.

Following the observations based on a varying number of training epochs and other hyperpa-
rameters, such as maximum depth or number of estimators, offered another interesting perspective.
Especially the NF models initialized with RF consisting of trees with large depth are more prone
to overfitting than in the case of lower depths, so it should be beneficial to prevent overfitting by
employing techniques such as early stopping or adding a regularization term to the loss function
(L2 regularization for instance). The differences between the results of the NF models with varying
number of estimators were small, slightly favourable in the case of the larger number of estimators,
as corresponds to the logical intuition.

As another hyperparameters, the transition parameters β1 and β2 were investigated. It turned
out that in the case of a poor-performing RF, it is beneficial to leave both values low (for instance
β1 = 1 and β2 = 1) and start with relaxed NF that do not simulate that RF accurately. On the
other hand, when operating with a well-performing RF with competitive results, it could reach a
more favourable performance when simulating RF more accurately by increasing both transition
parameters. This issue will also be studied in the next chapter.

The last studied hyperparameter was the number of maximum considered features in the split
of RF. From the performed experiments, we did not detect a significant dependence influencing the
performance of subsequent NF.
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7.2 Toy dataset experiments

This section comprises experiments on artificially created data in 2D, where we draw and compare
decision boundaries learned by individual methods and search for properties and inclinations of the
NF models based on varying hyperparameters and different properties of datasets.

We conducted the experiments by generating various datasets, each one of a different shape and
trend. Moreover, we investigate datasets of different random noise and test the ability of classifiers
to find the correct decision boundary and not to overfit on noise data, as tend to do especially
overgrown RF models.

Each dataset was split to the training and testing set with the ratio of 6:4 and the decision
boundary was drawn on the input space. It is difficult and not straightforward to aggregate decision
boundaries of several NFs and visualize it while preserving correct interpretability, especially when
classifying into more than two labels. We demonstrate the example addressing this issue. Suppose
that we trained 4 independent NF classifiers on a 3-class dataset (classes are denoted simply as
0,1,2) and decisions of NFs are subsequently {0,0,1,2} in that point. Also suppose that each
class occupies a different color (defined as a vector (R,G,B,α), where R,G,B denote the typical
red,green,blue triplet and α denotes transparency level). If we pick the most frequent decision (or
average the decision probabilities) and draw the point with the color of the most favourable class,
then the result corresponds to the decision of an ensemble method consisting of several NFs, and
that is not what we desire to illustrate. Also, we cannot depict all decisions in the picture, since
the combination of 3 colors could result in an uninformative color that does not capture the trend.

For a 2-class case, it is possible to illustrate the frequency of decisions by adopting the color
gradient between two colors, but since we work also with 3-class datasets, we will not present the
results separately in a different way for 2-class datasets.

Instead, the decision boundaries and their tendencies are for individual NFs demonstrated on
multiple datasets, each of a varying size, and for varying hyperparameters of NFs. In each studied
case, the single NF is trained on one training set, which remains the same for all presented models.
As the hyperparameters change, we can see the evolution of decision boundaries of different NFs and
their inclinations. We also present a single value of accuracy on testing set for all models only for a
quick comparison, but since this corresponds to only one realization, it should not be decisive in the
final comparison of models. The comparison is more stable and reliable when visually comparing
the decision boundaries (it is possible in 2D) in general and comparing their generalization ability.

7.2.1 Number of epochs

In this part, we investigate the effect of the varying number of training epochs on the evolution of
individual decision boundaries. Decision boundaries are depicted on 3 types of artificial datasets,
each type of 50 and 200 instances.

The choices of hyperparameters are described in Table 7.5. We use Adam with parameters γ1 =
0.9, γ2 = 0.99, ε = 10−8 as optimization algorithm among NN and all NF models. Regularization
parameter λ is set to 0. All other settings are the same as defined in subsection 7.1.1.

