
České vysoké učení technické v Praze
Fakulta jaderná a fyzikálně inženýrská

Numerická simulace vícefázového proudění na
nestrukturovaných sítích s libovolnou topologií

ve 3D

Numerical Simulation of Multiphase Flow on
3D Unstructured Meshes with an Arbitrary

Topology

Diplomová práce

Autor: Tomáš Jakubec

Vedoucí práce: Ing. Pavel Strachota, Ph.D.

Akademický rok: 2019/2020

Poděkování:
Chtěl bych zde poděkovat především svému školiteli Ing. Pavlovi Strachotovi, Ph.D. za pečlivost,
ochotu, vstřícnost a odborné i lidské zázemí při vedení mé diplomové práce.

Čestné prohlášení:
Prohlašuji, že jsem tuto práci vypracoval samostatně a uvedl jsem všechnu použitou literaturu.

V Praze dne 24. června 2020 Tomáš Jakubec

Název práce:
Numerická simulace vícefázového proudění na nestrukturovaných sítích s libovolnou
topologií ve 3D

Autor: Bc. Tomáš Jakubec

Obor: Matematické inženýrství

Zaměření: Matematické modelování

Druh práce: Diplomová práce

Vedoucí práce: Ing. Pavel Strachota Ph.D.
Katedra matematiky
Fakulta jaderná a fyzikálně inženýrská
České vysoké učení technické v Praze

Abstrakt: Tato diplomová práce představuje tvorbu numerické C++ knihovny pracující s obec-
nými nestrukturovanými sítěmi a její následné využití pro simulování dvoufázového proudění.
Zprvu je pozornost soustředěna na vytvoření grafového popisu nestrukturované sítě za účelem
výběru vhodné datové struktury pro následnou implementaci. Dále se text věnuje detailnímu
popisu implementace moderní šablonové C++ knihovny schopné pracovat s obecnými sítěmi,
a to dokonce v obecné dimenzi. Knihovna je od počátku koncipována s ohledem na využití
v paralelních výpočetních algoritmech včetně výpočtů na grafických kartách. Navíc poskytuje
nástroje, které zjednodušují tvorbu numerických algoritmů při zachování výpočetního výkonu.
Druhá část práce popisuje aplikaci metody konečných objemů na problém dvoufázového proudění.
Nakonec je daný problém numericky řešen ve 2D i 3D s využitím vyvinuté knihovny a nekolika
typů nestrukturovaných sítí.

Klíčová slova: nestrukturovaná síť, C++, šablonové metaprogramování, paralelizace, metoda
konečných objemů, dvoufázové proudění

Title:
Numerical Simulation of Multiphase Flow on 3D Unstructured Meshes with an
Arbitrary Topology

Author: Bc. Tomáš Jakubec

Abstract: This master thesis presents the development of a C++ numerical library working with
general unstructured meshes and its application in the simulation of a two-phase flow. At first,
the attention is paid to the creation of a graph formalism representing an unstructured mesh,
which is utilized to choose a suitable data structure for the subsequent implementation. Next,
the implementation of the C++ library using modern paradigms is described in detail. This
library is capable of representing unstructured meshes with general topology and dimension.
It is designed for use in parallel computational algorithms including GPGPU computations.
In addition, it provides clever tools simplifying the creation of numerical codes without any
impact on performance. In its second part, the thesis presents the problem of two-phase flow
and its numerical solution by the finite volume method. Finally, the simulations on 2D and 3D
meshes by means of the developed library are demonstrated.

Key words: unstructured mesh, C++, template metaprogramming, parallelization, finite volume
method, two-phase flow

Contents

Introduction 11

1 Unstructured Mesh Representation 13
1.1 General Unstructured Polyhedral Meshes . 15
1.2 Notation on Unstructured Mesh . 15
1.3 Data Structure Representing Meshes with Arbitrary Topology 17

1.3.1 Graph Description . 17
1.3.2 Possible Representations . 19
1.3.3 Representation of Choice . 21

2 The GTMesh Library 25
2.1 Project Architecture . 25
2.2 The MeshElements Structure . 29

2.2.1 Scheme of the MeshElement structure . 29
2.2.2 Preparation of Generic MeshElement Properties 30
2.2.3 Definition of the MeshElement Structure 31
2.2.4 Construction of the MeshElements structure 38
2.2.5 Mesh Boundary . 39

2.3 Data Associated to the Mesh . 41
2.3.1 Properties of the MeshDataContainer Class 42
2.3.2 Construction of MeshDataContainer . 42
2.3.3 Generation of MeshDataContainer Using std::integer_sequence 44

2.4 Mesh Algorithms . 52
2.4.1 Element Access and the MeshApply Class 52
2.4.2 Mesh Connections and the MeshConnections Class 61
2.4.3 Elements Neighborhood and the MeshNeighborhood Class 62
2.4.4 Mesh Coloring and the ColorMesh Class 68
2.4.5 Element Center Calculation . 72
2.4.6 Element Measure Calculation and the computeMeasures Function 77
2.4.7 Elements Orientation and the computeFaceNormals Function 85

2.5 Mesh Import and Export . 88
2.5.1 VTK format . 88
2.5.2 FPMA format . 95
2.5.3 Mesh Signature . 97

2.6 UnstructuredMesh as the MeshElements Wrapper 99
2.7 3D Meshes with Non-planar Faces . 99

3 Class Traits 103
3.1 The MemberAccess Class . 104
3.2 Traits as a Tuple of MemberAccess . 106
3.3 Default Traits . 110

9

3.3.1 DefaultIOTraits and DefaultArithmeticTraits 113
3.3.2 Existence of Default Class Traits . 114
3.3.3 Macros Creating Default Class Traits . 115

4 Class Traits Applications 123
4.1 Debugging System and Automatic Data I/O . 123

4.1.1 The VariableExport Class . 123
4.1.2 Loggers . 125

4.2 Numerical Algorithms Based on Class Traits . 131
4.3 The Runge-Kutta-Merson Solver . 137

5 Numerical Solution of Compressible Two-phase Flow 139
5.1 Governing Equations . 139

5.1.1 Initial Conditions . 141
5.1.2 Boundary Conditions . 141

5.2 Numerical Scheme . 142
5.2.1 Unstructured Mesh Notation . 142
5.2.2 Finite Volume Method on Unstructured Meshes 143
5.2.3 Treatment of Non-planar Faces . 151
5.2.4 Temporal Discretization . 152

5.3 Realization of the Computation in the GTMesh framework 152

6 Parallel Implementation on GPU 159
6.1 Adaptation of UnstructuredMesh to GPU . 160
6.2 Adaptation of MeshDataContainer to GPU . 160
6.3 Automatic Conversion Between AoS and SoA . 161

7 Simulations 165
7.1 Comparison of Gas Flow on Several Meshes . 165
7.2 Two-Phase Flow in 2D . 170
7.3 Two-Phase Flow in 3D . 173

Conclusion 177

Bibliography 181

A Distribution of GTMesh 183

10

Introduction

Unstructured meshes are indispensable for numerical simulations on domains with complex
geometry. Recently, the use of meshes with general topology has become increasingly popu-
lar [37, 55, 51]. Several software projects exist that provide multiphysics simulations on unstruc-
tured meshes [17, 1, 2]. However, the possibilities of those products may be limited in some
specific cases of use. In particular, their support for extremely demanding simulations requiring
the use of massively parallel hybrid CPU/GPU environments is very poor. To take advantage
of the most powerful compute systems, specialized software packages [19, 14] combined with
in-house code are commonly used. Therefore, the aim of this master thesis is to develop a
general numerical library for working with unstructured meshes [28, 37, 55] with general topol-
ogy and dimension. The library utilizes modern C++ paradigms [52, 3, 5, 8, 7] with emphasis
on easy use while still maintaining the computational efficiency and generality. The library is
developed with respect to the potential support of parallelization (GPU through CUDA frame-
work [15, 34] or MPI [16]). The aim of the library is to provide a general framework to support
multiple of numerical methods, e.g., finite element method (FEM) [32] or finite volume method
(FVM) [45, 30, 42].

Next, in relation to fluidized bed (FB) boilers [25, 47, 26, 48, 41, 27] a problem of two-phase
flow [29, 36] is discussed in this work. The two-phase flow is discretized using FVM and the
obtained system of ordinary differential equations is numerically solved by the Merson version of
the 4th order Kunge-Kutta solver with an adaptive time step [49, 33, 35]. The obtained scheme
is implemented using the prepared library.

Chapter 1 discusses general unstructured meshes. It presents the notation on unstructured
meshes and defines the basic qualities of the meshes. It introduces the graph description of
an unstructured mesh which is utilized during the design of the data structures utilized in the
library.

Chapter 2 presents in detail the implementation of the structure storing an unstructured
mesh in the developed library named GTMesh. Big effort was made to explain the utilized
programming concepts and architecture which were the key part of the success. This chapter
also introduces an intuitive system of mapping data to the mesh and the implementation of basic
mesh algorithms (e.g., determination of arbitrary connections, neighbors and proper coloring
and calculation of the elements centers and measures). Then, the import and export of the
unstructured mesh and the mapped data are described. Finally, this chapter introduces the
work with the 3D unstructured meshes with non-planar faces.

Chapter 3 describes the system of annotation of C++ structures and classes in terms of
providing a standardized interface to the data stored in the attributes of classes and structures.

Chapter 4 presents the applications of the tool developed in the third chapter. The first
application is a general logging tool created primarilly for the debugging purposes. The second
application is to create automatically generated element-wise arithmetic operations for classes
and structures having the annotation defined. Finally, the Merson version of the 4th order
Runge-Kutta solver with an adaptive time step is presented with emphasis on the possible use
on classes with annotation defined.

In Chapter 4, the problem of two-phase flow in a 2D and 3D is presented. Afterward, the
discretization by FVM follows. Then, the application of the obtained equations is discussed for

11

the case of a 3D unstructured mesh with non-planar faces. In the end, the implementation of
the problem by using the concepts from GTMesh is commented.

Chapter 6 briefly discusses the possibility of adaptation of GTMesh to GPU with utilization
of the TNL project [22]. Despite the brief description of the problem, the fundamental changes
needed for the adaptation to GPU are presented in detail.

Chapter 7 presents the results of the performed simulations. At first, the comparison of
simulations of gas flow performed on different meshes (structured and unstructured) is presented.
Then, simulations of two-phase flow in 2D and 3D computational domains representing the
combustion chamber of a FB boiler are demonstrated.

This work was partially supported by the project "Research centre for low-carbon energy tech-
nologies" (Reg. No. CZ.02.1.01/0.0/0.0/16-019/0000753) and the project "Centre of Advanced
Applied Sciences" (Reg. No. CZ.02.1.01/0.0/0.0/16-019/0000778), provided by the Ministry of
Education, Youth and Sports of the Czech Republic under the OP RDE program and co-funded
by the European Union.

12

Chapter 1

Unstructured Mesh Representation

In numerical mathematics, the meshes are used to tessellate a computational domain. We will
denote the computational domain as Ω ⊂ Rd. Generally the mesh consists of a set of elements
(entities) as cells, faces, edges and vertices. In the mesh, those elements are topologically con-
nected according to the position. These connections determine the constructions of elements.
See an example in Figure 1.6.

In terms of addressing the mesh elements, the meshes can be divided into two groups. The
first is the group of structured meshes, where the location and connections of a mesh element
(cell, edge, vertex, etc.) is determined by its index in the mesh. The second are unstructured
meshes. The basic difference between the structured and unstructured mesh is, that the location
of an element is determined only by its connections to other elements. In the following sections,
we briefly discuss the basic qualities of these types of meshes.

Structured Mesh

A structured mesh is such tessellation of a domain, where the location of a mesh element is de-
termined by its index. By the location we mean the exact position in the space and connections
with other cell elements. Figure 1.1 presents few common types of structured meshes. Such
meshes are suitable to tessellate simple domains like combination of rectangles in 2D. For exam-
ple, the domain tessellation presented in Figure 1.1b is suitable for finite element method [32].
It is possible to handle simple mesh refinements using structured mesh as shown in Figure 1.1c.
This way it is possible for the mesh to be finer, for example, near the boundary. If the problem
requires a more complex domain, structured mesh can be mapped from simpler domain as shown
in Figure 1.2.

These types of meshes are not efficient to describe more complex areas, for example, as
shown in Figure 1.3. In this case, it would be very complicated to define a mapping from simpler
domain. Moreover, the structured mesh is not suitable to store cells of more types, i.e., all cells
are triangles or all are rectangles. Therefore, we decided to interest in unstructured mesh.

Unstructured Mesh

An unstructured mesh can be defined as a structure of elements, where explicit knowledge of
elements connection is necessary, to determine the location of a mesh element. Before the general
unstructured mesh will be introduces, let us discuss a case with predefined cell shapes as cell
type.

In order to simplify the data structure and to lower the memory requirements, it is possible
to define a set of geometrical primitives. For example, the primitives can be triangle or rectangle
in 2D, or tetrahedron, pyramid or hexahedron in 3D. Using this concept it is possible to define
a cell with a set of its vertices. The connection of edges or faces to vertices can be derived from
the cell vertices and the cell type.

13

(a) Regular squared structured
mesh

(b) Regular triangulated struc-
tured mesh

(c) Regular rectangular struc-
tured mesh

Figure 1.1: Examples of structured meshes

Figure 1.2: A simple computational domain and its mesh can be mapped to another domain.

Figure 1.3: Example of a complex computational domain

14

Figure 1.4: Example of general polyhedral cells. The cells had to be split into tetrahedrons
because of VTK format capabilities.

Figure 1.5: Examples of unstructured meshes.

In 2D it is possible to describe any polygon using its vertices, thanks to the topological
qualities of edges (faces) in 2D. Thus, this concept is able to represent any mesh in 2D. But in
3D there is no way how to describe a general polyhedron. Thus, it is not possible to represent
as complex cell as shown in Figure 1.4. According to [37] such types of non-admissible meshes
are more efficient CFD. Therefore, it is worth considering such general types of meshes.

1.1 General Unstructured Polyhedral Meshes

In the introduction of this chapter we mentioned that it is worthy to investigate properties of
such generic meshes as shown in Figure 1.4. An advantage of this type of mesh is its ability to
tessellate a domain with less cells but richer structure than a structured one. When one completes
algorithms for these generic meshes, it is easy to work with locally refined mesh. Moreover, it is
possible to refine the mesh according to the needs. All of those advantages sprout from the low
limitations on the mesh elements topology.

In the following sections the problem of storing general meshes is thoroughly discussed.
Firstly, let us define mesh notation.

1.2 Notation on Unstructured Mesh

In order to develop the numerical scheme of a problem, it is necessary to introduce a division of
the spatial domain into a set of disjunctive open subsets of Ω ⊂ Rd, d ∈ N. This system is called
a mesh or grid. In this work, computation on an unstructured mesh is considered. The mesh is
then employed in the numerical method to produce the spatial discretization of given formula,

15

Figure 1.6: Example of connections in a simple 2D mesh. Vertices connected to element c1

are {v3, v2, v4}. The cells connected to element v1 are {c1, c2}.

further described in next section. First, the notation is to be introduced.
Let A ⊂ Ω ⊂ Rd, then m (A) denotes a d-dimensional Lebesgue measure of the set A.

Similarly, for S ⊂ Ω ∧ S ⊂ Rd−1 m̃ (S) denotes (d− 1)-dimensional Lebesgue measure. In order
to simplify the notation, from now on the tilde above m̃ will be omitted and the applied function
will be clear out of the context.

The mesh is a set of subsets of Ω denoted T . Elements of T are called cells aka control
volumes. Cells are polygonal or polyhedral open convex subsets of Ω. The E is then system
of (d− 1)-dimensional elements constructing cells boundary aka edges or faces.

Definition 1. The mesh T and E tessellating the domain Ω ⊂ Rd, d ∈ N are defined as follows:

1.
⋃
K∈T K = Ω̄.

2. (∀K ∈ T) (∃EK ⊂ E)
(
∂K =

⋃
σ∈EK

σ̄
)
.

3. (∀K,L ∈ T)
(
K 6= L =⇒

(
m̃
(
K̄ ∩ L̄

)
= 0 ∨ (∃σ ∈ E)

(
σ = K̄ ∩ L̄

)))
.

The notation introduced in Definition 1 is sufficient to describe an unstructured mesh from the
mathematical point of view. However, in order to describe the polyhedral mesh geometrically, we
have to define basic mesh construction elements. The geometrical construction elements are, for
example, cells, faces and vertices, which define the tessellation. In the literature, these elements
are also called entities.

Definition 2. Let T be a d-dimensional mesh, where d ∈ N. The set of elements of dimension k
are T k, where k ∈{0, 1, . . . , d}. The Nk

T =
∣∣T k

∣∣ is the number of elements in of dimension k.
Finally, the complete system of geometrical elements is defined as

T ∗ =
d⋃

k=0

T k. (1.1)

For certain dimensions, the elements are named as follows:

• The d-dimensional element is a cell. Moreover, according to Definition 1, T d = T holds.
In further text, elements of T d will be denoted as c1, c2,

• The (d− 1)-dimensional element is a face. Moreover, according to definition 1, T d−1 = E
holds. In further text, elements of T d−1 will be denoted as f1, f2,

• The 1-dimensional element is an edge (line in space), the elements of T 1 will be denoted
as e1, e2,

16

• The 0-dimensional element is a vertex, it is equivalent to x ∈ Ω. The elements of T 1 will
be denoted as v1, v2,

Note that in 2D mesh, the faces and edges are the same. All elements except vertices are bounded
by elements with lower dimension. The vertices have a special position in construction of mesh,
because they are the only elements which are directly given position in space. Other elements
location is defined by their connections to vertices.

Definition 3. e, f ∈ T ∗ are connected ⇐⇒ e ⊂ ∂f or f ⊂ ∂e.

Furthermore, if the elements e, f ∈ T ∗ are connected and the dimension of f is greater than
the dimension of element e, then the e is a sub-element of f and conversely f is super-element
of e. It is also obvious that two elements of the same dimension can not be connected, because
one can not be part of the other’s boundary. In terms of connections, it is possible to define a
trivial neighborhood.

Definition 4. Let e ∈ T ∗, then the set of all connected elements is denoted

N (e) =
{
e′ ∈ T ∗

∣∣e′ is connected to e
}
.

Moreover, we denote the subset of the connected elements with the given dimension d as

Nd (e) = N (e) ∩T d.

The concept of connections allows to describe the topological or geometrical neighborhood
of elements in the mesh. For example, cells connected to a particular face are neighbors in the
sense that they share at least one face. This property will be advantageously used further in this
thesis.

Note that the notation using elements vertex, edge, face, cell is sufficient to describe all mesh
element occurring in meshes of dimension less or equal to 3. In a generic case, element types are
referred by their dimension. This system of elements is able to describe any polyhedral mesh or
similar system in any acceptable dimension.

1.3 Data Structure Representing Meshes with Arbitrary Topol-
ogy

This section describes data structures representing general unstructured meshed and their advan-
tages and disadvantages. It was already mentioned that representation of an unstructured mesh
requires explicitly stored connections between elements. However, it is not necessary to store all
the connections in the mesh to have full information about the mesh topology. Moreover, the
connections do not have to be symmetrical, e.g., it is sufficient when the cell refers to their faces
and the faces do not need to point to the cells. The backward connections can be obtained by
applying a simple algorithm, which will be discussed below.

1.3.1 Graph Description

To describe the system of connections, we use a directed graph GT ∗ = (VT ∗ , ET ∗), where
the vertices of the graph match the elements of the mesh and edges of the graph reflect the
connections between elements in the mesh.

The vertices VT ∗ of GT ∗ are grouped into layers by dimensions of elements:

VT ∗
∼= T ∗ = T 0 ∪T 1 ∪ . . . ∪T d, (1.2)

V k
T ∗
∼= T k. (1.3)

17

Figure 1.7: Example of graph GT ∗ to the mesh shown in Figure 1.6. The edges in the graph
are presented by black or red lines. The edges between cells and vertices are highlighted red, for
better readability.

The edges of GT ∗ are defined as follows,

ET ∗ =
{(
e, e′

)
∈ V 2

T ∗
∣∣e, e′ are connected

}
. (1.4)

For an example see Figure 1.7.
The graph GT ∗ contains all connections in the mesh. Since the connections of elements is

symmetrical relation, the graph GT ∗ is de facto not directed. That means (e, e′) ∈ ET ∗ ⇐⇒
(e′, e) ∈ ET ∗ , ∀e, e′ ∈ VT ∗ . Additionally, for simpler description of connections, i.e., graph edges,
we denote a subset of graph edges from dimension d1 to dimension d2 as follows

Ed1,d2T ∗ =
{(
e, e′

)
∈ ET ∗

∣∣∣e ∈ V d1
T ∗ , e

′ ∈ V d2
T ∗

}
. (1.5)

In the following analysis of the underlying mesh data structure, adjacency matrix will be used [31].

Definition 5. Let G = (V,E) be a graph. The adjacency matrix of the graph G is matrix AG ∈
R|V |×|V |defined as follows:

[AG]ij =

{
1 if (vi, vj) ∈ E,
0 if (vi, vj) /∈ E,

(1.6)

where i, j ≤ |V |,vi, vj ∈ V .

Furthermore, to investigate certain types of connections and properties of the graph mesh
representation, we introduce a connection matrix. The idea of connection matrix is based on
adjacency matrix. The connection matrix from dimension d1 to dimension d2 reads

[
Ad1,d2GT ∗

]
ij

=

{
1 if (vi, vj) ∈ E, vi ∈ V d1

T ∗ , vj ∈ V
d2
T ∗ ,

0 if (vi, vj) /∈ E, vi ∈ V d1
T ∗ , vj ∈ V

d2
T ∗ ,

, (1.7)

where Ad1,d2GT ∗
∈ RN

d1
T ×N

d2
T . The connection matrix is de facto a rectangular block of AGT ∗ . The

similarity of notation of the connection matrix and adjacency matrix is visible in Figure 1.8. For
example A1,0

GT ∗
reflects the connections from edges to vertices, i.e. E1,0

T ∗ . It can be easily seen
that the equation (

Ad1,d2GT ∗

)T
=
(
Ad2,d1GT ∗

)
, (1.8)

holds for any d1, d2 ∈{0, 1, . . . , d}. An example of adjacency matrix to the mesh presented in
Figure 1.6 is shown in Figure 1.8.

Further in this work, to design the data structure representing the mesh, we intend to study
only certain types of connections, i.e., a certain subgraph of GT ∗ .

18

Figure 1.8: Adjacency matrix of the graph representing the example mesh in Figure 1.6, for
the graph representation see Figure 1.7. It is possible to write the adjacency matrix as a block
matrix using the connection matrices, see the right representation. In the left matrix the blocks
are separated with dashed lines.

1.3.2 Possible Representations

In this section, some of the data structures representing T ∗ are discussed. As introduced in the
previous Section 1.3.1, the topology of a mesh T ∗ can be described using the graph GT ∗ .

In this work, the main purpose of the mesh is solving problems for PDE’s using finite volume
method [36, 42, 45, 30]. Basic properties of this method are:

• repeated accesses to mesh elements during computation,

• possible use of generic geometrical elements e. g. polygons and polyhedrons.

To satisfy the needs, the data structure must:

• contain all topology information about the mesh T ∗.(It is equivalent to the possibility of
reconstruction of GT ∗ or AGT ∗ .),

• allow instant access to grid elements and its connected elements,

• efficiently store grid information with respect to cache usage,

• contain the information about the face or edge orientation and its normal vector,

• be able to store a polyhedral mesh with generic topology,

• be able to add or remove grid elements.

In order to make the data structure efficient for working with the mesh, it is necessary to avoid
dynamic memory allocation as much as possible and prevent runtime operations. Thus, more
sophisticated data structures as a hash map are not suitable to solve this problem. Detailed
description of the implementation is in Chapter 2.

For the description of the data structures, a 3D polyhedral mesh will be considered. As
discussed in Section 1.3.1, storing all connections of the graph GT ∗ is very expensive, inefficient
and moreover, not necessary. Thus, we aim to reduce the amount of stored information by
omitting some edges in GT ∗ . So the problem is to find a subgraph

G̃T ∗ =
(
VT ∗ , ẼT ∗

)
, (1.9)

where ẼT ∗ ⊂ ET ∗ , with qualities meeting the above requirements. The main goal is to be
able to reconstruct GT ∗ from G̃T ∗ . This can be achieved, for example, using relation (1.8) and

19

Figure 1.9: Data structure scheme of the simplest representation in 3D mesh. The structures
contains references to other elements, e.g the cell refers to its faces (idFace[n]). The number in
the square brackets symbolizes the number of references. If the number is not generally known,
n is written instead. The vertices does not have any sub-elements, however they contain the
coordinates of their position in the space (coordinates[3], i.e. x, y, z).

combinations of connection information:[
Ad1,d2GT ∗

]
ij

= connect
(
Ad1,d3GT ∗

,Ad3,d2GT ∗

)
=

 1 if
(
∃k ∈

{
1, 2, . . . , Nd3

T ∗

})([
Ad1,d3GT ∗

]
ik

[
Ad3,d2GT ∗

]
kj

= 1

)
,

0 else,
(1.10)

where the dimensions d1, d2, d3 satisfy (d1 > d3 > d2) ∨ (d1 < d3 < d2). The condition for the
dimensions of the connection matrices consists in finding the correct paths in the graph that
are consistent with the mesh topology. The problem can be demonstrated on the example mesh
shown in Figures 1.6 and 1.8. The connection matrix

A2,1
GT ∗

= connect
(
A2,0
GT ∗

,A0,1
GT ∗

)
contains connections of cell c1 to edges e1, e2, e3, e4, e5. This result is incorrect, because the
cell c1 is connected to edges e1, e2, e3. The problem lies in the joined information, because we
got edges neighboring to cells over vertices instead of connected edges. Basically, the connecting
algorithm is an algorithm for finding paths of length 2 in the graph. This property of this
algorithm will be used in the neighborhood algorithm in Section 2.4.3.

Obviously it is necessary to store either connections from V k
T ∗ to V

k−1
T ∗ or from V k−1

T ∗ to V k
T ∗ ,

because those connections cannot be correctly obtained from (1.10).

Basic Representation

The simplest and most native representation of a 3D mesh T ∗ stores the following connections

ẼT ∗ = E3,2
T ∗ ∪ E

2,1
T ∗ ∪ E

1,0
T ∗ . (1.11)

The choice of ẼT ∗ means that following connection matrices A3,2
GT ∗

, A2,1
GT ∗

, A1,0
GT ∗

are available.
The data structure realizing this representation is presented in Figure 1.9. This representation
contains the full information about the mesh topology. For example, that it is possible to
reconstruct the topology information, we present how to obtain several types of connections that
are not stored:

A3,1
GT ∗

= connect
(
A3,2
GT ∗

,A2,1
GT ∗

)
, (1.12)

A0,3
GT ∗

=
(
A3,0
GT ∗

)T
=
(
connect

(
A3,1
GT ∗

,A1,0
GT ∗

))T
. (1.13)

Although, this representation is able to store the mesh, it is not suitable for application on
computer, because the vertices in V 3 have unbounded degree. The next representation solves
this problem wisely using topological quality of faces.

20

Figure 1.10: Data structure scheme of the representation with reverted connections between cells
and faces. The notation is the same as in Figure 1.9. Note that the number of face references to
cells is 2 independently on the mesh, i.e., idCell[2].

Figure 1.11: Data structure scheme of the representation chosen in [28].

Representation with Reverted Fell to Face Reference

Thanks to the fact that one face can be connected to up to two cells, it is possible to improve
the previous scheme. The chosen connections are:

ẼT ∗ = E2,3
T ∗ ∪ E

2,1
T ∗ ∪ E

1,0
T ∗ . (1.14)

This representation is very similar to the previous one. Thus, this representation also satisfies
the requirement on the reconstruction of GT ∗ . The data structure realizing this representation is
shown in Figure 1.10. The subtle difference consisting in reverting the connections between cells
and faces has a very significant effect. This way, the degree of the vertices in V 2 are bounded
by 2 in the subgraph G̃3,2

T ∗ . Therefore, this representation is more suitable for implementation,
because it requires less dynamically allocated memory. The face data structure can be optimized
and the number of cells can be preset to 2. This optimizes cache usage. Unfortunately, a similar
trick does not work for connections E2,1

T ∗ and the degree of faces in the graph G̃T ∗ remains
unbounded.

Moreover, storing the connections from faces to cells has a particular advantage for FVM as
will be noted further in Section 5.2.2.

Comparison with Other Published Works

Beall [28] presents similar description of mesh to ours. However, they require at least one cycle
in the graph G̃T ∗ , in order to simplify some operations and iteration on the mesh. Therefore,
the selected representation is

ẼT ∗ = E3,2
T ∗ ∪ E

2,1
T ∗ ∪ E

1,0
T ∗ ∪ E

0,3
T ∗ . (1.15)

This representation is the same as (1.11), because it is possible to obtain A0,3
GT ∗

according
to (1.13). Thus, this representation is worse than the basic one presented as the first, because it
enforces storing E0,3

T ∗ as
(
A0,3
GT ∗

)
directly in the mesh data structure which breaks space locality,

while it is possible to compute the A0,3
GT ∗

on the fly. If we do not need the connections from
vertices to cells, then the A0,3

GT ∗
is not needed at all and there is no reason to store them.

1.3.3 Representation of Choice

The chosen representation is based on the representation in (1.14). Because the connections
between cells and faces are reverted, the iteration over boundary of a cell is more complicated
and requires the creation of A3,2

GT ∗
. To solve this problem, the combination of the fact that a face

has up to 2 neighboring cells and the concept of linked list data containers could be used. The

21

Figure 1.12: The scheme of the chosen representation on unstructured mesh.

Figure 1.13: Graph scheme of the chosen representation in 3D case.

point is to chain the boundary of a cell as a cycled uni-directional linked list. This is reached
by adding a reference to the next boundary element for both right and left cells in the face data
structure. Now, in order to allow direct iterations over cell boundary, it is sufficient to add a
single reference in the cell pointing to any of the cell boundary faces. The scheme of current
data structure is shown in Figure 1.12.

The graph representing the final data structure reads G∗T ∗ =
(
T ∗, E∗T ∗

)
, where

E∗T ∗ = E∗3,2T ∗ ∪ E
∗2,2
T ∗ ∪ E

2,3
T ∗ ∪ E

2,1
T ∗ ∪ E

1,0
T ∗ , (1.16)

where E∗3,2T ∗ , E
∗2,2
T ∗ are newly added connections. For easier understanding, see Figure 1.13, where

the connections E∗3,2T ∗ are marked by black arrows, and E∗2,2T ∗ are highlighted in red. Note that in
terms of graph theory, the graph must contain cycles in E∗2,2T ∗ with respect to connections E2,3

T ∗ .
Compared to the representation (1.14), this representation allows direct iteration of element

boundary while still having bounded degrees of V 3
T ∗ , V

1
T ∗ , V

0
T ∗ and the V 2

T ∗ has bounded number
of references to cells. Therefore, this representation is very promising to work efficiently on
common processor architectures.

2D Example

In the case of two dimensional mesh, our representation benefits from the fact that face element
coinsides with edge. Therefore, the stored connections in graph G∗T ∗ =

(
T ∗, E∗T ∗

)
are the

following:
E∗T ∗ = E∗2,1T ∗ ∪ E

∗1,1
T ∗ ∪ E

1,2
T ∗ ∪ E

1,0
T ∗ . (1.17)

The system of connections might be better seen from Figure 1.15.

22

Figure 1.14: Example of connection on 3D mesh corresponding to the graph presented in Fig-
ure 1.13.

Figure 1.15: An example of connections in a 2D mesh

The biggest advantage of our representation in 2D is that the data structure is static while
it is still able to store any polygonal mesh.

d-dimensional Example

In the most generic case, i.e., the dimension of the mesh is greater than 3. The chosen represen-
tation G∗T ∗ =

(
T ∗, E∗T ∗

)
is the following:

E∗T ∗ = E∗d,d−1
T ∗ ∪ E∗d−1,d−1

T ∗ ∪ Ed−1,d
T ∗ ∪ Ed−1,d−2

T ∗ ∪ Ed−2,d−3
T ∗ ∪ . . . ∪ E2,1

T ∗ ∪ E
1,0
T ∗ . (1.18)

For easier understanding of the generic concept, see Figure 1.16. Thanks to the properties of
named elements in Definition 2, it is possible to perform the same trick as in the 3D case.
The faces has up to 2 neighboring cells independently on the mesh dimension. The connec-
tions E∗d,d−1

T ∗ , E∗d−1,d−1
T ∗ Ed−1,d

T ∗ are again marked by black, red and green arrows in Figure 1.16
as well as in previous 3D case, Figure 1.13.

In this case as a generalization of 3D case, there are more layers of elements in the graph that
are connected to others by blue arrows. Those are the connections Ed−1,d−2

T ∗ , Ed−2,d−3
T ∗ , . . . , E2,1

T ∗ .
As was already mentioned, storing those connections is expensive, but it must be seen as a tax
for having unstructured mesh with arbitrary topology in generic dimension. Moreover, as a
consequence of the connection of adjacency matrices (1.10) (combination of connections), there
is no way how to develop a data structure without storing those connections represented by blue
arrows.

Reserved Number of Sub-Elements

Unfortunately, there is no way, to bound degrees in connections from faces to edges while still
allowing arbitrary mesh topology. There is possible only limited solution, to prescribe the maxi-
mum number of references represented by blue arrows in Figure 1.16. Moreover, the limit can be

23

Figure 1.16: This is an example of a graph representing a generic topology mesh in generic
dimension. In comparison to 3D case in Figure 1.13, a violet layer representing generic elements
appears here. These generic elements have dimension d ∈ [2, n− 1] and they refer to their
boundary using blue arrows Ed,d−1

T ∗ . Fortunately, other elements preserve their qualities.

prescribed for every dimension separately. For example, if it is set as n ≤ 3 in a 3D mesh, then all
the faces have to be triangles. The higher the bound for n, the richer mesh topology is allowed.
The advantage of prescribing the maximum number is, that the data structure can be optimized
and the indexes from faces to edges can be embedded into the face structure. Therefore, dynamic
allocation of memory in the structure is prevented alltogether.

24

Chapter 2

The GTMesh Library

This chapter describes the construction and implementation of a C++ template library for work-
ing with unstructured mesh with a general topology in an arbitrary dimension. The implemen-
tation is based on the data structure presented in Section 1.3.3. The discussion in this chapter
does not focus only on the description of the final library, but it aims to introduce the whole
process of developing such a complex project with all the architecture, concepts and know how.

The implementation of GTMesh (general topology mesh) utilizes modern C++ techniques
as template metaprogramming, SFINAE, and ADL [52, 3, 5]. The template metaprogramming
denotes techniques of automatic generation of temporary code based on template parameters.
SFINAE (Substitution Failure Is Not An Error) is applied, e.g., when the compiler looks for the
candidates to the implementation of the given function or class and the parameter setup causes
an error, then the candidate is ignored, but the compilation continues with another candidate.
ADL (Argument Dependent Lookup) is a set of rules of looking up of unqualified names, e.g.,
enables to utilize a later definition of an overloaded function. The used standard was held down
at C++14 except one optimization for C++17 (usage of string_view for hash calculation).
Moreover, the realization of the GTMesh library required creation of other interesting tools
useful for debugging and data IO, which are described in Chapter 4.

Firstly, let us describe the vision of the final product and corresponding project architecture.
Without the effort put in the development of the project architecture, we might not be able to
achieve such results.

2.1 Project Architecture

The aim of GTMesh library is to provide framework for working with a general unstructured mesh
in an intuitive and unrestricted way. In the case of developing the GTMesh library, it helped us
to start from the vision of the final product. Therefore, for the sake of better understanding the
implementation of the internals we start with the description of what exactly is expected from
the class UnstructuredMesh, which provides the user interface to most of GTMesh features. We
expect from the UnstructuredMesh class to provide:

1. a simple definition, where everything can be set by template parameters (see code list-
ing 2.1),

2. the possibility to simply access the mesh elements and iterate over them the mesh (see
code listing 2.2),

3. basic functionalities such as measure computation or connections reconstruction (see code
listing 2.3),

4. the possibility to map data onto mesh elements easily (see code listing 2.4),

25

Code listing 2.1 Example of a definition of UntructuredMesh. The definition must specify
the mesh dimension, reference types, type of coordinates and finally reserves for numbers of
references as described in Section 1.3.3.

1 // 2D unstructured mesh size_t references and double precision coordinates
2 UnstructuredMesh <2, size_t , double > mesh2D;
3

4

5 // 3D unstructured mesh size_t references and double precision coordinates
6 // with maximum nuber of face sub -elements prescibed to 6
7 UnstructuredMesh <3, size_t , double , 6> mesh3D;
8

9 // with dynamically allocated sub -elements of faces ,
10 // i.e. face could have any number of edges
11 UnstructuredMesh <3, size_t , double > mesh3D;
12

13

14 // 5D unstructured mesh size_t references and double precision coordinates
15 // maximum number of cell boundary sub -elements prescibed to 4
16 // maximum number of sub -elements of elements of dimension 3 prescibed to 4
17 // maximum number of sub -elements of elements of dimension 2 prescibed to 6
18 UnstructuredMesh <5, size_t , double , 4, 4, 6> mesh5D;

Code listing 2.2 Example of working with mesh elements and the mesh itself.

1 UnstructuredMesh <3,size_t , double , 6> mesh;
2 // obtaining the cell with index 0
3 mesh.getElements <3 >().at(0);
4 mesh.getCells ().at(0);
5

6 // otaining the vertex on index 0
7 mesh.getElements <0 >().at(0);
8 mesh.getVertices ().at(0);
9

10 // iteration over boundary of cell 0
11 auto& cell_0 = mesh.getCells ().at(0);
12 size_t bElemIndex = cell_0.getBoundaryElementIndex ();
13 do {
14 // ... do some stuff
15 // get next boundary element index
16 bElemIndex = mesh.getFaces ().at(bElemIndex). getNextBElem(cell_0.getIndex ());
17 } while (bElemIndex != cell_0.getBoundaryElementIndex ());
18

19 // or equivalently
20 mesh.apply <3, 2>(
21 0,
22 [](size_t cellIndex , size_t faceIndex){
23 // ... do some stuff
24 });
25

26

27

28 // moreover it is possible to perform deeper loops
29 // and for all elements
30 mesh.apply <3, 0>(
31 [](size_t cellIndex , size_t faceIndex){
32 // ... do some stuff
33 });

26

Code listing 2.3 Example of generic functions that are usually applied to the mesh. The point
is to automatically apply the correct implementation of a function according to mesh template
arguments. The aim is to let the user have feeling that there is no richer structure behind the
UnstructuredMesh structure. Thanks to this, the library is user friendly and easy to work with.

1 // connections from vertices to cells
2 auto vertexToCellConnection = mesh.connections <0,3>();
3

4 // obtain respective Lebesgue measure of all elements of the mesh
5 // with dimension greater than 0
6 auto measures = mesh.computeElementMeasures ();
7

8 // obtain vectors perpendiculat ro faces
9 auto normals = mesh.computeFaceNormals ();

10

11 // calculate the centers of all elements with dimension greater than 0
12 auto centers = computeCenters <DEFAULT >(mesh);

Code listing 2.4Mapping data to mesh elements. The data shall be allocated on each dimension
separately and it should look like the data are allocated in the mesh, while the container is
completely selfstanding. This concept is very important for implementation of functions as the
automatic and generic result type.

1 // obtain respective Lebesgue measure of all elements of the mesh
2 // with dimension greater than 0
3 auto measures = mesh.computeElementMeasures ();
4

5 // the length of the edge with index 0
6 measures.getDataByDim <1 >()[0];
7

8 // the surface area of the face with index 0
9 measures.getDataByDim <2 >()[0];

10

11 auto& cell_0 = mesh.getCells ().at(0);
12 // the volume of the cell 0
13 measures[cell_0];
14

15 dists = mesh.computeCellsDist ();
16

17 MeshDataContainer <std::tuple <double , float >, 3, 2> data;
18 data.allocateData(mesh);
19

20 for(auto cell& : mesh.getCells ()) {
21 data.at(cell) = 1.0 / measures.at(cell);
22 }
23

24 data.allocateData(mesh);
25 for(auto face& : mesh.getFaces ()) {
26 data.at(face) = measures.at(face) / dists.at(face);
27 }

Code listing 2.5 A concept of a convenient interface to data import and export.

1 UnstructuredMesh <3,size_t , double , 6> mesh;
2 // load the mesh from fpma file
3 FPMAMeshReader <3> reader;
4 ifstream file("MeshFile.fpma");
5 reader.loadFromStream(file , mesh);
6

7 // export the mesh into VTK file
8 VTKMeshWriter <3, size_t , double > writer;
9 ofstream ofile("MeshFile.vtk");

10 writer.writeHeader(ofile , "fpma_output");
11 writer.writeToStream(ofile , mesh);

27

5. methods for data and mesh import and export (see code listing 2.5).

As the requirements on GTMesh are specified, we can proceed with the project architecture.
The aim is to create a code as generic as possible that would automatically adapt the data

structures to the particular setup. This can be achieved by utilizing modern C++ template
programming techniques such as templates specializations, conditional inheritance, template
metaprogramming etc. Moreover, this approach benefits from more compact and efficient code,
which resolves in less lines of code and as a consequence, less errors.

The first challenge is to design a structure to store the unstructured mesh. The mesh consists
of elements which properties depend on their dimension. The structure of the mesh elements is
based on the structure in Figure 1.12, but we intend to add some attributes for programming
purposes. Moreover, certain properties are dependent on mesh dimension, e.g., how a cell refers
to one of its faces or a face connects cells. Hence, the plan is to prepare those properties
as separate structures. Then, they will be inherited by the mesh element depending on its
template arguments. Moreover, as was already discussed, we plan to optimize the structure to
prevent dynamic allocation of memory. Therefore, we want to prescribe a reserve for the array
of references to sub-elements, i.e., the blue arrows in the Figure 1.16. Using the reserve, it is
possible to embed the references directly in the structure of an element. The final structure
representing a mesh element is called MeshElement.

Once the MeshElement structure is implemented, the next step is to gather the MeshElement
structures in a structure called MeshElements as explained in detail in Section 2.2.4.
MeshElements is the most fundamental structure of the project, since it contains all the mesh
elements with their connections. The MeshElements structure will utilize tuple like implementa-
tion to automatically create containers for respective MeshElement structures according to the
template arguments.

Then we create global functions working with the MeshElements. Thanks to the fact, that the
functions are defined outside of the MeshElements, it is easier to write compact and generic code,
because the function can be implemented in its own header file. Moreover the functions plan to
utilize template specializations, which are limited when defined in another class. Therefore, it is
easier to make functions automatically respect the mesh dimension. For example, calculation of
elements centers or measures, where the computation formula depends on mesh dimension. The
same concept of programming can be used for import and export of the MeshElements.

However, there occurs a problem bound to the implementation of the functions working
with the mesh. The problem is, what is the result type of such function. For example, the
function calculating the measures of elements of the mesh, the result must be mapped to all
dimensions grater than zero. This problem is solved by developing a special container, that
maps data to the mesh to each dimension separately. This way, it is capable to map data
automatically to all dimensions higher than zero, e.g., measures of elements. This container is
called MeshDataContainer and has a significant impact on user-friendliness of the library.

Finally, as algorithms and functions on the MeshElements are done, it is possible to create a
simple wrapper called UntructuredMesh. This wrapper only inherits the MeshElements structure
and thanks to the global implementation of mesh functions, it might offer most of the function-
ality as its own methods. The realization of such a method is very simple, by applying the
corresponding global function on *this, because UnstrucrutedMesh is a child of MeshElements.

This way it is possible to build the project in a modular way by dividing the implementation
of its functionality into separate source files. If we did not consider this approach, all these
functions with the implementation in separate template classes would have to be a part of the
MeshElements structure. In such a case, the header file with the definition of MeshElements
would have thousands of lines and it would be very difficult to manage.

Let us begin with detailed description of the MeshElement and MeshElements classes.

28

Figure 2.1: The MeshElement structure attributes and specializations. The colors of references
matches the references in Figure 1.16. Moreover, we provide two additional properties to the
MeshElement structure. The first is elementIndex, which reflects the position of the element in
the array in MeshElements. The second is a flag and centerVertex highlighted in orange for a
cell (Edim=Mdim) and face (Edim=Mdim-1). The flag is designed for the user to store simple
labels directly in the mesh structure.

2.2 The MeshElements Structure

According to the previous Section 2.1, the MeshElements structure is the most important struc-
ture of the project because it contains all information about the mesh. The class MeshElements
consists of dT + 1 arrays of MeshElement classes, where dT ∈ N is the mesh dimension. Addi-
tionally, according to the vision presented in Code listing 2.1, the structure MeshElements has
the following template arguments:

1. MeshDimension: the geometrical dimension of the mesh, i.e. dT ,

2. IndexType: integer type of references to elements in the mesh,

3. Real: floating point type of coordinates, e.g., float or double,

4. Reserve: variadic template argument of type unsigned int, specifies the reserved number
of references to sub-elements of elements with dimension between 1 and dT .

These arguments are further passed to the MeshElement structure template, the construction of
which respects those arguments. To be able to create the MeshElements class, we have to start
with the construction of basic mesh elements, i.e., the MeshElement class template.

2.2.1 Scheme of the MeshElement structure

The name MeshElement is a common name for several specializations of the class with different
properties and attributes based on the element dimension and mesh dimension. The mesh

29

elements have the following attributes according to the dimension.

1. The cell element has only one reference to one of its boundary elements.

2. The face element has two references to the left and right cells and two references to the
next face of the boundary of both connected cells.

3. The face and cell elements have additional attributes: flag and center vertex.

4. All elements with dimension between 1 and dT have a prescribed number of references to
their sub-elements.

(a) If the prescribed number of references is positive, then the references are embedded
directly in the structure.

(b) If the number of references is equal to 0, then the references are allocated dynamically.

5. The edge element has two references to vertices.

6. The vertex element has its coordinates.

7. All elements have their own index representing their position in the respective array con-
tained in the MeshElements structure.

The scheme of the specializations of the structure MeshElement is shown in Figure 2.1. As noted
in Section 2.1, there are some properties that depend on the element dimension with respect to
mesh dimension. We start with the discussion about the implementation of the generic properties
of MeshElement.

2.2.2 Preparation of Generic MeshElement Properties

Because of the complexity of the MeshElement structure, we decided to create those properties
as a separate structures. Thanks to the creation and inheriting these attributes as separate
structures, we are fulfilling the DRY (don’t repeat yourself) programming concept. Specifically,
the properties are:

• connection of faces to cells,

• flag and center vertex,

• element index.

Let us start from the basic and most elementary one, elementIndex provided by MeshElementBase
class, which is the base class of the MeshElement class.

MeshElementBase The MeshElementBase class (see Code listing 2.6) provides an index
mandatory for all mesh elements. Every element must have an elementIndex referring to itself
in the array in which it is contained. Moreover, in the MeshElementBase there is an attribute
named globalIndex. This index is meant to be used in case of decomposition of the mesh, to
be able to reconstruct the original mesh from the partial ones.

Cell Connection and Cell Boundary Connection Next, we introduce abstract properties
such as CellConnection, CellBoundaryConnection shown in Code listings 2.7 and 2.8. These
structures are designed to be inherited by the mesh element with dimension equal to dT − 1.
These structures provide references highlighted in red and lime in Figure 2.1. Moreover, they
provide methods simplifying the work with accessing of mesh elements such as neighboring cells
or cell boundary. For instance, the methods are:

• getting the reference to the neighbor of the given cell,

• getting reference to the next boundary element with respect to the given connected cell.

30

Code listing 2.6 MeshElementBase, the base class of MeshElement. The MeshElementBase
provides two indexes. The elementIndex is a reference of a MeshElement to itself in the respective
array contained in the MeshElements structure. The globalIndex is an index referring to the
element in global context, when the mesh is decomposed.

1 template <typename IndexType >
2 class MeshElementBase{
3

4 // Index of the element in the mesh or in mesh component
5 IndexType ElementIndex;
6

7 // Global index of element in the mesh component
8 IndexType GobalElementIndex;
9 public: //...

10 };

Code listing 2.7 The CellConnection structure provides two indexes to connected cells.
This structure is to be inherited by MeshElement class representing the face. The name
CellConnection reflects the fact that faces are connected to two cells if they represent their
common boundary (see Definition 3). This way cells are connected. This type of connection in
the mesh is marked by light green arrows in Figure 1.16.

1 template <typename IndexType >
2 class CellConnection {
3 // Indexes to two cells which are connected
4 // with this element
5 IndexType CellRightIndex , CellLeftIndex;
6 public:
7 //... other methods working with the above indexes
8 };

Vertex From the construction point of view, the MeshElement with dimension 0 is a vertex.
In the further applications, it will be useful to work with the vertex as a vector of coordinates.
Thence, we define a class Vertex with vector operations, e.g., element-wise addition or scalar
product. From the definition of the Vertex class in Code listing 2.9, the Vertex is de facto
std::array with additionally defined vector operations. Thanks to the static dimension of the
Vertex, it is possible to realize all operations with the Vertex class using template metaprogram-
ming, completely avoiding the use of for loops. An example of inline addition is shown in Code
listing 2.10. The motivation of making the operations inline is to optimize the computation, since
the compiler can better understand the code and apply hardware-dependent optimization such as
superscalar execution. Finally, the vertex mesh element can be implemented by inheriting both
Vertex with the given real type and number of coordinates, and MeshElementBase. This way,
the MeshElement with dimension 0 is both a Vertex and a MeshElement by the terms of C++.

Computationally Significant Element The last attribute is named computationally signif-
icant element and is realized by class named ComputationallySignificantElement, see Code
listing 2.12. Computationally significant elements are cells and faces, i.e., the elements directly
manipulated by the numerical scheme. This structure provides a label named flag to its child
object. Furthermore, it embeds a center vertex which is necessary for the computation of mesh
properties such as measures of elements or normal vectors of faces.

2.2.3 Definition of the MeshElement Structure

Thanks to the attributes prepared in Section 2.2.2, it is possible to easily construct the class
MeshElement with all specializations dependent on the element and mesh dimensions.

31

Code listing 2.8 The CellBoundaryConnection structure definition. This class inherits the
properties of CellConnections, because it has to map the indexes to the next boundary elements
with respect to connected cells. By having the connections to the cells, it is possible to create
such methods as getNextBElem, which returns the index to the next element according to the
given cell index.

1 template <typename IndexType >
2 class CellBoundaryConnection : public CellConnection <indexType > {
3

4 // Index of the next boundary element with respect to the left cell
5 IndexType NextBElemWRTCL;
6

7 // Index of the next boundary element with respect to right cell
8 IndexType NextBElemWRTCR;
9 public:

10 // ... methods working with above references
11 IndexType getNextBElem(IndexType cellIndex) const;
12 };
13

14

15 template <typename IndexType >
16 IndexType CellBoundaryConnection <IndexType >:: getNextBElem(IndexType cellIndex) const{
17

18 // If cell is invalied then throw an exception
19 if (cellIndex == INVALID_INDEX(IndexType)) {
20 throw std:: runtime_error("Invalid␣index␣given␣to␣the␣getNextBElem");
21 }
22

23 // If the cell is equal to Cell1 then return the NextBElemWRTCR
24 if(cellIndex == this ->getCellRightIndex ()){
25 return getNextBElemWRTCR ();
26

27 // If the cell is equal to Cell2 then return the NextBElemWRTCL
28 } else if (cellIndex == this ->getCellLeftIndex ()){
29 return getNextBElemWRTCL ();
30

31 // If the cell is equal neither the left cell nor the cell right then
32 // throw an exception
33 } else {
34 std:: stringstream error;
35 error << "Neither␣of␣cell␣indexes␣(" << this ->getCellLeftIndex () << ","
36 << this ->getCellRightIndex () << ")␣matches␣the␣given␣one␣("
37 << cellIndex << ")";
38

39 throw std:: runtime_error(error.str ());
40 }
41 }

32

Code listing 2.9 Vertex class is a static vector with defined vector operations. One of the
purposes of this class is to be inherited by MeshElement of dimension 0. The listing also presents
an example of implementation of addition of two vectors. Using the inlineAddition class, see
Code listing 2.10, the loop over vector components is statically unrolled at compile time.

