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Abstract. In this paper, we obtained the three-dimensional Pauli equation for a spin-1/2 particle in
the presence of an electromagnetic field in a noncommutative phase-space as well as the corresponding
deformed continuity equation, where the cases of a constant and non-constant magnetic fields are
considered. Due to the absence of the current magnetization term in the deformed continuity equation
as expected, we had to extract it from the noncommutative Pauli equation itself without modifying
the continuity equation. It is shown that the non-constant magnetic field lifts the order of the
noncommutativity parameter in both the Pauli equation and the corresponding continuity equation.
However, we successfully examined the effect of the noncommutativity on the current density and the
magnetization current. By using a classical treatment, we derived the semi-classical noncommutative
partition function of the three-dimensional Pauli system of the one-particle and N-particle systems. Then,
we employed it for calculating the corresponding Helmholtz free energy followed by the magnetization
and the magnetic susceptibility of electrons in both commutative and noncommutative phase-spaces.
Knowing that with both the three-dimensional Bopp-Shift transformation and the Moyal-Weyl product,
we introduced the phase-space noncommutativity in the problems in question.

Keywords: 3-D noncommutative phase-space, Pauli equation, deformed continuity equation, current
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1. Introduction
It is well known that the Dirac equation is the relativistic wave equation that describes the motion of the
spin-1/2 fermions and the Pauli equation, which is a topic of great interest in physics, is the non-relativistic wave
equation describing it [1–4]. It is relative to the explanation of many experimental results, and its probability
current density changed to include an additional spin-dependent term recognized as the spin current [5–7].
Pauli equation is shown in [8–12] as the non-relativistic limit of the Dirac equation. Historically, Pauli (1927)
presented his famous spin matrices [13] for adjusting the non-relativistic Schrödinger equation to account for
Goudsmit-Uhlenbeck’s hypothesis (1925) [14, 15]. Therefore, he applied an ansatz for adding a phenomenological
term to the ordinary non-relativistic Hamiltonian in the presence of an electromagnetic field, the interaction
energy of a magnetic field and electronic magnetic moment relative to the intrinsic spin angular momentum of
the electron. Describing this spin angular momentum through the spin matrices requires replacing the complex
scalar wave function by a two-component spinor wave function in the wave equation. Since then, the study of
the Pauli equation became a matter of considerable attention.

In 1928, when Dirac presented his relativistic free wave equation in addition to the minimal coupling
replacement to include electromagnetic interactions [16], he showed that his equation contained a term involving
the electron magnetic moment interacting with a magnetic field, which was the same one inserted by hand in
Pauli’s equation. After that, it became common to count an electron spin as a relativistic phenomenon, and the
corresponding spin-1/2 term could be inserted into the spin-0 non-relativistic Schrödinger equation as will be
discussed in this article to see how this is possible. However, motivated by attempts to understand the string
theory and describe quantum gravitation using noncommutative geometry and by trying to draw a considerable
attention to the phenomenological implications, we focus on studying the problem of a non-relativistic spin-1/2
particle in the presence of an electromagnetic field within 3-dimensional noncommutative phase-space.

As a mathematical theory, noncommutative geometry is by now well established, although at first, its progress
has been narrowly restricted to some branches of physics such as quantum mechanics. However, recently, the
noncommutative geometry has become a topic of great interest [17–23]. It has been finding applications in many
sectors of physics and has rapidly become involved in them, continuing to promote fruitful ideas and the search
for a better understanding. Such as in the quantum gravity [24]; the standard model of fundamental interactions
[25]; as well as in the string theory [26]; and its implication in Hopf algebras [27] gives the Connes–Kreimer
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Hopf algebras [28–30] etc. There are many papers devoted to the study of such various aspects especially in
quantum field theory [31–33] and quantum mechanics [34–36].

This paper is organized as follows. In section 2, we present an analysis review of noncommutative geometry,
in particular both the three-dimensional Bopp-Shift transformation and the Moyal-Weyl product. In section
3, we investigate the three-dimensional Pauli equation in the presence of an electromagnetic field and the
corresponding continuity equation. Furthermore, we derived the current magnetization term in the deformed
continuity equation. Section 4 is devoted to calculating the semi-classical noncommutative partition function
of the Pauli system of the one-particle and N-particle systems. Consequently, we obtain the corresponding
magnetization and the magnetic susceptibility through the Helmholtz free energy, all in both commutative and
noncommutative phase-spaces and within a classical limit. Therefore, concluding with some remarks.

2. Review of noncommutative algebra
Firstly, we present the most essential formulas of noncommutative algebra [36]. It is well known that at very
small scales such as the string scale, the position coordinates do not commute with each other, neither do the
momenta.