All illustrations are depicted in Figure A10, Figure A11 and Figure A12. We can see that in the
cases of 50 input instances the NRF DW and NRF EL DW models manage to tune finely already
after 5 epochs of training, whereas NRF and NRF EL do not adapt very reliably and their decision
boundary is very far from ideal separation (for 5 to 30 training epochs). For the larger number
of training epochs, NRF EL established decision boundaries competitively with other models, but
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MODEL HYPERPARAMETERS

RF
Number of estimators = 10

Maximum depth = 6
Num. of features used for split = 1

NN

Mini-batch size = 10
Learning rate η = 0.01

Number of neurons in 1st hidd. layer = 60
Number of neurons in 2nd hidd. layer = 60

NRF

Mini-batch size = 10
Learning rate η = 0.002

Initial random forest = RF
Transition parameters β1 = 1, β2 = 1

NRF DW

Mini-batch size = 10
Learning rate η = 0.0035

Initial random forest = RF
Transition parameters β1 = 1, β2 = 1

NRF EL

Mini-batch size = 10
Learning rate η = 0.005

Initial random forest = RF
Transition parameters β1 = 1, β2 = 1

NRF EL DW

Mini-batch size = 10
Learning rate η = 0.0045

Initial random forest = RF
Transition parameters β1 = 1, β2 = 1

Table 7.5: Choice of hyperparameters.

the NRF model did not. The NRF model even struggles to learn competitive separation in the
case of 200 input instances and can catch up more slowly than other models, approximately around
30 training epochs. Eventually, for the higher number of input instances, the NRF model could
perform competitively with other models.

Also, we can highlight the striking resemblance of decision boundaries of NRF DW and
NRF EL DW in all cases and even for every single number of training epochs. This proves the
concept since both models are deterministic and they target to simulate RF, therefore they should
share some similarities.

This experiment suggests that models simulating the RF (NRF DW and NRF EL DW) share
some similarities and could learn faster than other NF models. Moreover, they can adapt better to
the problems with fewer training inputs.

7.2.2 Transition parameters β1 and β2

This part comprises experiments based on varying transition parameters β1 and β2, which control
the accuracy of transition of RF to the corresponding NF. We will keep these parameters simulta-
neously on the same values and increase them at the same time, since increasing both values results
in a more accurate simulation of RF. We use β to denote both values β1 and β2 simultaneously,
thus β = β1 = β2.
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MODEL HYPERPARAMETERS

RF
Number of estimators = 10

Maximum depth = 6
Num. of features used for split = 1

NRF

Number of epochs = 25
Mini-batch size = 10

Learning rate η = 0.002
Initial random forest = RF

NRF DW

Number of epochs = 25
Mini-batch size = 10

Learning rate η = 0.0035
Initial random forest = RF

NRF EL

Number of epochs = 25
Mini-batch size = 10

Learning rate η = 0.005
Initial random forest = RF

NRF EL DW

Number of epochs = 25
Mini-batch size = 10

Learning rate η = 0.0045
Initial random forest = RF

Table 7.6: Choice of hyperparameters.

Choices of hyperparameters are presented in Table 7.6. Regularization parameter λ is set to 0.
All other settings are the same as defined in subsection 7.1.1. We show decision boundaries on 3
different types of datasets, each consisting of 50 and 200 instances.

The illustrations of decision boundaries depending on β are depicted in Figure A13, Figure A14
and Figure A15. We can see that in the case of 50 data inputs, the NRF model could not tune its
decision boundary sufficiently even after 25 training epochs (for all βs), which further confirms that
this model is not suitable when working with a low number of training inputs. For 200 instances,
the NRF model is able to catch up and produce competitive decision boundaries with other models.

For β = 1, all NF models produce various nonlinear decision boundaries, which are more adapt-
able then RF decision boundaries parallel with axes. They are able to create more complex (e.g.
round or ellipsoidal related) shapes. This means that for low βs, the NF models could benefit more
from their neural network properties and therefore could tune better to the problems that cannot
be solved properly by a finite number of splits by RF, e.g. 3 classes ordered in concentric nested
spheres made of data generated by standard normal distribution, as could be seen in Figure A15.

When β is increasing, we can see that the decision boundaries of NF models gradually converge
to the decision boundary of the corresponding RF model. Especially in the case of NRF DW and
NRF EL DW, the resemblance is obvious and the decision boundaries for β = 50 are almost identi-
cal. Also, with increasing β, the decision boundaries of NF models evolve more in the RF manner,
preferring more perpendicular and parallel shapes, as does RF itself. It is nicely demonstrated in
Figure A15 in the case of 200 data inputs, where for β = 1, the decision boundaries of NF models
are in great contrast with the RF boundary. They form concentric spheres which separate the
classes, whereas the boundary of RF is created as concentric rectangles. But already for β = 5, the
decision boundary of individual NF models becomes rectangular as well.

