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Abstract
Reinforcement Learning (RL) algorithms can optimally solve dynamic decision and control
problems in engineering, economics, medicine, artificial intelligence, and other disciplines.
However, state-of-the-art RL methods still have not solved the transition from a small
set of discrete states to fully continuous spaces. They have to rely on numerical function
approximators, such as radial basis functions or neural networks, to represent the value
function or policy mappings. While these numerical approximators are well-developed, the
choice of a suitable architecture is a difficult step that requires significant trial-and-error
tuning. Moreover, numerical approximators frequently exhibit uncontrollable surface
artifacts that damage the overall performance of the controlled system.

Symbolic Regression (SR) is an evolutionary optimization technique that automatically,
without human intervention, generates analytical expressions to fit numerical data. The
method has gained attention in the scientific community not only for its ability to recover
known physical laws, but also for suggesting yet unknown but physically plausible and
interpretable relationships. Additionally, the analytical nature of the result approximators
allows to unleash the full power of mathematical apparatus.

This thesis aims to develop methods to integrate SR into RL in a fully continuous
case. To accomplish this goal, the following original contributions to the field have been
developed.

(i) Introduction of policy derivation methods. Their main goal is to exploit the full
potential of using continuous action spaces, contrary to the state-of-the-art discretized
set of actions.

(ii) Quasi-symbolic policy derivation (QSPD) algorithm, specifically designed to be
used with a symbolic approximation of the value function. The goal of the proposed
algorithm is to efficiently derive continuous policy out of symbolic approximator. The
experimental evaluation indicated the superiority of QSPD over state-of-the-art methods.

(iii) Design of a symbolic proxy-function concept. Such a function is successfully used
to alleviate the negative impacts of approximation artifacts on policy derivation.

(iv) Study on fitness criterion in the context of SR for RL. The analysis indicated
a fundamental flaw with any other symmetric error functions, including commonly
used mean squared error. Instead, a new error function procedure has been proposed
alongside with a novel fitting procedure. The experimental evaluation indicated dramatic
improvement of the approximation quality for both numerical and symbolic approximators.

(v) Robust symbolic policy derivation (RSPD) algorithm, which adds an extra level of
robustness against imperfections in symbolic approximators. The experimental evaluation
demonstrated significant improvements in the reachability of the goal state.

All these contributions are then combined into a single, efficient SR for RL (ESRL)
framework. Such a framework is able to tackle high-dimensional, fully-continuous RL
problems out-of-the-box. The proposed framework has been tested on three bench-
marks: pendulum swing-up, magnetic manipulation, and high-dimensional drone strike
benchmark.

Keywords: reinforcement learning, optimal control, function approximation,
evolutionary optimization, symbolic regression, robotics, autonomous systems
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Abstrakt
Algoritmy posilovaného učení (RL) umí optimálně řešit problémy dynamického rozhodo-
vání a řízení např. v technických disciplínách, ekonomice, medicíně a umělé inteligenci. Ani
nejnovější metody RL ale dosud nepřekročily hranici mezi malými prostory diskrétních
stavů a spojitými prostory. K reprezentaci užitkové funkce a řídící strategie využívají tyto
algoritmy numerické funkční aproximátory, např. ve formě RBF funkcí nebo neuronových
sítí. I když numerické aproximátory jsou dobře prostudovanou oblastí, výběr vhodného
aproximátoru a jeho architektury je velmi obtížným krokem, který vyžaduje ladění meto-
dou pokus-omyl. Navíc, numerické aproximátory díky své structuře skoro vždy obsahují
tzv. artefakty, které mohou uškodit kvalitě řízení kontrolovaného systému.

Symbolická regrese (SR) je evoluční optimalizační metoda, jejímž cílem je nalézt
symbolický popis funkce, která co nejpřesněji modeluje trénovací data, a to automaticky,
bez zásahu člověka. Tato metoda získala pozornost vědecké komunity nejenom pro její
schopnost nalézt přesný zápis známých fyzikálních zákonů, ale i pro schopnost popsat
jednoduchou a interpretovatelnou formou jiné složité závislosti v datech. Navíc, analytická
podstata řešení umožňuje použití matematického aparátu.

Cílem dizertace je vývoj metod pro integraci symbolické regrese do posilovaného učení
v případě kompletně spojitých úloh. Tohoto cíle se podařilo dosáhnout prostřednictvím
následujících původních příspěvků do oboru.

(i) Zavedení metod pro odvozování řídicích strategií. Tento přístup se snaží plně využívat
potenciálu spojitých akčních prostorů, což jej odlišuje od současných metod, které pracují
s diskretizovanými akcemi.

(ii) Návrh QSPD algoritmu (Quasi-symbolic policy derivation algorithm) určeného
speciálně pro použití v kombinaci se symbolickým aproximátorem užitkové funkce. Cílem
navrženého algorithmu je efektivní odvozování spojité řídicí strategie z symbolického
aproximátoru. Experimentálně bylo ověřeno, že QSPD překoná nejlepší současné metody.

(iii) Návrh konceptu symbolické proxy-funkce. Tato funkce byla s úspěchem využita k
odstranění negativního vlivu aproximáčních artefaktů na odvozenou řídící strategii.

(iv) Studie fitness kritéria v kontextu symbolické regrese pro posilované učení. Tato
analýza ukázala zásadní nedostatky běžně používané střední kvadratické chyby a jiných
symetrických funkcí. Byla navržena nová chybová funkce spolu s novou metodou pro
trénování/učení modelu. Experimentální ověření potvrdilo výrazné zlepšení kvality řešení
pro numerické a symbolické aproximátory.

(v) Návrh RSPD algoritmu (Robust symbolic policy derivation algorithm), který nabízí
vyšší robustnost vůči nedokonalostem symbolického aproximátoru. Experimentální ověření
ukázalo zásadní zvýšení úspěšnosti dosažení cílového stavu.

Společně byly všechny tyto příspěvky zkombinovány do jednoho výsledného obecného
frameworku, který provádí symbolickou regresi pro posilované učení (ESRL - efficient SR
for RL). Bez nutnosti dalších úprav tento framework zvládá řešení vysoce dimenzionál-
ních, kompletně spojitých problémů. Řešení bylo testováno na třech úlohách: vyšvihnutí
inverzního kyvadla, magnetická manipulace a vysoce dimenzionální útok dronem.

Klíčová slova: posilované učení, optimální řízení, approximace funkcí, evoluční
optimalizace, symbolická regrese, autonomní systémy
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Chapter 1
Introduction and Specification of the
Research Questions

1.1 Symbolic regression for reinforcement learning
in continuous spaces

We live in a very interesting world: a world of information, constant opti-
mization, goal-driven solutions, and industrialized Artificial Intelligence (AI).
There are quite a few fields that are not touched by the AI (yet). We, human-
ity, are slowly but steadily learning to rely on AI decisions and, simultaneously,
improving our ability to describe our needs to machines. Cooperation of that
kind is phenomenal and is gradually making its way into the history books
as one of the key components of modern civilization.

One of the hot AI topics nowadays is Reinforcement Learning (RL). Over
the last decade, there were many sci-fi looking titles involving RL ([1], [2],
[3], [4], [5] and many more). Most of these achievements sound more like
magic rather than science (which, according to Arthur C. Clarke [6], is quite
normal).

However, our new magic is built on top of the well-established mathematical
foundation - approximation and optimization. “How to approximate?” and
“optimize what?” are two key questions when it comes to the implementation
of merely any AI task. RL is no exception. Fortunately, the answer to
“optimize what?” is clear and based on the biological foundation, developed
into a formalized, powerful and proven framework. Such a framework fully
covers the discrete case, where a limited number of system states exists. The
solution for that case can be represented as a complete table of optimal
actions for any given circumstances (frequently, as a table of epic sizes).
Unfortunately, the computation of such a table is subject to the curse of
dimensionality. One of the obvious ways to alleviate this drawback is by using
approximations. Right after that decision, a new question arises: “How to
approximate?”

The current prevalent vector of approximate RL research lies in using neural
networks and parallel computing. Additionally, many papers discover the
landscape of improvement techniques, e.g., efficient hyper-parameter tuning
[7], sampling strategies [8], and incorporating a priori knowledge into RL [9],
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1. Introduction and Specification of the Research Questions..................
etc. Despite many successes mentioned above, the vast majority of ongoing
research topics accept huge computational requirements as an inevitable
evil. In addition, another big drawback of the current research vector is the
close-to-zero interpretability of the resulting policy. However, despite these
challenges, current methods perform well on large but still discrete spaces.

When moving into the realm of continuous tasks, an approximation is no
longer just a desirable option: it is a necessity. Even for low-dimensional
tasks, it is no longer possible to map all the states into the decision table. A
good answer to the question “how to approximate” then becomes critical. One
of the possible candidates is Symbolic Regression (SR) due to the following
benefits:. Approximator is a mathematical formula, which allows analysis and

interpretation.. Due to the stochastic and generative nature of symbolic regression, the
computational complexity grows slowly with additional dimensions.. Symbolic nature allows to employ the whole mathematical apparatus at
any stage..Known physics can be organically embedded into the learning process.

Despite these outstanding benefits, SR is not inherently suitable for RL
as a plug-and-play technique, as will be demonstrated later. There are
many challenges to be solved before it can become a viable and competitive
technique for the task. Altogether, it results in the following goal of the thesis,
split into four research questions:

Develop methods to integrate symbolic regression into reinforcement
learning in continuous spaces.

RQ 1. How to use a symbolic approximator efficiently? What benefits
could be achieved?

RQ 2. Is it possible to fit a value function? How to build a minimum
valuable product?

RQ 3. What criterion should be optimized?

RQ 4. How can symbolic regression be integrated into reinforcement
learning efficiently?

1.2 Thesis structure

The thesis is composed of the papers presented in Appendix C-Publications, as
well as from the novel never published material based on the authors’ original
ideas and their implementations. Presented papers form the second and the
third chapters of the thesis and a bigger part of Appendices A-Benchmarks
and B-SNGP.

2



.......................... 1.3. Reinforcement learning preliminaries

The high-level pattern of the thesis is following. Each chapter assumes
the existence and availability of some components, e.g., ideal numerical
approximation, dynamics function, etc. For each consecutive chapter, these
assumptions are relaxed. Assumptions are presented below and duplicated in
corresponding epigraphs for better readability.

The rest of the current chapter is dedicated to necessary preliminaries,
used notation, related work, and definition of the scope. Chapters 2-5 have
the following structure:

Chapter Assumptions Content Research
question

2 Given: symbolic optimal
V-function, reward func-
tion, dynamics function

Policy derivation methods in
general, efficient policy deriva-
tion from symbolic approxi-
mation.

RQ 1.

3 Given: numerically-
approximated optimal
V-function, reward func-
tion, dynamics function

First attempts to compute
simplified symbolic regression
of a V-function.

RQ 2.

4 Given: few samples from
optimal V-function, re-
ward function, dynamics
function

Analysis of a fitness criterion
and its influence on a result
policy.

RQ 3.

5 Given: dynamics and re-
ward functions

Combination of the achieved
results into efficient SR for RL
framework.

RQ 4.

Chapter 6 then summarizes the thesis. Additionally, there are four ap-
pendices. Appendix A-Benchmarks contains a description and necessary
mathematics for the used benchmarks. Appendix B-SNGP describes in
details Single Node Genetic Programming (SNGP) - symbolic regression
technique used throughout the thesis. Appendix C-Publications provides a
list of authors’ papers. Finally, used acronyms are collected in Appendix D-
Acronyms.

1.3 Reinforcement learning preliminaries

Reinforcement Learning algorithms provide a way to solve dynamic decision-
making and control problems [10], [11], [12]. An RL agent interacts with the
system to be controlled by measuring its state and applying actions according
to a certain policy. After applying an action, the agent receives a scalar
reward related to the immediate performance. The goal is to find an optimal
policy, which maximizes the cumulative reward.

The available RL algorithms can be broadly classified into critic-only,
actor-only, and actor-critic methods [13]. Critic-only methods first find the
value function (V-function) and then derive an optimal policy from this value
function. In contrast, actor-only methods search directly in the policy space.
The two approaches can be combined into actor-critic architecture, where the
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1. Introduction and Specification of the Research Questions..................
actor and critic are both represented explicitly and trained simultaneously.
Each class can be further divided into model-based and model-free algorithms.
In the model-based scenario, a system model is used during learning or
policy derivation. The system model may be stochastic or deterministic.
The simplest possible form of RL is then deterministic, model-based, and
either critic-only or actor-only. Actor-only design requires a computationally
expensive policy evaluation step at each iteration of the learning process. In
a continuous task, each of these steps consists of fitting an approximation
of the V-function for a given policy. In other words, actor-only design in
continuous space requires building two kinds of approximators simultaneously,
for policy function and V-function, respectively. Thus, the deterministic,
model-based, and critic-only version can be considered the simplest form of
RL. For that reason, it is frequently used throughout the paper since it allows
a more precise root-cause analysis of emergent challenges.

The typical learning process, depicted in Figure 1.1, consists of three steps:..1. Data collection – using a model of the system or the system itself, samples
in the form (xk, u, xk+1, rk+1) are collected. Here, xk is the system state,
u is the control input (action), xk+1 is the state that the system reaches
from state xk after applying action u, rk+1 is the immediate reward for
that transition...2. Computation of the optimal V-function – based on the samples, an
approximation of the V-function is learned, which for each system state
predicts the cumulative long-term reward obtained under the optimal
policy...3. Policy derivation – based on the computed V-function, the policy is
derived at each sampling time (or simulation step) so that the system
can be controlled.

1.3.1 Notation

Define an n-dimensional state space X ⊂ Rn, and m-dimensional action
space U ⊂ Rm. The model is described by the state transition function
xk+1 = f(xk, u), with xk, xk+1 ∈ X and u ∈ U . The reward function ρ(·)
assigns a scalar reward rk+1 ∈ R to the state transition from xk to xk+1:

xk+1 = f(xk, u)
rk+1 = ρ(xk, u, xk+1)

(1.1)

The reward function ρ(·) may depend on less variables, as discussed further
in Section 1.3.3.

The value function (V-function), which describes the best possible value of
the objective is as a function of the state x. It can be computed by solving
the Bellman equation:

V (x) = max
u

[ρ(x, u, f(x, u)) + γV (f(x, u))] (1.2)
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Figure 1.1: Typical workflow of model-based critic-only reinforcement learning.

where γ is the discount factor (a user-defined parameter), which lies within
[0, 1) interval.

Define V̂ as optimal V-function. The policy π is the mapping:

π : X → U (1.3)

and the optimal policy corresponding to V̂ (x) is given by:

π(x) ∈ argmax
u

[
ρ(x, u, f(x, u)) + γV̂ (f(x, u))

]
(1.4)

1.3.2 Fuzzy V-iteration algorithm

There are several methods to approximate the V-function for continuous state
spaces. Throughout the thesis, the fuzzy V-iteration algorithm is used [14] due
to the multiple benefits. It is guaranteed to converge (under certain conditions)
and the fuzzy approximator allows to interpret the values of each fuzzy core
directly as the V-function value. The learning process can be briefly described
as follows. Define a set of samples S = {s1, s2, . . . , sN} on an equidistant
grid in X . The number of samples per dimension is described by vector B =
[b1, b2, . . . , bn]T with the total number of samples N =

∏n
i=1 bi. Further define

a vector of fixed triangular basis functions φ = [φ1(x), φ2(x), . . . , φN (x)]T
where each φi(x) is centered in si, i.e., φi(si) = 1 and φj(si) = 0, ∀j 6= i.
The basis functions are normalized so that

∑N
j=1 φj(x) = 1, ∀x ∈ X . Finally,

define a parameter vector θ = [θ1, θ2, . . . , θN ]T , θ ∈ RN . The V-function
approximation is defined as:

V̂ (x) = θTφ(x) (1.5)

The fuzzy V-iteration is:

θj+1
i ← max

u∈U

[
r(si, u) + γ (θj)T φ (f(si, u))

]
, i = 1, 2, ..., N (1.6)
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where U is a discrete control input values U = {u1, u2, . . . , uN} drawn from U .
The iteration terminates when the following convergence criterion is satisfied:

ε ≥ ||θj − θj−1||∞ (1.7)

where ε is a convergence threshold.

1.3.3 Reward function design

The reward function ρ(·) is usually designed by the experimenter. It provides
a scalar reward signal to evaluate immediate performance. Additionally, the
reward function is utilized during policy derivation. Currently, there are no
best practices of the reward function design in the continuous-valued RL
domain. Reward function, typically, may depend on the following parameters -
x, u, and f(x, u). Omitting some of these terms may lead to the consequences
listed below:.Omitted x, the reward function is defined as ρ(f(x, u), u)): during

learning, the immediate reward propagates from the goal state to other
states iteratively. Typically, an extremum of the reward function lies in a
goal state xdes. If there exists such u that f(xdes, u) = xdes, the reward
at the goal state would be constant, making V (xdes) = max(V (·)) =
ρ(f(x, u), u). However, if such action does not exist or cannot be found
with perfect precision, the reward would not be constant, which causes
V-function to drift along the value axis..Omitted u, reward function is defined as ρ(x, f(x, u)): such definition
results in the impossibility to select a less costly action in a situation
where several inputs lead to the same state. Such situations frequently
occur during policy derivation.. Omitted f(x, u) and u, reward function is defined as ρ(x): during policy
derivation renders the reward function redundant. At every time step of
the policy derivation

argmax
u∈U

[
ρ(x) + γV̂ (f(x, u))

]
≡

argmax
u∈U

[
const + γV̂ (f(x, u))

] (1.8)

For this thesis, the full form of the reward function is used, namely ρ(x, u, f(x, u),
unless stated otherwise. To simplify the notation, omitted terms are not
included in function definition and term of state space is placed first, e.g.,
ρ(f(x, u), u) ≡ ρ(0 · x, u, f(x, u)).

1.4 Symbolic regression preliminaries

Symbolic regression (SR) is an evolutionary optimization technique that
automatically, without human intervention, generates analytical expressions
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to fit numerical data [15]. The method has gained attention in the scientific
community for its ability to recover known physical laws, but also to suggest
yet unknown but physically plausible and interpretable relationships [16, 17].

More specifically, given a set of data (ϕ, y), where ϕ is a vector of input
variables (regressors) and y is an output (regressand), SR searches for a
function f̂(ϕ, θ) that fits the data as well as possible. Both the structure of
f̂ and its parameters are subject to search. This is achieved by evolving a
population of functions until an individual with sufficient representational
capabilities is found. The individuals in the population are represented as
trees, consisting of nodes connected by branches. Every node in a tree can
represent either a function from some predefined set of functions F or a
terminal from the terminal set T . The set F also contains operators such
as addition, multiplication, time-shift, differentiation, etc. The available
functions and the operators are collectively referred to as function patterns.
The terminal can be either a numerical constant or a variable. When a node
represents a function, the number of branches created at this node equals the
number of arguments the function requires. The representational capability
of an individual in the population is measured by its fitness, a numerical
measure of the error between f̂(ϕ) and y in some metric, such as the sum of
squared errors or a correlation measure between the model output and the
data.

The search process starts by creating an initial population of random
individuals. Some of the individuals (parents) are selected and modified
by evolutionary operators, typically crossover and mutation. The crossover
operation interchanges part of a parent individual with another parent. A
random node is selected in each parent, and the sub-tree connected to this
node is swapped with that of the other parent (the sub-tree contains all the
nodes and branches connected to the selected node down the tree). The
mutation operation is similar to crossover but involves only one parent. A
random node in the parent is selected, and the sub-tree connected to this
node is replaced by a randomly created sub-tree. When the new individual
(child or offspring) has higher fitness than its parent, it replaces the parent in
the new generation. This process keeps repeating over many generations until
sufficiently fit individuals are found or until a predefined number of generations
is reached. Given the final population evolved by the SR procedure, one
usually has to make a trade-off between the complexity of the models and
their performance. This involves Pareto optimization and may also include a
test for the physical interpretability of the model.

1.4.1 Single node genetic programming overview

Genetic programming (GP) belongs to the methods frequently used to solve
the symbolic regression problem. Besides the standard Koza’s tree-based GP
[15], many other variants have been proposed, such as Grammatical Evolution
[18] which evolves programs whose syntax is defined by a user-specified
grammar, Gene Expression Programming [19] that evolves linear chromosomes

7



1. Introduction and Specification of the Research Questions..................
that are expressed as tree structures through a genotype-phenotype mapping
or graph-based Cartesian GP (CGP) that uses a linear integer representation
for expressing programs in the form of a directed graph [20].

For the thesis, a Single Node Genetic Programming (SNGP) [21], [22] is
used. Below, a brief introduction of the method is provided. A full description
of SNGP can be found in Appendix B-SNGP.

SNGP is a graph-based GP method that evolves a population of individuals,
each consisting of a single program node. The node can be either a terminal,
i.e., a constant or a variable in case of the symbolic regression problem, or
a function chosen from a set of functions defined for the problem at hand.
Importantly, the individuals are not entirely distinct, they are interlinked in
a graph structure similar to that of CGP, so some individuals act as input
operands of other individuals.

Formally, a SNGP population is a set of L individualsM = {m0, . . . ,mL−1},
with each individual mi being a single node represented by the tuple mi =
〈ui, fi, Succi, P redi, Oi〉, where. ui ∈ T ∪F is either an element chosen from a function set F or a terminal

set T defined for the problem;. fi is the fitness of the individual;. Succi is a set of successors of this node, i.e. the nodes whose output
serves as the input to the node;. Predi is a set of predecessors of this node, i.e. the nodes that use this
node as an operand;. Oi is a vector of outputs produced by this node.

Typically, the population is partitioned so that the first Lterm nodes, at
positions 0 to Lterm−1, are terminals, followed by function nodes. Importantly,
a function node at position i can use as its successor (i.e., the operand) any
node that is positioned lower down in the population relative to the node i.
This means that for each s ∈ Succi there is 0 ≤ s < i. Similarly, predecessors
of individual i must occupy higher positions in the population, i.e. for each
p ∈ Predi there is i < p < L. Note that each function node is, in fact, a
root of a program tree that can be constructed by recursively traversing its
successors towards the leaf terminal nodes.