Let us accept, in a d-dimensional noncommutative phase-space, the operators of coordinates and momenta
xnci and pnci , respectively. The noncommutative formulation of quantum mechanics corresponds to the following
Heisenberg-like commutation relations[

xncµ , x
nc
ν

]
= iΘµν ,

[
pncµ , p

nc
ν

]
= iηµν ,

[
xncµ , p

nc
ν

]
= i~̃δµν , (µ, ν = 1, ..d) , (1)

the effective Planck constant is the deformed Planck constant, which is given by

~̃ = αβ~ + Tr[Θη]
4αβ~ , (2)

where Tr[Θη]
4αβ~ � 1 is the condition of consistency in quantum mechanics. Θµν , ηµν are constant antisymmetric

d× d matrices and δµν is the identity matrix.
It is shown that xnci and pnci can be represented in terms of coordinates xi and momenta pj in usual quantum

mechanics through the so-called generalized Bopp-shift as follows [34]

xncµ = αxµ − 1
2α~Θµνpν , and pncµ = βpµ + 1

2β~ηµνxν , (3)

with α = 1− Θη
8~2 and β = 1

α being scaling constants.
To the 1rst order of Θ and η, in the calculations we take α = β = 1, so the Equations (3, 2) become

xncµ = xµ − 1
2~Θµνpν , pncµ = pµ + 1

2~ηµνxν , and ~̃ = ~ + Tr[Θη]
4~ . (4)

If the system in which we study the effects of noncommutativity is three-dimensional, we limit ourselves to
the following noncommutative algebra[

xncj , x
nc
k

]
= i 1

2εjklΘl,
[
pncj , p

nc
k

]
= i 1

2εjklηl,
[
xncj , p

nc
k

]
= i
(
~ + Θη

4~

)
δjk , (j, k, l = 1, 2, 3) , (5)

Θl = (0, 0,Θ), ηl = (0, 0, η) are the real-valued noncommutative parameters with the dimension of length2,
momentum2 respectively, they are assumed to be extremely small. And εjkl is the Levi-Civita permutation
tensor. Therefore, we have

xnci = xi −
1
4~εijkΘkpj :


xnc = x− 1

4~Θpy
ync = y + 1

4~Θpx
znc = z

, pnci = pi + 1
4~εijkηkxj :


pncx = px + 1

4~ηy

pncy = py − 1
4~ηx

pncz = pz

. (6)

In noncommutative quantum mechanics, it is quite possible that we replace the usual product with the
Moyal-Weyl (?) product, then the quantum mechanical system will simply become the noncommutative
quantum mechanical system. Let H (x, p) be the Hamiltonian operator of the usual quantum system, then the
corresponding Schrödinger equation on noncommutative quantum mechanics is typically written as

H (x, p) ? ψ (x, p) = Eψ (x, p) . (7)
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The definition of Moyal-Weyl product between two arbitrary functions f(x, p) and g(x, p) in phase-space is
given by [37]

(f ? g)(x, p) = exp[ i2Θab∂xa∂xb + i
2ηab∂pa∂pb ]f (xa, pa) g (xb, pb) = f(x, p)g(x, p)

+
∑
n=1

1
n!
(
i
2
)n Θa1b1 ...Θanbn∂xa1

...∂xakf(x, p)∂xb1
...∂xbkg(x, p)

+
∑
n=1

1
n!
(
i
2
)n
ηa1b1 ...ηanbn∂pa1

...∂pakf(x, p)∂pb1
...∂pbkg(x, p)

, (8)

with f(x, p) and g(x, p) assumed to be infinitely differentiable. If we consider the case of a noncommutative
space, the definition of Moyal-Weyl product will be reduced to [38]

(f ? g)(x) = exp[ i2Θab∂xa∂xb ]f (xa) g (xb) = f(x)g(x) +
∑
n=1

1
n!

(
i

2

)n
Θa1b1 ...Θanbn∂a1 ...∂akf(x)∂b1 ...∂bkg(x).

(9)
Due to the nature of the ?product, the noncommutative field theories for low-energy fields (E2

> 1/Θ) at a
classical level are completely reduced to their commutative versions. However, this is just the classical result
and quantum corrections always reveal the effects of Θ even at low-energies.

On a noncommutative phase-space the ?product can be replaced by a Bopp’s shift, i.e., the ?product
can be changed into the ordinary product by replacing H (x, p) with H (xnc, pnc). Thus, the corresponding
noncommutative Schrödinger equation can be written as

H (x, p) ? ψ (x, p) = H
(
xi −

1
2~Θijpj , pµ + 1

2~ηµνxν
)
ψ = Eψ. (10)

Note that Θ and η terms can always be treated as a perturbation in quantum mechanics.
If Θ = η = 0, the noncommutative algebra reduces to the ordinary commutative one.