We see that all NF models with higher values of β1 and β2 simulate the initial RF quite precisely.
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For lower values of β, the resemblance is less visible and the decision boundaries of NF models look
more similar to the NN decision boundary, as could be seen for instance in Figure A12, where both
transition parameters are set to 1.

7.2.3 Noise in data

In this part, we investigate the influence of noise in data on NF decisions. The choices of hyper-

MODEL HYPERPARAMETERS

RF
Number of estimators = 10

Maximum depth = 6
Num. of features used for split = 1

NN

Number of epochs = 25
Mini-batch size = 10

Learning rate η = 0.01
Number of neurons in 1st hidd. layer = 60
Number of neurons in 2nd hidd. layer = 60

NRF

Number of epochs = 25
Mini-batch size = 10

Learning rate η = 0.002
Initial random forest = RF

1) Transition parameter β1 = 1 and β2 = 1
2) Transition parameter β1 = 50 and β2 = 50

NRF DW

Number of epochs = 25
Mini-batch size = 10

Learning rate η = 0.0035
Initial random forest = RF

1) Transition parameter β1 = 1 and β2 = 1
2) Transition parameter β1 = 50 and β2 = 50

NRF EL

Number of epochs = 25
Mini-batch size = 10

Learning rate η = 0.005
Initial random forest = RF

1) Transition parameter β1 = 1 and β2 = 1
2) Transition parameter β1 = 50 and β2 = 50

NRF EL DW

Number of epochs = 25
Mini-batch size = 10

Learning rate η = 0.0045
Initial random forest = RF

1) Transition parameter β1 = 1 and β2 = 1
2) Transition parameter β1 = 50 and β2 = 50

Table 7.7: Choice of hyperparameters.

parameters are presented in Table 7.7. We conduct these experiments in two variants, the first
for β = β1 = β2 = 1 and the second for β = β1 = β2 = 50. We set the size of dataset to 100.
Regularization parameter λ is set to 0. All other settings of the NF, RF and NN remain the same as
defined in subsection 7.1.1. The noise is randomly generated from the normal distribution and takes
on values ranging from 0.1 to 0.5. Each value denotes standard deviation of normal distribution
that generates noise.
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If noise occurs among the data, the RF model in general has the tendency towards overfitting
on this noise, especially when the individual trees are overgrown (large depth) and unpruned. We
depict the dependence of decision boundaries on the noise in Figure A16.

We can see that in the case of β = 1, all NF models establish a fine separation of data despite the
increasing amount of noise, whereas the RF model produces signs of overfitting (demonstrated by
small areas cut out in the territory of different class). In this case, the overfitting of the RF model
was not simulated by the NF models and all NF models and the NN model produced sufficiently
generalized boundaries.

A different situation arises when we increase both transition parameters to β = β1 = β2 = 50.
Then we could see significant signs of overfitting among all NF models, especially in the case of
NRF DW and NRF EL DW, which simulate the RF accurately and thus share similar properties
as the RF. This problem should be resolved by decreasing the transition parameters or adopting
some regularization techniques, as will be briefly investigated in the next part.

7.2.4 Overfitting

When initializing NF models with the RF consisting of a number of overgrown trees, there exists a
significant risk that the RF overfits the data and therefore even a subsequent NF model could be
prone to overfitting as well, especially if the transition parameters are larger than 1. One way to
avoid this problem is to decrease the transition parameters or add a regularization term to the loss
function, where the overfitting should be controlled by modifying the regularization parameter λ.

We demonstrate the benefit of using L2 regularization term in the case of NRF DW and
NRF EL DW models initialized with the RF suffering from overfitting.