1 template <unsigned int Dim , typename Real = double >
2 class Vertex : public std::array <Real , Dim > {
3 public:
4 // Vector subtracion
5 Vertex <Dim , Real > operator -(const Vertex <Dim , Real >&) const;
6 // Vector addition
7 Vertex <Dim , Real > operator +(const Vertex <Dim , Real >&) const;
8 // ... other methods
9 };

10

11 // addition of two vertices
12 template <unsigned int Dim , typename Real >
13 Vertex <Dim , Real > Vertex <Dim , Real >:: operator +(const Vertex <Dim , Real >& v) const {
14 Vertex <Dim , Real > res;
15 inlineAddition <Dim , Real >:: computation(res.data(), this ->data(), v.data ());
16 return res;
17 }

Code listing 2.10 An example of a an unrolled vector operation. The unrolling is done by class
template specialization. The general method adds two elements at the same position and calls
addition for the next index. Finally, the specialization for index 0, the function compute only
adds the elements at position 0. The main advantage of this approach is the avoidance of loops.
Therefore, the compiler can easily optimize such operation. This example is good to understand
the point of this trick. It is possible to implement this functionality in more generic way, see
Code listing 2.11.

1 template <unsigned int N, typename Real >
2 struct inlineAddition{
3 static inline void computation(Real *res , const Real *x, const Real *y){
4 inlineAddition <N-1, Real >:: computation(res , x, y);
5 res[N-1] = x[N-1] + y[N-1];
6 }
7 static inline void computation(Real *x, const Real *y){
8 inlineAddition <N-1, Real >:: computation(x, y);
9 x[N-1] += y[N-1];

10 }
11 };
12

13 // specialization for argument 0
14 // terminates the recursion
15 template <typename Real >
16 struct inlineAddition <1, Real >{
17 static inline void computation(Real *res , const Real *x, const Real *y){
18 res [0] = x[0] + y[0];
19 }
20 static inline void computation(Real *x, const Real *y){
21 x[0] += y[0];
22 }
23 };

33

Code listing 2.11 An example of a function which automatically performs loop unrolling with
respect to vector components and can be applied to any binary operator. In comparison to
the implementation in Code listing 2.10, this code is more general, since it allows computation
with any binary operator. Furthermore, the implementation utilizes SFINAE [5] to make different
implementation of InlineBinaryProcessor for different template arguments. The first definition
of the function InlineBinaryProcessor is applied when the pos is lower than Dim - 1. If the
pos is equal to Dim - 1, the first definition of InlineBinaryProcessor is invalid, therefore the
the second is used. Note that, when calling this function right one definition must be valid. This
way, the recursion can be stopped, when parameter pos reaches the value Dim - 1. Moreover, the
code presents implementation of operator+ utilizing the InlineBinaryProcessor. This concept
will be further developed and utilized in Section 4.2.

1 // This function template is used when pos < Dim - 1
2 template <unsigned int Dim , typename Real , typename Functor , unsigned int pos = 0>
3 typename std::enable_if <
4 pos < Dim - 1
5 >::type
6 InlineBinaryProcessor(Vertex <Dim , Real >& res ,
7 const Vertex <Dim , Real >& op1 ,
8 const Vertex <Dim , Real >& op2 ,
9 const Functor& func){

10

11 res[pos] = func(op1[pos], op2[pos]);
12 InlineBinaryProcessor <Dim , Real , Functor , pos+1>(res , op1 , op2 , func);
13 }
14

15 // This function is valid only when pos == Dim - 1
16 template <unsigned int Dim , typename Real , typename Functor , unsigned int pos = 0>
17 typename std::enable_if <
18 pos == Dim - 1
19 >::type
20 InlineBinaryProcessor(Vertex <Dim , Real >& res ,
21 const Vertex <Dim , Real >& op1 ,
22 const Vertex <Dim , Real >& op2 ,
23 const Functor& func){
24

25 res[pos] = func(op1[pos], op2[pos]);
26 }
27

28 // addition of two points
29 template <unsigned int Dim , typename Real >
30 Vertex <Dim , Real > Vertex <Dim , Real >:: operator +(const Vertex <Dim , Real >& v) const {
31 Vertex <Dim , Real > res;
32 InlineBinaryProcessor(res , *this , v,std::plus <Real >());
33 return res;
34 }

Code listing 2.12 Additional properties of cells and faces to simplify the work with the mesh.
This class provides integer label flag and center vertex to its child object. The label can be
used to mark boundary cells or faces to determine the applied boundary condition. The center
vertex is used to calculate some properties of the mesh, e.g., measures or face normal vectors.
Therefore, it simplifies the work with mesh topology.

1 template <unsigned int MeshDim , typename Real >
2 class ComputationallySignificantElement
3 {
4 protected:
5 Vertex <MeshDim , Real > center;
6 int flag;
7 public: // ... methods
8 };

34

Code listing 2.13 Definition of general MeshElement template class. This definition is in-
tended to be used for elements with dimension between 1 and dT . These elements have to
store all references to their sub-elements. The references are stored in special container named
SubelementContainer, that is, std::array for Reserve greater than 0 and std::vector for
Reserve equal to 0, see Code listings 2.14 and 2.15. This concept enables to specify the
reserved number of references which are directly embedded into the structure, and there-
fore the optimizes the memory location. However, it is still possible to use the dynamic
allocation in case, that the user do not know the loaded mesh parameters. Moreover, us-
ing the conditional inheriting, the class also inherits qualities CellBoundaryConnection and
ComputationallySignificantElement, when the dimension of the MeshElement is dT −1. Oth-
erwise, empty structures are inherited, which resolves in omitting the inheritance.

1 template <unsigned int MeshDim , unsigned int ElementDim ,
2 typename IndexType , typename Real ,
3 unsigned int Reserve = 0>
4 class MeshElement : public MeshElementBase <IndexType >,
5 public std:: conditional <ElementDim == MeshDim - 1,
6 CellBoundaryConnection <IndexType >, emptyStruct >::type ,
7 public std:: conditional <ElementDim == MeshDim - 1,
8 ComputationallySignificantElement <MeshDim , Real >, emptyStruct2 >:: type{
9 SubelementContainer <IndexType , Reserve > Subelements;

10 public: ...
11 };

We start with the general definition of the MeshElement class template and continue with its
specializations. To declare the MeshElement class, the template arguments are the following:

1. MeshDim: the dimension of the mesh,

2. ElementDim: the dimension of the particular element,

3. IndexType: type of reference,

4. Real: type of coordinates,

5. Reserve: prescribed number of references.

The general MeshElement class is constructed as an element of dimension between 1 and dT ,
which has a prescribed number of sub-elements. According to the scheme presented in Figures 2.1
and 1.16, it is the connection highlighted in blue. The definition of general MeshElement class
template is in Code listing 2.13. Moreover, in the case of element dimension dT − 1, the classes
CellConnectingElement and ComputationallySignificantElement are inherited using condi-
tional inheritance. This is achieved by utilizing the std::conditional class template which
returns the particular type or emptyStruct which is equivalent to omitting the inheritance.
For example, this structure is applied for construction of the face structure in 3D. Moreover,
static allocation of references to sub-elements for positive Reserve and dynamic allocation for
zero Reserve are required according to the point 4 of the list of the mesh element properties
in Section 2.2.1. This is achieved in the class template SubelementContainer, see Code list-
ings 2.14 and 2.15. From the implementation point of view, SubelementContainer is generally
std::array<IndexType, Reserve>, i.e., all reserved references are embedded into the class at
compile time. Specially for zero Reserve, it inherits std::vector<IndexType>, which is a dy-
namic container. In both cases, SubelementContainer provides a unified interface including the
push_back method, which is usually available in dynamic data structures only. In the general
case when the Reserve is to be exceeded by the push_back method, a runtime exception is
thrown. Finally, to be able to iterate over the SubelementContainer correctly, the methods end
and cend must be rewritten to return pointer after last valid element of the container. Otherwise,
the whole array would be iterated. See declaration of those methods in Code listing 2.14.

35

Code listing 2.14 Definition of the SubelementContainer template class. This general def-
inition is applied in the case of positive reserve, otherwise a specialization for zero reserve is
utilized, see Code listing 2.15. The purpose of this container is to behave as a dynamically
allocated vector. Therefore, is has its length and method push_back. This way the work with
both containers is the same. The only difference is when push_back method would overgrew the
reserved number of elements, then an exception is thrown. Furthermore, when using iterators on
this class, it is necessary to stop the iteration in time. Otherwise, the whole std::array would
be iterated. This was achieved by redeclaring methods end and cend to return pointer right after
the last valid element.

1 template <typename IndexType , unsigned int Reserve >
2 class SubelementContainer : public std::array <IndexType , Reserve >{
3 unsigned int numberOfElements = 0;
4 public:
5 unsigned int getNumberOfSubElements () const {
6 return numberOfElements;
7 }
8

9 unsigned int size() const {
10 return numberOfElements;
11 }
12

13 unsigned int reserve () const {
14 return Reserve;
15 }
16

17 void addSubelement(IndexType index) {
18 if (numberOfElements < Reserve){
19 this ->at(numberOfElements) = index;
20 numberOfElements ++;
21 } else {
22 throw(std:: runtime_error(
23 "number␣of␣edges␣overgrew␣the␣number␣of␣reserved␣indexes␣(" +
24 std:: to_string(Reserve) + ").")
25);
26 }
27 }
28

29 void push_back(IndexType index) {
30 addSubelement(index);
31 }
32

33 void removeSubelement(unsigned char atIndex){
34 if (atIndex < numberOfElements){
35 for(unsigned char i = atIndex; i < numberOfElements - 1; i++){
36 this ->at(i) = this ->at(i+1);
37 }
38 this ->at(numberOfElements) = {INVALID_INDEX(IndexType), false };
39 numberOfElements --;
40 } else {
41 throw(std:: runtime_error(
42 "removing␣index␣" + std:: to_string(atIndex) +
43 "␣is␣greather␣than␣number␣of␣subelements␣" +
44 std:: to_string(numberOfElements)+ ".")
45);
46 }
47 }
48

49 typename std::array <IndexType , Reserve >:: iterator end() {
50 return this ->begin() + getNumberOfSubElements ();
51 }
52

53 typename std::array <IndexType , Reserve >:: const_iterator cend() const {
54 return this ->cbegin () + getNumberOfSubElements ();
55 }
56 };

36

Code listing 2.15 Specialization of SubelementContainer class for template argument Reserve
equal to 0. Unlike to generic definition inheriting std::array, shown in Code listing 2.14, this class
inherits std::vector which is a dynamically allocated container. The methods are only unifying
the interface with the generic SubelementContainer template.

1 template <typename IndexType >
2 class SubelementContainer <IndexType , 0> : public std::vector <IndexType > {
3 public:
4 IndexType getNumberOfSubElements () {
5 return this ->size ();
6 }
7

8 void addSubelement(IndexType index) {
9 this ->push_back(IndexType{index });

10 }
11

12 void removeSubelement(unsigned char atIndex){
13 this ->erase(atIndex);
14 }
15 };

Code listing 2.16 Specialization for MeshElement with dimension 0. The element of 0 dimension
is a vertex. Therefore, in this case the element only inherits properties of MeshElementBase and
Vertex, discussed in Code listings 2.6, 2.9.

1 template <unsigned int MeshDim , typename IndexType ,
2 typename Real , unsigned int Reserve >
3 class MeshElement <MeshDim , 0, IndexType , Real , Reserve >
4 : public MeshElementBase <IndexType >,
5 public Vertex <MeshDim , Real >{
6 public: ...
7 };

Code listing 2.17 MeshElement specialization for element dimension 1, i.e., edge. The edge is
defined by two vertices, therefore the structure have two references to vertices named A and B.
Similarly to the definition of general element, if the mesh dimension is 2, then edge inherits
CellBoundaryConnection and ComputationallySignificantElement.

1 template <unsigned int MeshDim ,typename IndexType , typename Real , unsigned int Reserve >
2 class MeshElement <MeshDim , 1, IndexType , Real , Reserve >
3 : public MeshElementBase <IndexType >,
4 public std:: conditional <MeshDim == 2,
5 CellBoundaryConnection <IndexType >, emptyStruct >::type ,
6 public std:: conditional <MeshDim == 2,
7 ComputationallySignificantElement <MeshDim , Real >, emptyStruct2 >:: type{
8 public:
9 IndexType vertexAIndex;

10 IndexType vertexBIndex;
11 public:
12 //... methods
13 };

37

Code listing 2.18 MeshElement specialization for element dimension identical to the grid
dimension, i.e., cell. The cell element has one reference to one of its boundary faces,
boundaryElementIndex. Additionally, cell is a computation significant element, therefore it
inherits the corresponding property.

1 template <unsigned int MeshDim ,typename IndexType , typename Real , unsigned int Reserve >
2 class MeshElement <MeshDim , MeshDim , IndexType , Real , Reserve >
3 : public MeshElementBase <IndexType >,
4 public ComputationallySignificantElement <MeshDim , Real >{
5

6 IndexType boundaryElementIndex;
7 public:
8 //... methods
9 };

MeshElement Vertex Specialization The first specialization of MeshElement is for zero ele-
ment dimension. This element is actually a vertex in space. Therefore, the previously prepared
class Vertex can be used with advantage. In this case the MeshElement is created by inheritance
of MeshElementBase and Vertex. See Code listing 2.16.

MeshElement Edge Specialization Next MeshElement specialization is for an edge, i.e., ele-
ment with dimension 1. The edge element is defined as a line between two vertices, therefore
the edge contains two references to vertices, vertexAIndex and vertexBIndex. Because it is a
mesh element, it inherits MeshElementBase. Moreover, in the case of a 2D mesh, the one dimen-
sional MeshElement is also the cell connecting element and computationally significant element.
Using the same trick of conditional inheritance as in the case of a generic element, the edge
MeshElement is defined as shown in Code listing 2.17.

MeshElement Cell Specialization The last remaining specialization is for a cell element. It
is the MeshElement with dimension dT . The construction of the cell element structure is trivial,
as it is always computationally significant element and it has one reference to a boundary ele-
ment. Therefore, this specialization of MeshElement class template is created by inheritance of
MeshElementBase and ComputationallySignificantElement, see Code listing 2.18.

2.2.4 Construction of the MeshElements structure

In the previous Section 2.2.3 the class template MeshElement was thoroughly described. The
main advantage of the template class MeshElement is its possibility to create the data structure
of any mesh element by specifying the template arguments. Thus, the MeshElement class is
suitable for construction of the most important structure MeshElements, which is described in
this section.

As shown in Code listing 2.1, it is possible to define a mesh in a general dT -dimensional space.
It is therefore necessary to determine the reserve size for mesh elements of dimension ranging
from 2 to dT −1. Because the mesh dimension is general, the Reserves template parameter must
be variadic. Specifications of reserves sizes for all relevant dimensions from a parameter pack
that has to be processed at compile time. To solve this problem, we utilized the class std::array
which has the constexpr constructor and function std::get to obtain a constexpr element of
the array, see Code listing 2.19. The only MeshElement structures which the reserve is applied
to are the elements with dimension from 2 to dT − 1. The reserve sizes are specified in the
template argument as a comma-separated list in descending order in terms of element dimension
(see Code listing 2.1). That is, the first value is for the faces and the last is for the elements
with dimension 2. Finally, if the reserve is not set by the user, then the default value is 0, which
resolves in dynamic allocation, as discussed in the implementation of SubelementContainer in

38

Code listings 2.14, 2.15. The implementation of reserve determination is presented at lines 5–28
in Code listing 2.19.

The next important step of constructing MeshElements is template using-declaration of
ElementType at lines 35 to 37 in Code listing 2.19. The benefit of the construction of a mecha-
nism returning the reserved number of sub-elements according to the element dimension is now
obvious. This step is important because now the type of MeshElement of any dimension can be
obtained by expression ElementType<dimension>.

Next, as we already mentioned, the mesh is a group of std::vector classes of MeshElement
structures with different dimensions. In order to construct the data structure of MeshElements,
a processor template class _MeshElements is used, which is a private class of MeshElements.
The _MeshElements class utilizes an approach similar to implementation of std::tuple. It
inherits itself with decreased dimension. This way it embeds all the vectors _data of different
types (ElementType) into itself. Finally, the recursion stops with specialization for dimension
0, because then it does not further inherit another _MeshElements. See lines 45–53 in Code
listing 2.19.

As we prepared the tuple like structure _MeshElements containing all the vectors of elements,
it only remains to create an instance of _MeshElements<Dimension> innerElements, which is
ready to represent any unstructured mesh. The definition is at the line 57 of Code listing 2.19.

Now the elements are ready to be used, but we have to approach them from the outside
of the class. For this purpose, there is a template method getElements. It has one template
argument the dimension which specifies the vector to be returned. From the implementation of
this method, it could be seen (lines 68–73 of Code listing 2.19) how to extract an attribute from
the _MeshElements structure according to the dimension.

Furthermore, let us note how the elements are referring to each other, because it is an
important part of the architecture. There are two possible solutions:

1. mesh elements have pointers to other elements,

2. mesh elements have a position of an element in a container.

The advantage of the first approach is that it does not require the structure MeshElements to
approach the connected elements. The elements can be approached directly from other elements.
For example, we have a cell and it is possible to approach its boundary face. As is visible from the
definition of MeshElement class, we decided to use the second solution. The reason is to enable
growing of the mesh. When the mesh is changed, e.g., adapted, the vectors could be reallocated
and suddenly all pointers would be invalid. Ont the other hand, the indexes still remain valid.
In the case of insertion of new elements into the vector, it is necessary to map old indexes to
new indexes. But it is not difficult to create such mapping during the insertion. The problem of
approaching the elements in the mesh and mesh iteration is discussed in Section 2.4.1.

In Code listing 2.19, there are shown two more qualities which will be discussed in further
sections, boundaryCells (Section 2.2.5) and meshSignature (Section 2.5.3).

2.2.5 Mesh Boundary

After the structure storing the unstructured mesh is complete, it is important to discuss, what
is outside the mesh, i.e., the representation of the domain boundary [28, 17]. In GTMesh,
the boundary of the tessellated domain is enveloped by virtual cells. Those cells are called
boundary cells, see the line 58 in Code listing 2.19. In OpenFOAM [17], for example, the
mesh boundary can contain any mesh elements, i.e., it is another mesh connected to the inner
one. In GTMesh, this can be achieved by changing the definition of std::vector<Cell> to
_MeshElements<Dimension>, see Code listing 2.2.5. So far it was not necessary to develop
the GTMesh with ability to have boundary mesh. There are several reasons why to store the
boundary cells separately. Usually the work with the mesh differs at boundary, e.g., treatment

39

Code listing 2.19 The MeshElements class is the class which has containers for all mesh
elements. The container for the elements is innerElements and is of a type _MeshElements.
The _MeshElements is a class which inherits itself with different dimension parameter, thanks to
that it gathers the vectors of MeshElement of different dimensions named elements in itself. The
_MeshElements class utilizes the template using declaration of ElementType, which simplifies the
definitions of MeshElement structures. Finally, the ElementType utilizes the function reserve,
which returns a preset reserve from the parameter pack Reserve for the given dimension. If the
reserve is not set, it returns 0. A detailed description is in Section 2.2.4.

1 template <unsigned int Dimension , typename IndexType , typename Real , unsigned int ... Reserve >
2 struct MeshElements{
3 private:
4
5 template <unsigned int dim , typename Void = void >
6 struct _Reserve{
7
8 static unsigned int constexpr value = std::get <Dimension - dim - 1>
9 (std::array <unsigned int , sizeof ... (Reserve)>{Reserve ...});

10
11 };
12
13 template <unsigned int dim >
14 struct _Reserve <dim ,
15 typename std::enable_if <
16 dim == Dimension || dim == 1 || dim == 0 ||
17 (Dimension - dim > sizeof ...(Reserve))
18 >::type >{
19
20 static unsigned int constexpr value = 0;
21 };
22
23 public:
24
25 template <unsigned int dim >
26 static unsigned int constexpr reserve () {
27 return _Reserve <dim >:: value;
28 }
29
30 using Vertex = MeshElement <Dimension , 0, IndexType , Real , 0>;
31 using Edge = MeshElement <Dimension , 1, IndexType , Real , 0>;
32 using Face = MeshElement <Dimension , Dimension - 1, IndexType , Real , reserve <Dimension - 1>()>;
33 using Cell = MeshElement <Dimension , Dimension , IndexType , Real , 0>;
34
35 template <unsigned int ElementDimension >
36 using ElementType =
37 MeshElement <Dimension , ElementDimension , IndexType , Real , reserve <ElementDimension >()>;
38
39
40 static unsigned int constexpr meshDimension () {
41 return Dimension;
42 }
43
44 private:
45 template <unsigned int ElemDim = Dimension , typename Dummy = void >
46 struct _MeshElements : public _MeshElements <ElemDim - 1, Dummy >{
47 std::vector <ElementType <ElemDim >> elements;
48 };
49
50 template <typename Dummy >
51 struct _MeshElements <0, Dummy >{
52 std::vector <ElementType <0>> elements;
53 };
54
55
56 private:
57 _MeshElements <Dimension > innerElements;
58 std::vector <Cell > boundaryCells;
59
60 /**
61 * @brief Hash signature of the mash elements.
62 * Use to detect changes in mesh.
63 */
64 size_t meshSignature;
65
66
67 public:
68 template <unsigned int dim >
69 std::vector <ElementType <dim >>& getElements (){
70 static_assert (Dimension >= dim ,
71 "In␣GetElements␣template␣parameter␣dim␣must␣be␣less␣or␣equal␣to␣Dimension.");
72 return innerElements._MeshElements <dim >:: elements;
73 }
74 // ...
75 };

40

Code listing 2.20 An example how to change the boundary elements from cells to a whole
mesh.

1 _MeshElements <Dimension > innerElements;
2 // MeshElements prepared to envelop the inner elements
3 // std::vector <Cell > boundaryCells;
4 _MeshElements <Dimension > boundaryElements;

Code listing 2.21 An example how to make, extract, and detect a boundary element by
manipulating the highest bit of its index.

1 #include <limits >
2 #define BOUNDARY_INDEX(indexType) \
3 (static_cast <indexType >(1) << (std:: numeric_limits <indexType >:: digits - 1))
4

5 #define EXTRACTING_INDEX(indexType) (static_cast <indexType >(~ BOUNDARY_INDEX(indexType)))
6

7 template <typename IndexType >
8 bool isBoundaryIndex(const IndexType& index){
9 return (BOUNDARY_INDEX(IndexType) & index) == BOUNDARY_INDEX(IndexType);

10 }
11

12

13 template <typename IndexType >
14 IndexType makeBoundaryIndex(const IndexType& index){
15 return (BOUNDARY_INDEX(IndexType) | index);
16 }
17

18

19 template <typename IndexType >
20 IndexType extractBoundaryIndex(const IndexType& index){
21 return (EXTRACTING_INDEX(IndexType) & index);
22 }

of boundary conditions, mesh import or export. Therefore, it is necessary to quickly recognize
the mesh boundary, or to confidently work only with the inner elements. Another reason is that
there are no invalid references in the inner mesh elements. Moreover, the outer cells does not
have to be dT dimensional object, i.e., it may coincide with the face.

Now let us present, how the boundary cells are connected to the mesh and how the references
to them are distinguished from the references into the inner mesh. As described in Section 2.2.4,
the elements refer to each other by the position in the respective array. The problem is how
to refer to a boundary element which is stored in different container. It would be possible to
have this information in the flag, but the flag is designed to be used by the user. Therefore,
to solve this problem, a special modification of the reference is used. The modification consists
in setting the highest bit of the reference to 1, see an example in Code listing 2.21. Finally,
this concept allows us to distinguish what element the reference is pointing at. An example of
runtime detection whether a cell connected to a face is inner or boundary is shown on trivial
example of cell distance calculation in Code listing 2.22.

2.3 Data Associated to the Mesh

Any numerical method for solving a system of PDEs on a domain tesselated by the mesh needs to
store data associated with the individual mesh elements. The data can represent the values of the
solution, auxiliary pre-calculated space-dependent quantities or implementation-specific storage
for intermediate results. The purpose (and hence the type) of data associated to mesh elements
is specific to their dimension. For example, finite volume methods (see Section 5.2.2) use solution
values at the computationally significant elements (see Section 2.2.2), i.e., cell centers, cell faces,
or both. However, additional data storage may be allocated for each vertex to hold the results

41

Code listing 2.22 An example of getting the correct cell according to its index. This for loop
calculates distances between the neighboring cell centers over all faces. If the cell index is a
boundary index, then a cell from the array of boundary cells is obtained, else the inner cell is
obtained.

1 for(auto& face : mesh.getFaces ()) {
2 auto& cellLeft = (isBoundaryIndex(face.getCellLeftIndex ()) ?
3 mesh.getBoundaryCells ().at(extractBoundaryIndex(face.getCellLeftIndex ())):
4 mesh.getCells ().at(face.getCellLeftIndex ());
5 auto& cellRight = (isBoundaryIndex(face.getCellRightIndex ()) ?
6 mesh.getBoundaryCells ().at(extractBoundaryIndex(face.getCellRightIndex ())):
7 mesh.getCells ().at(face.getCellRightIndex ());
8

9 distances.at(face) = (cellLeft.getCenter () - cellRight.getCenter ()). normEuclid ();
10 }

of intermediate calculations.

2.3.1 Properties of the MeshDataContainer Class

Once the mesh geometry and topology is given, MeshDataContainer provides a flexible interface
for allocating and accessing the mesh-associated data. In the most generic case, a single instance
of MeshDataContainer is capable of holding data represented by types T1, T2, ..., Tn associated
with all mesh elements of dimensions d1, d2, . . ., dn, respectively. The dimensions specifiers
(d1, d2, . . ., dn) need not be unique, i.e., there can be more than one data type associated with
elements of the given dimension.

Internally, MeshDataContainer contains n arrays with interface similar to std::vector<T1>
... std::vector<Tn>. For each i ∈ 1, ..., n, the length of the vector is the same as the number of
mesh elements of dimension di.

The vectors within MeshDataContainer can be addressed in two ways:

1. by position i of the dimension di within the ordered list (d1, d2, . . ., dn),

2. by dimension d. In this case, the ith vector is returned where i is the first integer in the
sequence (1, 2, . . . , n) such that di = d.

In addition, the data within MeshDataContainer can also be indexed directly by the instances
of MeshElement, i.e., the MeshDataContainer provides a subscript operator for instances of
the MeshElement class (see Code listing 2.28 with application example in Code listing 2.4).
This establishes a mapping between mesh elements and data instances. The data vector in
MeshDataContainer is given by the dimension of the mesh element (by using the rule ex-
plained above). The component of the vector is given by ElementIndex, which is present in
each MeshElement thanks to its base class MeshElementBase (see Code listing 2.6).

2.3.2 Construction of MeshDataContainer

In this section, the construction of MeshDataContainer as a plain container is firstly described.
Then, the methods for allocation and obtaining data are presented.

The template arguments of MeshDataContainer are typename DataType and parameter pack
unsigned int Dimensions (i.e., the sequence d1, d2, . . ., dn described above). As a data con-
tainer, we do not use std::vector directly. Instead, the DataContainer structure is used, which
inherits std::vector and additionally has the information about the mapped dimension. The
DataType can be a simple data type or list of types (i.e., the sequence T1, T2, ..., Tn) passed using
std::tuple. In the case of a simple type, then MeshDataContainer creates DataContainer of
the given type DataType for all dimensions. In the case of std::tuple<T1, T2, ..., Tn> as the
DataType, the tuple serves as a container of the types and the contained types are then used

42

Code listing 2.23 Presentation of the usage of the MeshDataContainer in the most general
case. The definition at line 2 defines a container allocating 4 different arrays according to the
four numbers passed as comma-separated list. The values in the list specify the dimensions of
the associated mesh elements, i.e., the first and last arrays maps the data to mesh elements
with dimension 3 and the second and the third arrays maps the data to dimension 2. As the
example presents , the list of the dimensions might contain duplicities. The datatypes of the
respective arrays are specified by the corresponding type in the std::tuple passed as the first
parameter, i.e., the first array contains char, the second int etc. Lines 4-14 explain how data
arrays are addressed by the position in the list of dimensions by the getDataByPos member
function. At lines 16-20, getDataByDim returns the first array associated with mesh elements
of the requested dimension. Therefore, it is not possible to reach the arrays at positions 2
and 3 by the member function getDataByDim. The std::vector is quoted in the comments
because MeshDataContainer utilizes its own similar container, see the further description of the
MeshDataContainer class in Sections 2.3.1, 2.3.2.

1 // Presentation of MeshDataContainer properties
2 MeshDataContainer <std::tuple <char , int , double , float >, 3,2,2,3> meshData;
3

4 // Returns the container "std::vector <char >" mapped to dimension 3
5 meshData.getDataByPos <0 >();
6

7 // Returns the container "std::vector <int >" mapped to dimension 2
8 meshData.getDataByPos <1 >();
9

10 // Returns the container "std::vector <double >" mapped to dimension 2
11 meshData.getDataByPos <2 >();
12

13 // Returns the container "std::vector <float >" mapped to dimension 3
14 meshData.getDataByPos <3 >();
15

16 // Get the first data mapped to the 3rd dimension
17 meshData.getDataByDim <3 >(); // Returns getDataByPos <0>()
18

19 // Get the first data mapped to the 2nd dimension
20 meshData.getDataByDim <2 >(); // Returns getDataByPos <1>()

43

according to their position in the tuple, see Code listing 2.25. The type matches the dimension at
the same position. The definition of DataContainer and basic definition of MeshDataContainer
for simple DataType and specialization for std::tuple are shown in Code listing 2.25.

To be able to work with the container, member functions for accessing the data must be
developed . In the previous Section 2.3.1, we specified two ways how to reach the allocated data.
The first and easier is to use the position index, realized by getDataByPos member function
template with the template argument pos, see Code listing 2.26. The other is to access the
DataContainer by the mapped dimension. In this case, it is necessary to find the position of the
requested dimension in the parameter pack Dimesnions at the compile time.

This problem is solved by the dimensionIndex function which utilizes the template structure
DimensionPos. DimensionPos is constructed such that it inherits itself with a position increased
by 1. If the dimension at the current position matches the given dimension, a specialization of
DimensionPos is utilized. This specialization has a member function res returning the current
position. Thanks to this construction, the member function res can be called from the generic
instance of DimensionPos. If the requested dimension is not in the parameter pack Dimensions,
there is no inherited specialization in DimensionPos. Therefore, it does not have the method
res and the compilation fails. Similarly, position exceeding the size of the parameter pack also
causes an error. Finally, the method getDataByDim returns DataContainer at the position cor-
responding to the given dimension. The implementation of dimensionIndex and getDataByDim
is in Code listing 2.27.

Using the method getDataByDim, it is possible to realize a subscript operator, which has
an instance of MeshElement as a parameter. The subscript operator returns a reference to the
DataType instance in the respective DataContainer. This construction gives the user a feeling
that the data are mapped to the mesh and makes the code more readable. The definition is
shown in Code listing 2.28.

Finally, we explain data allocation according to the instance of MeshElements, see line 18 in
Code listing 2.4. The data allocation is realized by the helper class Allocator, because this prob-
lem requires a compile-time loop over all instances of DataContainer in MeshDataContainer.
This class has member functions that accept MeshDataContainer and MeshElements and set
the size of DataContainer according to the number of mesh elements in the given dimension.
The simplest implementation of data allocation of MeshDataContainer is shown in Code list-
ing 2.29. Finally, the data allocation is provided by the member function allocateData. the
same functionality is provided by the constructor of the MeshDataContainer class.

The function allocateData presented above allocates uninitialized blocks of memory, how-
ever the MeshDataContainer provides also data allocation with given initial value, similarly to
resize member function of std::vector. This functionality is provided by for both single data
type or a tuple of types. In the case of a single data type, one initial value is expected and it
is applied initialization of all containers. Otherwise, in the case of the sequence of types T1, T2,
..., Tn, the function allocateData expects up to n initial values corresponding to the given types.
The values are used to initialize the DataContainer at corresponding position. If the number of
initial values is lower than n, the DataContainer structures without prescribed initial value are
allocated uninitialized.

2.3.3 Generation of MeshDataContainer Using std::integer_sequence

The next problem we have arrived at can be demonstrated on the following example. Consider a
function that calculates the elements properties across multiple dimensions at once, e.g., measures
of elements, see Section 2.4.6. Such function has to return all measures of all elements except
the vertices, because measure of vertices is irrelevant. In 2D, the resulting container would be
MeshDataContainer<double, 1, 2>, whereas in 3D it would be MeshDataContainer<double,
1, 2, 3>. The problem is, how to automatically specify the sequence of the dimensions the data
are mapped to.

44

Code listing 2.24 The DataContainer is a class designed to be used by MeshDataContainer,
which maps data to mesh elements. Therefore, the DataContainer inherits a vector and addi-
tionally has an attribute of the mapped dimension, i.e., the dimension of elements the data is
mapped to.

1 template <typename DataType , unsigned int MappedDimenion = 0>
2 struct DataContainer : public std::vector <DataType > {
3 using type = DataType;
4

5

6 static constexpr unsigned int getMappedDimension () {
7 return MappedDimenion;
8 }
9 };

There is a solution in the standard library named std::integer_sequence. This object
carries a sequence of integers in its template parameters. This is good structure to be used, but
the problem changed to how to automatically generate such integer_sequence. In the stan-
dard template library, there is an alias named std::make_integer_sequence, which generates
a sequence starting with 0 going to the given number minus one [4]. For the purposes mentioned
above, we need to specify both the first and the last value of the sequence to be generated.
By engaging a similar concept to the standard one the make_custom_integer_sequence_t was
developed, see Code listing 2.31. This alias uses MakeCustomIntegerSequence to generate the
requested std::integer_sequence.

When the sequence is prepared, it still remains to use it to create a MeshDataContainer. The
easiest way is to make a template class with two type parameters DataType and Sequence. The
interesting parameter is the typename Sequence here, because it is designed for an
integer_sequence to be passed through. Finally, the specialization of MakeMeshDataContainer
for Sequence of type std::integer_sequence of unsigned int reaches the contained sequence
of indexes and creates a public alias type of MeshDataContainer with the given mapped dimen-
sions. In the end, for easier usage, there is an alias for the type in MakeMeshDataContainer, see
Code listing 2.32. An example of the utilization of make_custom_integer_sequence to define
MeshDataContainer is in Code listing 2.30.

45

Code listing 2.25 The generic definition of MeshDataContainer. For a single data type,
MeshDataContainer defines a private member class _DataContainer, which gradually inherits
itself similarly to _MeshElements, see Code listing 2.19. This way, the DataContainers are
mapped to the given dimensions at compile time. The data are held in the attribute data of
type _DataContainer. In the case of the specialization for std::tuple, the only difference is that
the types in _DataContainer differ according to the given position. The containers are generated
using the number of dimensions using keyword sizeof...(Dimensions). The dimension at the
particular position is determined by std::get and the constexpr constructor of std::array,
see the definition of dimensionAt at lines 5 and 30, respectively. Finally, the specialization for
std::tuple obtains the type at the given position using std::tuple_element, see the using-
declaration DataType.

1 template <typename DataType , unsigned int ... Dimensions >
2 struct MeshDataContainer{
3 private:
4 template <unsigned int pos >
5 static constexpr unsigned int dimensionAt (){
6 return std::get <pos >(
7 std::array <unsigned int , sizeof ... (Dimensions)>{ Dimensions ...}
8);
9 }

10

11 template <typename _DataType , unsigned int Pos >
12 struct _DataContainer : _DataContainer <_DataType ,Pos - 1> {
13 DataContainer <_DataType , dimensionAt <Pos >()> _data;
14 };
15

16 template <typename _DataType >
17 struct _DataContainer <_DataType , 0>{
18 DataContainer <_DataType , dimensionAt <0U>()> _data;
19 };
20

21 _DataContainer <DataType , sizeof ... (Dimensions) - 1> data;
22 // ... other members
23 };
24

25 // Specialization for std:: tuple as a types container
26 template <typename ... DataTypes , unsigned int ... Dimensions >
27 struct MeshDataContainer <std::tuple <DataTypes ...>, Dimensions ...>{
28 private:
29 template <unsigned int pos >
30 static constexpr unsigned int dimensionAt (){
31 return std::get <pos >(
32 std::array <unsigned int , sizeof ... (Dimensions)>{ Dimensions ...}
33);
34 }
35

36 template <unsigned int pos >
37 using DataType = typename std:: tuple_element <pos ,std::tuple <DataTypes ...>>:: type;
38

39 template <unsigned int Pos , typename Dummy = void >
40 struct _DataContainer : _DataContainer <Pos - 1, Dummy >{
41 DataContainer <DataType <Pos >, dimensionAt <Pos >()> _data;
42 };
43

44 template <typename Dummy >
45 struct _DataContainer <0, Dummy >{
46 DataContainer <DataType <0>, dimensionAt <0>()> _data;
47 };
48

49 _DataContainer <sizeof ... (Dimensions) - 1> data;
50 // ... other members
51 };

46

Code listing 2.26 The getDataByPos member function of MeshDataContainer returns
DataContainer at the requested position. The container is obtained using the construction
data._DataContainer<pos>::_data, which specifies the member of _DataContainer with its
fully qualified name, because there is more than one member with the same name _data in the
_DataContainer structure. The definition of _DataContainer is in Code listing 2.25.

1 template <unsigned int pos >
2 DataContainer <DataType , dimensionAt <pos >()>& getDataByPos (){
3 return data._DataContainer <DataType ,pos >:: _data;
4 }
5

6

7 //tuple specialization
8 template <unsigned int pos >
9 DataContainer <DataType <pos >, dimensionAt <pos >()>& getDataByPos (){

10 return data._DataContainer <pos >:: _data;
11 }

47

Code listing 2.27 The implementation of the member function of MeshDataContainer
getDataByDim. This function works similarly to getDataByPos, but it returns data on the
first position with the requested dimension. To detect the position of the dimension, it uses the
constexpr member function dimensionIndex. dimensionIndex utilizes the structure template
DimensionPos, which tests whether the dimension at the given position is the same as requested
by inheriting itself with increased position. If the parameter pack Dimensions contains the
requested dimension, a specialization of DimensionPos for equality of current and requested di-
mensions is utilized at the respective position. The specialization stops the recursive inheritance.
Moreover, it provides the res member function which returns the found position. The method
res is defined in the class DimensionPos<requested_dim,0,dim_at_0>, see line 18. Otherwise,
if the requested dimension is not in Dimensions, then the attribute pos in DimensionPos exceeds
the number of elements in the Dimensions parameter pack what causes an error.

1 // ** Inside MeshDataContainer **
2 template <unsigned int dim , unsigned int pos , unsigned int _dim >
3 struct DimensionPos : DimensionPos <
4 dim ,
5 pos + 1,std::get <pos + 1>(
6 std::array <unsigned int , sizeof ... (Dimensions)>{ Dimensions ...}
7)>{};
8

9 // specialization for dim == _dim
10 template <unsigned int dim , unsigned int pos >
11 struct DimensionPos <dim , pos , dim >{
12 static constexpr unsigned int res(){ return pos;}
13 };
14

15 public:
16 template <unsigned int dim >
17 static constexpr unsigned int dimensionIndex (){
18 return DimensionPos <
19 dim ,
20 0,
21 std::get <0>(std::array <unsigned int , sizeof ... (Dimensions)>{ Dimensions ...})
22 >::res ();
23 }
24

25 template <unsigned int dim >
26 DataContainer <DataType , dim >& getDataByDim (){
27 return data._DataContainer <DataType , dimensionIndex <dim >()>:: _data;
28 }
29

30 // tuple specialization
31 template <unsigned int dim >
32 DataContainer <std:: tuple_element_t <dimensionIndex <dim >(), std::tuple <DataTypes...>>, dim >&
33 getDataByDim (){
34 return data._DataContainer <dimensionIndex <dim >() >:: _data;
35 }

48

Code listing 2.28 MeshDataContainer provides the subscript operator (operator[]) and the
at member function with an argument of MeshElement. The operator[] is a function template
because of the template argument element. All the template arguments of the method are
deduced from the MeshElement parameter, so the usage of at is easy and it is possible to invoke
operator[] by the usual syntax (i.e., x[i]). Both the functions utilizes getDataByDim to obtain
the corresponding array, then they return the element in the array at position obtained by the
getElementIndex member function of element. See the usage of subscript operator in Code
listing 2.4.

1 template <unsigned int ElementDim , unsigned int Dimension ,
2 typename IndexType , typename Real , unsigned int Reserve >
3 DataType&
4 at(const MeshElement <Dimension , ElementDim , IndexType , Real , Reserve >& element) {
5 return getDataByDim <ElementDim >().at(element.getIndex ());
6 }
7

8 template <unsigned int ElementDim , unsigned int Dimension ,
9 typename IndexType , typename Real , unsigned int Reserve >

10 DataType&
11 operator [](const MeshElement <Dimension , ElementDim , IndexType , Real , Reserve >& element) {
12 return getDataByDim <ElementDim >()[element.getIndex ()];
13 }
14

15

16 // specialization for tuple
17 template <unsigned int ElementDim , unsigned int Dimension ,
18 typename IndexType , typename Real , unsigned int Reserve >
19 std:: tuple_element_t <dimensionIndex <ElementDim >(), std::tuple <DataTypes ...>>&
20 at(const MeshElement <Dimension , ElementDim , IndexType , Real , Reserve >& element) {
21 return getDataByDim <ElementDim >().at(element.getIndex ());
22 }
23

24 template <unsigned int ElementDim , unsigned int Dimension ,
25 typename IndexType , typename Real , unsigned int Reserve >
26 std:: tuple_element_t <dimensionIndex <ElementDim >(), std::tuple <DataTypes ...>>&
27 operator [](const MeshElement <Dimension , ElementDim , IndexType , Real , Reserve >& element) {
28 return getDataByDim <ElementDim >()[element.getIndex ()];
29 }

49

Code listing 2.29 The implementation of the simplest way of data allocation within
MeshDataContainer. The allocateData member function accepts parameter of the
MeshElements type named by mesh. The function allocateData utilizes a helper class tem-
plate Allocator. The Allocator class iterates over all positions of the MeshDataContainer and
invokes resize of the respective DataContainer. Every DataContainer is resized to the number
of elements in mesh at the dimension corresponding to the currently processed DataContainer.
An analogous approach is used in the specialization of MeshDataContainer for std::tuple of
types. Moreover, MeshDataContainer provides several overloads of the allocateData member
function accepting an initial value (values in the case of tuple of types) similarly to the member
function resize of the std::vector class.

1 // ** Inside MeshDataContainer **
2 template <unsigned int pos , typename dummy = void >
3 struct Allocator{
4

5 template <unsigned int Dimension , typename IndexType , typename Real ,
6 unsigned int ... Reserve >
7 static void allocateMemory(
8 MeshDataContainer <DataType , Dimensions ...>& parent ,
9 const MeshElements <Dimension , IndexType , Real , Reserve ...>& mesh

10) {
11 parent.template getDataByPos <pos >(). resize(
12 mesh.template getElements <parent.template dimensionAt <pos >() >(). size()
13);
14

15 // next iteration
16 Allocator <pos - 1>:: allocateMemory(parent , mesh);
17 }
18 };
19

20 // specialization terminating the cycle
21 template <typename dummy >
22 struct Allocator <0, dummy >{
23

24 template <unsigned int Dimension , typename IndexType , typename Real ,
25 unsigned int ... Reserve >
26 static void allocateMemory(
27 MeshDataContainer <DataType , Dimensions ...>& parent ,
28 const MeshElements <Dimension , IndexType , Real , Reserve ...>& mesh
29) {
30 parent.template getDataByPos <0 >(). resize(
31 mesh.template getElements <parent.template dimensionAt <0>()>(). size()
32);
33 }
34 };
35

36 template <unsigned int Dimension , typename IndexType , typename Real ,
37 unsigned int ... Reserve >
38 void allocateData(const MeshElements <Dimension , IndexType , Real , Reserve ...>& mesh){
39 Allocator <sizeof ... (Dimensions) - 1>:: allocateMemory (*this , mesh);
40 }

Code listing 2.30 An example of automatic generation of MeshDataContainer for the given
range of dimensions. The motivation is described at the beginning of Section 2.3.3.

1 // equivalent to MeshDataContainer <double , 1, 2, 3>
2 MakeMeshDataContainer_t <
3 double ,
4 make_custom_integer_sequence_t <unsigned int , 1, 3>
5 > measures = mesh.calculateMeasures ();

50

Code listing 2.31 Generation of a custom integer_sequence. The structure
MakeCustomIntegerSequence creates a sequence from StartIndex to EndIndex by adding
the Incerement. This is reached by recursive inheritance with incremented StartIndex the
StartIndex appended to the template parameter Sequence. In the case when StartIndex is
equal to EndIndex, a specialization of MakeCustomIntegerSequence is applied. The specializa-
tion creates an alias of std::integer_sequence with the aggregated Sequence and additionally,
the EndIndex is included. Note that Sequence always contains StartIndex and EndIndex. Fur-
thermore, if the EndIndex is not reached by adding Increment to StartIndex, the build fails
by exceeding the maximal recursion depth. Finally, a type alias is provided to make the work
easier.

1 template <typename Type ,
2 Type StartIndex ,
3 Type EndIndex ,
4 int Increment = 1,
5 Type ... Sequence >
6 struct MakeCustomIntegerSequence :
7 public MakeCustomIntegerSequence <
8 Type ,
9 StartIndex + Increment ,

10 EndIndex ,
11 Increment ,
12 Sequence ...,
13 StartIndex
14 > {};
15

16 template <typename Type , Type EndIndex , int Increment , Type ... Sequence >
17 struct MakeCustomIntegerSequence <Type , EndIndex , EndIndex , Increment , Sequence ...> {
18 using type = std:: integer_sequence <Type , Sequence ..., EndIndex >;
19 };
20

21 template <typename Type , Type StartIndex , Type EndIndex , int Increment = 1>
22 using make_custom_integer_sequence_t =
23 typename MakeCustomIntegerSequence <Type , StartIndex , EndIndex , Increment >:: type;

Code listing 2.32 The MeshDataContainer is generated using the MakeMeshDataContainer
structure, which has two template parameters. The first parameter, DataType is a name of the
type to be stored. This can be either a simple type or tuple of types. The second parameter,
Sequence, std::integer_sequence of unsigned int type, which is ensured by the assertion
at line 3. If std::integer_sequence is passed as Sequence, the compiler chooses the provided
specialization. Otherwise, the generic template is used where the assertion is designed to al-
ways fail. Finally, the specialization obtains the sequence stored in the type information of
std::integer_sequence thanks to the template parameter pack Dimensions. The parameter
Dimensions is then used to create an alias for MeshDataContainer, see line 13.

1 template <typename DataType , typename Sequence >
2 struct MakeMeshDataContainer {
3 static_assert(
4 std::is_class <Sequence >:: value && !std::is_class <Sequence >::value ,
5 "The␣Sequence␣parameter␣in␣MakeMeshDataContainer␣"
6 "must␣be␣a␣std:: integer_sequence <unsigned␣int ,␣seq...>␣"
7 "please␣notice␣the␣type␣unsigned␣int"
8);
9 };

10

11 template <typename Type , unsigned int... Dimensions >
12 struct MakeMeshDataContainer <Type , std:: integer_sequence <unsigned int , Dimensions ...>>{
13 using type = MeshDataContainer <Type , Dimensions ...>;
14 };
15

16 template <typename DataType , typename Sequence >
17 using MakeMeshDataContainer_t = typename MakeMeshDataContainer <DataType , Sequence >:: type;

51

Figure 2.2: A combination of Figure 1.15 and Figure 1.14 reminding of the connections of the
mesh elements in in 2D (left) and 3D (right) realized in the MeshElements structure. The detailed
description is in Sections 1.3.3, 2.2.

2.4 Mesh Algorithms

In the previous sections, the mesh construction and data allocation were explained. The aim of
this section is to describe the work with the mesh and algorithms that calculate the geometrical
properties of mesh elements. Mesh algorithms are implemented as global function templates
compatible with the template arguments of MeshElements. Template specializations and pro-
cedures are implemented in classes, because in C++, it is not possible to partially specialize
a function template. It is possible to achieve a similar behavior using SFINAE, however this
concept is utilized in another part of the library which will be discussed in Chapter 4. Note that
for demonstration purposes, the presented listings may contain a code slightly different from the
real implementation.

2.4.1 Element Access and the MeshApply Class

The first realized algorithm accesses the elements of a mesh. Its purpose is to iterate over the
mesh elements of the given dimension (the “target” dimension) connected to the elements of
another dimension (“start” dimension). For example, it visit all vertices of all cells. Moreover the
algorithm applies a function on each visited connected mesh element. This is a very important
algorithm which will be further employed by other functions. Before we start with the description
of the algorithm, let us recall the system of connections in 2D and 3D meshes in Figure 2.2.

In GTMesh, this functionality is provided by the MeshApply class template with the apply
static member function, where the start and target dimensions are set as template parameters of
the MeshApply class. The requested functionality of MeshApply is presented in Code listing 2.33.
As shown in the example, the iteration over connected mesh elements requires nested for cycles.
Therefore, MeshApply must de facto encapsulate such for cycles and the number of the nested
for cycles is given by the template setup (start and target dimensions). Additionally, it must
apply a given function to each visited connected mesh element. From the example, it is obvious
that MeshApply provides a more generic and compact means to iterate over the mesh elements.
Moreover, the GTMesh concepts are not limited to 3 dimensions. Therefore, MeshApply plays a
key role in the GTMesh library and makes it possible to create generic functions working in any
dimension.

Let us continue with the description of the implementation details of the class template
MeshApply and its public static method apply. Firstly, we have to start with the description
of accessing sub-elements of mesh elements which is dependent on the dimension of the mesh
element. There are basically 3 different ways of accessing sub-elements according to the ele-
ment dimension. Note that all of the accesses are presented in the 3D version of the function
countCellsVerticesIndexes in Code listing 2.33. In the following description, we will refer to
the individual lines in Code listing 2.33. The following list introduces the 3 ways of the iteration

52

Code listing 2.33 Demonstration of iteration over mesh sub-elements. For demonstration pur-
pose, a problem of summing the indexes of vertices is solved. In the countCellsVerticesIndexes
function, the algorithm specific for mesh dimensions 2 and 3 is realized. This function uti-
lizes the explicitly written loops. Therefore, this function serves as good example of mesh ele-
ments access. Moreover, the aim of this example is to show the rigidity of the explicit writing
of the loops compared to using the MeshApply concept. Note that there are two versions of
countCellsVerticesIndexes to cover 2D and 3D mesh cases. In contrast to that, the function
countCellsVerticesIndexesGeneric has a shorter body and is able to handle a mesh of an
arbitrary dimension. It would not be possible to create such generic code by using the loops
explicitly.