3. Pauli equation in noncommutative phase-space
3.1. Formulation of noncommutative Pauli equation
The Pauli equation is the formulation of the Schrödinger equation for spin-1/2 particles, which was formulated
by W. Pauli in 1927. It takes into account the interaction of the particle’s spin with an electromagnetic field.
In other words, it is the nonrelativistic limit of the Dirac equation. Furthermore, the Pauli equation could
be extracted from other relativistic higher spin equations such as the DKP equation considering the particle
interacting with an electromagnetic field [37]. The nonrelativistic Schrödinger equation that describes an
electron in interaction with an electromagnetic potential

(
A0,
−→
A
)
(−̂→p is replaced with −̂→π = −̂→p − e

c

−→
A and Ê

with ε̂ = i~ ∂
∂t − eφ ) is

1
2m

(−̂→p − e

c

−→
A (r)

)2
ψ (r, t) + eφ (r)ψ (r, t) = i~

∂

∂t
ψ (r, t) , (11)

where −̂→p = i~
−→
∇ is the momentum operator, m, e are the mass and charge of the electron, and c is the speed of

light. ψ (r, t) is the Schrödinger’s scalar wave function. The appearance of real-valued electromagnetic Coulomb
and vector potentials, φ (−→r , t) and −→A (−→r , t), is a consequence of using the gauge-invariant minimal coupling
assumption to describe the interaction with the external magnetic and electric fields defined by

−→
E = −−→∇φ− 1

c

∂
−→
A

∂t
,
−→
B = −→∇ ×−→A. (12)

However, the electron gains potential energy when the spin interacts with the magnetic field, therefore, the
Pauli equation of an electron with a spin is given by [1, 8]

1
2m

(−→σ .−̂→π )2
ψ (r, t) + eφψ (r, t) = 1

2m

(−̂→p − e

c

−→
A
)2
ψ (r, t) + eφψ (r, t) + µB

−→σ .
−→
Bψ (r, t) = i~

∂

∂t
ψ (r, t) , (13)

where ψ (r, t) =
(
ψ1 ψ2

)T is the spinor wave function, which replaces the scalar wave function. With
µB = |e|~

2mc = 9.27× 10−24JT−1 being the Bohr’s magneton, −→B is the applied magnetic field vector and µB−→σ
represents the magnetic moment. −→σ ’s being the three Pauli matrices (Tr−→σ = 0), which obey the following
algebra

[σi, σj ] = 2iεijkσk, (14)
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σiσj = δijI + i
∑
k

εijkσk, (15)

(−→σ .−̂→a )(−→σ .−̂→b ) = −̂→a .−̂→b + i−→σ .
(
−̂→a ×

−̂→
b

)
, (16)

−̂→a , −̂→b are any two vector operators that commute with −→σ . It must be emphasized that the third term of
equation (13) is the Zeeman term, which is generated automatically by using feature (16) with a correct g-factor
of g = 2 as reduced in the Bohr’s magneton rather than being introduced by hand as a phenomenological term,
as is usually done.

The Pauli equation in a noncommutative phase-space is

H (xnc, pnc)ψ (xnc, t) = H (x, pnc) ? ψ (x, t) = e
i
2 Θab∂xa∂xbH (xa, pnc)ψ (xb, t) = i~

∂

∂t
ψ (x, t) . (17)

Here we achieved the noncommutativity in space using Moyal ?product, and then the noncommutativity in
phase through Bopp-shift. Using equation (9), we have

H (xnc, pnc)ψ (xnc, t) =

=
{
H (x, pnc) + i

2Θab∂aH (x, pnc) ∂b +
∑
n=2

1
n!

(
i

2

)n
Θa1b1 ...Θanbn∂a1 ...∂akH (x, pnc) ∂b1 ...∂bk

}
ψ. (18)

In the case of a constant real magnetic field −→B = (0, 0, B) = B−→e 3 oriented along the axis (Oz), which is
often referred to as the Landau system. We have the following symmetric gauge

−→
A =

−→
B ×−→r

2 = B

2 (−y, x, 0) , with A0 (x) = eφ = 0. (19)

Therefore, the derivations in the equation (18) shut down approximately in the first-order of Θ, then the
noncommutative Pauli equation in the presence of a uniform magnetic field can be written as follows

H (x, pnc) ? ψ (x) =
{

1
2m

(−→p nc − e

c

−→
A (x)

)2
+ µB

−→σ .
−→
B + ie

4mcΘab∂a

(e
c

−→
A 2 − 2−→p nc.−→A

)
∂b

}
ψ (x) + 0(Θ2),

(20)
with

[−→p nc,−→A] = 0. We now make use of the Bopp-shift transformation (4), in the momentum operator to
obtain

H (xnc, pnc)ψ (xnc, t) =
{

1
2m
(
pi + 1

2~ηijxj −
e
cAi
)2 + µB

−→σ .
−→
B

− ie
4mcΘab∂a

(
2
(
pi + 1

2~ηijxj
)
Ai − e

c

−→
A 2
)
∂b

}
ψ(x, t) = i~ ∂

∂tψ (x, t) ,
(21)

we rewrite the above equation in a more compact form

H (x, pnc) ? ψ (x, t) =
{

1
2m

(−→p − e
c

−→
A
)2
− 1

2m (−→x ×−→p ) .−→η − 1
2m

e
c~

(−→x ×−→A (x)
)
.−→η

+ 1
8m~2 ηijηαβxjxβ + µB

−→σ .
−→
B + e

4~mc

(−→
∇
(

2−→p .−→A − 1
2~

(−→x ×−→A (x)
)
.−→η − e

c

−→
A 2
)
×−→p

)
.
−→Θ
}
ψ (x, t) .