MODEL HYPERPARAMETERS

RF
Number of estimators = 2

Maximum depth = 20
Num. of features used for split = 2

NRF DW

Number of epochs = 30
Mini-batch size = 10

Learning rate η = 0.0035
Initial random forest = RF

Transition parameter β1 = 10 and β2 = 10

NRF EL DW

Number of epochs = 30
Mini-batch size = 10

Learning rate η = 0.0045
Initial random forest = RF

Transition parameter β1 = 10 and β2 = 10

Table 7.8: Choice of hyperparameters.

It is done on artificially created dataset consisting of 100 instances and divided into 2 classes as
depicted in Figure A17. Choices of hyperparameters of researched models are presented in Table
7.8. All other settings remain the same as defined in subsection 7.1.1. The results were obtained
after 2 subsequent 5-fold cross validations (10 iterations in total) and are presented in Figure A17.
Apparently, adding the regularization term is helpful in this case, resulting in an increase of accuracy
among both NRF DW and NRF EL DW models. Unfortunately, the most suitable value of the

77



regularization constant cannot be stated generally and depends on the specific data and model, so
it should be picked after a grid search.

7.3 LUCAS dataset experiments

In this part, we focus on applying the proposed NF models on the real-world dataset, which was
obtained from the data collected by the LUCAS project9. This project focuses on patients diagnosed
with bronchogenic carcinoma (lung cancer) and their treatment and examination. Unfortunately,
the diagnosis of lung cancer belongs to the most severe and complicated cancer diseases. In the
Czech Republic alone, approximately 5400 patients a year die of this diagnosis, which ensures its
sad primacy among all other tumor diseases.

The LUCAS project was developed to thoroughly describe and analyze the complex path of
such patients through the treatment process already from the diagnosis and therefore to provide
subsequent analytical studies evaluating the scope and structure of the overall care, pharmacoeco-
nomic background, overall survival and the sequence and efficiency of the treatments. All of these
outcomes could help to enhance the diagnostic and treatment system and therefore could ensure
superior care about patients diagnosed with lung cancer.

This project was launched on 1.6.2018 and already includes data of 2285 patients (in the period
from 1.6.2018 to 14.5.2020). The data contain various information about the individual patients,
including diagnostic records, personal characteristics, treatment records and information about
patient’s progress. The data are collected from seven medical centers in the Czech Republic - FN
Olomouc, FN Hradec Králové, FN Brno, FN Motol, FN Plzeň, Nemocnice Na Bulovce Praha and
Thomayerova nemocnice Praha.

The treatment options have widely expanded in the last couple of years and right now they
include chemotherapy, radiotherapy, immunotherapy, targeted therapy and operational interven-
tions. Since there are only few tumors that could be removed by operation intervention, the other
treatments are gaining great importance, especially targeted therapy and immunotherapy, which
may prolong the patient’s life by several years. But still, chemotherapy is a more common choice
and is often accepted as the preferred choice in the first line treatment (the first treatment after
diagnosis).

7.3.1 Classification task and data

What is, in addition to an early diagnosis, very important for patient’s overall survival, is the
very first treatment after diagnosis. Based on the available data of the LUCAS project, this first
treatment (among pharmacotherapy) is usually chemotherapy, but with regard to the previously
mentioned, it could sometimes be beneficial to replace chemotherapy (if the patient and illness
have the required properties) with other kinds of treatment, especially with targeted treatment and
immunotherapy. It could also be used in combination with the chemotherapy.

We test the ability of our NF models to predict the first line treatment based on the patient’s
diagnostic and personal records. We define binary classification task with a negative class (class 0)
symbolizing chemotherapy and a positive class (class 1) symbolizing all other treatments belonging
to the pharmacotherapy (especially targeted therapy and immunotherapy). The solution of this

9 More information available at http://www.lucascz.cz/
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classification task could help doctors decide on the choice of the first line treatment and potentially
highlight the possibility of employing other treatments besides chemotherapy.

Overall, we have 1133 records with any form of pharmacotherapy in the first line treatment.
There are 937 cases of chemotherapy (class 0) and 196 cases of other treatment (class 1). We could
notice that this dataset is significantly imbalanced with the negative instances to positive instances
ratio equal approximately to 7:1. This makes this classification task challenging for many classifiers.