An operator called successor mutation (smut), proposed in [21], is used
to modify the population. It takes an individual and replaces one of its
successors by a reference to another chosen individual of the population,
making sure that the constraint imposed on successors is satisfied. Nodes to
be mutated are chosen using a depthwise selection proposed in [23], which
takes into account both the quality and depth of nodes. Output values of
the mutated node and all nodes higher up in the population affected by the
mutation operation are recalculated. In addition, the predecessor lists of all
affected nodes are updated accordingly.
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Finally, the population is evolved using a local search-like procedure. In
each iteration, a new population is produced by the smut operator, which
is then accepted for the next iteration if it is no worse than the original
population.

The evolution is carried out via a hill-climbing mechanism using a smut
operator and an acceptance rule, which can have various forms. Here, the new
population is accepted if and only if the best fitness in the population has
not been worsened by the mutation operation. Otherwise, the modifications
made by the mutation are reversed.

1.5 Related work

One of the first contributions to the problem belongs to [24]. In this work,
genetic programming was used to generate a structured search space for the
Q-learning algorithm [10]. This early contribution showed the potential of the
combination, resulting in significant learning speed improvement. However,
no following work attempted to extend the achieved results to continuous
spaces. Consequent work [25] encoded state-action pairs of the Q-table as
leaves of a tree. In combination with genetic programming, it successfully
fitted discrete Q-function for the well-known maze problem. This approach
used a temporal difference algorithm as a driver for learning. Despite great
results, this approach works only for discrete spaces. Consequently, it is not
scalable due to the curse of dimensionality.

In [26], the optimal policy was searched directly. Evaluation of the policy
was done by means of Monte-Carlo simulations. As a result, this work
produced interpretable discrete policies encoded as if-then rules. However,
the overall performance of such policies was reported to be highly suboptimal.
A year later, these poor results were confirmed in [27]. This work combined
genetic programming with reinforcement learning, similarly to [26]. The
main focus of the research was genetic programming. However, in this
work, continuous action spaces were used. Unlike [26], the results were not
reportedly poor but questionable in terms of optimality.

Another interesting approach was proposed in [28]. In this work, genetic
programming was used to construct meta-actions - sequences of actions, which
then were used in the standard Q-learning. While this approach does not
produce interpretable symbolic policy, it may be considered as a supplementary
method to speed up the learning phase. [29] followed the same philosophy
and studied genetically produced synthesis of features. Through this process,
significant dimensionality reduction was achieved, which speeded up the
learning process. Another supplementary usage of genetic programming was
introduced in [30]. This work studied the possibility of producing genetically
optimized reward functions. Significant changes in convergence speed were
reported. The further paper from the same authors [31] provided a formal
analysis of the convergence speed. The work is closely related to so-called
reward shaping [32].

One of the first attempts to couple evolution with a V-function was intro-
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duced in [33]. In this work, genetic programming served as an optimization
technique. V-function of the task was approximated by parametric tiles,
which served as basis functions. Genetic programming produced a population
of tiles of different sizes. Approximate V-iteration was then employed on these
tiles. While the overall approach was novel, the optimality of the produced
solutions is questionable.

[34] introduced one of the first attempts to represent a policy function as
a closed-form algebraic formula. It was based on the explicit generation of
algebraic formulas with predefined length, using predefined functions and
operators. Additionally, it was the first attempt to work with continuous
states. This work was intended to serve as a proof of concept, and the
concept was successfully proved. Despite suboptimal performance and scaling
issues, the resulting policies were working for continuous states and were
interpretable.

In [35], continuous control tasks were solved by means of genetic program-
ming. The fitness function for the optimization was operated through explicit
simulations. Unlike [26], this work demonstrated near-optimal performance
of the result continuous policy. While it is indeed a feasible approach, explicit
simulations are computationally expensive and may have dimensionality-
related issues. [36] relaxed interpretability in favor of optimality. This work
was based on the fuzzification of policies produced by means of multi-gene
genetic programming. Again, the fitness function was operated through
explicit simulations. However, since this work was intended to be utilized
by the industry, the computational budget was not a big concern. Like [35],
this work was never tested on high-dimensional benchmarks. One of the
possible reasons for it is that explicit simulations may become prohibitive as
the dimensionality of the task grows.

One of the first experiments to compute symbolic V-function out of known
samples of the given V-function was conducted in [37]. Found algebraic
approximator of the V-function was then used to compute a discrete Q-table.
That approach was reportedly suboptimal w.r.t. the original V-function.
Additionally, it was never tested on continuous tasks.

In [38], approximation of the policy function was constructed on the basis of
samples from the known policy. This work restricted itself to a specific type of
policy, known as bang–bang controller. The result continuous policy function
performed equally well in comparison to the provided optimal policy. Despite
the fact that this work was tested exclusively on a fully actuated system and
still required known policy, the produced trajectories were smooth. It revealed
the potential of using the proposed method in industrial applications.

Algebraic formulas are not the only option to encode interpretable policies.
In [39], the policy function was fitted in the form of a program based on
sequences of actions provided by the expert. Additionally, this work attempted
to build a symbolic regressor of the policy function. While policies encoded as
programs performed relatively well, symbolic regression of the policy function
experienced catastrophic failure in terms of the derived policy. This research
was focused on the interpretability aspects of the result approximator, and
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its main drawback is questionable scalability as the dimensionality of tasks
grows.

In [40], Cartesian genetic programming [41] was employed to evolve graph-
based programs for Atari games. Policies were encoded as sequences of discrete
actions, while feedback consisted of the result score. This work revealed the
tendency to produce oversimplified policies, mainly due to the unsuccessful
escaping from local optima. It resulted in suboptimal performance, which
failed to match human players in most of the games.

[42] employed symbolic regression to approximate system dynamics in the
context of reinforcement learning. In addition to the good prediction quality,
it discovered one of the key benefits of symbolic regression - the ability to
generalize complex functions from quite a few samples. [43] provided further
evidence for that claim. A year later, [44] applied the same principles in
order to find a symbolic approximation of the dynamics of a quadrotor.
[45] extended this idea by using symbolic regression inside the V-iteration
algorithm, in addition to the symbolic approximation of the dynamics. It
was done by using symbolic regression at each iteration of the V-function.
Each symbolic candidate at each iteration was tested via explicit simulations;
the best-performing candidate was selected to be a result approximator.
While this work showed the potential of finding well-performing symbolic
V-functions, its main drawback is computational expensiveness - there were
reported thousands of symbolic V-function candidates. Additionally, only the
discrete action space was considered.

Another attempt to search for a symbolic policy function was presented
in [46]. The proposed method consists of solving optimal control tasks
by generating symbolic policies, where the fitness function is computed
through simulation of trajectories. Found symbolic policies were tested on
simple benchmarks, resulting in near-optimal performance. While this work
demonstrated the existence of near-optimal interpretable policies, evaluation
of such policies through simulations may quickly become prohibitive as the
dimensionality of the task grows.

[47] used deep reinforcement learning [48] to learn a policy. Then, it
attempted to re-approximate this policy by means of genetic programming.
In this work, genetic programming produces rather an algorithm, not an
algebraic equation. The overall performance of such a solution was reported
to be near-optimal. The main drawback, however, comes from the encoding
method used to produce a policy. Such a method restricts itself exclusively
to tasks with discrete actions. This work [49] followed the similar logic. The
proposed method consists of re-approximating the policy built by means of a
neural network with a decision tree. Symbolic regression was responsible for
synthesizing features for such a tree. While the results were reported to be
near-optimal, the method itself is restricted to discrete actions.

In [50], authors extended their previous idea [39] of fitting a policy function
in the form of programs. Instead, the population of such programs was
fitted. Then, the whole population was bonded together using fuzzy logic.
This step decreased the interpretability of the resulting policy but raised
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the performance to the near-optimal level. This work was tested exclusively
on benchmarks, for which bang–bang controller is an optimal choice. Both
scalability and suitability for other types of tasks remain questionable.

[51] and [52] studied the combination of symbolic regression and optimal
control. These papers attempted to find a continuous-time policy but for only
one trajectory. No attempts to find generalized policy functions were reported.
Here, symbolic regression was supplementary to the novel optimal control
method. These results were extended in [53]. The later work studied the pos-
sibility to encode a given optimal policy as a Cartesian genetic programming
task. The resulting policy then was represented in the form of an interpretable
program. The proposed method was focused on the interpretability aspect,
not on the optimality.

[54] attempted to build a symbolic policy for a general Markov decision
process. This work distinguishes itself from others by focusing on threshold-
based policies. The symbolic policy was fitted to the samples, computed
numerically beforehand. The results were reported to be suboptimal even on
a relatively simple benchmark.

In [55], the efficient methods of building symbolic regression for dynamic
targets were studied. Values from the changing in time V-function were
used as the dynamic targets. This work provided several techniques to do it
efficiently and demonstrated that symbolic regression is capable of fitting V-
functions in terms of the mean squared error. However, the fitted V-functions
were never tested from the reinforcement learning perspective. In [56], the
effect of adding geometrical constraints to symbolic regression evolution was
studied. It was done by modifying mean square error fitness with a novel,
two-phase procedure. The proposed method was applied to fitting a symbolic
model of system dynamics with reportedly good results.

In a very recent study [57], symbolic policies were constructed by means of
a novel method named Deep Symbolic Policy (DSP), based on the sequential
use of deep neural networks. The numerical policy was constructed before-
hand using another neural network and then used as a reference. Moreover,
this work attempted to fit a policy function by means of symbolic regression.
While DSP solution performed near-optimally on all benchmarks, the sym-
bolic regression approach suffered a catastrophic failure. The paper claims:
“there is an objective function mismatch between the regression objective
(minimizing prediction error) and the control objective (obtaining high re-
ward in the environment). In other words, small errors in regression do not
necessarily correspond to small decreases in performance when evaluated in
the environment.”

1.6 Definition of the scope

From the RL point of view, this thesis is focused on deterministic, continuous
model-based, fully-observable tasks, with continuous state space, continuous
action space, and continuous reward function. However, the majority of the
proposed methods are designed in a non-restrictive way. In other words, the

12



................................ 1.6. Definition of the scope

proposed methods are not restricted to that setting, and many of them could
be trivially extended to other cases. From the SR point of view, the whole
thesis is based on one of the variants of SNGP, described in Appendix B-
SNGP. Again, the proposed methods are not restricted to that particular
technique; it is rather used as a customizable platform. Moreover, most of
the results are directly applicable to other approximation techniques, e.g., to
neural networks, unless explicitly stated otherwise.
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Chapter 2
Policy Derivation Methods

Assume we have optimal
symbolic V-function, reward
function, and dynamics function.
How to use it efficiently?

Author at early stages of research

In this chapter, the critic-only, model-based, and deterministic variant of
RL in continuous state and action spaces is considered. For the methods
developed, it is irrelevant whether the system model is available a priori or
learned online. The policy derivation step only is addressed, assuming that an
approximation of the true unknown V-function has already been computed.

Policy derivation can be understood as a hill-climbing process: at each
time step, the agent searches for the control input that leads to a state with
the highest value given by the right-hand side (RHS) of the Bellman equation.
An advantage of this control law is its inherent stability – the value function
is analogous to the control Lyapunov function [58, 59]. However, direct policy
derivation from the V-function suffers from several problems:.Computational inefficiency. The most common approach to dealing

with a continuous action space is to discretize it into a small number
of actions, compute the value of the Bellman equation RHS for all of
them, and select the one that corresponds to the largest value [10] [60].
The number of possible discrete actions grows exponentially with the
input space dimension, and so does the computational complexity of this
method.. Insufficient smoothness of the V-function. The above hill-climbing
process is adversely affected by the approximate nature of the V-function,
which has been observed, e.g., in [61]. A typical approximation by means
of basis functions exhibits artifacts that can lead to oscillations, as
illustrated in the left column of Figure 2.1. The term “insufficient
smoothness” is used for the reference to that effect, without relying on
the exact mathematical definition of smoothness..Discrete-valued control input. The use of discrete actions in combi-
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2. Policy Derivation Methods ...............................
nation with insufficient smoothness leads to steady-state errors, as shown
in the right column of Figure 2.1. In the long run, the steady-state error
can induce big losses in terms of the overall performance.
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Figure 2.1: A sample state trajectory was obtained by simulating the pendulum
swing-up task. The bottom plots show an enlarged view of the areas indicated in
the upper plots. The wiggly state trajectory (superimposed on the contours of
the Bellman equation RHS) and the extremely slow convergence to the desired
position result from the insufficient smoothness of the V-function approximation
in combination with the use of discrete actions.

The aim of this chapter is to alleviate the above problems. In addition
to the policy derivation methods themselves, symbolic regression smoothing
is introduced to mitigate the V-function smoothness issue. Additionally, to
enable the computationally efficient use of continuous actions, a method based
on non-linear optimization is proposed.
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.....................................2.1. Related work

2.1 Related work

The problem of deriving policies for continuous state and action spaces in
critic-only methods has not been sufficiently addressed in the literature. The
most common approach is to discretize the action space, compute the RHS
of the Bellman equation for all the discrete actions, and select the action
that corresponds to the largest value. One of the earliest references to this
approach is [62]. The drawbacks of this method were discussed in the previous
section.

Another similar approach is based on sampling [63, 64]. Using Monte-Carlo
estimation, this approach can find a near-optimal action without resorting
to exhaustive search over the discretized action space. However, for a good
performance, this method requires a large number of samples and, therefore,
is computationally inefficient.

An alternative method would be policy interpolation [14], which is based on
computing the control actions off-line for a pre-selected set of states and then
interpolating these actions online. While computationally less involved, this
method does not give any closed-loop stability guarantees and can suffer from
severe interpolation errors, especially in constrained problems. Therefore,
policy interpolation is not considered in this work.

A different approach relies on translating the continuous action selection
step into a sequence of binary decisions [65, 66]. Each decision whether to
decrease or increase the control action eliminates a part of the action space.
This process stops once a predefined precision is reached. There are two
main drawbacks of this approach: it requires a binary code representation of
each action, which is difficult to design properly, and it does not resolve the
insufficient smoothness problem of the V-function.

There are several approaches to smoothing data in general, e.g., elastic
mapping [67], smoothing splines [68], or approximation by neural networks
[69]. However, none of them is directly applicable to RL. To the best of
authors’ knowledge, the only approach that has been developed to address
the insufficient smoothness problem in the RL context is [61]. It is based
on the concept of a smooth proxy-function which encodes the preference for
the optimal action, while it does not have to satisfy the Bellman equation.
The proxy function is derived through symbolic regression and can be used
for policy derivation. This method has two limitations: it does not allow for
penalizing the control action in the reward function, and it is restricted to
discrete-valued actions.

2.2 Policy derivation methods

2.2.1 Baseline policy derivation

The common solution from the literature is to evaluate

π̂(x) ∈ argmax
u∈U

[
ρ(x, u, f(x, u)) + γV̂

(
f(x, u)

)]
(2.1)
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2. Policy Derivation Methods ...............................
where U =

{
u1, u2, . . . , uM

}
is a finite set of actions drawn from U . at every

sampling instant, where the maximization is computed over the same discrete
action set U on which V̂ has been learned by means of fuzzy V-iteration (see
Section 1.3.2). This method is used as the baseline approach.

2.2.2 Evaluation over a fine grid of actions

It can be beneficial to refine the action space with respect to the space used
for computing the V-function. Define A ⊂ U as

A = A1 ×A2 × · · ·Am, (2.2)

where each set Ai contains points distributed in a suitable way (e.g., equidis-
tantly) along the ith dimension of the action space. Set A therefore contains
all combinations of the control inputs for which the right-hand side of the
Bellman equation (3.3), evaluated for the current state x:

Gx(u) = ρ(x, u, f(x, u)) + γV̂
(
f(x, u)

)
(2.3)

Label Gx as the control surface. An example of such as a surface for a
two-dimensional action space is shown in Figure 2.2.

Figure 2.2: An illustrative example of grid evaluation over the action space for
a given x. Each dimension of the action space is discretized in 10 points, i.e., at
each time step, a total of 100 points are evaluated according to (2.3).

This fine discretization allows to control the system by applying actions
more precisely, while it does not increase the computational complexity during
learning.

This policy derivation step is formalized in Algorithm 1.

2.2.3 Chebyshev polynomial approximation

The main idea of this method is to find a smooth approximation of the control
surface, such as the one shown in Figure 2.2. This smooth approximation
facilitates more accurate control and helps to avoid chattering in the vicinity
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............................... 2.2. Policy derivation methods

Algorithm 1: Maximization over a fine grid of actions (in the sequel
denoted as Grid)

Input: f, ρ, γ, A, V̂ , x0
k ← 0
while control experiment not terminated do

uk ← argmax
u′∈A

ρ
(
xk, u

′, f(xk, u′)
)

+ γV̂ (f(xk, u′));

xk+1 ← f(xk, uk);
k ← k + 1

end
Output: trajectory [x0, x1, ...], [u0, u1, ...]

of unstable system equilibria. Chebyshev polynomials of the first kind are
used for that task. Chebyshev polynomials are defined by the following
recurrent relation:

T0(ū) = 0
T1(ū) = ū

Tn+1(ū) = 2ūTn(ū)− Tn−1(ū)

They are orthogonal to each other on the interval [−1, 1] with respect to
the weighting function 1/

√
1− ū2. To take advantage of this property, the

domain of each control variable must be mapped onto the interval [−1, 1].
This is accomplished using the affine transformation:

ū = −1 + 2 u− uL
uH − uL

where uL and uH are the lower and upper bound of u in each input dimension,
respectively. The approximation by means of Chebychev polynomials can be
extended to higher dimensions by using the Cartesian product of univariate
polynomials. The details of this procedure can be found in [70], [71], [72].
Chebfun open-source package [73] is used to construct a polynomial function
P (u), which receives an action u ∈ U and returns the value of the approx-
imated right-hand side of the Bellman equation. Note that this function
includes the above affine transformation.

The polynomial structure of the policy approximator allows to efficiently
find the maxima in (3.3) by numerically solving the set of algebraic equations
obtained by equating the first partial derivatives to zero, see [74]. In some
cases, the polynomial attains its maximum inside the domain U , but in other
cases, the maximum lies outside of this domain. Therefore, the boundaries
must also be tested. In experimental evaluation, the Chebfun open-source
package [73] is used, since it effectively searches for the potential extrema
inside and outside the domain. The argument of the global maximum of P (·)
on the U domain is then the control action sought. This policy derivation
step is formalized in Algorithm 2.
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Algorithm 2: Maximization using Chebyshev polynomials (in the
sequel denoted as Cheby)
Input: f, ρ, γ, A, V̂ , x0

k ← 0
while control experiment not terminated do

foreach u′ ∈ A do
G[u′] = ρ

(
xk, u

′, f(xk, u′)
)

+ γV̂
(
f(xk, u′)

)
;

end
build Chebyshev polynomial approximation P (·) using data (A,G)
uk ← argmax

u′∈U
P (u′)

xk+1 ← f(xk, uk)
k ← k + 1

end
Output: trajectory [x0, x1, ...], [u0, u1, ...]

2.2.4 Symbolic regression smoothing

To mitigate the insufficient smoothness problem, the numerical approximation
of the V-function is smoothed by applying symbolic regression. This results
in an analytical expression which accurately describes the V-function, while
eliminating artifacts caused by the numerical approximator. In this work, the
following basic operators and functions to build the analytical expressions
were used: F = {∗,+,−, square, cube, tanh}. Symbolic regression procedure
is briefly described in Section 1.4.1, full description can be found in B.2.

The Baseline, Grid and Cheby algorithms can all be enhanced by using
a symbolic approximation V̂ s of the V-function instead of the numerical
approximation V̂ . In the sequel the superscript s denotes symbolic functions
or operations. The modified algorithms are denoted as SR-Baseline, SR-Grid
and SR-Cheby, respectively.

2.2.5 Quasi-symbolic policy derivation

To reduce the computational complexity of policy derivation, the Quasi-
Symbolic Policy Derivation algorithm (in the sequel denoted as QSPD)
exploits the symbolic nature of V̂ s. Rather than exhaustively enumerating
all possible actions in a discrete action set, it applies a standard numerical
optimization algorithm to the following problem:

uk = argmax
u′∈U

Rs(xk, u′) (2.4)

where Rs stands for the right-hand side of the Bellman equation:

Rs(x, u) =
[
ρs
(
x, u, f s(x, u)

)
+ γV̂ s(fs(x, u))

]
(2.5)

with ρs and fs the symbolic representations of the reward and state-transition
function, respectively. In model-based RL, the reward function is always
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designed by the experimenter and therefore can be defined as an analytic
function. However, this is often not the case with the state transition function
f . The system dynamics is typically described in continuous time and the
state transitions are generated by means of numerical integration, using e.g.
Runge-Kutta methods. In such as case, the symbolic approximation fs can
be obtained by means of the forward Euler method.

The trust region reflective (TRR) algorithm [75] is used for the optimization.
To enhance its convergence speed, the symbolic partial derivatives ∇Rs(x, u)
are provided.

∇Rs(x, u) =
[
∂Rs(x, u)
∂u1

,
∂Rs(x, u)
∂u2

, ...
∂Rs(x, u)
∂um

]
(2.6)

The QSPD algorithm is presented in Algorithm 3.

Algorithm 3: Quasi-symbolic policy derivation (QSPD)
Input: f, fs, ρs, γ, V̂ s,∇Rs(x, u), x0

k ← 0
while control experiment not terminated do

Rs(x, u′)←
[
ρs
(
x, u′, fs(x, u′)

)
+ γV̂ s(fs(x, u′))

]
uk = argmax

u′∈U
Rs(xk, u′); TRR optimization

xk+1 ← f(xk, uk);
k ← k + 1

end
Output: trajectory [x0, x1, ...], [u0, u1, ...]

2.3 Experimental evaluation

The proposed methods are evaluated on four non-linear control problems:
1-DOF A.1 and 2-DOF A.2 pendulum swing-ups, and magnetic manipulation
A.3 in two variants, with two and five coils, respectively. To compute V̂ (x),
the fuzzy V-iteration algorithm has been used (see Section 1.3.2 for further
details). The characteristics and parameter values for each problem are listed
in Table 3.1.

