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Introduction

Decision-making (DM) is present in the lives of people since the dawn of civilization. Decisions
are an ordinary part of the day for everyone; some of them are small, some are more important and
complex with significant consequences. In modern days, DM has become a subject widely studied
in the fields of artificial intelligence [32], machine-learning [26] or intelligent systems [31]. Findings
and innovations brought by these domains enable the development of computer algorithms that help
people with making informed and appropriate decisions, or replace the human element in the DM process
completely. Examples of many applications include stock market prediction [6], energy management of
buildings [28] and automated driving [9].

This thesis deals with sequential DM, in which the decision process is repetitive and the choice of
action affects future DM conditions. The decision-maker is represented by an intelligent agent. The
agent selects actions that are optimal with respect to certain DM preferences. These preferences are
established before the process of choosing an action starts. The actions are taken in the context of a
system the agent interacts with. The system reacts to the agent’s actions by moving from one state
to another. The transition dynamics of the system are, in general, unknown to the agent. To perform
optimally, the agent has to consider not only the DM preferences but also has to correctly predict the
system’s behavior by taking advantage of knowledge already acquired by observing the system. The
cycle of the agent’s actions and the system’s responses is called the closed-loop and it either continues
indefinitely or it ends after a certain condition is met (for example after a given number of steps).

A tool commonly used to model the closed-loop of an agent and a system is the Markov decision pro-
cess (MDP) [34], see [5], [17] for examples of its application. It formulates the problem in a probabilistic
way. The system’s behavior is described by a probability density function. The agent’s preferences are
defined by a reward function and the agent selects actions that maximize the expected reward.

The fully probabilistic design (FPD) [24] is another framework that solves dynamic sequential de-
cision problems. Similarly to MDP, it uses a probabilistic formulation of the system’s state transition
but in addition, the agent’s preferences are also defined in probabilistic terms. The resulting optimal
decision policy is non-deterministic and is represented by probability density function. This allows for a
more universal and precise definition of the agent’s various possible preferences. FPD is a tool enabling
efficient formulation of a DM problem and provides its explicit solution. However it can suffer from a
high computational complexity whenever the dimensions of the problem are high. A common problem in
tasks solved via MDP or FPD is the absence of knowledge of a complete model of the underlying system.
The agent integrates data about previously completed similar problems to learn the model online.

The goal of this thesis is to, using FPD methodology for MDP, propose a method of designing
an optimal decision policy based on available knowledge about previous observed interaction with the
system. This knowledge compensates missing information about the system. The observed behavior
does not generally correspond to the desirable behavior defined by the DM preferences of the agent.
In other words, it is assumed that the agent has data from some past experiment based on possibly
entirely different and unknown DM preferences. Even if this past experiment was solved optimally
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with respect to these unknown preferences, the actions might not be optimal with respect to the current
preferences. The aim is to infer an optimal decision policy using the data. The emphasis is on taking
maximum advantage of the available information in order to offer a simpler solution with possibly lower
computational demands than FPD.

The task stated above, of reusing past experiences to solve a new problem, can be described as a
transfer learning (TL) task. TL techniques [44], [43] are techniques that compare a new problem with a
similar related problem from the past and apply past findings to determine a solution. In the survey [44],
it is mentioned that transfer of experience in performing a source task helps improve and speed up the
learning performance of a target task. The authors of [44] and [43] note that transfer learning is often
applied in the context of other learning methods such as reinforcement learning. Reinforcement learning
methods [42] solve sequential DM problems and are typically used in combination with MDP problem
formulations.

An example of a transfer in reinforcement learning is presented in [27]. The authors reduce the
complexity of learning in MDP by reusing (transferring) samples from a source task in a target task
based on the likelihood of target samples being generated by the source task models. They define a
similarity measure between the tasks. Ammar et al. [7] also rely on a similarity measure between MDP
samples to identify similar tasks.

Another area of research that applies source-task experience to learn an optimal policy of a target
task is imitation learning [23], [29], [8]. An agent is allowed to learn a policy by observing another agent
perform a similar task. In [33] the authors describe an approach of implicit imitation. An intelligent
agent learns by imitation but does not necessarily repeat the observed actions. The actions are not
automatically considered as appropriate. Instead, the information contained in the observed behavior
is adapted to the agent’s own context. Wu et al. [47] developed a method of learning an optimal policy
using demonstrations with confidence scores. These scores indicate the probability that a given observed
trajectory is optimal. The values of the scores are given by the expert that produced the demonstration.

Case-based reasoning [1] is a concept that uses the same logic as transfer learning, although often it
is applied more in data-analysis problems, see for example [38], [10]. Other related approaches that also
deal with solving problems using information about different or resembling problems are lazy learning
(see [41] and [18]), apprenticeship (see for example [2], [22]), or cloning (see [13]).

The majority of the mentioned approaches rely on some expert, who provides confidence scores, sets
a similarity value, or performs a special kind of demonstration. This limitation may significantly prevent
broad use of these methods.

To summarize, the aim of this thesis is to develop a method that uses the frameworks of MDP and
FPD and the idea of transfer learning to determine the optimal decision policy of an agent using available
data.

The text is organized as follows. Chapter 1 presents necessary notation, the theory of Markov de-
cision processes and fully probabilistic design. Chapter 2 is devoted to transfer learning and provides
the algorithm of finding the optimal decision policy using observations. In Chapter 3, the exploration-
exploitation tradeoff is discussed and an explorative strategy is deduced. Chapter 4 demonstrates results
of simulated experiments that verify the performance of the proposed method. Finally, the thesis con-
cludes with a summary and open questions.
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Chapter 1

Mathematical preliminaries

This chapter contains an overview of the notation used throughout the text and introduces necessary
mathematical concepts and results.

1.1 Notation and basic formulas

Notation is established in this section followed by the necessary mathematical formulas.
The sets of natural and real numbers are denotes as N and R, respectively. Sets of values are denoted

by bold capital letters, i.e. X is a set of values x ∈ X. Lower index indicates the value of a variable at a
discrete time, i.e. xt is the value of x at time t ∈ N.

The lowercase letter p is used to denote probability mass function. So p(x) symbolizes the probability
of the random variable x and p(x|y) is the conditional probability of random variable x conditioned on
random variable y. E[x] symbolizes expectation of random variable x, E[x|y] symbolizes conditional
expectation of random variable x given random variable y.

Let p and p̃ be two arbitrary probability mass functions of a random discrete variable x with values
in X. Then the Kullback-Leibler (KL) divergence between p and p̃ is defined as

DDD(p|| p̃) =
∑
x∈X

p(x) ln
p(x)
p̃(x)

. (1.1)

An important property of the KL divergence is that it is always non-negative, i.e. DDD(p|| p̃) ≥ 0, and it is
zero iff p = p̃ almost everywhere.

The Bayes’ formula is an important tool for describing conditional probability

p(x|y) =
p(y|x)p(x)∑

x∈X p(y|x)p(x)
, (1.2)

where x and y are discrete random quantities. It is used to update predictions based on a new evidence.
The Kronecker delta is a function of two variables of the form

δ(x, y) =

1 if x = y,

0 otherwise.
(1.3)

The Gamma function is an integral function defined for complex numbers z with positive real part,
i.e. Re(z) > 0, as

Γ(z) =

∫ +∞

0
tz−1e−tdt. (1.4)
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It satisfies the recursive property: Γ(z + 1) = zΓ(z).
The Multivariate beta function is a function on an n-dimensional vector space, n ∈ N, where the

vectors are of the form α = (α1, α2, . . . , αn), αi > 0 for all i ≤ n. The definition of the Multivariate beta
function is

B(α) =

∏n
i=1 Γ(αi)

Γ(
∑n

i=1 αi)
. (1.5)

The Dirichlet distribution with concentration parameter α = (α1, α2, . . . , αn), αi > 0 for all i ≤ n, is
a probability distribution with probability density function

p(x|α) ≡ Dir(x, α) =
1

B(α)

n∏
i=1

xαi−1
i , (1.6)

where x = (x1, x2, . . . , xn) is a vector of n random quantities, for which it holds that xi ∈ [0, 1] for all
i ≤ n and

∑n
i=1 xi = 1.

1.2 Markov decision process

A brief summary of the theory of Markov decision processes (MDPs) [34] is provided in this section.
MDP is a framework often used for solving sequential DM tasks. In this thesis, we deal with discrete
sequential DM problems that are defined over a restricted horizon. The decision-maker is called an agent
and by making decisions (choosing actions) it influences its environment, i.e. a system.

Definition 1 (Markov decision process). A finite-horizon discrete-time Markov decision process is a
tuple {T,S,A, p, r}, where

• T = {1, 2, . . . ,N}, N ∈ N, is a discrete finite set of decision epochs,

• S is a discrete finite set of system states,

• A is a discrete finite set of actions available to the agent in any of the system states,

• p : S × A × S → [0, 1] is a transition model, p(st|at, st−1) represents the conditional probability
that the system moves from state st−1 ∈ S to state st ∈ S after action at ∈ A is chosen,

• r : S × A × S → R is a reward function, r(st, at, st−1) represents the immediate reward the agent
receives after taking action at ∈ A in state st−1 ∈ S and prompting the system to move to state
st ∈ S.

In MDP, DM objectives of the agent are expressed by the reward function. Desired results of the
agent’s DM are awarded by a large reward, while for unwanted results the agent is punished by receiving
only a very small, possibly negative reward. The system moves between states stochastically, so there
is uncertainty concerning future states and rewards. To ensure maximum reward, at each decision epoch
the agent has to execute an action maximizing the total expected reward [16].

At decision epoch t ∈ T, the transition of the system is described as (st−1, at) → st. That is choos-
ing at at state st−1 leads to a new state st with probability p(st|at, st−1) The agent then obtains reward
r(st, at, st−1). For this text, it is assumed that the transition model and the reward function are stationary,
i.e. do not change over the course of the horizon.