(22)

We restrict ourselves only to the first-order of the parameter η. The only reason behind this consideration is
the balance with the noncommutativity in the space considered in the case of a constant magnetic field. Thus
we now have

H (x, pnc) ? ψ (x, t) =
{

1
2m

(−→p − e
c

−→
A
)2
− 1

2m
−→
L .−→η − e

2mc~

(−→x ×−→A (x)
)
.−→η + µB

−→σ .
−→
B

+ e
4mc~

(−→
∇
(

2−→p .−→A (x)− 1
2~

(−→x ×−→A (x)
)
.−→η − e

c

−→
A 2
)
×−→p

)
.
−→Θ
}
ψ (x, t)) = i~ ∂

∂tψ (x, t) .
(23)

The existence of a Pauli equation for all orders of the Θ parameter is explicitly relative to the magnetic field.
In the case of a non-constant magnetic field, we introduce a function depending on x in the Landau gauge as

A2 = xBf(x), which gives us a non-constant magnetic field. The magnetic field can be easily calculated using
the second equation of equation (12) as follows [33]

−→
B (x) = Bf(x)−→e 3. (24)

If we specify f(x), we obtain different classes of the non-constant magnetic field. If we take f(x) = 1 in this
case, we get a constant magnetic field.

Having the equation (23) on hand, we calculate the probability density and the current density.
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3.2. Deformed continuity equation
In the following we calculate the current density, which results from the Pauli equation (23) that describes a
system of two coupled differential equations for ψ1 and ψ2.

By putting

Qη = Q∗η =
(−→x ×−→A (x)

)
.−→η , QΘ =

(−→
∇
(

2−→p .−→A (x)− 1
2~Qη −

e
c

−→
A 2 (x)

)
×−→p

)
.
−→Θ =

(−→
∇V (x)×−→p

)
.
−→Θ ,

(25)
the noncommutative Pauli equation in the presence of a uniform magnetic field simply reads{

1
2m

(
−~2−→∇2 + ie~

c

(−→
∇ .
−→
A +−→A.−→∇

)
+ e2

c2
−→
A 2
)
−
−→
L .−→η
2m − eQη

2mc~ + µB
−→σ .
−→
B + eQΘ

4mc~

}
ψ = i~

∂

∂t
ψ. (26)

Knowing that −→σ , −→L are Hermitian and the magnetic field is real, and Q∗Θ is the adjoint of QΘ, the adjoint
equation of equation (26) reads

1
2m

{
−~2−→∇2ψ† − ie~

c

(−→
∇ .
−→
A +−→A.−→∇

)
ψ† + e2

c2
−→
A 2ψ†

}
−
−→
L .−→η
2m ψ† − eQη

2mc~ψ
† + µB

−→σ .
−→
Bψ† + e

4mc~ψ
†Q∗Θ =

= −i~∂ψ
†

∂t
. (27)

Here ∗, † stand for the complex conjugation of the potentials, operators and for the wave-functions,
respectively.

To find the continuity equation, we multiply equation (26) from left by ψ† and equation (27) from the right
by ψ, making the subtraction of these equations yields

−~2

2m

{
ψ†
−→
∇2ψ −

(−→
∇2ψ†

)
ψ
}

+ ie~
2mc

{
ψ†
(−→
∇ .
−→
A +−→A.−→∇

)
ψ +

[(−→
∇.
−→
A +−→A.−→∇

)
ψ†
]
ψ
}

+ e
4mc~

(
ψ†QΘψ − ψ†Q∗Θψ

)
= i~

(
ψ† ∂∂tψ + ψ ∂

∂tψ
†) , (28)

after some minor simplefications, we have

−~
2mdiv

{
ψ†
−→
∇ψ − ψ

−→
∇ψ†

}
+ ie

mc
div
{−→
Aψ†ψ

}
+ e

4mc~2

(
ψ†QΘψ − ψ†Q∗Θψ

)
= i

∂

∂t
ψ†ψ. (29)

This will be recognized as the deformed continuity equation. The obtained equation (29) contains a new
quantity, which is the deformation due to the effect of the phase-space noncommutativity on the Pauli equation.

The third term on the left-hand side, which is the deformation quantity, can be simplified as follows

ie

4mc~2

(
ψ†QΘψ − ψ†Q∗Θψ

)
= ie

4mc~2

(
ψ† (V (x) ? ψ)−

(
ψ† ? V (x)

)
ψ
)
, (30)

using the propriety
(−→a ×−→b ) .−→c = −→a .