The performance of the algorithms is measured by the following criteria:. Performance percentage ratio

Palg = 1
N

N∑
j=1

[
pjbaseline/p

j
alg

]
· 100%

with palg =
Tsim/Ts∑
k=1

ρ
(
xk, uk, f(xk, uk)

)
, where the subscript alg refers

to the algorithm tested, N is the number of runs, Tsim and Ts are the
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1-DOF 2-DOF Magman2 Magman5

Number of state dimensions 2 4 2 2
Number of action dimensions 1 2 2 5
State space, X [−π, π]× [−π, π]× [−2π, 2π]× [0, 0.05]× [0, 0.1]×

[−30, 30] [−π, π]× [−2π, 2π] [−0.39, 0.39] [−0.39, 0.39]
Input space, U [−2, 2] [−3, 3]× [−1, 1] [0, 0.6]× [0, 0.6]×

[0, 0.6] . . .× [0, 0.6]
Samples per input dimension, B [21, 21]T [11, 11, 11, 11]T [27, 27]T [27, 27]T
Discount factor, γ 0.9999 0.99 0.999 0.999
Convergence threshold, ε 10−5 10−5 10−8 10−8

Refined action space size 27 [11, 11]T [11, 11]T [11, · · · , 11]T
Simulation time, Tsim [s] 10 20 10 10
Sampling period, Ts [s] 0.01 0.01 0.005 0.005

Table 2.1: Experiment parameters

simulation time and the sampling period, respectively. The reward
functions are defined such that they are negative except in the goal state,
where they equal to zero. The performance measure Palg is therefore
100% for the baseline and larger than 100% for the algorithms that
outperform the baseline.. Runtime percentage ratio

Talg = 1
N

N∑
j=1

[
tjalg/t

j
baseline

]
· 100%

where talg stands for the runtime of the algorithm. Analogously to the
performance, Talg is 100% for the baseline and smaller than 100% for
the algorithms that run faster than the baseline..Mean nomalized distance of the final state to the goal state

Dalg = 1
N

N∑
j=1
‖xdes − xjend‖

with xdes the desired (goal) state, xjend the final state of the j-th simu-
lation run, and ‖ · ‖ the Euclidean norm. Every dimension of the state
space is mapped onto the interval [0, 1] to equalize different scales..Mean return

Ralg = 1
N

N∑
j=1

palg

Each algorithm was tested N = 50 times on each benchmark with randomly
chosen initial states.

To construct Chebyshev polynomials, the Chebfun open-source package [73]
were used. The Matlab 2015a fmincon implementation of the trust region
reflective algorithm is used in QSPD.

The genetic programming method evolving the symbolic approximations
of the V-function was run with the following control parameters setting:
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. The total population size was 300. The ratio of the head partition size
to the size of the tail partition was 1:2.. The maximum number of features the evolved LASSO model can be
composed of was set to 16. The maximum depth of individual features
was 7.. The number of parallel threads run in a single epoch was 3. The number
of epochs was set to 50.

Multiple independent runs were carried out with symbolic regression to
find the symbolic value functions V s. The symbolic regression parameters
did not change between the runs (except for the random seed). The value
function which performed best with respect to Palg is presented in the results.

2.3.1 1-DOF swing-up

The inverted pendulum consists of a mass attached to an actuated link that
rotates in the vertical plane. The available torque is insufficient to push the
pendulum up in a single rotation from the majority of initial states. Instead,
from a certain state (e.g., pointing down), the pendulum needs to be swung
back and forth to gather energy, before it can be pushed up and stabilized.
Full description alongside with technical details about the benchmark can
be found in A.1. The set of discrete control inputs is U = {−2,−1, 0, 1, 2}.
The control goal is to stabilize the pendulum in the unstable equilibrium
α = α̇ = 0 = xdes using desired control input udes = 0. The discrete-
time transitions are obtained by numerically integrating the continuous-time
dynamics using the fourth-order Runge-Kutta method with the sampling
period Ts = 0.01 s. This goal is expressed by the following reward function:

ρ
(
x, u, f(x, u)

)
= −abs(xdes − x)TQ− abs(udes − u) (2.7)

with Q = [5, 1]T a weighting vector to adjust the relative penalty between
the angle, angular velocity and control input and abs(·) function works
element-wise.

The simulation results are presented in Table 3.5, with the best performance
printed in bold.

The most important conclusion is that the use of symbolic regression
improves the overall performance, with SR-Cheby yielding the best results.
All the proposed approaches result in longer runtime, except for SR-Baseline.
Grid and Cheby algorithms perform worse than the baseline solution with
respect to Palg. This is caused by the combination of insufficient smoothness
of the value function and discrete actions, as illustrated in Figure 2.3. The
approximation by means of basis functions produces a “ridge” in the vicinity
of the goal state. The state trajectory then moves back and forth from one
side of the ridge to the other, slowly converging toward the goal state. The
Baseline algorithm employs fewer actions and is therefore forced to use actions
with a larger magnitude. The Grid algorithm, on the contrary, employs more
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actions with a smaller magnitude. Therefore, it can follow the ridge more
precisely, which results in a larger value of the Bellman equation RHS, but
a slower overall convergence to the goal. The Cheby algorithm uses data
provided by the Grid algorithm and therefore suffers from the same problem.

The QSPD algorithm alleviates this problem thanks to the use of a smooth
symbolic approximation of the V-function in combination with continuous
actions. The state trajectory is virtually ideal, as depicted in the right-hand
side of Figure 2.3.

2.3.2 2-DOF swing-up

Double pendulum is a pendulum attached to the end of another pendulum,
with both links rotating in the vertical plane, similar to 1-DOF swing-up
benchmark. Full description alongside with technical details about the bench-
mark can be found in A.2. The dynamics of the double pendulum is chaotic
and complex, thus making it a good benchmark. The state x contains the an-
gles and angular velocities and is defined as x = [α1, α̇1, α2, α̇2]T . The angles
[α1, α2] vary in the interval [−π, π) rad and wrap around. u = [u1, u2]T is the
control input which contains the torques of the two motors. The discrete set
of control inputs U is defined as the Cartesian product of the sets {−3, 0, 3}
and {−1, 0, 1} for each link. The transition function f(x, u) is obtained by
numerically integrating system dynamics between discrete time samples using
the fourth-order Runge-Kutta method with the sampling period Ts = 0.01.

The control goal is expressed by the following quadratic reward function:

ρ
(
x, u, f(x, u)

)
= −abs(xdes − x)TQ, where Q = [1, 0.05, 1.2, 0.05]T

(2.8)

where xdes represents the goal state and equals [0, 0, 0, 0]T .
The simulation results presented in Table 3.5 exhibit the same pattern as

with the 1-DOF pendulum swing-up. Additionally, the symbolically approxi-
mated value function leads to a significant improvement in performance.

2.3.3 Magnetic manipulation

Magnetic manipulation (abbreviated as Magman) is an challenging nonlinear
control problem. The current through the electromagnets is controlled to
dynamically shape the magnetic field above the magnets and so to accurately
and quickly position a steel ball to the desired set point. Two variants are
considered, one with two electromagnets and one with five. Full description
with technical details for both variants can be found in A.3.

State x is given by the position and velocity of the ball. The discrete-
time transitions are obtained by numerically integrating the continuous-time
dynamics using the fourth-order Runge-Kutta method with the sampling
period Ts = 0.005 s. The set of control inputs U is defined as the Cartesian
product of the vectors [0, 0.3, 0.6], containing the discrete values of the control
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Figure 2.3: Trajectories from the initial point [−π, 0] to the goal state, obtained
using Baseline (left column), Grid (middle column) and QSPD (right column)
on the 1-DOF pendulum swing-up task. The first row shows the whole state
trajectory superimposed on the contours of the Bellman equation RHS, the
second row the zoomed area around the goal state, the third row the angle, and
the forth row the applied control inputs during simulation.

input to the ith coil. The reward function is defined as:

ρ
(
x, u, f(x, u)

)
= −abs(xdes − x)TQ, where Q = [5, 1]T (2.9)

where the desired position xdes is set to 0.01 (m).
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Figure 2.4: Magnetic manipulation setup.

The simulation results for both variants of the system are presented in
Table 3.5.

The QSPD algorithm shows the best result in terms of the overall return.
Additionally, SR-Baseline tends to be the fastest algorithm. However, when
the dimensionality of the action space grows, QSPD starts dominating in
both measures. The runtime of Baseline, Grid and Cheby algorithms (and
their symbolic regression variants) grows exponentially with the input dimen-
sion. This prevents applying Grid and Cheby algorithms (and their symbolic
variants) to the Magman5 benchmark, so their results are not reported in
the table. The runtime of the QSPD algorithm, according to our experi-
ments, grows approximately linearly. This results in the outstanding runtime
performance Talg = 2.85% for the Magman 5 benchmark.

2.4 Results and discussion

Table 3.5 summarizes the simulation results. As can be seen, Grid and
Cheby algorithms perform worse than the Baseline solution with respect to
Palg. This is caused by the insufficient smoothness problem, illustrated in
Figure 2.3. However, when combined with the smooth approximation of the
V-function surface by means of symbolic regression, these algorithms lead to
a significant performance improvement. Moreover, the use of the symbolically
approximated surface alone is beneficial as well, as illustrated by the SR-
Baseline results. It can be seen, that the difference between SR-Grid and
SR-Cheby is quite unpredictable and depends on the quality of approximation
of the local features of the V-function surface.

The QSPD algorithm performs better when the dimensionality of the
action space grows. The reason why QSPD performs worse compared to
symbolic algorithms is that it uses a rather poor Euler approximation fs(·)
of the system dynamics. Instead of the Euler method, another sophisticated
approximation could be employed, e.g., the Adams-Bashforth method.

As can be seen in Table 3.5, the exponential growth of computational
complexity prevents the use of Grid and Cheby algorithms (and their symbolic
variants) on the Magman5 benchmark. Interestingly, SR-Baseline runs faster
than the Baseline solution. This is thanks to the simpler form of the V-
function approximation, which leads to faster computations.
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1DOF swing-up 2DOF swing-up Magman2 Magman5

Baseline

Palg 100% 100% 100% 100%
Talg 100% 100% 100% 100%
Dalg 0.0493 0.0825 0.0007 0.0019
Ralg -1288.28 -869.81 -14.42 -35.85

Grid

Palg 47.45% 91.25% 75.09% -
Talg 634.19% 1159.30% 965.26% -
Dalg 0.1175 0.1132 0.0010 -
Ralg -2582.65 -969.374 -19.34 -

Cheby

Palg 48.03% 95.69% 130.77% -
Talg 2281.80% 1937.80% 3641.10% -
Dalg 0.1147 0.0946 0.0003 -
Ralg -2551.43 -925.85 -11.76 -

SR-Baseline

Palg 129.33% 247.80% 163.09% 242.31%
Talg 86.01% 77.59% 84.81% 87.26%
Dalg 0.0901 0.1050 0.0002 0.0004
Ralg -1040.77 -573.49 -9.46 -16.02

SR-Grid

Palg 166.54% 287.11% 178.80% -
Talg 589.74% 909.47% 885.85% -
Dalg 0.0065 0.0408 0.0001 -
Ralg -887.48 -547.08 -8.89 -

SR-Cheby

Palg 188.89% 293.25% 176.96% -
Talg 2200.80% 1626.90% 4092.20% -
Dalg 0.0000 0.0233 0.0003 -
Ralg -837.32 -545.38 -9.26 -

QSPD

Palg 149.67% 193.61% 254.08% 332.98%
Talg 586.94% 611.23% 208.24% 2.85%
Dalg 0.0076 0.1401 0.0001 0.0001
Ralg -955.11 -667.50 -7.39 -12.55

Table 2.2: Summary of the simulation results

2.5 Conclusion

Several alternative policy derivation methods for continuous action spaces
were studied. The simulation results showed that the proposed symbolic
approximation significantly outperforms the standard policy derivation ap-
proach. In terms of control performance, SR-Cheby outperformed the other
algorithms in most of the problems tested (with the exception of the Mag-
man 2 example). However, when the dimensionality of action space grows,
the computational complexity of this algorithm becomes prohibitive.

In applications where computational resources are limited (e.g., in robotics),
it is recommended to use the SR-Baseline algorithm. The Grid and Cheby
algorithms have not performed equally well across all problems tested; they
perform worse when the V-function approximation is not smooth. Providing
the right criteria for measuring this aspect is difficult, and it may be a part of
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future research. In conclusion, it is not recommended to use these algorithms
out of the box.

The QSPD algorithm displays great scalability properties, which allow
curbing the exponentially growing computational complexity. At the same
time, it is superior to the baseline solution. This effect is achieved through
both the symbolic nature of the underlying approximator and the exploitation
of the symbolic derivatives. It is reasonable to assume that QSPD algorithm
can handle tasks with bigger dimensionality. On top of that, it organically
works with continuous action space; there is no discrete version. Altogether,
it answers RQ 1.

The relative success of the symbolically enhanced algorithms is based on the
selected best-performing symbolic approximator. The selection process, how-
ever, hides a very important topic: how to define the term "best-performing"
in such a case. The current approach requires extensive testing of all the can-
didates, which is time-consuming. Given the fact that reinforcement learning
is usually performed iteratively and requires an approximation of V-function
at each step, it may result in SR being impractical for the task. Due to
that fact, the proposed use of SR should be viewed as a proof of concept
rather than an out-of-the-box approximation technique. These challenges are
addressed in the consequent chapters.
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Chapter 3
Symbolic Regression as Outer
Approximation

Assume we have a numerical
approximator of the V-function,
reward function, and dynamics
function. Can we re-approximate
V-function symbolically, and will
that approximation work?

Author after many unsuccessful
attempts to derive reasonable

policy from symbolic
approximators.

3.1 Symbolic proxy-function

The policy derivation step can be understood as a hill-climbing process. The
agent applies the control input at each timestep that leads toward a higher
point on the V-function surface. An advantage of this control law is its
inherent stability – the value function is analogous to the control Lyapunov
function [58], [59]. However, the hill-climbing process is affected by the
approximate nature of the V-function. A typical approximation by means of
basis functions exhibits artifacts, which lead to the chattering of the control
input and even to limit cycles. This problem is illustrated in Figure 3.1.

This undesired behavior typically occurs in the vicinity of the goal state
and leads not only to suboptimal performance; but it can also render the goal
state unreachable. An obvious approach to alleviating these problems would
be to use a smooth approximation of the V-function. A good candidate for
such a purpose is a symbolic approximator, which can be constructed, e.g.,
by means of genetic programming. However, minimizing an error measure
between the given V-function data and the resulting symbolic function is
misleading. Genetic programming has no information about the purpose
of the function and can, therefore, ignore small but important parts of the
V-function while still achieving the least possible error. Consequently, the
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3. Symbolic Regression as Outer Approximation.......................

Figure 3.1: A sample state trajectory was obtained via hill-climbing on the
approximate V-function surface for the pendulum swing-up benchmark (see
Appendix A.1). Left: the state trajectory on the V-function surface. Right: the
state trajectory in the vicinity of the goal state in [0, 0].

resulting smooth approximation can have virtually the same shape as the
V-function, but it can yield a completely different, suboptimal policy.

A novel method that uses genetic programming, in particular, a variant
of Single Node Genetic Programming (see Appendix B-SNGP), is presented.
Its purpose is to evolve a smooth proxy to the V-function, which is then used
for a continuous policy derivation. A concept similar to advantage updating
[76] is used. The genetic programming algorithm evolves the symbolic proxy-
function that maximizes the number of correct choices of the control action
for a set of training states. In this way, the search is biased toward a symbolic
proxy-function that would be suited for the policy derivation, contrary to a
symbolic V-function evolved by minimizing an error measure between the
V-function data and the symbolic approximator.

This distinguishes the proposed approach from several works in the lit-
erature dealing with the use of genetic programming for V-function fitting.
For instance, in [37] a method called Value Function Discovery is proposed
that uses GP to evolve an algebraic description of the V-function. In [33]
an evolutionary algorithm is used to accelerate the convergence of Q-tables.
However, both approaches use an error measure between the given V-function
data and the resulting symbolic function as an optimization criterion.

3.1.1 Preliminaries

Reinforcement learning

Define a finite set of discrete control input values U =
{
u1, u2, . . . , uM

}
drawn

from U . An approximate V-function denoted by V̂ (x) can be computed by
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solving the Bellman equation:

V̂ (x) = max
u∈U

[ρ(x, u) + γV̂ (f(x, u))] (3.1)

where γ is the discount factor, a user-defined parameter. The fuzzy V-iteration
algorithm (see Section 1.3.2) is employed to find V̂ (x). The policy is the
mapping:

h : X → U (3.2)

and the optimal discrete-valued policy corresponding to V̂ (x) is:

ĥ(x) ∈ argmax
u∈U

[
ρ(x, u) + γV̂ (f(x, u))

]
,∀x (3.3)

In the sequel RHS(x, u) is used to refer to the
[
ρ(x, u) + γV̂ (f(x, u))

]
part

of equation (3.3).

3.1.2 V-function proxy

Define a set of samples X = {x1, x2, . . . , xN} ∈ X . The genetic programming
algorithm searches for a symbolic function P (·) that satisfies the following
condition:

argmax
u∈U

[P (f(x, u))] = argmax
u∈U

[RHS(x, u)] ,∀x ∈ X (3.4)

Observe by comparing (3.3) and (3.14) that for the set U of discrete inputs,
P (·) yields the same optimal policy as the V-function. Note that P (·) does not
have to satisfy the Bellman equation. Its purpose is to provide at each state
the same preferred control action. It works, however, under the assumption
that P (f(x, u)) has the same distinguishing properties as RHS(x, u). It is
only possible when ρ(·) part of RHS(x, u) does not explicitly depend on u
(rather than on f(x, u)). Otherwise, P (·) will not be capable to robustly work
in situations where several different control inputs lead to the same state.

To improve the robustness of the genetic search, the condition (3.14) is
strengthened by replacing the argmax operator with the order operator.
The order operator produces a partially ordered set of control input indices
so that the corresponding control actions are ordered with respect to their
evaluation by the given function. The purpose of this modification is to make
sure that if the genetic search finds a suboptimal solution, a high-ranked
sub-optimal action is chosen instead of the optimal one.

When P (·) is found, the policy can be derived by using (3.3), where
RHS(x, u) is replaced with P (f(x, u)). The overall setting is schematically
depicted in Figure 3.2.

The order operator can be formalized as follows:

order
u∈U

(RHS(x, u)) = {i, j, ..., `} (3.5)

with
RHS(x, ui) ≥ RHS(x, uj) ≥ · · · ≥ RHS(x, u`) (3.6)
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Figure 3.2: Proxy-function: schematic principle of work.

3.1.3 SNGP for evolving the proxy-function

For fitting proxy-function, a special variant of SNGP (see Appendix B.1 for
further details) is proposed. It uses a specific population model and fitness
function as described in the following paragraphs.

Population model

Typically, the function set contains functions that might produce invalid
output values, such as a division by zero. In order to avoid such cases,
protected versions of these functions are used instead. These functions are
forced to produce a valid output for any input. For example, the protected
division outputs a predefined value whenever the denominator is zero. Thus,
the output of any candidate expression is ensured to be a valid number.
However, due to such hard-coded irregular behavior of the protected functions,
expressions using the protected functions can still exhibit undesired behavior,
e.g., the expressions might become non-differentiable at some data points
or contain local approximation artifacts. Even if it has a minimal error on
the training data, such a symbolic function can be effectively useless when
applied to new, previously unseen data.

Here, a partitioned population is proposed. It is divided into two parts
– head and tail. The head part contains nodes that are roots of constant-
valued expressions only. It uses extended function set Fe including the
protected functions. Each head node can use other head nodes and constant
terminal nodes as its input. The tail part contains nodes that can only be
chosen from a set Fs of simple non-conflicting functions (i.e., no protected
functions). Tail nodes can use all preceding head and tail nodes and both
constants and variables as their input. In this way, a “reasonable” behavior
of expressions rooted in tail nodes is ensured since the protected functions
are used exclusively to produce constants.

Fitness function

When fitting the symbolic proxy-function P (·), a set of M distinct actions
U = {u1, . . . , uM} sampled from the original continuous action space U is
used to generate a set of N training samples. A training sample is generated
for each state xi ∈ X, has the following structure:

ti = [xi, f(xi, u1), . . . , f(xi, uM ), o1, . . . , oM ] (3.7)

where oj denotes the order class to which the next state obtained by applying
the action uj to the state xi is assigned according to RHS(xi, uj). The best
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next state is assigned to order class 0; the second-best next state is assigned
to order class 1, and so on. Note that multiple states can be assigned to the
same order class.

A candidate function P (·) produces values P (f(xi, u1)), . . . , P (f(xi, uM ))
for each xi in the training set. Denote by [o′1, . . . , o′M ] the order classes
derived from these values. The SNGP searches for the proxy-function P (·)
that is optimal according to the following fitness function:

fitness(P (f(x, u))) =
N∑
i=0

w(xi)
M∑
j=0

(fn(j) + fp(j)) (3.8)

where

fn(j) =
{

1 + 0.1 dist(j), if oj = 0 and o′j 6= 0
0, otherwise

(3.9)

and

fp(j) =
{

1, if oj 6= 0 and o′j = 0
0, otherwise

(3.10)

The function false positive, fp(j), penalizes with penalty 1 the cases where
the state f(xi, uj) should not belong to the best order class according to
oj 6= 0, but it does belong to it (i.e., o′j = 0).

Similarly, the function false negative, fn(j), penalizes with penalty 1 the
cases where the state f(xi, uj) should be the best one according to oj = 0, but
it is not (i.e., o′j 6= 0). To refine the fitness function, each false negative case
is further penalized with the term dist(j) that is calculated as the absolute
difference between the P (f(xi, uk)) of actually the best next state achieved
with action uk applied to the state xi, and the P (f(xi, uj)). This way, the
fitness can distinguish between candidate proxy-function producing the same
number of false negative and false positive cases. The value of dist(j) is
bounded from above by 1.0. By weighting dist(j) with the factor 0.1, it is
ensured that the suboptimal action plays a secondary role in the fitness.