1 // Function calculating sum of vertex indexes connected to a cell in 3D
2 template <typename IndexType , typename Real , unsigned int ... Reserve >
3 MeshDataContainer <IndexType ,3>
4 countCellsVerticesIndexes(const MeshElements <3, IndexType , Real , Reserve ...>& mesh){
5 // Prepare container for the result
6 // Resize to the mesh dimesnions and initialize with 0
7 MeshDataContainer <IndexType , 3> result(mesh , 0);
8
9 // Loop over cell elements

10 for(IndexType cellIndex = 0; cellIndex < mesh.getCells (). size (); cellIndex ++){
11 // Obtain the boundary element index (face)
12 IndexType bElemIndex = mesh.getCells ()[cellIndex]. getBoundaryElementIndex ();
13
14 // Repeat until the first approached face element is reached
15 do {
16 // Loop over the edges of the face
17 for(IndexType edgeIndex : mesh.getFaces ()[bElemIndex]. getSubelements ()){
18 // Edge has two vertices
19 result.template getDataByDim <3 >()[cellIndex] += mesh.getEdges ()[edgeIndex]. getVertexAIndex ();
20 result.template getDataByDim <3 >()[cellIndex] += mesh.getEdges ()[edgeIndex]. getVertexBIndex ();
21 }
22 // Move to the next boundary element
23 bElemIndex = mesh.getFaces ()[bElemIndex]. getNextBElem(cellIndex);
24
25 } while (bElemIndex != mesh.getCells ()[cellIndex]. getBoundaryElementIndex ());
26 }
27 return result;
28 }
29
30 // Function calculating sum of vertex indexes conndected to a cell in 2D
31 template <typename IndexType , typename Real , unsigned int ... Reserve >
32 MeshDataContainer <IndexType ,2>
33 countCellsVerticesIndexes(const MeshElements <2, IndexType , Real , Reserve ...>& mesh){
34 // Prepare container for the result
35 // Resize to the mesh dimesnions and initialize with 0
36 MeshDataContainer <IndexType , 2> result(mesh , 0);
37
38 // Loop over cell elements
39 for(IndexType cellIndex = 0; cellIndex < mesh.getCells (). size (); cellIndex ++){
40 // Obtain the boundary element index (face=edge)
41 IndexType bElemIndex = mesh.getCells ()[cellIndex]. getBoundaryElementIndex ();
42
43 // Repeat until the first approached element is reached
44 do {
45 // Because the boundary element is an edge , it has two vertices
46 result.template getDataByDim <2 >()[cellIndex] += mesh.getEdges ()[bElemIndex]. getVertexAIndex ();
47 result.template getDataByDim <2 >()[cellIndex] += mesh.getEdges ()[bElemIndex]. getVertexBIndex ();
48
49 // Move to the next boundary element
50 bElemIndex = mesh.getEdges ()[bElemIndex]. getNextBElem(cellIndex);
51
52 } while (bElemIndex != mesh.getCells ()[cellIndex]. getBoundaryElementIndex ());
53 }
54 return result;
55 }
56
57 // Function calculating sum of vertex indexes connected to a cell in generic dimension
58 template <unsigned int MeshDim , typename IndexType , typename Real , unsigned int ... Reserve >
59 MeshDataContainer <IndexType , MeshDim >
60 countCellsVerticesIndexesGeneric(const MeshElements <MeshDim , IndexType , Real , Reserve ...>& mesh){
61 // Prepare container for the result
62 // Resize to the mesh dimesnions and initialize with 0
63 MeshDataContainer <IndexType , MeshDim > result(mesh , 0);
64
65 // Prepare the function to be applied in the loop
66 auto countLambda = [& result](IndexType cellIndex , IndexType vertIndex){
67 // Add the index of vertex at the position
68 result.template getDataByDim <MeshDim >()[cellIndex] += vertIndex;
69 };
70
71 // Loop over cells vertices using the MeshApply concept
72 MeshApply <MeshDim , 0>::apply(mesh ,countLambda);
73
74 return result;
75 }

53

step by step.

1. The sub-elements of cells, i.e., faces, are chained as linked list. The algorithm of looping
the cell boundary is the following. Firstly, get the index of any boundary element of the
cell shown at line 12. Then, start an iteration over the faces. The index of the next face
is obtained from the currently visited face as the next face with respect to the cell, see
line 23. This iteration ends when a face with index with starting index is reached, see the
condition at line 25.

2. The generic elements with dimension between 1 and dT (described in Section 1.3.3) have
a container of sub-elements indexes. Therefore, to obtain the indexes of sub-elements, it
is sufficient to loop over the container in the for loop starting at line 17. In 3D, the only
dimension between 1 and dT is dimension 2, thence the procedure is applied to faces only.

3. In a generic case, by applying the second way of iteration, we finally reach edges. The
edge has two indexes to vertices A and B. Hence, the indexes of the connected vertices
are accessed directly by the getVertexAIndex and getVertexBIndex member functions at
lines 19 and 20.

Since the functionality of MeshApply was presented in detail, let us move forward to the im-
plementation. As was already mentioned, the algorithm is implemented in the apply member
function of MeshApply. There are two overloads of the function apply. The first one accepts
two parameters (a mesh and a function). It traverses all elements of the start dimension and
applies the given function to all elements of the target dimension connected to them. The second
one has one more parameter (element index) and it invokes the given function on the elements
connected to the specified mesh element only.

In order to make the implementation simpler and more compact, the apply function internally
utilizes the run member function of the MeshRun class template. The MeshRun class provides
the iteration over the sub-elements of the target dimension of a single mesh element of the start
dimension and application of the given function to them. According to the chosen mesh structure,
the iteration is only possible to be made from a higher dimension to a lower dimension. Luckily,
there is also a simple way how to simulate the iteration in the opposite direction (iteration over
super-elements), although it is not supported by the structure of MeshElements. The trick will
be described later.

The class MeshRun has 6 template parameters:

1. CurrentDimension (unsigned int), dimension currently iterated over,

2. StartDimension (unsigned int), dimension at which the recursive iteration started,

3. TargetDimension (unsigned int), dimension at which the recursion stops and the func-
tion is applied,

4. MeshDimension (unsigned int), dimension of the mesh, necessary for specializations,

5. End (bool), flag signalizing that CurrentDimension reached TartgetDimension,

6. Descend (bool), flag signalizing whether the iteration over sub-elements or super-elements
was requested.

The template parameters of the run member function template are:

1. Functor (typename), the type of the given function, i.e., a callable object with two param-
eters of IndexType,

2. The MeshElements template attributes (IndexType , Real , Reserve).

54

Code listing 2.34 The definition of the MeshRun class. In the context of the following special-
izations, this definition is to be applied to iterate over sub-elements of a generic element with
dimension between 1 and dT . Those are elements with connections highlighted in blue in Fig-
ure 1.16. The iteration over sub-elements is realized by iterating over the subelementContainer
of the given element. The indexes of sub-elements are then passed as subelementIndex to the
run function of the MeshRun class which is given the value of CurrentDimension of the invoking
MeshRun object minus one. The recursive call realizing the next iteration is at lines 24-27. The
rest of the parameters given to the function run are the mesh, the index of the origin element
origElementIndex and the applied function fun.

1 template <
2 unsigned int CurrentDimension ,
3 unsigned int StartDimension ,
4 unsigned int TargetDimension ,
5 unsigned int MeshDimension ,
6 bool End ,
7 bool Descend
8 >
9 struct MeshRun {

10

11 template <typename Functor , typename IndexType , typename Real , unsigned int ... Reserve >
12 static void run(const MeshElements <MeshDimension , IndexType , Real , Reserve ...>& mesh ,
13 IndexType origElementIndex , // Index from which the iteration started
14 IndexType subelementIndex , // Index of currently visited element
15 Functor fun // Function to be applied when TargetDimension is reached
16){
17 // Get the current element to be processed
18 auto& currentElement =
19 mesh.template getElements <CurrentDimension >().at(subelementIndex);
20 // Loop over the sublements
21 for (auto& sube : currentElement.getSubelements ()){
22 // Call MeshRun with a lowered dimension
23 // and check wheter the TargetDimesnion is reached
24 MeshRun <
25 CurrentDimension - 1, StartDimension , TargetDimension ,
26 MeshDimension , TargetDimension == CurrentDimension - 1, Descend
27 >::run(mesh , origElementIndex , sube , fun);
28 }
29 }
30 };

The run function accepts four parameters:

1. mesh(MeshElements), the mesh to be iterated,

2. fun (Functor), pointer to a callable object accepting two agruments of IndexType,

3. origElementIndex (IndexType), the index of the origin mesh element, i.e., the mesh ele-
ment the recursion started from,

4. subelementIndex (IndexType), index of the currently visited element.

Note that the origin index is to be passed through the iteration among the dimensions. When
the TargetDimension is reached, the index of the origin and the currently visited elements are
passed to the function fun.

Let us proceed to the description of the MeshRun specializations and their purpose. The class
MeshRun consists of one general definition and four specializations. According to the 3 different
ways of sub-element iteration, the generic definition and the two specializations are devoted to
the iteration of the sub-elements. The remaining two specializations are employed to apply the
given function.

• The general MeshRun class template is to be utilized for iteration over sub-elements of
elements with dimension between 1 and dT . For example, this template is employed in the

55

Code listing 2.35 Specialization of the class MeshRun for parameters CurrentDimension equal
to MeshDimesnion and End false. This specialization is designed to perform the loop over the
boundary elements of cells, and recursively call MeshRun with CurrentDimension lowered by one.

1 // Specialization of MeshRun for CurrentDimension == MeshDimension
2 // and End == false
3 template <
4 unsigned int StartDimension ,
5 unsigned int TargetDimension ,
6 unsigned int MeshDimension ,
7 bool Descend
8 >
9 struct MeshRun <

10 MeshDimension ,
11 StartDimension ,
12 TargetDimension ,
13 MeshDimension ,
14 false ,
15 Descend > {
16

17 template <typename Functor , typename IndexType , typename Real , unsigned int ... Reserve >
18 static void run(const MeshElements <MeshDimension , IndexType , Real , Reserve ...>& mesh ,
19 IndexType origElementIndex ,
20 IndexType subelementIndex ,
21 Functor fun) {
22 // Get the cell element
23 auto& cell = mesh.getCells ().at(subelementIndex);
24 // Iteration over the cell boundary
25 // Obtain the first boundary element index
26 IndexType tmpFace = cell.getBoundaryElementIndex ();
27 do {
28 // Recursive call of MeshRun with a lowered dimension
29 MeshRun <
30 MeshDimension - 1, StartDimension , TargetDimension ,
31 MeshDimension , TargetDimension == MeshDimension - 1, Descend
32 >::run(mesh , origElementIndex , tmpFace , fun);
33 // Move to the next boundary element
34 tmpFace = mesh.getFaces ().at(tmpFace). getNextBElem(subelementIndex);
35 // Repeat until the origin boundary element is reached
36 } while (tmpFace != cell.getBoundaryElementIndex ());
37

38 }
39 };

56

Code listing 2.36 Specialization of the class MeshRun for parameters CurrentDimesnion
equal to 1 and End false. The function run calls the method run of class MeshRun with
CurrentDimension set to 0. Note that there is no specialization for zero dimension and End
false, because vertices do not have any sub-elements. Therefore, the recursion must be ter-
minated in the next step, i.e., End is true (TargetDimension is equal to 0). Otherwise, the
compilation fails.

1 // Specialization of MeshRun for CurrentDimension == 1
2 // and End == false
3 template <
4 unsigned int StartDimension ,
5 unsigned int TargetDimension ,
6 unsigned int MeshDimension ,
7 bool Descend
8 >
9 struct MeshRun <1, StartDimension , TargetDimension , MeshDimension , false , Descend > {

10

11 template <typename Functor , typename IndexType , typename Real , unsigned int ... Reserve >
12 static void run(const MeshElements <MeshDimension , IndexType , Real , Reserve ...>& mesh ,
13 IndexType origElementIndex ,
14 IndexType subelementIndex ,
15 Functor fun){
16 // Get the edge element
17 auto& edge = mesh.getEdges ().at(subelementIndex);
18 // Recursive call of MeshRun for indexes of vertices A and B
19 MeshRun <
20 0, StartDimension , TargetDimension ,
21 MeshDimension , TargetDimension == 0, Descend
22 >::run(mesh , origElementIndex , edge.getVertexAIndex (), fun);
23

24 MeshRun <
25 0, StartDimension , TargetDimension ,
26 MeshDimension , TargetDimension == 0, Descend
27 >::run(mesh , origElementIndex , edge.getVertexBIndex (), fun);
28 }
29 };

57

case iteration over sub-elements of faces in 3D mesh. The definition is presented in Code
listing 2.34.

• The first specialization is utilized when CurrentDimension is equal to MeshDimension, see
Code listing 2.35. This specialization is applied in the iteration over a cell boundary.

• The last specialization realizing the sub-element iteration is used when CurrentDimesnion
is equal to one. This specialization iterates over the two vertices of edges. The implemen-
tation is presented in Code listing 2.36.

All the described iteration methods have a common feature. In the body of the cycle, they
recursively call the run member function of MeshRun with decreased CurrentDimension by one.
Moreover, they check whether the next iterated dimension is the targeted one and pass it as the
End template parameter. All three variants of MeshRun discussed so far are utilized for parameter
End equal to false. This is done to prioritize the remaining two specializations. The advantage
of this concept is discussed in the end of this section.

If the template parameter End is set to true, then the remaining two specializations of MeshRun
are applied regardless of the other template parameters. Both the specializations apply the given
function with the origin and connected mesh elements indexes given and terminate the recursion.

Firstly, let us focus on the function passed to run, then the way of passing parameters will
be discussed. Since the type of the function is a template parameter, the type of the parameter
fun could be arbitrary, e.g., a function pointer or double. Nevertheless, the function expects the
fun parameter to be a callable object with two parameters of type IndexType. Therefore, the
type of the function is checked and if the function does not satisfy the condition, the compilation
is terminated with an explanatory error message.

To check the type Functor, we utilize the std::function class and std::is_assignable
from the type_traits header. Then the properties of Functor type are checked by check-
ing whether Functor is assignable to std::function<void(IndexType, IndexType)>, see the
static_assert at line 15 in Code listing 2.37. Moreover, the utilization of std::is_assignable
in combination with std::function also automatically resolves the implicit conversion of types.
For example, any type can be converted to void, therefore it accepts a function with any return
type (the return value is not used anyway). After the function is checked it only remains to call
it.

The function is passed two indexes of the mesh elements. The first is the index of the origin
element of dimension StartDimenson and the second one is the index of the currently visited
element of dimension TargetDimension, i.e., the connected one.

As we already mentioned, the mesh data structure enables the iteration over sub-elements
only. However, we have already suggested that there is a way how to simulate to loop over the
super-elements, i.e., when StartDimension is lower than TargetDimension. Firstly, let us recall
that the MeshRun is designed for StartDimension higher than TargetDimesnion only. Therefore,
the origElementIndex is always the index of an element of dimension StartDimesnion. Then
the iteration in the opposite direction can be simulated thanks to the symmetry of the connections
in the mesh discussed in Section 1.3.1. For this purpose, there is the last template parameter
named Descend. This parameter signalizes whether the iteration was originally requested in the
ascending or descending order. If the Descend parameter is true, the origElementIndex is passed
as the first one, and the currently iterated element index is passed as the second. Otherwise,
the order of the passed indexes is swapped. See the lines 22 and 43 in Code listing 2.37. In
other words, when the ascending order is requested, the currently visited element is passed as
the origin one and the one from which the iteration started is passed as the connected one.

Finally, the functionality of MeshRun is wrapped into the apply member function of the
MeshApply class. The purpose of the apply function is to prepare all the template parameters
for the call of the run member function of MeshRun, because the class MeshRun has many helper
template parameters, e.g., CurrentDimension or End. Moreover, the implementation of MeshRun

58

Code listing 2.37 Specialization of MeshRun for parameter End equal to true. In this
case, the run function applies the given function fun with parameters origElementIndex and
subelementIndex. There are two versions of the function depending on the template parameter
Descend. Both of the functions firstly check whether the passed type Functor is a function
which accepts two parameters of IndexType. This is done by testing whether the Functor is
assignable to std::function<void(IndexType, IndexType)> using std::is_assignable. If
the test fails, then an error with detailed description about the expected Functor properties
is raised, see the lines 17 and 37. Finally, the function is called with origElementIndex and
subelementIndex given. The order of the indexes is given by the parameter Descend. If it is
true, then the origElementIndex is passed as the first one and the subelementIndex as the
second one. Otherwise, the order is swapped. This way, the application from lower to higher
dimension is simulated. The function shall interpret the first as the origin element and the second
one as the connected element.

1 #define INVALID_FUNCTOR_DESCR \
2 "The␣Functor␣fun␣must␣be␣a␣function␣with␣void␣return␣type␣and␣two␣arguments␣of␣IndexType ,\
3 ␣the␣first␣is␣index␣of␣StartDimension␣element␣and␣the␣second␣is␣the␣index␣of␣the\
4 ␣TargetDimension␣element"
5

6 // Specialization of MeshRun for End == true and Descend == true
7 template < unsigned int CurrentDimension , unsigned int StartDimension ,
8 unsigned int TargetDimension , unsigned int MeshDimension >
9 struct MeshRun <CurrentDimension , StartDimension , TargetDimension ,

10 MeshDimension , true , true > {
11 template <typename Functor , typename IndexType , typename Real , unsigned int ... Reserve >
12 static void run(const MeshElements <MeshDimension , IndexType , Real , Reserve ...>& ,
13 IndexType origElementIndex ,
14 IndexType subelementIndex ,
15 Functor fun){
16 // Test the Functor type whether it is function
17 static_assert(
18 std:: is_assignable <std::function <void(IndexType , IndexType)>,Functor >::value ,
19 INVALID_FUNCTOR_DESCR);
20 // Call the function fun with parameters origElementIndex as the origin element
21 // index and the subelementIndex as the index of connected element
22 fun(origElementIndex , subelementIndex);
23 }
24 };
25

26 // Specialization of MeshRun for End == true and Descend == false
27 template < unsigned int CurrentDimension , unsigned int StartDimension ,
28 unsigned int TargetDimension , unsigned int MeshDimension >
29 struct MeshRun <CurrentDimension , StartDimension , TargetDimension ,
30 MeshDimension , true , false >{
31 template <typename Functor , typename IndexType , typename Real , unsigned int ... Reserve >
32 static void run(const MeshElements <MeshDimension , IndexType , Real , Reserve ...>& ,
33 IndexType origElementIndex ,
34 IndexType subelementIndex ,
35 Functor fun){
36 // Test the Functor
37 static_assert(
38 std:: is_assignable <std::function <void(IndexType , IndexType)>,Functor >::value ,
39 INVALID_FUNCTOR_DESCR);
40 // Because MeshRun is simulating iteration from TargetDimension
41 // to StartDimesnion , the order of the passed indexes is swapped
42 // and subelementIndex is passed to fun as the origin one
43 fun(subelementIndex , origElementIndex);
44 }
45 };

59

Code listing 2.38 The MeshApply class with the apply member function serves as a application
wrapper of the MeshRun class. Basically, the reason is that MeshRun has many helper parameters
which can be set just with the knowledge of start, target and mesh dimensions. Moreover, the the
parameter MeshDimesnion can be derived from the given MeshElements instance. Furthemore,
using MeshRun requires the knowledge which of the start and target dimensions is greater, see
lines 3 and 5. There are two versions of the apply member function. The first applies MeshRun
to all elements of the higher dimension. The second one has the parameter elementIndex which
specifies the single element MeshRun will be applied to. The second version of the apply member
function is limited to StartDimesnion greater or equal to TargetDimension.

1 template <unsigned int StartDimension , unsigned int TargetDimension >
2 struct MeshApply {
3 static constexpr unsigned int hDim =
4 (StartDimension > TargetDimension) ? StartDimension : TargetDimension;
5 static constexpr unsigned int lDim =
6 (StartDimension > TargetDimension) ? TargetDimension : StartDimension;
7

8 template <unsigned int MeshDimension , typename Functor ,
9 typename IndexType , typename Real , unsigned int ... Reserve >

10 static void apply(const MeshElements <MeshDimension , IndexType , Real , Reserve ...>&mesh ,
11 Functor f) {
12 for (IndexType currElement = 0;
13 currElement < mesh.template getElements <hDim >(). size ();
14 currElement ++){
15 Impl::MeshRun <
16 hDim ,
17 hDim ,
18 lDim ,
19 MeshDimension ,
20 StartDimension == TargetDimension ,
21 (StartDimension > TargetDimension)
22 >::run(mesh , currElement , currElement , f);
23 }
24 }
25

26 template <unsigned int MeshDimension , typename Functor ,
27 typename IndexType , typename Real , unsigned int ... Reserve >
28 static void apply(IndexType elementIndex ,
29 const MeshElements <MeshDimension , IndexType , Real , Reserve ...>&mesh ,
30 Functor f) {
31 static_assert (StartDimension >= TargetDimension ,
32 "It␣is␣possible␣to␣iterate␣over␣connected␣elements␣"
33 "of␣a␣single␣element␣for␣StartDimesnion␣>␣TargetDimesnion␣only.");
34

35 Impl::MeshRun <
36 hDim ,
37 hDim ,
38 lDim ,
39 MeshDimension ,
40 StartDimension == TargetDimension ,
41 (StartDimension > TargetDimension)
42 >::run(mesh , elementIndex , elementIndex , f);
43

44 }
45 };

60

Code listing 2.39 An example of using MeshConnections. The connections member function
of MeshConnections returns a MeshDataContainer mapping to each element the indexes of
the connected elements of the requested dimension. The sequence of indexes does not contain
duplicities and the order of the connections can be chosen to be ascending or original.

1 // Connected vertices to the cells
2 auto conCellToVert = MeshConnections <3,0>:: connections(mesh);
3 for (auto& cell : mesh.getCells ()){
4 conCellToVert[cell]; // Vector of connected vertices to the given cell
5 }
6

7 // Connections in the original order in the mesh
8 auto conCellToVertOrig = MeshConnections <3,0,Order :: ORDER_ORIGINAL >:: connections(mesh);
9 for (auto& cell : mesh.getCells ()){

10 conCellToVertOrig[cell]; // Vector of vertices connected to the given cell
11 }
12

13 // Detection of the cells connected to a vertex
14 auto conVertToCell = MeshConnections <0,3>:: connections(mesh);
15 for (auto& vert : mesh.getVertices ()){
16 conVertToCell[vert]; // Cells connected to the given vertex
17 }

is hidden in namespace Impl, because it is meant to be used through the class MeshApply only.
The definition of MeshApply is described in Code listing 2.38.

It is important to mention the limitation of using the MeshApply. It is not possible to
iterate over the connected super-elements directly, i.e., when TargetDimension is greater than
StartDimension. All elements from the dimension TargetDimension must be went through
to resolve all the connected super-elements. Thus, it is senseless to apply the function to one
element only, because there is no advantage over realizing the application for all elements at
once. Thence, it is forbidden to use apply with elementIndex specified if TargetDimension is
greater than StartDimension.

Another important note is that neither MeshRun nor MeshApply checks whether a function
was already called with the current combination of indexes. Therefore, the function might be
called more than once for single connected element and the function design must consider this
might happen. For example, when MeshApply<3,0> is called, one vertex might be reached more
than once, because the vertex is connected to more than one face adjacent to a cell. One shall
keep in mind this property when using the MeshApply functionality.

Finally, we promised to discuss the advantage of the additional template parameter End. The
addition of the End parameter helped us to lower the number of specializations of MeshRun needed.
If the specialization was based on equality of the CurrentDimension and the TargetDimesnion
parameters, it would collide with the specialization “TargetDimension == MeshDimension“ it-
erating over the cell boundary. This is because both the specializations have the same prior-
ity. The collision would be solved by specifying the priority by adding specialization for the
CurrentDimension and the TargetDimesnion both equal to the MeshDimension. The same
would be necessary to be done in the case of edges.

2.4.2 Mesh Connections and the MeshConnections Class

The purpose of the function MeshConnections is creating the connection matrices Ad1,d2GT ∗
, where

the dimensions d1, d2 are template parameters named StartDim and TargetDim. For an example
of usage of the MeshConnections , see Code listing 2.39. MeshConnections provides the function-
ality of the map “connect” introduced in equation (1.10). Using MeshApply, the implementation
of MeshConnections is very simple.

The only problem to be solved is that the connected elements are visited more than once,
because the function MeshApply does not care whether a connected element was already visited.

61

Figure 2.3: Dependence of the neighborhood on the chosen connecting elements. In both figures,
the neighborhood of the dark blue square is colored cyan. The left case presents the neighborhood
over edges, the right over vertices. The connecting elements are highlighted in red. The effect
of the choice of connecting elements is obvious at first sight: the choice of edges resolves in
4-neighborhood, the choice of vertices resolves in 8-neighborhood.

The solution is simple and consists in utilizing the standard template library class std::set,
which prevents insertion of multiple keys (in our case, the element indexes).

The method starts by allocating the std::set on the mesh using MeshDataContainer<
std::set<IndexType>, FromDim>. In MeshApply, the mapped sets are filled with data. Fi-
nally, the sets are converted to class std::vector, thus the result type is MeshDataContainer of
vectors. The reason is more compact data structure, because std::set is usually implemented
as red-black tree [6]. This function returns indexes in ascending order, see Code listing 2.40. The
ascending order of indexes is suitable for set operations as std::set_union or set_difference
defined in algorithm header.

To provide the possibility to return original the order, which is understood as the order in
the MeshElements structure, the MeshConnections has an additional template parameter which
specifies the order of indexes. The default is ascending order. The original order is achieved
by using std::map<IndexType, IndexType> instead of std::set<IndexType>. Alongside each
index this map stores in addition the order of the elements as they were added in to the container.
Then the data are copied into the vector according to the mapped order index instead of the
order of the key set, see Code listing 2.41.

Let us note that there is one more important ordering of indexes. The order is geometrical
and it is relevant for the connections from the second dimension to vertices. The indexes of
vertices are returned in the order as they appear along the boundary of the surface. The more
detailed description is in Section 2.5.

2.4.3 Elements Neighborhood and the MeshNeighborhood Class

Another useful task is to find all neighbors of the given element, e.g., neighboring cells to a
cell. This task goes beyond the possibilities of connections, but the concepts of connections
and neighborhood are very similar. In terms of graph theory, the neighborhood of a vertex v
is a set of graph vertices which are connected with v by an edge. We adapt the definition of
neighborhood to respect the mesh geometry. This neighborhood is defined by two dimensions.
The first is the connecting dimension d1 and the second is the connected dimension d2. For
any element e ∈ V d

T ∗ , the set of neighboring elements of dimension d2 connected by elements of
dimension d1 reads

Nd1,d2
GT ∗

(e) =
{
f ∈ V d2

T ∗

∣∣∣(∃g ∈ V d1
T ∗

)
((g, f) ∈ ET ∗ ∧ (g, e) ∈ ET ∗ ∧ e 6= f)

}
, (2.1)

where d, d1, d2 ∈ {0, 1, . . . , dT }. Equation (2.1) can be interpreted as: The d2-dimensional
element f ∈ V d2

T ∗ is a neighbor of e ∈ VT ∗ (over dimension d1) if there exists a path of length
2 from f to e over some d1-dimensional element g ∈ V d1

T ∗ . The differences of the neighborhood
based on the choice of the connecting dimension are shown in Figure 2.3.

62

Code listing 2.40 The definition of MeshConnections for the choice of ascending order of re-
turned indexes of the connected elements. The connections member function accepts any mesh
as the MeshElements class and determines the connections in the mesh according to the template
setup of MeshConnections class, i.e., the parameters StartDim and TargetDim. At first, a tem-
porary container for the connections tmpSet is prepared to store the connections. The container
tmpSet is filled using MeshApply starting at line 21. Moreover, the contained class std::set
automatically prevents the duplicities, which means the lambda function considers the possibil-
ity of multiple calls with the same combination of parameters orig and connected. Finally, the
tmpSet contains the requested connections, that are subsequently copied to a std::vector. The
ascending order is automatically provided by the std::set.

1 // From header MesFunnctionDefine.h
2 enum Order{
3 ORDER_ASCEND ,
4 ORDER_ORIGINAL
5 };
6

7 template <unsigned int StartDim , unsigned int TargetDim , Order order = Order:: ORDER_ASCEND >
8 struct MeshConnections {
9

10 // Returns the indexes of the connected elements
11 // from TargetDim to StartDim in ascending order
12 template <unsigned int MeshDimension , typename IndexType ,
13 typename Real , unsigned int ... Reserve >
14 static MeshDataContainer <std::vector <IndexType >, StartDim >
15 connections (MeshElements <MeshDimension , IndexType , Real , Reserve ...>& mesh) {
16

17 // Allocate temporary data
18 MeshDataContainer <std::set <IndexType >, StartDim > tmpSet(mesh);
19

20 // Fill the container
21 MeshApply <StartDim , TargetDim >:: apply(
22 mesh ,
23 [& tmpSet](IndexType orig , IndexType connected){
24 tmpSet.template getDataByPos <0 >().at(ori). insert(connected);
25 }
26);
27

28 // Allocate result data
29 MeshDataContainer <std::vector <IndexType >, StartDim > res(mesh);
30

31 // Copy the temporary data into result data
32 for (IndexType i = IndexType (); i < res.template getDataByPos <0>(). size (); i++) {
33 res.template getDataByPos <0>()[i]. insert(
34 res.template getDataByPos <0>()[i].begin(),
35 tmpSet.template getDataByPos <0 >()[i]. begin(),
36 tmpSet.template getDataByPos <0 >()[i].end ());
37 }
38 return res;
39 }
40 };

63

Code listing 2.41 This listing presents the specialization of MeshConnections for the parameter
Order equal to ORDER_ORIGINAL. Similarly to the version for ascending order presented in Code
listing 2.40, this specialization utilizes a temporary container to automatically resolve duplicities.
In contrast to the previous version, it employs std::map instead of std::set. The reason is to
store the information about the order in which the indexes were inserted to the map (see the
lambda function starting at line 17). As tempMap is filled, the data shall be copied to the result
container. Firstly, the result container must be resized to the size of respective map (line 27).
Then, in the cycle at line 31 the index is stored at the position given by the order in which it
was visited.

1 template <unsigned int StartDim , unsigned int TargetDim >
2 struct MeshConnections <StartDim , TargetDim , Order:: ORDER_ORIGINAL > {
3 // Returns the indexes of connected elements
4 // from TargetDim to StartDim in original order
5 template <unsigned int MeshDimension , typename IndexType ,
6 typename Real , unsigned int ... Reserve >
7 static MeshDataContainer <std::vector <IndexType >, StartDim >
8 connections(
9 MeshElements <MeshDimension , IndexType , Real , Reserve ...>& mesh

10) {
11 // Allocate the temporary mapping
12 MeshDataContainer <std::map <IndexType , IndexType >, StartDim > tempMap(mesh);
13

14 // Fill the container
15 MeshApply <StartDim , TargetDim >:: apply(
16 mesh ,
17 [& tempMap](IndexType orig , IndexType connected){
18 IndexType size = tempMap.template getDataByPos <0>().at(orig).size ();
19 tempMap.template getDataByPos <0>().at(orig). insert ({connected , size });
20 }
21);
22

23 // Prepare the result
24 MeshDataContainer <std::vector <IndexType >, StartDim > result(mesh);
25 for (IndexType i = 0; i < mesh.template getElements <StartDim >(). size (); i++){
26 // Resize the vector at the position
27 result.template getDataByPos <0 >().at(i). resize(
28 tempMap.template getDataByPos <0>().at(i).size()
29);
30

31 for(auto& mapElem : tempMap.template getDataByPos <0 >().at(i)) {
32 // Set the index of an element into a vector
33 // at position corresponding to order it was accessed
34 result.template getDataByPos <0 >().at(i).at(mapElem.second)= mapElem.first;
35 }
36 }
37 return result;
38 }
39

40 };

64

Code listing 2.42 This is an example of working with neighborhood of the mesh elements. The
definition of MeshNeighborhood is in Code listing 2.43. The first example at line 2 is obtaining
vertex to vertex neighborhood, where the connection of vertices is provided by cells, i.e., vertices
connected to the same cell are neighboring. The second example presents an algorithm for an
extension of neighborhood. The neighborhood is expanded by the neighbors of neighbors. This
algorithm consists in joining all the neighborhoods of neighbors into the resulting container.
Thanks to the ascending ordering of indexes, it is possible to realize that using std::set_union,
see the line 14. It is possible to apply the algorithm recursively to determine broader neigh-
borhoods. The last example shows the neighborhood between faces over cells with the original
ordering.

1 // Getting vertices neighboring to vertices over cells
2 auto nbh = MeshNeighborhood <0,3>:: neighbors(mesh);
3

4 // Algorithm for calculating a broader neighborhood
5 MeshDataContainer <std::vector <size_t >,0> nbh2Order(mesh) = nbh;
6 for(auto& vert : mesh.getVertices ()){
7 for (auto nvi : nbh2Order[vert]){
8 auto& nVert = mesh.getVertices ()[nvi];
9

10 // Prepare temporary container for result of union
11 std::vector <size_t > res;
12

13 // Join the indexes of neigbors of the neighboring vertex
14 std:: set_union(nbh2Order[vert]. begin(), nbh2Order[vert].end(),
15 nbh[nVert]. begin(), nbh[nVert].end(),
16 std:: inserter(res , res.begin ()));
17 // Update the set of indexes
18 nbh2Order[vert] = res;
19 }
20

21 // Erasing the index of vertex from its own neighborhood
22 nbh2Order[vert].erase(lower_bound(nbh2Order[vert].begin(),
23 nbh2Order[vert].end(), vert.getIndex ()));
24 }
25

26 // Neigborhood between faces over cells ordered as in the mesh
27 auto nbh2 = MeshNeighborhood <2,3,2, ORDER_ORIGINAL >:: neighbors(mesh);

65

Code listing 2.43 This code presents the definition of the method calculating the neighbor-
hood. The template parameters StartDim, ConnectingDim and ConnectedDim correspond to
the values of d, d1, d2, respectively, in (2.1) By default, the ConnectedDim is equal to StartDim
and the result order is ascending. The algorithm starts with obtaining connections at lines 15-
19. Then, the connections are combined using a loop over connections of connected elements of
dimension d1, lines 27-39. The correct order is ensured by using std::set which additionally
prevents duplicities. Note that the restriction that element is not its own neighbor is satisfied
by the condition at line 33. Finally, at line 41, the result is copied from the temporary set into
the resulting vector. The complete description is in Section 2.4.3.

1 template <unsigned int StartDim ,
2 unsigned int ConnectingDim ,
3 unsigned int ConnectedDim = StartDim ,
4 Order order = Order:: ORDER_ASCEND >
5 class MeshNeighborhood{
6 public:
7 template <unsigned int MeshDimension ,
8 typename IndexType ,
9 typename Real ,

10 unsigned int ... Reserve >
11 static MeshDataContainer <std::vector <IndexType >, StartDim > neighbors(
12 MeshElements <MeshDimension , IndexType , Real , Reserve ...>& mesh
13) {
14 // Prepare the connecions
15 MeshDataContainer <std::vector <IndexType >, StartDim > result(mesh);
16 auto firstConnections =
17 MeshConnections <StartDim , ConnectingDim , order >:: connections(mesh);
18 auto secondConnections =
19 MeshConnections <ConnectingDim , ConnectedDim , order >:: connections(mesh);
20 // Join the connections
21 for (IndexType elementIndex = 0;
22 elementIndex < mesh.template getElements <StartDim >(). size ();
23 elementIndex ++) {
24

25 std::set <IndexType > tmpResultSet;
26

27 for (IndexType& firstConectedElem :
28 firstConnections.template getDataByPos <0>().at(elementIndex)){
29

30 for (IndexType& neighborIndex :
31 secondConnections.template getDataByPos <0>().at(firstConectedElem)){
32 // Do not set the element as its own neighbor
33 if (StartDim == ConnectedDim && elementIndex == neighborIndex) {
34 continue;
35 } else {
36 tmpResultSet.insert(neighborIndex);
37 }
38 }
39 }
40 // Copy the result into result container
41 result.template getDataByPos <0 >()[elementIndex]. insert(
42 result.template getDataByPos <0 >()[elementIndex].begin(),
43 tmpResultSet.begin(),
44 tmpResultSet.end()
45);
46 }
47

48 return result;
49 }
50

51 };

66

Code listing 2.44 The specialization of MeshNeighborhood class for Order = ORDER_ORIGINAL.
Similarly to MeshConnection with this choice of ordering, this implementation utilizes std::map
to remember the order of added elements indexes. Other thoughts are the same as in the default
case described in Code listing 2.43.

1 template <unsigned int StartDim ,
2 unsigned int ConnectingDim ,
3 unsigned int ConnectedDim >
4 class MeshNeighborhood <StartDim ,
5 ConnectingDim ,
6 ConnectedDim ,
7 Order :: ORDER_ORIGINAL > {
8 public:
9 template <unsigned int MeshDimension ,

10 typename IndexType ,
11 typename Real ,
12 unsigned int ... Reserve >
13 static MeshDataContainer <std::vector <IndexType >, StartDim > neighbors(
14 MeshElements <MeshDimension , IndexType , Real , Reserve ...>& mesh
15) {
16 // Prepare the connecions
17 MeshDataContainer <std::vector <IndexType >, StartDim > result(mesh);
18 auto firstConnections =
19 MeshConnections <StartDim , ConnectingDim , ORDER_ORIGINAL >:: connections(mesh);
20 auto secondConnections =
21 MeshConnections <ConnectingDim ,ConnectedDim ,ORDER_ORIGINAL >:: connections(mesh);
22 // Join the connections
23 for (IndexType elementIndex = 0;
24 elementIndex < mesh.template getElements <StartDim >(). size ();
25 elementIndex ++) {
26

27 std::map <IndexType , IndexType > tempResultMap;
28

29 for (IndexType& firstConectedElem :
30 firstConnections.template getDataByPos <0>().at(elementIndex)){
31

32 for (IndexType& neighborIndex :
33 secondConnections.template getDataByPos <0>().at(firstConectedElem)){
34 // Do not set the element as its own neighbor
35 if (StartDim == ConnectedDim && elementIndex == neighborIndex) {
36 continue;
37 } else {
38 IndexType pos = tempResultMap.size ();
39 tempResultMap.insert ({ neighborIndex , pos});
40 }
41 }
42 }
43 // Copy the result into result container
44 result.template getDataByPos <0 >().at(elementIndex). resize(
45 tempResultMap.size()
46);
47

48 for(std::pair <const IndexType , IndexType >& mapElem : tempResultMap) {
49 result.template getDataByPos <0 >().at(elementIndex).at(mapElem.second) =
50 mapElem.first;
51 }
52 }
53

54 return result;
55 }
56

57 };

67

Figure 2.4: An example of coloring of the mesh cells. In both cases a greedy algorithm was used.
The difference consists in the choice of the connecting dimension, which influences the shape of
the neighborhood of cells. For an example, see Figure 2.3.

The realization in GTMesh is utilizing three dimension parameters. The first is the dimension
of elements to find the neighborhood for. The neighborhood will be found for all elements of
the dimension named StartDim. The second is the connecting dimension ConnectingDim, i.e. d1

in (2.1). Finally, the third is the connected dimension ConnectedDim, i.e. d2 in (2.1). As in
MeshConnections, the returned container is a MeshDataContainer mapping a vector of indexes
of the neighbors to each mesh element of StartDim dimension. This functionality also provides
the choice of ordering the indexes of neighbors. The default value of ordering is ascending order,
see the definition of the MeshNeighborhood in Code listing 2.43. The MeshNeighborhood class
has a public static member function neighbors, which realizes the algorithm. The detection
of neighbors utilizes two connections: one from StartDim to ConectingDim and the other from
ConnectingDim to ConnectedDim. By combination of those two connections, the neighborhood of
elements of StartDim dimension to ConnectedDim over ConnectingDim is realized. Additionally,
when the StartDim is equal to ConnectedDim, the index of the origin element must not be in
the neighborhood, therefore it is omitted using the condition at line 21 in Code listing 2.43.
This function returns the indexes of the neighboring elements sorted, which can be used with
advantage to join the neighborhoods of neighboring elements. This way, more distant neighbors
can be obtained. An example is presented in Code listing 2.42.

The specialization for the original order is achieved as in the case of MeshConnections. The
function utilizes a map to remember the order of visited indexes, as shown in Code listing 2.44.

2.4.4 Mesh Coloring and the ColorMesh Class

The last of the algorithms related to the graph representation of the mesh topology is the coloring
algorithm. The problem consists in proper coloring of the elements of dimension d according to
connections of dimension d1 [31]. In terms of graph theory, it is a proper vertex coloring of the
graph G = (V,E) where

V = V d
T ∗ ,

E =

{
(e, v) ∈

(
V d

T ∗

)2 ∣∣∣v ∈ Nd1,d
GT ∗

(e)

}
. (2.2)

In other words, the vertices of the graph G are mesh elements of dimension d and two vertices
are connected by edge, if the corresponding elements are both connected to the same element of
dimension d1.

Definition 6. Let G = (V,E) be a graph. Vertex coloring is a mapping φ : V 7→ N and the
values of φ are called colors. The coloring φ is called proper, iff

(∀e ∈ V) (∀v ∈ NG (e)) (φ (e) 6= φ (v)) , (2.3)

where NG (e) = {f ∈ V | (e, f) ∈ E} is the set of neighbors of the vertex e ∈ V in G.

68

The problem can be demonstrated on the example of coloring the cells with respect to vertices,
i.e. d = dT and d1 = 0. This means, the cells are colored such that all cells sharing the same
vertex have a unique color, see Figure 2.4.

The simplest algorithm to find a proper coloring of a graph is a greedy algorithm. The
algorithm is the following:

1. For each vertex e ∈ V :

(a) loop over the neighboring vertices v ∈ NG (e) of e and keep track of the used colors,

(b) select the lowest color not present among the neighbors and assign it to e.

The greedy algorithm might generate uneven distribution of colors with some colors occurring
only sparsely. If a more even distribution is desired, a random re-selection of colors can be applied.
This update of the given colors may cause more even distribution of the colors. The algorithm of
the random update is very similar to the greedy one and utilizes previously calculated coloring.
Hence, this algorithm has an information about the number of colors needed for proper coloring
and it is able to select another color where possible. The algorithm reads:

1. For each vertex v ∈ V :

(a) loop over the neighboring vertices v ∈ NG (e) of e and keep track of the used colors,

(b) select randomly a new color of the vertex v or keep the old one.

Now let us move to the description of the implementation. GTMesh provides the coloring
algorithm though the class MeshColoring with a public static member function color which
accepts a reference to an instance of MeshElements. The method then calls the color member
function of the class _MeshColoring, which realizes the algorithm according to the template
setup. The template parameters are d as ColoredDim and d1 as ConnectingDim and Method to
select the greedy algorithm or the one with the random update.

The utilized algorithm advantageously uses the structure of the mesh to simulate the GT ∗ .
The advantage consists in utilizing the elements of dimension d1 as a storage of the colors of the
neighboring elements of dimension d. This way, the occupied colors by the neighbors of v ∈ T d

can be determined by looping over the Nd1 (v). The chosen data structure to store the occupied
colors among the neighbors (Nd (e)) of e ∈ T d1 is std::valarray<bool> where the position
corresponds to the index of the color and value determines, whether the color is already used
among the neighbors. The advantage of this container is the possibility to detect the free colors
for elements by simple boolean operations, see the line 31 in Code listing 2.45. This approach
requires an update of the occupied colors after color is set to v.

The implemented greedy version algorithm is the following:

1. Prepare the containers (MeshDataContainer) mapping colors to v ∈ T d and
std::valarray<bool> to e ∈ T d1 ,

2. for each element v:

(a) determine the occupied colors among Nd,d1 (v) by looping over Nd1 (v),

(b) select the free color with the lowest index (resize the std::valarray<bool> mapped
to T d1 if all colors are occupied),

(c) set true value at position corresponding to the selected color at all Nd1 (v).

Because the number of colors needed is not known in ahead, it is possible to the number of
colors exceeds the reserved number of colors. In such case the reserve for the number of colors
is doubled in order to be able to handle more colors (see lines 40-50 in Code listing 2.45).

69

Code listing 2.45 The implementation of the greedy mesh coloring algorithm described in Sec-
tion 2.4.4. The method firstly prepares the container for the result and colorReserve number of
colors. Then the container of attached colors to connecting elements is together with connections
from ColoredDim to ConnectingDim are prepared. The container to hold the attached colors is
std::valarray<bool>, e.g., true on position 2 means the color number 2 is already used. The
convenient use of std::valarray<bool> for aggregation of colors is at lines 29-32. When the
list of free colors is obtained, the first free color is chosen then. If there is not free color in the
list, then the number of considered colors is doubled. Finally, the chosen color is set as the color
of the current element and reserved in the attachedColors container.

1 template <unsigned int ColoredDim ,
2 unsigned int ConnectingDim ,
3 ColoringMethod Method = METHOD_GREEDY ,
4 bool Descend = (ColoredDim > ConnectingDim)>
5 struct _MeshColoring {
6 template <unsigned int MeshDimension , typename IndexType , typename Real , unsigned int ... Reserve >
7 static MeshDataContainer <unsigned int , ColoredDim > color(
8 MeshElements <MeshDimension , IndexType , Real , Reserve ...>& mesh
9) {

10
11 // resulting container of colors
12 MeshDataContainer <unsigned int , ColoredDim > result(mesh);
13 // Setup the initial reserved number of colors
14 unsigned int colorReserve = 16;
15
16 // Allocate the containers for attached colors to "edges"
17 MeshDataContainer <std::valarray <bool >, ConnectingDim > attachedColors;
18 attachedColors.allocateData(mesh , std::valarray <bool >(false , colorReserve));
19
20 // Create the connections from ColoredDim to ConnectingDim
21 auto connections = MeshConnections <ColoredDim , ConnectingDim >:: connections(mesh);
22
23 // Loop over all mesh elements in ColoredDim
24 for (IndexType elementIndex = 0;
25 elementIndex < mesh.template getElements <ColoredDim >(). size ();
26 elementIndex ++){
27
28 // Gather the free colors over adjacent elements from ConnectingDim
29 std::valarray <bool > freeColors(true ,colorReserve);
30 for (IndexType element : connections.template getDataByPos <0 >().at(elementIndex)){
31 freeColors &= !attachedColors.template getDataByPos <0>().at(element);
32 }
33
34 // Select the first possible color
35 unsigned int selectedColor = 0;
36 while (! freeColors[selectedColor]) {
37 selectedColor ++;
38 // If the number of colors exceeds the number of
39 // allocated bits , then allocate memory for twice as many colors
40 if (selectedColor == freeColors.size ()){
41 colorReserve *= 2;
42 for (std::valarray <bool >& attColor : attachedColors.template getDataByPos <0 >()){
43 std::valarray <bool > newAttColor(false , colorReserve);
44 for (size_t i = 0; i < attColor.size (); i++){
45 newAttColor[i] = attColor[i];
46 }
47 attColor.swap(newAttColor);
48 }
49 break;
50 }
51 }
52 // Set the selected color to the element
53 result.template getDataByPos <0 >().at(elementIndex) = selectedColor;
54
55 // Set the selected color as not free at adjacent edges
56 for (IndexType element : connections.template getDataByPos <0 >().at(elementIndex)){
57 DBGTRY(attachedColors.template getDataByPos <0>().at(element)[selectedColor] = true;)
58 }
59 }
60 return result;
61 }
62 };

70

Code listing 2.46 The specialization of the _MeshColoring for Descend == true, i.e.,
ColoredDim higher than ConnectingDim. The iterations over sub-elements can be resolved us-
ing the MeshElements data structure without prior declaration of the connections. Therefore,
MeshApply can be utilized. Other parts of the code are the same as in the generic case in Code
listing 2.45.

1 template <unsigned int ColoredDim , unsigned int ConnectingDim >
2 struct _MeshColoring <ColoredDim , ConnectingDim , METHOD_GREEDY , true > {
3

4 // The implementation for choice of Descend == true
5 template <unsigned int MeshDimension , typename IndexType ,
6 typename Real , unsigned int ... Reserve >
7 static MeshDataContainer <unsigned int , ColoredDim > color(
8 MeshElements <MeshDimension , IndexType , Real , Reserve ...>& mesh
9) {

10 // Prepare the containers for the algorithm
11 MeshDataContainer <unsigned int , ColoredDim > result(mesh);
12 unsigned int colorReserve = 16;
13 MeshDataContainer <std::valarray <bool >, ConnectingDim >
14 attachedColors(mesh , std::valarray <bool >(false , colorReserve));
15

16 for (IndexType elementIndex = 0;
17 elementIndex < mesh.template getElements <ColoredDim >(). size ();
18 elementIndex ++){
19

20 std::valarray <bool > freeColors(true ,colorReserve);
21 MeshApply <ColoredDim , ConnectingDim >:: apply(
22 elementIndex ,
23 mesh ,
24 [&freeColors , &attachedColors](IndexType , IndexType element){
25 freeColors &= !attachedColors.template getDataByPos <0>().at(element);
26 }
27);
28

29 // Select the first possible colour
30 // the same as lines 34-51 in Code listing 2.45
31

32

33 result.template getDataByPos <0 >().at(elementIndex) = selectedColor;
34 MeshApply <ColoredDim , ConnectingDim >:: apply(
35 elementIndex ,
36 mesh ,
37 [selectedColor , &attachedColors](IndexType , IndexType element){
38 attachedColors.template getDataByPos <0 >()[element][selectedColor] =
39 true;
40 });
41 }
42 }
43 };

71

Figure 2.5: An example of the chosen algorithm for computing the element centers in a simple
3D mesh. The center point of an element is calculated as an average of the center points of its
sub-elements. For example, the cell center point denoted xc is the average of the centers of all
connected faces, denoted xfi .

Moreover, it is possible to employ an optimization for ConnectingDim lower than ColoredDim.
The connecting elements can be iterated directly and there is no need to explicitly evaluate the
connections. Code listing 2.45 presents the definition of _MeshColoring, which demonstrates
the greedy method and ConnectingDim higher than ColoredDim. The presented algorithm is
generic and works for any choice of the dimensions.

In the case of ConnectingDim is lower than ColoredDim, the for cycles over connecting
elements (lines 30 and 56 in Code listing 2.45) are replaced by MeshApply, see the specialization
in Code listing 2.46.

The class MeshColoring with method color wraps the implementation hidden in
_MeshColoring in namespcase Impl.

2.4.5 Element Center Calculation

The previous algorithms were working with the mesh as a topological object, i.e., they did not
work with the coordinates of vertices. Now we will describe the algorithms that calculate some
significant geometrical properties of the mesh. We begin with the algorithm calculating center
points of all objects in the mesh.

The center of each element is calculated as an average of the positions of centers of the
connected sub-elements, e.g., the center of a cell is an average of centers of the cell’s faces. The
advantage of this approach consists in reduction of the depth of iteration over the mesh, see the
example of the algorithm in Figure 2.5. Because the algorithm uses the previously calculated
values, the computation might speed up against the calculation of the center as the average of
the positions of the connected vertices. For example, in the case of dimension 2 it is sufficient to
visit the sub-elements of dimension 1. The scheme of the algorithm is the following:

1. set the dimension d = 1,

2. for all elements e ∈ T d calculate the center of e as xe = 1

|Nd−1(e)|
∑

f∈Nd−1(e) xf by a loop

over sub-elements of e,

3. if d < dT then d = d+ 1 and go to step 2, else stop the algorithm and return the result.

In a 2D mesh this algorithm returns the same result as the average of the positions of the
connected vertices. However, in a 3D mesh the cell centers calculated by this algorithm and
average of positions of the connected vertices may differ when the number of vertices of faces
differs.

In GTMesh the calculation of the element centers is provided by the computeCenters func-
tion template. Because the function computeCenters has to the loop over the mesh dimensions,

72

which is a template parameter, it must utilize a template class _ComputeCenters, which realizes
the loop using template recursion. This concept was already presented in MeshApply in Sec-
tion 2.4.1. In contrast to MeshRun, the iteration over mesh dimensions is upward. Moreover, this
is the first time we face the problem of returning results mapped to more dimensions. The di-
mensions to map the result to even depends on the dimension of the mesh. For this purpose, the
concept MakeMeshDataContainer was developed (Section 2.3.3). For example, the return type
in the case of a 2D mesh is MeshDataContainer<Vertex<2, Real>, 1, 2>, where the Vertex
class is presented in Code listing 2.9.