(−→
b ×−→c

)
= −→b . (−→c ×−→a ), we must also pay attention to the order, ψ†

is the first and ψ the second factor, we have

ie

4mc~2

(
ψ†QΘψ − ψ†Q∗Θψ

)
= e

8mc~2 divV (x)
(−→Θ ×−→∇ (ψ†ψ)) = div

−→
ξ nc. (31)

Using the following identity also gives the same equation as above [6]

υ† (−→π τ)− (−→π υ)† τ = −i~−→∇
(
υ†τ
)
, (32)

where υ, τ are arbitrary two-component spinor. Noting that −→A does not appear on the right-hand side of the
identity; and that this identity is related to the fact that −→π is Hermitian.

It is evident that the noncommutativity affects the current density, and the deformation quantity may apear
as a correction to it. The deformed current density satisfies the current conservation, which means that we have
a conservation of the continuity equation in the noncommutative phase-space. Equation (29) may be contracted
as

∂ρ

∂t
+−→∇ .−→j nc = 0, (33)

where
ρ = ψ†ψ = |ψ|2 , (34)
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is the probability density and

−→
j nc = −→j +−→ξ nc = −i~2m

{
ψ†
−→
∇ψ − ψ

−→
∇ψ†

}
− e

mc

{−→
Aψ†ψ

}
+−→ξ nc, (35)

is the deformed current density of the electrons. The deformation quantity is

−→
ξ nc = e

8mc~2V (x)
(−→Θ ×−→∇ (ψ†ψ)) = e

8mc~2

(
2−→p .−→A − 1

2~Qη −
e

c

−→
A 2
)(−→Θ ×−→∇ (ψ†ψ)) . (36)

Furthermore, the deformed continuity equation for all orders of Θ is proportional to the magnetic field −→B . In
fact, one can explicitly calculate the conserved current for all orders of Θ in the case of a non-constant magnetic
field, thus using equation (24), we have

∂ρ

∂t
+−→∇ .−→j + ie

4mc~2

{
ψ† (V (x) ? ψ)−

(
ψ† ? V (x)

)
ψ
}

= 0, (37)

we calculate the nth order term in the general deformed continuity equation (37) as follows

ψ† (V (x) ? ψ)−
(
ψ† ? V (x)

)
ψ
∣∣
nth

= 1
n!
(
i
2
)n Θa1b1 ...Θanbn

×
(
ψ†∂a1 ...∂akV (x) ∂b1 ...∂bkψ − ∂a1 ...∂akψ

† (∂b1 ...∂bkV (x))ψ + (−1)ncc.
)
.

(38)

We note the absence of the magnetization current term in equation (35), as in commutative case when this
was asserted by authors [1, 4, 8, 13, 16, 27], where at first, they attempted to cover this deficiency by explaining
how to derive this additional term from the non-relativistic limit of the relativistic Dirac probability current
density. Then, Nowakowski and others [6] provided a superb explanation of how to extract this term through
the non-relativistic Pauli equation itself.

Knowing that, in a commutative background, the magnetization current −→j M from the probability current
of the Pauli equation is proportional to −→∇ ×

(
ψ†−→σ ψ

)
. However, the existence of such an additional term is

important and it should be discussed when talking about the probability current of spin-1/2 particles. In
following, we try to derive the current magnetization in a noncommutative background without changing the
continuity equation, and seek if such an additional term is affected by the noncommutativity or not.

3.3. Derivation of the magnetization current
At first, it must be clarified that the authors Nowakowski and others (2011) in [4, 6] derived the non-relativistic
current density for a spin-1/2 particle using minimally coupled Pauli equation. In contrast, Wilkes, J. M
(2020) in [39] derived the non-relativistic current density for a free spin-1/2 particle using directly free Pauli
equation. However, we show here that the current density can be derived from the minimally coupled Pauli
equation in a noncommutative phase-space.

Starting with the noncommutative minimally coupled Pauli equation written in the form

HncPauliψ = 1
2m

(−→σ .−̂→π nc)2
ψ = i~

∂

∂t
ψ, (39)

we multiply the above equation from left by ψ† and the adjoint equation of equation (39) from the right by ψ,
the subtraction of these equations yields the following continuity equation

2m
{((−→σ .−̂→π nc)2

ψ

)†
ψ − ψ†

(−→σ .−̂→π nc)2
ψ

}
= i~

(
ψ†
∂ψ

∂t
+ ψ

∂ψ†

∂t

)
, (40)

noting that the noncommutativity of πnc has led us to express the two terms as follows

i

2m~
∑
i,j

{
(π̂incπ̂jncψ)† σjσiψ − ψ†σiσj (π̂incπ̂jncψ)

}
= ∂ρ

∂t
. (41)

While with only pi, we would have no reason for preferring pipjψ over pjpiψ.
It is easy to verify that the identity (32) remains valid for −→π nc because of the fact that −→π nc is Hermitian.