As mentioned in Section 3.1, not all states are equally important. The
effect of chattering is much stronger in the vicinity of the goal state. Thus,
it can be beneficial to weigh the overall penalty calculated for a given state
with respect to its distance to the goal state. To avoid negative effects caused
by the magnitudes of different variables in a state space, each variable of the
state space must be mapped into the same range [0, 1]. The weight function
w(xi) returns a square of the reciprocal of the Euclidean distance between
the state xi and the goal state. Thus, the errors made in states far from the
goal state are penalized less than the errors made in states close to the goal
state. When xi is the goal state, the w(xi) returns the weight of the state
nearest to the goal state.

Since the fitness function expresses how far the candidate proxy-function
is from the ideal, the resulting fitness function is to be minimized.
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3.1.4 Policy derivation methods used

Policy derivation using raw function

The first algorithm considered is a direct usage of the computed proxy-function
P (f(x, u)), as stated in (3.3). Algorithm 4 formalizes this procedure.

Algorithm 4: Policy derivation from the raw symbolic function (in
the sequel denoted as Raw)

Input: f(x, u), P (f(x, u)), U, x0
k ← 0
while control experiment not terminated do

uk ← argmax
u′∈U

P (f(xk, u′))

xk+1 ← f(xk, uk);
k ← k + 1

end
Output: trajectory [x0, x1, ...], [u0, u1, ...]

Policy derivation using hybrid symbolic function

The main purpose of this method is to provide a robust policy. Due to the
stochastic nature of genetic programming, a successful finding of the optimal
proxy-function is not guaranteed. Therefore, all areas for which P (f(x, u))
provides non-optimal policy should be covered by another approximation.
The computed V̂ is used for this purpose. Define a vector C = [c1, c2, ..., cN ]T
of boolean flags, where N is a number of training samples. Each flag ci
is true if the corresponding training sample ti is successfully fitted by the
proxy-function P (f(x, u)), otherwise it is false. At the policy derivation step
k, a training sample tj with its state xj nearest to the current state xk is found
among all N training samples. This can be easily done by using k-d tree for
the nearest neighbor search. Then, the optimal input to be applied in state
xk is derived using the P (f(x, u)) if the corresponding cj is true. Otherwise,
the policy in state xk is derived using the RHS(x, u). A pseudo-code for this
policy derivation method is shown in Algorithm 5 where the function NN(x)
provides the nearest neighbor state to the state x.

Policy derivation using hybrid symbolic function and a fine grid of
actions

The key idea behind this method is based on the combination of the Grid
policy derivation method (introduced in Section 2.2.2) and the Algorithm 5.
The main point can be briefly described as follows.

Define a set of actions A as

A = Ū1 × Ū2 × · · · × Ūm, A ⊆ U (3.11)
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Algorithm 5: Policy derivation from the hybrid approximation (in
the sequel denoted as Hybrid)

Input: f(x, u), ρ(x, u), C, P (f(x, u)), γ, V̂ , U, x0
k ← 0
while control experiment not terminated do

if C[NN(xk)] then
uk ← argmax

u′∈U
P (f(xk, u′))

else
uk ← argmax

u′∈U
[ρ(xk, u′) + γV̂ (f(xk, u′))]

end
xk+1 ← f(xk, uk);
k ← k + 1

end
Output: trajectory [x0, x1, ...], [u0, u1, ...]

where each set Ūi contains points equidistantly distributed along the ith
dimension of the action space. The set A contains the control inputs that will
be considered in the policy derivation using the P (f(x, u)) and RHS(x, u),
respectively. The policy derivation algorithm is essentially equal to the
Algorithm 5 with the action set U being replaced with the set A. In the
sequel, this algorithm is called HybridGrid.

The size of the set A is given by a vector As = [a1, a2, . . . , am]T where each
ai corresponds to the number of points along the ith dimension of the action
space. By default, a1 = a2 = · · · = am = 11 are selected.

Baseline policy derivation

The baseline policy derivation uses equation (3.3) at every policy derivation
step k, where the maximization is computed over the same discrete action
set U on which V̂ (x) has been learned. Formally, this can be described by
Algorithm 4 with RHS(x, u) substituted for P (f(x, u)). In the sequel, this
algorithm is abbreviated Baseline.

3.1.5 Experimental evaluation

Pendulum swing-up

The inverted pendulum consists of a mass attached to an actuated link that
rotates in the vertical plane. The available torque is insufficient to push the
pendulum up in a single rotation from the majority of initial states. Instead,
from a certain state (e.g., pointing down), the pendulum needs to be swung
back and forth to gather energy before it can be pushed up and stabilized.
Full description alongside technical details about the benchmark can be found
in Appendix A.1.
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The discrete-time transitions are obtained by numerically integrating the

continuous-time dynamics using the fourth-order Runge-Kutta method with
the sampling period Ts = 0.01 s. The set of discrete control inputs is U =
{−2,−1,−0.05, 0, 0.05, 1, 2}.

The control goal is to stabilize the pendulum in the unstable equilibrium
α = α̇ = 0, which is expressed by the following quadratic reward function:

ρ(x, u) = −fT (x, u)Qf(x, u), where Q = diag[5, 0] (3.12)

Magnetic manipulation

Magnetic manipulation (abbreviated as Magman) has several advantages
compared to traditional robotic manipulation approaches. First of all, it is
contactless, which opens new possibilities for actuation on a micro-scale and in
environments where it is not possible to use traditional actuators. In addition,
magnetic manipulation is not constrained by the robot arm morphology,
and it is less constrained by obstacles. Magman is a challenging nonlinear
control problem. The current through the electromagnets is controlled to
dynamically shape the magnetic field above the magnets and so to accurately
and quickly position a steel ball to the desired set point. For the experiments
presented in this work, the first two coils, at the positions 0 (m) and 0.025
(m), respectively, have been used. Full description alongside technical details
about the benchmark can be found in Appendix A.3. State x is given by the
position and velocity of the ball. The control input u is defined as the vector
of currents [u1u2] ∈ [0, 0.6] on the coils. The reward function is defined as:

ρ(x, u) = |(xd − f(x, u))| Q, where Q = diag[100, 5] (3.13)

The desired position xd is set to xd = 0.01 (m). The discrete-time transitions
are obtained by numerically integrating the continuous-time dynamics using
the fourth-order Runge-Kutta method with the sampling period Ts = 0.005 s.
The set of control inputs U is defined as the Cartesian product of the vectors
[0, 0.6], containing the discrete values of the control input to the ith coil.

V-function learning algorithm

To compute V̂ (x), the fuzzy V-iteration algorithm is used (see Section 1.3.2
for full description). The learning parameters used for both benchmarks are
listed in Table 3.1.

Parameter Pendulum swing-up Magman
Discount factor, γ 0.99999 0.999999
Samples per dimension, B [21, 21]T [21, 27]T
Convergence threshold, ε 10−5 10−8

Table 3.1: Fuzzy V-iteration parameters

36



................................3.1. Symbolic proxy-function

Complexity of the proxy-function computation

The computational complexity of proxy-function can be estimated only ap-
proximately due to the stochastic nature of the genetic programming. The
whole evolution process is running for a limited number I of iterations. In each
iteration L, candidate solutions are evaluated on every given sample point.
The total number of samples is denoted as N . Therefore, the complexity
linearly depends on the parameters I, L, and N .

3.1.6 Results

SNGP with a population of size 200 equally divided into the head and tail
parts and function sets Fe = {+,−, ∗, /, square, cube, sqrt, exp, sin, ln} and
Fs = {+,−, ∗, square, cube, sqrt, sin} were used in this experiment. The
evolution of the proxy-function was run for 5000 iterations, with a maximum
time limit of 300 (s).

For measuring the performance of the proxy-function, the coverage ratio
between correctly fitted samples and the total number of training samples
N was used. The coverage map of the pendulum swing-up benchmark is
depicted in Figure 3.3.

Coverage map of pendulum swing-up task
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Figure 3.3: Coverage map for the pendulum swing-up benchmark. The green
dots represent the samples in which the proxy-function is fitted correctly and
the red dots otherwise.

Several proxy-functions were fitted for each benchmark. The policy deriva-
tion methods were tested 50 times on each proxy-function using the same
set of randomly chosen initial states. Using these proxy-functions, the policy
derivation methods have been tested 50 times with randomly chosen initial
conditions. Simulation time was set to 3 (s) for the pendulum swing-up
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and to 1 (s) for the magnetic manipulation, respectively. To measure the
performance of the algorithms, the following criteria are defined:

. Average return Ra =
∑50

j=1

∑K

i=0 r(xi,u)
50 , where K denotes the number of

time steps in a control experiment.. Performance ratio Pr – the ratio between returns obtained by classical
policy derivation and the tested algorithm.. Average performance ratio in percents (denoted as average Pr) – a mean
of Pr values over 50 simulations.

The results obtained with the best-performing proxy-function (w.r.t. the
average Pr) for each benchmark are presented in Tables 3.2 and 4.4, respec-
tively. The performance ratios for both benchmarks are depicted in Figure 3.4.
Found symbolic proxy-function for the pendulum swing-up and the magnetic
manipulation benchmarks are given by the following equations after algebraic
simplification.. Pendulum swing-up proxy-function:√∣∣∣56 x1 |x0|18 − sin

(√
|x0|+ |x0|

3
2 − 0.70711

)
+ |x0|

3
2
∣∣∣− x0

.Magman proxy-function: sin
(√∣∣∣∣sin(|x1|

3
2
)2

+
√
|x0| (x1 − 8.0)

∣∣∣∣
)

Criterion Baseline Raw Hybrid HybridGrid
Average return -642.09 -2452.10 -601.83 -588.45
Average Pr 100% 31.52% 114.75% 117.64%
Coverage — 88.8% 88.8% 88.8%

Table 3.2: Pendulum swing-up simulation results

Criterion Baseline Raw Hybrid HybridGrid
Average return -106.61 -79.86 -77.98 -71.02
Average Pr 100% 162.47% 163.91% 193.81%
Coverage — 89.7% 89.7% 89.7%

Table 3.3: Magnetic manipulation simulation results
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Discussion

The Hybrid and HybridGrid algorithms significantly outperform the Baseline
algorithm as shown in Figure 3.4 and Tables 3.2 and 4.4. Figure 3.4-top shows
poor results for the Raw algorithm on the Pendulum swing-up problem. The
reason is quite straightforward. As stated in Section 3.1, states are not equally
important and genetic programming cannot guarantee finding the optimal
proxy-function, as illustrated in Figure 3.3. It shows the coverage map in
which green and red dots represent correctly and incorrectly fitted samples,
respectively. An incorrectly fitted sample is a sample in which proxy-function
chooses a different control input than the V-function. It is empirically found
that the regions in the vicinity of the two red dots, nearest to the state space
center, must be fitted correctly in order to reach the goal state. Hybrid and
HybridGrid algorithms successfully use RHS(x, u) in those regions, while the
Raw algorithm suffered catastrophic failure since it had no ability to do so.
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Figure 3.5: Simulation of the magnetic manipulation. The top panel represents
position of the ball, where 0.01m is the desired position. The middle and bottom
panels show the control inputs, obtained by applying Baseline and HybridGrid
algorithms, respectively.

Figure 3.5 shows simulations of Baseline and HybridGrid algorithms on
the magnetic manipulation benchmark. It can be seen that the chattering
in the state space is significantly suppressed, but chattering in the control
inputs is still present. Input chattering can usually be reduced by penalizing
the control input in the reward function, which is, however, not possible here
due to the choice of the proxy-function structure as P (f(x, u)). One way to
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overcome this limitation is to reformulate the proxy-function as P (x, u) and
then use it in policy derivation in the same way as a Q-function. This may
be a part of future work.

3.2 Generalized proxy-function

This work extends the idea of the originally proposed proxy-function. Origi-
nally proposed proxy-functions rely on a binary fitness function, which leads
to a non-convex optimization problem and reducing the chances of finding
an accurate proxy-function. Consequently, the originally proposed symbolic
approximator had to be combined with a numeric approximator. The current
work builds upon this result by resolving these outstanding issues of the
originally proposed proxy-function. In this section, an enhanced symbolic
regression approach which uses linear programming is proposed.

The main idea of the proxy-function method (see Section 3.1 for the details)
is to find through symbolic regression a smooth, analytically defined function
P (·), which ∀x ∈ X satisfies the following equation:

argmax
u∈U

P (f(x, u)) = argmax
u∈U

[
ρ
(
f(x, u)

)
+ γV̂

(
f(x, u)

)]
(3.14)

In order to generalize this method, assume that the proxy-function has the
form:

P (x) = β1p1(x) + β2p2(x) + . . .+ βqpq(x) (3.15)

where p1, . . . , pq are continuous analytic functions generated by means of
evolutionary programming, each of them being defined over the whole state
space and β1, . . . , βq are real-valued coefficients.

Assume that the numerical approximator V̂ (·) is given. As described earlier,
the policy derivation process can be regarded as hill-climbing. At each time
step, the agent selects the control input which leads to the highest value of
the right-hand side of the Bellman equation:

u∗ = argmax
u∈U

[
ρ
(
f(x, u)

)
+ γV̂

(
f(x, u)

)]
(3.16)

The selected action u∗ is then applied to the system, which leads to the new
state:

x∗ = f(x, u∗) (3.17)

To find a P (·), or its close approximation, a set of N state samples X =
{x1, x2, . . . , xN} ∈ X is generated. By using the already defined set of discrete
control inputs U = {u1, u2, . . . uM}, for each state xi ∈ X, it is possible to
construct the following set of next states:

Xn
i =

{
xij | xij = f(xi, uj), j = 1, 2, . . .M

}
(3.18)

and partition it into optimal and suboptimal next states:

X̃i = xoi ∪Xs
i (3.19)
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The optimal next state maximizes the right-hand side of the Bellman equation:

xoi = argmax
xij∈Xn

i

[
ρ(xij) + γV̂ (xij)

]
(3.20)

and the suboptimal next states are all the remaining ones:

Xs
i = X̃i \ xoi (3.21)

For simplicity, assume that the optimal state for each sample in X is unique.
However, the proposed method can be trivially extended to handle multiple
optimal next states.

To define the fitness function for symbolic regression, (3.14) is reformulated
as follows:

P (xsik)− P (xoi ) < 0, ∀i, k (3.22)

This means that for each state xi, the proxy-function value for the optimal
next state must be larger than the value for suboptimal next states. Index k
runs over all L elements in Xs

i . Substituting from (3.15), the above inequality
becomes:

q∑
j=1

βj
(
pj(xsik)− pj(xoi )

)
< 0, ∀i, k (3.23)

To simplify the notation, define an auxiliary variable dikj as:

dikj = pj(xsik)− pj(xoi ) (3.24)

To represent (3.23) for all the data in matrix form, define

O =



d11
1 d11

2 · · · d11
q

d12
1 d12

2 · · · d12
q

...
... . . . ...

d1L
1 d1L

2 · · · d1L
q

d21
1 d21

2 · · · d21
q

d22
1 d22

2 · · · d22
q

...
... . . . ...

dNL1 dNL2 · · · dNLq


(3.25)

and solve the problem by linear programming:

min
β
∅ such that

Oβ ≤ ε
(3.26)

where ε represents a small negative constant.
1

1The purpose of ε is to make Oβ strictly smaller than zero. From the practical point of
view, it is recommended to choose the value with respect to the constraint tolerance the
particular solver supports. In this work, ε = −0.001 has been chosen.
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Note that (3.26) defines a feasibility problem rather than a minimization
problem. An infeasibility measure of the candidate solution is introduced to
guide the evolutionary process toward a feasible solution.

Define a vector of non-positive variables s = [s1, . . . , s[N×L]]T . The fitness
function for symbolic regression can now be defined as:

min
β,s

N×L∑
i=1
−si such that

Oβ + s ≤ ε
−∞ ≤ s ≤ 0

(3.27)

This formulation adds an extra variable to every inequality, which represents
the measure of the infeasibility of the resulting model, and which linear
programming then minimizes. The β weights of the analytic expressions are
defined as free variables with no restrictions.

In this work, a variant of the Single Node Genetic Programming (SNGP)
is used (see Appendix B.2) to generate the non-linear analytic expressions
p1(·), . . . , pq(·), which are then evaluated using (4.17). The whole process
repeats until a stopping criterion is satisfied, such as a prescribed number of
iterations or an improvement threshold.

3.2.1 Experimental evaluation

The proposed method has again been tested on two different benchmarks:
pendulum swing-up and magnetic manipulation. Both of them were explicitly
discussed previously, including all necessary mathematical details.

For each benchmark, 30 different proxy-functions have been constructed in
30 independent SNGP runs. Each function has been tested on each benchmark
with N = 100 randomly chosen initial states via simulations. It should be
noted that all the functions are presented “as is”, which means that there is
no selection procedure w.r.t. to some criterion.

Each result is compared with the baseline solution (3.3) (using the same
initial states), which is computed beforehand by means of the fuzzy V-iteration
algorithm. To evaluate each of proxy-functions, the following criteria are
defined:. Improvement percentage

I = 1
N

N∑
j=1

[
pjbaseline/p

j
method

]
· 100%

where pmethod =
∑Tsim/Ts

k=1 ρ(f(xk, uk)), with Tsim stands for the total
simulation time, Ts is the sampling period, and method represents either
baseline or proxy solution. The reward functions are defined to have
maximum value zero in the goal state and to be negative otherwise.
Therefore I equals 100% for the baseline and it is bigger than 100% if
the proxy-function outperforms the baseline approach.
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3. Symbolic Regression as Outer Approximation.......................
.Mean distance between the last state (at the end of simulation) xend and

the desired goal state xdes

D = 1
N
‖xdes − xend‖

where ‖ · ‖ is the Mahalanobis norm.

The sampling parameters for both benchmarks, as well as SNGP parameters,
are listed in Table 3.4.

Fuzzy V-iteration parameters: pendulum swing-up
State space, X [−π, π]× [−30, 30]
Input space, U [−2, 2]
State samples per dimension, BX [21, 21]
Action samples per dimension, BU 11
Discount factor, γ 0.95
Convergence threshold, ε 10−4

Desired state, xdes [0, 0]T
Sampling period, Ts [s] 0.02
Simulation time, Tsim [s] 3

Fuzzy V-iteration parameters: magman
State space, X [0, 0.05]× [−0.4, 0.4]
Input space, U [0, 0.6]
State samples per dimension, BX [21, 21]
Action samples per dimension, BU [3, 3]
Discount factor, γ 0.99
Convergence threshold, ε 10−8

Desired state, xdes [0.01, 0]T
Sampling period, Ts [s] 0.01
Simulation time, Tsim [s] 3

SNGP parameters
Population size 1000
Elementary functions +, -, ×, x2, x3, BentGeneral, Logistic3
Maximal depth of features 5
Maximal number of features 30
Epoch length 500
Local search iterations 500
Number of epochs 1
Number of threads 1

Table 3.4: Experiment parameters

3.2.2 Results

The simulation results for both benchmarks are listed in Table 3.5. The
proposed method shows the potential to outperform the baseline solution
significantly. According to the experiments, proxy-functions demonstrate
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significant improvement in a range of 100%-182% w.r.t. the baseline. In
the vast majority of cases, it is caused by alleviating the negative impact
of numerical artifacts. An example of it is depicted in Figure 3.6. This
example demonstrates the comparison of derived policies for the magnetic
manipulation benchmark. The left column corresponds to the baseline V-
function, computed by the fuzzy V-iteration algorithm, while the right column
stands for one of the proxy-functions. It can be seen that the proxy-function
significantly alleviates the steady-state error caused by artifacts. Another
interesting note is that the proxy-function remarkably violates Lyapunov
stability condition, as shown by the bottom row of Figure 3.6. The reason
for that behavior is that the proxy-function considers only local properties of
its surface, neglecting global geometry.

Median D Median I

Pendulum swing-up Baseline 0.003 100%
Generalized proxy 0.002 105%

Magnetic manipulation Baseline 0.038 100%
Generalized proxy 0.007 182%

Table 3.5: Experimental study statistics

The proposed method has several limitations. First of all, with the proposed
design, it is not possible to penalize input chattering. Input chattering can
usually be reduced by penalizing the control input in the reward function,
which is, however, not possible here due to the choice of the proxy-function
structure as P (f(x, u)). One way to overcome this limitation is to reformulate
the proxy-function as P (x, u) and then use it in policy derivation in the same
way as a Q-function. Another possible way is to combine MSE-like fitness
and proxy-function fitness to represent a trade-off between global V-function
geometry and local properties of proxy-function. This may be a part of future
work.

3.3 Conclusion

The proposed method offers an alternative way to derive policy for RL.
Instead of using V-function directly, the proposed approach builds a smooth
proxy-function on top of it, from which the better policy can be derived.
The proposed method may be combined with any V-function approximation.
Moreover, due to the analytic nature of the proxy-function, it can be combined
with policy derivation methods (see Chapter 2.2 for details) for further policy
improvement. Research on proxy-functions leads to several conclusions listed
below:. Single symbolic expression lacks the flexibility to represent even the

simplified function. The original proxy-function was not capable of
working without being supported by another approximation technique.
Contrary to that, the generalized proxy-function is more flexible due
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Figure 3.6: Magnetic manipulation transient response using the original V-
function V̂ (x) and one of the proxy-functions. The initial state is [0.005, 0]T and
the goal state xdes = [0.01, 0]T . The first row represents the position of the ball;
the second stands for the control inputs, where different coils are depicted with
different colors; the last row shows changing a value of either value function or
proxy-function.

to the combination of several symbolic expressions together. As the
complexity of tasks grows, it is beneficial to use the proposed extended
version of SR formulation.. Proxy-functions tend to form surfaces that violate Lyapunov stability.
Despite that fact, the derived policy is reasonable and near-optimal. This
observation requires additional attention and will be addressed in the
next chapter.. Even simplified proxy-functions are able to outperform standard approx-
imation methods due to their inherent smoothness in the sense of the
absence of approximation artifacts. Their main drawback is the need for
another ground-truth approximation. The generalized version of proxy-
function, however, does not suffer from that drawback. It demonstrated
superiority to both original proxy-function and standard methods.
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This chapter provides a partial answer to the RQ 2. Generalized proxy-
function can be considered as a minimum valuable product. Fitting of the
V-function, however, requires more attention due to the imperfect definition
of the fitness criterion. This challenge is addressed in a consecutive chapter.
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Chapter 4
Fitness Criterion Study

Assume we have a limited
number of samples from some
optimal V-function and the
reward function and dynamics
function. According to what
fitness criterion shall we build a
symbolic approximation of the
V-function?