Let us begin with the description of the class _ComputeCetners and its specializations. The
class _ComputeCenters has one public static function compute. This function has two parame-
ters, the first is the container to store the result to and the second is the mesh to be processed. The
class _ComputeCenters has three template parameters which can be used in the compute member
function. The first parameter is the currently processed dimension named CurrentDimesnion.
The second parameter is MeshDimension which specifies the number of coordinates of the ver-
tices and also stops the recursion when CurrentDimension reaches MeshDimension. The last
parameter specifies the algorithm to be applied to the computation. In this section, we will
describe only the default version. The other one will be presented in Section 2.7.

Let us begin from the specialization which is to be applied first. It is the specialization for the
parameter CurrentDimesnion equal to 1. In other words, it is the computation of the centers
of edges. The implementation is shown in Code listing 2.48. The compute member function
firstly calculates the center points as an average of the two vertices defining the edge. Notice
the formula for calculation of the average at lines 23 and 24 in Code listing 2.48. Despite using
MeshElement with dimension 0, it is possible to treat it as the Vertex class. After preparing the
centers of edges, the function calls compute of _ComputeCenters with CurrentDimension set to
2. The centers container is passed to the called function, which can use the prepared centers for
further calculation.

Next, we describe the generic definition _ComputeCenters, which is applied when
CurrentDimension is greater than 1 and less than MeshDimension. The implementation of
the compute method utilizes a generic algorithm to sum the centers of the sub-elements and
divide it by the number of sub-elements. The iteration over sub-elements can be comfortably
realized using MeshApply. For details, see Code listing 2.47. After the centers are prepared, the
function again calls compute of _ComputeCenters with an increased dimension.

Finally, when CurrentDimension reaches MeshDimension, the last specialization is to be used.
This specialization calculates the centers of cells by the same algorithm utilized in the generic
case. In other words, the centers of the cells are calculated from the previously calculated
centers of faces. Thanks to the generality of the MeshApply concept, the implementation of
the averaging algorithm might be the same as in the generic case. In contrast to the generic
case, in this specialization the recursion stops, i.e., there is no call of _ComputeCenters after the
computation. Then the algorithm stops and the result is returned to the caller by the parameter
centers.

As in the case of the previous algorithms, the GTMesh library provides a function wrap-
per, which utilizes _ComputeCenters hidden in the namespace Impl. The function is named
computeCenters and accepts one parameter, which is the mesh to work with, and one template
parameter, the computation method. The rest of template parameters are deduced. Then the
function prepares the container corresponding to the mesh dimension and calls the compute
member function of _ComputeCenters<1, MeshDimension>. Finally, the calculated result is
returned. See the implementation in Code listing 2.50.

73

Code listing 2.47 The definition of the _ComputeCenters class. In the context of the following
specializations, this definition is used for elements with generic connection to sub-elements, e.g.,
face in 3D mesh. The member function named compute returns the result in the parameter
centers passed by reference. The implementation assumes that the container is already allocated
and the centers mapped to lower dimensions than CurrentDimesnion are already prepared.
Then, the function calculates the centers in the currently processed dimension. Finally, the
calculation is passed to the next dimension. Note that MakeMeshDataContainer_t together
with make_custom_integer_sequence_t serves as automatic generator of the return type, as
discussed in Section 2.3.3. The template parameter Method changes the computation for meshes
with non-planar faces. This will be further discussed in Section 2.7.

1 template <unsigned int CurrentDimension , unsigned int MeshDimension ,
2 ComputationMethod Method = ComputationMethod ::DEFAULT >
3 struct _ComputeCenters {
4 template <typename IndexType , typename Real , unsigned int ... Reserve >
5 static void
6 compute(
7 MakeMeshDataContainer_t <
8 Vertex <MeshDimension , Real >,
9 make_custom_integer_sequence_t <unsigned int , 1, MeshDimension >

10 >& centers ,// [out]
11 const MeshElements <MeshDimension , IndexType , Real , Reserve ...>& mesh) {
12

13 // Container of centers to be calculated
14 auto& elemCenters = centers.template getDataByDim <CurrentDimension >();
15

16 // Container of centers used for calculation
17 auto& subElemCenters = centers.template getDataByDim <CurrentDimension - 1>();
18

19 for (IndexType i = 0;
20 i < mesh.template getElements <CurrentDimension >(). size ();
21 i++){
22 // Calculate an average for a single element of dimension CurrentDimension
23 Real subElemCnt = 0;
24 MeshApply <CurrentDimension , CurrentDimension - 1>:: apply(
25 i,
26 mesh ,
27 [& elemCenters , &subElemCenters , &subElemCnt]
28 (IndexType elementIndex , IndexType subelementIndex){
29 elemCenters.at(elementIndex) += subElemCenters.at(subelementIndex);
30 subElemCnt ++;
31 }
32);
33

34 elemCenters.at(i) /= subElemCnt;
35 }
36 // Continue with the computation for higher dimension
37 _ComputeCenters <CurrentDimension + 1,MeshDimension ,Method >:: compute(centers ,mesh);
38 }
39 };

74

Code listing 2.48 The specialization of _ComputeCenters for the case of edges, i.e.,
CurrentDimesnion equal to 1. The centers are calculated as an average of the two vertices
of the edge. Then, the calculation continues for the second dimension.

1 template <unsigned int MeshDimension , ComputationMethod Method >
2 struct _ComputeCenters <1, MeshDimension , Method >{
3 template <typename IndexType , typename Real , unsigned int ... Reserve >
4 static void
5 compute(
6 MakeMeshDataContainer_t <
7 Vertex <MeshDimension , Real >,
8 make_custom_integer_sequence_t <unsigned int , 1, MeshDimension >>& centers ,
9 const MeshElements <MeshDimension , IndexType , Real , Reserve ...>& mesh) {

10

11 // Get the reference to computed centers std::vector <Vertex <MeshDimension , Real >>
12 auto& edgeCenters = centers.template getDataByDim <1>();
13

14 // Calculate centers for all edges in the mesh
15 for (IndexType edgeIndex = 0;
16 edgeIndex < mesh.template getElements <1 >(). size ();
17 edgeIndex ++) {
18

19 const auto& edge = mesh.getEdges ().at(edgeIndex);
20

21 // Utilization of MeshElement <0,...> as Vertex
22 edgeCenters.at(edgeIndex) =
23 (mesh.template getElements <0>().at(edge.getVertexAIndex ()) +
24 mesh.template getElements <0>().at(edge.getVertexBIndex ())) * 0.5;
25 }
26

27 _ComputeCenters <2, MeshDimension , Method >:: compute(centers , mesh);
28 }
29 };

75

Code listing 2.49 The final specialization of _ComputeCenters for cells, i.e., CurrentDimension
== MeshDimension. This specialization calculates the centers of cells using previously prepared
centers of faces and terminates the recursion. After the function ends, the control is gradually
returned to the calling function that has the result stored in the container it passed as centers.

1 template < unsigned int MeshDimension ,
2 ComputationMethod Method >
3 struct _ComputeCenters <MeshDimension , MeshDimension , Method >{
4 template <typename IndexType , typename Real , unsigned int ... Reserve >
5 static void
6 compute(
7 MakeMeshDataContainer_t <
8 Vertex <MeshDimension , Real >,
9 make_custom_integer_sequence_t <unsigned int , 1, MeshDimension >>& centers ,

10 const MeshElements <MeshDimension , IndexType , Real , Reserve ...>& mesh) {
11

12 // Container of centers to be calculated
13 auto& elemCenters = centers.template getDataByDim <MeshDimension >();
14

15 // Container of centers used for calculation
16 auto& subElemCenters = centers.template getDataByDim <MeshDimension - 1>();
17

18 for (IndexType i = 0; i < mesh.template getElements <MeshDimension >(). size (); i++){
19 // Calculate the average for a single cell
20 Real subElemCnt = 0;
21 MeshApply <MeshDimension , MeshDimension - 1>::apply(
22 i,
23 mesh ,
24 [& elemCenters , &subElemCenters , &subElemCnt]
25 (IndexType elementIndex , IndexType subelementIndex){
26 elemCenters.at(elementIndex) += subElemCenters.at(subelementIndex);
27 subElemCnt ++;
28 }
29);
30

31 elemCenters.at(i) /= subElemCnt;
32 }
33 }
34 // Here the computation is terminated
35 // and the result is stored in the "centers" container
36 };

Code listing 2.50 The definition of the global function computeCenters. This function wraps
the _ComputeCenters functionality and ensures the correct call of _ComputeCenters according
to the given mesh parameter. The _ComputeCenters class is not designed to be called directly by
the user, therefore it is defined in the Impl namespace. Finally, the resulting MeshDataContainer
with the centers of all mesh elements is returned.

1 template < ComputationMethod Method ,
2 unsigned int Dimension ,
3 typename IndexType ,
4 typename Real ,
5 unsigned int ... Reserve >
6 MakeMeshDataContainer_t < Vertex < Dimension , Real >,
7 make_custom_integer_sequence_t < unsigned int , 1, Dimension > >
8 computeCenters(const MeshElements < Dimension , IndexType , Real , Reserve ... >& mesh){
9

10 MakeMeshDataContainer_t <
11 Vertex <Dimension , Real >,
12 make_custom_integer_sequence_t < unsigned int , 1, Dimension >
13 > centers(mesh);
14

15 Impl:: _ComputeCenters < 1, Dimension , Method >::compute(centers , mesh);
16

17 return centers;
18 }

76

Figure 2.6: An example of computation of measures of polygonal or polyhedral elements.

2.4.6 Element Measure Calculation and the computeMeasures Function

In this section, the calculation the measures of mesh elements is described.
The problem is to develop an algorithm which calculates the measures of all elements in the

mesh with dimension grater than 0. Since the elements of the mesh are generic polytopes, the
algorithm must be able to handle such generic objects. We assume that every polytope is a
star domain with respect to the center of the polytope [32]. Such polytope can be subdivided
into pyramids with bases formed by their sub-elements and a common top formed by the center
point of the element. We denote such pyramid Pe,e′ , where e ∈ T d and e′ ∈ T d−1, e′ is a
sub-element of e and 1 < d ≤ dT . Let us recall that dT is the dimension of the mesh. An
example of subdivision of an element into pyramids is presented in Figure 2.6. Therefore, for
any element e ∈ T d

e =
⋃

e′∈Nd−1(e)

Pe,e′ (2.4)

holds, where Nd−1 (e) are the elements of dimension d − 1 connected to the element e, see
Definition 4. The measure of an element e is given by the sum of the measures of the pyramids,
i.e., the formula for the measure of the element e ∈ T d, 1 < d ≤ dT reads:

m (e) =
∑

e′∈Nd−1(e)

m
(
Pe,e′

)
. (2.5)

For each mesh vertex v ∈ T 0, let us denote its geometrical position in space by v. Then, the
measure of the pyramid Pe,e′ reads:

m
(
Pe,e′

)
=

1

d
m
(
e′
)
dist (Ve′ ,xe) =

1

d
m
(
e′
)
dist (Se′ ,xe − v1) , (2.6)

where Ve′ is a linear manifold of dimension d− 1 containing the element e′ and

Se′ = Ve′ − v1,

where v1 ∈ N0 (e′) is a vertex element connected to e′. Note that the m (e′) is the measure of
the pyramid base and dist (Ve′ ,xe) is the height of the pyramid Pe,e′ in equation (2.6). Lastly,
in the case of edges, i.e. e ∈ T 1, the length is given by:

m (e) = |vA − vB| , (2.7)

where {vA, vB} = N0 (e) .
From the previous analysis, we have obtained the formulae (2.5) and (2.6), which require the

measures of the sub-elements to calculate the measure of the current element. However, thanks
to equation (2.7), the recursion stops once we know the measure (length) of edges. Therefore,
it is sufficient to calculate the height of the pyramid, i.e., the distance of xe from the linear

77

Code listing 2.51 The definition of the _ComputeMeasures class. Since GTMesh provides the
calculation for 2D and 3D meshes only, the general definition causes an error in the case of
application of _ComputeMeasures on a mesh with dimension higher than 3. The individual cases
will be handled by the respective specializations.

1 template <
2 unsigned int CurrentDimension ,
3 unsigned int MeshDimension ,
4 ComputationMethod Method = DEFAULT
5 >
6 struct _ComputeMeasures{
7 template <typename IndexType , typename Real , unsigned int ... Reserve >
8 static void compute(
9 MakeMeshDataContainer_t <

10 Real ,
11 make_custom_integer_sequence_t <unsigned int , 1, MeshDimension >
12 >&,
13 MeshElements <MeshDimension , IndexType , Real , Reserve ... >&){
14 // If the MeshDimension is
15 static_assert (
16 MeshDimension <= 3,
17 "The␣measure␣computation␣for␣dimension␣higher␣than␣3␣is␣not␣implemented␣yet."
18);
19 }
20 };

manifold defined by the vertices of the e′. Furthermore, the origin can be set to v1, the first
vertex connected to e′. Then, Se′ has the form:

Se′ = span
(
v2 − v1, . . . ,vne′ − v1

)
, (2.8)

where
{
v1, . . . ,vne′

}
= N0 (e′). Finally, the problem is to determine

dist (Se′ ,xe − v1) . (2.9)

Let us recall that this algorithm is limited to polytopes with star domain only.
So far, the GTMesh library offers the method for calculation of measures in 2D and 3D

unstructured meshes. The measure calculation is realized by the class _ComputeMeasures with
the compute member function. Similarly to the previous functions, the implementation is not
designed to be used by the user directly, hence it is hidden in the Impl namespace.

The computation of edge length is the same in both 2D and 3D. The general definition
checks whether the dimension of the given mesh is lower than 3, otherwise it causes an error
with description that such dimension is not allowed (see Code listing 2.51).

The specialization of the calculation of the length of the edges utilizes the fact that the class
Vertex behaves as a vector. That means, the subtraction of two vertices is a new vertex (vector).
Finally, it remains to calculate the Euclidean norm by calling the normEuclid member function
on the difference of vertices A and B. The implementation is in Code listing 2.52.

Next, when the measures of edges are computed, the computation is passed to the function
computing the measures of elements with dimension 2. The computation differs according to the
mesh dimension, therefore the cases will be presented separately. Let us begin with the easier
one, which is the 2D case.

Calculation of Cell Measures in a 2D Mesh In a 2D mesh, the measure of the elements can
be simplified. The point is that the pyramids are in fact triangles. Therefore, we can utilize the
commonly known relation calculating the measure of a triangle from coordinates of its vertices.
For the triangle constructed from center point of the cell c (xc) and vertices of edge e, i.e. vA,vB,
the formula reads

m (Pc,e) =
1

2
((xc,1 − vA,1) (vB,2 − vA,2)− (xc,2 − vA,2) (vB,1 − vA,1)) . (2.10)

78

Code listing 2.52 The specialization of _ComputeMeasures calculating the length of the edges.
The length is calculated according to equation (2.7). The algorithm applies the normEuclid
member function to the difference of the vertices. Note that this is possible because subtraction
of two Vertex instances is a Vertex. Then the computation is passed to the next dimension.

1 template <unsigned int MeshDimension , ComputationMethod Method >
2 struct _ComputeMeasures <1, MeshDimension , Method >{
3 template <typename IndexType , typename Real , unsigned int ... Reserve >
4 static void compute(
5 MakeMeshDataContainer_t <
6 Real ,
7 make_custom_integer_sequence_t <unsigned int , 1, MeshDimension >
8 >& measures ,
9 MeshElements <MeshDimension , IndexType , Real , Reserve ...>& mesh){

10

11 auto& edgeLengths = measures.template getDataByDim <1 >();
12

13 for (IndexType edgeIndex = 0;
14 edgeIndex < mesh.template getElements <1 >(). size ();
15 edgeIndex ++) {
16

17 const auto& edge = mesh.getEdges ().at(edgeIndex);
18

19 const auto& vertA = mesh.getVertices ().at(edge.getVertexAIndex ());
20 const auto& vertB = mesh.getVertices ().at(edge.getVertexBIndex ());
21 // Calculate the distance between the vertices
22 edgeLengths.at(edgeIndex) = (vertA - vertB). normEuclid ();
23 }
24

25 _ComputeMeasures <2, MeshDimension >:: compute(measures , mesh);
26 }
27 };

The implementation for this setup, i.e., when both MeshDimension and CurrentDimension are
equal to 2, is presented in Code listing 2.53. The algorithm calculates the measure of a cell as the
sum of the areas of the triangles, where the area of a triangle in 2D is given by the formula (2.10).
The advantage of this approach is the speed of the computation, because the formula is very
simple and does not require any calculation of distance.

Measures Calculation in a 3D Mesh Unlike the 2D case, the 3D one is more complicated.
The reason is that there is no such formula as (2.10), hence it is necessary to calculate the
distance (2.9). The distance of a point xf from a line Ve = vAvB in 3D. We obtain the point w
on the line vAvB such that the vector w − xf is perpendicular to the line as

w = vA −
(vA − xf) · (vB − vA)

(vB − vA) · (vB − vA)
(vB − vA) . (2.11)

Figure 2.7: Calculation of the height of a triangle given by one edge and a face center in 3D
space.

79

Code listing 2.53 The implementation of the specialization of the _ComputeMeasures class
calculating the measures of cells in a 2D mesh.

1 template <ComputationMethod Method >
2 struct _ComputeMeasures <2, 2, Method >{
3 template <typename IndexType , typename Real , unsigned int ... Reserve >
4 static void compute(
5 MakeMeshDataContainer_t <
6 Real ,
7 make_custom_integer_sequence_t <unsigned int , 1, 2>
8 >& measures ,
9 MeshElements <2, IndexType , Real , Reserve ...>& mesh){

10

11 auto& surfaceMeasures = measures.template getDataByDim <2 >();
12

13 for (IndexType cellIndex = 0; cellIndex < mesh.getCells (). size (); cellIndex ++) {
14 cosnt auto& cell = mesh.getCells ().at(cellIndex);
15 IndexType tmpEdge = cell.getBoundaryElementIndex ();
16

17 Real measure = Real ();
18 const Vertex <2,Real >& cellCenter = cell.getCenter ();
19 do {
20

21 auto& edge = mesh.getEdges ().at(tmpEdge);
22 Vertex <2,Real >& a = mesh.getVertices ().at(edge.getVertexAIndex ());
23 Vertex <2,Real >& b = mesh.getVertices ().at(edge.getVertexBIndex ());
24 double tmp = (cellCenter [0] - a[0]) * (b[1] - a[1]);
25 tmp -= (cellCenter [1] - a[1]) * (b[0] - a[0]);
26 measure += 0.5 * fabs(tmp);
27

28 tmpEdge = mesh.getEdges ().at(tmpEdge). getNextBElem(cellIndex);
29 } while (tmpEdge != cell.getBoundaryElementIndex ());
30

31 surfaceMeasures.at(cellIndex) = measure;
32 }
33 }
34 };

80

Figure 2.8: An example of calculating dist (Sf ,xc − v1) to calculate the volume of the pyra-
mid Pc,f . In terms of equation (2.13), in 3D the element e is the cell c and e′ is the face f .
The three vertices {v1,v2,v3} ⊂ N0 (f) together with xc creates a tetrahedron, which has the
same height as Pc,f . Therefore, it is sufficient to construct the span Sf using three vertices.
Note that those vertices must not lie in a line to satisfy the linear independence condition in
the Gram-Schmidt process. Finally, after applying the Gram-Schmidt process, the norm of the
last vector satisfies |y3| = dist (Sf ,xc − v1). Note that y3 must be calculated as the last one,
in order for the algorithm to work properly.

The distance is then calculated as |w − xf |. For better understanding, see Figure 2.7.
In 3D (and in any higher dimension), this generalizes to applying the Gram-Schmidt process

described by the following theorem [24].

Theorem 7. Let x1,x2, . . . ,xk be linearly independent system of vectors in Rn, k ≤ n. Then
there exists an orthogonal, system y1,y2, . . . ,yk such that x1 = y1 and

span (x1,x2, . . . ,xk) = span (y1,y2, . . . ,yk) .

The vectors yi are given by the formula

yi = xi −
i−1∑
j=1

xi · yj∣∣yj∣∣2 yj , ∀i ∈ {1, 2, . . . , k} . (2.12)

The result is obtained by utilizing the Gram-Schmidt process on the sequence (z1, . . . ,zd−1, ze),
where

zi = vi − v1, ∀i ∈ {2, 3, . . . , d− 1},
ze = xe − v1,

where e ∈ T d, e′ ∈ Nd−1 (e), vi ∈ N0 (e′). The z1, . . . ,zd−1 ∈ Se′ are linearly independent
vectors. Note that it is important to process the vector ze = xe − v1 as the last one. Finally,
the last vector yd satisfies

|yd| = dist (Se′ ,xe − v1) . (2.13)

This result gives us a way to calculate the volume of any polytope and also provides the calcula-
tion of normal vectors to edges and faces (see Section 2.4.7 below). See an example of utilizing
the Gram-Schmidt process to calculate the height of a 3D pyramid in Figure 2.8.

The implementation of _ComputeMeasures for the case of a 3D mesh has two specializa-
tions. The first specialization of _ComputeMeasures is for MeshDimension equal to 3 and
CurrentDimension equal to 2, i.e., it handles the calculation of measures of the faces of the

81

Code listing 2.54 The implementation of the specialization of the class _ComputeMeasures for
the case of faces in a 3D mesh. For all faces in the mesh, the algorithm loops over the face
edges and calculates the area of single triangles which are then summed as the measure of the
face, see lines 18-31. Note that the utilized implementation of the gramSchmidt function actually
normalizes the vectors, therefore the norms are returned in the container passed as the second
argument. Otherwise, the information about the distance would be lost. In this case the height
of the triangle is stored in norms[1], see line 30. After calculating the measures of the faces, the
computation of the measures of the cells is performed.

1 template <ComputationMethod Method >
2 struct _ComputeMeasures <2, 3, Method >{
3 template <typename IndexType , typename Real , unsigned int ... Reserve >
4 static void compute(
5 MakeMeshDataContainer_t <
6 Real ,
7 make_custom_integer_sequence_t <unsigned int , 1, 3>
8 >& measures ,
9 MeshElements <3, IndexType , Real , Reserve ...>& mesh){

10

11 auto& surfaceMeasures = measures.template getDataByDim <2 >();
12

13 for (IndexType faceIndex = 0; faceIndex < mesh.getFaces (). size (); faceIndex ++) {
14

15 const auto& face = mesh.template getElements <2 >().at(faceIndex);
16 Real measure = Real ();
17 const Vertex <3,Real >& faceCenter = face.getCenter ();
18 for(auto sube : face.getSubelements ()){
19 const auto& edge = mesh.getEdges ().at(sube);
20 Vertex <3,Real >& a = mesh.getVertices ().at(edge.getVertexAIndex ());
21 Vertex <3,Real >& b = mesh.getVertices ().at(edge.getVertexBIndex ());
22 // Prepare the vectors to be the G-S prosess applied on
23 std::array <Vertex <3,Real >, 2> gsVecs = {b - a, faceCenter - a};
24 // Prepare the container to store the norms of the processed vectors
25 std::array <Real , 2> gsNorms = {};
26 // Apply the Gram -Schmidt algorithm to the vectors
27 gramSchmidt <2,3,IndexType , Real >(gsVecs , gsNorms);
28 // Add the measure of the triangle [a,b,face center]
29 // to the measure of the face
30 measure += 0.5 * gsNorms [1] * measures.template getDataByDim <1>()[sube];
31 }
32 surfaceMeasures.at(faceIndex) = measure;
33 }
34 _ComputeMeasures <3, 3>:: compute(measures , mesh);
35 }
36 };

82

Code listing 2.55 The specialization of _CalculateMeasures computing the measures of 3D
cells. In this case the algorithm loops over all faces of all cells. Firstly, the center vertex of the
face and the vertices of the first edge connected to the face are accessed. Then, the vectors to
apply the Gram-Schmidt algorithm are prepared in the gsVectors container by subtracting the
vertex a from the others (see lines 21-37). Let us recall that the vector cellCenter - a must
be the last vector in the container. Finally, the volume of the pyramid Pc,f is calculated by the
formula (2.6) and added to the volume of the cell at line 40.

1 template <ComputationMethod Method >
2 struct _ComputeMeasures <3, 3, Method >{
3 template <typename IndexType , typename Real , unsigned int ... Reserve >
4 static void compute(
5 MakeMeshDataContainer_t <
6 Real ,
7 make_custom_integer_sequence_t <unsigned int , 1, 3>
8 >& measures ,
9 MeshElements <3, IndexType , Real , Reserve ...>& mesh){

10

11 auto& cellMeasures = measures.template getDataByDim <3 >();
12

13 for (IndexType cellIndex = 0; cellIndex < mesh.getCells (). size (); cellIndex ++) {
14

15 const auto& cell = mesh.getCells ().at(cellIndex);
16 IndexType tmpFace = cell.getBoundaryElementIndex ();
17 Real measure = Real ();
18 const Vertex <3,Real >& cellCenter = cell.getCenter ();
19

20 do {
21 auto& face = mesh.getFaces ().at(tmpFace);
22 auto& firstEdge = mesh.getEdges ().at(face.getSubelements ()[0]);
23 // select 3 different vertices
24

25 Vertex <3,Real >& a = mesh.getVertices ().at(firstEdge.getVertexAIndex ());
26 Vertex <3,Real >& b = mesh.getVertices ().at(firstEdge.getVertexBIndex ());
27

28 // It is robust to choose the center point to avoid the possibilty
29 // that the three vertices lie in a line
30 Vertex <3,Real >& c = mesh.getFaces ().at(tmpFace). getCenter ();
31 // Prepare the vectors to apply the G-S prosess on
32 std::array <Vertex <3,Real >, 3> gsVecs = {b-a, c-a, cellCenter - a};
33 // Because the vectors are nomalized by the gramSchmidt function the norms
34 // are retuned through the second parameter of gramSchmidt function
35 std::array <Real , 3> gsNorms = {};
36

37 gramSchmidt <3,3,IndexType , Real >(gsVecs , gsNorms);
38

39 Real distance = gsNorms [2];
40 measure += (1.0/3.0) * measures.template getDataByDim <2>().at(tmpFace) *
41 distance;
42

43 tmpFace = mesh.getFaces ().at(tmpFace). getNextBElem(cellIndex);
44 } while (tmpFace != cell.getBoundaryElementIndex ());
45

46 cellMeasures.at(cellIndex) = measure;
47 }
48 }
49 };

83

Code listing 2.56 The wrapper function simplifying the work with the _ComputeMeasures
class. The function firstly allocates the result container for the measures. Then, the compute
member function of _ComputeMeasures is called. Finally, the result is returned. At line 24, an
example of the usage of the function computeMeasures is shown. Notice that the user does not
need to know the result type at all.

1 template <
2 ComputationMethod Method ,
3 unsigned int MeshDimension ,
4 typename IndexType ,
5 typename Real ,
6 unsigned int ... Reserve
7 >
8 MakeMeshDataContainer_t <
9 Real ,

10 make_custom_integer_sequence_t <unsigned int , 1, MeshDimension >
11 >
12 computeMeasures(MeshElements <MeshDimension , IndexType , Real , Reserve ...>& mesh){
13 MakeMeshDataContainer_t <
14 Real ,
15 make_custom_integer_sequence_t <unsigned int , 1, MeshDimension >
16 > measures(mesh);
17

18 Impl:: _ComputeMeasures <1, MeshDimension , Method >:: compute(measures , mesh);
19

20 return measures;
21 }
22

23 // ** usage **
24 auto elementMeasures = computeMeasures <METHOD_DEFAULT >(mesh);

mesh. In contrast to the calculation in 2D, this calculation does not utilize the equation (2.10),
but the generic approach. The realization in GTMesh is presented in Code listing 2.54.

The second specialization of _ComputeMeasures performs the computation of cell measures
in 3D. In this case, we meet a problem of detecting vertices that does not lie in a line in order to
calculate Sf (see equation (2.8)) correctly. This can be done by choosing three suitable vertices
lying in the face. In the implementation we chose the vertices of the first connected edge and
the center point of the face. The code implementing the described algorithm is shown in Code
listing 2.55.

Let us note that the cell measure computation takes advantage of the planarity of the faces.
Therefore, the whole face is contained in Sf of dimension 2 and the volume of the pyramid can
be calculated at once. However, further in this work we discuss meshes with non-planar faces.
This must be considered by the computation of measures. Similarly to the _ComputeCenters
class, an alternate algorithm for measures computation that takes non-planar faces into account
can be selected by means of the Method template parameter. More detailed description is in
Section 2.7.

The computeMeasures Function As we have already noted, the _ComputeMeasures class in
not designed to be directly used by the user. The reason is that the class _ComputeMeasures has
more parameters such as CurrentDimension, which has to be set to 1 at the start of the function.
Moreover, the parameter measures has a complicated type and must be already allocated when
the member function compute is called. The GTMesh library provides the computeMeasures
function which wraps this functionality and ensures correct usage of the _ComputeMeasures
class. The user do not need to know the exact return type of the function, the result can
be obtained using the keyword auto. See the implementation and usage of computeMeasures
in Code listing 2.56.

84

Figure 2.9: The edge is oriented from the vertex vA to the vB. τ e is the tangential vector of the
edge and ne is the normal vector of the edge. Notice that ne points from the left cell cL to the
right adjacent cell cR. The orientation of an edge in 2D is clockwise with respect to the right
cell and counterclockwise with respect to the left cell.

2.4.7 Elements Orientation and the computeFaceNormals Function

Another important property of the mesh is the orientation of the elements in space or with
respect to other elements. Especially, the normal vectors of faces are important. We denote
the normal vector of the face f by nf . The vector nf is a unit vector and points from the left
adjacent cell to the right one. The left and right cells to a face are defined in the utilized data
structure, see Section 1.3.3. Note that this is important because some numerical simulations
may rely on this. As we already discussed in Section 2.4.6, the problem of calculating the normal
vectors was solved when the measure is calculated. So far, the GTMesh library provides the
computation of face normal vectors for 2D and 3D mesh only. Nevertheless, there are more ways
of face normal calculation, especially in 3D. Firstly, we begin with the with the description of
the edge normal calculation in a 2D mesh and then the face normal calculation in the 3D case.
Finally, the calculation of orientation of an edge with respect to a face in 3D will be studied.

The computation of the face normal vectors in the GTMesh library is realized by the func-
tion computeFaceNormals which wraps the implementation in the class _ComputeNormals with
the public static member function compute defined in the Impl namespace. The definition of
_ComputeNormals checks whether the mesh dimension is less or equal to 3 using static_assert
just as the _ComputeMeasures class does.

Edge Normal Vector Calculation in 2D In a 2D mesh, the faces are edges. According to
the mesh design, the edges are oriented. The direction of an edge e is from the vertex vA to
vertex vB (as depicted in Figure 2.9). Thanks to the form of a rotation matrix in 2D, the normal
vector calculation can be optimized against the using of the Gram-Schmidt process. The formula
for ne reads:

ne =

(
− (vA − vB)2

(vA − vB)1

)
1

|vA − vB|
. (2.14)

This calculation of the normal vector does not yet consider whether the normal vector of the
edge points from the left cell to the right cell. This shall be done during the mesh construction.
The edge shall be oriented clockwise with respect to the right cell and counterclockwise w.r.t.
the left one. The correct orientation of the normal vector can be checked by the condition

ne · (xcL − xcR) > 0. (2.15)

Face Normal Vector Calculation in 3D In a 3D mesh, there are at least two methods
of the face normal calculation. Firstly, we discuss the utilization of the vector cross product
and why this approach was dismissed in GTMesh. Then, the chosen algorithm utilizing the
Gram-Schmidt process will be presented. Let us introduce the geometry setup and the aim of
the calculation before the presentation of the methods. The situation for a single face is shown
in Figure 2.10. The aim is to calculate the vector nf which is orthogonal to the plane defined
by the face, i.e. span (τ f,1, τ f,2).

85

Figure 2.10: The notation on a face f in the context of normal vector calculation with the left
cell cL below and the right cell cR above. The edge e defined by the vertices vA, vB is the first
edge of f . xcL is the center point of cL.

Figure 2.11: Comparison of the two presented approaches of face normal vector calculation. The
figure on the left presents the normal vector calculation using the cross product of τ f,1 and τ f,2.
The other figure presents the computation of nf using the Gram-Schmidt process applied to a
triple (τ f,1, τ f,2,xf − xcL).

The first method utilizes the vector cross product. The calculation utilizes the vertices of the
first edge of the face and the center point of the face. Then, the face normal vector n′f is given
by the formula

n′f =
τ f,1 × τ f,2
|τ f,1 × τ f,2|

=
(xf − vA)× (xf − vB)

|(xf − vA)× (xf − vB)|
. (2.16)

The advantage of this method of calculation is the simplicity of the formula, therefore the cal-
culation is quick. On the other hand, similarly to the calculation of edge normals in 2D, the
formula does not reflect the positions of the left and right cells. Thus, it is necessary to ensure
that the direction of the n′f is correct.

The second idea does not consider the orientation of the face f . Otherwise, it checks the
orientation of the vector n′f with the vector xcR−xcL . The formula for the correction then reads

nf =

{
n′f n′f · (xcL − xcR) > 0,

−n′f otherwise.
(2.17)

In spite of the correct result, it was decided not to utilize this solution, because it is limited to
3D meshes only.

86

Code listing 2.57 The specialization of _ComputeNormals for calculation of face normal
vectors in 3D meshes. The member function compute has two parameters. The first is a
MeshDataContainer normals the result will be stored into. The second is the mesh which the
algorithm will be applied to. Then, for each face in the mesh, the left adjacent cell is obtained.
If the left cell index is invalid or refers to a boundary cell, the right cell is chosen instead. The
condition at line 10 presents how to detect the boundary cell index. The variable vectorSign
signalizes whether the resulting vector should be reversed. Then, the normal vector is computed
by the Gram-Schmidt process and stored into normals at the position of the currently processed
face.

1 template <ComputationMethod Method >
2 struct _ComputeNormals <3, Method >{
3 template <typename IndexType , typename Real , unsigned int ... Reserve >
4 static void compute(MeshDataContainer <Vector <3, Real >, 2>& normals ,
5 const MeshElements <3, IndexType , Real , Reserve ...>& mesh){
6 for (auto& face : mesh.getFaces ()) {
7 IndexType cellIndex = face.getCellLeftIndex ();
8 double vectorSign = 1.0;
9 // If the left cell is boundary , then choose the right cell

10 if (isInvalidIndex(cellIndex) || isBoundaryIndex(cellIndex)) {
11 vectorSign = -1.0;
12 cellIndex = face.getCellRightIndex ();
13 }
14

15 const Vertex <3,Real >& cellCenter = mesh.getCells ().at(cellIndex). getCenter ();
16 // Get 3 vertices that do not lie in a line
17 IndexType vA = mesh.getEdges ().at(face.getSubelements ()[0]). getVertexAIndex ();
18 IndexType vB = mesh.getEdges ().at(face.getSubelements ()[0]). getVertexBIndex ();
19

20 const Vertex <3,Real >& a = mesh.getVertices ().at(vA);
21 const Vertex <3,Real >& b = mesh.getVertices ().at(vB);
22 // The center is probably not in line with a and b
23 const Vertex <3,Real >& c = face.getCenter ();
24 // Create the system of vectors
25 std::array <Vertex <3,Real >, 3> gsVecs = {c - a, c - b, c - cellCenter };
26 std::array <Real , 3> gsNorms = {};
27

28 gramSchmidt <3,3,IndexType , Real >(gsVecs , gsNorms);
29

30 normals[face] = vectorSign * gsVecs [2];
31

32 }
33 }
34 };

The implemented solution of the face normal calculation utilizes the Gram-Schmidt process
on the vectors τ f,1, τ f,2 and xf − xcL . The result is obtained as

nf = − y3
|y3|

, (2.18)

where y3 is the last vector obtained from the Gram-Schmidt process. If the face f does not have
any left cell attached, i.e., it lies at the boundary of the mesh, the last vector passed to the Gram-
Schmidt process must be changed to xcR −xf . The advantage of this approach is the possibility
to easily extend the algorithm to a generic dimension and the fact that it automatically respects
the direction from the left to the right cell. A comparison of the two proposed methods is shown
in Figure 2.11.

The implementation of the _ComputeNormals calculating the face normal vectors in 3D mesh
is shown in Code listing 2.57. Notice the similarity to the corresponding algorithm calculating
the measures (Code listing 2.55). Unlike the measure calculation, the member function compute
of the _ComputeNormals class loops over faces only.

87

Face Normal Vector Calculation in a Generic Dimension In the end, let us briefly
comment the generalization of the previous algorithm into a generic dimension. The generic
algorithm require two changes in implementation compared to the 3D case. The first is connected
to the suitable choice of vertices defining Vf introduced in (2.6). In order to minimize the
possibility that three or more chosen vertices lie in a line, the centers of sub-elements shall be
chosen except for edges. Then, the formula for Vf reads

Vf = span
(
vA,vB,xe2 , . . . ,xedT −2

)
− xf , (2.19)

where en ∈ Nn (f), n ∈ N, 1 < n < dT − 1, i.e. en are sub-elements of f with dimension n.
Furthermore, vA and vB are the vertices of the first accessed edge. To obtain such sequence
of vertices for each face, a special function must be developed. The second change can be
demonstrated on a 4D mesh. The requested vertices are {vA,vB,xe2}, but in the 4D case, only
elements of dimension 3 and 4 are considered as computationally significant. Therefore, the mesh
does not provide the centers of elements with dimension 2. Thus, the centers would have to be
passed to the function as a separate parameter. Similar changes are to be done in the case of
measure computation in a generic dimension.

2.5 Mesh Import and Export

In the previous Section 2.4, the functions calculating the mesh properties were discussed. In
order to conveniently work with the mesh, it is necessary to be be able to load the mesh from a
file. Therefore, this section aims to describe the problems connected to input and output of the
mesh. Currently, GTMesh provides the import and export of the unstructured mesh in the VTK
(2D and 3D) and FPMA (3D) formats[23, 2]. The formats and the import and export process
will be described below.

In order to provide compatibility of GTMesh with various mesh formats, the generic types of
cells (describing the cell shape) and the MeshReader and MeshWriter abstract classes were devel-
oped (see Code listing 2.58). MeshReader has the pure virtual member function getCellTypes
returning the types of the loaded cells.

Let us begin with the description of the VTK format for unstructured meshes.

2.5.1 VTK format

In the context of unstructured meshes, the VTK data format is designed to store both the mesh
description and the mapped data [23]. Thus, we will discuss the methods of importing and
exporting the data. In VTK, the cells are represented by vertices which construct the cells. A
cell is defined by a sequence of vertices and a type representing the cell shape. The structure of
the VTK file is presented in Code listing 2.59. This format utilizes only several primitive types.
Therefore, the 3D meshes that can be described by this format are limited. We start with the
description of the import and export of the mesh, then we will focus on the mapped data.

Mesh Input

The VTK format is able to store 2D and 3D meshes. Let us begin with the description of the
import of a 2D mesh, then the 3D case will be discussed.

In 2D, the geometrical primitives (i.e., cell types) representable in VTK are: triangle, square,
and polygon. All those primitives have the same representation in the VTK file. The cells are
described by a sequence of vertices ordered counterclockwise along the boundary of the cell.
Therefore, all the 2D primitives can be loaded by the same algorithm regardless of the cell type.

The algorithm loading a 2D mesh is the following:

88

Code listing 2.58 The definitions of the basic constants and base classes for mesh readers and
writers.

1 template <unsigned int MeshDimension >
2 struct MeshNativeType {};
3

4 // Element types of GTMesh in 2D mesh
5 template <>
6 struct MeshNativeType <2>{
7 enum ElementType{
8 LINE = 100,
9 TRIANGLE = 200,

10 QUAD ,
11 POLYGON
12 };
13 };
14

15 // Element types of GTMesh in 3D mesh
16 template <>
17 struct MeshNativeType <3>{
18 enum ElementType{
19 TETRA = 300,
20 HEXAHEDRON ,
21 WEDGE ,
22 PYRAMID ,
23 N_PYRAMID ,
24 POLYHEDRON
25 };
26 };
27

28 // The base class of MeshReaders
29 template <unsigned int MeshDimension >
30 class MeshReader{
31 public:
32 using type = MeshNativeType <MeshDimension >;
33 // Pure virtual method returning the types of loaded cells
34 virtual
35 MeshDataContainer <typename type:: ElementType , MeshDimension >
36 getCellTypes () const = 0;
37 };
38

39 // The base class of MeshWriters
40 template <unsigned int MeshDimension >
41 class MeshWriter{
42 public:
43 // Definition of the virtual destructor enforces polymorphism of
44 // the derived classes of MeshWriter
45 virtual ~MeshWriter () = default;
46 using type = MeshNativeType <MeshDimension >;
47 // Method calculating returning the signature
48 template <typename IndexType , typename Real , unsigned int ... Reserve >
49 static size_t computeHash(
50 MeshElements <MeshDimension , IndexType , Real , Reserve ...>& mesh){
51 // Do not trust the user and recalculate the signature
52 return mesh.updateSignature ();
53 }
54 };

89

Code listing 2.59 An example of the VTK format. The vertices are given by 3 coordinates
(even in 2D case). The cells are defined by a sequence of indexes of vertices and by a type which
determines the shape of the cell, i.e., which vertices make up an edge or a face.

1 # vtk DataFile Version 2.0
2 data name
3 ASCII
4 DATASET UNSTRUCTURED_GRID
5 POINTS n double
6 points ...
7
8 CELLS m l
9 cells ...

10
11 CELL_TYPES m
12 types ...
13
14 POINT_DATA n
15 ...
16
17 CELL_DATA m
18 SCALARS quantity_name double 1
19 LOOKUP_TABLE default
20 ...
21
22 VECTORS vector_quantitiy_name double
23 ...

1. Store all vertices in the data structure.

2. For each cell:

(a) Read the vertices defining the cell.

(b) Pair the vertices that define an edge.

(c) Check the list of free edges (edges with only one adjacent cell at the moment) whether
an edge defined by the currently processed vertex pair is already created.

i. If the edge is not found create it and store it in the respective container, and add
it to the list of free edges.

(d) Connect the edges to form the currently constructed cell.

(e) Set up the cell’s boundary edge index.

In GTMesh, this functionality is provided by the class VTKMeshReader, which inherits the base
class MeshReader. The VTKMeshReader class has the member function loadFromStream, which
is given an input stream and a mesh to be loaded. The most important part of VTKMeshReader is
the private member function loadCells, presented in Code listing 2.60. This function performs
step 2 of the above algorithm (see Code listing 2.60). To detect whether the currently loaded
edge is already created, therefore the algorithm utilizes std::unordered_map to store the already
constructed edges. An edge is uniquely given by a pair of vertex indexes irrespective their order.
The map stores key-value pairs where the key is a string of the vertex indexes in increasing
order and the corresponding value if the edge index within MeshElements. Each vertex pair of
the currently loaded cell is searched for in the map. Depending on the search result, either an
existing edge is retrieved from the map of a new one is created. Finally, the cell is connected to
this edge.

When the cells are loaded, the types of the cells and stored into the VTKMeshReader class in the
cellTypes attribute. This attribute is returned by the abstract member function getCellType.
This way the cell types are still preserved in GTMesh, although the types are not stored in the

90

Code listing 2.60 The realization of the algorithm loading the 2D cells. The algorithm needs
to search whether the currently loaded edge element is already present in the mesh. Therefore,
the hash table via std::unordered_map is utilized to find the edge in the mesh quickly.

1 // ** class VTKMeshReader <2> : public MeshReader <2> **
2 template <typename IndexType , typename Real , unsigned int ... Reserve >
3 void loadCells(std:: istream& ist , MeshElements <2, IndexType , Real , Reserve ...>& mesh){
4 // Map of the created edges
5 std:: unordered_map <std::string , IndexType > edges;
6

7 IndexType numCells;
8 ist >> numCells;
9 mesh.getCells (). resize(numCells);

10 // Skip the total number of written elements (required by VTK)
11 ist.ignore (50, ’\n’);
12 for (IndexType cellIndex = 0; cellIndex < numCells; cellIndex ++) {
13 // Setup new cell
14 mesh.getCells ().at(cellIndex). setIndex(cellIndex);
15 // Read the number of vertices defining the cell
16 IndexType numVert;
17 ist >> numVert;
18 // Load the indexes of the vertices defining the cell
19 std::vector <IndexType > vertices(numVert);
20 for(IndexType j = 0; j < numVert; j++){
21 ist >> vertices.at(j);
22 }
23 // Process the loaded vertices and construct one cell
24 IndexType prevEdge = INVALID_INDEX(IndexType);
25 for(IndexType j = 0; j < numVert; j++){
26 // Setup the vertices of the new edge
27 IndexType iA = vertices.at(j), iB = vertices.at((j+1)% numVert);
28 // Prepare the string key into edges map
29 std:: string edgeKey = iA < iB ? std:: to_string(iA) +";"+ std:: to_string(iB) :
30 std:: to_string(iB) +";"+ std:: to_string(iA);
31 // Find the edge in the map
32 auto edgeIt = edges.find(edgeKey);
33

34 IndexType edgeIndex = IndexType ();
35

36 // If the edge is not already constructed , construct new
37 if (edgeIt == edges.end ()){
38 edgeIndex = mesh.getEdges (). size ();
39 mesh.getEdges (). push_back ({});
40 mesh.getEdges ().at(edgeIndex). setVertexAIndex(iA);
41 mesh.getEdges ().at(edgeIndex). setVertexBIndex(iB);
42 mesh.getEdges ().at(edgeIndex). setIndex(edgeIndex);
43 mesh.getEdges ().at(edgeIndex). setCellLeftIndex(cellIndex);
44 edges[edgeKey] = edgeIndex;
45 } else {
46 // If the edge has been found in edges map , connect the cell to it
47 edgeIndex = edgeIt ->second;
48 mesh.getEdges ().at(edgeIt ->second). setCellRightIndex(cellIndex);
49 }
50 // Connect the edges as they were loaded
51 if (prevEdge != INVALID_INDEX(IndexType)){
52 mesh.getEdges ().at(prevEdge). setNextBElem(edgeIndex , cellIndex);
53 }
54 // Setup the reference of the cell to its boundary element
55 if (j == 0){
56 mesh.getCells ().at(cellIndex). setBoundaryElementIndex(edgeIndex);
57 }
58 // Connect the firt and the last edge
59 if (j == numVert - 1) {
60 mesh.getEdges ().at(edgeIndex). setNextBElem(
61 mesh.getCells ().at(cellIndex). getBoundaryElementIndex (),
62 cellIndex
63);
64 }
65 prevEdge = edgeIndex;
66 }
67

68 }
69 }

91

Code listing 2.61 This listing presents the definition of construction of a hexahedron in the
class VTKMeshReader. Firstly, the pairs of vertex indexes that create edges in the hexahedron are
defined, e.g., the first edge is defined by the first and the second vertex of the sequence. Secondly,
the sequences of edges that define the faces are listed, e.g., the first face of a hexahedron is created
by the first four edges.

1 template <>
2 class VTKMeshReader <3> : public MeshReader <3>{
3 // Map describing which vertices connects to edges
4 // and which edges connects to faces
5 std::map <
6 int ,
7 std::pair <
8 std::vector <std::array <int ,2>>,
9 std::vector <std::vector <int >>>

10 > TypeEdgesFaces{
11 {8, {// Hexahedron has 8 vertices
12 {// Edges (first)
13 {0,1},{1,2},{2,3},{3,0},{0,4},{1,5},{2,6},{3,7},{4,5},{5,6},{6,7},{7,4}
14 },{//Faces (second)
15 {0,1,2,3},
16 {4,0,5,8},
17 {5,1,6,9},
18 {6,2,7,10},
19 {7,3,4,11},
20 {8,9,10,11}
21 }
22 }
23 },// ... Description of the other primitives
24 };
25 // ... Methods loading and constructing the mesh
26 };

mesh itself. Note that the cell types were not needed in order to load the cells, because the
loading algorithm does not depend on them.

In the 3D case, the problem gains on complexity, nevertheless it is fundamentally the same.
Similarly to the construction of edges in 2D, the problem of element connections applies to both
edges and faces in 3D. Moreover, the topology of the geometrical primitives is more complex
in 3D. The cell primitives in 3D are: tetrahedron, voxel, hexahedron, wedge, and pyramid.
In contrast to the 2D case, those primitives have different description by the vertices, see [23].
The main pieces information we need to construct a 3D cell element are:

1. pairs of vertices defining edges in the cell,

2. sequences of edges defining the faces of the cell.

When we have this information, it is possible to develop a generic algorithm which loads any
cell type. Similarly to the 2D case, the cell types are not important for GTMesh. The reason is
that the 3D primitives differ in the number of vertices, therefore the type can be deduced during
loading (of) the cell vertices. The only coincidence is between the voxel and hexahedron, but
GTMesh does not distinguish between those two objects. A voxel is not supported in GTMesh
as it is a special case of a hexahedron. The example of the list defining the edges and faces of
hexahedron from the sequence of vertices is shown in Code listing 2.61.

Mesh Output The next task is the mesh output, i.e., export of the mesh topology and ge-
ometry in the VTK format. GTMesh again provides the export of 2D and 3D meshes. The
export of the mesh into VTK is realized by the member function writeToStream of the class
VTKMeshWriter. The VTKMeshWriter class has three template parameters:

1. MeshDimesnion (unsigned int): dimension of the mesh to be exported,

92

2. IndexType (typename): type of indexes in the mesh,

3. Real (typename): type of the coordinates of the vertices.

The class VTKMeshWriter has two specializations for MeshDimension equal to 2 and 3. Both
specializations utilize mesh indexing, i.e., first they prepare the data needed for the export
and then export the mesh. Because the preparation of the data to export the mesh is a very
demanding task, VTKMeshWriter stores the indexed data, and it remembers the signature
of the indexed mesh. When the same mesh is to be exported again, the step of mesh
indexing can be skipped and the mesh is exported quickly (together with the simulation
data that may have changed). The function writeToStream in both specialization has the
following parameters:

4. ost (std::ostream): the stream the mesh will be exported into,

5. mesh (MeshElements): the mesh to be exported,

6. cellTypes (MeshDataContainer<ElementType, MeshDimension>): cell types representing
the geometry of cell elements.

If the given mesh has a different signature from the stored one, the mesh is indexed. For the
description of the signature of the mesh, see Section 2.5.3. Then, the writeToStream member
function exports the prepared information in VTK format. Moreover, the VTKMeshWriter class
provides thewriteHrader member function, that writes a VTK header and the name of the
exported mesh and data.

The 2D case is simpler to implement than the 3D one, so we start with the 2D mesh export.
Luckily, despite usage of geometrical primitives, the VTK format is able to describe an arbitrary
topology in 2D. The only task connected to exporting cell elements in 2D mesh is to correctly
order the vertices of the cell, i.e., the vertices must be ordered counterclockwise as they circle
the cell [23]. This can be achieved by the following algorithm:

1. Access the cell boundary edge.

2. Export the index of the vertex vB if the edge is left to the cell and vA otherwise. Store the
indexes of the exported vertex and edge.

3. In a loop, search for the other edge which has the same vertex as was last exported.

4. Write the other vertex of the edge and store the indexes of the exported vertex and edge.

5. Repeat steps 3 and 4 until all vertices adjacent to the given cell are exported.

The above algorithm is generic because it does not rely on the order in which the edges are
chained. The obtained sequences of vertex indexes are then stored in the attribute cellVert.
When the mesh is to be exported, the container cellVert is used because it contains the prepared
sequences of indexes of vertices defining the corresponding cells.

In 3D, the topology of the mesh described by the VTK format is limited. Therefore, the
indexing of the elements depends on the cell types. We will demonstrate the problem of cell
indexing on the examples of a pyramid, wedge, and polyhedral cells.

In terms of VTK, a pyramid has a square base. Therefore, if a pyramid cell is to be indexed,
the base must be detected at first. The base is the only face of the cell with four vertices. The
vertices of this face are then indexed. The correct order of the vertices is ensured by utilizing a
similar algorithm to 2D cell indexing. Then, the last top vertex is to be found; this is achieved
by searching which of the vertices of the cell is missing in the indexed vertices. The top vertex
is then appended to the list of vertices. The export of tetrahedron is the same as the pyramid
export, with the exception that any face of the tetrahedron can be considered as the base one.