The system transition depends only on the current system state thanks to the Markov property [34],
i.e.

p(st|at, st−1, . . . , s1, a1, s0) = p(st|at, st−1), (1.7)
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where sτ ∈ S for τ = 0, . . . , t and aτ ∈ A for τ = 1, . . . , t.
Selection of action at at decision epoch t ∈ T is controlled by a randomized decision rule, p(at|st−1),

where at ∈ A and st−1 ∈ S. For all system states st−1 ∈ S, the decision rule p(at|st−1) forms a probability
mass function over action set A, so

∑
at∈A p(at|st) = 1 and p(at|st) ∈ [0, 1], ∀at ∈ A. The decision rule

depends on time implicitly through the indices of state st−1 and action at, so it can be different at each
decision epoch.

A sequence of decision rules over a given horizon H, {p(at|, st−1)|at ∈ A, st−1 ∈ S}Ht=1, forms a deci-
sion policy. As mentioned above, the agent’s goal is to maximize the expected reward. To do this, it
needs to find an optimal decision policy over horizon H, which satisfies

π
opt
MDP = arg max{

p(at |st)
}H

t=1

H∑
t=1

E[rt(st, at, st−1)|st−1]. (1.8)

Generally, the decision rule can be different at each decision epoch t as a result of growing knowledge
in case of incomplete information about the system model1, or due to the optimization being performed
over a given horizon.

1.3 Fully probabilistic design

This section presents the fully probabilistic design (FPD), first introduced in [24] and further de-
veloped in [20], [21]. It is a dynamic DM framework that enables modeling of a closed-loop (control)
system. FPD defines the desired behavior of the closed-loop (DM objective) using ideal probability mass
function and determines DM policies that provide the expressed objective.

Similarly to the previous section, we deal with a discrete, finite-horizon sequential DM problem
where an agent selects actions based on the targeted objectives, and an interacting system, influenced by
the agent’s actions, moves from one state to another. An example of such a problem could be treating a
sick patient.

Example 1. A doctor (agent) observes the patient’s state and has to choose a type of medication, with the
goal of curing the patient (system). Some medication might work better but have possible side effects that
would require another treatment. So the doctor has to optimize their decision and respond to the state of
the patient’s health in an adaptive way. In other words, the doctor selects optimal sequence of treatments
(DM policy) to cure the patient with none or minimal side-effects of the treatment (DM objective).

With the use of notation and terminology from the previous section, the agent and the system form a
closed-loop and its behavior over a given horizon is described by a joint probability function defined as
follows.

Definition 2 (Closed-loop description). The behavior of the closed-loop of the pair ’agent-system’ until
a discrete time t ∈ N is modeled by a closed-loop description which is a joint probability mass function
p(st, at, st−1, . . . , s1, a1, s0), where sτ ∈ S, τ = 0, . . . , t, are system states, aτ ∈ A, τ = 1, . . . , t, are the
actions of the agent.

Using the Markov property (1.7) and the chain rule, the closed-loop behavior can be written in the
following form

p(st, at, st−1, . . . , s1, a1, s0) =

t∏
τ=1

p(sτ|aτ, sτ−1)p(aτ|sτ−1)p(s0). (1.9)

1If the knowledge is non-informative, the DM rule does not change significantly.
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The factor p(sτ|aτ, sτ−1) is the transition model of the system, p(aτ|sτ−1) is the decision rule and p(s0)
represents the prior distribution of the initial state, which incorporates any subjective prior knowledge.

To define FPD, the following definition of the ideal closed-loop model is introduced.

Definition 3 (Ideal closed-loop model). An ideal closed-loop model until time t ∈ N is a joint probability
mass function I p(st, at, st−1, . . . , s1, a1, s0), sτ ∈ S for τ = 0, . . . , t and aτ ∈ A for τ = 1, . . . , t, that
describes the desired behavior of the closed-loop composed of the agent and the system.

The ideal closed-loop model can be factorized in the same way as in (1.9)

I p(st, at, st−1, . . . , s1, a1, s0) =

t∏
τ=1

I p(sτ|aτ, sτ−1)I p(aτ|sτ−1)I p(s0). (1.10)

The factor I p(sτ|aτ, sτ−1) is the ideal transition model, which describes the agent’s preferences over
the behavior of the system, and the factor I p(aτ|sτ−1) is the ideal decision rule that defines the agent’s
preferences over actions. The last factor I p(s0) represents ideal model of the initial state. We assume
that the agent does not change its ideal model (1.10) during the DM process, i.e. the agent’s preferences
remain the same.

To follow up with the real-life example, Example 1, presented at the beginning of this section, the
evolution of the patient’s health follows a transition model (unknown to the doctor). It describes the
probability of getting cured or developing side-effects after being administered individual medicaments.
The aim of the doctor, i.e. curing the patient, can be described in probabilistic terms. The desired result
is obtaining a state of health, so the ideal model assigns a high probability to each system transition
that leads to this healthy state. In addition, some type of medication is known to have very serious side
effects, so the ideal decision rule regulates choosing the drug by assigning it (its selection) with a smaller
probability.

The aim is to solve the DM problem by choosing an optimal decision policy. Unlike solving MDP,
where the DM objectives are quantified via the reward function (1.8), FPD specifies the agent’s pref-
erences via the ideal model. The optimal FPD decision policy then minimizes the Kullback-Leibler
divergence (1.1) between the real closed-loop behavior (Definition 2) and the ideal closed-loop model
(Definition 3) over the DM horizon. In other words, the optimal decision policy makes the closed-loop
description as close as possible to the desired ideal one.

Definition 4 (Optimal FPD decision policy). An optimal decision policy for an FPD problem is

π
opt
FPD = arg min{

p(at |st−1)
}H

t=1

DDD
(
p(sH , aH , . . . , s1, a1, s0)

∣∣∣∣∣∣I p(sH , aH , . . . , s1, a1, s0)
)
, (1.11)

where H ∈ N is an optimization horizon, sτ ∈ S, for τ = 0, . . . ,H, aτ ∈ A, for τ = 1, . . . ,H, and DDD(·||·) is
the Kullback-Leibler divergence.

The optimal decision policy is a sequence of optimal decision rules, which are conditioned proba-
bility mass functions, so the problem of finding the solution is a problem of minimization (1.11) of a
functional under constraints

∑
at∈A

p(at|st−1) = 1, p(at|st−1) ∈ [0, 1], ∀st−1 ∈ S, ∀t = 1, . . . ,H.

In terms of MDP (Definition 1), the FPD can be described as follows.

Definition 5 (MDP in FPD terms). An FPD description of a DM problem is composed of the following
elements

• a set of decision epochs T = {1, 2, . . . ,N}, where N ∈ N is a horizon,
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• a set of system states S,

• a set of actions A,

• a transition model p(st|at, st−1) defined for at ∈ A and st, st−1 ∈ S, which comes from (1.9),

• a reward function defined for at ∈ A and st, st−1 ∈ S as

r(st, at, st−1) = − ln
p(st, at|st−1)

I p(st, at|st−1)
,

where I p(st|at, st−1) is the ideal description of the target behavior of the ’agent-system’ pair.

1.3.1 Solution to FPD

An explicit solution to the FPD problem exists and is presented below. It was first introduced in [24].

Proposition 1. The optimal solution to FPD corresponding to the optimal decision policy minimizing
the KL divergence (1.11) is constructed using the following equations

opt p(at|st−1) = I p(at|st−1)
exp

(
− α(at, st−1) − β(at, st−1)

)
γ(st−1)

α(at, st−1) =
∑
st∈S

p(st|at, st−1) ln
p(st|at, st−1)

I p(st|at, st−1)

β(at, st−1) = −
∑
st∈S

ln(γ(st))p(st|at, st−1)

γ(st−1) =
∑
at∈A

I p(at|st−1) exp
(
− α(at, st−1) − β(at, st−1)

)
γ(sH) = 1

(1.12)

for all t = 1, . . . ,H, where H ∈ N is a horizon of optimization.

Proof. This proof is inspired by the proof from [20]. Throughout the proof, p1:t and I p1:t stand for
the closed-loop description and the ideal closed-loop description until horizon t ∈ T, respectively, and
DDD(p1:t||

I p1:t) denotes the KL divergence between the real and the ideal closed-loop model over a specified
horizon t.

The main idea of the proof is to show iteratively that the proposed decision rules (1.12) form the
solution to FPD.

The optimal decision policy is defined as the minimizer of the KL divergence (1.11)

min{
p(at |st−1)

}H

t=1

DDD(p1:H ||
I p1:H) = min{

p(at |st−1)
}H

t=1

∑
at∈A,st∈S
t=1,...,H

p(sH , aH , . . . , s1, a1, s0) ln
(

p(sH , aH , . . . , s1, a1, s0)
I p(sH , aH , . . . , s1, a1, s0)

)
(1.13)
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Applying (1.9) and using logarithm properties on the minimized term yields

∑
at∈A,st∈S
t=1,...,H

H∏
t=1

p(st|at, st−1)p(at|st−1)p(s0)
H∑

t=1

ln
(

p(st|at, st−1)p(at|st−1)
I p(st|at, st−1)I p(at|st−1)

)

=
∑

at∈A,st∈S
t=1,...,H−1

H−1∏
t=1

p(st|at, st−1)p(at|st−1)p(s0)

H−1∑
t=1

ln
(

p(st|at, st−1)p(at|st−1)
I p(st|at, st−1)I p(at|st−1)

)

+
∑

aH∈A,sH∈S
p(sH |aH , sH−1)p(aH |sH−1) ln

(
p(sH |aH , sH−1)p(aH |sH−1)

I p(sH |aH , sH−1)I p(aH |sH−1)

)  .
To get the last form we used the fact that

∑
aH∈A,sH∈S

p(sH , aH |sH−1) = 1 for fixed sH−1 ∈ S. The prior

distribution is not influenced by the decision policy, so p(s0) = I p(s0). Therefore, the prior is not
included in the logarithm part of the minimized expression.