Therefore, through identity (32), we have

−1
2m

∑
i,j

∇i
{

(π̂jncψ)† σjσiψ + ψ†σiσj (π̂jncψ)
}

+ i

2m~
∑
i,j

{
(π̂jncψ)† σjσi (π̂incψ)− (π̂incψ)† σiσj (π̂jncψ)

}
= ∂ρ

∂t
,

(42)
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then
−1
2m

∑
i,j

∇i
{

(π̂jncψ)† σjσiψ + ψ†σiσj (π̂jncψ)
}

= ∂ρ

∂t
. (43)

Knowing that the 2nd sum in equation (42) gives zero by swapping i and j for one of the sums, then the
probability current vector from the above continuity equation is

ji = 1
2m

∑
j

{
(π̂jncψ)† σjσiψ + ψ†σiσj (π̂jncψ)

}
. (44)

Using the property (15), equation (44) becomes

ji = 1
2m

∑
j

{
(π̂jncψ)† ψ + ψ† (π̂jncψ) + i

∑
k

[
εjik (π̂jncψ)† σkψ + εijkψ

†σk (π̂jncψ)
]}

, (45)

with εjik = −εijk, and using one more time identity (32), we find (this is similar to investigation by [6] in the
case of commutative phase-space)

ji = 1
2m

[
(p̂jncψ)† ψ − e

c

(
Ancj ψ

)†
ψ + ψ†p̂j

ncψ − e

c
ψ†Ancj ψ

]
+ ~

2m
∑
j,k

εijk∇j
(
ψ†σkψ

)
. (46)

In the right-hand side of the above equation, the first term will be interpreted as the noncommutative
current vector −→j nc given by equation (36), and the second term is the requested additional term, namely current
magnetization −→j M , where

j
Mi

= ~
2m

(−→
∇ ×

(
ψ†−→σ ψ

))
i
. (47)

Furthermore, −→j M can also be shown to be a part of the conserved Noether current [40], resulting from the
invariance of the Pauli Lagrangian under the global phase transformation U(1).

What can be concluded here is that the magnetization current is not affected by the noncommutativity,
perhaps because the spin operator could not be affected by the noncommutativity. This is in contrast to what
was previously found around the current density, which showed a great influence of the noncommutativity.

4. Noncommutative Semi-classical Partition Function
In this part of our work, we investigate the magnetization and the magnetic susceptibility quantities of our
Pauli system using the partition function in a noncommutative phase-space. We concentrate, at first, on the
calculation of the semi-classical partition function. Our studied system is semi-classical, so our system is not
completely classical but contains a quantum interaction concerning the spin, therefore, the noncommutative
partition function is separable into two independent parts as follows

Znc = ZncclasZncl, (48)

where Zncl is the non-classical part of the partition function. To study our noncommutative classical partition
function, we assume that the passage between noncommutative classical mechanics and noncommutative quantum
mechanics can be realized through the following generalized Dirac quantization condition [41–43]

{f, g} = 1
i~

[F,G] , (49)

where F , G stand for the operators associated with classical observables f , g and {, } stands for Poisson bracket.
Using the condition above, we obtain from Eq.(5){

xncj , x
nc
k

}
= 1

2εjklΘl,
{
pncj , p

nc
k

}
= 1

2εjklηl,
{
xncj , p

nc
k

}
= δjk + 1

4~2 Θjlηkl = δjk , (j, k, l = 1, 2, 3) .
(50)

It is worth mentioning that in terms of the classical limit, Θη
4~2 � 1 (check ref. [42]), thus

{
xncj , p

nc
k

}
= δjk.

Now based on the proposal that noncommutative observables Fnc correspond to the commutative one F (x, p)
can be defined by [44, 45]

Fnc = F (xnc, pnc), (51)
and for non-interacting particles, the classical partition function in the canonical ensemble in a noncommutative
phase-space is given by the following formula [41, 42]

Zncclas = 1
N !
(
2π~̃

)3N �
e−βH

nc
clas(x,p)d3Nxncd3Npnc, (52)
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which is written for an N particles. 1
N ! is the Gibbs correction factor, considered due to accounting for

indistinguishability, which means that there are N ! ways of arranging N particles at N sites. ~̃ ∼ 4xnc4pnc,
with 1

~̃3 is a factor that makes the volume of the noncommutative phase-space dimensionless.
β defined as 1

KBT
, KB is the Boltzmann constant, where KB = 1.38 × 10−23JK−1. The Helmholtz free

energy is
F = − 1

β
lnZ, (53)

we may derive the magnetization as follows
〈M〉 = −∂F

∂B
. (54)

For a single particle, the noncommutative classical partition function is then

Zncclas,1 = 1
h̃3

�
e−βH

nc
Clas(x,p)d3xncd3pnc, (55)

where d3 is a shorthand notation serving as a reminder that the x and p are vectors in a three-dimensional
phase-space. The relation between equation (52) and (55) is given by the following formula

Zncclas =

(
Zncclas,1

)N
N ! . (56)

Knowing that, using equation (6), we have

d3xncd3pnc =
(

1− Θη
8~2

)
d3xd3p, (57)

furthermore, using uncertainty principle and according to the third equation of equation (4), we deduce

h̃3 = h3
(

1 + 3Θη
4~2

)
+O

(
Θ2η2) . (58)

Unlike other works such as [41], where the researchers used a different formula for Planck’s constant h̃11 =
h̃22 6= h̃33, which led to a different formula of h̃3.