Unfortunately, according to the non-disclosure agreement, we cannot describe the dataset in full
detail, so we at least provide a shallow description. The dataset consists of 21 features, which were
picked from the diagnostic and personal data of individual patients. There are 6 numerical features
including for instance the patient’s height and weight, the number of years of smoking, etc. Other
15 features are categorical and comprise for instance symptoms, details of diagnosis, tumor type,
tumor stage, etc. All categorical features were one-hot encoded, resulting, together with numerical
features, in 91 final features. Finally, all features were standardized (normalized to mean value
equal to 0 and standard deviation equal to 1).

7.3.2 Models and evaluation

MODEL HYPERPARAMETERS

LR -

RF
Number of estimators = 30

Maximum depth = 6
Num. of features used for split = 9

NN

Mini-batch size = 10
Learning rate η = 0.01

Number of neurons in 1st hidd. layer = 150
Number of neurons in 2nd hidd. layer = 150

NRF DW

Mini-batch size = 10
Learning rate η = 0.002

Initial random forest = RF
Transition parameter β1 = 10 and β2 = 10

NRF EL DW

Mini-batch size = 10
Learning rate η = 0.0025

Initial random forest = RF
Transition parameter β1 = 10 and β2 = 10

Table 7.9: Choice of hyperparameters.

Evaluation

Since our classification task corresponds to the binary classification on imbalanced dataset, we
evaluate the performance mainly with respect to the precision and recall of the positive class.
Moreover, we present the comparison of individual models with respect to the precision-recall (PR)
curves and also according to the average precision (AP) score as defined in section 2.2. Eventually,
we present the macro-average of F1-score and accuracy as well. We conducted 2 subsequent 5-fold
cross validations (10 iterations in total) and we present the final results in the form ”mean±std”,
similarly as in the public experiments. To all individual iterations of single training - testing pairs
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correspond one PR curve and we visualize all iterations in one graph for each classification model.
Additionally, we draw aggregation PR curves as defined in section 2.2. We do not measure the AP
of the aggregation PR curve and instead we present mean and standard deviation of individual AP
values.

Models

We employ two NF models - NRF DW and NRF EL DW - and compare their performance with
logistic regression (LR) classifier, the single NN and the RF used for initialization of NF models.
We use the same logistic regression model with L2 regularization as in subsection 7.1.1. In the
case of NF models and the single NN, we employ early stopping technique to limit overfitting. It
tracks the loss function for 10 subsequent epochs starting from each new epoch, and if there is no
occurrence of decrease, the training process is terminated. All other settings of all models remain
the same as defined in subsection 7.1.1. The testing fold in each iteration of cross validation was
randomly divided into two halves, one used as validation dataset for early stopping and the rest for
testing. Regularization parameter λ is set to 0.

7.3.3 Results

The results of individual models are presented in Table 7.10 (original values multiplied by 100).

MODEL
Class 0 Class 1

Macro-avg F1 Accuracy
Precision Recall F1-score Precision Recall F1-score

LR 89.6± 1.9 96.3± 1.8 92.8± 1.3 72.1± 13.7 46.6± 12.1 56.0± 12.0 74.4± 6.6 87.6± 6.6

NN 88.6± 2.1 93.4± 2.7 90.9± 2.0 58.3± 15.3 43.0± 12.4 49.0± 12.6 69.9± 7.2 84.6± 3.4

RF 88.9± 1.7 98.7± 1.0 93.5± 0.9 87.0± 10.5 41.0± 11.4 54.8± 12.1 74.2± 6.4 88.7± 1.7

NRF DW 89.6± 1.7 98.3± 1.0 93.7± 1.0 84.7± 7.8 45.7± 10.4 58.7± 10.5 76.2± 5.7 89.1± 1.8

NRF EL DW 89.8± 1.8 98.4± 0.9 93.9± 1.1 85.5± 7.4 46.6± 11.4 59.6± 11.3 76.8± 6.1 89.4± 2.0

Table 7.10: LUCAS dataset results.