The minimum (1.13) is then equal to

min{
p(at |st−1)

}H−1

t=1

{
DDD(p1:(H−1)||

I p1:(H−1))

+ min
p(aH |sH−1)

∑
at∈A,st∈S

t=1,...,H−1

H−1∏
t=1

p(st|at, st−1)p(at|st−1)p(s0)

·

[ ∑
aH∈A,sH∈S

p(sH |aH , sH−1)p(aH |sH−1) ln
(

p(sH |aH , sH−1)p(aH |sH−1)
I p(sH |aH , sH−1)I p(aH |sH−1)

) ]
︸                                                                                         ︷︷                                                                                         ︸

BH(sH−1)

}
.

(1.14)

We will now focus on the term labeled as BH(sH−1), where only the last decision rule for decision
epoch H appears. The following equality exploits logarithmic properties and the fact that for any sH−1 ∈

S and any aH ∈ A,
∑

sH∈S
p(sH |aH , sH−1) = 1 .

BH(sH−1) =
∑

aH∈A
p(aH |sH−1)

[
ln

(
p(aH |sH−1)

I p(aH |sH−1)

)
+

∑
sH∈S

p(sH |aH , sH−1) ln
(

p(sH |aH , sH−1)
I p(sH |aH , sH−1)

)
︸                                               ︷︷                                               ︸

α(aH ,sH−1)

]

Subtracting and adding ln γ(sH−1) to BH(sH−1) generates

BH(sH−1) =
∑

aH∈A
p(aH |sH−1) ln

 p(aH |sH−1)
I p(aH |sH−1)
γ(sH−1)

 − ln γ(sH−1) +
∑

aH∈A
p(aH |sH−1)α(aH , sH−1)

It follows immediately that

BH(sH−1) =
∑

aH∈A
p(aH |sH−1) ln

 p(aH |sH−1)
I p(aH |sH−1) exp(−α(aH ,sH−1))

γ(sH−1)

 − ln γ(sH−1). (1.15)

The first term in (1.15) is the KL divergence between conditional probability densities p(·|sH−1)
and I p(·|sH−1) exp(−α(·,sH−1))

γ(sH−1) , and the second term is independent of p(·|sH−1). The minimum of the KL
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divergence is zero and it is achieved when

opt p(aH |sH−1) = I p(aH |sH−1)
exp

(
− α(aH , sH−1)

)
γ(sH−1)

. (1.16)

Taking γ(sH) = 1, we get β(aH , sH−1) = 0, then (1.16) is the optimal decision rule in the last decision
epoch H.

We can now substitute the optimal decision rule into (1.14) and continue in the same fashion to obtain
the remaining optimal decision rules for decision epochs H − 1,H − 2, . . . , 1. �



Chapter 2

Transfer learning of decision policies

This chapter presents the main contribution of the thesis. In this chapter, the method of policy
learning based on transfer of knowledge about one closed-loop to another closed-loop is introduced.
The main idea of the approach is to, instead of directly optimizing the decision policy, estimate the
optimal decision rule using the information contained in the results of a previously solved problem. This
is possible under the assumption that the DM problem concerns the same system and that the system
moves between states based on some fixed underlying principles1. In other words, the transition model
is stationary in all the considered decision problems or at most slowly-time varying. Then we can use
decisions made in the previous DM task even if they were obtained for different objectives.

Even if the agent that solved the past decision problem selected its decisions optimally, these actions
were chosen optimally with respect to some past ideal model, which is generally different from the
current one. The knowledge transformation must be adapted to take the possible difference in objectives
into consideration. The optimality of past decisions is not necessary in our approach.

Let us demonstrate transfer learning on the illustrative example of the doctor and their patient men-
tioned in Section 1.3, Example 1. The doctor has information about the patient’s past treatment (per-
formed by another doctor) and how it affected the patient’s body and health. However, the doctor i) does
not know complete reasoning of the doctor who prescribed this treatment, and ii) has own experience
and personal preferences for curing techniques. But the doctor can take into account the other doctor’s
past experience while maintaining their own preferences and selecting the best treatment for the patient.
The proposed approach can form a core of an expert system helping doctors to diagnose or treat patients
based on past experience [36].

2.1 Similarity of two decision-making problems

Suppose that we need to solve a DM task on some system, i.e. find an optimal DM policy that ensures
reaching our DM objective with respect to the system. Let us have a record of state-action transitions
describing the solution of some past DM task (possibly with different objective than the current one). We
intend to use the past experience gained on the same system to learn the (approximate) optimal policy
for the current DM task. The key idea is to transfer the past knowledge to the new task.

One of the main problems when transferring knowledge from one DM task to another is to recognize
whether the knowledge is appropriate for the current task. To quantify a degree of suitability of the
transferred knowledge we use the notion of similarity. The similarity weighs past observations with

1This assumption is not restrictive as any system (except for a completely random one) has some dependencies mostly given
by first principles.

16
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regard to the current ideal model. It quantifies the extent to which past behavior matches the present DM
preferences. The current ideal model I p is assumed to be fixed.

Definition 6 (Similarity). Let {(sτ, aτ, sτ−1)}t−1
τ=1 be a set of observations of a completed DM task. We

define the similarity between the current decision problem with the ideal model I p and a past problem
from decision epoch τ as

στ = I p(sτ, aτ|sτ−1) ∈ [0, 1], (2.1)

where (sτ, aτ, sτ−1) is an observation of decision at and the corresponding state transition, and τ =

1, . . . , t − 1.

The introduced definition of similarity has a clear and intuitive meaning. Whenever past observations
(sτ, aτ, sτ−1) bring high values of the current ideal model I p, the system transition (sτ−1, aτ) → sτ, is
similar to the targeted behavior in the current DM problem. The value of similarity is small whenever
past action: i) simulates state transition that does not fully match the current DM preferences (expressed
by the ideal model I p), ii) is considered disadvantageous with regard to the current DM preferences. If
the past system transition is desirable regarding the current DM problem, the similarity is high.

Second definition of similarity is almost identical to Definition 6, except the values are normalized.

Definition 7 (Normalized similarity). Let {(sτ, aτ, sτ−1)}t−1
τ=1 be a set of observations of a completed DM

task. The normalized similarity between the current decision problem with the ideal model I p and a past
problem from decision epoch τ, τ = 1, . . . , t − 1, is defined as

στ =
I p(sτ, aτ|sτ−1)

σmax
∈ [0, 1], where

σmax = max
st ,st−1∈S,at∈A

I p(st, at|st−1).
(2.2)

Introducing a normalized version of the similarity is important because the range of possible values
of the similarity is generally not the interval [0, 1]. Each similarity equals to an ideal likelihood of past
data, so the maximum possible value of the similarity is the same as the maximum value of the ideal
model. For a value of the non-normalized similarity, Definition 6, we need to know other values to
conclude whether the similarity is high or low. Whereas a value of the normalized similarity, Definition
7, is informative even when it stands alone.

It is suitable to use above defined similarities in case the past data is the only information available,
i.e. the agent does not have knowledge about the past ideal models. Once past ideal models (i.e. past DM
preferences) are known, the similarity can be measured via any divergence on the space of probability
distributions.

2.2 Bayes similarity-based transfer learning

The goal of any decision-making is to find an optimal decision policy that helps to reach DM ob-
jectives. The problem of real-life applications is a lack of knowledge, mainly precise knowledge of the
system model. In this thesis we look for a model-free learning of the optimal decision policy. Bayesian
estimation is used to find an estimate of the optimal DM policy from available past data [11], [30].

Consider a DM task characterized by ideal model I p and past data dt−1 collected up to decision epoch
t − 1 on the same system, though for a different DM problem. The data consists of a sequence of system
transition triples dt−1 = {(sτ, aτ, sτ−1)}t−1

τ=1. Our goal is to infer the targeted decision rule at decision epoch
t from data dt−1.
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Following Bayesian approach, let the unknown closed-loop model p(st, at|st−1) be parameterized as
p(st, at|st−1, θ), where θ ∈ Θ is an unknown finite-dimensional parameter and Θ is a continuous parameter
space. The closed-loop behavior based on the observed data at decision epoch t is then described using
marginalization and the chain rule as

p̂(st, at|dt−1) =

∫
Θ

p(st, at, θ|dt−1)dθ =

∫
Θ

p(st, at|dt−1, θ)p(θ|dt−1)dθ, (2.3)

where p(θ|dt−1) represents probability distribution of the unknown parameter based on the available data
dt−1. Note that the closed-loop model (2.3) implicitly contains the decision rule

p̂(at|dt−1) =
∑
st∈S

p̂(st, at|dt−1) =
∑
st∈S

∫
Θ

p(st, at|dt−1, θ)p(θ|dt−1)dθ. (2.4)

The second factor p(θ|dt−1) in integrals (2.3) and (2.4) is a posterior distribution of the parameter.
With each new piece of data, the parameter model is updated. The update is determined using the Bayes’
formula (1.2)

p(θ|dt−1) =
p(st−1, at−1|dt−2, θ)p(θ|dt−2)∫

Θ
p(st−1, at−1|dt−2, θ)p(θ|dt−2)dθ

.

But the data available do not necessarily come from the same closed-loop, the past ideal model can
be different from our current ideal model. An action established as optimal using one ideal model may
not be considered optimal with respect to a different ideal model. That is why we consider a weighted
Bayes’ formula [3], [25] and the update is expressed as

p(θ|dt−1) =
p(st−1, at−1|dt−2, θ)ωt−1 p(θ|dt−2)∫

Θ
p(st−1, at−1|dt−2, θ)ωt−1 p(θ|dt−2)dθ

.

The weights ωt−1 aim to correct a possible bias resulting from the difference of ideal closed-loop de-
scriptions of the past and the current DM task. Similarity values, see Definition 6 and Definition 7, are
chosen as the weights, so ωt−1 = σt−1. Similarity numerically expresses how the past data fit the current
ideal model I p.