Author, after getting annoyed by
time-costly attempts to

approximate V-function with an
unpredictable result.

4.1 Introduction

The main topic of this chapter is based on the question: “what criterion
should be used to evaluate the quality of an approximation of the V-function?”.
The most common approach, which can be found in nearly all approximate
RL publications, is to minimize the mean squared error of the estimator w.r.t.
the target V-function. However, the utility of using such a criterion is still an
open question [77], [57]. In a case where near-zero error cannot be achieved,
the actual performance of such a solution is not determined. This situation
is demonstrated in Figure 5.1. The top row depicts a trajectory obtained
using an approximation technique with proven convergence and near-zero
approximation error. The second and the third rows show trajectories obtained
using symbolic regression - an approximation technique without proven
convergence. The third row depicts a model with an approximation error
bigger by an order of magnitude than the second row. Nevertheless, the third
row demonstrates a much better performance. In the depicted case, there exist
critical areas through which the goal state is reachable. If the approximation
error affects these areas, that is a worse scenario than where these important
areas are not affected. The known solution for that problem relies on using
relevancy weights to emphasize a priori known important states[78], [79].
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4. Fitness Criterion Study ................................
However, it relies either on the a priori knowledge of good trajectories or on
a large number of samples. Both requirements seem to be unrealistic for a
high-dimensional task, mainly due to the curse of dimensionality.

From the RL point of view, this work is dedicated to the simplest possible
setting: the critic-only, model-based, and deterministic variant of RL in con-
tinuous state space is considered. Moreover, to make performance evaluation
crystally clear, the learning procedure itself is placed outside the scope of
analysis. Instead, this work relies on approximately optimal learned samples
computed beforehand. The discount factor γ ≈ 1 is used to keep learning
aspects beyond the scope. Additionally, for this analysis, it is irrelevant if
the system model was given beforehand or approximated. It will be shown
that for the vast majority of iterative RL techniques, the considered case
corresponds to one iteration of the learning algorithm. In other words, this
work concentrates only on the interconnection between the approximation
error and the actual performance obtained by the approximated V-function
model during policy derivation.

The policy derivation can be understood as a hill-climbing process. At each
step, the agent applies the control input that leads to the highest value of the
right-hand side of the Bellman equation. An advantage of this control law is
its inherent stability – the value function is analogous to the control Lyapunov
function [58, 59]. Various types of numerical approximators have been used:
expansions with fixed or adaptive basis functions [80, 81], regression trees
[82], local linear regression [83, 84], and the increasingly popular deep neural
networks [85, 86, 87, 88, 89]. However, the hill-climbing process is virtually
always affected by the approximation error and the lack of smoothness of the
V-function.

One of the methods to construct a compact smooth approximation is
symbolic regression. Based on genetic programming, SR searches for an
analytic expression that best fits the given data. There are several works in
the literature dealing with the use of genetic programming (GP) for V-function
fitting. For instance, in [37], a method called Value Function Discovery uses
GP to evolve an analytic description of the V-function. In [33] an evolutionary
algorithm is used to accelerate the convergence of Q-tables. However, as
demonstrated previously, it is impractical to apply SR to approximate an
existing V-function directly. While the symbolic approximator can achieve
a low MSE, the resulting policy can be largely sub-optimal. Altogether, it
brings us to the motivation for this work...1. Analyse the impact of approximation errors on policy derivation...2. Propose a fitting technique that will increase the chances of obtaining a

meaningful approximator...3. Make sophisticated approximators work more or less out of the box
without the exhaustive procedure of tuning parameters.

By a sophisticated approximator, this work understands any technique
in which the last computation is a weighted sum of globally defined and
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Figure 4.1: A sample state trajectory for the pendulum swing-up task (see
Appendix A.1). Left column: the state trajectory superimposed on the right-
hand side of the approximate Bellman equation. Right column: the position
of the pendulum during simulation. The red line shows the goal position 0
[rad]. The top row corresponds to the simulation using a BF-based approximator
(see Section 4.2.1) of the V-function with near-zero MSE. The middle row
corresponds to the state trajectory derived from the approximator with a bigger
approximation error. Approximator is computed by using symbolic regression
technique (see Appendix B.2 for further details). The bottom row corresponds
with the state trajectory obtained by the same technique with a bigger in
magnitude approximation error.
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4. Fitness Criterion Study ................................
possibly non-linear features. With a bit of imagination, it can be seen that
this definition is wide enough to include neural networks, polynomials, basis
functions, etc.

4.2 Preliminaries

Many different algorithms for finding an approximately optimal V-function
exist. However, the vast majority of them rely on two well-known RL algo-
rithms - value-iteration and policy-iteration. Algorithm 6 shows a generalized
scheme for both algorithms. The discrete values (marked by the superscript
D) are separated from the continuous ones (marked by the superscript C) to
make visible what data are available in every step.

The special case is considered: only the last iteration before convergence is
reached and the approximation part only. In other words, it is assumed that
optimal-in-samples V D(·) and πD(·) are given. The reason for that decision
is threefold:..1. The main motivation for this work is to study the impact of approximation

error on the actual performance. Analysis of the interaction between
approximation errors during an iterative learning process is, in general,
an unanswered question yet (for the best of authors’ knowledge). The
formal analysis is provided only under the assumption of guaranteed
contraction. For big approximation errors, however, the intuitive answer
is that approximation errors between iterations may leverage each other,
resulting in the negative synergy, but strong mathematical guarantees
are not provided...2. The ultimate goal of RL is to make the system behave according to the
user-defined goal, and there is the only direct way to justify this - to
perform simulations. Every other criterion provides indirect information
about actual performance, which adds noise to the final evaluation.
For simulations, the learned version of the V-function approximator is
required...3. Available variables at the moment of approximation are the same for each
iteration, including the last one, as can be observed in the algorithm.

Consequently, the considered case is applicable for every iteration of an RL
algorithm, but the clear evaluation is possible only for the last iteration. As
a provider of approximately optimal policy, the fuzzy V-iteration algorithm
Section 1.3.2 is used since it is guaranteed to converge. This algorithm
produces a V-function approximator with near-zero error.

To approximate the V-function, two intrinsically different techniques are
used: symbolic regression and fuzzy basis functions. Symbolic regression is
based on genetic programming, and its goal is to find an equation describing
given data. Symbolic regression is a suitable technique for this task, as it does
not assume any kind of a priori knowledge on the shape of the V-function
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Algorithm 6: Generalized skeleton of popular approximate RL algo-
rithms: approximate V-iteration and approximate policy-iteration.
Input: f(·), ρ(·), γ,XD, UD, E(·), xdes, A - transition function,

reward function, discount factor, finite set of samples drawn
from the state space, finite number of samples drawn from
the action space, error function, desired state, set of
regressors, respectively.

k ← 0
V C
k ←

[
V C : X → 0

]
πDk (x)← argmax

u∈UD

[ρ(x, u, f(x, u))] ∀x ∈ XD

repeat
V D
k+1(x)←

[
ρ(x, πDk (x), f(x, πDk (x)) + γV C

k (f(x, πDk (x)))
]
∀x ∈

X
if approximate V-iteration then
∀x ∈ X :
Compose design matrix MD and targets vector TD as:
MD(x)← A(x)
TD(x)← V D

k+1(x)
end
if approximate policy-iteration then
∀x ∈ X :
Compose design matrix MD and targets vector TD as:
MD(x)←

[
A(x)− γA(f(x, πDk (x))

]
TD(x)← ρ(x, u, f(x, πDk (x)))

end
V C
k+1 ← approximate using MD, TD, E(·)

begin
Data available:
X,U, V D

k+1, V
C
k , π

D
k , γ, ρ(·), f(·), xdes,MD, TD

vary V C
k+1 e.g. by changing parameters or/and approximation

structure
evaluate fitness of approximation using E(·)
perform until approximation stopping criterion is not satisfied

end
πDk+1(x)← argmax

u∈U

[
ρ(x, u, f(x, u)) + γV C

k+1(f(x, u))
]
∀x ∈ XD

k ← k + 1
until convergence criterion is not satisfied;
Output: V C

k

sought. A variant of Single Node Genetic Programming is used, which is
described in details in Appendix B.2. Fuzzy basis functions are described in
Section 4.2.1.
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4.2.1 Fuzzy basis function approximation

Define a set of samples S = {s1, s2, . . . , sN} placed on an equidistant rect-
angular grid in X . The number of grid points per dimension is described
by the vector B = [b1, b2, . . . , bn]T with the total number of samples N =∏n
i=1 bi. Further define a vector of fixed triangular membership functions

φ = [φ1(x), φ2(x), . . . , φN (x)]T where each φi(x) is centered in si, i.e., φi(si) =
1 and φj(si) = 0, ∀j 6= i. The basis functions are normalized so that∑N
j=1 φj(x) = 1, ∀x ∈ X . For a single state variable xj these functions are

defined as follows:

φ1(xj) = max
(

0,min
(

1, s
′
2 − xj
s′2 − s′1

))
,

φi(xj) = max
(

0,min
(
xj − si−1
si − si−1

,
si+1 − xj
si+1 − si

))
,

i = 2, . . . , Nj − 1,

φbj
(xj) = max

(
0,min

(
xj − sbj−1

sbj
− sbj−1

, 1
))

.

An extension to more dimensions is implemented by using the Cartesian
product of the membership functions in the individual dimensions.

4.3 Analysis

4.3.1 Notation

Assume that the perfect approximator V C(·) is given. The policy derivation
process can be understood as a hill-climbing process. At each step the agent
starts with the state x which has the value V C(x). Then the agent selects
the control input which leads to the highest value of the right-hand side of
the Bellman equation:

u∗ = argmax
u∈UD

[
ρ
(
x, u, f(x, πD(x))

)
+ γV C(f(x, πD(x))

)]
(4.1)

The selected action u∗ is then applied to the system, which naturally leads
to the new state:

x∗ = f(x, u∗) (4.2)
with the new value V C(x∗). Then algorithm repeats these steps until policy
derivation is over. An advantage of this control law is its inherent stability –
the value function is analogous to the Control Lyapunov Function (abbreviated
as CLF from now on) [58, 59].

To make the analysis easier, assume negative-definite reward function ρ(·)
with the maximum at zero. Consequently, the optimal V-function is negative-
definite with the maximum value equals zero at the goal state xdes. For
simplicity, assume that the goal state xdes is unique. However, the analysis
can be intuitively modified for use with multiple goal states. The following
issues may appear at the approximation step w.r.t. the policy derivation.
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4.3.2 Ignored magnitude of errors

From Algorithm 6 it can be seen that the approximation step can be un-
derstood as an iterative process. After the approximator of the V-function
is built, the quality of the resulting model is evaluated using error function
E(·). The purpose of this function is twofold. Firstly, it computes residuals
between a discrete set of samples and corresponding targets. Secondly, it
provides the mapping from these residuals into a scalar value. In the vast
majority of cases, this mapping is either sum or mean value. After the scalar
error is produced, the approximation process can proceed further to improve
this error or halt if the error is satisfactory.

Consider a set of residuals, where most residuals have low magnitude,
while very few ones have a much bigger magnitude. Consequently, from the
approximation process point of view, it is beneficial to ignore any improvement
on most residuals and concentrate solely on the residuals with a bigger
magnitude. In an extreme case, it leads to the situation where all the
computational effort is spent on fitting the single sample while the vast
majority of the state space is ignored.

One of the ways to deal with this drawback lies in using a mapping that
takes into account different magnitudes of the residuals.

4.3.3 Ignored structure of the approximator

Assume that only the region near the goal state is affected by the approxima-
tion error, and the rest of the function is approximated perfectly. Then, during
policy derivation, the goal state may become intractable while achieving lower
approximation error in comparison with other approximators (precisely this
situation is depicted in Figure 5.1). However, before the approximation
process starts, it is already known that every state x except xdes should
have a smaller value of V C(x) than the goal state. This knowledge can be
incorporated into the approximation process without a priori information
about a particular RL task.

Additionally, assume that the result approximation is fitted in a policy-
iteration manner (V-iteration manner is briefly considered in subsection 4.3.5).
From the Algorithm 6 it can be seen that the error function considers just
the difference between V C(x) and γV C(x∗), which is targeted to be equal to
the reward of the corresponding state transition. Notice that the absolute
values of the result approximator are not relevant here; only the difference
between two different states matters. It means that the result approximator
with the fixed error ε can be shifted along the value-axis without affecting
the policy derivation. While it may be considered a good property, it has
several drawbacks. First of all, it may violate the negative definiteness of
the result approximation, which in many cases may lead to the divergence of
the learning process. Additionally, it dramatically increases the number of
local optima, making it much harder for an approximation technique to find
a global one.
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4.3.4 Ignored different error regions

As was mentioned in subsection 4.3.1, from the policy derivation point of view,
both V-function and CLF work on the same principles. Intuitively, it may be
described as follows. For each state x except the goal state, it is possible to
find an action u∗ that will improve the overall evaluation of the next state x∗.
Consequently, if it is possible to find a way to improve the overall evaluation
in each state, it should be possible to reach the goal state. Notice that the
convention for RL is to maximize the achieved value on V-function, while the
convention for CLF is to reduce the energy on CLF-function. In this work, the
maximization convention is used for both approaches, leaving mathematical
details about changing the sign behind the scene. More formally, the key
condition for a stable policy derivation process can be described as follows:

V C(x) < γV C(x∗) ∀x 6= xdes

V C(xdes) = 0;
(4.3)

Since this paper works with approximations, satisfying this condition with
near-zero error cannot be guaranteed for every x ∈ X . However, strengthening
this conditions at least for the given samples x ∈ XD should increase the
chances of obtaining the reasonable approximation.

Consider the approximate policy-iteration approach in Algorithm 6 using
this framework. It can be seen that the ideal approximation should satisfy
the Bellman condition of optimality:

V C(x)− γV C(x∗) = ρ(x, u∗, x∗); ∀x ∈ XD (4.4)

Consider one sample state with added approximation error term ε. Define
∆(x) as:

∆(x) = V C(x)− γV C(x∗) (4.5)

Then the equation 4.4 become:

∆(x)︸ ︷︷ ︸
regressed part

+ ε︸︷︷︸
error

= ρ(x, u∗, x∗)︸ ︷︷ ︸
targets

(4.6)

Since the reward function ρ(·) is negative-definite, it can be seen that
in the case of ideal approximation (ε is zero) the condition 4.3 is satisfied-
in-samples: ∆(x) ≤ 0 and is equals exactly to the ρ(·). It ensures both
stability-in-samples (by satisfying condition 4.3) and optimality-in-samples
(by satisfying condition 4.4). Let us analyse the impacts of possible violation
of these conditions for one sample pair x and x∗. The following cases are
possible:..1. ε > 0: In this case, the regressed part becomes smaller which means

that the difference between V C(x) and γV C(x∗) is becoming bigger.
Condition 4.3 is not violated since ∆(x) is still less than zero, only
condition 4.4 is not held. However, since the reward function is negative-
definite and samples of the V-function are basically computed as a sum
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of discounted rewards as γ0ρ(·)1 + γ1ρ(·)2 + ...+ γnρ(·)n, it can be seen
that increasing the difference between V C(x) and γV C(x∗) is equivalent
of just using the bigger discount factor γ...2. ε = 0: In this case, both conditions 4.3 and 4.4 are satisfied - it is an
ideal scenario...3. ε < 0: This scenario decreases the quality of the policy derivation. Firstly,
analogously to the first case, negative error reduces discount factor γ,
making horizon smaller. Secondly, recalling that the reward function
is negative-definite and the ideal distance between V C(x) and γV C(x∗)
equals ρ(x, u∗, x∗), it is possible to split this case into two branches:. ε ≤ ρ(x, u∗, x∗): The worst scenario - both conditions 4.4 and 4.3

are violated. For policy derivation, it means that the system will
have both suboptimal and possibly unstable behavior. Altogether it
may drastically decrease the performance of the policy derivation by
making the goal state intractable. Naturally, this scenario should
be avoided in the first place.. ε > ρ(x, u∗, x∗): In that case only condition 4.4 is violated, condi-
tion 4.3 is still held. In practice, it means that policy derivation may
lead to suboptimal policy, but the system itself is stable-in-samples
and has better chances to reach the goal state. While this case
should be avoided as well, it has a smaller negative impact on the
overall performance.

However, typical error function in approximate RL is symmetric, like L2
or L1 norm. These popular criteria naturally ignore different effects of the
approximation error. Mentioned regions of errors together with popular error
functions E(·) are depicted in Figure 4.2.

4.3.5 Ignored policy data

From the Algorithm 6, it can be seen that in the case of V-iteration, the
standard approach is to approximate V C(·) using discrete target values of
the best known V-function values. Naturally, this case completely ignores the
current optimal policy and does not check if this policy can be derived from the
result approximation. Assuming an existence of a significant approximation
error, from the policy derivation point of view, the usability of the resulting
approximation is a question of luck. Therefore, V-iteration-like approximators
are left for future work.

4.4 Proposed solutions

This section formalizes the results of the analysis in a way that is applicable
to merely any approximation technique. The rest of the section is then dedi-
cated to effectively integrating the derived conditions for linear-in-parameters
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Figure 4.2: Popular error functions, superimposed on different error regions.
The red area indicates the worst case: the approximation error is negative and
smaller than the appropriate reward. The yellow area represents the case with
medium negative impact: the approximation error is still negative but is bigger
than the reward. The green area demonstrates the case with the smallest impact:
the approximation error is positive.

approximation techniques. To evaluate the results, the SNGP technique was
used (see Appendix B.2 for further details) as a generator of features. How-
ever, the proposed method applies to many types of approximation techniques
like, e.g., neural networks.

More specifically, by linear-in-parameters approximation is understood an
approximation in the following form:

V C(x) = β0 + β1p1(x) + β2p2(x) + . . .+ βqpq(x) (4.7)

where p1, . . . , pq are continuous functions with any structure, each of them is
defined over the whole state space and β0, . . . , βq are real-valued coefficients.

The issue with different magnitudes of samples (see subsection 4.3.2) can
be solved by applying different weights to each observation. The key idea
is to penalize the residual of the approximated value w.r.t. the target value
using the percentage-like measure. In other words, a 10% decrease of residual
in one sample is always evaluated better in comparison with a 5% decrease of
another sample, independently of their magnitudes. In general, computing a
residual between approximated value V C(x) and target value TD(x) may be
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described as:
ε =

[
TD(x)− V C(x)

]
Q(x)

where Q(·) returns weight for a sample, and normally it is the identity function.
The following redefinition of the function Q(·) equalizes the difference in
magnitudes:

Q(x) = 1/abs(TD(x)) (A)

A careful reader may notice that this way of equalizing samples cannot be
held in the case of TD(x) = 0. In this work, the only sample that suffers
from the mentioned drawback is the goal state xdes. In this particular case,
an artificial value can be used instead. Additionally, using absolute values
instead of the original TD(x) does not change signs of samples, which will
become important later on. The proposed equalization of magnitudes is
named Condition A.

The issue with the ignored structure of the approximation (see subsec-
tion 4.3.3) is easy to solve using constraints. The following set of inequalities
guarantees that the resulting approximation will have the maximum at zero,
and all other samples will be lower than the maximum value.

V C(xdes) = 0
V C(x)− V C(xdes) < ω; ∀x 6= xdes

(B)

where ω is a small negative constant. The proposed set of structural con-
straints is named Condition B.

The issue with ignored different regions can be solved by penalizing approx-
imation error using different weights w.r.t the corresponding region. Instead
of one error variable in (4.6) the approximation error term can be split into
three errors as:

ε =


w1ε1 if ε1 ≥ 0
w2ε2 if ρ(x, u∗, x∗) < ε2 < 0
w3ε3 if ε3 ≤ ρ(x, u∗, x∗)

w1 � w2 � w3

(C)

where each case corresponds to the appropriate error region depicted in Fig-
ure 4.2. The proposed split of the approximation error is named Condition C.

The proposed method consists of applying these conditions for the linear-
in-parameters fitting procedure. To find a V C , or its close approximation, a
set of N current state samples XD is generated as:

XD =
{
xci | xci ∈ X , i = 1, 2, . . . N ;xci 6= xdes

}
(4.8)

and the set of next states is constructed by applying approximately optimal
action as:

XN =
{
x∗i | x∗i = f(xci , u∗i ), i = 1, 2, . . . N

}
(4.9)

Additionally, the set of appropriate rewards R̂ is constructed as:

R̂ =
{
ri | ri = ρ(xci , u∗, x∗i ), i = 1, 2, . . . N

}
(4.10)
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4. Fitness Criterion Study ................................
Define matrices M c and Mn for current and next states and vector R for

the corresponding rewards, respectively, as follows:

M c =


1 p1(xc1) p2(xc1) · · · pq(xc1)
1 p1(xc2) p2(xc2) · · · pq(xc2)
...

... . . . ...
1 p1(xcN ) p2(xcN ) · · · pq(xcN )



Mn =


1 p1(x∗1) p2(x∗1) · · · pq(x∗1)
1 p1(x∗2) p2(x∗2) · · · pq(x∗2)
...

... . . . ...
1 p1(x∗N ) p2(x∗N ) · · · pq(x∗N )


R = [r1, r2, . . . , rN ]T

(4.11)

where N is the total number of states in XD and XN and the first column in
matrices stands for bias.

To calculate the difference ∆(x) (see (4.5)) for all the data in a matrix
form, define

O = M c − γMn (4.12)

In order to describe Condition B, define vector T cdes and matrix M c
des as:

T cdes =
[
1, p1(xdes), . . . pq(xdes)

]
M c
des = JN,q · diag(T cdes)

(4.13)

where JN,q is all-ones matrix of sizes N × q and function diag(·) creates a
diagonal matrix out of the argument vector.