For an electron with a spin in interaction with an electromagnetic potential, once the magnetic field −→B be in
the z-direction, and by equation (19), bear in mind that

[−→p nc,−→Anc
]

= 0, then for the sake of simplicity, the
noncommutative Pauli Hamiltonian from equation (23) takes the form

HPauli (xnc, pnc) = 1
2m

{
(−→p nc)2 − 2e

c
−→p nc.

−→
Anc +

(e
c

)2 (−→
Anc

)2
}

+ µBσ̂zB. (59)

We split the noncommutative Pauli Hamiltonian as HncPauli = Hnccla +Hncl,σ, with Hncl,σ = µBσ̂zB .
It is easy to verify that

(−→p nc)2 = (pncx )2 +
(
pncy
)2 + (pncz )2 = p2

x + p2
y + p2

z −
η

2~Lz + η2

16~2

(
x2 + y2) , (60)

−→p nc.
−→
A = pncx A

nc
x + pncy A

nc
y = B

2

{
− Θ

4~
(
p2
x + p2

y

)
− η

4~
(
y2 + x2)+

(
1 + Θη

16~2

)
Lz

}
, (61)

(−→
Anc

)2
= (Ancx )2 +

(
Ancy

)2 = B2

4

{
x2 + y2 − Θ

2~Lz + Θ2

16~2

(
p2
x + p2

y

)}
. (62)

Using the three equations above, our noncommutative classical Hamiltonian becomes

Hnccla = 1
2m̃

(
p2
x + p2

y

)
+ 1

2mp2
z − ω̃Lz + 1

2m̃ω̃
2 (x2 + y2) , (63)

where Lz = pyx− pxy = (xi × pi)z, and

m̃ = m(
1 + eBΘ

8c~
)2 , ω̃ = cη + 2e~B

4c~m̃
(
1 + eBΘ

c8~
) and 1

2m̃ω̃
2 = 1

2m

(
ηeB

4c~ + η2

16~2 + e2B2

c24

)
. (64)
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Now, following the definition given in equation (55), we express the single particle noncommutative classical
partition function as

Znc
clas,1 = 1

h̃3

�
e−β[ 1

2m̃(p2
x+p2

y)+ 1
2mp

2
z−ω̃Lz+ 1

2 m̃ω̃
2(x2+y2)]d3xncd3pnc. (65)

It should be noted that we want to factorize our Hamiltonian into momentum and position terms. This
is not always possible when there are matrices (or operators) in the exponent. However, within the classical
limit, it is possible. Otherwise, to separate the operators in the exponent, we use the Baker-Campbell-Hausdorff
(BCH) formula given by (first few terms)

e[Â+B̂] = e[Â]e[B̂]e[−
1
2 [Â,B̂]]e

1
6(2[Â,[Â,B̂]]+[B̂,[Â,B̂]])... (66)

We can now start to replace some of the operators in the exponent

Znc
clas,1 = 1

h̃3

�
e−β[ 1

2m̃(p2
x+p2

y)+ 1
2mp

2
z]e−β[ 1

2 m̃ω̃
2(x2+y2)]eβω̃Lzd3pncd3xnc. (67)

We should expand exponentials containing ω̃, and by considering terms up to the second-order of ω̃, we
obtain

Zncclas,1 = 1
h̃3

�
e
− β2

[
p2
x+p2

y
m̃ + p2

z
m

] (
1 + βω̃Lz + 1

2β
2ω̃2L2

z

)(
1− βω̃2 m̃

2
(
x2 + y2)) d3pncd3xnc, (68)

therefore, we have the appropriate expression for Zncclas,1

Znc
clas,1 = 1− 7Θη

8~2
h3

�
e

−β
2

[
p2x+p2y
m̃

+ p2z
m

]
d3pd3x+ (1− 7Θη

8~2 )βω̃
h3

�
e

−β
2

[
p2x+p2y
m̃

+ p2z
m

]
Lzd

3pd3x

+(1− 7Θη
8~2 )β2ω̃2

2h3

�
e

−β
2

[
p2x+p2y
m̃

+ p2z
m

]
L2
zd

3pd3x− (1− 7Θη
8~2 )βω̃2

2h3

�
e

−β
2

[
p2x+p2y
m̃

+ p2z
m

]
(x2 + y2) d3pd3x.