Using the weighted Bayes rule repeatedly yields

p(θ|dt−1) =

∏t−1
τ=1 p(sτ, aτ|dτ−1, θ)ωτ p(θ|s0)∫

Θ

∏t−1
τ=1 p(sτ, aτ|dτ−1, θ)ωτ p(θ|s0)dθ

. (2.5)

We can now simplify the formula using the Markov property (1.7), which states that the system state
transition depends on the last state only. The posterior parameter distribution (2.5) becomes

p(θ|dt−1) =

∏t−1
τ=1 p(sτ, aτ|sτ−1, θ)ωτ p(θ|s0)∫

Θ

∏t−1
τ=1 p(sτ, aτ|sτ−1, θ)ωτ p(θ|s0)dθ

(2.6)

and the decision rule estimated using data dt−1 (2.4) is

p̂(at|st−1) =
∑
st∈S

∫
Θ

p(st, at|st−1, θ)p(θ|dt−1)dθ. (2.7)

The remainder of this section describes how to find an explicit form of the estimated optimal decision
rule using past data. The solution is suggested by the ensuing proposition.
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Proposition 2. The estimate of the optimal decision rule based on observations dt−1 = {(sτ, aτ, sτ−1)}t−1
τ=1

available at decision epoch t ∈ T has the form

opt p̂(at|st−1) =

∑t−1
τ=1 ωτδ(at, aτ)δ(st−1, sτ−1) +

∑
s∈S ν

s,at |st−1
0∑t−1

τ=1 ωτδ(st−1, sτ−1) +
∑

s∈S
∑

a∈A ν
s,a|st−1
0

, (2.8)

for all at ∈ A and st−1 ∈ S, where ωτ, τ = 1, . . . , t − 1, are weights representing similarities (2.1) or
normalized similarities (2.2). The function δ(·, ·) is the Kronecker delta (1.3) and νs,a|st−1

0 > 0, s ∈ S,
a ∈ A, represent prior knowledge about the closed-loop model.

Proof. Throughout the proof, (s′, a) → s denotes a system state transition (sτ−1, aτ) → sτ, where τ ∈ T
is some past decision epoch, τ < t.

We define the parametrization (2.3) of the unknown closed-loop description so that the parameter
space is

Θ =

{
θs,a|s′

∣∣∣s, s′ ∈ S, a ∈ S, θs,a|s′ ∈ [0, 1],
∑

s∈S,a∈A
θs,a|s′ = 1,∀s′ ∈ S

}
,

and
θst ,at |st−1 ≡ p(st, at|st−1, θ)

=
∏
s′∈S

∏
a∈A

∏
s∈S

θδ(s,st)δ(a,at)δ(s′,st−1)
s,a|s′ . (2.9)

We assume the observation of the initial system state s0 does not change the prior beliefs about the
parameter of the closed-loop model, i.e. p(θ|s0) = p(θ). This assumption can also be justified by the
Bayes’ formula (1.2)

p(θ|s0) =
p(s0|θ)p(θ)∫

Θ
p(s0|θ)p(θ)dθ

,

because the above expression is equal to p(θ) when the initial state is considered as an initial condition
not dependent of the parameter, i.e. p(s0|θ) = p(s0) [30].

Additionally, we assume that θ·,·|st−1 = p(·, ·|st−1) follows multinomial distribution and the prior dis-
tribution of the model parameter is a product of Dirichlet distributions (1.6). Dirichlet distribution as
prior is a common choice in Bayesian theory. It simplifies the computation of the posterior distribution
because the prior and the posterior distributions are conjugate (from the same family of distributions) for
multinomial distribution sampling [15]. The prior is expressed as

p(θ) =
∏
s′∈S

1

B
(
ν·,·|s

′

0

) ∏
a∈A

∏
s∈S

θ
νs,a|s′

0 −1
s,a|s′ =

∏
s′∈S

Dir
(
θ·,·|s′ , ν

·,·|s′

0

)
. (2.10)

For all s′ ∈ S, ν·,·|s
′

0 is a vector of values νs,a|s′

0 > 0, s ∈ S, a ∈ A, and θ·,·|s′ is a vector of parameters from
a subspace Θs′ =

{
θs,a|s′ |s ∈ S, a ∈ A, θs,a|s′ ∈ Θ

}
⊂ Θ.

We will now focus on rewriting the posterior distribution. It can be expressed using the form (2.6)
and the proposed parametrization (2.9) as

p(θ|dt−1) =

t−1∏
τ=1

∏
s′∈S

∏
a∈A

∏
s∈S
θωτδ(s,sτ)δ(a,aτ)δ(s′,sτ−1)

s,a|s′ p(θ)

∫
Θ

t−1∏
τ=1

∏
s′∈S

∏
a∈A

∏
s∈S
θωτδ(s,sτ)δ(a,aτ)δ(s′,sτ−1)

s,a|s′ p(θ)dθ
.
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Next, we substitute the chosen prior (2.10) and we apply the exponent properties.

p(θ|dt−1) =

∏
s′∈S

1
B
(
ν·,·|s

′

0

) ∏
a∈A

∏
s∈S
θ
∑t−1
τ=1 ωτδ(s,sτ)δ(a,aτ)δ(s′,sτ−1)+νs,a|s′

0 −1
s,a|s′∫

Θ

∏
s′∈S

1
B
(
ν·,·|s

′

0

) ∏
a∈A

∏
s∈S
θ
∑t−1
τ=1 ωτδ(s,sτ)δ(a,aτ)δ(s′,sτ−1)+νs,a|s′

0 −1
s,a|s′ dθ

(2.11)

Let us now introduce a notation that will be used throughout the rest of the proof. We will denote the
sum of exponents from the above expression as

V s,a|s′

t−1 =

t−1∑
τ=1

ωτδ(s, sτ)δ(a, aτ)δ(s′, sτ−1) + νs,a|s′

0 . (2.12)

It is easily seen that the definition (2.12) is recursive

V s,a|s′
τ = ωτδ(s, sτ)δ(a, aτ)δ(s′, sτ−1) + V s,a|s′

τ−1 , τ = 1, . . . , t − 1,

V s,a|s′

0 = νs,a|s′

0 .
(2.13)

Next, by using the definition (2.13) in (2.11) we get the following form of the posterior parameter distri-
bution

p(θ|dt−1) =

∏
s′∈S

1
B
(
ν·,·|s

′

0

) ∏
a∈A

∏
s∈S
θ

V s,a|s′

t−1 −1
s,a|s′∫

Θ

∏
s′∈S

1
B
(
ν·,·|s

′

0

) ∏
a∈A

∏
s∈S
θ

V s,a|s′
t−1 −1

s,a|s′ dθ
(2.14)

It is clear from (2.14) that the posterior distribution is, as mentioned above, a product of Dirichlet distri-
butions (1.6) with concentration parameters equal to vectors V ·,·|s

′

t−1 , s′ ∈ S.
Substituting the posterior distribution (2.14) into the estimate of the decision rule (2.7) and using the

parametrization (2.9) gives

p̂(at|st−1) =

∑
st∈S

∫
Θ

∏
s′∈S

1
B
(
ν·,·|s

′

0

) ∏
a∈A

∏
s∈S
θδ(s,st)δ(a,at)δ(s′,st−1)

s,a|s′ θ
V s,a|s′

t−1 −1
s,a|s′ dθ

∫
Θ

∏
s′∈S

1
B
(
ν·,·|s

′

0

) ∏
a∈A

∏
s∈S
θ

V s,a|s′
t−1 −1

s,a|s′ dθ
.

If we set the similarity of the current decision epoch ωt = 1, we can use the recursive definition (2.13) to
obtain V s,a|s′

t and get

p̂(at|st−1) =

∑
st∈S

∫
Θ

∏
s′∈S

1
B
(
ν·,·|s

′

0

) ∏
a∈A

∏
s∈S
θ

V s,a|s′
t −1

s,a|s′ dθ

∫
Θ

∏
s′∈S

1
B
(
ν·,·|s

′

0

) ∏
a∈A

∏
s∈S
θ

V s,a|s′
t−1 −1

s,a|s′ dθ
=

∑
st∈S

∫
Θ

∏
s′∈S

B
(
V ·,·|s

′

t

)
B
(
ν·,·|s

′

0

) Dir
(
θ·,·|s′ ,V

·,·|s′
t

)
∫
Θ

∏
s′∈S

B
(
V ·,·|s

′

t−1

)
B
(
ν·,·|s

′

0

) Dir
(
θ·,·|s′ ,V

·,·|s′
t−1

) (2.15)

In the last expression in (2.15), the Beta function coefficients can be put in front of the integrals in
the numerator and the denominator, and the integrals are equal to one because they are

∫
Θ

p(θ|dτ)dθ,
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τ = t, t − 1. We then obtain

p̂(at|st−1) =

∑
st∈S

∏
s′∈S

B
(
V ·,·|s

′

t

)
B
(
ν·,·|s

′

0

)
∏
s′∈S

B
(
V ·,·|s

′

t−1

)
B
(
ν·,·|s

′

0

) =

∑
st∈S

∏
s′∈S

B
(
V ·,·|s

′

t

)
∏
s′∈S

B
(
V ·,·|s

′

t−1

) =

∑
st∈S

∏
s′∈S

∏
s∈S

∏
a∈A Γ

(
V s,a|s′

t

)
Γ
(∑

a∈A
∑

a∈A V s,a|s′
t

)
∏
s′∈S

∏
s∈S

∏
a∈A Γ

(
V s,a|s′

t−1

)
Γ
(∑

s∈S
∑

a∈A V s,a|s′
t−1

)

=

∑
st∈S

∏
s′∈S

∏
s∈S

∏
a∈A Γ

(
V s,a|s′

t−1 +δ(s,st)δ(a,at)δ(s′,st−1)
)

Γ
(∑

s∈S
∑

a∈A V s,a|s′
t−1 +δ(s,st)

)
∏
s′∈S

∏
s∈S

∏
a∈A Γ

(
V s,a|s′

t−1

)
Γ
(∑

s∈S
∑

a∈A V s,a|s′
t−1

) .