Condition B is then can be described as:

T cdesβ = 0[
M c −M c

des

]
β < ω

(4.14)

where ω is a small negative constant.
In order to describe Condition C define three vectors of free variables as:

s−− = [s−−1 , . . . , s−−N ]T

s− = [s−1 , . . . , s
−
N ]T

s+ = [s+
1 , . . . , s

+
N ]T

(4.15)

In order to describe Condition A effectively, define the diagonal matrix L:

L = diag(Q(r1), Q(r2), . . . , Q(rN )) (4.16)

60



.................................. 4.4. Proposed solutions

The fitting problem, which includes all three conditions, is now can be
formulated as:

min
β,s−−,s−,s+

−w3

N∑
i=1

s−−i − w2

N∑
i=1

s−i + w1

N∑
i=1

s+
i s. t.

Condition A
{
T̂ = LR

Ô = LO

Condition B
{
T cdesβ = 0[
M c −M c

des

]
β < ω

Condition C



Ôβ + s−− + s− + s+ = T̂

−∞ ≤ s−− ≤ 0
T̂ ≤ s− ≤ 0
0 ≤ s+ ≤ ∞
w1 � w2 � w3

(4.17)

This formulation adds free variables to every equality, namely s−−, s−, and
s+. These variables correspond to the relevant regions of the error space.
Variables are then optimized using linear programming. This formulation
with all defined conditions is named ModeABC from now on.

Additionally, let us formulate several reduced versions of the above mini-
mization. For these formulations, it is possible to use standard MSE fitness
criterion, since there is no dependence on the sign of the residuals. Define
the skeleton as:

min
β

1
2‖Oβ −R‖

2
2 s. t.

Condition A =
{
O ← LO

R← LR

Condition B =
{
T cdesβ = 0[
M c −M c

des

]
β < ω

(4.18)

From this skeleton, ModeAB, ModeA, and the Baseline can be derived by
applying a different number of conditions.

Now, when all ingredients are ready, the whole algorithm can be constructed.
The block scheme is given in Figure 4.3.

Two different approximation techniques are employed to construct the
continuous functions A: either fuzzy basis functions (see Section 4.2.1) or
SNGP (see Appendix B.2-SNGP). However, any other suitable technique
can be used instead, e.g., neural network. The whole algorithm repeats until
a stopping criterion is satisfied. It can be either a predefined number of
iterations or an improvement threshold.
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Generate set A of continuous functions p1(·), . . . , pq·

XD, XN , R, xdes

Compute O, M c, M c
des, T cdes, using (4.11),(4.12),(4.13)

A,XD, XN , R, xdes

Use Baseline or ModeA/AB/ABC

A, O, M c, M c
des, R

A, β

fitness

Figure 4.3: Block-scheme of the V C(·) approximation algorithm.

4.5 Experimental evaluation

The proposed methods have been tested on two different benchmarks: the
well-known pendulum swing-up and a non-linear control problem called mag-
netic manipulation (abbreviated as magman). Two different approximation
architectures have been used: symbolic regression by means of SNGP and
numerical approximation by means of fuzzy basis functions (abbreviated
as BFs). Each combination is then described by the abbreviation in the
form <approximation>_<method>, where <approximation> can take val-
ues SNGP or BFs, and <method> stands for Baseline, ModeA, ModeAB,
ModeABC.

For each combination with BFs approximation architecture, 26 different
V C(·) models have been constructed and tested. The appearance of different
approximation errors was ensured by using a gradually decreased number of
BFs while keeping the number of samples the same for all experiments. For
each combination of SNGP approximators, 30 different V C(·) models have
been constructed and tested.

All tested combinations within a benchmark use identical parameters and
identical datasets to exclude the influence of these factors in comparison. The
only difference is the fitting method used.

The approximately optimal policy has been constructed beforehand by
means of the fuzzy V-iteration algorithm (see Section 1.3.2 for further details).
The discount factor γ is chosen close to 1, to avoid the influence of not
properly learned V-functions. Additionally, all initial states were tested on a
fuzzy approximator to ensure the reachability of the goal state.

Every combination has been tested through simulations with K = 100
randomly chosen initial states, which are the same for each combination.

It should be noted that all the models V C(·) are presented “as is”, which
means that there is no selection procedure w.r.t. some criterion.

To measure the performance of one approximator, the following criteria

62



................................4.5. Experimental evaluation

are defined:.MSE, denoted as MSEa..Original fitness, denoted as Fa. By original is understood the fitness
which was obtained directly from the method used. It equals to MSEa
in the case of Baseline method..Median of returns, abbreviated as MReta:

MReta = median(Σ1,Σ2, . . . ,Σi)

where

Σi =
Tsim/Ts∑
q=1

ρ(xq, uq, f(xq, uq))︸ ︷︷ ︸
one simulation

where Tsim and Ts are the total simulation time and the sampling period,
respectively, and index i stands for simulation number from 1 to K = 100.. Number of successful simulations, denoted as Sa. Simulation is considered
successful if the last 25 steps of the trajectory lie within 5% interval
around the goal state xdes. An example of the successful trajectory and
appropriate interval is given on the Figure 4.4.

Figure 4.4: The successful state trajectory superimposed on the right-hand side
of the Bellman equation level curves for magman benchmark (see Section 4.5.2
for further details). The green rectangle represents 5% interval around the goal
state. If trajectory ends up within this interval, it is considered to be successful.

To measure the performance of the methods themselves, the following
criteria are defined:.Mean MSE within all fitted approximators, abbreviated as MSEm.
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.Median of returns from all approximators, abbreviated as MRetm.. Percentage ratio of successful simulations within all fitted approximators,

abbreviated as Sm..Median of successful simulations within all fitted approximators, abbre-
viated as Ŝm.

4.5.1 Pendulum swing-up

The inverted pendulum consists of a mass attached to an actuated link that
rotates in the vertical plane. The available torque is insufficient to push the
pendulum up in a single rotation from the majority of initial states. Instead,
from a certain state (e.g., pointing down), the pendulum needs to be swung
back and forth to gather energy before it can be pushed up and stabilized.
Full description alongside technical details about the benchmark can be found
in Appendix A.1. The discrete-time transitions are obtained by numerically
integrating the continuous-time dynamics using the fourth-order Runge-Kutta
method with the sampling period Ts = 0.02 s.

The control goal is to stabilize the pendulum in the unstable equilibrium
xdes = [0, 0] (rad, rad/s), which is expressed by the following reward function:

ρ(x, u, f(x, u)) = −abs(xTdes − f(x, u))Q (4.19)

with Q = [1, 0.01]T a weighting vector to adjust the relative importance of
the angle and angular velocity and abs(·) function working element-wise. The
complete list of experiment parameters is listed in Table 4.1.

The results, shown in the Table 4.2, support the hypothesis that pure
MSE is not the best criterion to predict the quality of models. The vast
majority of models obtained by the Baseline method are effectively useless
for both approximation techniques, despite their low MSE. Additionally, for
both approximation techniques, satisfying Condition A solely leads to the
increased by order of magnitude MSEm, but drastically increases the quality
of the result models.

For BFS-based approximations, there is no significant difference between
ModeA and ModeAB. The reason for it is that the BFs-based approximator
has a basis function exactly at the goal state. Consequently, it helps to form
a global optimum at the right place. Since enforcing the global optimum at
the goal state is the only difference between the two methods, the benefits
of ModeAB are deactivated for this type of approximation architecture.
However, a significant difference between ModeA and ModeAB can be seen
in the case of SNGP approximations. Satisfying both Conditions A and B
leads to further improvement while MSE becomes larger again. ModeABC
indicates to have the best result in both approximation techniques. Figure 4.5
depicts the distribution of the SNGP-based results w.r.t. their median
of returns MReta and original fitness Fa. In the figure, it can be seen
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Fuzzy V-iteration parameters
State space, X [−π, π]× [−30, 30]
Input space, U [−2, 2]
Action samples per dimension, BU 11
Discount factor, γ 0.95
Convergence threshold, ε 10−4

Desired state, xdes [0, 0]T
Sampling period, Ts [s] 0.02
Simulation time, Tsim [s] 3

SNGP-related parameters
Population size 1000
Elementary functions +, -, ×, x2, x3, BentGeneral, Logistic3
Maximal depth of features 5
Maximal number of features 30
Epoch length 500
Local search iterations 500
Number of epochs 2
Number of threads 1
State samples per dimension, BX [31, 31]

BFs-related parameters
State samples per dimension, BX [61, 61]
Number of BFs on grid 61× 61, 59× 59, . . ., 11× 11

ModeA/AB/ABC parameters
Small negative constant ω −0.001
Big impact error weight w3 100
Medium impact error weight w2 10
Small impact error weight w1 1

Table 4.1: Pendulum swing-up experiment parameters

that the standard baseline technique has a chaotic distribution of the well-
performed approximators. However, according to the distribution, both
ModeA and ModeAB improve the probability of all approximators to be
relatively successful, not the approximators with good fitnesses. Meanwhile,
ModeABC demonstrates the ability to greatly reduce the number of bad
approximators with good fitness. Altogether it results in a remarkably better
median number of successful simulations in comparison with the Baseline
method.

4.5.2 Magnetic manipulation

Magnetic manipulation (abbreviated as Magman) is a challenging non-linear
control problem. The current through the electromagnets is controlled to dy-
namically shape the magnetic field above magnets, which allows to accurately
and quickly control the position of a steel ball. For the experiments presented
in this work, first three coils at 0, 0.025, and 0.05 (m), respectively, have been

65



4. Fitness Criterion Study ................................

Figure
4.5:

D
istribution

ofthe
result

m
odels

for
pendulum

sw
ing-up

benchm
ark

using
SN

G
P

approxim
ation

technique.
T
he

top
row

represents
the

histogram
ofthe

obtained
m
odels

for
each

m
ethod.

T
he

bottom
row

show
s
a
density

projection
ofthe

m
odels.

66



................................4.5. Experimental evaluation

MSEm MRetm Sm Ŝm
BFs_Baseline 0.0299 -91.948 3.84 0
BFs_ModeA 0.2532 -53.692 90.6 100
BFs_ModeAB 0.2539 -53.934 90.7 100
BFs_ModeABC 0.2476 -52.276 92.0 100
SNGP_Baseline 0.1937 -76.697 41.7 0
SNGP_ModeA 1.5772 -71.742 52.0 75
SNGP_ModeAB 1.8198 -62.516 76.8 99
SNGP_ModeABC 6.1889 -59.619 93.7 99

Table 4.2: Pendulum swing-up experiment results

used. Full description alongside technical details about the benchmark can be
found in Appendix A.3. State x is given by the position and velocity of the
ball. The control input u is defined as the vector of currents [u1u2u3] ∈ [0, 0.6]
on the coils. The reward function is defined as:

ρ(x, u, f(x, u)) = −abs(xTdes − f(x, u))Q, with Q = [10, 1]T (4.20)

where the desired position xdes is set to [0.035, 0] (m, m/s), Q is a weighting
vector and function abs(·) works element-wise. The discrete-time transitions
are obtained by numerically integrating the continuous-time dynamics using
the fourth-order Runge-Kutta method with the sampling period Ts = 0.005 s.
The set of control inputs U is defined as the Cartesian product of the vectors
[0, 0.3, 0.6]T , containing the discrete values of the control input to the ith coil.

Parameters for fuzzy V-iteration are listed in Table 4.3, while all other
parameters are the same as for the pendulum swing-up setting.

Fuzzy V-iteration parameters
State space, X [0, 0.05]× [−0.4, 0.4]
Input space, U [0, 0.6]

State samples per dimension, BX [31, 31]
Action samples per dimension, BU [3, 3, 3]

Discount factor, γ 0.95
Convergence threshold, ε 10−4

Desired state, xdes [0.035, 0]
Sampling period, Ts [s] 0.01

Simulation time, Tsim [s] 3

Table 4.3: Magnetic manipulation experiment parameters

The results, shown in Table 4.4, demonstrate the same pattern as for
the pendulum swing-up benchmark, except ModeAB. The Baseline method
did not succeed in finding a single well-performed model while achieving an
impressively low MSEm in the case of the SNGP approximation technique.
After applying Condition A it became significantly more successful. Fig-
ure 4.6 shows the comparison of the found BFs approximators w.r.t. to their
median returns and MSEs. For both approximation techniques, there is no
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MSEm MRetm Sm Ŝm

BFs_Baseline 0.0002 -32.678 4.61 0
BFs_ModeA 0.0004 -5.743 74.07 96.5
BFs_ModeAB 0.0004 -5.752 74.11 96.5
BFs_ModeABC 0.0019 -4.800 89.03 100
SNGP_Baseline 1.4886 -640.90 0 0
SNGP_ModeA 2.2351 -12.445 17.36 7
SNGP_ModeAB 2.3509 -11.876 15.9 7
SNGP_ModeABC 14.467 -7.749 53.66 56.5

Table 4.4: Magman experiment results

significant difference between ModeA and ModeAB. For the BFs technique,
all the benefits of using ModeAB are again deactivated due to the specific
architecture of the approximator. Meanwhile, it can be seen that the majority
of ModeABC approximators consistently find better trajectories w.r.t. other
methods.

4.6 Discussion

The proposed methods show the potential to significantly outperform the
baseline approach as shown in Tables 4.2 and 4.4. To the best of the authors’
knowledge, it is a first attempt to analyze the direct influence of the approxi-
mation error on the policy derivation. The concrete algorithms are given for
the linear-in-parameters approximations. However, the analysis itself holds
for other architectures as well.

The proposed methods have several limitations.. It requires the knowledge and the special design of the reward function:
with the goal state equals exactly zero. Despite that the reward function
is, in practice, given by the experimenter, it is a part of the environment in
traditional RL. However, if the bounds of the reward function are known,
it is still possible to apply the proposed method by simply translating
the rewards to have goal or goal states in zero.. This work assumes that all goal states are equally important, and the
V-function in these states will be equal to zero once learning is ready.
Despite that this case is relatively frequent and the majority of tasks
can be transformed into this case, exceptions are still possible.. The third limitation is rather practical than theoretical. It is still
unclear how to use the proposed methods for the learning procedure
itself. Although the output models obtained by the proposed methods
work significantly better than the baseline models, the approximation
error is still much more prominent than zero. Intuitively, approximation
errors between iterations will leverage each other in iterative approximate
RL algorithms, resulting in negative synergy. One of the possible ways
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4. Fitness Criterion Study ................................
to overcome that limitation lies in computing V-function at once, using
approximate linear programming in opposite to iterative methods (see
[78] for further details).. The last limitation is that it is unclear how to apply the proposed analysis
to V-iteration-like algorithms. Only Conditions A and B are directly
applicable to this approximation style. However, it is still not clear
how to apply Condition C (which exploits, in fact, desired policy) to
the method which does not use policy in the approximation process.
Overcoming this limitation may be a part of future work.

4.7 Conclusion

This work attempts to formalize the influence of approximation error on policy
derivation in the RL domain. The results show the potential to significantly
outperform the standard MSE-based technique as shown in Tables 4.2 and 4.4.
The reason is that the proposed methods redistribute the approximation error
w.r.t. the policy derivation process. Altogether, it resulted in the successful
fitting of symbolic V-function approximators. This achievement answers the
RQ 3 and the unanswered part of the RQ 2.

The proposed analysis applies to any kind of value function approximation
technique. Incorporating the proposed methods directly into reinforcement
learning may be a part of future work. The proposed analysis may help to
leverage the performance of a wide variety of methods.
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Chapter 5
Efficient Symbolic Regression for
Reinforcement Learning

Assume we have just the reward
function and dynamics function.
How can we learn V-function
symbolically?

Author, after countless nights of
processing the thought: “It should

be possible!”

5.1 Analysis of the current state

Before building an efficient SR for RL framework, it is beneficial to identify
the desired properties of such a method. Key desired properties are listed
below:. Efficient sample collection – as a generative technique, SR relies on an

evaluation of all given samples for each generated candidate solution. As
the dimensionality of the task grows, exhaustive evaluation may quickly
become prohibitive. However, many papers (e.g., [90, 91, 92]) claim that
SR is efficient at generalization from few number of samples.. Incorporate region importance – as discussed in Section 3.1, not all
regions of the state space are equally important for the resulting policy.
The ideal SR for RL method should identify these key areas.. Continuous action space should be used – all previous chapters relied on
the discretization of the action space at the learning time. Despite that
it is a working strategy to learn a V-function, it may lead to undesired
behavior. Additionally, using discrete actions in the learning process
goes in contradiction to the goals of the thesis.. Computational feasibility – the most trustworthy criterion of the per-
formance could be achieved virtually exclusively through simulations.
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5. Efficient Symbolic Regression for Reinforcement Learning..................
For that purpose, symbolic approximators should be produced within a
reasonable time frame, given the available computational budget.

Previous research is systematized and mapped onto the taxonomy depicted
in Figure 5.1.

SR in RL

Optimal samples
available

Optimal samples
have to be learnt

Baseline 
approximator 

available

[M2] 
Generalized proxy

[M3]
ModeABC fitting

[M1] 
Hybrid proxy

Final approximator 
is built 

simultaneously

[M4] 
Dynamic 

programming

[M5] 
Dynamic linear 
programming

Final approximator 
is built afterwards

[M7] 
Trajectory 

optimization

[M6] 
Direct fit

Figure 5.1: Taxonomy of the branches of research: previous and potentially
useful combined.

All invented or researched methods are analyzed through the desired
properties derived above. In addition, potentially useful branches of research
are added for the sake of the same analysis. Analyzed methods are listed
below:

M1. Hybrid proxy (introduced in Section 3.1.4) justifies the necessity of having
region importance but not solving the issue. Moreover, it explicitly relies
on discrete actions and corresponding transitions, collected uniformly
from the state space. While the exhaustive sampling strategy potentially
could be redesigned, other desired properties are violated beyond repair.

M2. Generalized proxy (introduced in Section 3.2) could potentially be used
to work with continuous action space if the knowledge about continuous
optimal actions is extracted from the underlying approximator. Multiple
policy derivation methods may ensure it. However, such an underlying
approximator should be learned beforehand. Moreover, it relies on
uniform sampling in the same manner as a Hybrid proxy. These two
drawbacks are critical and cannot be easily fixed.

72



.............................. 5.1. Analysis of the current state

M3. ModeABC fitting procedure(introduced in Section 4.4) can be adapted
for continuous action space, depending on the knowledge of optimal
actions. Additionally, it partially exploits the usage of the importance of
different regions. Additionally, it is independent of the sampling strategy,
but the efficiency of different sampling was never tested. Similarly to
M2, the main drawback is the lack of known optimal actions beforehand.

M4. Dynamic programming approach for RL is the most convenient one
among others. It does not necessarily depend on the exhaustive samples
collection, it can potentially gain information about region importance
using prioritized sweeping [93], and may work with continuous action
spaces directly. However, in combination with SR, it has severe drawbacks.
Dynamic programming requires a fitted approximator for each iteration.
Since fitting a symbolic approximator requires significant time, it alone
may render using SR ineffective. Additionally, as was analyzed previously
(see Section 4.5 for further details), even with symbolic approximation at
the last stage, it is prone to suboptimal policies. Given the fact that the
dynamic programming approach consists of many iterations, intermediate
suboptimal policies may render the final solution unsatisfactory both
from the quality and computational time perspectives.

M5. Dynamic linear programming casts RL problem to a single optimization
task, which is then solved using linear programming [94, 95, 96]. It is
not limited to the exhaustive sample collection but may work neither
with prioritized sweeping nor continuous actions. Moreover, the dynamic
linear programming approach in combination with SR requires solving
optimization tasks for every candidate solution. This property makes
using SR impractical from the computational point of view.

M6. Direct fit of the Bellman equation requires a calculation of the next opti-
mal action for each sample and for each candidate approximator. The
most suitable method, QSPD (introduced in Section 2.2.5), requires par-
tial symbolic derivatives to work efficiently. Therefore, these derivatives
are required for each candidate solution. Computing symbolic derivatives
is a time-consuming process, making the whole approach computationally
expensive. Moreover, the direct fit of the Bellman equation provides no
information about the importance of different regions, which may render
the final approximator suboptimal.

M7. Trajectory optimization is a method of finding feasible and optimal
trajectories from the selected starting point. Unlike RL, trajectory
optimization does not require samples of the whole state space since it
does not produce V-function. Additionally, trajectory optimization works
inherently with continuous action space. There are known examples
of finding trajectories in high-dimensional tasks [97, 98, 99]. These
properties provide a reason to analyze the potential of using trajectory
optimization techniques combined with SR in RL.
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Based on this quick analysis, it is possible to exclude methods M1, M2,

M4, M5 and M6 from the following work, and concentrate on the rest.
Additionally, QSPD algorithm has the potential to be incorporated into the
final design, assuming successful fitting of a symbolic V-function approximator.

5.2 Trajectory optimization sampling

5.2.1 Proposed method

Trajectory optimization is a wide and well-studied branch of methods of find-
ing feasible and optimal trajectories. Unlike RL, which looks for a closed-loop
solution, trajectory optimization seeks an open-loop solution to an optimal
control problem. While it does not produce V-function per se, trajectory
optimization can be utilized as a sampling technique. In Chapter 4, it was dis-
covered that ModeABC fitting procedure is able to fit a symbolic V-function
out of the limited number of samples from the optimal V-function. These
samples should be in the form of tuples (xk, f(xk, u∗k), ρ(xk, u∗k, f(xk, u∗k))),
where xk represents some state and u∗k stands for the optimal action for this
state. Luckily, the output of trajectory optimization can be transformed to
the form of such tuples.

In general, a trajectory optimization problem works in continuous-time
domain and can be defined as:

min
t0,tF ,x(t),u(t)

∫ tF

t0
ρ (x(t), u(t), f(t, x(t), u(t))) dt︸ ︷︷ ︸
Cost−to−go or Lagrange Term

+M(t0, x(t0), tF , x(tF ))︸ ︷︷ ︸
Terminal cost,Mayer Term

s. t.

ẋ(t) = f(t, x(t), u(t)) dynamics enforcing constraint
xlow ≤ x(t) ≤ xupp state boundaries constraint
ulow ≤ u(t) ≤ uupp action boundaries constraint
tlow ≤ t0 ≤ tF ≤ tupp bounds on initial and final time
x(t0) = initial state
x(tF ) = desired state
+ additional constraints if necessary, e.g. collision avoidance

(5.1)

where transition dynamics is taking time t as an extra parameter, state x
and action u are transformed into time-dependent functions, and Mayer term
represents the terminal cost in addition to the standard to RL cost-to-go.
Due to the continuous-time formulation, it is possible to solve this task with
a variable horizon. There exist many methods to solve the above task, and
their description lies outside the scope of the thesis. However, great overviews
can be found in, e.g., [100, 101, 102].