93

Figure 2.12: The orders of the vertices in the list describing a pyramid and a wedge in VTK
unstructured mesh format.

Figure 2.13: An example of the tessellation of polyhedrons. On the left, an original polyhedron
is shown. On the right, the polyhedron is divided into tetrahedrons which base triangle lies in
the face and the top is the cell center.

The VTK starts the description of the wedge from one of the faces which has three edges.
Therefore, one of the faces with three edges must be found first. Then the vertices of this face are
put in the list. Then the rest of the vertices are found by searching over the cell edges. The next
vertex is found as the one that neighbors with the first indexed one over an edge which is not
present in the index yet. This is repeated for all the vertices of the base face. The hexahedron is
indexed in the same way, the only difference is that any face of the hexahedron can be the base
one.

The last type of the cell is a generic polyhedron. As we already mentioned, the VTK format is
not able to store such generic element. Therefore, for the purposes of the export, the polyhedral
cells are divided into tetrahedrons. The tetrahedrons are defined by four vertices: xc,xf ,vA,vB.
Such tetrahedron is defined for all edges of all faces of the polyhedral cells. The problem of
exporting the polyhedral cells comes together with adding new vertices into the exported mesh.
The new vertices are stored in std::vector and similarly to mesh indexing, a map is utilized for
easier detection whether a vertex have been already added into the mesh. Moreover, the exported
mesh has more cells than the one stored in MeshElements. For example, if the mesh is made of
cells with 10 faces and each face has 10 edges, then the exported mesh has 100 times more cells.
In order to map the data from the original mesh onto the exported one, the VTKMeshWriter has
an attribute named backwardCellIndexMapping. This attribute maps the exported cells to the
real ones and is utilized by the class VTKMeshDataWriter described below.

Data I/O

It was already mentioned that the VTK format is able to store data mapped to the mesh (see
Code listing 2.59). GTMesh provides the classes VTKMeshDataReader and VTKMeshDataWriter

94

utilizing the concept of class traits (see Section 3). Let us first describe the output and then the
input of the data.

The VTKMeshDataWriter class is designed to export any data stored in MeshDataContainer
or DataContainer which maps data to the mesh. The export is done using the public static
member function writeToStream. This function accepts the following arguments:

1. ost (std::ostream): a stream the data will be exported to,

2. data (MeshDataContainer or DataContainer): data to be exported,

3. writer (VTKMeshWriter): a writer that exported the mesh, (contains information about
the tessellation of polyhedrons).

If the a DataContainer is passed as the data parameter, then the contained type must have
DefaultIOTraits and the attributes of the structure are exported to the VTK file. On the
other hand, if the MeshDataContainer is passed, the writeToStream function firstly searches
for the exportable data, i.e., data allocated to cells and with DefaultIOTraits defined (see
Section 3.3). Then all suitable data in MeshDataContainer are exported. If the data does not
contain any suitable data, an error occurs. Moreover, the user is told to define default IO class
traits (see Section 3.3.1) for the data. The concept of class traits is described in Chapter 3.
The purpose of the last parameter writer is to ensure the correct mapping of the exported
data. This is because the tessellation of polyhedrons into tetrahedrons and their correspondence
stored in backwardCellMapping must be known. The value mapped to the polyhedron is to be
repeated for each tetrahedron separately. The example of working with the VTKMeshDataWriter
is presented in Code listing 2.62.

Utilizing the concept of class traits, it was possible to create a general method for loading
the data. This functionality is provided by the class VTKMeshDataReader with the public static
member function readFromStream. The arguments of the readFromStream function are:

1. ist (std::istream): a stream the data will be read from,

2. data (MeshDataContainer or DataContainer): container the data will be stored into.

Similarly to VTKMeshDataWriter, when MeshDataContainer is passed, the function
readFromStream searches for data with DefaultIOTraits (see Chapter 3). The readFromStream
function matches the name labels of data in DataContainer or MeshDataContainer defined in
the class traits with the names of attributes in the data in the VTK file and fills the container
with the data. For an example how to read data from a VTK file, see Code listing 2.62. Finally,
let us note that the readFromStream requires the stream to be opened in binary mode. If the file
is opened in the text mode, the tellg and seekg functions may not work properly depending
on on the EOL byte sequence (LF vs. CR vs. CR/LF) used by the system.

2.5.2 FPMA format

The second supported mesh format by the GTMesh library is the FPMA format native for AVL
FIRE™ [2]. The mesh reader and writer are implemented for 3D meshes only. This format is
based on elements connections, i.e., the faces are defined by a sequence of vertices and cells are
defined by a list of connected faces. Therefore, there are no restrictions on the topology of the
stored mesh and this format does not utilize any cell primitives. Moreover, the FPMA mesh
representation is similar to the one utilized in MeshElements. Therefore, it is easier to work
with and does not require such complex algorithms. The algorithms for input and output of the
faces are the same as the corresponding algorithms for 2D cells and the VTK format. As cells
are defined directly by the list of the faces, the algorithms constructing and indexing cells are
trivial.

95

Code listing 2.62 A demonstration how to import and export the mesh and the mapped
data. At first, the data structure CellData to be mapped to the mesh is defined. Then, the
default Traits for the CellData attributes is defined at line 6 (see Chapter 3) so that the I/O
operations accept the mesh to be exported. As the types of cells are not known, we set them as
polyhedrons. Then, the mesh is exported to the file mesh.vtk. After exporting the mesh, the
function calculates the coloring of the cells with respect to connections over vertices and stores
the result together with the cell centers in the meshData container. meshData is then exported
to mesh.vtk according to the exported (tessellated) mesh. Finally, the tessellated mesh and the
mapped data, i.e., centers and coloring of the original mesh, are loaded from the file.

1 struct CellData {
2 unsigned int color;
3 Vertex <3, double > center;
4 };
5 // Create default Traits for the class CellData
6 MAKE_ATTRIBUTE_TRAIT(CellData , center , color);
7 // Example of import and export of mesh and data in VTK unstructured mesh file format
8 void foo(UnstructuredMesh <3, size_t , double , 6>& mesh) {
9 // Export the mesh first

10 // In order to enforce the mesh tessellation , prepare the cell types as polyhedrons
11 // the correct cell types can be obtained here: reader.getCellTypes ()
12 MeshDataContainer <MeshNativeType <3>:: ElementType ,3> cellTypes;
13 cellTypes(mesh , MeshNativeType <3>:: POLYHEDRON);
14

15 // Write the mesh to file
16 VTKMeshWriter <3, size_t , double > writer1;
17 std:: ofstream out3D("mesh.vtk");
18 writer1.writeHeader(out3D , "test␣data");
19 // Write the tessellated mesh
20 writer1.writeToStream(out3D , mesh , cellTypes);
21 // This would export the original mesh
22 // writer1.writeToStream(out3D , mesh , reader.getCellTypes ());
23

24 // Calculate mesh properties and store them into meshData
25 MeshDataContainer <CellData , 3> meshData(mesh);
26 auto colors1 = ColorMesh <3,0>:: color(mesh);
27 for(auto& cell : mesh.getCells ()){
28 meshData.at(cell). color = colors1.at(cell);
29 meshData.at(cell). center = cell.getCenter ();
30 }
31 // Export the data mapped to the mesh
32 VTKMeshDataWriter <3>:: writeToStream(out3D , meshData , writer);
33 out3D.close ();
34

35 // Load the mesh from file
36 ifstream in3D("mesh.vtk", std::ios:: binary); // VTKMeshDataReader requires binary mode
37 VTKMeshReader <3> reader;
38 reader.loadFromStream(in3D , mesh);
39 mesh.initializeCenters ();
40

41 // Read the exported data from the mesh file
42 MeshDataContainer <CellData , 3> meshDataIn(mesh);
43 VTKMeshDataReader <3, size_t >:: readData(in3D , meshDataIn);
44 in3D.close ();
45 }

96

Code listing 2.63 Example of unit cube written in the FPMA format. At first the number of
vertices of the mesh is written. Then, the vertices coordinates follow. Next, the faces elements
are described. The faces are stored as a list of vertices starting by a number of vertices defining
the particular face. The cells are defined by a list of indexes referring to adjacent faces. Again,
the list begins with the number of faces defining a single cell. Finally, the last number defines
number of labels. The labels of special sections are not supported in GTMesh yet.

1 8 # number of vertices
2 0 0 0 # coordinates
3 1 0 0
4 0 1 0
5 1 1 0
6 0 0 1
7 1 0 1
8 0 1 1
9 1 1 1

10
11 6 # number of faces
12 4 1 0 2 3 # number of elements and elements list
13 4 4 0 1 5
14 4 5 1 3 7
15 4 7 3 2 6
16 4 6 2 0 4
17 4 5 4 6 7
18 1 # number of cells
19 6 0 1 2 3 4 5
20 1 # 1: number of special selections , here there is one selection named by boudary_face
21 boundary_face # name of the section
22 3 # code for boundary faces
23 6 # number of faces
24 0 1 2 3 4 5 # and the last line is the face indices.

2.5.3 Mesh Signature

In the description of the MeshElements class, the attribute meshSignature were presented. In
this section, the purpose and usage of this attribute will be discussed.

Basically, meshSignature reflecting the state of the mesh. The main purpose of this concept
is to simply detect whether the mesh has changed. It especially useful in the mesh export. When
the mesh has not changed since the last export, it is not necessary to index the mesh again in order
to export it. Omitting indexing of the mesh is convenient because it is a very computationally
demanding task (see Section 2.5). In the MeshElements class, there are two methods working with
meshSignature. The first is called getMeshSignature. This member function returns the value
of the signature. The other member function is updateMeshSignature. This function calculates
the signature of the current state of the mesh and stores it in the meshSignature attribute. It
also returns the currently calculated value. The member function updateSignature shall be
called after every change of the mesh.

The signature of the mesh is calculated as a hash of the vectors of mesh elements. The
functionality is implemented using the private member class HashOfMeshElements, which is
utilized by the member function updateMeshSignature. The member function hash of the
class HashOfMeshElements utilizes std::hash and hashes the vector of elements. However, the
standard template library does not provide a specialization of std::hash for containers. The
only similar class is std::string. Therefore, the simplest way to hash a vector as a sequence of
bytes in memory is to copy the vector into a string, then std::hash can be applied. This has
to be done in standards prior to C++17. Since C++17, there is a non-owning container named
std::string_view. This structure has only a pointer into memory and the length of the data
array. As the std::hash function is overloaded for this type, the function hashing the mesh can
utilize std::string_view and avoid copying the data. An example of hashing the vector of cells
is in Code listing 2.64.

97

Code listing 2.64 The implementation of the function computing the hash of cells of
the MeshElements instance. The hash is calculated as a hash of the binary representation
of the vector of cells. This is achieved by copying the data into std::string or using
std::string_view (since C++17) and hashing the string by the std::hash function. Since
the HashOfMeshElements class template is a member of MeshElements, it must have one more
template parameter Dummy preventing explicit specialization. This is because an explicit special-
ization of the member structure is allowed only in an explicit specialization of the encapsulating
structure, see [7].

1 //** Inside MeshElements class **
2 template <typename Dummy >
3 struct HashOfMeshElements <Dimension , Dummy >{
4 static size_t hash(MeshElements <Dimension , IndexType , Real , Reserve ...>& mesh){
5 // Hash of cells
6 #if __cplusplus <= 201702L // C++14 and older
7 std::hash <std::string > hasher;
8 // Use string as a byte container representing the array
9 std:: string tmpString(

10 reinterpret_cast <char*>(mesh.getCells (). data()),
11 mesh.getCells (). size() * sizeof (
12 MeshElements <Dimension , IndexType , Real , Reserve ... >:: Cell
13)
14);
15 size_t cHash = hasher(tmpString);
16

17 #else // C++17 and later
18 std::hash <std:: string_view > hasher;
19 // Use string_view as a byte representation of the vector
20 std:: string_view vectorView(
21 reinterpret_cast <char*>(mesh.getCells (). data()),
22 mesh.getCells (). size() * sizeof (
23 MeshElements <Dimension , IndexType , Real , Reserve ... >:: Cell
24)
25);
26

27 size_t cHash = hasher(vectorView);
28 #endif
29 // Combine the hash with the hash of lower dimension
30 return cHash ^ HashOfMeshElements <Dimension -1>::hash(mesh);
31 }
32 };

98

2.6 UnstructuredMesh as the MeshElements Wrapper

As described in the project architecture (Section 2.1), the GTMesh aims to provide a single
compact class exposing both the mesh structure and the mesh algorithms by means of its mem-
ber functions, to simplify the work with the mesh. This construction makes the work with the
mesh much more convenient. This wrapper class is called UntructuredMesh. It inherits the
MeshElements class and has no further structure. The only purpose of UnstructuredMesh is
to provide the algorithms from Sections 2.4 and 2.5 as its public member functions. The pro-
vided functions are constructed with as few template parameters as possible because most of
the parameters of the mesh functions can be deduced from the setup of UnstructuredMesh.
For example, the member function computeElementMeasures has only one template parame-
ter Method because the rest of the parameters of the function computeMeasures are deduced.
Part of the implementation of the UnstructuredMesh wrapper is shown in Code listing 2.65.
UnstructuredMesh provides the following member functions:

• initializeCenters <ComputationMethod Method> (): Calculates the centers of the cells
and faces initializes the centers of computationally significant elements (see Section 2.4.5),

• computeElementMeasures <ComputationMethod Method> (): Computes the measures of
elements (see Section 2.4.6),

• computeFaceNormals <ComputationMethod Method>(): Calculates the face normal vectors
(see Section 2.4.7),

• apply <unsigned int StartDim, unsigned int TargetDim, typename Functor >
([IndexType startElementIndex,] const Functor &func): Performs loops over mesh
elements (see Section 2.4.1),

• connections <unsigned int StartDim, unsigned int TargetDim, Order
ConnectionsOrder> (): Determines the connections between mesh elements (see Sec-
tion 2.4.2),

• neighborhood <unsigned int StartDim, unsigned int ConnectingDim, unsigned int
ConnectedDim, Order ConnectionsOrder> (): Determines the neighborhood of mesh
elements (see Section 2.4.3),

• coloring <unsigned int StartDim, unsigned int ConnectingDim, ColoringMethod
Method> ([unsigned int seed]): Creates a proper coloring of the mesh elements (see
Section 2.4.4),

• load (const std::string& filePath): Loads the mesh from a file (see Section 2.5),

• write (const std::string& filePath, [std::unique_ptr<MeshWriter<MeshDimension>
>& writer, const MeshReader<MeshDimension>& meshReader, const std::string&
dataHeader]): Writes the mesh into a file (see Section 2.5). This function has many
overloads to allow multiple ways of usage.

Most of the functions in UnstructuredMesh are implemented by application of the generic global
function on this, see the presentation of UnstructuredMesh definition in Code listing 2.65.

2.7 3D Meshes with Non-planar Faces

During the work on this thesis, we dealt with 3D meshes made of elements such as the one shown
in Figure 2.13. From the example element it is obvious that this particular cell has non-planar

99

Code listing 2.65 The definition of the UnstructuredMesh class template and several member
functions. The purpose of the UnstructuredMesh class is to provide both the mesh structure
(MeshElements) and mesh algorithms as member functions. UnstructuredMesh has no further
member attributes and its inner structure is completely inherited from MeshElements. The
member functions working with the contained mesh are implemented by application of the global
functions on itself (this), e.g., computeFaceNormals at line 22.

1 // The UnstructuredMesh class is the wrapper of MeshElements.
2 template <unsigned int MeshDimension ,
3 typename IndexType ,
4 typename Real ,
5 unsigned int ... Reserve >
6 class UnstructuredMesh : public MeshElements <MeshDimension , IndexType , Real , Reserve ...>{
7 public:
8 // Initializes the centers of cells and faces of the mesh.
9 template <ComputationMethod Method = ComputationMethod :: METHOD_DEFAULT >

10 void initializeCenters (){
11 auto centers = computeCenters <Method >(* this);
12

13 for (auto& face : this ->getFaces ()){
14 face.setCenter(centers[face]);
15 }
16 for (auto& cell : this ->getCells ()){
17 cell.setCenter(centers[cell]);
18 }
19 }
20 // Calculates the normal vectors of the faces in the mesh.
21 template <ComputationMethod Method = ComputationMethod :: METHOD_DEFAULT >
22 MeshDataContainer <Vector <MeshDimension , Real >, MeshDimension -1> computeFaceNormals () {
23 return computeFaceNormals <Method >(* this);
24 }
25

26 // Applies the passed function func on the elements of target dim.
27 template <unsigned int StartDim , unsigned int TargetDim , typename Functor >
28 void apply(const Functor& func) {
29 return MeshApply <StartDim , TargetDim >:: apply (*this , func);
30 }
31

32 // Returns the indexes of connected elements of
33 // dimesnion TargetDim to elements with dimension StartDim.
34 template <unsigned int StartDim ,
35 unsigned int TargetDim ,
36 Order ConnectionsOrder = ORDER_ASCEND >
37 MeshDataContainer <std::vector <IndexType >, StartDim > connections () {
38 return MeshConnections <StartDim , TargetDim , ConnectionsOrder >:: connections (*this);
39 }
40

41 // ... ** Implementation of other functions **
42 };

Figure 2.14: When the face of a cell is non-planar, it is tessellated into triangles constructed from
the edges and the vertex x∗f . The vertex x∗f can be, for example, an average of face vertices or
given by formula (2.20) (as utilized in [37]). The red points represent the vertices denoted x∆e

in equation (2.20).

100

faces. Such cells are not convex not even star domains. However, there is a way how to correct
these qualities which consists in tessellating the faces into triangles [37] .

For each face f ∈ T 2 and an edge e ∈ N1 (f), a triangle with base e and apex x∗f is
constructed, where

x∗f =

∑
e∈N1(f)

m (∆e)x∆e∑
e∈N1(f)

m (∆e)
, (2.20)

where ∆e is a triangle with base e and apex xf face centers calculated by computeCenters, see
Section 2.4.5 (in this case the same as an average of vertices) and x∆e is the center of ∆e. See
the explanatory Figure 2.14.

The process of tessellation leads to planar faces and turns the cells into star domains. From
the geometrical point of view, the only difference is that the faces have a richer inner structure
which must be respected by the computational algorithms. An example of tessellation of non-
planar faces is noticeable in Figure 2.13 presenting the export of generic cells into VTK file
format, where a similar tessellation takes place.

In the GTMesh library, there are versions of algorithms such as element center calculation or
measure calculation that are able to work with this type of meshes. As was already mentioned in
the description of the implementation of the corresponding algorithms (Sections 2.4.5, 2.4.6, 2.4.7),
the version of the algorithm is specified by setting the Method template parameter. By default,
the value of METHOD_DEFAULT is assumed. This way, the algorithms consider the mesh to have
planar faces. If the METHOD_TESSELLATED is set, the algorithms utilizes the tessellated structure
of the faces.

Note that if the mesh has planar faces, the results of both versions of the algorithms are the
same. One can use the tessellated version when the type of mesh is unknown in advance, but
the default version is faster.

101

102

Chapter 3

Class Traits

In this chapter, we introduce a concept developed as part of GTMesh and motivated by the au-
tomatic export and import of data structures. The goal was to create a tool able to “understand”
(to provide a standardized interface to) the data stored in the attributes of classes and structures.
Thanks to this tool, it is possible to create functions automatically exporting and importing data
stored in such structures to VTK or JSON format, see an example Code listing 2.62.

A similar concept was utilized in the work [39], however the concept used was very limited.
It was able to handle only 2 data types (scalar and vector quantities) and the reference was
to member attributes only. The new concept was partially inspired by marshallers in Java and
ThorsSerializer in C++ [21, 13]. However, the concept of “understanding” the contents of classes
goes beyond the functionality of the mentioned tools.

Motivated by type traits in standard library and ThorsSerializer [21], we decided to name this
functionality as class traits. A class for which the traits functionality is available will be called a
traited class. The utilized notation is summarized in Table 3.1. Moreover, it is possible to detect
whether a class is traited, hence such classes can be automatically processed. In GTMesh, this
concept is mainly provided by the Traits class template.

Class traits in GTMesh provide the following functionality:

• enumerate the user-selected data members (attributes) and provide a generic read/write
interface to them,

• give names to the enumerated attributes in the form of strings available at run time,

• create an enumerated list of abstract (virtual) attributes with read/write interface imple-
mented using user-defined getter and setter functions.

The exact way how to enable some or all of these particular features will be described in the
rest of the chapter. In general, the aim is to provide the given functionality for attributes of an
arbitrary type and to make the definition of class traits as simple as possible for the user.

At first, the Traits class was able to name the references, but utilized slow virtual member
functions to ensure the correct construction. However, as the project evolved the concept of
class traits was optimized. The optimization consists in making the calling of the references or
functions more direct. The aim was to create code that can be resolved at compile time, so that
the access to the members of a traited class is as quick as if the code was explicitly written.
Then, the usage of automatically generated member access functions would not slow down the
algorithm. Therefore, the class traits might be utilized even in computational algorithms.

In this chapter, the final form of the class traits concept will be discussed. Note that in every
iteration of optimizations, the concept has significantly changed. The final form of the class
traits consists of the class MemberAccess unifying the interface for different types of accessing
the members, and the class Traits itself. Firstly, the class MemberAccess will be described,
followed by the construction of Traits. Finally, the system of publishing a global instance of
Traits corresponding to a traited class will be presented.

103

Term GTMesh equivalent

class traits the Traits class template providing access to the attributes of the
given class

traited class the class type the class traits are defined for

default class traits /
default traits

specializations of classes DefaultTraits, DefaultIOTraits,
DefaultArithmeticTraits publishing an instance of Traits
globally

MAKE_TRAIT macros a group of nine macros simplifying the definition of default class
traits, i.e., MAKE_CUSTOM_TRAIT, MAKE_NAMED_ATTRIBUTE_TRAIT,
MAKE_ATTRIBUTE_TRAIT and 6 other with “_IO” or “_ARITHMETIC”
appended

MAKE_TEMPLATE_TRAIT
macros

a group of nine macros simplifying the definition of default class
traits for class templates, i.e., MAKE_CUSTOM_TEMPLATE_TRAIT,
MAKE_NAMED_ATTRIBUTE_TEMPLATE_TRAIT,
MAKE_ATTRIBUTE_TEMPLATE_TRAIT and 6 other with “_IO” or
“_ARITHMETIC” appended

Table 3.1: Explanation of terms, used in Chapter 3.

3.1 The MemberAccess Class

The first task in the construction of Traits is to create a container facilitating access to the
members with a unified interface for various types of references. The aim of the MemberAccess
is to provide access to a member of an instance of the traited class. The interface consists of two
functions getValue and setValue, as described in detail below. MemberAccess must support
more ways of accessing the class members, e.g., a pointer to member or a pair of getter and setter
functions. To better understand the purpose of MemberAccess, see Code listing 3.1.

The definition of MemberAccess is very simple, it has a constructor to deduce the template
arguments only. Additionally, it utilizes a static assertion to inform the user that an incorrect
reference type was passed, see Code listing 3.2. Note that the generic definition of MemberAccess
must not be used in the context of the specializations.

The specializations of the MemberAccess have the following interface:

• MemberAccess(refType): constructor sets the constant reference up,

• ValueType getValue((const) Class&): a “getter” function which returns the value of the
data member of the passed object,

• void setValue(Class&, const ValueType&): a “setter” function which sets the given
value into the data member,

• ValueType& getAttr(Class&): returns the reference to the member attribute.

According to the type of reference, there are limitations on the interface. For example,
if MemberAccess utilizes the pair of getter/setter functions, the access is not direct. There-
fore, it is not possible to implement the function getAttr. Furthermore, when the getter is not
set as constant in the class, then the getValue function must accept non-constant reference to the
traited class only. In order to simply detect whether a particular specialization of MemberAccess
allows direct access or getValue accepts constant reference, the structures DirectAccess and
ConstGetAccess were created. These two structures carry a constexpr information which can
be utilized to detect the discussed qualities of the MemberAccess at compile time. MemberAccess

104

Code listing 3.1 An example of the definition of the MemberAccess instances with the given ref-
erence. The first two instances of MemberAccess provide direct access to the attributes density
and momentum of the class qties. The third one (refVelocity) accesses the attribute velocity
provided by the functions getVelocity and setVelocity. The virtual attribute velocity is
not stored in directly in qties. Instead, its value is calculated from momentum and density.
Then the listing presents how to setup the values of the qties instance using the MemberAccess
instances.

1 class qties {
2 double density;
3 Vector <3, double > momentum;
4

5 Vector <3, double > getVelocity (){ return momentum/density ;}
6 void setVelocity(const Vector <3, double > velocity){ momentum = velocity * density ;}
7 }qInstance;
8

9 MemberAccess refDensity (& qties:: density);
10 MemberAccess refMomentum (&qties :: momentum);
11 MemberAccess refVelocity(std:: make_pair (& qties:: getVelocity , &qties :: setVelocity));
12

13 refDensity.getAttr(qInstance) = 3; // Set the density directly
14

15 // When setting the value of velocity , the value of density must be already set
16 refVelocity.setValue(qInstance , {1,2 ,3}); // Set the velocity using the set function
17

18 refMomentum.getValue(qInstance); // Returns the copy of the momentum , i.e. {3, 6, 9}

Code listing 3.2 The definition of the MemberAccess class. This definition must not be instan-
tiated, i.e., in every case of use, a specialization must be utilized. If the given reference is not
known, the compilation ends with an error.

1 template <typename Ref >
2 class MemberAccess{
3 static_assert (!std::is_same <Ref , void >::value ,
4 "The␣type␣Ref␣must␣be␣reference␣to␣member␣(ValueType␣Class ::*),␣"
5 "member␣function␣or␣pointer␣to␣getter␣and␣setter");
6 MemberAccess(Ref);
7 };

105

with the appropriate quality inherits the corresponding structure. For an example of working
with MemberAccess, see Code listing 3.1. The implementation details of the three most important
ways of accesses are discussed below.

The first specialization handles the pointer to a member attribute of the traited class. In this
specialization, the reference has the type ValueType Class::* (pointer to member), where the
ValueType is the type of the member and Class is the type of the traited class. The value of the
pointer to member is set in the constructor of MemberAccess. Using the pointers to members,
the data are obtained by the expression at line 22 in Code listing 3.3. This type of reference has
both the qualities (DirectApproach and ConstGetApproach).

The next important possibility of access to members utilizes a pair of getter/setter functions
available as member functions of the traited class. This is a very common concept. The reference
type is std::pair<ValueType (Class::*)() const, void (Class::*)(const ValueType&)>
in this case. Therefore, the constructor accepts a corresponding instance of std::pair storing
the pointers to the getter and setter functions. The disadvantage of this approach is that it
does not allow direct access to the data. On the other hand, it is possible to use this reference
to simulate a virtual member, e.g., the case of velocity in the example in Code listings 3.10
and 3.1. The definition of the specialization for the pair of functions is in Code listing 3.4.

The last way of member access is also provided by a pair of getter/setter functions. There is
one significant difference from the second discussed case. The functions are not member functions
of the object. They are global functions which access the member, e.g., std::get in the case of
the std::tuple. This way, it is possible create MemberAccess to elements of std::tuple. See
the example in Code listing 3.5.

3.2 Traits as a Tuple of MemberAccess

In the previous Section 3.1 the concept of the class MemberAccess was described. The next step
in the construction of class traits is to create the Traits class template, which has the following
template arguments:

1. Class: the type of the traited class or structure,

2. RefTypes: variadic argument containing the types of the references to the members of
Class.

Similarly to the construction of the MeshElements class (Section 2.2.4), the structure of Traits
utilizes a private data structure MemRefs automatically generating the container for the stored
data. The construction of MemRefs utilizes similar processes to the construction of _MeshElements.
MemRefs has two template parameters:

1. Index: unsigned int index declaring the position and the reference from RefTypes to be
stored in MemberAccess,

2. Dummy: an extra type to prevent explicit specialization in the unspecialized enclosing class
template Traits, which would cause an error [7].

The definition of the Traits private member class MemRefs is the following. In order to generate
the data containing structure, the MemRefs class inherits another MemRefs with increased Index
by one until the Index reaches the number of RefTypes -1 (see lines 14-34 in Code listing 3.6).
Each of the contained MemRefs has two constant attributes. The first is the MemberAccess with
type of the reference corresponding to the Index named ref. The second attribute is name and
has type of const char*.

Let us note that all the attributes of Traits and MemRefs are declared as const due to per-
formance optimizations. This implies the need of initializing all the attributes in the constructor

106

Code listing 3.3 The specialization of MemberAccess for a pointer to member (type ValueType
Class::*). The class publishes the types of the refferenced value typeValue, traited class Class
and reference refType. Next the class have one constant attribute of refType named ref.
This attribute is set in the constructor which accepts the value of reference. Furthermore, the
class have the getValue and setValue member functions. Moreover, as the pointer to member
provides possibility to approach the attribute directly, this specialization has member function
getAttr returning the reference to a member. Finally, all the three member functions have two
versions, one for a reference to the instance of Class and the other for a pointer to the instance.

1 template <typename Class , typename ValueType >
2 class MemberAccess <ValueType Class::*> : public DirectAccess , public ConstGetAccess {
3 public:
4 using typeValue = ValueType;
5 using typeClass = Class;
6 using refType = ValueType Class ::*;
7

8 private:
9 // Constant reference possibly resolved at compile time

10 const refType ref;
11 public:
12

13 MemberAccess(refType referenceToMember) : ref(referenceToMember){
14 //ref = referenceToMember;
15 }
16

17 MemberAccess(const MemberAccess <ValueType Class ::*>&) = default;
18

19 MemberAccess(MemberAccess <ValueType Class ::* >&&) = default;
20

21 ValueType getValue(const Class* c) const {
22 return c->*ref;
23 }
24

25 void setValue(Class* c, const ValueType& val) const {
26 c->*ref = val;
27 }
28

29 ValueType& getAttr(Class* c) const {
30 return c->*ref;
31 }
32

33 ValueType getValue(const Class& c) const {
34 return c.*ref;
35 }
36

37 void setValue(Class& c, const ValueType& val) const {
38 c.*ref = val;
39 }
40

41 ValueType& getAttr(Class& c) const {
42 return c.*ref;
43 }
44 };

107

Code listing 3.4 The specialization of MemberAccess for a pair of getter/setter member func-
tions. The first function is a getter and the second one is setter of an attribute, e.g., the functions
getVelocity and setVelocity shown in Code listing 3.1. However, the member functions are
free to do anything as long as they have the correct arguments. This type of reference does
not provide direct access to an attribute, therefore this specialization provides the functions
getValue and setValue only.

1 template <typename Class , typename ValueType >
2 class MemberAccess <std::pair <ValueType (Class ::*)() const ,
3 void (Class ::*)(const ValueType&)>>
4 : public ConstGetAccess {
5 public:
6 using typeValue = ValueType;
7 using typeClass = Class;
8

9 using getterType = ValueType (Class ::*)() const;
10 using setterType = void (Class ::*)(const ValueType &);
11

12 private:
13 getterType const refGet;
14 setterType const refSet;
15

16 public:
17

18 MemberAccess(std::pair <getterType , setterType > getSet)
19 :refGet(getSet.first), refSet(getSet.second){
20 // refGet = getSet.first;
21 // refSet = getSet.second;
22 }
23

24 MemberAccess(const MemberAccess <std::pair <getterType , setterType >>&) = default;
25

26 MemberAccess(MemberAccess <std::pair <getterType , setterType >>&&) = default;
27

28

29 ValueType getValue(const Class* c) const {
30 return (c->*refGet)();
31 }
32

33 void setValue(Class* c, const ValueType& val) const {
34 (c->*refSet)(val);
35 }
36

37 ValueType getValue(const Class& c) const {
38 return (c.* refGet)();
39 }
40

41 void setValue(Class& c, const ValueType& val) const {
42 (c.* refSet)(val);
43 }
44 };

Code listing 3.5 An example of making a MemberAccess to the first element of a tuple. The
specialization of MemberAccess for two global functions is applied. The key part is to exactly
specify the desired version of the overloaded function. The specification is achieved by typecasting
the function pointer. This way, the compiler knows what pointer is requested. Otherwise the
compilation fails due to ambiguity.

1 // Access to the first element of type double of class std::tuple <double >
2 // Using the static_cast the version of overloaded function get is specified
3 MemberAccess(
4 std:: make_pair(static_cast <const double &(*)(const std::tuple <double >&)>(std::get <0>),
5 static_cast <double &(*)(std::tuple <double >&)>(std::get <0>))
6);

108

Code listing 3.6 The definition of the Traits class template. The Traits class has one
attribute of type MemRefs, which is a private member structure. MemRefs builds a system storing
the MemberAccess instances for all types in RefTypes structures and the corresponding names.
The constructor of MemRefs class enables to declare the attributes as constant. Furthermore,
the class Traits provides the basic aliases, i.e., refType (type of single reference), memRefType
(corresponding MemberAccess for the given refType), type (the type the refType refers to).
Finally, the whole setup is done using the constructor of Traits. Its arguments have to form
pairs of names and the corresponding references.

1 template <typename Class , typename ... RefTypes >
2 class Traits {
3 public:
4 template <unsigned int Index >
5 using refType = typename std:: tuple_element <Index ,std::tuple <RefTypes ...>>:: type;
6

7 template <unsigned int Index >
8 using memRefType = MemberAccess <refType <Index >>;
9

10 template <unsigned int Index >
11 using type = typename MemberAccess <refType <Index >>:: typeValue;
12

13 private:
14 template <unsigned int Index = 0, typename = void >
15 struct MemRefs: public MemRefs <Index + 1> {
16

17 const MemberAccess <refType <Index >> ref;
18 const char* name;
19

20 template <typename ... REST >
21 MemRefs(const char* n, refType <Index > r, REST ... rest)
22 : MemRefs <Index + 1> (rest ...), ref(r), name(n){}
23 };
24

25 template <typename Dummy >
26 struct MemRefs <sizeof ...(RefTypes) - 1, Dummy >{
27

28 const MemberAccess <refType <sizeof ...(RefTypes) - 1>> ref;
29 const char* name;
30

31 MemRefs(const char* n, refType <sizeof ...(RefTypes) - 1> r)
32 : ref(r), name(n){}
33 };
34

35 // Declaration of the refs (MemRefs) attribute
36 const MemRefs <0, void > refs;
37 public:
38 // The constructor only initializes the attribute refs
39 template <typename ...Refs >
40 Traits(Refs ... refsAndNames) : refs(refsAndNames ...){}
41

42 // ... ** member functions **
43 };

109

of the corresponding class at once. The solution consists in using a variadic constructor accept-
ing all the names and references at once. Then, the first called constructor, i.e., MemRefs with
Index equal to 0, sets the name to the first argument and ref to the second one. Thanks to the
possibility of calling the constructor of the parent class in the constructor of the derived class,
the rest of the parameter pack is passed to the constructor of MemRefs with Index increased by
one. In the end, the constructor of the terminating specialization expects exactly two arguments,
the first is name (const char*) and the second is the last type of the RefTypes parameter pack.
Finally, the data of Traits are initialized by passing all parameters given to Traits to the
MemRefs attribute refs. See the implementation of the Traits in Code listing 3.6.

The Traits class provides one member function (size) and several member function tem-
plates with unsigned int parameter named Index. The list of the member functions is the
following:

• size: returns the number of stored references,

• getReference: function template returning the MemberAccess stored in refs at the posi-
tion given by Index,

• getName: function template returning the name corresponding to Index,

• getAttr: function template returning the l-value reference to an attribute of a Class
instance,

• getValue: function template returning the value of an attribute of a Class instance,

• setValue: function template setting a value to an attribute of a Class instance.

The implementation of the Traits member functions is in Code listing 3.7.
An example of declaring Traits for the class qties is presented in Code listing 3.8. However,

as is obvious from the example, the definition of the Traits instance is very complicated.

3.3 Default Traits

This section describes the way of publishing an instance of creating a globally accessible instance
of Traits of a traited class. Since these globally defined class traits are utilized by other functions
in GTMesh, we call these global class traits default class traits. The concept described below
allows to have more than one default class traits defined for one single traited class, e.g., class
traits utilized for automatic I/O of the traited class. Moreover, for the purpose of the functions
working with tratied classes, it is necessary to be able to detect whether a class have default
class traits defined or not at compile time (see Section 3.3.2). Finally, the definition of the
default class traits must be as simple as possible because the definition of an instance of Traits
is complicated (see Code listing 3.8).

As the instance of Traits must be bound to a class, it is not possible to declare the global
instance of Traits as a global static variable. Moreover, static variables must be initialized
in source files, while the GTMesh is implemented in header files only. Therefore, the chosen
approach is to create an additional DefaultTraits class template. This class template has one
template parameter, the type of the traited class. Generally, the DefaultTraits class is defined
as an empty class, see Code listing 3.9.

The default class traits for a certain class is then created by a specialization of DefaultTraits
for the corresponding class (see example in Code listing 3.9). This way, the default instance of
Traits can be obtained by the public static member function getTraits of DefaultTraits<
Class>, where the Class is the type of the traited class. In other words, the default traits can
be obtained based on the type (information) of the traited class. The usage of the default traits
is presented in Code listing 3.10.

110

Code listing 3.7 The member functions of the Traits class. All the member functions except
size are templates with argument Index of a type unsigned int specifying the position of
requested name or reference. The size member function returns the number of stored references.
The functions getName and getReference returns the contents of the refs attribute (see Code
listing 3.6). The rest of the member functions are designed to simplify access to the members of
the instance of the traited class. Note that the method getAttr is available only for references
with direct access to an attribute.

1 // ** Traits member functions **
2 static constexpr unsigned int size (){
3 return sizeof ... (RefTypes);
4 }
5

6 template <unsigned int Index >
7 const MemberAccess <refType <Index >> getReference () const {
8 return refs.MemRefs <Index , void >::ref;
9 }

10

11 template <unsigned int Index >
12 type <Index > getValue(Class* c) const {
13 return getReference <Index >(). getValue(c);
14 }
15

16 template <unsigned int Index >
17 type <Index > getValue(Class& c) const {
18 return getReference <Index >(). getValue(c);
19 }
20

21 template <unsigned int Index >
22 type <Index > getValue(const Class* c) const {
23 static_assert(HasConstGetAccess <memRefType <Index >>::value ,
24 "The␣current␣reference␣to␣does␣not␣provide␣constant␣access.");
25 return getReference <Index >(). getValue(c);
26 }
27

28 template <unsigned int Index >
29 type <Index > getValue(const Class& c) const {
30 static_assert(HasConstGetAccess <memRefType <Index >>::value ,
31 "The␣current␣reference␣to␣does␣not␣provide␣constant␣access.");
32 return getReference <Index >(). getValue(c);
33 }
34

35 template <unsigned int Index >
36 void setValue(Class* c, const type <Index >& val) const {
37 getReference <Index >(). setValue(c, val);
38 }
39

40 template <unsigned int Index >
41 void setValue(Class& c, const type <Index >& val) const {
42 getReference <Index >(). setValue(c, val);
43 }
44

45 template <unsigned int Index >
46 type <Index >& getAttr(Class* c) const {
47 static_assert(IsDirectAccess <memRefType <Index >>::value ,
48 "The␣current␣reference␣to␣does␣not␣provide␣direct␣access.");
49 return getReference <Index >(). getAttr(c);
50 }
51

52 template <unsigned int Index >
53 type <Index >& getAttr(Class& c) const {
54 static_assert(IsDirectAccess <memRefType <Index >>::value ,
55 "The␣current␣reference␣to␣does␣not␣provide␣direct␣access.");
56 return getReference <Index >(). getAttr(c);
57 }
58

59 template <unsigned int Index >
60 const char* getName () const {
61 return refs.MemRefs <Index , void >:: name;
62 }

111

Code listing 3.8 An example of definition of an instance of Traits providing access to density
and velocity of the class qties (defined in Code Listing 3.1). The template arguments are set
as decltype applied to the value of the reference. Notice the complexity of the definition of
the instance of Traits. Luckily, here there is a pattern in the definition (which is exploited in
Section 3.3.3).

1 // Declaration of traits for class qties
2 Traits <qties ,
3 decltype (& qties:: density),
4 decltype(make_pair (&qties :: getVelocity , &qties:: setVelocity))>
5 attrTraits("density",
6 &qties::density ,
7 "velocity",
8 make_pair (& qties:: getVelocity , &qties :: setVelocity));
9 // Instance of qties class

10 qties qInstance;
11

12 attrTraits.getAttr <0>(qInstance) = 5;
13 attrTraits.setValue <1>(qInstance , Vector <3, double >{0, 1, 2});
14 // The momentum of qInstance is set to {0, 5, 10}
15

16 // Printing the content of qInstance
17 // Prints "density: 5"
18 printf("%s:␣%f", attrTraits.getName <0>(), attrTraits.getValue <0>(qInstance));
19 // Prints "velocity: {0, 1, 2}"
20 printf("%s:␣{%f,␣%f,␣%f}",
21 attrTraits.getName <1>(),
22 attrTraits.getValue <1>(qInstance)[0],
23 attrTraits.getValue <1>(qInstance)[1],
24 attrTraits.getValue <1>(qInstance)[2]);

Code listing 3.9 Presentation of the default class traits concept. The first listing presents
the definition of the DefaultTraits class template. The class body is empty because it is to
be overridden by a specialization for the given traited class the default class traits is created
for. The second presents the definition of the default class traits for the qties class (see Code
Listing 3.1) by specializing DefaultTraits. The instance of the global Traits is provided by
the public static member function getTraits.

1 // The definition of the DefaultTraits class.
2 // In its specializations , this class publishes the instance of Traits
3 // bound to the Class the specialization is defined for.
4 template <typename Class >
5 class DefaultTraits {};

1 // Declaration of default class traits
2 template <>
3 class DefaultTraits <qties >{
4 using traitsType Traits <qties ,
5 decltype (& qties:: density),
6 decltype(make_pair(qties:: getVelocity , qties:: setVelocity)>;
7

8 static const traitsType getTraits () {
9 return traitsType("density",

10 &qties::density ,
11 "velocity",
12 make_pair <&qties:: getVelocity , &qties:: setVelocity >);
13 }
14 static constexpr unsigned int size() {return traitsType ::size ();}
15 }

112

Code listing 3.10 An example of definition of default class traits for the class qties (see Code
Listing 3.1). There are two default class traits defined, the first is the general default class traits
and the second is the definition of default input and output class traits. The default class traits is
defined using the macro MAKE_ATTRIBUTE_TRAIT (see Section 3.3.3). This defines DefaultTraits
accessing the attributes by member pointers. The second macro MAKE_CUSTOM_TRAIT_IO defines
a specialization of DefaultIOTraits for qties class. Thanks to this construction, the class seems
to consist of the attributes density and velocity instead of density and momentum. Moreover,
when the values of qties are to be set using DefaultIOTraits, it is necessary for the density
attribute to be set first, otherwise the result in momentum will not be as expected. The function
foo presents the way of data access.

1 // Macro creates specialization of DefautTraits for qties and names
2 // according to the attributes names
3 MAKE_ATTRIBUTE_TRAIT(qties , density , momentum);
4

5 // Macro creates specialization of DefaultIOTraits for the qties class
6 MAKE_CUSTOM_TRAIT_IO(
7 qties ,
8 "density", &qties::density ,
9 "velocity", std:: make_pair (&qties:: getVelocity , &qties:: setVelocity)

10);
11

12 void foo () {
13 DefautTraits <qties >:: getTraits (). getAttr <0>(qInstance) = 3; //get reference to density
14 DefautTraits <qties >:: getTraits (). setValue <1>(qInstance , {3, 6, 9}); // set momentum
15

16 DefaultIOTraits <qties >:: getTraits (). getValue <1>(qInstance); // {1, 2, 3} get velocity
17 DefaultIOTraits <qties >:: getTraits (). setValue <1>(qInstance , {1, 1, 1}); // set velocity
18

19 DefautTraits <qties >:: getTraits (). getValue <1>(qInstance); // {3, 3, 3} get momentum
20 }

There are two basic ways how to make a single public instance of Traits. The first is to create
a static variable of Traits in the specialization, however as already said, the static variables are
troublesome. Therefore, we chose to create static member function which returns the default
instance of the Traits class defined in the body of the function. This function has to be named
getTraits in every specialization of DefaultTraits. An example of an explicit specialization of
Traits for the class qties is in Code listing 3.9. In the end, let us note that the specialization
of DefaultTraits has to be defined in the global namespace.

3.3.1 DefaultIOTraits and DefaultArithmeticTraits

After constructing the default class traits, it appeared to be useful to have the possibility to
create more types of default traits, e.g., one class traits for input and output and another for

Code listing 3.11 Definition of the classes DefaultIOTraits and DefaultArithmeticTraits.
Both the classes inherit the class DefaultTraits<Class>. Thanks to this trick, if the
DefaultTraits<Class> is specialized for the given Class, then both the classes by default
returns the same instance of Traits by getTraits. However, these classes are not limited
to inherit the DefaultTraits class only. If there is an specialization for the Class type, it is
utilized instead and another instance of Traits can be published.

1 template <typename Class >
2 class DefaultIOTraits : public DefaultTraits <Class > {};
3

4 template <typename Class >
5 class DefaultArithmeticTraits : public DefaultTraits <Class > {};

113

Code listing 3.12 The implementation of the system checking whether the default
class traits are defined for a class (T1). The class HasDefaultTraits inherits the class
__has_default_traits with arguments T1 and void. By default, the __has_default_traits
class inherits std::false_type. Then, the check of the member function is done by the spe-
cialization which is validly defined if DefaultTraits<T1> has the public static member function
getTraits. If the expression in the decltype at line 15, returns valid typename, void_t maps
to void and the specialization is valid and applied instead of the default definition. The spe-
cialization inherits std::true_type, see the lines 10-16. Otherwise, if the tested class does not
have default class traits defined, the DefaultTraits<T1>::getTraits() causes an error in the
construction of the specialization of the __has_default_traits class. Hence, the class candi-
date is ignored and the default definition inheriting std::false_type is applied. Thanks to this
concept, we are able to detect whether the default Traits is defined for a certain class.

1 namespace Impl {
2

3 template <typename ...>
4 using void_t = void;
5

6 // General definition is utilized in the case when the specialization is invalid
7 template <typename T1, typename = void >
8 struct __has_default_traits : public std:: false_type {};
9

10 // This specialization applies when the function named by getTraits is present in
11 // DefautTraits <T1> class
12 template <typename T1>
13 struct __has_default_traits <
14 T1 ,
15 void_t <decltype(DefaultTraits <T1 >:: getTraits ())>
16 > : public std:: true_type {};
17 }
18

19

20 template <typename T>
21 struct HasDefaultTraits : public Impl:: __has_default_traits <T, void > {};

arithmetic operations. Hence, the GTMesh library provides two more types of default traits.
The first is DefaultIOTraits and it is designed to facilitate import and export of the class. This
type of default class traits is also utilized by the debugging system described in Section 4.1. The
second default traits is DefaultArithmeticTraits. Thanks to the optimizations, Traits can be
used to create generic computational methods for classes with DefaultArithmeticTraits, see
Section 4.2. This way, one class may have more than one global instance of Traits for different
purposes.

By default both the DefaultIOTraits and DefaultArithmeticTraits classes coincide with
the default class traits, i.e., DefaultTraits. In other words, when the DefaultTraits<Class>
is specialized, the DefaultIOTraits<Class> and DefaultArithmeticTraits<Class> have the
same definition. This is achieved by inheritance of DefaultTraits<Class> in the definition
of the both classes, see Code listing 3.11. Moreover, this approach still allows to override the
definition with custom specialization (see Section 4.2). The specialization is done in the same
way as presented in Code listing 3.9.

In the terms of GTMesh the default class traits is synonym for certain specialization of the
three classes DefaultTraits, DefaultIOTraits, DefaultArithmeticTraits (see Table 3.1).

3.3.2 Existence of Default Class Traits

The next problem is to detect whether the default class traits are specialized for a certain
class, i.e., create a type trait which accepts a class (typename) and returns true if the de-
fault class traits has a specialization declared for the particular class, or false otherwise. This

114

Code listing 3.13 Three possible ways of default Traits definition by utilizing the helper macros.
All of the macros define the same default class traits for the class flowQ. The differences between
the individual applications of the macros are described in Section 3.3.3. The second listing
presents the application of macros if the traited class is a template.

1 struct flowQ{
2 double rho; // density
3 Vector <3, double > p; // momentum
4 };
5

6 MAKE_CUSTOM_TRAIT(flowQ , "density", &flowQ::rho , "momentum", &flowQ ::p);
7 MAKE_NAMED_ATTRIBUTE_TRAIT(flowQ , "density", rho , "momentum", p);
8 MAKE_ATTRIBUTE_TRAIT(flowQ , rho , p);

1 template <unsigned int Dimension , typename Real >
2 struct flowQ{
3 Real rho; // density
4 Vector <Dimension , Real > p; // momentum
5 };
6

7 MAKE_CUSTOM_TEMPLATE_TRAIT(
8 (flowQ <Dimension , Real >),
9 (unsigned int Dimension , typename Real),

10 "density", (&flowQ <Dimension , Real >::rho), "momentum", (&flowQ <Dimension , Real >::p)
11);
12

13 MAKE_ATTRIBUTE_TEMPLATE_TRAIT(
14 (flowQ <Dimension , Real >),
15 (unsigned int Dimension , typename Real),
16 rho , p
17);

is achieved by the SFINAE paradigm utilized in the class HasDefaultTraits [5]. This class
simply checks whether DefaultTraits of the given class has the member function getTraits
defined, which is mandatory for the specializations of default class traits. Here the empty defi-
nition of the DefaultTraits class comes in handy. If the default class traits is not defined, the
DefaultTraits<Class> is empty, thus it does not have the member function getTraits. The
implementation of the HasDefaultTraits class is described in Code listing 3.12.

Finally, there are classes HasDefaultIOTraits and HasDefaultArithmeticTraits detecting
whether the given class has the corresponding default class traits defined. These classes have an
implementation similar to HasDefaultTraits.

3.3.3 Macros Creating Default Class Traits

The last requested functionality of the class traits concept is a single line definition of the default
class traits. According to Code listing 3.9, the definition of the default class traits requires a
relatively complex construction and definition of some mandatory members of the specialization.
However, thanks to the pattern in the definition of the specialization, a variadic macro that
expands into the correct specialization can be developed. GTMesh provides three macros to
simplify the definition of the default class traits.

• The first and the most generic macro is named MAKE_CUSTOM_TRAIT. This macro accepts
the name of the class as the first argument, and the remaining parameters are pairs of
names and values of references.

• The second macro MAKE_NAMED_ATTRIBUTE_TRAIT is more specialized. It creates member
references only, but allows to define custom names for them. On the other hand, it does
not require full references to the member attributes, only attributes names are expected.

115

Code listing 3.14 An example of creating the system exporting any expression using the macro
FOR_EACH. In this case, the macro PRINT expands in the call of the function Print given the pairs
of stringized arguments and the arguments themselves. The output of the call of the PRINT at
line 20 is shown below. The advantage of this approach is that the expression is automatically
exported with the result. This concept is extended in Section 4.1.

1 // prints all the names and variables
2 template <typename T, typename ... Rest >
3 void Print(const char* varName , const T& var , const Rest& ... rest){
4 Print(varName , var);
5 Print(rest ...);
6 }
7

8 template <typename T>
9 void Print(const char* varName , const T& var){

10 std::cout << varName << ":␣" << var << ’\n’;
11 }
12

13 #define STRVAR(expr) #expr , expr
14

15 #define PRINT (...) Print(FOR_EACH(STRVAR , __VA_ARGS__))
16

17 void foo() {
18 double a = 1, b = 2.5, c = 6.8;
19

20 PRINT(a,b, 10 * c);
21 // Primarily expands in Print(STRVAR(a), STRVAR(b), STRVAR (10 * c))
22 // Then expands in Print("a", a, "b", b, "10 * c", 10 * c)
23 }

1 a: 1
2 b: 2.5
3 10 * c: 68

• The last macro MAKE_ATTRIBUTE_TRAIT expects only the name of the class to be traited
and a list of the attributes. The names are set to the names of the attributes.