We can see that except for the NN model, all other classification models performed quite sim-
ilarly on this dataset with respect to all researched evaluation metrics. Considering the overall
performance, NRF DW and NRF EL DW reached slightly better results than the other models
(mainly higher F1-score on the positive class), especially surpassing and enhancing the initializa-
tion RF model. It turned out that simulating the RF model by adjusting transition parameters
to high values was a suitable choice, since the results with lower transition parameters (β1 = 1
and β2 = 1) were not that favourable. For β1 = 1 and β2 = 1, the macro-average of F1-score for
NRF DW was 74.1± 6.2 and for NRF EL DW, it was 74.0± 5.7. This mild decrease suggests that
this classification task suits better the RF model than the NN, which is further supported by the
unsatisfying results of the single NN model in comparison with other models. Therefore, it was
beneficial to simulate the behaviour of the RF model by increasing transition parameters.

We may notice that in the case of the positive class, the standard deviations of all results are
high. This variance could be caused mainly by the low number of testing instances of the positive
class (approximately only 16 positive testing instances per one training - testing run). Therefore,
we compare the models also on the level of individual training - testing runs and not only by
mean values, since this could lead to a biased interpretation. We present PR curves with the
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corresponding average precision scores (AP) for all training - testing runs (10 iterations in total)
and also one aggregation PR curve in Figure A18.

If we compare the individual runs, we can see that in most cases, NRF DW and NRF EL DW
models reached higher AP values in comparison with other models. We can also notice the resem-
blance of the PR curves corresponding to the NF models and the PR curves corresponding to the
initialization RF model, which is also the result of high transition parameters. In the summary
graph in Figure 7.1, it is visible that the aggregation PR curves of NRF DW, NRF EL DW and
RF are similar in shape as well.

Figure 7.1: Visualizations of individual aggregation PR curves. The AP values correspond to the
”mean±std” of all iterations.

In the conducted experiments of binary classification on the LUCAS dataset were only slight
differences between the individual models, but the NF models showed the most favourable perfor-
mance. On the contrary, the NN model could not achieve a competitive performance with other
models, which could stand as a warning and the reason to increase the transition parameters in our
NF models.
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Chapter 8

Conclusion

This thesis focused mainly on the research of the relationship between random forest and feedfor-
ward neural network classifiers in terms of transformation of a single decision tree into a neural
network. We provided detailed theoretical descriptions of related domains and proposed four dif-
ferent hybrid classifiers belonging to the group of neural random forests.

We compared the performance of all proposed models to each other and also to the performance
of an initialization random forest, a single neural network and logistic regression. Firstly, the
performance was tested on several public datasets. All neural random forest models reported
a favourable performance in comparison with other competitive models with respect to various
evaluation methods. The most favourable performance among all models was reported by neural
random forests NRF DW and NRF EL DW. We also investigated the effect of neural random
forest parameters on the performance and the inclination to overfitting. Interestingly, we found
a correlation between the initialization random forest and the neural random forest, when the
transition parameters β1 and β2 are sufficiently high.

Certain similarities between random forests and neural random forests were detected especially
in the case of NRF DW and NRF EL DW models. This is further supported by illustrations of
decision boundaries on 2D toy datasets, where we can see a strong resemblance between the decision
boundary of the random forest and the neural random forest, when the transition parameters are
increased. Also, NRF DW and NRF EL DW models needed a lower number of training epochs to
converge to a reasonable solution than concurrent models NRF and NRF EL, especially in the case
of datasets with fewer data instances.

Finally, we tested the performance of NRF DW and NRF EL DW models on the real dataset,
consisting of medical data obtained by the LUCAS project. This dataset has 91 features and 1133
instances divided into 2 classes, which represent different kinds of treatment. There is a significant
imbalance between the number of positive instances and the number of negative instances. Even in
this case, the performance of neural random forest models was more favourable than the performance
of other competitive models. This case also higlighted the benefit of increasing the transition
parameters, since the random forest model produced better results than an examined single neural
network.