For the relevant RL setting, which uses discrete time steps, the above
formulation requires several adaptations. First of all, the variable horizon is
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............................ 5.2. Trajectory optimization sampling

to be placed outside the optimization problem due to the lack of continuous-
time dynamics. Second of all, Mayer Term is not used in the RL formulation
from the thesis. And the last modification consists of fixing t0 to zero. Overall,
relevant to RL formulation is given below:

min
N∈Z+

J s. t.

min
[x0,...,xN ],[u0,...,uN ]

J =
N∑
k=0

ρ(xk, uk, f(xk, uk)) s. t.

xk+1 = f(xk, uk)
xlow ≤ xk ≤ xupp
ulow ≤ uk ≤ uupp
x0 = initial state
xN = desired state
+ additional constraints if necessary

(5.2)

Most of the methods for solving continuous-time versions of trajectory op-
timization are able to handle inner optimization as well. However, outer
optimization is responsible for the optimal number of discrete time steps and
is tricky to optimize by conventional methods. One of the ways to perform
such optimization is using binary search for N , solving the corresponding
inner optimization several times.

5.2.2 Proof of concept

The bi-level optimization approach was tested on the pendulum swing-up
benchmark (see Appendix A.1 for mathematical details) and compared with
a closed-loop solution by means of fuzzy approximation. List of parameters
for building fuzzy approximation is presented in Table 5.1.

Fuzzy V-iteration parameters
State space, X [−π, π]× [−30, 30]
Input space, U [−2, 2]
Action samples per dimension, BU 11
Discount factor, γ 0.95
Convergence threshold, ε 10−4

Desired state, xdes [0, 0]T
Sampling period, Ts [s] 0.02
Simulation time, Tsim [s] 3

Table 5.1: Pendulum swing-up experiment parameters

Trajectories are then obtained from a learned fuzzy approximator by
the baseline policy derivation algorithm, using 30 different initial points.
The discrete-time transitions are obtained by numerically integrating the
continuous-time dynamics using the fourth-order Runge-Kutta method with
the sampling period Ts = 0.02 s. The control goal is to stabilize the pendulum
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5. Efficient Symbolic Regression for Reinforcement Learning..................
in the unstable equilibrium xdes = [x1des

, x2des
] = [0, 0] (rad, rad/s), which is

expressed by the following reward function:

P (a) =
√

1 + a2 − 1 Pseudo-Huber loss
ρ(x, u, f(x, u)) = P (cosx1 − 1)q1 + P (x2)q2 + P (u)q3

(5.3)

where [q1, q2, q3] = [100, 1, 0.1] are weights to adjust the relative importance
of the angle, angular velocity and control current, respectively.

For inner trajectory optimization, the package iLQG [103, 103] with default
parameters was employed. The testing procedure consists of deriving optimal
trajectories from 30 randomly selected initial points using two presented
methods. An example of trajectories as well as the results of testing are
presented in Figure 5.2.

It can be seen that trajectory optimization achieves competitive results
w.r.t. the fuzzy approximation. The results are slightly in favor of trajectory
optimization. The main reason for that is that trajectory optimization works
directly with continuous action spaces. On the other hand, both the fuzzy
approximator and baseline policy derivation use a discrete set of actions to
operate. However, there are outliers demonstrating results in favor of the
fuzzy approximator. Since trajectory optimization is based on non-linear
optimization, it is prone to stacking in local minima. This problem is solved
in practice by running multiple optimizations using different initial vectors,
which is not implemented in vanilla iLQG.

5.3 Robust symbolic policy derivation

5.3.1 Proposed method

Policy derivation can be understood as a hill-climbing process: at each time
step, the agent searches for the control input that leads to a state with the
highest value given by the right-hand side (RHS) of the Bellman equation.
An advantage of this control law is its inherent stability – the value function
is analogous to the control Lyapunov function [58, 59]. As analyzed in
Section 4.3, for each step of policy derivation on the optimal V-function,
there should always exist a reachable state with a higher value (except for
the goal state). However, symbolically approximated V-functions introduce
merely inevitable approximation error, which may damage this property. It
forces policy derivation to choose a state with a lower value than the current
one. Additionally, symbolically approximated V-function often contains local
maxima, which may lead to catastrophic failures, even if the general shape of
the V-function is satisfactory. As demonstrated in Figure 5.3, it is possible
to find a better trajectory by extending the policy derivation horizon from
one-step-ahead to N-step-ahead.
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Example of trajectories from the same initial point: [ , 0]
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Figure 5.2: Comparison of trajectories, obtained by different methods: fuzzy
approximator vs. trajectory optimization on pendulum swing-up benchmark (see
Appendix A.1 for mathematical details). Top plot depicts trajectories starting
from [π, 0] point, superimposed on a learned fuzzy approximation of the V-
function. Middle plot illustrates the evolution of cumulative rewards for both
methods. Bottom plot depicts the sum of rewards obtained by both methods for
30 randomly chosen initial points, as well as their mean sum of rewards.
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The key idea of the proposed method consists of modifying the policy

derivation algorithm with an extended variable horizon. This work blends
together ideas of model predictive control (MPC) [104, 105, 106] and QSPD
algorithm (see Section 2.2.5). MPC can be briefly described as follows: it
seeks for the trajectory of a given finite horizon, optimizing the sum of
rewards, then executes the first found action and repeats the whole process.
QSPD provides the basement for efficient and scalable policy derivation in
continuous spaces.

The optimization task involves finding a sequence of N actions, which
results in the highest possible value at the last step. Unlike MPC, values
along the path are ignored for the sake of avoiding local extrema.

The task is formalized as follows:

max
u=[u1,...,uH ]

Rs(x,u) =
[
ρ
(
f̂(x, uH−1), uH , f̂(x, uH)

)
+ γV (f̂(x, uH))

]
(5.4)

where f̂(·) is defined as:

f̂(x, uH) =


f̂(x, u0) = x

f̂(x, u1) = f(x, u1)
f̂(x, uH) = f(f̂(x, uH−1), uH)

(5.5)

The aforementioned optimization occurs at each step of policy derivation,
but only action u1 is applied. For H = 1 this optimization is reduced to
QSPD, which solves it using the trust region reflective (TRR) algorithm.
This method requires symbolic partial derivatives for each dimension of the
action space to work efficiently. Therefore, ρ(·) and f(·) should be symbolic
representations of the reward and state transition function, respectively, while
the V-function is given a priori in a symbolic form. In model-based RL, the
experimenter virtually always designs the reward function and can easily
define it as an analytic one. However, this is often not the case with the
state transition function f(·). The system dynamics is typically described in
continuous time, while the state transitions are generated through numerical
integration, using, e.g., Runge-Kutta methods. The superscript s is used in
the sequel to distinguish symbolic functions and operators from their numeric
counterparts.

For extension of the QSPD algorithm to a longer horizon, partial derivatives
are required for all actions in the sequence and all dimensions of the action
space. In this work, Matlab Symbolic Math Toolbox [107] was successfully
employed for computing them analytically. Actual values of the partial deriva-
tives are then computed by the chain rule when needed for the optimization
algorithm.

This optimization technique implicitly assumes that each found value
would be higher than the previous one. However, it is not always the case.
Consider two consecutive policy derivation steps, at points xk and xk+1,
respectively. Solving (5.4) for the first point would result in a sequence of
actions [u1

1, u
1
2, . . . , u

1
H ] with final value V 1, from which action u1

1 is applied to
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5. Efficient Symbolic Regression for Reinforcement Learning..................
get to the point xk+1. Solving the same optimization problem for xk+1 would
result in another sequence [u2

1, u
2
2, . . . , u

2
H ] with value V 2. What action should

be preferred in case V 2 < V 1: u1
2 or u2

1? Following the hill-climbing principle,
the best-found sequence of actions should be cached until the sequence with
a better value is found. Only after that, policy derivation should use a new
sequence.

When all ingredients are prepared, the Robust Symbolic Policy Derivation
(RSPD) can be summarized in Algorithm 7.

Algorithm 7: Robust Symbolic Policy Derivation (RSPD)
Input: f, f̂s, ρs, γ, Rs, H, x0

k ← 0
ucache ← [u1, . . . , uH ]
Vcache ← −∞
z ← 0
while control experiment not terminated do

u← initialize with random actions within UH domain
ucand ← argmax

u∈UH

Rs(xk,u); TRR optimization

Vcand ← Rs(xk,ucand)
if (Vcand ≥ Vcache) or (z = H) then

Vcache ← Vcand
ucache ← ucand
z ← 0

z ← z + 1
k ← k + 1
u̇k ← uz
xk+1 ← f(xk, u̇k)

end
Output: trajectory [x1, x2, ...], [u̇1, u̇2, ...]

5.3.2 Proof of concept

The proposed concept is tested on two benchmarks: pendulum swing-up and
magnetic manipulation with three coils.

Pendulum swing-up benchmark used parameters from Section 4.5.1, except
for the reward function, which is expressed as follows: The control goal is to
stabilize the pendulum in the unstable equilibrium xdes = [x1des

, x2des
] = [0, 0]

(rad, rad/s), which is expressed by the following reward function:

P (a) =
√

1 + a2 − 1 Pseudo-Huber loss
ρ(x, u, f(x, u)) = P (cosx1 − 1)q1 + P (x2)q2 + P (u)q3

(5.6)

where [q1, q2, q3] = [100, 1, 0.1] are weights to adjust the relative importance
of the angle, angular velocity, and control current, respectively. Symbolic
model of the V-function is drawn manually from the pool of suboptimal
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............................5.3. Robust symbolic policy derivation

models, produced by ModeABC fitting procedure (refer to Section 4.4 for
further details). Trajectories are obtained by setting horizon H to 5, 10, 20, 40,
respectively. These trajectories are then compared with the baseline policy
derivation introduced earlier. The results are depicted in Figure 5.4.

Figure 5.4: Comparison of trajectories, obtained by using RSPD algorithm with
different horizons H. Left plot demonstrates a set of trajectories starting from
[−π, 0] point superimposed on one of the suboptimal symbolic V-functions. Plots
on the right depict the expected value difference in time.

It can be seen in Figure 5.4-left, that RSPD is able to improve policy
derivation dramatically - all trajectories (except the one derived by baseline
method) reached the vicinity of the goal state despite suboptimal approxima-
tion of the V-function. Furthermore, with sufficiently long horizon H (namely,
for H = 20 and H = 40), RSPD successfully produced never decreasing
sequences of expected values. However, insufficiently long horizons may still
violate the hill-climbing principle, but the length of decreasing streaks is
decreased to single steps.

Magnetic manipulation benchmark used the same parameters as were in
Section 4.5.2, except for the following:.Goal state is set to xdes = [xdes1 , xdes2 ] = [0.0150]. Simulation time is reduced to 1.5(s). The reward function is defined as:

P (a) =
√

1 + a2 − 1 Pseudo-Huber loss
ρ(x, u, f(x, u)) = P (x1 − xdes1)q1 + P (x2 − xdes2)q2

(5.7)

where [q1, q2] = [1350, 150] are weights to adjust the relative importance
of the position and velocity, respectively.

Symbolic model of the V-function is produced by using ModeABC fitting
procedure (see Section 4.4 for further details). Trajectories are obtained by
setting horizon H to 2, 5, 10, 20, respectively. These trajectories are again
compared with the one derived by the baseline algorithm. The results are
depicted in Figure 5.5.
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Figure 5.5: Comparison of trajectories, obtained by using RSPD algorithm with
different horizons H. Left plot demonstrates a set of trajectories starting from
[0.04,−0.3] point superimposed on one of the suboptimal symbolic V-functions.
Plots on the right depict expected value difference in time.

The results again support the hypothesis that RSPD is able to improve
policy derivation dramatically, all trajectories except for the baseline ended up
in close vicinity of the goal state. Figure 5.5-left demonstrates how different
horizons affect the optimality of the trajectory.

5.3.3 Discussion

RSPD algorithm demonstrates the ability to recover policy derivation from
suboptimal symbolic approximations of the V-function. It relies on a specific
feature of the SR - the good grasp of the general shape. However, several
drawbacks need to be addressed:. Computational time - due to its nature, RSPD is substantially slower

than other policy derivation methods. Since it is based on the QSPD
algorithm, it scales well as the dimensionality of the action space grows.
However, in the case of RSPD, action space dimensionality is multiplied
by the horizon length. It is beneficial to select the horizon as low as
possible considering the quality of the V-function approximation.. Non-linear optimization - the core of RSPD is based on the non-linear
optimization, which is prone to fall in local minima. The caching mecha-
nism helps to mitigate this effect. Different strategies for avoiding local
minima may be a part of future work.. Suboptimal policy - RSPD algorithm considers only the last state in the
sequence of actions, effectively ignoring values along the found trajectory.
While it is highly beneficial for the stability of the solution, it damages
the optimality at the same time. For that reason, it is desirable to
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............................ 5.4. Efficient symbolic RL framework

optimize the horizon length. In other words, in the case of near-ideal
approximation of the V-function, RSPD is not needed and should be
degraded to QSPD.

RSPD algorithm ensures that policy derivation always goes to a higher state,
assuming a long enough horizon to mitigate imperfections of a V-function.
However, it may be counter-productive in the case when some portion of the
V-function ended up being higher than the goal state. It may happen either
due to the approximation error or by means of underfitting. Thus, the goal
state (or states) requires additional attention. For this work, the ModeABC
fitting procedure explicitly anchors the goal state above the whole state space.
Additionally, the selection of the optimal horizon is still an open question,
which will be addressed in the consequent section.

5.4 Efficient symbolic RL framework

Now, all ingredients for building an efficient SR for RL method are prepared to
be wired together into a framework. Conceptually, it consists of the following
components, briefly recapitulated here for better readability.. Trajectory optimization as a sampling technique (introduced in Sec-

tion 5.2) - solves the task of generating optimal trajectories without
knowing the V-function beforehand. Running it multiple times generates
a required amount of samples for fitting symbolic approximation of the
V-function..ModeABC fitting method (introduced in Section 4.4)- using non-conventional
error function and set of specific constraints, guides an evolution process
to the direction, desirable for RL. As a distinctive feature, ModeABC
explicitly bounds the goal state or states to be the highest points on the
surface of the V-function. This fitting method relies on the data in the
form of tuples (xk, x∗k+1, ρ(xk, u∗, x∗k+1), where x∗k+1 and u∗ are the next
optimal state and optimal action for the point xk, respectively. Data in
that specific format are collected from trajectory optimization sampling.. RSPD policy derivation method (introduced in Section 5.3) - ensures
that policy derivation is not affected by local extrema. It is done by
extending the horizon for which policy derivation predicts future values
in combination with controlled geometry of the V-function (ensured
by ModeABC). RSPD algorithm guarantees the reachability of the
goal state, assuming a sufficiently long horizon. However, it does not
guarantee the optimality of the trajectory.

This chapter is devoted to the identification and filling of missing gaps between
these components. The resulting algorithm is then composed in a way that
satisfies all the desired properties, defined in Section 5.1. Consequently,
the algorithm is tested on pendulum swing-up and magnetic manipulation
benchmarks. Additionally, it is tested on a new benchmark with higher
dimensionality - drone strike.
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5.4.1 Proposed method

The first gap to be solved comes directly from the desired properties defined
in Section 5.1 - incorporating region importance into the fitting process. The
importance of particular areas of the state space is illustrated in Section 4.1
and can be briefly described as follows: there may exist critical areas only
through which the goal state is reachable. If the approximation error affects
these areas, the whole approximator may be rendered useless since policy
derivation may never choose a path through these areas. For that reason,
fitting such areas should be prioritized, even at the cost of worsening approx-
imation errors in other regions. Luckily, using trajectory optimization as a
sampling technique naturally fills this gap. If such critical areas exist for
the task, all trajectories that reach the goal state will pass through them.
Consequently, the number of samples in critical areas is increased compared
to the rest of the state space. Increased density of samples in critical areas
leads to the increased importance of these regions from the fitness function
point of view. This effect is depicted in Figure 5.6.

Figure 5.6: Illustration of the dataset, collected by trajectory optimization. The
left plot demonstrates a set of trajectories starting from quasi-randomly selected
initial points, marked by asterisks. The right plot depicts the density map of
collected samples.

The second open gap is the selection of the optimal horizon H for the
RSPD algorithm. Ideally, the horizon should possess the following qualities:..1. It is sufficiently long to ensure the reachability of the goal state...2. It is as short as possible to minimize computational expenses...3. The length is not constant and varies for different approximators...4. Horizon length should be incorporated into fitness function.

One option to find a suitable horizon relies on exhaustive simulations for
each candidate model. While this method should work, it is computationally
expensive and, thus, impractical. Alternatively, the desired horizon may be
found by the following procedure:
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............................ 5.4. Efficient symbolic RL framework..1. Collect additional trajectories by trajectory optimization and form test
dataset...2. Start evolution of the symbolic approximation...3. For each candidate model of the V-function initialize the length of horizon
H with the length of the longest trajectory:..a. For each trajectory from test dataset

(i) Match trajectory against candidate model.
(ii) Compute difference of the value, analogously to Figure 5.3-

bottom.
(iii) Identify the length of the longest streak of decreasing values

(marked red on the plot) and store it in Hcand.
(iv) Set H = Hcand if Hcand < H...b. Use H in computation of fitness...4. Return H as the desired horizon for RPDS for this particular model.

There are multiple options how to use horizon length within the fitness
function. In this work, the multiplicative variant is selected, namely:

fitness = H ∗ FABC (5.8)

where FABC stands for the fitness, obtained by using ModeABC. By using
multiplicative variant of the fitness function in combination with ModeABC,
candidate models form the following hierarchy of preferences, from highest to
lowest:. Reduce required horizon. Reduce error on samples that violate stability. Reduce error on samples that violate optimality

The third gap is partially created by switching to trajectory optimization
sampling from equidistant sampling, used in original ModeABC fitting
procedure. The purpose of Condition B is to guarantee that the resulting
approximation will have the maximum at zero and all other samples will be
lower than the maximum value. The equidistant sampling is required to cover
the whole state space to work reliably. However, since trajectory optimization
does not guarantee a homogeneous distribution of the samples, condition B
should use another dataset. Additionally, equidistant sampling may become
prohibitive as the dimensionality of a task grows. One possible way to
solve this issue is to sample K support points quasi-randomly specifically for
Condition B.

Now, Efficient SR for RL (ESRL) framework can be composed into the
block-scheme, presented in Figure 5.7.
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ρ(·), f(·), γ, xdes

Collect samples by
trajectory optimization

Train dataset Test dataset

Symbolic regression

ModeABC

Fitness
computation

Horizon search

Horizon

fitness
Symbolic model V (·)

RSPD

Figure 5.7: Block-scheme of the Efficient SR for RL (ESRL) framework.

5.4.2 Experimental evaluation

The ESRL framework has been tested on three benchmarks. The first two are
well-known pendulum swing-up and magnetic manipulation (abbreviated as
magman). The third one is a drone strike, which is explicitly designed to test
the scalability aspects of the proposed solution. The framework is run 15 times
for each benchmark, resulting in 15 different symbolic models. Symbolic mod-
els are built by the modified version of SNGP (see Appendix B.3 for further
details). All models within a benchmark are constructed using identical param-
eters (except the random seed) to exclude any influence of different parameters
from the comparison. Each model is then tested through simulations with
K = 50 randomly chosen initial states, which are the same for each benchmark.
It should be explicitly noted that all the models V C(·) are presented “as is”,

which means that there is no selection procedure w.r.t. some criterion.
To measure the performance of a single trajectory, the following criteria

are defined:. Euclidean distance to the goal state denoted as Dt. For pendulum swing-
up, the angle is used for computation. For both magman and drone
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strike, the position is used.. Return, collected via obtained trajectory, defined as:

Rt =
Tsim/Ts∑
q=1

ρ(xq, uq, f(xq, uq))

where Tsim and Ts are the total simulation time and the sampling period,
respectively..Optimality level, computed by applying trajectory optimization on the
same initial state. Return of the optimized trajectory is defined as Rot
and computed in the same manner as Rt. Optimality level is then defined
as:

Ot = Rot
Rt
· 100%. Binary flag of the success of the simulation, denoted as St. Simulation

is considered successful if the last 25 steps of the trajectory lie within
5% interval around the goal state xdes. An example of the successful
trajectory and appropriate interval is given in Figure 4.4.

Subscript t stands for “trajectory”.
The performance of a single symbolic approximator is measured by the

following criteria:.Mean euclidean distance to the goal state, denoted as Dm.. Percent of successful simulations, denoted as Sm..Mean trajectory return, denoted as Ṙm..Median trajectory return, denoted as R̈m..Mean optimality level, denoted as Ȯm.Median optimality level, denoted as Öm. Used horizon Hm.

Subscript m stands for “model”.
Finally, the benchmark-wise performance is measured using the following

criteria:.Mean euclidean distance to the goal state, denoted as D.. Percent of successful simulations, denoted as S..Mean return, denoted as Ṙ..Mean return, denoted as R̈..Mean optimality level, denoted as Ȯ.Median optimality level, denoted as Ö.Mean horizon rounded to ceiling value, denoted as H.
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Pendulum swing-up

System parameters
State space, X [−π, π]× [−30, 30]
Input space, U [−2, 2]
Discount factor, γ 0.95
Desired state, xdes [0, 0]T
Sampling period, Ts [s] 0.02
Simulation time, Tsim [s] 3

Trajectory optimization parameters
Minimal number of train samples, Ns

train 1000
Minimal number of train trajectories, N t

train 20
Minimal number of test samples, Ns

test 1000
Minimal number of test trajectories, N t

test 20
ModeABC parameters

Small impact error weight 100
Medium impact error weight 10
Big impact error weight 1
Number of support points, K 500
Minimal difference with the goal state, ω -0.1

SNGP parameters
Population size 1000
Elementary functions *, +, -, x2, x3, x4, Logistic3

BentGeneral
Maximal depth of features 5
Maximal number of features 30
Max number of generations 1500
Local search iterations 1500
Max number of threads 10
Number of runs 15

Table 5.2: Pendulum swing-up experiment parameters

The inverted pendulum consists of a mass attached to an actuated link that
rotates in the vertical plane. The available torque is insufficient to push the
pendulum up in a single rotation from the majority of initial states. Instead,
from a certain state (e.g., pointing down), the pendulum needs to be swung
back and forth to gather energy, before it can be pushed up and stabilized.
Full description alongside technical details about the benchmark can be found
in Appendix A.1. The discrete-time transitions are obtained by numerically
integrating the continuous-time dynamics using the fourth-order Runge-Kutta
method with the sampling period Ts = 0.02 s.