The presented macros expand into specializations of DefaultTraits. In order to specialize
DefaultIOTraits or DefaultArithmeticTraits, one shall use MAKE_CUSTOM_TRAIT_IO or
MAKE_CUSTOM_TRAIT_ARITHMETIC respectively. The rest of the types of macros are named in
the same way. Further in this work, we will call this group of macros MAKE_TRAIT.

According to limitations of macro expansion in processing variadic arguments, the limit on
the number of arguments of the macros mentioned above is set to 20 names and 20 attributes
(40 arguments in total). Those limitations will be obvious from the description of the implemen-
tation. An example of the definition of the default Traits using the presented macros is in Code
listing 3.13.

As shown in Code listing 3.13, GTMesh provides macros for definition of specialization of
Traits for class templates. The macros names have “TEMPLATE_” added before “TRAIT”, e.g.
MAKE_CUSTOM_TEMPLATE_TRAIT. These macros expect the name of the class with the template
parameters as the first parameter and the list of the template parameters itself as the second
parameter. It is important to enclose the template arguments into round brackets to be passed
as one argument of the macro. For better orientation in the notation, see Table 3.1.

Variadic Macro FOR_EACH In order to create the macros generating the default class traits spe-
cializations, the macro FOR_EACH is to be implemented first. This macro expands any other given
macro accepting one argument for all remaining arguments given to the FOR_EACH macro, i.e.,
FOR_EACH(MACRO, x1, x2, . . . , xN) expands in MACRO(x1), MACRO(x2),. . ., MACRO(xN)
. The effect of the FOR_EACH macro can be demonstrated on creating automatic export shown in
Code listing 3.14.

116

Code listing 3.15 All macros utilized in the construction of macro FOR_EACH. The first four
macros together are responsible for counting of the passed arguments (see the example in Code
listing 3.16). The following macro CONCATENATE concatenates the expressions passed in arg1
and arg2 together. Then, the next four macros starting with FOR_EACH_00 realize the appli-
cation of the expression what on the given arguments separated by commas (see example in
Code listing 3.17). The last two macros FOR_EACH and FOR_EACH_ together count the num-
ber of arguments and then concatenate the number of arguments with expression FOR_EACH_,
see the example in Code listing 3.18. This listing is limited to 3 arguments for demonstration
purpose. In GTMesh, the FOR_EACH macro is able to manage up to 40 arguments. The pur-
pose of the FOR_EACH_NARG_ is to ensure the expansion of the FOR_EACH_RSEQ_N macro. With-
out FOR_EACH_NARG_, the FOR_EACH_RSEQ_N macro would be passed as a single argument into
FOR_EACH_ARG_N which results in an compilation error.

1 #define FOR_EACH_RSEQ_N 03, 02, 01, 00
2 #define FOR_EACH_ARG_N(_1, _2, _3, N, ...) N
3 #define FOR_EACH_NARG_ (...) FOR_EACH_ARG_N(__VA_ARGS__)
4 #define FOR_EACH_NARG (...) FOR_EACH_NARG_(__VA_ARGS__ , FOR_EACH_RSEQ_N)
5

6 #define CONCATENATE(arg1 , arg2) arg1##arg2
7

8 #define FOR_EACH_00(what , ...)
9 #define FOR_EACH_01(what , x, ...) what(x)

10 #define FOR_EACH_02(what , x, ...) what(x), FOR_EACH_01(what , __VA_ARGS__)
11 #define FOR_EACH_03(what , x, ...) what(x), FOR_EACH_02(what , __VA_ARGS__)
12

13 #define FOR_EACH_(N, what , ...) CONCATENATE(FOR_EACH_ , N)(what , __VA_ARGS__)
14 #define FOR_EACH(what , ...) FOR_EACH_(FOR_EACH_NARG(__VA_ARGS__), what , __VA_ARGS__)

Code listing 3.16 Example of expansion of the macro FOR_EACH_NARG counting the number of
arguments. The macro FOR_EACH_NARG eventually expands in FOR_EACH_ARG_N with the given
arguments and the appended reverse sequence defined in FOR_EACH_RSEQ_N. According to the
definition of FOR_EACH_ARG_N recalled at line 4, the argument 02 is passed as argument N and is
returned. The definitions of the macros applied here are in Code listing 3.15.

1 FOR_EACH_NARG(arg1 , arg2)
2 -> FOR_EACH_NARG_(arg1 , arg2 , FOR_EACH_RSEQ_N)
3 -> FOR_EACH_ARG_N(arg1 , arg2 , 03, 02, 01, 00)
4 // FOR_EACH_ARG_N(_1 , _2 , _3, N, ...) N
5 -> 02 is returned from the macro

From the implementation point of view, the preprocessor does not allow recursion in macro
expansion. Luckily, inside a macro another macro can be expanded. Then, the final solution
consists in counting of the number of the passed arguments and then passing the arguments
to a macro corresponding to the number of arguments. The whole construction is discussed in
detail below. Before we start with the description, let us mention that the variable arguments
in macros are substituted for the keyword __VA_ARGS__ written in the definition of a variadic
macro.

The first step is to prepare a system counting the number of arguments of the macro. This is
achieved by cooperation of several macros. The first macro is named by FOR_EACH_RSEQ_N and
it defines a decreasing sequence of numbers (see line 1 in Code listing 3.15). The next macro
FOR_EACH_ARG_N defines a system counting the number of arguments, see the definition at line
2 in Code listing 3.15. This macro accepts a sequence of arguments with length up to the num-
ber of arguments starting with _, e.g., _00 and expects the prepared sequence to be appended
to the arguments. This macro then publishes the Nth argument corresponding to the number
arguments thanks to the appended sequence. Next, the remaining two macros FOR_EACH_NARG_
and FOR_EACH_NARG ensure the correct expansion and application of the macro FOR_EACH_ARG_N.

117

Code listing 3.17 A demonstration of expansion of macro FOR_EACH_03.

1 FOR_EACH_03(STRVAR , a, b, 10 * c)
2 -> STRVAR(a), FOR_EACH_02(STRVAR , b, 10 * c)
3 -> STRVAR(a), STRVAR(b), FOR_EACH_01(STRVAR , 10 * c)
4 -> STRVAR(a), STRVAR(b), STRVAR (10*c)

Code listing 3.18 An example of expansion of macro FOR_EACH applied to expressions
STRVAR, a, b and 10*c. The expansion of FOR_EACH_03(STRVAR, a, b, 10 * c) is presented in
Code listing 3.17.

1 FOR_EACH(STRVAR , a, b, 10 * c)
2 // FOR_EACH_(FOR_EACH_NARG(a, b, 10 * c), STRVAR , a, b, 10 * c)
3 -> FOR_EACH_ (03, STRVAR , a, b, 10 * c)
4 // CONCATENATE(FOR_EACH_ , 03)(STRVAR , a, b, 10 * c)
5 -> FOR_EACH_03(STRVAR , a, b, 10 * c)
6 // ...

These macros together accept the arguments and pass them to FOR_EACH_ARG_N with the se-
quence appended, see the lines 3 and 4 in Code listing 3.15. Generally, the macro FOR_EACH_NARG
expands to the element of the sequence FOR_EACH_RSEQ_N corresponding to the number of the
given arguments, see the example of application of FOR_EACH_NARG in Code listing 3.16. This
system is able to count the number of passed arguments up to the number of the prepared argu-
ments in FOR_EACH_ARG_N and FOR_EACH_RSEQ_N. In the example of the definition shown Code
listing 3.15, the maximum number of arguments is three, however in the GTMesh library, this
system of macros is able to manage up to 40 arguments.

Next, as the system counting the number of the arguments is complete, we define the
macro CONCATENATE (see the definition at line 6 in Code listing 3.15). This macro concate-
nates the expressions passed as arg1 and arg2 omitting any blank spaces between them, e.g.,
CONCATENATE(get, Value) will expand in getValue. This macro will be used to concatenate
the keyword FOR_EACH_ with the number of arguments, e.g., FOR_EACH_02. This way, the name
of newly expanded macro will be created.

The next step is to prepare a system of macros FOR_EACH_#N, where the #N matches the
elements of the FOR_EACH_RSEQ_N sequence. See the definition at lines 8-11 in Code listing 3.15.
These macros have the following arguments:

1. what: the expression to be applied on argument x,

2. x: the currently processed argument,

3. variadic arguments: list of arguments to be passed further to FOR_EACH_#N-1.

The what argument is to be the name of a function or a function-like macro that accepts one
parameter. Each macro FOR_EACH_#N except FOR_EACH_01 and FOR_EACH_00 then expands in
what(x), FOR_EACH_#N-1(what, __VA_ARGS__), i.e., the next macro is given the what expression
and the rest of the parameters separated by commas. The FOR_EACH_01 expands in what(x) only,
this way the recursive expansion is stopped. The definition of the macro FOR_EACH_00 is left
blank. The purpose of this macro is to prevent an error when the FOR_EACH is given no arguments.
For a better understanding of the functionality of the FOR_EACH macro, see Code listing 3.17.

Now, all the components constructing the FOR_EACH macro are prepared. The last two macros
FOR_EACH_ and FOR_EACH are to be defined, see the definition in Code listing 3.15. These two
macros ensure the correct usage of the previously discussed macros. The first mentioned macro
FOR_EACH_ accepts the number of arguments counted by FOR_EACH_NARG and concatenates it
with word FOR_EACH_. Then it passes the what argument followed by the pack of arguments to
the FOR_EACH_#N macro. Finally, the macro FOR_EACH counts the number of passed arguments

118

Code listing 3.19 The definition of the macro FOR_EACH_3ARGS_1STAT. This macro applies the
macro what to the given argument x_stat and each two arguments taken from the remaining
argument sequence x1 and x2.

1 #define FOR_EACH_3ARGS_1STAT_00(what , ...)
2 #define FOR_EACH_3ARGS_1STAT_02(what ,x_stat , x1 , x2, ...) what(x_stat , x1, x2)
3 #define FOR_EACH_3ARGS_1STAT_04(what ,x_stat , x1 , x2, ...) what(x_stat , x1, x2), \
4 FOR_EACH_3ARGS_1STAT_02(what , x_stat , __VA_ARGS__)
5

6 #define FOR_EACH_3ARGS_1STAT_(N, what , x_stat , ...)\
7 CONCATENATE(FOR_EACH_3ARGS_1STAT_ , N)(what , x_stat , __VA_ARGS__)
8

9 #define FOR_EACH_3ARGS_1STAT(what , x_stat , ...) \
10 FOR_EACH_3ARGS_1STAT_(FOR_EACH_NARG(__VA_ARGS__), what , x_stat , __VA_ARGS__)

Code listing 3.20 An example of application of macros FOR_EACH_2ARGS and
FOR_EACH_3ARGS_1STAT. This example presents automatic processing of the arguments which are
typically passed to the macros defining default class traits. The first example creates a sequence
of types deduced from the value of references. The second example presents the transformation
of names of attributes to pointers to members.

1 // Omit the odd arguments
2 #define IMPL_MEMREF_TYPE_CUSTOM(name , memberRef) decltype(memberRef)
3

4 FOR_EACH_2ARGS(IMPL_MEMREF_TYPE_CUSTOM , name1 , ref1 , name2 , ref2)
5 -> decltype(ref1), decltype(ref2)
6

7 // Prepend the static argument to even arguments in __VA_ARGS__
8 #define IMPL_NAME_AND_REF(Class , name , member) name , &Class :: member
9

10 FOR_EACH_3ARGS_1STAT(IMPL_NAME_AND_REF , ClassName , name1 , member1 , name2 , member2)
11 -> name1 , &ClassName ::member1 , name2 , &ClassName :: member2

and passes the information further into the FOR_EACH_ macro. For better understanding, see the
example explaining the expansion of the FOR_EACH macro in Code listing 3.18.

Moreover, for the needs of the generation of default Traits two more types of the FOR_EACH
macro were developed. The first is FOR_EACH_2ARGS. As the name suggests, this macro applies
what to two arguments in row. The last developed macro is FOR_EACH_3ARGS_1STAT. This macro
expands in what(x_stat, x1, x2), where the x_stat is the same in all expansions of what,
the x1, x2 are the first two expressions from the variable argument (see the definition in Code
listing 3.19). See the example explaining the possible usage of the discussed macros in Code
listing 3.20.

MAKE_TRAIT Macros Definition Now, thanks the macro FOR_EACH we are able to create the
MAKE_TRAIT macros (see Table 3.1). The macros MAKE_TRAIT generate the specialization of
default class traits based on the given class, names and references. In this section the exact
implementation of MAKE_TRAIT macros is presented.

At first, the macros applied in the FOR_EACH macros are to be defined.

• IMPL_MEMREF_TYPE_CUSTOM: accepts 2 arguments, name and memberRef. Then, it expands
to decltype(memberRef) (see the example in Code listing 3.20). This macro is to be used
to specify the template arguments of the global Traits in default Traits.

• IMPL_NAME_AND_REF: has 3 arguments, Class, name and member. This macro expands to
name, &Class::member. This macro is designed to be used in FOR_EACH_3ARGS_1STAT (see
the example in Code listing 3.20).

119

Code listing 3.21 The definition of the macros necessary for the generation of the default
class traits. The macro IMPL_MAKE_CUSTOM_TRAIT accepts the name of the traits to be spe-
cialized (TraitName), the traited class (Class) and a sequence of names and references. This
macro then creates the appropriate explicit specialization of class passed trough TraitName (i.e.,
DefaultTraits, DefaultIOTraits, DefaultArithmeticTraits) for the traited class.

1 #define IMPL_MEMREF_TYPE_CUSTOM(name , memberRef) decltype(memberRef)
2 #define IMPL_NAME_AND_REF(Class , name , member) name , (& Class:: member)
3 #define IMPL_NAME_ATT(attribute) #attribute , attribute
4

5 #define IMPL_MAKE_CUSTOM_TRAIT(TraitName ,Class ,...) \
6 template <> \
7 class TraitName <Class >{ \
8 public: \
9 using traitsType = Traits <Class ,FOR_EACH_2ARGS(IMPL_MEMREF_TYPE_CUSTOM ,__VA_ARGS__)>;\

10 static const traitsType getTraits () {return traitsType(__VA_ARGS__);} \
11 static constexpr unsigned int size() {return traitsType ::size ();} \
12 }

Code listing 3.22 The definition of the macros creating specialization of the
class Traits for a traited class. The macro MAKE_CUSTOM_TRAIT simply utilizes
the macro IMPL_MAKE_CUSTOM_TRAIT with Traits passed as TraitName. The macro
MAKE_NAMED_ATTRIBUTE_TRAIT transforms the names of the attributes into member pointers
using IMPL_NAME_AND_REF defined in Code listing 3.21 and passes the processed arguments to
MAKE_CUSTOM_TRAIT. Finally, the MAKE_ATTRIBUTE_TRAIT creates strings from the names of the
given attributes and passes the arguments to MAKE_NAMED_ATTRIBUTE_TRAIT. The same con-
struction is utilized in the definition of macros creating specializations of DefaultIOTraits and
DefaultArithmeticTraits.

1 #define MAKE_CUSTOM_TRAIT(Class ,...) \ // defining specialization for DefautTraits
2 IMPL_MAKE_CUSTOM_TRAIT(DefautTraits , Class , __VA_ARGS__)
3

4 #define MAKE_NAMED_ATTRIBUTE_TRAIT(Class , ...) \
5 MAKE_CUSTOM_TRAIT(Class , FOR_EACH_3ARGS_1STAT(IMPL_NAME_AND_REF , Class , __VA_ARGS__))
6

7 #define MAKE_ATTRIBUTE_TRAIT(Class , ...) \
8 MAKE_NAMED_ATTRIBUTE_TRAIT(Class , FOR_EACH(IMPL_NAME_ATT , __VA_ARGS__))

• IMPL_NAME_ATT: expands into a string literal of the given expression and the expression
itself, separated by a comma.

The definition of the three macros are at lines 1-3 in Code listing 3.21.
While more types of the default traits exist in GTMesh, the definition of the specializations

is the same for all of them. This macro accepts the name of the class traits to be specialized
(e.g., DefaultTraits or DefaultIOTraits) and the name of the traited class followed by names
and references. A generic macro IMPL_MAKE_CUSTOM_TRAIT expands in the specialization of the
class with the defined member alias traitsType and two member functions getTraits and size.
The traitsType specifies the type of the globally defined Traits, e.g., Traits<flowQ, double
flowQ::*, Vector<3, double> flowQ::*>. Next, getTraits returns an instance of the global
Traits with the given names and references. Finally, the member function size returns the
number of members. The definition of the macro IMPL_MAKE_CUSTOM_TRAIT is presented in Code
listing 3.21.

The macros creating default class traits are defined as shown in Code listing 3.22. For
better understanding to the expansion of the specialized macros accepting only the names of
the attributes, see the example in Code listing 3.23. In the end, let us note that the macros
defining the specialization of DefaultIOTraits and DefaultArithmeticTraits follow the same
naming convention. The macro names are appended by “_IO” or “_ARITHMETIC”, respectively,

120

Code listing 3.23 Demonstration of the expansion of MAKE_ATTRIBUTE_TRAIT which is given
the class flowQ and attributes names rho and p.

1 MAKE_ATTRIBUTE_TRAIT(flowQ , rho , p);
2 // MAKE_NAMED_ATTRIBUTE_TRAIT(flowQ , FOR_EACH(IMPL_NAME_ATT , rho , p))
3 -> MAKE_NAMED_ATTRIBUTE_TRAIT(flowQ , "rho", rho , "p", p);
4 // MAKE_CUSTOM_TRAIT(flowQ , FOR_EACH_3ARGS_1STAT(IMPL_NAME_AND_REF ,flowQ ,"rho",rho ,"p",p))
5 -> MAKE_CUSTOM_TRAIT(flowQ , "rho", &flowQ::rho , "p", &flowQ::p);
6 -> IMPL_MAKE_CUSTOM_TRAIT(DefautTraits , flowQ , "rho", &flowQ::rho , "p", &flowQ ::p);
7 // Expands in
8 template <>
9 class DefautTraits <flowQ >{

10 public:
11 using traitsType = Traits <flowQ , decltype (&flowQ ::rho), decltype (&flowQ::p)>;
12 static const traitsType getTraits () {
13 return traitsType("rho", &flowQ ::rho , "p", &flowQ::p)
14 }
15 static constexpr unsigned int size() {return traitsType ::size ();}
16 };

Code listing 3.24 The upper listing presents the definition of the UNWRAP macro. This macro
extract the content enclosed in round brackets. This is achieved by appending the argument right
after the PASS macro. If the argument itself is enclosed in brackets, the preprocessor continues
with the expansion of the macro PASS. The macro PASS expands its content regardless of the
number of the arguments passed. When the argument of the UNWRAP macro is not enclosed in
brackets, the PASS arg does not result in function-like macro invocation and compilation fails.
The lower listing presents the application of the macro UNWRAP.

1 #define PASS (...) __VA_ARGS__
2 #define UNWRAP(arg) PASS arg

1 UNWRAP ((Class <T1, T2, T3 >))
2 -> PASS(Class <T1, T2, T3 >)
3 -> Class <T1, T2, T3>

e.g., MAKE_CUSTOM_TRAIT_IO.

MAKE_TEMPLATE_TRAIT Macros Definition The term MAKE_TEMPLATE_TRAIT denotes a group
of macros designed to create default class traits for class templates, as presented in Code list-
ing 3.13 (see Table 3.1). The implementation of the MAKE_TEMPLATE_TRAIT macros is very sim-
ilar to the implementation of MAKE_TRAIT. However, there is a caveat connected with passing
complicated arguments as the whole name of class template or the template parameters decla-
ration. The preprocessor interprets a comma as an argument delimiter. For example, the string
flowQ<Dimension, Real> is split into 2 arguments flowQ<Dimension and Real>. This problem
can be solved by wrapping the argument into round brackets. Then the whole expression is
understood as one parameter.

The fact that we passed any parameter in brackets comes with another problem. C++ does
not allow the syntax &(Class)::member, where the presence of the brackets causes a compilation
error. Thus, it is necessary to develop a construction able to unwrap the content in the brackets.
This is done by a macro named UNWRAP presented in Code listing 3.24.

Finally, with minor changes compared to IMPL_MAKE_CUSTOM_TRAIT, it is possible to define
IMPL_MAKE_CUSTOM_TEMPLATE_TRAIT. The implementation is shown in Code listing 3.25.

121

Code listing 3.25 The definition of the MAKE_TEMPLATE_TRAIT macros. The definitions are
similar to the MAKE_TRAIT macros (see Code listings 3.21, 3.22). These macros additionally
accept a sequence of template arguments and the template declaration of the traited class. The
UNWRAP macro is utilized to extract the class name and template parameters from the bracket
enclose. Thus, both the class name and the template parameters must be passed enclosed in
brackets even if there is only one template argument and the expressions do not contain commas;
see Code listing 3.13.

1 #define IMPL_NAME_AND_REF_TEMPLATE(Class , name , member) name , (& UNWRAP(Class):: member)
2

3 #define IMPL_MAKE_CUSTOM_TEMPLATE_TRAIT(TraitName , TemplateParameters , Class ,...) \
4 template <UNWRAP(TemplateParameters)> \
5 class TraitName <UNWRAP(Class)>{ \
6 public: \
7 using traitsType = ::Traits < UNWRAP(Class), \
8 FOR_EACH_2ARGS(IMPL_MEMREF_TYPE_CUSTOM , __VA_ARGS__) >; \
9 static const traitsType getTraits () {return traitsType(__VA_ARGS__);} \

10 static constexpr unsigned int size() {return traitsType ::size ();}\
11 }
12

13 #define MAKE_CUSTOM_TEMPLATE_TRAIT(Class , TemplateParameters , ...) \
14 IMPL_MAKE_CUSTOM_TEMPLATE_TRAIT(DefautTraits , TemplateParameters , Class , __VA_ARGS__)
15

16 #define MAKE_NAMED_ATTRIBUTE_TEMPLATE_TRAIT(Class , TemplateParameters , ...) \
17 MAKE_CUSTOM_TEMPLATE_TRAIT(Class , \
18 TemplateParameters , \
19 FOR_EACH_3ARGS_1STAT(IMPL_NAME_AND_REF_TEMPLATE , \
20 Class , \
21 __VA_ARGS__))
22

23 #define MAKE_ATTRIBUTE_TEMPLATE_TRAIT(Class , TemplateParameters , ...) \
24 MAKE_NAMED_ATTRIBUTE_TEMPLATE_TRAIT(Class , \
25 TemplateParameters , \
26 FOR_EACH(IMPL_NAME_ATT , __VA_ARGS__))

122

Chapter 4

Class Traits Applications

In the previous Chapter 3, the concept of class traits was presented. The aim of this chapter is
to present the possibilities provided by the developed class traits. As was already mentioned at
the beginning of Chapter 3, one of the motivations was to enable writing generic code for input
and output of data structures. In this manner, a debugging (logging) system has been developed.
Let us note that this debugging system was very helpful while developing GTMesh.

The debugging system was utilized in the development of every tool of GTMesh both for
logging the processes in the called functions and checking the expected results (calculated in
advance for the simple test cases). When the tool was working properly, the logging from the
functions was deleted. However, the tests were preserved in order to check the correct results in
the context of future changes. Finally, as the project was hosted at GitLab [12], we utilized the
approach of the continuous integration (CI) [10]. The prepared tests were transformed into test
suites and test cases utilizing the GTest library [11].

Once the class traits were optimized to have the same performance as explicitly written code,
it was possible to create automatically generated arithmetic operations for the traited classes, as
explained in Section 4.2.

4.1 Debugging System and Automatic Data I/O

The first application of the class traits is the automatic logging system. This system is designed
to export any variable based on the type or interface, i.e., exploiting the fact that the object can
be iterated, has a subscript operator etc. Here the use of DefaultIOTraits is only small part
of the concept, however it enables the debugging system to export any traited class in JSON
(javascript object notation) format.

The aim of the logging tool is to be able to log variables of almost any type, e.g., std::vector,
std::map, traited class, or a combination there of.

4.1.1 The VariableExport Class

The class VariableExport is responsible for an export of almost any type of argument. This
is achieved by the only public static member function exportVariable with many overloads.
The generality of exportVariable consists in processing the variable based on its interface.
exportVariable distinguishes 6 basic categories of variables:

1. traited : the type has the corresponding DefaultIOTraits specialization defined (see Sec-
tion 3.3.1),

2. string : the type is presented as text, i.e., std::string, const char*, char,

3. exportable: there is an overloaded operator<‌< for std::ostream and the type of the given
variable,

123

Code listing 4.1 The demonstration of usage of the debugging tool in GTMesh. The first
listing presents an example cpp file, whereas the second one presents the output of the code.
At first, the program prepares the variables for the export, i.e., list and map. Then, using the
macro DBGVAR, the variables list and map together with an instance of the structure Data are
logged. The export at line 24 can be recognized by the term <‌<‌< 24 >‌>‌> in the output. Then,
the program reports the execution of line 25 by the macro CHECKLINE. Next, the DBGMSG writing a
message is followed by next CHECKLINE. The execution ends at line 28, where the incorrect access
to an element of the a vector throws an exception. The DBGTRY macro catches the exception and
connects the information about the place where the exception occurred with the description of
the exception.

1 #include "[[path]]/src/Debug/Debug.h"
2 #include <vector >
3 #include <map >
4 #include <string >
5

6 using namespace std;
7

8 struct InnerData {
9 std::vector <char > s = {’h’,’e’,’l’,’l’,’o’};

10 };
11 MAKE_ATTRIBUTE_TRAIT(InnerData , s);
12

13 struct Data {
14 int data = 42;
15 InnerData d;
16 };
17 MAKE_ATTRIBUTE_TRAIT(Data , data , d);
18

19

20 int main(int argc , char* argv [])
21 {
22 std::vector <std::string > list = {"This␣is", "absolutely␣awesome", "debugger!"};
23 std::map <std::string , std::vector <int >> map = {{"odd", {1,3,5}}, {"even", {2 ,4 ,6}}};
24 DBGVAR(list , map , Data ());
25 DBGCHECK;
26 DBGMSG("Almost␣at␣the␣end␣of␣the␣program");
27 DBGCHECK;
28 DBGTRY(std::vector <int >({1 ,2 ,3}).at(4))
29 }

1 == main.cpp << 24 >> [[list]] ==> ["This is", "absolutely awesome", "debugger !"]
2 == main.cpp << 24 >> [[map]] ==> [{ "even": [2, 4, 6]}, { "odd": [1, 3, 5]}]
3 == main.cpp << 24 >> [[Data()]] ==> { "data" : 42, "d" : { "s" : ["h", "e", "l", "l", "
4 o"] } }
5 -- main.cpp << 25 >> ==> "check line" <==
6 ++ main.cpp << 26 >> ==> "Almost at the end of the program" <==
7 -- main.cpp << 27 >> ==> "check line" <==
8 !! main.cpp << 28 >> ==> "something went wrong in try block: vector :: _M_range_check: __n (
9 which is 4) >= this ->size() (which is 3)" <==

124

Code listing 4.2 The definition of a custom type trait IsIterable declaring whether a type has
an iterator provided. The class IsIterable utilizes the implementation in the __is_iterable
class. The check is performed by determining whether the given type has the begin and end
member functions. The presence of the member function is done by testing of the result type
of the function called on an instance obtained by std::declval. If the given type T1 has both
the begin and end member functions, the generated specialization (__is_iterable<T1, void>)
is valid and utilized. In the opposite case, the specialization is removed from the candidate
list. This way, IsIterable inherits std::true_type if the type T1 satisfies the conditions and
std::false_type otherwise.

1 namespace Impl {
2 template <typename T1, typename = void >
3 struct __is_iterable : public std:: false_type {};
4

5 template <typename T1>
6 struct __is_iterable < T1,
7 void_t < decltype(std::declval <const T1&>(). begin()),
8 decltype (std::declval <const T1&>().end()) >
9 > : public std:: true_type {};

10 }
11

12 template <typename T1>
13 struct IsIterable : public Impl:: __is_iterable <T1 >
14 {};

4. pair : the variable is of the type std::pair,

5. iterable: the object has begin and end member functions,

6. indexable: the object has a subscript operator and member function size defined.

In case the variable falls into more than one category, the categories are given priorities. The
priorities correspond to the order as the categories were defined above. The reason to setup
the priority list is to prevent an ambiguity when calling the exportVariable function. The
overloads of exportVariable utilize a combination of different argument types and the SFINAE.
The exportVariable functions have a default (capture) implementation, which is engaged in
the case that the interface of the passed variable is not recognized. Therefore, the build of
exportVariable never fails, but instead of the content of the variable, the exportVariable
writes that the passed argument can not be exported. See the implementation of several overloads
of exportVariable in Code listing 4.3.

As an example of the additional type traits utilized in overloading exportVariable, we
present the detection of the iterator interface. The type trait is called IsIterable and its imple-
mentation is very similar to the implementation of HasDefaultTraits, see Code listing 4.2. The
type is tested for the presence of the begin and end member functions. The other implemented
type traits, i.e., IsExportable or IsIndexable, are constructed analogically.

The traited classes are detected using HasDefaultIOTraits. The traited class is then ex-
ported as a comma-separated list of names and values separated by a colon and enclosed in
braces. For an example see the lines 3 and 4 in output in Code listing 4.1. This result is achieved
by utilizing the class PrintClass. The complete system exporting traited classes is shown in
Code listing 4.4.

4.1.2 Loggers

The debugging tool in GTMesh offers several classes providing different output of the debug
log. Each logger class cooperates with a variadic macro that simplifies the usage of the tool.
Moreover, it automatically embeds the expression, line and file to the log which improves the
readability of the log.

125

Code listing 4.3 The definitions of several overloads of the exportVariable function. The
first definition accepts any arguments and has the lowest priority in the candidate list. This
function writes into the given output stream that the given argument is not exportable. The
second definition is applied if the given argument can be passed to the stream directly using
operator<‌<. In the second definition, there are several exceptions in order to handle some
special cases. In the case of argument of type bool, true or false is written instead of 1 or 0.
The case of a traited class is discussed in separate Code listing 4.4. The last exception are text
types; these variables are exported in quotes. The last presented definition of exportVariable
applies to an iterable variable.The values of the iterable variable are exported as comma separated
list enclosed in square brackets. Notice that the overloading is based on the SFINAE paradigm
where the return type is valid if the argument type has the requested qualities.

1 // The VariableExport class with static exportVariable member function
2 template <VARIABLE_EXPORT_METHOD target = VARIABLE_EXPORT_METHOD ::ostream >
3 struct VariableExport {
4

5 // The capture for variables with unrecognized types
6 static void exportVariable(std:: ostream& ost , ...)
7 {
8 ost << "\" variable␣is␣not␣exportable \"" << std::endl;
9 }

10

11 // The overoad for T exportable
12 template <typename T>
13 static auto exportVariable(std:: ostream& ost , const T& b)
14 -> typename std::enable_if <
15 IsExportable <T>:: value &&
16 !std::is_same <T, bool >:: value &&
17 !std::is_same <T, std::string >:: value &&
18 !std::is_same <T, const char*>::value &&
19 !std::is_same <T, char*>:: value &&
20 !std::is_same <T, char >:: value &&
21 !HasDefaultIOTraits <T>:: value
22 >::type
23 {
24 ost << b;
25 }
26

27 // Overload for the argument of type bool
28 static void exportVariable(std:: ostream& ost , const bool& b)
29 {
30 ost << (b == true ? "true" : "false");
31 }
32

33 // Overload of exportVariable for iterable list argument (e.g. std::map , std:: vector)
34 template <typename T>
35 static auto exportVariable(std:: ostream& ost , const T &list)
36 -> typename std::enable_if <
37 IsIterable <T>:: value &&
38 !IsExportable <T>:: value &&
39 !HasDefaultIOTraits <T>:: value
40 >::type
41 {
42 auto it = list.cbegin ();
43 ost << "[␣";
44 while (it != list.cend ()){
45 exportVariable(ost , *it);
46 if (++it != list.cend ()){
47 ost << ",␣";
48 }
49 }
50 ost << "␣]";
51 }
52 // ** ... other overloads of exportVariable **
53 };

126

Code listing 4.4 The implementation of the function overload variableExport for the argu-
ment with DefaultIOTraits defined. This function utilizes a helper class PrintClass realizing
the iteration over all traited attributes of the given instance of the traited class. The print
member function of the general definition of PrintClass realizes the loop for Index from 0 to
the number of traited attributes of the traited class minus one. In every iteration, it calls print
of the specialization for the third template parameter Print equal to true, writes a comma,
and recursively calls print of PrintClass with the Index increased by one. The print member
function of the specialization exports the formatted message correspondingly to the Index into
the given std::ostream. Thanks to the default value of the Print template parameter, when
Index reaches the number of traited attributes minus one, the specialization is applied again and
the recursion ends.

1 // ** inside VariableExport **
2 template < typename T,
3 unsigned int Index = 0,
4 bool Print = Index == DefaultIOTraits <T>:: size() - 1>
5 struct PrintClass{
6 static void print(std:: ostream& ost , const T &traitedClass){
7 PrintClass <T, Index , true >:: print(ost , traitedClass);
8 ost << ",␣";
9 PrintClass <T, Index + 1>:: print(ost , traitedClass);

10

11 }
12 };
13

14 // Specialization terminating the recursion for the last traited attribute
15 template <typename T, unsigned int Index >
16 struct PrintClass <T, Index , true >{
17 static void print(std:: ostream& ost , const T &traitedClass){
18 ost << ’"’ << DefaultIOTraits <T>:: getTraits (). template getName <Index >() <<"\"␣:␣";
19 // Export the value into the stream
20 VariableExport :: exportVariable(
21 ost ,
22 DefaultIOTraits <T>:: getTraits (). template getValue <Index >(traitedClass)
23);
24 }
25 };
26

27

28 template <typename T>
29 static auto exportVariable(std:: ostream& ost , const T &traitedClass)
30 -> typename std::enable_if <
31 HasDefaultIOTraits <T>:: value
32 >::type
33 {
34 ost << "{␣";
35 PrintClass <T>:: print(ost , traitedClass);
36 ost << "␣}";
37 }

127

Code listing 4.5 The definition of the writeVar member function of the ConsoleLogger class.
Here there are two overloaded definitions of writeVar. The writeVar functions together re-
cursively perform the export of the given parameters. Both the functions accept the line and
cppFile parameters. Furthermore, both functions accept the name and value of the exported
variable. The second version of writeVar then accepts a variable number of additional arguments
(rest). The first version of writeVar applies when exactly 4 arguments are passed and exports
the formatted message to the standard error stream. The second version handles the case when
extra arguments are passed. This writeVar passes the first four arguments (line, cppFile, name
and value of the exported variable) and passes them to the first overload of writeVar. Then it
calls the writeVar with line, cppFile, and the rest of the passed parameters. This recursion
continues until the rest contains only 2 arguments, then the first overload is called again instead
of the second version and the recursion stops.

1 template <VARIABLE_EXPORT_METHOD method = VARIABLE_EXPORT_METHOD ::ostream >
2 class ConsoleLogger {
3

4 template <typename VAR >
5 static void writeVar(int line ,
6 const char* cppFile ,
7 const char* name ,
8 const VAR& value){
9

10 std::cerr << "==␣" << cppFile << "␣<<␣" << line << "␣>>␣[[␣" << name << "␣]]␣==>␣";
11 VariableExport <>:: exportVariable(std::cerr , value);
12 std::cerr << "\n";
13

14 }
15

16 template <typename VAR , typename ... REST >
17 static void writeVar(int line ,
18 const char* cppFile ,
19 const const char*& name ,
20 const VAR& value ,
21 const REST& ... rest){
22

23 writeVar(line , cppFile , name , value);
24 writeVar(line , cppFile , rest ...);
25 }
26

27 // ... ** other static member functions **
28 };

128

Code listing 4.6 The definition of the DBGVAR variadic macro. This macro accepts up to 40
expressions (see 3.15), which are processed by the FOR_EACH macro together with the STRVAR
macro. As s result, DBGVAR expands into the call of writeWar of ConsoleLogger with the given
line and file name where the macro is used. After the file name, a sequence of stringized expression
and the expressions themselves corresponding to the expressions passed to DBGVAR follows. The
last macro DBGVAR_COND simplifies the conditional export. It expects a condition as the first
parameter. Then the message is printed only if the condition is satisfied.

1 // Macro expanding into stringized expression and the expression itself
2 #define STRVAR(var) #var , var
3

4 // Macro logging the contained expressions
5 #define DBGVAR (...) \
6 ConsoleLogger <>:: writeVar(__LINE__ , __FILE__ , FOR_EACH(STRVAR , __VA_ARGS__))
7 #define DBGVARCOND(condition , ...) if(condition) DBGVAR(__VA_ARGS__)

The most frequently used debugger is the one with output to console. This functionality
is provided by the ConsoleLogger class. ConsoleLogger has two main public static member
functions, writeMessage and writeVar. Both the functions accept a variable number of param-
eters, where the first two are the line number to be written in the export line, and the name
of the source file the export originates from cppFile. The rest of the parameters is a sequence
of name-value pairs where name is a string containing a C++ expression and value contains its
result. See the definition in Code listing 4.5.

Because the use of writeMessage and writeVar is not comfortable to use, the macros DBGMSG
and DBGVAR in Debug/Debug.h were developed. Both the macros are variadic and automatically
fill the line and cppFile in the function call. Moreover, DBGVAR utilizes the macro FOR_EACH
(see Section 3.3.3) to automatically pass the stringized expressions to the writeVar function.
DBGVAR allows up to 40 expressions to be evaluated and exported. See the definition of DBGVAR
in Code listing 4.6.

The main advantage of this system is the comfort of its use and that the user always
knows what result was exported and where the export is located in the code. For better
orientation in the debug log, it is possible to turn on colored output by defining the macro
CONSOLE_COLORED_OUTPUT before including the Debug/Debug.h header.

From Code listings 4.3 and 4.5, it is obvious that both VariableExport and ConsoleLogger
are class templates. For some purposes, it may not be possible to use std::ostream, e.g.,
while performing on GPU using CUDA framework. Therefore, by changing the method template
parameter to stdio, ConsoleLogger and VariableExport utilize the function printf instead of
std::ostream. This way, the same debugging system can be utilized in CUDA kernels [15].

Sometimes the user might want to export larger containers and or perform a large number of
exports. For this purpose, there is a possibility to export the data into a file. However, it would
not be efficient to write the human readable log as the ConsoleLogger does. Instead, we decided
to utilize the JSON format. This way, the output data can be easily processed and analyzed,
for example, using Python. This functionality is provided by the JSONLogger class. The only
difference from the ConsoleLogger is that the JSONLogger does not have any global stream to
write the output to. Therefore, the JSONLogger has a member ofile of type std::ofstream
providing the access to the file. JSONLogger opens the file at the first write and closes the
file at destruction of the class. The problem is the definition of a one static global instance
in Debug/Debug.h. For this purposes, we utilized a Singleton class to ensure that only one
instance of a class is created and repeated access obtains the one global instance. Then, the file
is not reopened during every export.

Similarly to ConsoleLogger, the usage of JSONLogger is simplified a variadic macro
DBGVAR_JSON. This macro utilizes the global instance of JSONLogger exporting into file named
by DBG.json located in the working directory of the program. The example of the JSONLogger

129

Code listing 4.7 An example of the usage of the export of any expressions into the json file.
The upper listing presents a sample code utilizing the debug export into json file. Notice that
the usage of the DBGVAR_JSON does not differ from the usage of DBGVAR at all. The expressions
passed to the macro are exported to a file with a structure shown in the lower listing. The the
exported file consists of a sequence of logs. Every log have its group index (gInd), specifying
the logs generated by each single JSONLogger (DBGVAR_JSON) call, name of the source file (file)
, the line at which the macro was invoked, the expression written in the macro (expr) and the
value of the expression (data).

1 #include "[[path]]/src/Debug/Debug.h"
2 #include <vector >
3 #include <list >
4 using namespace std;
5

6 int main() {
7 bool b = false;
8 std::list <int > list = {1,2,3};
9 std::vector <std::list <int >> vec(5, list);

10

11 DBGVAR_JSON(b, vec);
12 DBGVAR_JSON (!b, vec [0]);
13 }

1 {
2 "logs":[
3 {
4 "gInd" : 0,
5 "file" : "main.cpp",
6 "line" : 11,
7 "expr" : "b",
8 "data" : false
9 },

10 {
11 "gInd" : 0,
12 "file" : "main.cpp",
13 "line" : 11,
14 "expr" : "vec",
15 "data" : [[1, 2, 3], [1, 2, 3], [1, 2, 3], [1, 2, 3], [1, 2, 3]]
16 },
17 {
18 "gInd" : 1,
19 "file" : "main.cpp",
20 "line" : 12,
21 "expr" : "!b",
22 "data" : true
23 },
24 {
25 "gInd" : 1,
26 "file" : "main.cpp",
27 "line" : 12,
28 "expr" : "vec[0]",
29 "data" : [1, 2, 3]
30 }
31]
32 }

130

Code listing 4.8 An example of the traits algorithm usage. In other words, the traits algorithm
provides arithmetic operators and mathematical functions accepting instances of objects with
default arithmetic traits defined. The first listing presents an example of cpp file and the second
presents its output.

1 #include "Debug/Debug.h"
2 #include "Traits/TraitsAlhorithm/TraitsAlhorithm.h"
3 class Data {
4 public:
5 double D;
6 int I;
7 // If the attributes are private , declare the Traits as a friend
8 friend DefaultArithmeticTraits <Data >;
9 };

10

11 // Create specialization of DefaultArithmeticTraits for the class Data
12 MAKE_ATTRIBUTE_TRAIT_ARITHMETIC(Data , D, I);
13 // Create specialization of DefaultIOTraits for the class Data
14 MAKE_NAMED_ATTRIBUTE_TRAIT_IO(Data , "double␣attr", D, "int␣attr", I);
15

16 int main() {
17 Data d1{12.5 , 68}, d2{14.0, 22};
18 DBGVAR(d1+d2, d1 * 2, max(d1), pow(d1 , 2));
19 }

1 == main.cpp << 17 >> [[d1+d2]] ==> { "double attr" : 26.5, "int attr" : 90 }
2 == main.cpp << 17 >> [[d1 * 2]] ==> { "double attr" : 25, "int attr" : 136 }
3 == main.cpp << 17 >> [[max(d1)]] ==> 68
4 == main.cpp << 17 >> [[pow(d1, 2)]] ==> { "double attr" : 156.25 , "int attr" : 4624 }

usage and output is in Code listing 4.7.

4.2 Numerical Algorithms Based on Class Traits

In the description of the concept of class traits (Chapter 3) we discussed that this concept
underwent a series of optimizations. The aim of the optimizations was to develop class member
access mechanism as efficient as explicitly written code. Thanks to the optimizations, it is
possible to engage the class traits in numerical computation, e.g., addition or multiplication,
without an impact on performance. All the operations then work with the traited classes as a
vectors and the operations are defined element-wise.

The operations are divided into three types:

• Binary: accepts two arguments and returns a new instance of the traited class, e.g., sum
of two traited objects or multiplication of a traited class by a number.

• Unary: accepts one traited class and returns a traited class, e.g., absolute value.

• Aggregation: accepts one argument of traited class and returns a value, e.g., maximum
accepts an instance of a traited class and returns one number (the greatest element).

The functions and operators providing arithmetic operations on traited classes are defined in the
header file Traits/TraitsAlgorithm/TraitsAlgorithm.h.

Let us continue with the implementation details of the arithmetic operations. Recall that
a similar concept was already engaged in the definition of arithmetic operations on the Vertex
class, see Code listings 2.10 and 2.11. Especially, the following solution extends the technique
presented in Code listing 2.11.

We start with the description of the implementation of unary operations because it has the
most straightforward implementation of the three cases. The functionality is provided by the class
template TraitsUnaryExpressionProcessor. This class has one template template parameter:

131

Code listing 4.9 The implementation of TraitsUnaryExpressionProcessor. This class ac-
cepts a class template Operator with one template parameter. The Operator class must have
a public static member function Operator::evaluate. TraitsUnaryExpressionProcessor has
two overloads of the evaluate member function. Both evaluate functions accept two instances
of a traited class. The first is named res and holds the result. The second is the operand to be
processed op1. The functions together apply Operator::evaluate to each traited attribute of
the given traited class by using template recursion similarly to PrintClass (see Code listing 4.4)
with the difference that the applied function overload is resolved in SFINAE context (invoked
by the return type) of the evaluate functions instead of the template specialization.

1 template <template <typename > class Operator >
2 struct TraitsUnaryExpressionProcessor {
3

4 template <typename TraitT , unsigned int Index = 0,
5 bool ApplyOperation = Index == DefaultArithmeticTraits <TraitT >:: size() - 1>
6 inline static
7 typename std::enable_if <ApplyOperation >:: type
8 evaluate(TraitT& res , const TraitT& op1){
9

10 DefaultArithmeticTraits <TraitT >:: getTraits (). template getAttr <Index >(res) =
11 Operator <
12 typename DefaultArithmeticTraits <TraitT >:: traitsType :: template type <Index >
13 >::evaluate(
14 DefaultArithmeticTraits <TraitT >:: getTraits (). template getValue <Index >(op1)
15);
16 }
17

18 template <typename TraitT , unsigned int Index = 0,
19 bool ApplyOperation = Index == DefaultArithmeticTraits <TraitT >:: size() - 1>
20 inline static
21 typename std::enable_if <! ApplyOperation >:: type
22 evaluate(TraitT& res , const TraitT& op1){
23

24 TraitsUnaryExpressionProcesor <Operator >:: evaluate <TraitT , Index , true >(res , op1);
25 TraitsUnaryExpressionProcesor <Operator >:: evaluate <TraitT , Index + 1>(res , op1);
26 }
27 };

132

Code listing 4.10 An example of an unary operator. The Abs class template has one member
function named evaluate. The evaluate function accepts a single parameter of the type passed
to the Abs class as the template parameter. The evaluate function then calls the abs function on
the passed attribute. Then, the Abs class template is utilized by the following abs functions. Both
the abs overloads check whether the passed parameter has the default arithmetic traits defined in
SFINAE context. Then, both functions utilize the TraitsUnaryExpressionProcessor to apply
the Abs operation element-wise. The second listed abs function accepts an r-value reference and
stores the result directly in the passed instance. This may improve performance by preventing
the call of the constructor of the traited class.

1 template < typename T1 >
2 struct Abs
3 {
4 static auto evaluate(const T1& a) -> decltype(abs(a)) {
5 return abs(a);
6 }
7 };
8

9 template <typename TraitT >
10 typename std::enable_if <HasDefaultArithmeticTraits <TraitT >::value , TraitT >:: type
11 abs(const TraitT& op1) noexcept {
12

13 TraitT res;
14 TraitsUnaryExpressionProcessor <Abs >:: evaluate(res , op1);
15 return res;
16 }
17

18 template <typename TraitT >
19 typename std::enable_if <HasDefaultArithmeticTraits <TraitT >::value , TraitT >:: type
20 abs(TraitT && op1) noexcept {
21

22 TraitsUnaryExpressionProcessor <Abs >:: evaluate(op1 , op1);
23 return op1;
24 }

• Operator (template<typename> class): class with one template argument.

Additionally, the given type Operator must have public static member function evaluate de-
fined. TraitsUnaryExpressionProcessor has two overloads of evaluate static member func-
tion template. The template parameters of TraitsUnaryExpressionProcessor::evaluate are:

• TraitT (typename): the type of accepted traited class (deduced from the type of passed
parameters).

• Index (unsigned int): the index of currently processed traited attribute 0 by default.

• applyOperation (bool): specifies what overload shall be applied (discussed below). By
default, it is true if the Index points to the last traited attribute of the TraitT class, false
otherwise.

See the implementation in Code listing 4.9.
The usage of TraitsUnaryExpressionProcessor is the following. At first, prepare the class

to be passed as Operator. We demonstrate the problem on an example of a function calculating
absolute value, i.e., abs. Therefore the class to be passed as Operator is named Abs and has the
evaluate member function which calls abs. See Code listing 4.10. The next step is to create the
abs function template for classes with DefaultArithmeticTraits defined. The check is done
in SFINAE context, where the type trait HasDefaultArithmeticTraits (see Section 3.3.1) is
utilized. The abs function for the traited class then utilizes the prepared processor class given
Abs as Operator. Moreover, there is an optimization overload of the abs function accepting an
r-value instead of l-value reference. The optimization consists in storing the result directly in the

133

passed argument instead of creating a new instance of the traited class. See the implementation
in Code listing 4.10.

The implementation of binary operations is very similar to the unary ones. Binary oper-
ations utilize the class TraitsBinaryExpressionProcessor. Unlike the unary processor class,
this class has four overloads of the evaluate member function and the template template param-
eter Operator accept two template parameters instead of one. All of the overloads accepts three
arguments, where the first two are the references to the traited class instances. The first is a
container for the result and the second is the first operand. Then the overloads differ in the type
of the third argument. The first two functions expect the third argument of traited class type and
apply the given operation to all traited attributes. This is applied, for example, in the implemen-
tation of element-wise addition of two instances of a traited class. The remaining two overloads
expect a different type from the given traited class, e.g., a number. These functions apply the
given operation for each traited attribute with the same second operand, e.g., the number. This
approach is utilized, for example, in implementation of multiplication of a traited class by a num-
ber. The implementation of the final operators is realized in the same manner as in the case of
the abs function discussed above. The implementation of TraitsBinaryExpressionProcessor
is in Code listing 4.11.

The last type of operations are aggregation operations, e.g., sum or maximum. Let us note
that this concept is new in GTMesh and may be not optimal. Similarly to the previous two
cases, there is a class template TraitsAggregationProcessor realizing the compile time loop
unrolling. Similarly to the binary case, this class expects a binary operator. Then, it uses
recursive operator evaluation where the previous result is used as the second operand.

Let us describe the calculation of an aggregation operation on a simple example. Suppose
a traited class with 3 attributes of type double. At first, the calculation function applies the
aggregation function on the first two attributes. Then, the function is applied again to the
previous result and the third attribute. Eventually, the result of this operation is the expected
aggregated result.

In the concept of class traits, we have not put any restrictions on the types of the traited at-
tributes. Therefore, it is possible to have one double attribute and another Vertex<3, double>.
In such case, we challenge the problem of comparing a number with a Vertex class. However, we
expect the class to behave as a compact vector without any inner structure. The solution is to
create two more overloads of the evaluate member function of TraitsAggregationProcessor.
The first overload is for non-class arguments, e.g., int or double and it returns the value of the
given argument. The second overload accepts the indexable arguments (with operator[] de-
fined). This function utilizes Operator to calculate the aggregated value of the array arguments.
These two overloads are called inside the loop unrolling evaluate function. Additionally, let us
mention that the return type of the evaluate function is not a priori known. This can be solved
by the auto return type, i.e., the return type is deduced from the return statements. Therefore,
to utilize the auto return type, the SFINAE is located in the template parameters (type of the
last unnamed parameter). See the implementation in Code listing 4.12.

134

Code listing 4.11 The implementation of the TraitsBinaryExpressionProcessor class tem-
plate. This class utilizes a concept similar to TraitsUnaryExpressionProcessor to perform a
binary operation element-wise. Additionally, this case is extended by two more overloads of the
evaluate function. These two variants of evaluate are designed to apply the binary operation to
a traited class and a real number, as in the case of multiplication of all attributes by a number.