Neural random forests showed a good classification ability with an ambition to overcome other
classic models. Even though the time and space complexity are higher than in the case of an initial-
ization random forest or a single neural network of a similar architecture as individual estimators,
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the training time can be significantly reduced by using parallelization and possibly acceleration on
graphical processing units (GPU). If the machine possesses a sufficient number of computational
units, the training time of an entire ensemble equals roughly the training time of a single decision
tree and a single feedforward neural network, which makes neural random forests well-applicable
even in the case of large datasets.
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Figure A1: The effect of a varying learning rate on the Vehicle dataset. The blue line illustrates
mean value and the orange lines symbolize standard deviation. The dimmed gray lines are single
realizations. The experiment is described on page 69.
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Figure A2: The effect of a varying learning rate on the Diabetes dataset. The blue line illustrates
mean value and the orange lines symbolize standard deviation. The dimmed gray lines are single
realizations. The experiment is described on page 69.
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Figure A3: The dependence of accuracy on the number of estimators and the number of training
epochs on the Vehicle dataset. The experiment is described on page 69.
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Figure A4: The dependence of accuracy on the number of estimators and the number of training
epochs on the Diabetes dataset. The experiment is described on page 69.
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Figure A5: The dependence of accuracy and loss function on the maximum depth of the decision
trees in the RF and the number of training epochs. This experiment is performed on the Diabetes
dataset. The experiment is described on page 70.



95

Figure A6: The same models as in Figure A5 with the regularization constant set to λ = 10. The
experiment is described on page 70.
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Figure A7: The dependence of accuracy on varying transition parameters β1 and β2 on the Vehicle
dataset. The experiment is described on page 71.
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Figure A8: The dependence of accuracy on varying transition parameters β1 and β2 on the Diabetes
dataset. The experiment is described on page 71.
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Figure A9: The ependence of accuracy on a varying number of features used in split on the Vehicle
dataset. The experiment is described on page 72.
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Figure A10: Type 1. Decision boundaries based on a varying number of training epochs. The sizes
of the datasets are 50 and 200 in the top-bottom manner. The accuracy on the testing subset is in
the right-bottom corner. The experiment is described on page 73.
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Figure A11: Type 2. Decision boundaries based on a varying number of training epochs. The sizes
of the datasets are 50 and 200 in the top-bottom manner. The accuracy on the testing subset is in
the right-bottom corner. The experiment is described on page 73.
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Figure A12: Type 3. Decision boundaries based on a varying number of training epochs. The sizes
of the datasets are 50 and 200 in the top-bottom manner. The accuracy on the testing subset is in
the left-bottom corner. The experiment is described on page 73.
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Figure A13: Type 1. Decision boundaries based on varying transition parameters, where β = β1 =
β2. The sizes of the datasets are 50 and 200 in the top-bottom manner. The accuracy on the testing
subset is in the right-bottom corner. The experiment is described on page 74.
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Figure A14: Type 2. Decision boundaries based on varying transition parameters, where β = β1 =
β2. The sizes of the datasets are 50 and 200 in the top-bottom manner. The accuracy on the testing
subset is in the right-bottom corner. The experiment is described on page 74.
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Figure A15: Type 3. Decision boundaries based on varying transition parameters, where β = β1 =
β2. The sizes of the datasets are 50 and 200 in the top-bottom manner. The accuracy on the testing
subset is in the left-bottom corner. The experiment is described on page 74.
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Figure A16: Decision boundaries based on the occurrence of noise in the data. The effect of noise
is illustrated on a dataset with 100 instances. In the upper figure, there is β1 = β2 = 1 among all
NF models. In the bottom figure, there is β1 = β2 = 50. The accuracy on the testing subset is in
the right-bottom corner. The experiment is described on page 76.
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Figure A17: Accuracy depending on the regularization constant λ. The left figure shows the
input data (100 instances) as two circles distorted by noise. The results are presented for the RF,
NRF DW and NRF EL DW in the form ”mean ± std” after 2 subsequent 5-fold cross validations.
The transition parameters β1 and β2 are set to 10. The experiment is described on page 77.
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Figure A18: PR curves on LUCAS dataset. Each graph contains PR curves of individual training
- testing runs with AP values and one highlighted aggregation PR curve with mean AP value and
standard deviation of all iterations. In the summary, aggregation PR curves are visualized together.
The experiment is described on page 80.
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Proof 1:
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(1) Add the first row of the matrix to the others.

(2) Use Laplace expansion along the first column.

(3) Multiply all L− 1 rows of minor matrix by (- 1
2

).

(4) Multiply the last row by (-1) and add it to all other rows.

(5) Add each row except the last one to the last row.

(6) The matrix is upper triangular, so the result is obtained by the multiplication of diagonal entries.
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