In the above, the second equality was obtained by factoring out the component B
(
ν·,·|s

′

0

)
, which is a nor-

malizing constant of the prior distribution and does not depend on st. In the third equality, the definition
of the Beta function (1.5) was used. Now we apply the recursive property of the Gamma function (1.4)
and get

p̂(at|st−1) =
∑
st∈S

V st ,at |st−1
t−1∑

s∈S
∑

a∈A V s,a|st−1
t−1

=
∑
st∈S

∑t−1
τ=1 ωτδ(st, sτ)δ(at, aτ)δ(st−1, sτ−1) + νst ,at |st−1

0∑t−1
τ=1 ωτδ(st−1, sτ−1) +

∑
s∈S

∑
a∈A ν

s,a|st−1
0

.

(2.16)

After the summation over st ∈ S, the last expression in (2.16) is the desired formula, so in conclusion
we obtain

opt p̂(at|st−1) =

∑t−1
τ=1 ωτδ(at, aτ)δ(st−1, sτ−1) +

∑
s∈S ν

s,at |st−1
0∑t−1

τ=1 ωτδ(st−1, sτ−1) +
∑

s∈S
∑

a∈A ν
s,a|st−1
0

.

�

An algorithm describing approximation of the optimal decision policy is shown in Figure 2.1. The
algorithm uses the normalized similarity (2.2).

Data: past data dt−1 = {(sτ, aτ, sτ−1)}t−1
τ=1, new ideal I p, horizon N > t − 1

for τ = 1, . . . , t − 1 do
Compute weight ωτ ≡ στ =

I p(sτ,aτ |sτ−1)
σmax

(2.2);
end
while t ≤ N do

Learn and apply the optimal decision rule opt p̂(at|st−1) (2.8);
Observe new state transition (st−1, at)→ st;
Add new observation into the data sequence: dt = dt−1 ∪ {(st, at, st−1)};

Calculate new weight ωt ≡ σt =
I p(st ,at |st−1)

σmax
(2.2);

t = t + 1;
end

Figure 2.1: The DM algorithm with similarity-based transfer learning.
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Summarizing remarks: The proposed approach relies on the rich though non-optimal past experience.
Whenever the experience is insufficient, i.e. few (or none) observed state-action transitions, some addi-
tional experiments should be performed first. The algorithm needs a well-specified ideal model (1.10)
that describes the agent’s DM preferences. If the DM preferences are expressed vaguely or are not fea-
sible, the resulting policy will rely on the transitions that occurred in the past and it can be expected that
the past successful behavior will be transferred. The approach has a potential for learning the past DM
objectives (cf. inverse reinforcement learning).



Chapter 3

Exploration

The observation-based learning techniques presented in the previous chapter exploit available data
by determining decision rules based on observed closed-loop behavior. Exploitation of these rules can
yield similar results as those detected in the data. However, potentially, there exist policies that bring the
agent closer to its preferences but that are not employed simply because we only imitate past behavior.
If past data are incomplete, were obtained with ideal model significantly differing from the current one,
or if past decisions were not optimal, the need to explore overlooked and possibly superior actions and
states is important. The issue of how to add exploration into the process is dealt with in this chapter.

3.1 Exploration-exploitation dilemma

Exploration-exploitation tradeoff is a compromise between utilizing the currently available knowl-
edge and obtaining new knowledge to improve performance. Exploiting the knowledge at hand repre-
sents a safe approach that leads to results optimal according to current assumptions and experience but
does not enable us to advance. Exploration can provide important new findings about the environment
but can be risky as it can lead to unstable behavior. If the information we already have leads to the best
possible decision, we lose time and profit by exploring fruitlessly.

This tradeoff is a well-studied subject in sequential DM, see for example [37],[14] or [40]. Multi-
armed bandit problem, first formulated in [39], is a problem designed to model exploration and exploita-
tion balance. As it has been studied for many decades, there exist plenty of algorithms solving it. Among
the most used simple solving strategies are: the ε-greedy strategy, introduced in [46], the ε-first strategy,
and the ε-decreasing strategy [35]. Throughout the text, the term strategy is reserved for exploration
strategies and should not be confused with the term policy, which refers to the DM policy.

The ε-greedy strategy chooses the currently optimal action with probability 1-ε, and a random action
with probability ε, ε ∈ [0, 1]. This exploration can be either adopted at every stage of the decision
process, or only during a fixed period and then turned off when the performance improves. In the context
of this thesis, the ε-greedy exploration is used in the following way. The decision rule at decision epoch
t ∈ T in state st ∈ S can be written as

ε p(at|st) =

opt p̂(at|st) if ξt < ε,
1
|A| otherwise,

(3.1)

for all actions at ∈ A, where ξt is generated randomly at each decision epoch from the uniform distribu-
tion on the interval [0, 1], and opt p̂(at|st) is the estimated optimal decision rule (2.8).

23
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The ε-first strategy performs exploration during the first εh steps, where h is the DM horizon, so
initially only random actions are taken. Then the information gathered is exploited during the rest of the
dedicated time. The TL decision rule with the ε-first exploration applied is for all actions at ∈ A

ε p(at|st) =

 1
|A| if t < εh,
opt p̂(at|st) otherwise,

(3.2)

where h is the DM horizon and ε ∈ [0, 1].
Lastly, the ε-decreasing strategy is similar to the ε-greedy strategy except the exploration rate ε

decreases over time. This exploration method is implemented in TL as follows

ε p(at|st) =

 1
|A| if ξt < εt,
opt p̂(at|st) otherwise,

(3.3)

where ξt is randomly generated from a uniform distribution on the interval [0, 1] and {εt}
h
t=1 is a sequence

of numbers from [0, 1] that converges to zero. For instance, this sequence of exploration rates can be
defined as εt =

ε0
t , ε0 ∈ (0, 1], [12].

Using any of these strategies requires selecting value of parameter ε. This can be done heuristically,
or an appropriate value can be determined adaptively during the course of the DM (see [45] for example).
However, it usually increases the computational time and the complexity. The choice of parameter ε is
important as it controls the tradeoff, which is the compromise between exploiting available knowledge
and exploring to gather new information. Using the ε-decreasing exploration also requires setting the
decay rate, i.e. defining the decreasing sequence {εt}

h
t=1.

The main advantage of these exploration practices is that they are easy to implement and generally
do not cause much additional computations.

3.2 Adjusted exploration in the proposed transfer learning

In order to include exploration while preventing over-exploration, we offer a modification of the
strategies presented in the previous section. Over-exploration can worsen the DM results when the data
are sufficiently good, for example when past objectives are similar to the current objective and imitating
past behavior is therefore efficient.

Similarities (2.1) and (2.2) indicate the usefulness of past data for the current ideal model. Small sim-
ilarities indicate non-optimality of the past decisions with regards to the current DM task. Therefore, it
shows a gap in knowledge that suggests the need of exploration. Through exploration, more information
about the system can be gathered.

Based on the idea presented in Section 3.1, we define a criterion that helps to recognize whether
exploration should be applied. If the average of past m ∈ N similarities (2.1), (2.2) is lower than a
given threshold from the interval [0, 1], ε-exploration is used. Let us denote the threshold by the letter
q ∈ [0, 1]. The choice of the optimal decision rule at decision epoch t can be described as

p(at|st−1) =

ε p(at|st−1), if 1
m

∑t−1
τ=t−m ωτ < q

opt p̂(at|st−1), otherwise,
(3.4)

where ε p(at|st−1) uses ε-greedy exploration (3.1), opt p̂(at|st) is the estimate of the optimal decision rule
(2.8), q ∈ [0, 1], and 0 < m < t.

The threshold q separates similarities into two categories: sufficiently high and low. In case of nor-
malized similarity, see Definition 7, the threshold can be set at a fixed value and be universal across
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different problems with data of different quality (suitability for the current goals). A reasonable choice is
for example q = 0.5. If similarities are not normalized, a mean, median or central value of all similarities
can be used as the threshold for each individual problem. However, in that case, if all computed similari-
ties are small, these values are also small and the use of exploration is not sufficient. Similarly, whenever
all computed similarities are high, exploration is unreasonable but it is employed in case the threshold
is equal to the mean or the median and these values are also high. This suggests that normalization is
preferable.

To be able to perform normalization, the maximum possible value of the similarity (the maximum
value of the ideal model) has to be determined and that potentially increses computational cost. On the
other hand, computing the mean or median requires going through all past observations, and the values
would have to be recomputed with each new observation, which also increases the complexity.

Figure 3.1 shows the resulting algorithm of the DM described in Chapter 2 with incorporated explo-
ration and using normalized similarity (2.2).

Data: past data dt−1 = {(sτ, aτ, sτ−1)}t−1
τ=1, ideal model I p, horizon N > t − 1, 0 < m < t, q ∈ [0, 1]

for τ = 1, . . . , t − 1 do
Compute weight ωτ ≡ στ =

I p(sτ,aτ |sτ−1)
σmax

(2.2);
end
while t ≤ N do

Learn the optimal decision rule opt p̂(at|st−1) (2.8);
if 1

m
∑t−1
τ=t−m ωτ < q then

Generate ξt from the uniform distribution on the interval [0,1];
if ξt < ε then

Exploration: Use the random decision rule pt(at|st−1) = 1
|A| ;

else
Exploitation: Use the optimal decision rule opt p̂(at|st−1) (2.8);

end
else

Exploitation: Use the optimal decision rule opt p̂(at|st−1) (2.8);
end
Observe new state transition (st−1, at)→ st;
Add new observation into the data sequence: dt = dt−1 ∪ {(st, at, st−1)};

Calculate new weight ωt ≡ σt =
I p(st ,at |st−1)

σmax
(2.2);

t = t + 1;
end

Figure 3.1: The decision-making algorithm with similarity-based transfer learning and exploration.