(69)

In the right-hand side of the above equation, it is easy to check that the second integral goes to zero and the
third and last integrals cancel each other, and thus we obtain

Znc
clas,1 =

1− 7Θη
8~2

h3

�
e

−β
2

[
p2x+p2y
m̃

+ p2z
m

]
d3pd3x. (70)

Using the integral of Gaussian function
�
e−ax

2
dx =

√
π
a , we have

Znc
clas,1 =

1− 7Θη
8~2

h3

�
d3x

�
e

−β
2

[
p2x+p2y
m̃

+ p2z
m

]
d3p = V

Λ3
1− 7Θη

8~2(
1 + eBΘ

8c~

)2 , (71)

where V , Λ = h (2mπKBT )−
1
2 are the volume and the thermal de Broglie wavelength, respectively. The

non-classical partition function using Hncl,σ is

Zncl = ZNncl,1 =
( ∑
σz=±1

eβµB σ̂zB

)N
= 2NcoshN (βµBB) . (72)

Finally, the Pauli partition function for a system of N particles in a three-dimensional noncommutative
phase-spaces is

Znc = (2V )N

Λ3NN !

(
1− 7Θη

8~2

)N
coshN (βµBB)(

1 + eBΘ
8c~
)2N . (73)
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In the limit of the noncommutativity, i.e. Θ→ 0, η → 0, the above expression of Znc tends to the result of
Z in the usual commutative phase-space, which is

Z = (2V )N

Λ3NN !cosh
N (βµBB) . (74)

Using formulae (53) and (54), we find the magnetization in noncommutative and commutative phase-space,
thus

Fnc = −N
β
ln (2V )

Λ3

(
1− 7Θη

8~2

)
cosh (βµBB)(

1 + eBΘ
8c~
)2 + 1

β
lnN !, (75)

we can use lnN ! = N lnN −N (Stirling’s formula) to simplify further. The noncommutative magnetization is

〈Mnc〉 = −∂F
nc

∂B
= 2N

β

eΘ
(8c~ + eBΘ) +NµBtanh (βµBB) . (76)

The commutative magnetization is

〈M〉 = −∂F
∂B

= NµBtanh (βµBB) , (77)

it is obvious that 〈Mnc〉|Θ=0 = 〈M〉. We may derive the magnetic susceptibility of electrons χ = 1
V
∂〈M〉
∂B in a

noncommutative phase-space using the magnetization (76) by

χnc = −2 N
V β

(eΘ)2

(8c~ + eBΘ)2 + N

V
βµ2

B

(
1− tanh2 (βµBB)

)
, (78)

where the commutative magnetic susceptibility χ = χnc (Θ = 0) is

χ = N

V
βµ2

B

(
1− tanh2 (βµBB)

)
. (79)

Finally, we conclude with the following special cases. Let us first consider B = 0, then we have

〈M〉 = 0; 〈Mnc〉 = 2N
β

eΘ
8c~ ; and χnc = −2 N

V β

(eΘ)2

(8c~)2 + N

V
βµ2

B . (80)

For B →∞ and T = Cst, tanh (βµBB) = 1, we obtain
〈Mnc〉 = 〈M〉 = NµB ; and χnc = χ ∼ 0. (81)

As well when T →∞,β → 0 (with B be constant), tanh (βµBB) = 0, we obtain
〈Mnc〉 → ∞, 〈M〉 = 0; and χnc →∞, χ = 0. (82)

Armed with the partition function Z, we can compute other important thermal quantities, such as the
average energy U = − ∂

∂β lnZ, the entropy S = lnZ − β ∂
∂β lnZ and the specific heat C = β2 ∂2

∂2β lnZ. This is of
course in both case of noncommutative and commutative phase-spaces.

5. Conclusion
In this work, we have studied the three-dimensional Pauli equation and the corresponding continuity equation
for a spin-1/2 particle in the presence of an electromagnetic field in a noncommutative phase-space, considering
constant and non-constant magnetic fields. It is shown that the non-constant magnetic field lifts the order of
the noncommutativity parameter in both the Pauli equation and the corresponding continuity equation. Given
the known absence of the magnetization current term in the continuity equation, even in the noncommutative
phase-space as confirmed by our calculations, we extracted the magnetization current term from the Pauli
equation itself without modifying the continuity equation. Furthermore, we found that the density current is
conserved, which means that we have a conservation of the deformed continuity equation.

By using the classical treatment (within the classical limit), the magnetization and the magnetic susceptibility
quantities are explicitly determined in both commutative and noncommutative phase-spaces through a semi-
classical partition function of the Pauli system of the one-particle and N-particle systems in three dimensions.
Furthermore, to see the behaviour of these deformed quantities, we carried out some special cases in commutative
and noncommutative phase-spaces.

Finally, we can say that we successfully examined the influence of the noncommutativity on the problems in
question, where the noncommutativity was introduced using both the three-dimensional Bopp-Shift transforma-
tion and the Moyal-Weyl product. Furthermore, the noncommutative corrections to the nonrelativistic Pauli
equation and the continuity equation are also valid up to all orders in the noncommutative parameter. Our
results’ limits are in good agreement with those obtained by other authors as discussed and in the literature.
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