1 template <template <typename , typename > class Operator >
2 struct TraitsBinaryExpressionProcessor {
3

4 template <typename TraitT , unsigned int Index = 0,
5 bool ApplyOperation = Index == DefaultArithmeticTraits <TraitT >:: size() - 1>
6 inline static
7 typename std::enable_if <! ApplyOperation >:: type
8 evaluate(TraitT& res , const TraitT& op1 , const TraitT& op2){
9

10 TraitsBinaryExpressionProcesor <Operator >:: evaluate <TraitT , Index , true >(res , op1 , op2);
11 TraitsBinaryExpressionProcesor <Operator >:: evaluate <TraitT , Index + 1>(res , op1 , op2);
12 }
13

14 template <typename TraitT , unsigned int Index = 0,
15 bool ApplyOperation = Index == DefaultArithmeticTraits <TraitT >:: size() - 1>
16 inline static
17 typename std::enable_if <ApplyOperation >:: type
18 evaluate(TraitT&res , const TraitT& op1 , const TraitT& op2){
19

20 DefaultArithmeticTraits <TraitT >:: getTraits (). template getAttr <Index >(res) =
21 Operator <
22 typename DefaultArithmeticTraits <TraitT >:: traitsType :: template type <Index >,
23 typename DefaultArithmeticTraits <TraitT >:: traitsType :: template type <Index >
24 >::evaluate(
25 DefaultArithmeticTraits <TraitT >:: getTraits (). template getValue <Index >(op1),
26 DefaultArithmeticTraits <TraitT >:: getTraits (). template getValue <Index >(op2)
27);
28 }
29

30 template <typename TraitT , typename Real , unsigned int Index = 0,
31 bool ApplyOperation = Index == DefaultArithmeticTraits <TraitT >:: size() - 1>
32 inline static
33 typename std::enable_if <! ApplyOperation >:: type
34 evaluate(TraitT& res , const TraitT& op1 , const Real& op2){
35

36 TraitsBinaryExpressionProcesor <Operator >::
37 evaluate <TraitT , Real , Index , true >(res , op1 , op2);
38 TraitsBinaryExpressionProcesor <Operator >::
39 evaluate <TraitT , Real , Index + 1>(res , op1 , op2);
40 }
41

42 template <typename TraitT , typename Real , unsigned int Index = 0,
43 bool ApplyOperation = Index == DefaultArithmeticTraits <TraitT >:: size() - 1>
44 inline static
45 typename std::enable_if <ApplyOperation >:: type
46 evaluate(TraitT&res , const TraitT& op1 , const Real& op2){
47

48 DefaultArithmeticTraits <TraitT >:: getTraits (). template getAttr <Index >(res) =
49 Operator <
50 typename DefaultArithmeticTraits <TraitT >:: traitsType :: template type <Index >,
51 Real
52 >::evaluate(
53 DefaultArithmeticTraits <TraitT >:: getTraits (). template getValue <Index >(op1),
54 op2
55);
56 }
57 };

135

Code listing 4.12 The implementation of TraitsAggregationProcessor. This class is respon-
sible for realization of the aggregation process. In the current implementation, the aggregation
process utilizes a binary operator, e.g., plus or maximum. This operator is then applied to an
attribute and previously calculated result provided by the fist two overloads of the evaluate
member function. However, the traited class is not limited to having only attributes of simple
types (e.g., Vector). Therefore, we decided to create two more overloads of the evaluate func-
tion. The third overload is applied in the case that the given parameter is a vector (indexable
object). In such case, the aggregated value of the vector is utilized. The last overload prevents
a compilation error when applying the evaluate function on a simple type, e.g., double.

1 template <template <typename , typename > class Operator >
2 struct TraitsAggregationProcessor {
3
4 template < typename TraitT ,
5 unsigned int Index = DefaultArithmeticTraits <TraitT >:: size() - 1,
6 typename std::enable_if < Index == 0, bool >::type = true >
7 inline static
8 auto
9 evaluate(const TraitT& op1){

10 return evaluate(DefaultArithmeticTraits <TraitT >:: getTraits (). template getValue <Index >(op1));
11 }
12
13 template < typename TraitT ,
14 unsigned int Index = DefaultArithmeticTraits <TraitT >:: size() - 1,
15 typename std::enable_if <(Index > 0) &&
16 (Index <= DefaultArithmeticTraits <TraitT >:: size() - 1), bool >::type = true >
17 inline static
18 auto
19 evaluate(const TraitT& op1){
20
21 return Operator <
22 decltype(evaluate <TraitT , Index - 1>(op1)),
23 decltype(evaluate(DefaultArithmeticTraits <TraitT >:: getTraits (). template getValue <Index >(op1)))
24 >::evaluate(
25 (evaluate <TraitT , Index - 1>(op1)),
26 (evaluate(DefaultArithmeticTraits <TraitT >:: getTraits (). template getValue <Index >(op1)))
27);
28
29 }
30
31 template <typename T, typename std::enable_if < !std::is_class <T>::value , bool >::type = true >
32 inline static
33 auto
34 evaluate(const T& arg) noexcept {
35 return arg;
36 }
37
38 template <typename T, typename std::enable_if < IsIndexable <T>::value , bool >::type = true >
39 inline static
40 auto
41 evaluate(const T& array) noexcept {
42 if (array.size() > 0){
43 using resType = decltype (evaluate(array [0]));
44 auto res = evaluate(array [0]);
45 for (decltype (array.size ()) index = 1; index < array.size (); index ++){
46 res = Operator <resType , resType >:: evaluate(res , evaluate(array[index]));
47 }
48 return res;
49 }
50 return resType ();
51 }
52 };

136

4.3 The Runge-Kutta-Merson Solver

Thanks to the concept of traits algorithm (see Section 4.2), it is possible to create general
numeric functions. In this case, we utilized the traits algorithm to implement the Merson version
of Runge-Kutta explicit solver (RKM) [33] for ordinary differential equations in the form

ẋ = f (t,x) , (4.1)

where the x ∈ RN , N ∈ N and f : J × RN → RN .
Firstly, we begin with the description of the algorithm. Let us firstly introduce the parameters

of the method.

t current time level
T final time
τ time step
τini initial time step
xτ numerical solution
xτini initial condition for the numerical solution xτ

δ tolerance parameter

The modified version of the 4th order accurate Runge-Kutta-Merson solver for numerical
time integration of is presented by the following pseudo-code:

1 τ = τini; xτ = xτini;

2 while(true){

3 last = false;

4 if (|T − t| < |t|) {

5 τ = T − t ;

6 last = true;

7 }

8 K1 = f (t,xτ);

9 K2 = f
(
t+ τ

3
,xτ + τ

3
K1

)
;

10 K3 = f
(
t+ τ

3
,xτ + τ

6
(K1 + K2)

)
;

11 K4 = f
(
t+ τ

2
,xτ + τ

8
(K1 + 3K3)

)
;

12 K5 = f
(
t+ τ,xτ + τ

(
1
2
K1 − 3

2
K3 + 2K4

))
;

13 ε = max_element τ
3
|0.2K1 − 0.9K3 + 0.8K4 − 0.1K5|

14 if (ε < τ) {

15 xτ = xτ + τ
(
1
6

(K1 + K5) + 2
3
K4

)
;

16 t = t+ τ ;

17 if (last) break;

18 if (ε == 0) continue;

19 }

20 τ = (δ/ε)0.2 · ωτ ;
21 }

In this work, the value of ω is fixed to 0.8. For more information, see [33, 35, 49]. This algorithm
was utilized to calculate the numerical solution of the multi-phase flow problem (see Chapter 5).

The algorithm was implemented as the RKMSolver function template accepting the type
Problem, e.g., MultiphaseFlow described in Section 5.3. In the current implementation, there
are several assumptions on the Problem class. This class must provide public alias names for the
data type the function works with and the utilized mesh. The RKMSolver utilizes the GTMesh
concepts, especially MeshDataContainer as the container for the numerical data. The imple-
mented algorithm runs in parallel using OpenMP [18].

Thanks to the traits algorithm, the RKM solver can be applied to any class with default
arithmetic traits defined. Using custom structures to represent numerical solution data is very
convenient for the user and this implementation of the RKM solver is a suitable component to

137

the generic concept of MeshDataContainer (see Section 2.3). Moreover, the tools exporting and
importing data from the files are compatible with class traits and significantly reduce the user’s
effort during implementation of numerical solvers (see Section 5.3).

Finally, let us note that the developed numerical solver is more like proof of concept than a
complete solution.

138

Chapter 5

Numerical Solution of Compressible
Two-phase Flow

In this chapter, the application of GTMesh on the numerical solution of two-phase flow will be
presented. The problem in question stems from the study of the processes in the combustion
chamber of fluidized bed boilers [25] where fluidization [53] of a granular material (a mixture
of limestone and fuel particles) is achieved by a strong enough air flow. The mathematical
formulation of the two-phase flow is based on the continuum (Eulerian) approach [36, 38] where
the conservation laws for both phases are formulated in the form of partial differential equations.
The Resulting problem is subsequently solved by using the finite volume method [30] (FVM) on
general unstructured meshes in 2D and 3D and the Runge-Kutta-Merson time integrator (see
Section 4.3).

5.1 Governing Equations

Let Ω ⊂ Rd where d ∈ {2, 3} be a domain and J = (0, Tend) time interval, where Tend is the
final time.

Firstly, let us recall the mass and momentum conservation laws for a Newtonian fluid [36,
42, 45, 53].

∂ρ

∂t
= −∇ · (ρu) , (5.1)

∂ (ρu)

∂t
+∇ · (ρu⊗ u) = −∇p+∇ · T, (5.2)

where ρ : Ω ×J → R+ is the density, u : Ω ×J → Rd is the velocity, p : Ω ×J → R is the
pressure and ⊗ : Rd × Rd → Rd,d, satisfying for u,v ∈ Rd denotes the tensor product

(u⊗ v)kl = ukvl, (5.3)

where k, l ∈ {1, . . . , d}. Finally, T : Ω ×J → Rd×d is the viscous stress tensor, which assumes
the following form

T = τkl = µ

(
∂ul
∂xk

+
∂uk
∂xl

)
− δkl

2µ

3
∇ · u. (5.4)

The divergence of the stress tensor is defined as

∇ · T = ∇ · (τ 1, τ 2, . . . , τ d) , (5.5)

where τ i is the ith column of the tensor T, i ∈ {1, . . . , d}.

139

Figure 5.1: Simple example of the problem setup

Finally, equations for both phases are similar to each other and both are based on equa-
tions (5.1) and (5.2). Because there are two phases, gaseous and solid, the quantities are distin-
guished by the index g for gaseous state and s for solid state. Then, the problem of two-phase
flow reads

∂

∂t


ρgεg
ρgεgug
ρsεs
ρsεsus

+


∇ · (ρgεgug)

∇ · (ρgεgug ⊗ ug)
∇ · (ρsεsus)

∇ · (ρsεsus ⊗ us)

 =


0

−εg∇pg +∇ · (εgTg)
0

−G (εg)∇εs − εs∇pg +∇ · (εsTs)



+


0

ρgg + βgs (us − ug)
0

(ρs − ρg) g + βgs (ug − us)

 , (5.6)

posed in Ω×J , where the unknown quantities are described in Table 5.1. The term G (εg)∇εs
plays a role analogous to ∇ps, to prevent spatial collapsing of the solid phase. The function G
is called modulus of compressibility [36] and reads

G (εg) = 10−8.76εg+5.43. (5.7)

The coefficient βgs represents momentum transfer between the gaseous and solid phases (drag).
The form of βgs used in (5.6) reads [36]

βgs =

{
150

ε2sµg
(εgdsΦs)

2 + 1.75
|ug−us|ρgεs
εgdsΦs

εs > 0.2,

4
3Cd

|ug−us|ρgεs
dsΦs

εs ≤ 0.2,
(5.8)

Cd =

{ 24
Res

(
1 + 0.15Re0.687

s

)
Res ≤ 1000,

0.44 Res > 1000,
(5.9)

Res =
|ug − us| dsρgεg

µg
. (5.10)

140

quantity unit range description

pg Pa R pressure of the gaseous phase

T K R+ temperature [constant]

ρg kg ·m−3 R+ density of the gaseous phase

ug m · s−1 R3 velocity of the gaseous phase

εg - [0, 1] volume fraction of the gaseous phase

ρs kg ·m−3 R+ solid density [constant]

us m · s−1 R3 velocity of the solid phase

εs - [0, 1] volume fraction of the solid phase

Table 5.1: List of quantities used in (5.6).

The symbol g denotes gravitational acceleration, ds is the diameter of the solid state particles
and φs is their sphericity [43].

The additional relations

εg + εs = 1, (5.11)
pg = ρgRspecT (5.12)

close the system. In (5.12), Rspec is specific the gas constant and T stands for temperature,
which is the same for both phases and remains constant.

In the end, the system consists of 8 equations for 8 unknown quantities. For the full list of
quantities see Table 5.1.

5.1.1 Initial Conditions

The initial conditions for the two-phase flow problem read

pg (x, 0) = pg,ini (x) ,

ug (x, 0) = ug,ini (x) ,

εs (x, 0) = εs,ini (x) ,

us (x, 0) = us,ini (x) . (5.13)

The rest of the quantities are calculated as follows:

ρg (x, 0) =
pg,ini (x)

RspecT
,

εg (x, 0) = 1− εs,ini (x) . (5.14)

5.1.2 Boundary Conditions

There are three types of boundary conditions considered: inlet, outlet and wall. According to the
applied boundary condition, the boundary of the spatial domain is divided into Γin, Γout, Γwall

satisfying ∂Ω = Γin ∪ Γout ∪ Γwall. Thanks to relations (5.11), (5.12) and the fact that the
temperature T and the solid density ρs remain constant, it is only needed to prescribe the
boundary conditions for ρg, us, ug, εs.

• For x ∈ Γwall, the boundary conditions consist of the non-slip boundary condition for
velocities, i.e.

us (x, t) = ug (x, t) = 0 ∀t ∈J , (5.15)

141

and the zero Neumann boundary condition applied to the gas density and the volume
fraction of solid phase:

∂ρg (x, t)

∂n
=
∂εs (x, t)

∂n
= 0 ∀t ∈J , (5.16)

where n is the outward normal vector of ∂Ω at the point x.

• For x ∈ Γin, the value of velocity and solid volume fraction is prescribed:

ug (x, t) = ug,in (x, t) , (5.17)
us (x, t) = us,in (x, t) , (5.18)
εs (x, t) = εs,in (x, t) . (5.19)

Furthermore, a zero Neumann boundary condition for the density of gas is prescribed:

∂ρg (x, t)

∂n
= 0. (5.20)

• For x ∈ Γout, the value of pressure is set:

pg (x, t) = pg,out (x, t) . (5.21)

For the rest of the quantities, zero Neumann conditions are imposed:

∂ug (x, t)

∂n
=
∂us (x, t)

∂n
= ~0 (5.22)

∂εs (x, t)

∂n
= 0 (5.23)

5.2 Numerical Scheme

In this section a spatial discretization of the equations (5.6) will be derived. The numerical
method used to obtain the semi-discrete scheme on general unstructured meshes is the finite
volume method [30]. The resulting system of ODE is solved by the 4th order Runge-Kutta-
Merson method with adaptive time stepping.

5.2.1 Unstructured Mesh Notation

The basic notations were already presented in Section 1.2, see Definition 1. However, for the pur-
pose of developing the numerical schemes, we present some additional definitions and notations.
The first defined mesh property is called admissibility.

Definition 8. The mesh T is called admissible if the following conditions are met

1. (∃P ⊂ Ω)
(
(∀K ∈ T) (∃1xK ∈P)

(
xK ∈ K̄

)
∧ (∀x ∈P) (∃K ∈ T)

(
x ∈ K̄

))
.

2. (∀K,L ∈ T) (K 6= L =⇒ (xK 6= xL ∧ xKxL⊥K|L)). We denote by DK,L = xKxL the
line connecting vertices xK and xL, which is perpendicular to the edge K|L.

Now some additional notations are to be introduced:

• Let K ∈ T , σ ∈ EK such that σ ∈ ∂Ω. If xK /∈ σ, then DK,σ = xKyσ, while yσ ∈ σ is
such that DK,σ⊥σ holds.

• Eext = {σ ∈ E | σ ∈ ∂Ω}, Eint = E \ Eext.

• For σ ∈ K|L, dσ = |DK,L| denotes the Euclidean distance between xK a xL. Similarly, the
distance from xK to σ is denoted dK,σ = |DK,σ|. For σ ∈ EK ∩ Eext, we define dσ := dK,σ.

• Finally, the edge/face measure over cell centers distance is labeled τσ = m (σ) /dσ.

The above defined notation is demonstrated in Figure 5.2.

142

Figure 5.2: Notation of the finite volume method on an unstructured mesh.

5.2.2 Finite Volume Method on Unstructured Meshes

In this section, the finite volume method (FVM) will be applied to the system of equations (5.6).
For easier understanding, the approximation using FVM will be performed separately for each
equation. To improve numerical stability in some simulations, we add an artificial diffusion
(dissipation) term to the right hand side of (5.6), so that it assumes the form

∂

∂t


ρgεg
ρgεgug
ρsεs
ρsεsus

+


∇ · (ρgεgug)

∇ · (ρgεgug ⊗ ug)
∇ · (ρsεsus)

∇ · (ρsεsus ⊗ us)

 =


0

−εg∇pg +∇ · (εgTg)
0

−G (εg)∇εs − εs∇pg +∇ · (εsTs)



+


λg∆ (ρgεg)
λg∆ (ρgεgug)
λs∆ (ρsεs)
λs∆ (ρsεsus)



+


0

ρgg + βgs (us − ug)
0

(ρs − ρg) g + βgs (ug − us)

 , (5.24)

where λg and λs are the coefficients of artificial diffusion.
We are using the cell-centered finite volume scheme, which is cheap to implement, with

quantities evaluated in the centers of cells.
Note that the theory of convergence and error estimation of the numerical solution is com-

plicated and is not the aim of this work. For more details see [30, 45].

Conservation of Mass of the Gaseous Phase

First, we integrate the first row of (5.24) over a control volume K ∈ T to obtainˆ
K

∂

∂t
(ρgεg) dx =

ˆ
K

(−∇ · (ρgεgug) + λg∆ (ρgεg)) dx. (5.25)

Under the corresponding regularity assumptions, this relation can be equivivalently rewritten
using Gauss-Green theorem into the formˆ

K

∂

∂t
(ρgεg) dx = −

˛
∂K

ρgεg (ug · n) dS +

˛
∂K

λg
∂ (ρgεg)

∂n
dS, (5.26)

143

where n is the outward pointing normal vector to ∂K. Thanks to the fact that ∂K = ∪σ∈EKσ,
the right hand side of equation (5.26) is equal to

˛
∂K

ρgεg (ug · n) dS =
∑
σ∈EK

ˆ
σ
ρgεg (ug · n) dS, (5.27)

˛
∂K

λg
∂ (ρgεg)

∂n
dS =

∑
σ∈EK

ˆ
σ
λg
∂ (ρgεg)

∂n
dS. (5.28)

Finally, Leibnitz integral rule is used on the left hand side. The resulting formula suitable for
discretization is

d
dt

ˆ
K

(ρgεg) dx = −
∑
σ∈EK

ˆ
σ
ρgεg (ug · n) dS +

∑
σ∈EK

λg

ˆ
σ

∂ (ρgεg)

∂n
dS. (5.29)

The next step is to approximate the integrals. We denote the numerical approximation of the
solution of the first row of the problem (5.24) in the following manner:

ρg (xK , t) ≈ ρg,K (t) , (5.30)
εg (xK , t) ≈ εg,K (t) , (5.31)
ug (xK , t) ≈ ug,K (t) , (5.32)
ρg (yσ, t) ≈ ρg,σ (t) , (5.33)
εg (yσ, t) ≈ εg,σ (t) , (5.34)
ug (yσ, t) ≈ ug,σ (t) . (5.35)

In the cell-centered finite volume scheme, (5.30)–(5.32) are the primary quantities, i.e., the
quantities directly stored in memory. The quantities (5.33)–(5.35) evaluated at the face1 must
be interpolated using the primary quantities. The interpolation is achieved by the Godunov
upwind scheme [30]. The upwind formula for σ = K|L ∈ Eint reads:

upwindσ (U (t) ,u (t)) =

{
UK (t) ūσ (t) · nσ ≥ 0,

UL (t) ūσ (t) · nσ < 0,
(5.36)

where U : T → Rs, s ∈ {1, d}, is an arbitrary quantity mapped to the mesh and ūσ is the linear
interpolation of the velocity corresponding to the same material as the quantity U at σ. For
example, the corresponding velocities to the quantities εg, εs are ug, us respectively. The linear
interpolation of the velocity is calculated as

ūi,σ (t) =


αui,K (t) + (1− α)ui,L (t) ∀σ = K | L ∈ Eint,

0 ∀σ = K | L ∈ Eext ∩ Γwall,

ui,in (t) ∀σ = K | L ∈ Eext ∩ Γin,

ui,K (t) ∀σ = K | L ∈ Eext ∩ Γout,

(5.37)

where i ∈ {g, s} and α ∈ [0, 1] satisfies αxK + (1− α)xL = yσ.

1σ ∈ E represents a mesh edge in 2D and a mesh face in 3D. In this chapter, σ will be called a "face" irrespective
of the problem dimension d.

144

The final upwind scheme for approximating the quantities at edges reads

ρg (yσ, t) ≈ ρg,σ (t) =


upwindσ (ρg (t) ,ug (t)) ∀σ = K | L ∈ Eint,

ρg,K (t) ∀σ = K | L ∈ Eext ∩ (Γwall ∪ Γin),
pg,out
RspecT

∀σ = K | L ∈ Eext ∩ Γout,

(5.38)

εg (yσ, t) ≈ εg,σ (t) =


upwindσ (εg (t) ,ug (t)) ∀σ = K | L ∈ Eint,

εg,K (t) ∀σ = K | L ∈ Eext ∩ Γwall,

1− εs,σ,in (t) ∀σ = K | L ∈ Eext ∩ Γin,

εg,σ,out (t) ∀σ = K | L ∈ Eext ∩ Γout,

(5.39)

ug (yσ, t) ≈ ug,σ (t) =


upwindσ (ug (t) ,ug (t)) ∀σ = K | L ∈ Eint,

0 ∀σ = K | L ∈ Eext ∩ Γwall,

ug,in (t) ∀σ = K | L ∈ Eext ∩ Γin,

ug,K (t) ∀σ = K | L ∈ Eext ∩ Γout.

(5.40)

For the sake of readability, the dependence of the approximations on time is omitted. Finally,
we arrive at the approximation

ˆ
K

(ρgεg) dx ≈ ρg,Kεg,Km (K) , (5.41)
ˆ
σ
ρgεg (ug · n) dS ≈ ρg,σεg,σ (ūg,σ · nK,σ)m (σ) , (5.42)

where nK,σ is the normal vector to the face σ pointing in the outward direction.
To approximate the diffusion term, we use central differentiation with respect to K and get

ˆ
σ

∂ (ρgεg)

∂n
dS ≈ D1,σ =



ρg,Lεg,L−ρg,Kεg,K
m(DxK,xL)

m (σ) ∀σ = K | L ∈ Eint,

0 ∀σ = K | L ∈ Eext ∩ Γwall,
ρg,Kεg,in−ρg,Kεg,K

m(DxK,xL)
m (σ) ∀σ = K | L ∈ Eext ∩ Γin,

0 ∀σ = K | L ∈ Eext ∩ Γout.

, (5.43)

The final form of the approximation of equation (5.26) is

d
dt

(ρg,Kεg,K) =
1

m (K)

− ∑
σ∈EK

ρg,σεg,σ (ūg,σ · nK,σ)m (σ) + λg
∑
σ∈EK

D1,σ

 . (5.44)

Conservation of Momentum of the Gaseous Phase

A similar procedure leads to the spatial discretization of the second equation of (5.24). First, we
integrate over a control volume K ∈ T and get

ˆ
K

∂

∂t
(ρgεgug) dx = −

ˆ
K
∇ · (ρgεgug ⊗ ug) dx−

ˆ
K
εg∇pgdx+

ˆ
K
∇ · (εgTg) dx

+

ˆ
K
λg∆ (ρgεgug) dx+

ˆ
K

[ρgg + βgs (us − ug)] dx. (5.45)

145

The integration of a vector is defined component-wise. Then, the Green-Gauss theorem is applied
to obtainˆ

K
∇ · (ρgεgug ⊗ ug) dx =

˛
∂K

ρgεgug (ug · n) dS, (5.46)
ˆ
K
∇ · (εgTg) dx =

ˆ
K
εgTg · ndS, (5.47)

ˆ
K
λg∆ (ρgεgug) dx =

˛
∂K

λg
∂ (ρgεgug)

∂x
· ndS =

˛
∂K

λg
∂ (ρgεgug)

∂n
dS, (5.48)

where (Tg · n)i = τ g,i · n, i ∈ {1, 2, . . . , d}. Consecutively, the equation (5.45) after application
of the Leibniz integral rule to the differentiation with respect to time assumes the form

d
dt

ˆ
K

(ρgεgug) dx = −
˛
∂K

ρgεgug (ug · n) dS −
ˆ
K
εg∇pgdx+

˛
∂K

εgTg · ndS

+

˛
∂K

λg
∂ (ρgεgug)

∂n
dS +

ˆ
K

[ρgg + βgs (us − ug)] dx. (5.49)

Using the mesh property ∂K = ∪σ∈EKσ one finds that

d
dt

ˆ
K

(ρgεgug) dx = −
∑
σ∈EK

ˆ
σ
ρgεgug (ug · nK,σ) dS −

ˆ
K
εg∇pgdx

+
∑
σ∈EK

ˆ
σ
εgTg · nK,σdS +

∑
σ∈EK

λg

ˆ
σ

∂ (ρgεgug)

∂nK,σ
dS

+

ˆ
K

[ρgg + βgs (us − ug)] dx. (5.50)

Using the relations (5.30)–(5.35), the integrals in (5.50) are approximated asˆ
K

(ρgεgug) dx ≈ ρg,Kεg,Kug,Km (K) , (5.51)
ˆ
σ
ρgεgug (ug · nK,σ) dS ≈ ρg,σεg,σug,σ (ug,σ · nK,σ)m (σ) , (5.52)

ˆ
K
εg∇pgdx ≈ εg,K∇pg,Km (K) , (5.53)

ˆ
σ
εgTg · nK,σdS ≈ ε̄g,σTg,σ · nK,σ, (5.54)

ˆ
K

[ρgg + βgs (us − ug)] dx ≈ ρg,Kg + βgs,K (us,K − ug,K) , (5.55)

where βgs,K is obtained by replacing (5.8)–(5.10) all unknown quantities in by their respective
approximations at xK , i.e., the relations (5.30)–(5.32) and (5.71), (5.72) are used. The term ε̄g,σ
is calculated as

ε̄g,σ (t) =


αεg,σ (t) + (1− α) εg,σ (t) ∀σ = K | L ∈ Eint,

εg,K (t) ∀σ = K | L ∈ Eext ∩ Γwall,

1− εs,σ,in (t) ∀σ = K | L ∈ Eext ∩ Γin,

εg,σ,out (t) ∀σ = K | L ∈ Eext ∩ Γout,

(5.56)

where α ∈ [0, 1] satisfies αxK + (1− α)xL = yσ. The quantities εg,σ, ρg,σ, ug,σ are defined
according to equations (5.39),(5.38),(5.37). Consecutively, the pressure gradient is approximated
using the Green-Gauss theoremˆ

K
∇pgdx =

ˆ
∂K

pgndS ≈
∑
σ∈EK

p̄g,σnK,σm (σ) , (5.57)

146

where the symbol p̄g,σ, in (5.57) is defined as

p̄g,σ (t) =


αpg,K (t) + βpg,L (t) ∀σ = K | L ∈ Eint,

RspecρK (t)T ∀σ ∈ K | L ∈ Eext ∩ (Γwall ∪ Γin)

patm ∀σ ∈ K | L ∈ Eext ∩ Γout.

(5.58)

At the same time, the left hand side integral expression can be approximated by the rectangle
rule as ˆ

K
∇pgdx ≈ ∇pg,Km (K) . (5.59)

After combining equations (5.57), (5.59), we arrive at the final approximation

∇pg,K ≈
1

m (K)

∑
σ∈EK

p̄g,σnK,σm (σ) , (5.60)

The final approximation of (5.53) reads
ˆ
K
εg∇pgdx ≈ εg,K

∑
σ∈EK

p̄g,σnK,σm (σ) .

The diffusion term is approximated similarly to (5.43):

ˆ
σ

∂ (ρgεgug)

∂nK,σ
dS ≈ D2,σ =



ρg,Lεg,Lug,L−ρg,Kεg,Kug,K
m(DxK,xL)

m (σ) ∀σ ∈ K | L ∈ Eint,

0 ∀σ ∈ K | L ∈ Eext ∩ Γwall,
ρg,Kεg,inug,in−ρg,Kεg,Kug,K

m(DxK,xL)
m (σ) ∀σ ∈ K | L ∈ Eext ∩ Γin,

0 ∀σ ∈ K | L ∈ Eext ∩ Γout.

(5.61)
The symbol Tg,σ represents an approximation of Tg (yσ, t) defined according to (5.4). The

calculation of the stress tensor requires to calculate the partial derivatives of ug. However,
especially in the 3D case, there is no convenient method to calculate the approximation of the
derivative of velocity directly. The reason is that the mesh provides the face normals only, the
tangential vectors are not provided. Therefore, to calculate

∇ug ≡
(
∂ug,j
∂xi

)d
i,j=1

, (5.62)

we apply the Gauss gradient scheme [30] which utilizes Gauss-Green theorem:
ˆ
K
∇ugdx =

ˆ
∂K
ug ⊗ ndS ≈

∑
σ∈EK

ūg,σ ⊗ nσm (σ) , (5.63)

where ūg,σ is given by (5.37). We define the integration of a matrix element-wise. After approx-
imation of the left hand side of (5.63)

ˆ
K
∇ugdx ≈ ∇ug,Km (K) , (5.64)

we arrive at the final approximation

∇ug,K =
1

m (K)

∑
σ∈EK

ūg,σ ⊗ nσ,Km (σ) . (5.65)

147

Afterward, the approximation of ∇ug at yσ is calculated as the linear interpolation

∇ug,σ =

{
α∇uK + (1− α)∇uL ∀σ = K | L ∈ Eint,

∇ug,K ∀σ ∈ Eext.
, (5.66)

where α ∈ [0, 1] satisfies αxK + (1− α)xL = yσ. The approximation of the stress tensor
evaluated at the face σ has the form:

Tg,σ = µ
(
∇ug,σ + (∇ug,σ)T

)
−∇ · ug,σI. (5.67)

Finally, the application of FVM to the second equation of (5.24) results in

d
dt

(ρg,Kεg,Kug,K) =
1

m (K)

− ∑
σ∈EK

ρg,σεg,σug,σ (ūg,σ · nK,σ)m (σ) + εg
∑
σ∈EK

p̄g,σnK,σm (σ)

+
∑
σ∈EK

[ε̄g,σTg,σ · nK,σ + λgD2,σ]m (σ)


+ρg,Kg + βgs,K (us,K − ug,K) . (5.68)

Conservation of Mass of the Solid Phase

The procedure of applying the FVM scheme on the mass conservation law for the solid state is
exactly the same as in Section 5.2.2. We integrate the third row of equation (5.24) over a control
volume K ∈ T and arrive atˆ

K

∂

∂t
(ρsεs) dx =

ˆ
K

(−ρsεs∇ · us + λs∆ (ρsεs)) dx. (5.69)

Next, we use the Green-Gauss theorem and Leibniz integral rule:

d
dt

ˆ
K

(ρsεs) dx = −
˛
∂K

ρsεs (us · n) dS +

˛
∂K

λs
∂ (ρsεs)

∂n
dS,

= −
∑
σ∈EK

ˆ
σ
ρsεs (us · n) dS +

∑
σ∈EK

λs

ˆ
σ

∂ (ρsεs)

∂n
dS. (5.70)

We approximate the quantities similarly to relations (5.30)–(5.35):

εs (xK , t) ≈ εs,K (t) , (5.71)
us (xK , t) ≈ us,K (t) , (5.72)
εs (yσ, t) ≈ εs,σ (t) , (5.73)
us (yσ, t) ≈ us,σ (t) . (5.74)

Again the quantities (5.71)–(5.72) are primary and the quantities (5.73)–(5.74) evaluated on the
faces have to be interpolated as

εs,σ (t) =


upwindσ (εs (t) ,us (t)) ∀σ = K | L ∈ Eint,

εs,K (t) ∀σ ∈ K | L ∈ Eext ∩ Γwall,

εs,σ,in (t) ∀σ = K | L ∈ Eext ∩ Γin,

εs,out (t) ∀σ ∈ K | L ∈ Eext ∩ Γout,

(5.75)

us,σ (t) =


upwindσ (us (t) ,us (t)) ∀σ = K | L ∈ Eint,

0 ∀σ ∈ K | L ∈ Eext ∩ Γwall,

us,in (t) ∀σ ∈ K | L ∈ Eext ∩ Γin,

us,K (t) ∀σ ∈ K | L ∈ Eext ∩ Γout.

(5.76)

148

For the sake of readability, the dependency on time is omitted. Finally, we arrive at the approx-
imations

ˆ
K

(ρsεs) dx ≈ ρsεs,Km (K) , (5.77)
ˆ
σ
ρsεs (us · n) dS ≈ ρsεs,σ (us,σ · nK,σ)m (σ) , (5.78)

where ρs is constant, see Table 5.1. The approximation of the diffusion term is realized as

ˆ
σ

∂ (ρsεs)

∂n
dS ≈ D3,σ =



ρsεs,L−ρsεs,K
m(DxK,xL)

∀σ ∈ K | L ∈ Eint,

0 ∀σ ∈ K | L ∈ Eext ∩ Γwall,
ρsεs,in−ρsεs,K
m(DxK,xL)

∀σ ∈ K | L ∈ Eext ∩ Γin,

0 ∀σ ∈ K | L ∈ Eext ∩ Γout.

(5.79)

Finally, the obtained semi-discrete scheme reads

d
dt

(ρsεs,K) =
1

m (K)

− ∑
σ∈EK

ρsεs,σ (ūs,σ · nK,σ)m (σ) + λs
∑
σ∈EK

D3,σ

 . (5.80)

Conservation of Momentum of the Solid Phase

The spatial discretization of the fourth equation is almost the same as in Section 5.2.2. We
integrate the last row of equation (5.24) over a control volume K ∈ T to obtain

ˆ
K

∂

∂t
(ρsεsus) dx = −

ˆ
K
∇ · (ρsεsus ⊗ us) dx−

ˆ
K
G (εg)∇εsdx

−
ˆ
K
εs∇pgdx+

ˆ
K
∇ · (εsTs) dx+

ˆ
K
λs∆ (ρsεsus) dx

+

ˆ
K

[(ρs − ρg) g + βgs (ug − us)] dx. (5.81)

Application of the Green-Gauss theorem on the terms on the right hand side of equation (5.81)
yields

ˆ
K
∇ · (ρsεsus ⊗ us) dx =

˛
∂K

ρsεsus (us · n) dS, (5.82)
ˆ
K
∇ · (εsTs) dx =

ˆ
∂K

εsTs · ndS, (5.83)
ˆ
K
λs∆ (ρsεsus) dx =

˛
∂K

λs
∂ (ρsεsus)

∂x
· ndS =

˛
∂K

λg
∂ (ρsεsus)

∂n
dS, (5.84)

where (Ts · n)i = τ s,i ·n. Consecutively, after application of the Leibniz integral rule on (5.81),
we arrive at

d
dt

ˆ
K

(ρsεsus) dx = −
˛
∂K

ρsεsus (us · n) dS −
ˆ
K
G (εg)∇εsdx

−
ˆ
K
εs∇pgdx+

˛
∂K

εsTs · ndS +

˛
∂K

λs
∂ (ρsεsus)

∂n
dS

+

ˆ
K

[(ρs − ρg) g + βgs (ug − us)] dx. (5.85)

149

Integrals over ∂K can be split as

d
dt

ˆ
K

(ρsεsus) dx = −
∑
σ∈EK

ˆ
σ
ρsεsus (us · nK,σ) dS −

ˆ
K
G (εg)∇εsdx

−
ˆ
K
εs∇pgdx+

∑
σ∈EK

ˆ
σ
εsTs · nK,σdS +

∑
σ∈EK

λs

ˆ
σ

∂ (ρsεsus)

∂nK,σ
dS

+

ˆ
K

[(ρs − ρg) g + βgs (ug − us)] dx. (5.86)

Based on the approximations (5.71)–(5.74), the integrals are approximated in the same manner
as in Section 5.2.2: ˆ

K
(ρsεsus) dx ≈ ρs,Kεs,Kus,Km (K) , (5.87)

ˆ
σ
ρsεsus (us · nK,σ) dS ≈ ρs,σεs,σus,σ (us,σ · nK,σ)m (σ) , (5.88)
ˆ
K
G (εg)∇εsdx ≈ G (εg,σ)

∑
σ∈EK

ε̄s,σnK,σm (σ) , (5.89)

ˆ
K
εs∇pgdx ≈ εs

∑
σ∈EK

p̄g,σnK,σm (σ) , (5.90)

ˆ
σ
εsTs · nK,σdS ≈ ε̄s,σTs,σ · nK,σ, (5.91)

ˆ
K

[ρsg + βgs (ug − us)] dx ≈ ρs,Kg + βgs,K (ug,K − us,K) . (5.92)

The quantity ε̄s,σ is calculated as

ε̄s,σ (t) =


αεg,σ (t) + (1− α) εg,σ (t) ∀σ = K | L ∈ Eint,

εs,K (t) ∀σ ∈ K | L ∈ Eext ∩ Γwall,

εs,σ,in (t) ∀σ = K | L ∈ Eext ∩ Γin,

εs,out (t) ∀σ ∈ K | L ∈ Eext ∩ Γout,

where α ∈ [0, 1] satisfies αxK + (1− α)xL = yσ. The quantities εs,σ,us,σ are defined according
to equations (5.75),(5.76). The approximation of the diffusion term reads

ˆ
σ

∂ (ρsεsus)

∂nK,σ
dS ≈ D4,σ =



ρsεs,Lus,L−ρsεs,Kus,K
m(DxK,xL)

∀σ ∈ K | L ∈ Eint,

0 ∀σ ∈ K | L ∈ Eext ∩ Γwall,
ρsεs,inus,in−ρsεs,Kus,K

m(DxK,xL)
∀σ ∈ K | L ∈ Eext ∩ Γin,

0 ∀σ ∈ K | L ∈ Eext ∩ Γout.

, (5.93)

The symbol Ts,σ denotes an approximation of Ts, (yσ, t) defined according to (5.4). The
calculation of the stress tensor requires to calculate the gradient of us.

Similarly to the case of the gaseous phase, we utilize the Gauss gradient scheme and arrive
at the approximation

∇us,K =
1

m (K)

∑
σ∈EK

ūs,σ ⊗ nσ,Km (σ) , (5.94)

similarly to the equation (5.65). The approximation of ∇us at yσ is calculated as

∇us,σ =

{
α∇us,K + (1− α)∇us,L ∀σ = K | L ∈ Eint,

∇us,K ∀σ ∈ Eext.
, (5.95)

150

where α ∈ [0, 1] satisfies αxK + βxL = yσ. The approximation of the stress tensor evaluated at
the face σ has the form:

Ts,σ = µ
(
∇us,σ + (∇us,σ)T

)
−∇ · us,σI. (5.96)

Finally, the application of FVM to the fourth equation of relation (5.24) results in:

d
dt

(ρsεs,Kus,K) =
1

m (K)

− ∑
σ∈EK

[ρsεs,σus,σ (ūs,σ · nK,σ)]m (σ)

−G (εg,σ)
∑
σ∈EK

ε̄s,σnK,σm (σ)− εs
∑
σ∈EK

p̄g,σnK,σm (σ)

+
∑
σ∈EK

[ε̄s,σTs,σ · nK,σ + λsD4,σ]m (σ)


+ (ρs,K − ρg,K) g + βgs,K (ug,K − us,K) . (5.97)

5.2.3 Treatment of Non-planar Faces

In Section 2.7, the treatment of non-planar faces is discussed in terms of calculation of the mesh
properties. This section presents the effect of non-planar faces on the computation. According to
the discussion in Section 2.7, the computation over faces is to be split according to the tessellation.
Thanks to the fact that all the faces created by the tessellation have the same neighboring cells,
the calculation can be modified to calculate the sum of the requested quantities at once.

First, we denote the tessellation of a face σ = K|L ∈ Ein

T (σ) =
⋃

e∈N1(σ)

∆e, (5.98)

where ∆e the triangle defined in Section 2.7. In order to simplify the notation, the faces ∆e

created as tessellation of face σ will be denoted as σ′. The effect of the tessellation of faces on
the equations will be demonstrated on the term∑

σ∈EK

p̄g,σnK,σm (σ) , (5.99)

from (5.97). Focusing on one face σ, the tessellation reads

∑
σ′∈T (σ)

p̄g,σ′nK,σ′m (σ)
(5.58)

=
∑

σ′∈T (σ)

(ασ′pg,K + βσ′pg,L)nK,σ′m
(
σ′
)

= pg,K
∑

σ′∈T (σ)

ασ′nK,σ′m
(
σ′
)

+ pg,L
∑

σ′∈T (σ)

βσ′nK,σ′m
(
σ′
)
, (5.100)

where the coefficients of linear interpolation read

ασ′ =
|xK − yσ′ |

|xK − yσ′ |+ |xL − yσ′ |
, (5.101)

βσ′ =
|xL − yσ′ |

|xK − yσ′ |+ |xL − yσ′ |
, (5.102)

where yσ′ ∈ σ′. The underlined terms in (5.100) can be calculated in advance as an additional
property of a mesh with non-planar faces. Using these terms, the computation over one face can
be calculated without an additional loop.

151

In the presented example of tessellation of term (5.99), the calculation can be shortened
without any further assumptions. However, in processing of the terms containing quantities
calculated by upwind (5.36), the same approach can be used only if the orientation of velocity is
the same with respect to all faces in the tessellation of the face σ, i.e.(

∀σ′ ∈ T (σ)
) (
ūσ′ · nσ′,K ≥ 0

)
∨
(
∀σ′ ∈ T (σ)

) (
ūσ′ · nσ′,K < 0

)
.

In addition, it is possible to choose yσ′ = x∗σ ∀σ′ ∈ T (σ) where x∗σ is defined in (2.20). The
treatment of non-planar faces in finite volume schemes for selected problems is discussed, e.g.,
in [37].

5.2.4 Temporal Discretization

Denote by w the vector of values of the approximate solution of (5.6) in all cells of the mesh at
time t, i.e.

w (t) =


ρg,K (t) εg,K (t) ∀K ∈ T

ρg,K (t) εg,K (t)ug,K (t) ∀K ∈ T
ρsεs,K (t) ∀K ∈ T

ρsεs,K (t)us,K (t) ∀K ∈ T

 . (5.103)

Then the equations (5.44), (5.68), (5.80), (5.97) of the semi-discrete scheme together represent
a system of ODEs in the form:

dw
dt

= f (t,w) (5.104)

In this work, we employ the Merson version of Runge-Kutta explicit scheme for numerical solution
of (5.104). The scheme is described in Section 4.3 and employs an adaptive time stepping
algorithm to ensure stability.

5.3 Realization of the Computation in the GTMesh framework

In this section, the implementation of the numerical algorithm with emphasis on the utilization
of the developed tools is briefly presented. The computation is provided by the MultiphaseFlow
class template. During the implementation of this generic numerical scheme, the results were
compared with the ones from the 2D implementation of the same problem in previous work [40].

The MultiphaseFlow class template has the template parameter named Dim specifying the
dimension of the problem (2 or 3). This class has the interface required by the RKMSolver
function (see Section 4.3), i.e., the MeshType and ResultType aliases and the calculateRHS
member function (see Code listing 5.1). The calculateRHS member function calculates the
right hand side of (5.104). It accepts time and two computational data containers where the
second is used for the output. In order to introduce the input and output MeshDataContainer
structures of calculateRHS, we have to describe the data structure representing the quantities
of two-phase flow.

The structure representing the two-phase flow quantities (e.g., densities, velocities and vol-
ume fractions of the phases) is named FlowData. The description of FlowData is in Code list-
ing 5.2. In the MultiphaseFlow structure, FlowData is mapped to the cells of the mesh using
MeshDataContainer. The FlowData structure has both the default arithmetic traits and the
default IO traits defined.

The default arithmetic traits of FlowData contain the primary quantities (see (5.103)). There-
fore, MeshDataContainer of FlowData can be directly processed by the RKMSolver function.
Since we do not want the primary quantities to be exported, the default IO traits contain the
dependent quantities, e.g., density and velocity. See the definition of default traits in Code
listing 5.2.

152

Code listing 5.1 The definition of the MultiphaseFlow class template. At first,
MultiphaseFlow provides several aliases as MeshType and ResultType. Then, the definition
of the attributes follows, i.e., mesh (instance of MeshType), meshData (auxiliary computation
data mapped to cells and faces) and parameters of the two-phase flow problem. The definitions
of the utilized data structures are presented in Code listings 5.2 and 5.3. Next, the definition of
the mandatory calculateRHS member function follows. This function provides the calculation
of the right hand side of (5.104). The setupMeshData member function loads the mesh from the
given file and prepares the auxiliary mesh quantities in the meshData container. The exportData
member function exports the mesh together with the numerical solution into a VTK file. See the
implementation of setupMeshData and exportData in Code listing 5.5. The writer and reader
member attributes are utilized to prevent multiple indexing of the mesh, see Section 2.5. Fi-
nally, the computational member functions follows. For an example, see the implementation of
calculation of the flux across a face in Code listing 5.4.

1 template <unsigned int Dimension , unsigned int ... Reserve >
2 class MultiphaseFlow {
3

4 public: // Compulsory aliases
5 static constexpr unsigned int ProblemDimension = Dimension;
6 using MeshType = UnstructuredMesh < ProblemDimension , size_t , double , Reserve ... >;
7 using ResultType = FlowData < ProblemDimension >;
8

9 public:
10 // Structures containing state data
11

12 MeshType mesh;
13

14 MeshDataContainer < std::tuple < CellData < ProblemDimension >,
15 FaceData < ProblemDimension > >,
16 ProblemDimension ,
17 ProblemDimension - 1 > meshData;
18

19 double myu , myu_s;
20 double R_spec;
21 // ** definition of other parameters **
22

23 void calculateRHS(double time ,
24 MeshDataContainer < ResultType , ProblemDimension >& compData ,
25 MeshDataContainer < ResultType , ProblemDimension >& outDeltas);
26

27 // Two different mesh setups for the 2D and the 3D cases
28 template <unsigned int _Dimension = Dimension >
29 typename std::enable_if <_Dimension == 3>::type
30 setupMeshData(const std:: string& fileName);
31

32 template <unsigned int _Dimension = Dimension >
33 typename std::enable_if <_Dimension == 2>::type
34 setupMeshData(const std:: string& fileName);
35

36 void exportData(double time ,
37 MeshDataContainer <ResultType , ProblemDimension >& compData ,
38 double timeModifier = 1.0);
39 private:
40

41 VTKMeshWriter <ProblemDimension > writer;
42 std::unique_ptr <MeshReader <ProblemDimension >> reader;
43

44 // ** Definitions of computation methods **
45 };

153

Code listing 5.2 The definition of the FlowData structure template. This data structure
contains the computational quantities of the two-phase flow problem. Its purpose is to be mapped
to the cells of the mesh. Based on the Dimension template parameter, the contained vectors
have 2 or 3 coordinates. The structure defines the constant quantities at first, i.e., the specific
gas constant (R_spec), temperature (T), density of the solid phase (rho_s). In order to reduce
the size of the structure, these attributes are declared as static. Then, the quantities of the
two-phase flow are defined, i.e., the density multiplied by the volume fraction of the gaseous
phase (rho_g_x_eps_g), momentum of both phases (p_g, p_s), volume fraction of the solid
phase (eps_s). We call these quantities primary as the other can be calculated from them. The
rest of the functions provide the dependent quantities. Finally, the listing presents the definition
of default traits for the FlowData class template.

1 // Adds small non -zero constant (1e-7) to prevent zero division.
2 static double reg(double x) { return x + 1.0e-7; }
3 // Data structure representing the flow quantities in single cell element
4 template < unsigned int Dim >
5 struct FlowData {
6 // ** Constants **
7 // Constants: specific gas constant , Temperature , Density of the solid phase
8 static double R_spec , T, rho_s;
9

10 // ** Primary quantities **
11 // Density multiplied by volume fraction of the gaseous phase
12 double rho_g_x_eps_g;
13 // Volume fraction of solid part of the flow
14 double eps_s;
15 // Momentum of gaseous phase
16 Vector < Dim , double > p_g;
17 // Momentum of solid phase
18 Vector < Dim , double > p_s;
19

20 // ** Dependent quantities **
21 // Volume fraction of gaseous part of the flow
22 double getEps_g () const { return 1.0 - eps_s; }
23 void setEps_g(const double& eps_g){ eps_s = 1.0 - eps_g; }
24 // Density of the gaseous phase
25 double getRho_g () const { return rho_g_x_eps_g / reg(getEps_g ()); }
26 void setRho_g(const double& rho_g){ rho_g_x_eps_g = getEps_g () * rho_g; }
27 // Velocity of gaseous phase
28 Vector <Dim , double > getVelocityGas () const { return p_g / reg(rho_g_x_eps_g); }
29 void setVelocityGas(const Vector <Dim , double >& u_g){ p_g = u_g * rho_g_x_eps_g; }
30 // Pressure of the gaseous phase
31 double getPressure () const { return getRho_g () * R_spec * T; }
32 void setPressure(const double& pressure){ setRho_g(pressure / (R_spec * T)); }
33 // Velocity of the solid phase
34 Vector <Dim , double > getVelocitySolid () const { return p_s / reg(rho_s * eps_s); }
35 void setVelocitySolid(const Vector <Dim , double >& u_s){ p_s = u_s * rho_s * eps_s; }
36 };
37 // Definition of default arithmetic traits for 2D case
38 MAKE_ATTRIBUTE_TRAIT_TEMPLATE_ARITHMETIC(
39 (FlowData <Dim >), (unsigned int Dim), rho_g_x_eps_g , eps_s , p_g , p_s
40);
41 // Definition of default traits
42 MAKE_CUSTOM_TEMPLATE_TRAIT_IO(
43 (FlowData <Dim >), (unsigned int Dim),
44 "eps_g", std:: make_pair (&FlowData <Dim >:: getEps_g , &FlowData <Dim >:: setEps_g),
45 "pressure", std:: make_pair (&FlowData <Dim >:: getPressure , &FlowData <Dim >:: setPressure),
46 "rho_g", &FlowData <Dim >::rho_g ,
47 "eps_s", &FlowData <Dim >::eps_s ,
48 "velocity_gas",
49 std:: make_pair (&FlowData <Dim >:: getVelocityGas , &FlowData <Dim >:: setVelocityGas),
50 "velocity_solid",
51 std:: make_pair (&FlowData <Dim >:: getVelocitySolid , &FlowData <Dim >:: setVelocitySolid)
52);

154

Code listing 5.3 Definition of the structures for auxiliary mesh quantities and computa-
tional data. Let us note that the second order tensors were implemented as vectors of vectors.
Thanks to the element-wise operations defined, these operations are applicable to Vector<Dim,
Vector<Dim, double>‌>. Additionally, this object automatically provides the expected matrix
notation interface, i.e., two subscript operators.