Chapter 4

Simulated experiments

In this chapter, the performance of the method of similarity-based transfer learning (TL) presented
in Chapter 2 is verified and validated through a series of simulated experiments. It is compared with the
performance of the fully probabilistic design (FPD), see Section 1.3.1.

The proposed method of TL was tested with the use of generated data that imitated the agent’s
observation of a past DM task characterized by unknown DM preferences. These unknown preferences
were specified by various types of past ideal model that corresponded to the past DM task. The FPD
method was used to generate the past data. The agent then solved the current DM task via transfer
learning using the generated past data without knowing what the past DM preferences were or whether
they were similar to the agent’s current DM preferences defined by the current ideal model. The goal
was to determine how the use of various generated data influences the agent’s behavior and to compare
the results with results of the FPD method. Each experiment was repeated 100 times to ensure that the
outcome shown is not dependent on the simulation settings used.

The methods and experiments were implemented in Matlab R2016b R©. The seed for reproducibility
of results was set to 10. Boxplot figures were generated using Alternative box plot function for Matlab
from the IoSR Matlab Toolbox [19].

General settings: The system interacting with the agent was a discrete system with three possible
states from the state space S = {s1, s2, s3}. The agent could choose between four different actions from
the action space A = {a1, a2, a3, a4}. The transition model p(st|at, st−1), which characterizes the system,
was different each time the simulation was repeated because the coefficients of the transition model
were generated randomly. Initial state s0 was also chosen randomly from the uniform distribution. The
horizon, i.e. the length of the DM process, was set to h = 100 decision epochs. The agent used available
past (demonstration) data to find a decision policy optimal with respect to ideal model I p. Normalized
version of the similarity (2.2) was utilized to weight the observed state-action transitions.

Generating the data: The demonstration data were generated for each simulated experiment and
each time the simulation was repeated. The FPD method with full knowledge of the transition model
p(st|at, st−1) was used to simplify the verification of the proposed approach. The DM preferences used in
the simulation were specified by the past ideal model, denoted as I p̃. At each decision epoch, the optimal
decision policy was determined using the exact solution of the FPD (see Proposition 1). The horizon of
the policy optimization was H = 10 decision epochs. The resulting closed-loop behavior was observed
over k = 60 decision epochs, so the past data expressing past experience were d60 = {(sτ, aτ, sτ−1)}60

τ=1.
These data were further used for transfer learning.

26
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4.1 Experiments for DM preferences considering only states

This section presents experiments where the agent’s objectives comprised of preferences over sys-
tem states without preferences over actions. This is a DM objective typical in situations where there
are no restrictions on actions. The ideal decision rule (1.10) was a uniform probability mass function:
I p(at|st−1) = 1

|A| = 0.25, for all at ∈ A, st−1 ∈ S.

Ideal models for demonstration data: Ideals serving for generating the demonstration data are la-
beled by tilde from here onwards. Three different ideal transition models were used during the generation
of the demonstration data d60. For all of them, the ideal decision rule was also uniform.

The first past ideal model, labeled as I p̃1, favored state s1 and the ideal transition probability was
defined as

I p̃1(st = s1|at, st−1) = 0.99998,
I p̃1(st , s1|at, st−1) = 0.00001,

(4.1)

for all at ∈ A, st−1 ∈ S.
The second one, represented by the symbol I p̃1,2, was characterized by the preference of states s1

and s2, both were favored equally. For all at ∈ A and all st−1 ∈ S it was defined as

I p̃1,2(st = s1|at, st−1) = 0.499995,
I p̃1,2(st = s2|at, st−1) = 0.499995,
I p̃1,2(st = s3|at, st−1) = 0.00001.

(4.2)

The third past ideal model, symbolized by I p̃3, favored state s3. The ideal transition model was

I p̃3(st = s3|at, st−1) = 0.99998,
I p̃3(st , s3|at, st−1) = 0.00001,

(4.3)

for all at ∈ A and for all st−1 ∈ S.

Current ideal model of the agent: The current DM task was characterized by ideal model I p with the
DM objective to reach state s1. The ideal transition model was thus the same as I p̃1 (4.1)

I p(st = s1|at, st−1) = 0.99998,
I p(st , s1|at, st−1) = 0.00001,

(4.4)

for all at ∈ A, st−1 ∈ S.

The performance of the proposed TL method was measured by gain, which was defined as the overall
number of occurrences of the targeted state s1. Prior distribution (2.10) concentration parameters were
chosen so that they were all equal to

ν0 =
1
|S|

min
st ,st−1∈S

at∈A

I p(st, at|st−1),

which describes the situation where no prior information about the parameter of the closed-loop model
is available.
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4.1.1 Choice of exploration strategy

As mentioned in Chapter 3, it is important to include some explorative strategy in the model. It helps
to overcome a potential problem of missing information in the available data d60. Chapter 3 presents three
simple and well-known exploration strategies, and one that was designed on their basis. It is necessary
to verify that those exploration strategies behave as expected and choose an appropriate value of the
exploration rate ε.

Demonstration data with I p̃3: To imitate the situation where the current DM objectives, described by
the ideal model I p (4.4), are completely different from the past DM objectives, the demonstration data
d60 for the first three experiments were generated using the ideal transition model I p̃3 (4.3). The past
data thus did not contain all the information needed to achieve the aims defined by I p.

In the first experiment, the ε-greedy exploration strategy (3.1) was used, with the value of exploration
rate ε changing from 0.0 to 0.5. The second experiment was conducted with the ε-first exploration
strategy (3.2) for changing ε. The results of both experiments can be seen in Figure 4.1, which shows a
boxplot of the resulting gains, i.e. occurrences of state s1, for different ε. It can be noted that for both
exploration strategies, the results improve with growing ε until ε = 0.3. For higher ε, the gains remain
roughly the same. The ε-first exploration strategy performs slightly better than the ε-greedy exploration
strategy.

In the third experiment, the ε-decreasing exploration strategy (3.3) was applied with the decreasing
sequence defined as εt =

ε0
t . ε0 changed values from 0.0 to 1.0. Results are illustrated in Figure 4.2, it

can be seen that the trend of growing gains was different than for the ε-greedy exploration and the ε-first
exploration strategy, see Figure 4.1. Generally, the highest gains were obtained for the highest initial
exploration rate ε0 = 1.
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Figure 4.1: Boxplot of gains achieved using the ε-
greedy exploration and the ε-first exploration strat-
egy with changing value of exploration rate ε.
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Figure 4.2: Boxplot of gains achieved using the
ε-decreasing exploration strategy with changing
value of initial exploration rate ε0.

Next, all the above mentioned exploration strategies were compared with the adjusted exploration
strategy (3.4) and with the case of no exploration, i.e. ε = 0. The value of exploration rate was fixed at
ε = 0.3 for the ε-greedy, the ε-first and the adjusted exploration strategy, and ε0 = 1 for the ε-decreasing
exploration strategy. The parameters of the adjusted exploration strategy were set to q = 0.4 and m = 10
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based on simulations described below. q is the threshold determining low average similarity and m is
the number of past similarities that are averaged in order to assess the need of employing an exploration
strategy (for details see Section 3.2).

Results of the comparison of exploration strategies in a case where demonstration data d60 were
generated with the ideal model I p̃3 (4.3) are given in Figure 4.5. It shows that when the data do not
contain the information necessary, every exploration strategy helps to improve the gains. The best results
were obtained using the ε-first exploration strategy, the weakest effect of exploration was produced by
the ε-decreasing exploration strategy.

Choice of q and m: A series of experiments with different demonstration data was conducted with the
aim of choosing the best values of the parameters q and m (see Section 3.2) of the adjusted exploration
strategy. The choice of q was based on results of a simulation, in which the adjusted exploration strategy
was used with ε = 0.3 for changing values of q, and the demonstration data d60 were generated using
either I p̃3 (4.3) or I p̃1 (4.1) while the current ideal was I p (4.4), i.e. the same as I p̃1. Similar simulation
was done also for changing values of m, namely values 5, 10, 15, 20. However, the results for all of the
values were nearly identical.

As can be seen in Figure 4.3, which shows gains in case of I p̃3, and in Figure 4.4, which depicts gains
in case of I p̃1, the choice of q = 0.4 seems reasonable in both situations. When the demonstration data
had missing information, i.e. I p̃3 was used and so the past and the current DM objectives were entirely
different, the gains increased until q = 0.5, where they stabilized. When the demonstration data were
obtained using the same DM objectives as the current DM objectives, i.e. I p̃1, so they were informative,
the gains decreased slightly with rising value of q.
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Figure 4.3: Boxplot of gains obtained using the ad-
justed exploration strategy with changing q, data
gathered with ideal model I p̃3 (the past and the cur-
rent DM objectives were different).

0.1 0.2 0.3 0.4 0.5 0.6

q

20

30

40

50

60

70

80

90

100

G
a
in

Boxplot of gains for adjusted exploration strategy

Figure 4.4: Boxplot of gains obtained using the ad-
justed exploration strategy with changing q, data
gathered with ideal model I p̃1 (the past and the cur-
rent DM objectives were identical).

Demonstration data with I p̃1: The last set of experiments presented in this section use demonstration
data d60 generated with the ideal model I p̃1 (4.1), which describes DM preferences that are the same as
the agent’s current DM preferences I p (4.4). This implies that the data contained sufficient amount of
information concerning the goals defined by I p.
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Figure 4.6 shows results of the comparison of all considered exploration strategies. The parameters
of the adjusted exploration strategy were fixed at q = 0.4 and m = 10. It can be noted that no exploration,
i.e. ε = 0, brought the best results while the ε-first strategy performed worst. The adjusted exploration
strategy came out as the best exploration strategy as it lowered the gains only slightly.
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Figure 4.5: Boxplot comparing gains of differ-
ent exploration strategies, data gathered with ideal
model I p̃3 (different from I p). No exp - no explo-
ration strategy, ε-greedy - ε-greedy strategy, ε-first
- ε-first strategy, ε-decay - ε-decreasing strategy,
Adjusted - adjusted exploration strategy.
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Figure 4.6: Boxplot comparing gains of differ-
ent exploration strategies, data gathered with ideal
model I p̃1 (identical to I p). No exp - no exploration
strategy, ε-greedy - ε-greedy strategy, ε-first - ε-
first strategy, ε-decay - ε-decreasing strategy, Ad-
justed - adjusted exploration strategy.

Comparing boxplots in Figure 4.5 and Figure 4.6 indicates that the adjusted exploration strategy is
the most robust exploration strategy with respect to different types of demonstration data. The adjusted
exploration strategy is the best choice as it stays active during the whole DM process and is able to
adaptively use exploration whenever there is the need for more information. This feature can potentially
be of importance for DM tasks with dynamically changing ideal model or system’s transition model.

4.1.2 Comparison of the TL method with the FPD method

In this part of the text, results of experiments that compare performance of the FPD method and the
proposed TL method are presented. The two methods were also compared to a random DM policy, that
is a DM policy that chooses actions randomly at each decision epoch and is defined for all at ∈ A and all
st−1 ∈ S as

p(at|st−1) =
1
|A|
. (4.5)

The DM preferences were focused only on system states.
The FPD method (1.12) was employed either with complete knowledge of the transition model

p(st|at, st−1), or without any prior knowledge of the model. The case with complete knowledge of the
transition model represents a boundary situation because it is not feasible in real-life applications to fully
know the transition model. Learning FPD, i.e. FPD method that learns the unknown transition model
in a Bayesian way, was also considered to see a more realistic FPD performance. Bayesian estimation
using the same set of observations d60 as those available for the TL method was applied to approximate
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the transition model. FPD policy (1.12) was optimized over a horizon of H = 10 decision epochs in both
cases.

The TL method was used either without any exploration (2.8), or with adjusted exploration strategy
(3.4). Then the exploration rate was set to ε = 0.3, the threshold of low average similarity was q = 0.4,
and the number of previous similarities to be averaged was m = 10.

To summarize, the compared methods include: i) the random policy, ii) the TL without exploration,
iii) the TL with the adjusted exploration, iv) the FPD without any prior knowledge, v) the FPD with full
knowledge.

First, Figure 4.7 shows a boxplot representing results of a method comparison where data d60 were
collected using ideal transition model I p̃3 (4.3), so with completely different objectives than the agent’s
current DM objectives defined by I p (4.4). The boxplot illustrates that when there is no overlap of past
and present objectives, the TL performs worse than the random DM policy. When the version of the TL
with exploration was adopted, the gains rose slightly above the random DM policy gains, however, they
were still considerably worse than the FPD ones.

Second, Figure 4.8 illustrates results of an experiment where ideal model I p̃1,2 (4.2) was used while
generating the data. The ideal model I p̃1,2 expresses DM objectives that partly intersect with the current
ones defined by I p (4.4). As shown in Figure 4.8, the results improved greatly with observations more
appropriate for the agent’s aims. The performance of the TL is in general nearly equal to that of the FPD.
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Figure 4.7: Boxplot comparing gains of different
methods, data gathered with ideal model I p̃3 (en-
tirely different from I p). Rand - random policy,
TL - TL method, TLexplore - TL method with ex-
ploration, FPDlearn - learning FPD method, FPD -
FPD method with complete knowledge.
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Figure 4.8: Boxplot comparing gains of differ-
ent methodss, data gathered with ideal model I p̃1,2
(partially coincides with I p). Rand - random pol-
icy, TL - TL method, TLexplore - TL method with
exploration, FPDlearn - learning FPD method, FPD
- FPD method with complete knowledge.

Finally, Figure 4.9 represents gains of the compared methods using data d60 generated with I p̃1 (4.1),
which imitates the case where the past and the current DM objectives are the same. As can be seen in the
figure, the TL method outperforms the FPD method in the conditions of data matching current objectives.
Note that the exploration strategy worsened the results only slightly in this case of past observations being
in correspondence with the DM preferences.

Results of the same experiments as in Figures 4.7, 4.8 and 4.9 are shown in Figure 4.10, where gains
of the random DM policy (4.5) were subtracted from gains of other methods, i.e. the plot shows benefits
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that brought each DM policy in comparison with the random policy. The transition model parameters
were different for each simulation so the difficulty of reaching the desired state varied. Figure 4.10
present the results in a more comparative way as it show how much better (worse) than the random DM
policy the methods were for each type of the observed data. The results of the FPD method with complete
knowledge of the transition model were the same for all three types of demonstration data because the
method did not need to use the data to estimate the transition model.
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Figure 4.9: Boxplot comparing gains of differ-
ent methods, data gathered using ideal model I p̃1
(identical to I p). Rand - random policy, TL -
TL method, TLexplore - TL method with explo-
ration, FPDlearn - learning FPD method, FPD - FPD
method with complete knowledge.
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Figure 4.10: Boxplot comparing gains of differ-
ent methods with gain of random policy subtracted,
data gathered with three different ideal models I p̃.
TL - TL method, TLexplore - TL method with explo-
ration, FPDlearn - learning FPD method, FPD - FPD
method with complete knowledge.

4.2 Experiments for DM preferences considering both states and actions

Results of simulated experiments where the agent had preferences over states and over actions are
presented in this section.

Ideal models for demonstration data: Similarly to Section 4.1, the demonstration data d60 were gen-
erated using three ideal models, each of them describing different DM preferences.

The first past ideal model I p̃1 favored state s1 and preferred action a1 the most and action a4 the least.
The past ideal transition model was defined for all at ∈ A and all st−1 ∈ S as

I p̃1(st = s1|at, st−1) = 0.99998,
I p̃1(st , s1|at, st−1) = 0.00001,

(4.6)

and the past ideal decision rule was defined for all st−1 ∈ S as
I p̃1(at = a1|st−1) = 0.5,

I p̃1(at = a2|st−1) = 0.245,
I p̃1(at = a3|st−1) = 0.245,
I p̃1(at = a4|st−1) = 0.01.

(4.7)
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Second past ideal model, symbolized by I p̃1,2 and equally favoring states s1 and s2 similarly to (4.2),
changed the preferences over actions after k

2 = 30 decision epochs. The ideal transition model did not
change and for all 1 ≤ t ≤ k = 60, for all at ∈ A, st−1 ∈ S it was defined as

I p̃1,2(st = s1|at, st−1) = 0.499995,
I p̃1,2(st = s2|at, st−1) = 0.499995,
I p̃1,2(st = s3|at, st−1) = 0.00001,

(4.8)

while the ideal decision rule was for 1 ≤ t ≤ k
2 = 30 equal to I p̃1,2(at|st−1) = 1

|A| = 0.25, for all at ∈ A,
st−1 ∈ S and for 31 ≤ t ≤ k = 60 and for all st−1 ∈ S it was

I p̃1,2(at = a1|st−1) = 0.5,
I p̃1,2(at = a2|st−1) = 0.245,
I p̃1,2(at = a3|st−1) = 0.245,
I p̃1,2(at = a4|st−1) = 0.01.

(4.9)

The last past ideal model described preference of state s3 and was identical to ideal model I p̃3 (4.3).
The ideal transition model was

I p̃3(st = s3|at, st−1) = 0.99998,
I p̃3(st , s3|at, st−1) = 0.00001,

(4.10)

for all at ∈ A and for all st−1 ∈ S. The ideal decision rule was I p̃3(at|st−1) = 1
|A| = 0.25, for all at ∈ A,

st−1 ∈ S and all 1 ≤ t ≤ k = 60.

Current ideal model of the agent: The agent’s objectives were identical to the past DM objectives
described by the past ideal model I p̃1 (4.6), (4.7), so the agent wanted to reach state s1 and preferred
action a1 the most and action a4 the least1. The ideal transition model was

I p(st = s1|at, st−1) = 0.99998,
I p(st , s1|at, st−1) = 0.00001,

(4.11)

for all at ∈ A and all st−1 ∈ S. The ideal decision rule was

I p(at = a1|st−1) = 0.5,
I p(at = a2|st−1) = 0.245,
I p(at = a3|st−1) = 0.245,
I p(at = a4|st−1) = 0.01,

(4.12)

for all st−1 ∈ S.

Agent’s success was measured by overall gain defined as
∑k+h
τ=k+1

I p(aτ|sτ)δ(sτ, s1). Essentially, the
gain is a weighted number of occurrences of state s1, where values of the ideal decision rule are used as

1Practically such a situation happens when a particular action brings some cost, i.e. in Example 1, Section 1.3: when a1

corresponds to a treatment that is safe and not very expensive, and a4 corresponds to an expensive treatment that might have
serious side effects.
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the weights. No prior information was available, concentration parameters of the prior distribution (2.10)
were all equal to

ν0 =
1
|S|

min
st ,st−1∈S

at∈A

I p(st, at|st−1).

All experiments were conducted in the same way as in Section 4.1.2. Results of the TL method (with
and without exploration strategy) were compared with results of the FPD method (with and without
complete knowledge of the system model). When exploration strategy (3.4) was used, the exploration
rate was ε = 0.3, the threshold of low average similarity was q = 0.2, and the number of preceding
similarities to be averaged was m = 10. FPD decision policy was optimized over a horizon of H = 10
decision epochs.