1 template <unsigned int Dim >
2 struct FaceData {
3 // Measure of the face divided by the distance of the neighboring cell centers
4 double MeasureOverDist;
5 // Measure of hte face element
6 double Measure;
7 // Normal vector of the face
8 Vector <Dim , double > n;
9 // Koeficients of linear combination of the values of the neighboring cells

10 double LeftCellKoef;
11 double RightCellKoef
12

13 // Flux of the momentum of the gaseous phase across the face
14 Vector <Dim , double > fluxP_g;
15 // Flux of the momentum of the solid phase across the face
16 Vector <Dim , double > fluxP_s;
17 // Flux of the mass of the solid phase across the face
18 double fluxRho_s;
19 // Flux of the mass of the gaseous phase across the face
20 double fluxRho_g;
21

22 // Gradient of velocity of gas
23 Vector <Dim , Vector <Dim , double >> grad_u_g;
24 // Gradient of velocity of gas
25 Vector <Dim , Vector <Dim , double >> grad_u_s;
26 };

1 template <unsigned int Dim >
2 struct CellData{
3 // Inverted value of the cell measure
4 double invVolume;
5

6 // Gradients of velocities approximated at cells
7 Vector <Dim , Vector <Dim , double >> grad_u_g;
8 Vector <Dim , Vector <Dim , double >> grad_u_s;
9 };

155

The simulation of two-phase flow requires two additional data structures CellData and
FaceData. The CellData structure stores the inverted value of the cell volumes and com-
puted approximations of gradients (5.65) and (5.94). FaceData stores, for example, the measure
of the face divided by the cells distance, coefficients α and 1 − α from (5.37) or the tempo-
rary values of fluxes (see Code listing 5.3). These data are mapped to the corresponding ele-
ments using MeshDataContainer. For better understanding see the definition of attributes of
MultiphaseFlow in Code listing 5.1.

All the mentioned data structures are templates to be able to specify the dimension (number
of components) of the vector or tensor quantities. Thanks to the prepared data structures, the
work with the data is very convenient and the code is readable.

Let us focus on the realization of the calculation of (5.104) by the calculateRHS function.
In equations (5.44), (5.68), (5.80), (5.97) evaluated for adjacent cells K, L, the advective flux
across the edge σ = K|L has the same absolute value but opposite sign. Thus, flux terms can
be evaluated only once using a loop over all the faces of the mesh. Then, the result is added to
the left cell and subtracted from the right cell. In order to prevent memory conflicts in parallel
computation, we store the result of fluxes over faces in the FaceData structure. Then, the fluxes
are summed in the next iteration over cells and their boundaries.

Because of the calculation of the gradients of velocities, there must be one additional iteration
over faces and cells boundaries. The first iteration calculates the values of the approximation
of the velocity gradient in the cells. The second pair of loops calculates the viscous flux. The
calculation of the right hand side consists of four cycles:

1. calculate the adjective flux of the quantities and tensor product of velocity and normal
vector and store them in the FaceData structure allocated to the faces,

2. calculate the flux and gradient of velocity in cells by summing the previously calculated
quantities over the cell boundary,

3. calculate the viscous fluxes at faces using interpolated values of the velocity gradient,

4. add the sum of viscous fluxes and the effects of source terms to the previously calculated
sum of fluxes.

All these loops can easily run in parallel because the memory conflicts are prevented. The
computation was parallelized using OpenMP [18].

Short pieces of the code presenting the calculation of the flux and setup of the mesh are in
Code listings 5.4 and 5.5. Please notice the advantage taken from the concepts of GTMesh.

156

Code listing 5.4 Example of one of the member functions responsible for computation. This
function calculates the advective flux of the gaseous phase over one inner face. All the data
needed are passed to the function as FlowData mapped to the left and right cells to the face and
the auxiliary data mapped to the face itself. The results are then stored in the data structure
mapped to the face. Similarly to this function, there are 3 more ComputeFluxGas functions
handling the corresponding boundary conditions. Teh same approach is used to calculate the
flux of the solid phase.

1 template <unsigned int Dimension , unsigned int ... Reserve >
2 inline void MultiphaseFlow <Dimension , Reserve ...>::
3 ComputeFluxGas_inner(const FlowData <ProblemDimension > &leftData ,
4 const FlowData <ProblemDimension > &rightData ,
5 FaceData <ProblemDimension > &edgeData)
6 {
7

8 // Interpolation of velocity
9 auto edge_u_g = (leftData.getVelocityGas () * edgeData.LeftCellKoef) +

10 (rightData.getVelocityGas () * edgeData.RightCellKoef);
11

12 // Inner product of velocity and normal vector
13 double product_u_n = (edge_u_g * edgeData.n);
14

15 // Prepare the upwind values
16 const FlowData < ProblemDimension >& faceVal = product_u_n > 0 ? leftData : rightData;
17

18 // Flux of density
19 double delta_rho = - faceVal.getEps_g () * faceVal.rho_g *
20 product_u_n * edgeData.Measure;
21 // Add the artificial dissipation
22 delta_rho += edgeData.MeasureOverDist * artificialDissipationGas *
23 (rightData.rho_g * rightData.getEps_g () -
24 leftData.rho_g * leftData.getEps_g ());
25

26

27 // Computing the flux of momentum
28 Vector <ProblemDimension ,double > fluxP_g = (-product_u_n) * faceVal.p_g;
29

30 // Multiply by the face/edge measure
31 fluxP_g *= edgeData.Measure;
32

33 // Add the artificial dissipation
34 fluxP_g += (edgeData.MeasureOverDist * artificialDissipationGas *
35 (rightData.p_g - leftData.p_g));
36

37 // Computation of grad_p
38 double face_p_g = leftData.getPressure () * edgeData.LeftCellKoef +
39 rightData.getPressure () * edgeData.RightCellKoef;
40 edgeData.grad_p = (edgeData.Measure * face_p_g) * edgeData.n;
41

42 // Compuatation of grad(u)
43 edgeData.grad_u_g = tensorProduct(edge_u_g , edgeData.n) * edgeData.Measure;
44

45 // Store the values of fluxes at the face
46 edgeData.fluxP_g = fluxP_g;
47

48 edgeData.fluxRho_g = delta_rho;
49

50 }

157

Code listing 5.5 Implementation of the mesh setup and data exporting member functions. The
setupMeshData member function loads the mesh from file and stores the pointer to MeshReader
into the prepared attribute reader. When the mesh is correctly loaded, the auxiliary mesh
quantities are calculated. Notice the usage of the GTMesh interface in the calculation. The
presented setupMeshData is applied in the 3D case, the implementation of the 2D case slightly
differs, since the method need not be as general. The exportData member function exports the
mesh and the numerical solution. Notice please how easy it is to realize the export when using
the concepts of GTMesh. Let us note that this code even exports the data of the tessellated
mesh automatically.

1 template <unsigned int Dimension , unsigned int ... Reserve >
2 template <unsigned int _Dimension >
3 typename std::enable_if <_Dimension == 3>::type
4 MultiphaseFlow < Dimension , Reserve ... >:: setupMeshData(const std:: string& fileName){
5 // Load the mesh and setup the properties
6 reader = mesh.load(fileName);
7 mesh.template initializeCenters <METHOD_TESSELLATED >();
8 mesh.setupBoundaryCells ();
9 mesh.setupBoundaryCellsCenters ();

10

11 // Calculate the measures of the mesh elements
12 auto measures = mesh.template computeElementMeasures <METHOD_TESSELLATED >();
13

14 // Calculate the distances between neighboring cells
15 auto dists = ComputeCellsDistance(mesh);
16

17 // Calculation of the mesh properties
18 auto faceNormals = mesh.template computeFaceNormals <METHOD_TESSELLATED >();
19

20 // Resize the meshData container according to the mesh
21 meshData.allocateData(mesh);
22

23 // Store the inverted values of cells
24 for (const auto& cell : mesh.getCells ()) {
25 meshData.at(cell). invVolume = 1.0 / measures.at(cell);
26 }
27

28 for(const auto& face : mesh.getFaces ()) {
29 meshData.at(face). Measure = measures.at(face);
30

31 // ** Setup of the rest of the quantities calculated in advance **
32 }
33 }

1 template <unsigned int Dimension , unsigned int ... Reserve >
2 void MultiphaseFlow < Dimension , Reserve ... >::
3 exportData(double time ,
4 MeshDataContainer <ResultType , ProblemDimension >& compData ,
5 double timeModifier) {
6

7 char timeStr [20];
8 sprintf(timeStr , "%04ld", lround(time*timeModifier));
9 // Export the mesh

10 std:: ofstream ofile(std:: string("MultiphaseFlow") + "_" + timeStr + ".vtk");
11 writer.writeHeader(ofile , std:: string("MPF␣") + std:: to_string(time));
12 writer.writeToStream(ofile , mesh , reader ->getCellTypes ());
13 // Write the result of the simulation
14 VTKMeshDataWriter <ProblemDimension > dataWriter;
15 dataWriter.writeToStream(ofile , compData , writer);
16

17 ofile.close ();
18

19 }

158

Chapter 6

Parallel Implementation on GPU

In the recent years, Graphical Processing Units (GPUs) evolved into universal computational
accelerators extremely efficient for massively parallel computations. Several successful product
series exist that are specifically tailored toward general purpose computations on GPU (GPGPU)
and, more recently, deep learning. The GPU is connected to the CPU through the PCI Express
interface or a high bandwidth bus as NVLink. It has its own memory (global memory). The global
memory bandwidth is several times faster than the RAM connected to the CPU. Unfortunately,
in comparison to the speed of the attached memories, the communication between the CPU and
GPU is slow. Therefore, the performance may suffer from frequent communication between CPU
and GPU.

In the future work, we plan to utilize the CUDA (Compute Unified Device Architecture)
framework provided by nVIDIA for programming the GPU. For more information about CUDA,
see [34, 15].

In contrast to multi-core CPUs, the GPU has a many-core architecture. Current NVIDIA
GPUs consist of up to more than a hundred streaming multiprocessors (SM). Each SM has a
hierarchical internal structure, containing many specialized processing units (32/64 bit CUDA
cores, Tensor cores etc.) designed for parallel processing of certain mathematical operations in
a SIMD (Single Instruction Multiple Data) fashion [44]. From the software point of view, the
hierarchical architecture of the GPU reflects in the grouping of the individual computational
"CUDA" threads into SIMD units (so called warps).

The units within one SM share a small (tens of kilobytes) but very fast memory in comparison
to the global memory. The SMs can not communicate with each other, but they can access the
global memory. In order to maximize the computational efficiency, it is recommended to coalesce
the accesses into the global memory. This requires optimizing the data structures for use on the
GPU. In connection with the data organization, we want to develop a container automatically
rearranging the data between an array of structures (AoS) and a structure of arrays (SoA) (see
Section 6.3).

Although the GPU has thousands of CUDA cores, it requires to run much more (hundred
thousands) threads at once in order to maximize performance. This is completely opposite to
the practices on CPU where additional threads degrade performance.

In order to adapt GTMesh to the GPU, it was planned to cooperate with the TNL project [22]
and utilize their containers able to allocate memory on either CPU or GPU depending on the
template setup. There are three steps to adapt the whole computation to the GPU:

1. Adapt the unstructured mesh itself,

2. move the data mapped to the mesh (MeshDataContainer) to the GPU memory,

3. perform the RKM (see Section 4.3) algorithm on the GPU, as described in detail in [46].

A possible approach of computing on unstructured grid on the GPU can be found in [51, 54]

159

Code listing 6.1 Changes in MeshDataContainer in order to utilize the
TNL::Containers::Vector container instead of std::vector.

1 template <typename DataType , typename DeviceType , unsigned int MappedDimenion = 0>
2 struct DataContainer : public TNL:: Containers ::Vector <DataType , DeviceType > {
3 using type = DataType;
4

5 static constexpr unsigned int getMappedDimension () {
6 return MappedDimenion;
7 }
8 };
9

10

11 template <typename DataType , typename DeviceType , unsigned int ... Dimensions >
12 struct MeshDataContainer{
13 private:
14 template <typename _DataType , unsigned int Pos >
15 struct _DataContainer : _DataContainer <_DataType ,Pos - 1> {
16 DataContainer <_DataType , DeviceType , dimensionAt <Pos >()> _data;
17 };
18

19 template <typename _DataType >
20 struct _DataContainer <_DataType , 0>{
21 DataContainer <_DataType , DeviceType , dimensionAt <0U>()> _data;
22 };
23

24 _DataContainer <DataType , sizeof ... (Dimensions) - 1> data;
25

26 // ... ** member functions **
27 // the implementation must reflect the TNL:: Containers :: Vector interface
28 };

6.1 Adaptation of UnstructuredMesh to GPU

Thanks to the fact that MeshElements consists of several arrays containing simple MeshElement
structures, it is relatively easy to move this complete structure to the GPU. However, as discussed
at the beginning of this chapter, coalesced memory access is required to process the data structure
efficiently. Additionally, most of the implemented algorithms such as mesh import and export
can be performed on the CPU only.

Therefore, we prefer to store the whole mesh on the CPU and export only the data necessary
for the computation to the GPU. The necessary data are the computational data such as the
unknown variables, and the auxiliary mesh data, e.g., measures of the elements or distances
between cell centers. Finally, the topology of the mesh can be ported to the GPU as the con-
nections (see Section 2.4.2). For example, in the two-phase problem, the requested connections
were from cells to faces and opposite. This approach also benefits from the fact that the data
on the GPU are limited to the needs of the problem which saves the global memory which has a
limited capacity with respect to the RAM size of the host, e.g., would be not necessary to pass
the mesh vertices to the GPU in the case of the two-phase flow problem.

Alternatively, it is be possible to utilize sparse matrix formats to store the connections in the
form of adjacency matrices [54]. The advantage of this approach consists in the optimality of
the sparse matrix formats on the GPU.

6.2 Adaptation of MeshDataContainer to GPU

As was said in the previous Section 6.1, it is necessary to move the computational data (i.e.,
MeshDataContainer) to the GPU. In this section the steps required to adapt MeshDataContainer
to the GPU using TNL::Containers::Vector are presented.

The first step is to substitute the std::vector inheritance of the DataContainer (see Code
listing 2.24) for TNL::Containers::Vector and add the template argument Device specifying

160

the device (CPU or GPU) to be used for data storage (see Code listing 6.1). The device argument
must also be added to the template argument list of MeshDataContainer.

As it is not possible to pass the variables through references into CUDA kernels, TNL utilizes
the system of non-owning containers called views, e.g., TNL::Containers::VectorView. A view
has minimum information about the array, such as pointer to the data and the size of the array,
and in its copy constructor it creates a shallow copy only. Therefore, a view of a container can
be passed to a kernel by value. The views in TNL can be assigned to the container by the bind
member function.

To fully adapt the MeshDataContainer to the GPU under the terms of TNL, the
MeshDataContainerView is to be implemented. The fundamentals of the implementation of
the MeshDataContainerView are presented in Code listing 6.2.

6.3 Automatic Conversion Between AoS and SoA

In this work, arrays of structures (AoS) in MeshDataContainer are utilized in the form of
std::vector or TNL::Containers::Vector described in this chapter. Especially, when dis-
cussing the efficiency of a computation performed on the GPU, the data organization appears to
be a significant factor as discussed in [50]. For the basic example of the difference between the
SoA and AoS layouts, see Code listing 6.3

Utilizing the concept of traits (especially DefaultArithmeticTraits), it is possible to create
class template automatically generating the structure of arrays from a traited class (see Ta-
ble 3.1). The class understands the content of the given traited class and creates a system of
arrays containing the corresponding types. Moreover, it is possible to recursively continue with
the parsing of the traited class, i.e., the given traited class can have an attribute of another traited
class. Finally, it is possible to unify the interface of SoA and AoS (TNL::Containers::Vector),
so that the user can treat both data layouts in the same way. However, this concept is very
complex and beyond the scope of this thesis.

161

Code listing 6.2 Implementation of the concept of views from TNL [22] in MeshDataContainer.

1 template <typename DataType , typename DeviceType , unsigned int MappedDimenion = 0>
2 struct DataContainerView : public TNL:: Containers :: VectorView <DataType , DeviceType > {
3 using type = DataType;
4

5 static constexpr unsigned int getMappedDimension () {
6 return MappedDimenion;
7 }
8 };
9

10

11 template <typename DataType , typename DeviceType , unsigned int ... Dimensions >
12 struct MeshDataContainerView{
13 using ViewType = MeshDataContainerView <DataType , DeviceType , Dimensions ...>;
14 private:
15 template <typename _DataType , unsigned int Pos >
16 struct _DataContainerView : _DataContainer <_DataType ,Pos - 1> {
17 DataContainerView <_DataType , DeviceType , dimensionAt <Pos >()> _data;
18 };
19

20 template <typename _DataType >
21 struct _DataContainerView <_DataType , 0>{
22 DataContainerView <_DataType , DeviceType , dimensionAt <0U>()> _data;
23 };
24

25 _DataContainerView <DataType , sizeof ... (Dimensions) - 1> data;
26 ViewType getView (){
27 ViewType res;
28 res.bind(*this);
29 return res;
30 }
31 // ... ** member functions **
32 // Have similar interface to MeshDataContainer (e.g. getDataByPos , getDataByDim , etc.)
33 // the implementation must reflect the TNL:: Containers :: Vector interface
34 };
35

36 template <typename DataType , typename DeviceType , unsigned int ... Dimensions >
37 struct MeshDataContainer{
38 using ViewType = MeshDataContainerView <DataType , DeviceType , Dimensions ...>;
39 private:
40

41 template <unsigned int Index = 0>
42 typename std::enable_if <(Index < sizeof(Dimensions ...)) >:: type
43 bindView(ViewType& view){
44 view.template getDataByPos <Index >(). bind(this ->getDataByPos <Index >(). getView ());
45 bindView <Index + 1>(view);
46 }
47

48 template <unsigned int Index = 0>
49 typename std::enable_if <(Index == sizeof(Dimensions ...)) >:: type
50 bindView(ViewType& view){
51 view.template getDataAtPos <Index >(). bind(this ->getDataAtPos <Index >(). getView ());
52 }
53 public:
54 ViewType getView (){
55 ViewType view;
56 bindView(view);
57 return view;
58 }
59 // ... ** member functions **
60 // the implementation must reflect the TNL:: Containers :: Vector interface
61 };

162

Code listing 6.3 Difference between the AoS and SoA data layouts. Whereas the AoS layout
lies the attributes r, g, b in a row, the SoA creates the array containing only the r attribute
followed by the arrays containing g and b attributes. Let us point out the difference between
the element access in SoA and AoS layouts. In the AoS layout the the ith element is accessed
first and then the requested member. In the SoA layout, the array containing the instances is
accessed first, the ith element is accessed as second.

1 constexpr int N;
2 struct ColorAoS{
3 char r;
4 char g;
5 char b;
6 } ArrayOfStructures[N];
7

8 struct ColorSoA{
9 char r[N];

10 char g[N];
11 char b[N];
12 } StructureOfArray;
13

14 // Example of accessing the r member at the position i
15 ArrayOfStructures[i].r;
16 StructureOfArray.r[i];

163

164

Chapter 7

Simulations

In this chapter, the results of simulations are presented. The first discussed case is a comparison
of gas flow simulations performed on different meshes. The next simulation is two-phase flow in
a 2D domain representing a combustion chamber of a fluidized bed (FB) boiler [26, 27]. The
final simulation represents two-phase flow of gas and sand in the combustion chamber in 3D.

In comparison to the previous work [40], the simulation was extended from 2D to 3D. At
the beginning, the simulation of heat conduction on an unstructured 3D mesh was performed
to check that the GTMesh library works properly. Then, during the implementation of two-
phase flow in 2D and 3D, the results were compared to the results obtained by the previous 2D
implementation. This way, the correct function of the MultiphaseFlow structure was checked.
Thanks to the template implementation of MultiphaseFlow, the numerical scheme is independent
of dimension. Hence, it is easy to switch the computation from 2D to 3D.

7.1 Comparison of Gas Flow on Several Meshes

This section presents the results of single phase flow performed on 5 different meshes tessellating
the same geometry shown in Figure 7.2.

Three of the meshes are structured (Ts,1, Ts,2, Ts,3) and two are unstructured (Tu,1, Tu,2).
The unstructured meshes were generated by reflecting the cubes presented in Figure 7.1. The
structured meshes employ a uniform subdivision of the domain into cubes. See the properties of
the meshes in Table 7.2. The parameters settings are summarized in Table 7.1. The results are
presented in Figures 7.3, 7.4 and 7.5.

The results on the structured meshes do not differ much for different granularities of the mesh
because the structured meshes with faces either perpendicular or parallel to the flow suppress the
numerical dissipation which is inherent to first order finite volume schemes [30]. On unstructured
meshes, the numerical diffusion is much more significant. The numerical dissipation also causes
the time step of the Runge-Kutta-Merson method to be shortened in accordance with the stability
condition [33, 35, 49]. As a result, the computational times for the unstructured meshes are
longer, see Table 7.2.

At the time t = 0.5 s, the differences between simulations on Ts,3 and Tu,2 are moderate, but
they as the flow stabilizes grow bigger, see the result at t = 3 s. Moreover, in the simulations
on Tu,1 artifacts can be seen. These high values appear at the boundary and they may be caused
by the geometry of the cells. Such artifacts do not appear in simulation on the finer unstructured
mesh Tu,2.

165

Figure 7.1: The slices of unstructured meshes tessellating a cube with edge length 2.5 meters.
These meshes were utilized to create unstructured stacks in Section 7.1. The unstructured meshes
are courtesy of J. Hahn / AVL Fire [2].

Figure 7.2: Spatial domain representing a stack for the gas flow case. The cuboid is 10 meters
high, 2.5 meters wide and 2.5 meters deep.

166

quantity/parameter value

T 300 K
µg 10−5 N · s ·m−1

Rspec 287 J ·K−1 · kg−1

pg,out 105 Pa

ug,in

 0
0(

x2
1 + x2

2 − 0.09
)

1
0.09

 m · s−1

ug,ini ~0 m · s−1

pg,ini 105 Pa

g

 0
0

−9.81

 m · s−2

λg 0.0

Table 7.1: Parameter settings for the flow of gas in the stack. The parameters εs,ini and εs,in
are set to zero in order to simulate single phase flow. The results of the computation are shown
in Figures 7.3, 7.4, 7.5.

mesh #cells #faces spatial resolution time [s] RKM time [ms] RKM iterations

Ts,1 10976 34692 14× 14× 56 cells 50 9.9 5028
Ts,2 108000 332100 30× 30× 120 cells 315 43 7238
Ts,3 237276 725517 39× 39× 156 cells 763 86 8867
Tu,1 16316 105834 - 2520 26 98917
Tu,2 128016 859966 - 23800 106 224252

Table 7.2: Parameters of the utilized meshes and the time consumption of the simulations. Let us
note that the number of faces also influences the performance of the computation because of the
iterations over cells boundaries. The fifth column presents the total time the simulations took in
seconds. The time demand depends on many factors. One of them is the average time consumed
by of a single update calculated by RKMmethod (the sixth column). This is especially influenced
by the number of elements of the mesh. Another factor is the total number of RKM iterations
needed to calculate the simulation (the seventh column). Each simulation was performed on
one compute node of the the HELIOS cluster at the Department of Mathematics, FNSPE CTU
Prague. Each node is equipped with two 16-core AMD EPYC 7281@2.1GHz CPU (SMT mode
disabled) and 128 GB RAM. OpenMP parallelization with 32 threads was employed.

167

Figure 7.3: The magnitudes of velocity in m · s−1 at time t = 0.5 s obtained by computations of
gas flow on the selected meshes. The domain is presented in Figure 7.2. The parameters settings
of the simulation are summarized in Tables 7.1, 7.2.

Figure 7.4: The magnitudes of velocity in m · s−1 at time t = 1.5 s obtained by computations of
gas flow on the selected meshes. The domain is presented in Figure 7.2. The parameters settings
of the simulation are summarized in Tables 7.1, 7.2.

168

Figure 7.5: The magnitudes of velocity in m · s−1 at time t = 3 s obtained by computations of
gas flow on the selected meshes. The domain is presented in Figure 7.2. The parameters settings
of the simulation are summarized in Tables 7.1, 7.2.

169

Figure 7.6: Computational domain representing a 2D model of the combustion chamber of a FB
boiler with inflow at the bottom and outflow at the top. The boiler domain is 34 meters high
and 7.6 meters wide. On the right, the portion of the used mesh is presented.

7.2 Two-Phase Flow in 2D

This simulation represents a two-phase flow, where one phase is gaseous and the other is granular
solid (sand) in a 2D domain. The domain setup is shown in Figure 7.6. The time interval
is J = (0, 30) in seconds.

The initial state is zero velocity for both phases and a 12 meters high dispersed pile of sand
(εs = 0.2) placed two meters above the inflow. The initial pressure is set to 105 Pa. At the
part of boundary denoted as inflow, the wall boundary condition is prescribed for the solid phase
in order to prevent the escape of solid phase through the inflow. The granular solid phase is
considered to have density of 1700 Kg·m−3 and spherical grains (φs = 1) with diameter 0.78 mm.
The complete parameter setup is presented in Table 7.3.

At the beginning, the whole pile of solid phase is hovered by the growing pressure below.
Then, most of the mass is split and thrown at the walls (Figure 7.7). The further evolution
continues by bubbling and creating whirls (Figures 7.8 and 7.9) while the mass of the solid phase
resides in the lower half of the computational domain. The overall maximum εs in any single
cell did not exceed the value of 0.5.

The simulation was also performed with lower artificial diffusion. The lower diffusion causes
shortening of the time step in the RKM solver. The utilized model does not reflect the effect of
turbulence, therefore the results with higher artificial diffusion may be more realistic.

170

quantity/parameter value quantity/parameter value

T 300 K ρs 1700 Kg ·m−3

µg 10−5 N · s ·m−1 µs 0.5 N · s ·m−1

Rspec 287 J ·K−1 · kg−1 φs 1
pg,out 105 Pa ds 7.8 · 10−4 m

ug,in

(
0
4

)
m · s−1 us,in ~0 m · s−1

ug,ini ~0 m · s−1 us,ini ~0 m · s−1

pg,ini 105 Pa εs,ini

{
0.2 x2 ∈ (2, 14)
0 elsewhere

g

(
0

−9.81

)
m · s−2 εs,in 0

λg 0.1 λs 0.1

Table 7.3: Parameter settings of the two-phase flow in the combustion chamber of a FB boiler.
The coordinates specifying the region of nonzero εs,ini are in meters. The results of the simulation
at times 5, 10 and 30 seconds are presented in Figures 7.7 - 7.9.

Figure 7.7: The numerical solution of two-phase flow in a 2D domain (Figure 7.6), t = 5 s. The
parameter setup is in Table 7.3. The arrows in the two figures on the right represent the direction
of the corresponding velocities while the color scales represent their magnitudes.

171

Figure 7.8: The numerical solution of two-phase flow in a 2D domain (Figure 7.6), t = 10 s.
The parameter setup is in Table 7.3. The arrows in the two figures on the right represent the
direction of the corresponding velocities while the color scales represent their magnitudes.

Figure 7.9: The numerical solution of two-phase flow in a 2D domain (Figure 7.6), t = 30 s.
The parameter setup is in Table 7.3. The arrows in the two figures on the right represent the
direction of the corresponding velocities while the color scales represent their magnitudes.

172

Figure 7.10: Computational domain representing a 3D model of the combustion chamber of a
FB boiler with inflow at the bottom and outflow at the top. On the left, the geometry and
dimensions of the domain are shown. On the right, the utilized mesh is presented. The domain
geometry and mesh are based on [29, 47].

7.3 Two-Phase Flow in 3D

This section presents a two-phase flow of gas and solid in a 3D computational domain. The
domain setup is shown in Figure 7.10. The time interval is J = (0, 30) in seconds.

The initial state is zero velocity for both phases and a 6 meters high dispersed pile of sand
(εs = 0.4) placed two meters above the inflow. The initial pressure is set to 105 Pa. Similarly
to the previous simulation (Section 7.2), at the part of boundary denoted as inflow, the wall
boundary condition is prescribed for the solid phase in order to prevent the escape of solid phase
though the inflow. The granular solid phase is considered to have the density of 1700 Kg ·m−3

and spherical grains (φs = 1) with diameter 0.78 mm. The complete parameter setup is presented
in Table 7.4. Let us note that the axis pointing up is y.

At the beginning, the whole pile of solid phase is hovered by the growing pressure below.
The solid phase stops in the widening part of the boiler and settles at the walls (Figure 7.11).
As the solid phase falls, it clogs the pipe up which results in creating a bubble in the middle
(Figure 7.12). Then, most of the solid phase is piled at one side of the boiler and falls down
along the wall (Figure 7.13).

173

quantity/parameter value quantity/parameter value

T 300 K ρs 1700 Kg ·m−3

µg 10−5 N · s ·m−1 µs 0.5 N · s ·m−1

Rspec 287 J ·K−1 · kg−1 φs 1
pg,out 105 Pa ds 7.8 · 10−4 m

ug,in

 0
3
0

 m · s−1 us,in ~0 m · s−1

ug,ini ~0 m · s−1 us,ini ~0 m · s−1

pg,ini 105 Pa εs,ini

{
0.4 x2 ∈ (2, 8)
0 elsewhere

g

 0
−9.81

0

 m · s−2 εs,in 0

λg 0.05 λs 0.05

Table 7.4: Parameter settings of the two-phase flow in the 3D combustion chamber of a FB
boiler (Figure 7.10). The coordinates specifying the region of nonzero εs,ini are in meters. The
results of the simulation at times 5, 10 and 30 seconds are presented in Figures 7.11 , 7.12, 7.13.

Figure 7.11: The numerical solution of two-phase flow in a 3D domain (Figure 7.10), t = 5 s.
The parameter setup is in Table 7.4. The arrows in the two figures on the right represent the
direction of the corresponding velocities while the color scales represent their magnitudes.

174

Figure 7.12: The numerical solution of two-phase flow in a 3D domain (Figure 7.10), t = 10 s.
The parameter setup is in Table 7.4. The arrows in the two figures on the right represent the
direction of the corresponding velocities while the color scales represent their magnitudes.

Figure 7.13: The numerical solution of two-phase flow in a 3D domain (Figure 7.10), t = 30 s.
The parameter setup is in Table 7.4. The arrows in the two figures on the right represent the
direction of the corresponding velocities while the color scales represent their magnitudes.

175

176

Conclusion

At the beginning of this thesis, a formalism of a graph description of unstructured meshes was
introduced. Similar descriptions are presented by other authors in [28, 55], nevertheless their
formalism is closer to description of connections between elements in the mesh than to the graph
theory. Therefore, the approach presented in this work is an abstraction of the results from [28,
55] utilizing the tools of graph theory. Using the developed formalism, the data structures storing
unstructured meshes were discussed.

Then, a C++ numerical library (GTMesh) working with unstructured meshes with a general
topology and dimension was developed. This thesis provides a detailed description of GTMesh
algorithms and project architecture. Emphasis was put on the explanation of the chosen imple-
mentation and why we decided to realize the functionality in such a way.

Despite its generality, GTMesh is an easily maintainable and extendable project thanks to
the architecture, especially to the relation of the classes MeshElement and UnstructuredMesh.
Besides the structure storing an unstructured mesh, GTMesh provides an easy and intuitive
way of managing the data mapped to the mesh through a class named MeshDataContainer.
MeshDataContainer is even capable of storing multiple data types mapping to various dimensions
of the mesh. We have developed the basic mesh algorithms such as face normal or element
measure calculation together with the algorithms determining the neighborhood of elements or
the proper coloring of the mesh.

To achieve the generality, GTMesh utilizes modern C++ paradigms (template metaprogram-
ming, SFINAE, ADL, etc.) [3, 5, 7]. GTMesh proves itself as a user friendly and efficient frame-
work for creating custom numerical algorithms utilizing, for example, the finite element method
or the finite volume method (FVM). Using almost every tool in GTMesh requires only one line
of code. Therefore, the programming with GTMesh looks more like scripting. For example,
measures of all elements of the mesh can be obtained by calling the calculateElementMeasures
member function.

GTMesh also provides a system annotating the attributes of C++ structures called class
traits, which is a generalization of a similar C++ project [21]. The class traits are utilized in a
general purpose logging tool which is able to log almost any C++ expression. The class traits
also enabled us to develop a system of automatic export and import of the computational data,
e.g., in VTK file format [23].

The logging tool was used to comfortably check the functionality of the library during the
development in the form of manual tests. Then, we utilized the approach of continuous integra-
tion [10] and transformed the manual tests into unit tests using the GTest library [11].

Thanks to optimizations, the class traits provide the same efficiency of data access as the
explicitly written code. Therefore, it was possible to define arithmetic functions and operators
working with the traited classes and use them in numerical algorithms. This makes the resulting
code more readable and maintainable. The use of the data structures also helps to improve
spatial location of the data in memory. This is another factor improving the performance of the
numerical algorithms.

From the beginning, GTMesh was developed with respect to the possibility of further evo-
lution and its utilization in parallel computing, by means of, e.g., OpenMP, MPI or CUDA
(described in Chapter 6), as a part of TNL project [22]. In comparison, in ANSYS Fluent [1]

177

or OpenFOAM [17] the attempts to adapt the code to GPU have been unsuccessful. So far, we
were able to implement the numerical algorithms using OpenMP and to utilize the developed
logging tool on GPU with CUDA framework.

To demonstrate a succesful numerical solver based on GTMesh, we have presented a problem
of two-phase flow in 2D and 3D. An effort was made to describe the complete application of the
finite volume method on the problem on a general unstructured mesh. The discussion of the
application of FVM also includes the case of 3D unstructured meshes with non-planar faces and
the optimization of computation on such geometry.

Eventually, the numerical solution of equations obtained by the application of FVM was
implemented using the GTMesh framework on 2D and 3D unstructured meshes. The generality
of UnstructuredMesh enabled us to create one implementation for both dimensions where the
dimension can be chosen by a single template parameter. Let us note that the numerical scheme
was developed to be the same on 3D meshes with planar and non-planar faces.

The future evolution of GTMesh can proceed in several directions. The implementation of
some mesh algorithms currently limited to 2D and 3D can be extended to a general dimension,
which would allow, e.g., to develop numerical schemes in space-time domains. The integration
with TNL and the adaptation to GPU computations were laid out in this work, whereas some
parts of the implementation and the first working numerical code are still to be finished. Also,
some algorithms useful for adaptive or moving meshes deserve to be implemented directly into
GTMesh.

In summary, we have developed a modern, elegant, efficient and extensible library for numeri-
cal simulations on unstructured meshes and proved its functionality by implementing a numerical
solver for two-phase flow.

The GIT repository with the source code of GTMesh is available at [12] under the MIT
license.

178

Bibliography

[1] Ansys Fluent. https://www.ansys.com/products/fluids/ansys-fluent. Accessed: 2020-
04-06.

[2] AVL FIRE. https://www.avl.com/fire. Accessed: 2020-05-18.

[3] cppreference.com: ADL. https://en.cppreference.com/mwiki/index.php?title=cpp/
language/adl&oldid=113272. Accessed: 2020-03-31.

[4] cppreference.com: integer_sequence. https://en.cppreference.com/mwiki/index.php?
title=cpp/utility/integer_sequence&oldid=115697. Accessed: 2020-03-31.

[5] cppreference.com: SFINAE. https://en.cppreference.com/mwiki/index.php?title=
cpp/language/sfinae&oldid=117405. Accessed: 2020-03-31.

[6] cppreference.com: std::set. https://en.cppreference.com/mwiki/index.php?title=
cpp/container/map&oldid=112565. Accessed: 2020-03-31.

[7] cppreference.com: Template specialization. https://en.cppreference.com/mwiki/index.
php?title=cpp/language/template_specialization&oldid=99273. Accessed: 2020-03-
31.

[8] cppreference.com: using declatarion. https://en.cppreference.com/mwiki/index.php?
title=cpp/language/using_declaration&oldid=116066. Accessed: 2020-03-31.

[9] Doxygen official site. https://www.doxygen.nl/index.html. Accessed: 2020-06-21.

[10] GitLab CI/CD documentation. https://docs.gitlab.com/ee/ci/README.html. Accessed:
2020-06-21.

[11] Google Test repository. https://github.com/google/googletest. Accessed: 2020-06-21.

[12] GTMesh repository. https://mmg-gitlab.fjfi.cvut.cz/gitlab/jakubec/GTMesh. Ac-
cessed: 2020-06-21.

[13] JABX documentation. https://docs.oracle.com/javase/8/docs/technotes/guides/
xml/jaxb/index.html. Accessed: 2020-03-31.

[14] Legion official site. https://legion.stanford.edu/. Accessed: 2020-06-22.

[15] nvidia.com: CUDA documentation. https://docs.nvidia.com/cuda/. Accessed: 2020-06-
05.

[16] Open MPI official site. https://www.open-mpi.org/. Accessed: 2019-08-21.

[17] OpenFOAM official site. https://www.openfoam.com/. Accessed: 2020-04-06.

[18] OpenMP official site. https://www.openmp.org/. Accessed: 2019-08-21.

179

https://www.ansys.com/products/fluids/ansys-fluent
https://www.avl.com/fire
https://en.cppreference.com/mwiki/index.php?title=cpp/language/adl&oldid=113272
https://en.cppreference.com/mwiki/index.php?title=cpp/language/adl&oldid=113272
https://en.cppreference.com/mwiki/index.php?title=cpp/utility/integer_sequence&oldid=115697
https://en.cppreference.com/mwiki/index.php?title=cpp/utility/integer_sequence&oldid=115697
https://en.cppreference.com/mwiki/index.php?title=cpp/language/sfinae&oldid=117405
https://en.cppreference.com/mwiki/index.php?title=cpp/language/sfinae&oldid=117405
https://en.cppreference.com/mwiki/index.php?title=cpp/container/map&oldid=112565
https://en.cppreference.com/mwiki/index.php?title=cpp/container/map&oldid=112565
https://en.cppreference.com/mwiki/index.php?title=cpp/language/template_specialization&oldid=99273
https://en.cppreference.com/mwiki/index.php?title=cpp/language/template_specialization&oldid=99273
https://en.cppreference.com/mwiki/index.php?title=cpp/language/using_declaration&oldid=116066
https://en.cppreference.com/mwiki/index.php?title=cpp/language/using_declaration&oldid=116066
https://www.doxygen.nl/index.html
https://docs.gitlab.com/ee/ci/README.html
https://github.com/google/googletest
https://mmg-gitlab.fjfi.cvut.cz/gitlab/jakubec/GTMesh
https://docs.oracle.com/javase/8/docs/technotes/guides/xml/jaxb/index.html
https://docs.oracle.com/javase/8/docs/technotes/guides/xml/jaxb/index.html
https://legion.stanford.edu/
https://docs.nvidia.com/cuda/
https://www.open-mpi.org/
https://www.openfoam.com/
https://www.openmp.org/

[19] PeLeLM official site. https://amrex-combustion.github.io/PeleLM/. Accessed: 2020-
06-22.

[20] Qt official site. https://www.qt.io/. Accessed: 2020-06-21.

[21] ThorsSerializer repository. https://github.com/Loki-Astari/ThorsSerializer/blob/
master/doc/full.md. Accessed: 2020-03-31.

[22] The TNL library. https://tnl-project.org/. Accessed: 2020-06-14.

[23] Visualization Toolkit VTK file format. https://vtk.org/wp-content/uploads/2015/04/
file-formats.pdf. Accessed: 2019-08-19.

[24] Ľubomíra Balková. Lineární algebra 2, skripta. Nakladatelství ČVUT, 2014.

[25] Prabir Basu. Combustion and gasification in fluidized beds. CRC press, 2006.

[26] Prabir Basu and James Butler. Studies on the operation of loop-seal in circulating fluidized
bed boilers. Applied energy, 86(9):1723–1731, 2009.

[27] Prabir Basu, Cen Kefa, and Louis Jestin. Boilers and burners: design and theory. Springer
Science & Business Media, 2012.

[28] Mark W Beall and Mark S Shephard. A general topology-based mesh data structure. In-
ternational Journal for Numerical Methods in Engineering, 40(9):1573–1596, 1997.

[29] Michal Beneš, Pavel Eichler, Jakub Klinkovský, Miroslav Kolář, Jakub Solovskỳ, Pavel
Strachota, and Alexandr Žák. Numerical simulation of fluidization for application in oxyfuel
combustion. Discrete & Continuous Dynamical Systems-S, pages 1–15, 2020.

[30] Jiri Blazek. Computational fluid dynamics: principles and applications. Butterworth-
Heinemann, 2015.

[31] John Adrian Bondy, Uppaluri Siva Ramachandra Murty, et al. Graph theory with applica-
tions, volume 290. Macmillan London, 1976.

[32] Susanne Brenner and Ridgway Scott. The mathematical theory of finite element methods,
volume 15. Springer Science & Business Media, 2007.

[33] John Charles Butcher. Numerical methods for ordinary differential equations. John Wiley
& Sons, 2016.

[34] John Cheng, Max Grossman, and Ty McKercher. Professional CUDA c programming. John
Wiley & Sons, 2014.

[35] Jan Christiansen. Numerical solution of ordinary simultaneous differential equations of the
1st order using a method for automatic step change. Numerische Mathematik, 14(4):317–
324, 1970.

[36] Dimitri Gidaspow. Multiphase flow and fluidization: continuum and kinetic theory descrip-
tions. Academic press, 1994.

[37] Jooyoung Hahn, Karol Mikula, Peter Frolkovič, Matej Medl’a, and Branislav Basara. Iter-
ative inflow-implicit outflow-explicit finite volume scheme for level-set equations on polyhe-
dron meshes. Computers & Mathematics with Applications, 77(6):1639–1654, 2019.

[38] Ansys Inc. ANSYS FLUENT theory guide, 2013.

180

https://amrex-combustion.github.io/PeleLM/
https://www.qt.io/
https://github.com/Loki-Astari/ThorsSerializer/blob/master/doc/full.md
https://github.com/Loki-Astari/ThorsSerializer/blob/master/doc/full.md
https://tnl-project.org/
https://vtk.org/wp-content/uploads/2015/04/file-formats.pdf
https://vtk.org/wp-content/uploads/2015/04/file-formats.pdf

[39] Tomáš Jakubec. Matematické modelování a numerická simulace procesů v průmyslových
kotlích. Bakalářská práce. KM FJFI ČVUT, 2018. Bakalářská práce.

[40] Tomáš Jakubec. Matematické modelování a numerická simulace procesů ve fluidních kotlích.
KM FJFI ČVUT, 2019. Výzkumný úkol.

[41] Martinek Jan. Fluidní kotel CFB na spalování dřevní biomasy o parametrech páry 150 t/h;
9,3MPA; 530 ˚C. Diplomová práce. Fakulta strojního inženýrství VUT v Brně, 2015.

[42] John D. Anderson Jr. Computational fluid dynamics: the basics with applications. 1995.

[43] Dejan Kirda. Matematické modelovanie viacfázového prúdenia vo fluidnom lôžku. KM FJFI
ČVUT, 2016. Diplomová práca.

[44] Rhonny Krashinsky, Olivier Giroux, Stephen Jones, Nick Stam, and Sridhar Ra-
maswamy. Nvidia Ampere Architecture In-Depth. https://devblogs.nvidia.com/
nvidia-ampere-architecture-in-depth/. Accessed: 2020-06-17.

[45] Fadl Moukalled, Luca Mangani, Marwan Darwish, et al. The finite volume method in com-
putational fluid dynamics. Springer, 2016.

[46] Tomáš Oberhuber, Atsushi Suzuki, and Vítězslav Žabka. The CUDA implementation of the
method of lines for the curvature dependent flows. Kybernetika, 47(2):251–272, 2011.

[47] Farooq Sher, Miguel A Pans, Chenggong Sun, Colin Snape, and Hao Liu. Oxy-fuel com-
bustion study of biomass fuels in a 20 kWth fluidized bed combustor. Fuel, 215:778–786,
2018.

[48] Rohan Stanger, Terry Wall, Reinhold Spörl, Manoj Paneru, Simon Grathwohl, Max Wei-
dmann, Günter Scheffknecht, Denny McDonald, Kari Myöhänen, Jouni Ritvanen, et al.
Oxyfuel combustion for co2 capture in power plants. International Journal of Greenhouse
Gas Control, 40:55–125, 2015.

[49] Pavel Strachota. Analysis and Application of Numerical Methods for Solving Nonlinear
Reaction-Diffusion Equations. KM FJFI ČVUT, 2012. Dissertation.

[50] Robert Strzodka. Abstraction for AoS and SoA layout in C++. In GPU computing gems
Jade edition, pages 429–441. Elsevier, 2012.

[51] Jacob Waltz. Performance of a three-dimensional unstructured mesh compressible flow
solver on NVIDIA Fermi-class graphics processing unit hardware. International Journal for
Numerical Methods in Fluids, 72(2):259–268, 2013.

[52] Wikipedia contributors. Template metaprogramming — Wikipedia, The Free Encyclo-
pedia. "https://en.wikipedia.org/w/index.php?title=Template_metaprogramming&
oldid=956146355", 2020. Accessed: 2020-03-27.

[53] Wen-ching Yang. Handbook of fluidization and fluid-particle systems. CRC press, 2003.

[54] Rhaleb Zayer, Markus Steinberger, and Hans-Peter Seidel. A GPU-Adapted Structure for
Unstructured Grids. In Computer Graphics Forum, volume 36, pages 495–507. Wiley Online
Library, 2017.

[55] Min Zhou, Ting Xie, Seegyoung Seol, Mark S Shephard, Onkar Sahni, and Kenneth E
Jansen. Tools to support mesh adaptation on massively parallel computers. Engineering
with Computers, 28(3):287–301, 2012.

181

https://devblogs.nvidia.com/nvidia-ampere-architecture-in-depth/
https://devblogs.nvidia.com/nvidia-ampere-architecture-in-depth/
"https://en.wikipedia.org/w/index.php?title=Template_metaprogramming&oldid=956146355"
"https://en.wikipedia.org/w/index.php?title=Template_metaprogramming&oldid=956146355"

182

Appendix A

Distribution of GTMesh

The GTMesh library is accessible at the GitLab repository [12] under the MIT license. The repos-
itory contains the GTMesh library itself located in src/GTMesh and unit tests in src/UnitTests
which are automatically performed when the repository is pushed. The tests are performed on
the server and this practice of automatic testing is called continuous integration. The tests are
utilizing the GTest framework [11]. An example of basic testing of the UnstructuredMesh class
functionality is in Code listing A.1.

This work is accompanied by a CD containing the clone of the repository of GTMesh, its
documentation generated by Doxygen [9], codes computing the simulations demonstrated in
Chapter 7, and the experimental implementation of the logging tool and the class traits in
CUDA. The content of the CD is described in detail in Table A.1.

Code listing A.1 Example of a test case testing the functionality of the UnstructuredMesh
class for a 2D mesh using the GTest library.

1 TEST(UnstructuredMesh2D_Functions_Test , basicTest)
2 {
3 using MeshType = UnstructuredMesh <2, size_t , double >;
4 MeshType mesh;
5

6 // Sets the mesh up as a simple square domain diagonally split into 2 triangles
7 square(mesh); // square mesh made of 2 triangles
8

9 // Test of the cell center calculation (see Section 2.4.5)
10 auto centers = computeCenters <METHOD_DEFAULT >(mesh);
11 std::vector <Vertex <2, double >> expectCenter = {{0.33333 , 0.33333} ,{0.66667 , 0.66667}};
12 // floatArrayCompare returns true if the difference between elements
13 // on the same position of the compared containers in absolute value are lower
14 // than prescibed treshold (by default 1e-5)
15 EXPECT_TRUE(floatArrayCompare ((centers.getDataByDim <2>()), expectCenter));
16

17 // Test of the mesh connections between various dimensions (see Section 2.4.2)
18 std::vector <std::vector <size_t >> expCon20 = { { 0, 1, 2 }, { 1, 2, 3 } };
19 std::vector <std::vector <size_t >> expCon21 = { { 0, 1, 2 }, { 2, 3, 4 } };
20 std::vector <std::vector <size_t >> expCon12 = { { 0 }, { 0 }, { 0, 1 }, { 1 }, { 1 } };
21 std::vector <std::vector <size_t >> expCon02 = { { 0 }, { 0, 1 }, { 0, 1 }, { 1 } };
22

23 EXPECT_EQ ((mesh.connections <2,0>(). getDataByPos <0>()), expCon20);
24 EXPECT_EQ ((mesh.connections <2,1>(). getDataByPos <0>()), expCon21);
25 EXPECT_EQ ((mesh.connections <1,2>(). getDataByPos <0>()), expCon12);
26 EXPECT_EQ ((mesh.connections <0,2>(). getDataByPos <0>()), expCon02);
27

28 // Test of proper mesh coloring (see Section 2.4.4)
29 // testProperColoring returns true if the given colloring is proper
30 // with respect to the dimensions setup and the mesh
31 EXPECT_TRUE ((testProperColoring <1, 0>(mesh , mesh.coloring < 1, 0 >())));
32 }

183

Archive name Content

CUDA_DBGVAR.tar.gz an example of implementation of the general logging tool
in CUDA

doxygen-doc.tar.gz the documentation of the GTMesh library generated
from its source code using Doxygen

GTMesh.tar.gz clone of the GTMesh GIT repository [12]

MultiphaseFlow.tar.gz code calculating the problems presented in
Sections 7.2, 7.3. Each 2D and 3D example is in its
respective subdirectory. Both the examples can be run
by the run.sh script in their directory.

SinglephaseFlow-stack.tar.gz code calculating the problem presented in Section 7.1.
All examples can be run by the shell script corresponding
to the particular mesh, e.g., the run-struct-l1.sh
builds and runs the program for Ts,1 (see Section 7.1).
The meshes are located in the meshes subdirectory.

Table A.1: Content of the CD appended to the thesis. To build the computational examples
(i.e. MultiphaseFlow and SinglephaseFlow-stack) by the prepared shell scripts, the qmake
tool provided by Qt [20] is required.

184

	Introduction
	Unstructured Mesh Representation
	General Unstructured Polyhedral Meshes
	Notation on Unstructured Mesh
	Data Structure Representing Meshes with Arbitrary Topology
	Graph Description
	Possible Representations
	Representation of Choice

	The GTMesh Library
	Project Architecture
	The MeshElements Structure
	Scheme of the MeshElement structure
	Preparation of Generic MeshElement Properties
	Definition of the MeshElement Structure
	Construction of the MeshElements structure
	Mesh Boundary

	Data Associated to the Mesh
	Properties of the MeshDataContainer Class
	Construction of MeshDataContainer
	Generation of MeshDataContainer Using std::integer_sequence

	Mesh Algorithms
	Element Access and the MeshApply Class
	Mesh Connections and the MeshConnections Class
	Elements Neighborhood and the MeshNeighborhood Class
	Mesh Coloring and the ColorMesh Class
	Element Center Calculation
	Element Measure Calculation and the computeMeasures Function
	Elements Orientation and the computeFaceNormals Function

	Mesh Import and Export
	VTK format
	FPMA format
	Mesh Signature

	UnstructuredMesh as the MeshElements Wrapper
	3D Meshes with Non-planar Faces

	Class Traits
	The MemberAccess Class
	Traits as a Tuple of MemberAccess
	Default Traits
	DefaultIOTraits and DefaultArithmeticTraits
	Existence of Default Class Traits
	Macros Creating Default Class Traits

	Class Traits Applications
	Debugging System and Automatic Data I/O
	The VariableExport Class
	Loggers

	Numerical Algorithms Based on Class Traits
	The Runge-Kutta-Merson Solver

	Numerical Solution of Compressible Two-phase Flow
	Governing Equations
	Initial Conditions
	Boundary Conditions

	Numerical Scheme
	Unstructured Mesh Notation
	Finite Volume Method on Unstructured Meshes
	Treatment of Non-planar Faces
	Temporal Discretization

	Realization of the Computation in the GTMesh framework

	Parallel Implementation on GPU
	Adaptation of UnstructuredMesh to GPU
	Adaptation of MeshDataContainer to GPU
	Automatic Conversion Between AoS and SoA

	Simulations
	Comparison of Gas Flow on Several Meshes
	Two-Phase Flow in 2D
	Two-Phase Flow in 3D

	Conclusion
	Bibliography
	Distribution of GTMesh