The value of the threshold q was chosen by conducting similar simulations as in Section 4.1.1. Be-
cause the ideal model I p (4.11), (4.12) is now more complex and values of similarities are generally
smaller, the value q = 0.4 that was optimal in the case of preferences only over states, see Section 4.1.1,
is not the best choice. In Figures 4.11 and 4.12 we can see gains of the TL method using the adjusted
exploration strategy with ε = 0.3 and changing values of q for data d60 collected using I p̃3 and I p̃1
respectively. The value q = 0.2 provides good results for both types of d60.
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Figure 4.11: Boxplot of gains obtained using the
adjusted exploration strategy for different q, data
gathered with ideal model I p̃3 (different from I p).
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Figure 4.12: Boxplot of gains obtained using the
adjusted exploration strategy for different q, data
gathered with ideal model I p̃1 (identical to I p).

Figure 4.13 shows resulting gains of the TL and the FPD method comparison after subtracting gains
of the random DM policy (4.5). Comparing Figure 4.13 to Figure 4.10, where only preferences over
actions were employed, it can be noted that the results are very similar in terms of how well the methods
behave in comparison to each other. This suggests that the TL method maintains the same performance
no matter the definition of the ideal model.

Generally, the TL method gains surpassed the FPD method gains in case of data generated using the
same ideal model, that is ideal model I p̃1. When the DM preferences were overlapping but not equal (i.e.
I p̃1,2 was used to generate the data) the results of the TL method were equivalent to the FPD method.
The exploration strategy lowered the gains slightly. However, in case the data were generated with a
completely different preferences, I p̃3, the gains of the TL method were significantly worse than gains of
the FPD method. Exploration strategy helped to overcome the lacking information in the data only to a
ceratin extent.
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Figure 4.13: Boxplot comparing gains of different methods with gain of random pol-
icy subtracted, data gathered with three different ideal models I p̃. TL - TL method,
TLexplore - TL method with exploration, FPDlearn - learning FPD method, FPD - FPD
method with complete knowledge.

4.3 Computational complexity

An important aspect of an algorithm is its computational complexity. In order to evaluate the perfor-
mance of the two considered methods, namely the FPD method and the TL method, the computational
complexity of both was analyzed first theoretically and then experimentally.

4.3.1 Theoretical complexity

The complexity of determining one decision rule was estimated using the "big O" notation [4], which
indicates asymptotic number of operations. It can be considered as an upper bound of the complexity.
Estimating the optimal decision rule using the TL method with exploration and with normalized similar-
ity, see Algorithm 3.1, takes asymptotically O(max(k, |S|2 · |A|)) operations, where k is the number of past
observations available (length od the data), |S| is the number of states and |A| is the number of actions.
When determining the decision rule, the first step is computing the similarities using the data of length k.
The similarities are then normalized, so a normalizing constant has to be found as a maximum value of
the ideal model I p(st, at|st−1), which has the dimensions of |S| · |A| · |S|. Lastly, the decision rule is learnt
using the computed k similarities. Multiplicative and additive constants are omitted because the "big O"
symbol describes the asymptotic long-term growth of the number of operations.

Computing the optimal decision policy with FPD learning method takes O(max(k,H · |S|2 · |A|))
operations, where H is the horizon of policy optimization. First, the unknown transition model has to be
estimated using the k observations, then the optimal decision rule is computed (1.12) over the horizon H.
In our experiment H was set to 10, so it can be considered as a constant and omitted. Then both methods
have the same theoretical asymptotic complexity O(max(k, |S|2 · |A|)).

Looking at Algorithm 3.1 of the TL method, we can differentiate between complexity of computing
the first decision rule right after obtaining the sequence of k observations dk, and every following decision
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rule. We can introduce an auxiliary array of a non-normalized estimate of the decision rule, i.e.

aux p̂(at|st−1) =

t−1∑
τ=1

ωτδ(at, aτ)δ(st−1, sτ−1) +
∑
s∈S

νs,at |st−1
0 ,

which is updated and normalized at each subsequent decision epoch. The update can be written symbol-
ically for st ∈ S and at+1 ∈ A as

aux p̂(at+1|st) = aux p̂(at+1|st) + ωtδ(at+1, at)δ(st, st−1).

For determining the first ever decision rule, similarities of all past observations are computed and summed.
At each of the following decision epochs, similarityωt is computed and added to the sum, and aux p̂(at+1|st)
is normalized to obtain the decision rule. This update has the asymptotic complexity of O(|S|) caused by
the normalization.

The same can be done for the FPD learning method, where an auxiliary array stores a non-normalized
estimate of the transition model. However, the optimal decision rule has to be computed again at each
decision epoch. The asymptotic complexity of the update and the calculation of a new optimal decision
rule is O(|S|2 · |A|). This suggests that the update of the decision epoch is faster using the TL method than
using the learning FPD method.

4.3.2 True complexity

In practice, the coefficients and constants omitted in the theoretical analysis as well as other factors
are important for the true computational time. That is why it is necessary to carry out experiments
measuring the real time complexity of both algorithms. Several experiments were conducted comparing
the CPU time required for computing the decision rule using the TL method with exploration and the
learning FPD method. The CPU time was determined using the Matlab R© in-built timeit function. It calls
a specified function several times and returns the median of the measured elapsed times. In our case, it
was used on a function that computes the decision rule using the FPD or the TL method.

The timeit function determines the number of repetitions of the specified code automatically to take
into account that calling it the first few times is typically more time demanding. The CPU time depends
on the computer used, thus all results should be perceived as an illustration of the expected behavior. The
computer used to provide the results presented here was SAMSUNG 900X3C, 2.00 GHz Intel Core i7
with 4GB RAM.

Figure 4.14 shows the median elapsed time of computing the first decision rule after obtaining the
data dk with fixed number of states |S| = 3, fixed number of actions |A| = 4 and for changing number
of observations k. It is apparent that in this case of k being much larger than |S|, the elapsed time for
both methods shows linear dependence on k only. The sudden jump at the point k = 12500 for the
FPD method can be explained by the fact that the actual CPU time is considered and it might include
some other activity of the system such as memory allocation. Despite this, the linear trend is visible.
As mentioned at the beginning of this section, the asymptotic complexity of both methods is the same:
O(max(k, |S|2 · |A|)). The real elapsed time is nearly the same for the FPD and the TL methods. It is
slightly greater for the FPD method, which is presumably caused by the coefficient H neglected in the
computation of the asymptotic complexity.

In Figure 4.15, the median time complexity of computing the first decision rule with changing number
of states |S| is shown. The number of observations was fixed at k = 30, the number of actions was fixed
at |A| = 4. It can be noted that the elapsed time using the FPD method increases much faster for growing
|S| than the elapsed time using the TL method. Even though the theoretical asymptotic complexity is the
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same for both, the real time complexity is significantly smaller for high number of states using the TL
method. The true order of complexity of the TL is possibly lower than the true order of complexity of
the FPD.
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Figure 4.14: Median CPU time required to deter-
mine the first decision rule after obtaining the data
dk for growing number of observations k using the
FPD learning and the TL method with exploration.
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Figure 4.15: Median CPU time required to deter-
mine the first decision rule after obtaining the data
dk for growing number of states using the FPD
learning and the TL method with exploration.

A graph showing the elapsed time of determining the update of a decision rule with growing number
of system states for the TL and the FPD method looks very similar to graph in Figure 4.15, so we show
the results for the TL and the FPD method separately. Figure 4.16 presents the median time of estimating
the initial decision rule and updating the subsequent decision rule for the FPD method. There is very
little difference between the two results. In general, both computations take the same amount of time.

Figure 4.17 shows the median elapsed time of calculating the first decision rule and its update using
the TL method. It can be noted that calculating the update is faster, as expected given the difference in
the theoretical asymptotic complexity introduced in Section 4.3.1. Comparing Figures 4.16 and 4.17, we
can see that the TL method is faster that the FPD method in both computations.
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Figure 4.16: Median CPU time required to deter-
mine the first decision rule after obtaining the data
dk, and its update for growing number of states us-
ing the TL method with exploration.
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Conclusion

This thesis studied decision-making (DM) under uncertainty within the framework of the fully prob-
abilistic design (FPD), see Section 1.3 for definition, using Markov decision process terms, see Section
1.2. The attention was focused on designing a technique of constructing a decision policy of an agent with
predefined DM preferences. The use of the FPD can be limiting due to high computational complexity
of solving a higher-dimensional problem. The aim of this thesis was to propose a less-computationally
demanding approach using the advantages of the FPD and exploiting data about past DM regarding the
same system but with unknown and generally different DM objective. Sequence of system state transi-
tions and actions applied to the system were available to the agent in advance and thus the best experience
from the past could be exploited in the current DM task. To exploit the best practise, a transfer learning
of an optimal decision policy was applied. The proposed transfer learning defines a degree of similarity
of past observations to current objectives (Section 2.1), and uses Bayesian learning to estimate the un-
known optimal decision policy (Section 2.2). Different kinds of exploration strategy were introduced in
order to overcome a possible lack of information in the past data (demonstration data).

The proposed technique was verified through a series of simulated experiments, see Chapter 4. The
results of the experiments show that the performance of the proposed method is comparable to (or it even
outperforms) the FPD method in case the demonstration data contain sufficient amount of information
about the system. That is when the unknown past preferences are not entirely different from the agent’s
current objectives. On the other hand, when there is no overlap of DM preferences, the method performs
worse than the FPD. Explorative strategy helps to overcome this problem to some extent. A simple
complexity analysis indicates that the proposed technique is faster than the FPD solution (Section 4.3).

The main limitation of the similarity-based transfer learning technique is the inability to sufficiently
overcome the absence of relevant data. Further research on the subject should investigate new exploration
strategies that would faster improve the performance in case of lack of information. Another possible
modification is adding a method of avoiding a negative transfer into the learning of the optimal decision
policy, that is assessing the available data before the transfer learning is applied and using only the part
of the data suitable for the current DM task. A challenge is to keep the computational complexity low
while improving the transfer learning technique by adding new features to it.

The method of similarity-based transfer learning could also be expanded to incorporate learning of
the unknown past DM preferences. This is a topic studied in inverse reinforcement learning, see [2],
[48]. It could help improve the performance in case the current DM preferences are not feasible or are
poorly defined by the user.
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