The control goal is to stabilize the pendulum in the unstable equilibrium
xdes = [x1des

, x2des
] = [0, 0] (rad, rad/s), which is expressed by the following

reward function:

P (a) =
√

1 + a2 − 1 Pseudo-Huber loss
ρ(x, u, f(x, u)) = P (cosx1 − 1)q1 + P (x2)q2 + P (u)q3

(5.9)

where [q1, q2, q3] = [100, 1, 0.1] are weights to adjust the relative importance
of the angle, angular velocity and control current, respectively.
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The comprehensive set of experiment parameters is presented in Table 5.2
and the results of evaluation are presented in Table 5.3.

Dm, [rad] Sm, [%] Ṙm R̈m Ȯm, [%] Öm, [%] Hm

Model 1 0.002 100 -1061.728 -979.206 99.95 97.63 17
Model 2 0.001 100 -1067.065 -991.437 96.57 96.56 17
Model 3 0.037 100 -1141.668 -1002.267 92.99 95.39 18
Model 4 0.003 100 -1048.297 -1000.167 97.26 97.35 18
Model 5 0.002 100 -1062.029 -988.43 98.34 98.60 17
Model 6 0.001 100 -1120.773 -1011.652 89.85 96.04 18
Model 7 0.002 100 -1237.914 -1032.698 86.91 93.31 18
Model 8 0.002 100 -1066.323 -992.224 96.93 96.99 18
Model 9 0.002 100 -1055.86 -988.126 98.84 97.04 17
Model 10 0.002 100 -1049.406 -991.552 99.25 98.47 17
Model 11 0.002 100 -940.314 -922.988 109.14 102.19 17
Model 12 0.001 100 -1203.769 -1014.179 91.11 93.10 17
Model 13 0.037 100 -1052.471 -991.686 99.46 97.82 18
Model 14 0.003 100 -1220.83 -1050.374 84.70 92.97 18
Model 15 0.002 100 -1101.34 -1012.204 94.70 96.17 17

Benchmark D, [rad] S, [%] Ṙ R̈ Ȯ, [%] Ö, [%] H
0.006 100 -1095.319 -992.224 95.73 96.99 18

Table 5.3: Pendulum swing-up experiment results

At first sight, it can be seen that computed V-functions are underdeveloped,
which is indicated by horizon lengths Hm. Despite that fact, all simulations
achieved the goal state. Moreover, recalling the definition of success St,
all models successfully stabilized themselves at the goal state. Optimality
level is indicated to be high, despite the underdevelopment of V-functions.
These results support the hypothesis that ESRL framework is able to perform
even on poorly fitted V-functions. Additionally, it correctly guesses the
required horizon beforehand. The underdevelopment of symbolic models can
be potentially overcome by increasing the maximal depth of features or
and by increasing the number of epochs. However, it is possible that with
the current set of settings, the target shape of the V-function cannot be
approximated accurately. Research on the theoretical flexibility of a given set
of features may be a part of future work.

Magnetic manipulation

Magnetic manipulation (abbreviated as magman) is a challenging non-linear
control problem. The current through the electromagnets is controlled to
dynamically shape the magnetic field above the magnets and so to accurately
and quickly position a steel ball to the desired set point. The first three coils
at 0, 0.025, and 0.05 (m), respectively, have been used for the experiments
presented in this work. Full description alongside technical details about the
benchmark can be found in Appendix A.3.

The goal of the benchmark is to move the steel ball to the position xdes =
[0.035, 0] (m, m/s) and stabilize it. Coordinated work of two coils is required
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System parameters

State space, X [0, 0.05]× [−0.4, 0.4]
Input space, U [0, 0.6]× [0, 0.6]× [0, 0.6]
Discount factor, γ 0.995
Desired state, xdes [0.035, 0]
Sampling period, Ts [s] 0.005
Simulation time, Tsim [s] 1

Trajectory optimization parameters
Minimal number of train samples, Ns

train 500
Minimal number of train trajectories, N t

train 20
Minimal number of test samples, Ns

test 500
Minimal number of test trajectories, N t

test 20
ModeABC parameters

Small impact error weight 100
Medium impact error weight 10
Big impact error weight 1
Number of support points, K 300
Minimal difference with the goal state, ω -0.1

SNGP parameters
Population size 1000
Elementary functions *, +, -, x2, x3, x4, Logistic3,

BentIdentityGeneral
Maximal depth of features 5
Maximal number of features 30
Max number of generations 1500
Local search iterations 1500
Max number of threads 10
Number of runs 15

Table 5.4: Magnetic manipulation experiment parameters

to achieve that task since the desired position is placed midway between the
second and the third coil. The reward function is defined as:

P (a) =
√

1 + a2 − 1 Pseudo-Huber loss
ρ(x, u, f(x, u)) = 104 · [P (x1 − xdes1)q1 + P (x2 − xdes2)q2]

(5.10)

where [q1, q2] = [130, 1] are weights to adjust the relative importance of
the position and velocity, respectively. The discrete-time transitions are
obtained by numerically integrating the continuous-time dynamics using the
fourth-order Runge-Kutta method with the sampling period Ts = 0.005 s.

The comprehensive set of experiment parameters is presented in Table 5.4
and the results of evaluation are presented in Table 5.5.

Results of the magnetic manipulation benchmark evaluation indicate the
same pattern as results on the pendulum swing-up benchmark. All simulations
for all models successfully reached the goal state with minimal steady-state
error. The optimality level is oscillating around 100%, indicating a near-
optimal solution. Additionally, results demonstrate a significant difference
between mean and median returns. A few simulations with extremely high
costs are responsible for it. Since reward function penalizes being distant
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Dm, [m] Sm, [%] Ṙm R̈m Ȯm, [%] Öm, [%] Hm

Model 1 0.00025 100 -10491.648 -6115.424 101.75 100.14 27
Model 2 0.00029 100 -10436.98 -6080.711 102.38 100.49 26
Model 3 0.00041 100 -10396.521 -5971.884 102.85 100.76 25
Model 4 0.00049 100 -10346.883 -5874.124 103.28 101.49 24
Model 5 0.00051 100 -10262.946 -5769.442 104.24 102.33 22
Model 6 0.00025 100 -10391.828 -5960.179 102.97 100.95 25
Model 7 0.00029 100 -10514.302 -6206.78 101.65 100.16 27
Model 8 0.00041 100 -10385.331 -6019.408 102.97 101.13 25
Model 9 0.00049 100 -10579.787 -6468.588 100.99 100.00 28
Model 10 0.00051 100 -10514.693 -6137.47 101.72 100.09 27
Model 11 0.00031 100 -10540.729 -6242.944 101.30 100.00 27
Model 12 0.00034 100 -10428.79 -6052.878 102.48 100.53 26
Model 13 0.00033 100 -10487.768 -6104.459 101.92 100.27 27
Model 14 0.00024 100 -10439.034 -6036.734 102.30 100.49 26
Model 15 0.00025 100 -10402.308 -6022.305 102.72 100.84 25

Benchmark D, [m] S, [%] Ṙ R̈ Ȯ, [%] Ö, [%] H
0.00035 100 -10441.303 -6052.878 102.37 100.64 26

Table 5.5: Magnetic manipulation experiment results
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Figure 5.8: Set of magnetic manipulation trajectories superimposed on found
symbolic V-function, obtained by ESRL framework. Trajectories are split into
two subsets (marked black and blue) with approximately equal sums of their
returns Rt.
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from the goal state, all simulations with distant starting points inevitably
produce costly trajectories. This effect is depicted in Figure 5.8. Here, the
set of all trajectories is split into two subsets with approximately equal sums
of their returns Rt. It can be seen that these subsets are heavily imbalanced,
which resulted in the difference between Ṙm and R̈m.

Drone strike

Drone strike is an extremely challenging problem to tackle on a standard PC.
Due to the highly non-linear 12-D dynamics described in different frames, this
benchmark has been designed specifically to test the scalability aspects of the
proposed solution. In addition, the action space consists of four dimensions
which are required to operate simultaneously to control the drone. An initial
state represents a violently thrown drone. The main goal of the benchmark is
to stabilize it and then hit the desired point xposdes = [1, 1, 0] (m) in a kamikaze
way. Additionally, it is desirable to align Euler angles (roll, pitch, yaw) to
xanglesdes = [0, 0, 0] (rad), drop velocity of the drone to zero xvdes = [0, 0, 0] (m/s),
as well as angular velocity xangularv

des = [0, 0, 0] (rad/s). The drone is controlled
through its overall thrust and moments for each Euler axis. Desired controls
are limited to udes = [0, 0, 0, 0] (N, Nm, Nm, Nm), which forces the drone to
minimize energy consumption. Only one hit to the ground as allowed, which
leaves no room for errors. Full description alongside technical details about
the benchmark can be found in Appendix A.4.

The reward function is then defined as follows:

P (a) =
√

1 + a2 − 1 Pseudo-Huber loss
rpos = 103 · P (x1 − xposdes1

) + 103 · P (x2 − xposdes2
) + 103 · P (x1 − xposdes3

)

rangles = P (x4 − xanglesdes1
) + P (x5 − xanglesdes2

) + P (x6 − xanglesdes3
)

rv = P (x7 − xvdes1) + P (x8 − xvdes2) + P (x9 − xvdes3)

rangularv = P (x10 − xangularv

des1
) + P (x11 − xangularv

des2
) + P (x12 − xangularv

des3
)

ru = P (u1 − udes1) + P (u2 − udes2) + P (u3 − udes3) + P (u4 − udes4)
ρ(x, u, f(x, u)) = rpos + rangles + rv + rangularv + ru

(5.11)

The discrete-time transitions for the trajectory optimization part are obtained
numerically, integrating the continuous-time dynamics using the fourth-order
Runge-Kutta. For the policy derivation part, the Euler method was used
analogously to QSPD algorithm. It is done due to the computational expen-
siveness of computing partial derivatives symbolically, which are required for
RSPD algorithm. In both cases, the sampling period is set to Ts = 0.01 s.

The comprehensive set of experiment parameters is presented in Table 5.6
and the results of evaluation are presented in Table 5.7.

Results of the ESRL evaluation on the drone strike benchmark demonstrate
comparable performance w.r.t. previous tasks. On average, 98% of simulations
were able to hit the goal state successfully. An example of single trajectory is
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System parameters
State space, X [−2, 2]× [−2, 2]× [0, 2]×

[−1.5, 1.5]× [−1.5, 1.5]× [−1.5, 1.5]×
[−2, 2]× [−2, 2]× [−2, 2]×
[−1.3, 1.3]× [−1.3, 1.3]× [−1.3, 1.3]

Input space, U [−3.3354, 5.0031]× [−0.408, 0.408]×
[−0.408, 0.408]× [−0.408, 0.408]

Discount factor, γ 0.95
Desired state, xdes [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T
Desired control, udes [0, 0, 0, 0]T
Sampling period, Ts [s] 0.01
Simulation time, Tsim [s] 3

Trajectory optimization parameters
Minimal number of train samples, Ns

train 1500
Minimal number of train trajectories, N t

train 15
Minimal number of test samples, Ns

test 5000
Minimal number of test trajectories, N t

test 30
ModeABC parameters

Small impact error weight 100
Medium impact error weight 10
Big impact error weight 1
Number of support points, K 1000
Minimal difference with the goal state, ω -0.1

SNGP parameters
Population size 1000
Elementary functions *, +, -, x2, x3, x4, Logistic3,

BentIdentityGeneral
Maximal depth of features 5
Maximal number of features 30
Max number of generations 2000
Local search iterations 2000
Max number of threads 10
Number of runs 15

Table 5.6: Drone strike experiment parameters

depicted in Figure 5.9. Steady-state error, however, tends to be significantly
bigger in comparison with previous benchmarks. The main reason for it is
the difference in state transition computation: fourth-order Runge-Kutta has
been used for computing “true” transition, while RSPD algorithm used a less
accurate forward Euler method for the prediction. Analogously to QSPD
algorithm, it led to slightly worse results. This issue, however, can be solved
by using an input-output system model instead of numeric integration of
the dynamics, as described in [45]. Incorporating input-output models into
ESRL framework may be a part of future research. Found symbolic models of
V-function are severely underdeveloped, as indicated by their mean required
horizon H. However, it was expected since the drone strike benchmark
requires a much more complex approximation than previous benchmarks
due to the larger dimensionality. Additionally, the set of training samples is
relatively sparse w.r.t. the dimensionality. While the sparsity dramatically
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Dm, [m] Sm, [%] Ṙm R̈m Ȯm, [%] Öm, [%] Hm

Model 1 0.037 98 -143629.326 -128541.661 91.90 95.79 32
Model 2 0.199 96 -162594.685 -132081.578 93.16 96.75 32
Model 3 0.166 98 -165728.213 -134850.924 86.36 92.43 32
Model 4 0.029 98 -145980.945 -119953.478 90.03 92.67 32
Model 5 0.174 98 -163982.415 -125444.518 90.75 96.60 32
Model 6 0.037 100 -154423.695 -127660.585 89.64 96.00 32
Model 7 0.199 100 -140998.949 -120375.886 91.88 96.19 32
Model 8 0.166 100 -144918.915 -123635.479 91.37 96.45 32
Model 9 0.029 98 -140950.084 -127051.71 90.71 95.48 31
Model 10 0.174 96 -153894.384 -132719.763 89.97 95.25 32
Model 11 0.037 98 -152588.482 -128071.35 92.66 96.45 32
Model 12 0.199 100 -139246.01 -118179.925 92.33 95.12 32
Model 13 0.166 98 -158296.068 -122275.878 90.55 96.06 32
Model 14 0.029 96 -154320.318 -122752.728 91.97 97.42 32
Model 15 0.174 96 -151477.022 -133821.119 91.13 95.89 32

Benchmark D, [m] S, [%] Ṙ R̈ Ȯ, [%] Ö, [%] H
0.121 98 -151535.301 -124328.031 90.96 95.64 32

Table 5.7: Drone strike experiment results

benefits the computational time, it damages the overall quality of the result
approximation. However, despite underdeveloped symbolic models, RSPD
algorithm was able to recover from that drawback.

5.5 Conclusion

This chapter consists of three main parts. Firstly, it analyses the researched
landscape of SR in RL, mapping potentially useful strategies onto taxonomy.
It helps to define the most promising research areas and key requirements for
the ESRL framework.

Secondly, it identifies missing components on the landscape of symbolic
reinforcement learning: trajectory optimization sampling and extension of
the QSPD algorithm. Both techniques were evaluated in a proof-of-concept
manner with satisfactory results. While each of them is not novel nor directly
applicable to the thesis, their synergy allowed building the framework.

Thirdly, the Efficient Symbolic RL framework is composed of components
or research conclusions from the whole thesis. The results demonstrate both
robustness and scalability, as indicated in Tables 5.3, 5.5 and 5.7. Additionally,
the resulting framework satisfies all the desired requirements defined earlier
in Section 5.1. Successful creation of ESRL answers the RQ 4 and fulfils the
main goal of this thesis.
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Chapter 6
Conclusion

The dissertation is divided into five parts. The first chapter consists of
introductory material that provides an overview of the current state of the
research in the field and the definition of the key research questions. Following
the short introduction, short preliminaries on reinforcement learning and
symbolic regression are given. Then, it is followed by a comprehensive
overview of the related work. The introduction ends with a strict definition of
the scope for both RL and SR. From RL perspective, the scope is defined to
be: discrete-time, deterministic, model-based, fully-observable reinforcement
learning, with continuous state spaces, action spaces, and reward function.
From the SR point of view, the scope is not limited to specific techniques,
but several variants of SNGP were used throughout the dissertation.

The subsequent four parts are designed using the following high-level
pattern: something is assumed to be known or given; what issues will arise in
attempts to solve correspondig research question? Each part is dedicated to
particular research question, duplicated below for better readability:

RQ 1. How to use a symbolic approximator efficiently? What benefits
could be achieved?

RQ 2. Is it possible to fit a value function? How to build a minimum
valuable product?

RQ 3. What criterion should be optimized?

RQ 4. How can symbolic regression be integrated into reinforcement
learning efficiently?

In Chapter 2, symbolic optimal V-function, as well as reward and dynamic
functions are assumed to be given. A variety of policy derivation methods
have been introduced using these components. Their key purpose is to
study and mitigate the negative influence of discrete actions on overall
performance. During this study, the positive effect of applying SR onto
known V-function approximation has been discovered. In addition to that,
a Quasi-Symbolic Policy Derivation (QSPD) algorithm has been invented.
While solving the issue of using the discrete actions mentioned earlier, it
proved to be exceptionally well suitable to use with a symbolic approximation
of the V-function. All the proposed methods have been evaluated on three
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benchmarks. The results indicated the superiority of invented methods w.r.t.
the standard policy derivation approach. This chapter fully answers the RQ
1.

Chapter 3 relaxed assumption on having symbolic optimal V-function.
Instead, any optimal V-function is assumed to be given, regardless of its
structure. A concept of proxy-function has been introduced using these
assumptions. A proxy-function is defined in a way that translates to the most
simplified SR task. It led to the following conclusions:. Single symbolic expression lacks the flexibility to represent even this

simplified function.. Even simplified proxy-function can outperform standard approximation
methods due to its inherent smoothness in the sense of the absence of
approximation artifacts.. Proxy-functions tend to form surfaces that violates Lyapunov stability.
Despite that fact, the derived policy is reasonable and optimal.

In addition to the initially proposed proxy-function, the concept of general-
ized proxy-function has been proposed. It was done by redefining the fitness
function for SR using multiple symbolic expressions combined utilizing linear
programming. The generalized version of proxy-function demonstrated supe-
riority to both original proxy-function and standard methods. This chapter
provides a minimum viable product required by the RQ 2. However, the
first part of the research question is to be addressed in the following chapter.

In Chapter 4, assumptions have been relaxed again, providing only a few
samples from the optimal V-function. The main research question was “why
fitness value does not correlate with the quality of the derived policy?”. During
this study, the influence of approximation error on each sample has been
studied. In addition to that, several conditions have been established to
force SR into generating “reasonable” symbolic approximations. The result of
analysis alongside defined conditions has been encoded into linear programs
(ModeA/AB/ABC), analogously to generalized proxy-function. All these
linear programs have been evaluated using both fuzzy approximation and
SR. The results indicated that ModeABC consistently produced better V-
function approximators w.r.t. the derived policy. Moreover, the fitness value,
produced by the ModeABC, started to correlate with the expected quality
of the policy derivation. Altogether, it allowed using symbolic V-function
with the best-achieved fitness value instead of an exhaustive evaluation of
all the candidates. This chapter fully answers to the RQ 3 and provides the
missing part of the answer for RQ 2.

Chapter 5 relaxed the assumption on having any knowledge of the optimal
V-function. Instead, the optimal V-function was meant to be learned from
scratch. At the beginning of the section, the whole landscape of previous
research has been analyzed. It helped to identify the desired properties of the
hypothetical efficient SR for RL algorithm. At the same time, it prioritized
a few areas of research with the potential: ModeABC fitting procedure,

98



.............................. 6.1. Suggestions for further work

QSPD algorithm, and trajectory optimization as the sampling technique.
The latter one has been defined and tested in a proof-of-concept manner.
Results indicated that it could be a viable method of collecting samples of
optimal V-function while satisfying all the desired properties defined earlier.
Then, the QSPD algorithm has been extended into Robust Symbolic Policy
Derivation (RSPD) algorithm, which added a level of resistance against
suboptimal symbolic approximators. In the subsequent section, all these
components were wired into a solid system, forming the Efficient SR for
RL ESRL framework. It has been extensively tested on three benchmarks:
pendulum swing-up, magnetic manipulation, and a drone strike. The last one
has higher dimensionality than any benchmark used throughout this thesis
and most of the benchmarks found in related works. The results indicated
both the robustness and scalability of the proposed solution. Additionally,
the resulting framework satisfies all the desired properties defined earlier.
This chapter fully answers RQ 4.

The overall goal of the thesis has been defined as:
Develop methods to integrate symbolic regression into reinforcement

learning in continuous spaces.
Invented methods combined with experimental results allow considering

the goal of this dissertation to be fulfilled. This thesis can facilitate the next
step towards making the large-scale industrial implementation of symbolic
regression for reinforcement learning in continuous spaces.

6.1 Suggestions for further work

The number of arising challenges throughout the research for this dissertation
appeared to be overwhelmingly high. It resulted in many open questions and
challenges left for future research. In some cases, parts of this dissertation
may form a solid baseline for research. In other cases, the surface is barely
scratched. In a list of suggestions presented below, the subjective measure of
effort is indicated by “+” (easy) and “*” (hard).

+ Is that possible to use an adaptive grid instead of a fixed one in Grid
algorithm (see Section 2.2.2 for further details)?

+ What approximation techniques may achieve the same effect as SR on
V-function surface smoothing? (see Section 2.2.4).

* How to measure approximation artifacts’ influence on policy derivation
without explicit simulations?

* Is that possible to combine Sontag’s formula [108] with QSPD?

+ Generalized proxy-function (see Section 3.2) can be incorporated into
neural-network-based approximators as a last layer. How will it simplify
the architecture for such a network?
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* Ideal V-function should be analogous to Control-Lyapunov function.

However, in the approximate case, a formal analysis is missing.

+ How ModeABC (see Section 4.4) fitting procedure will influence learning
part of approximate RL using conventional algorithms?

* ModeABC uses quite a rough shape of the error function, which is respon-
sible for error redistribution. Is that possible to use more sophisticated
error functions? Can they be optimized for the task?

+ RSPD algorithm (see Section 5.3) uses fixed look-ahead horizon for the
whole policy derivation. Can it be adaptive?

+ RSPD requires symbolic partial derivatives of system dynamics to be
functional. If an accurately approximated version of such dynamics will
be used instead, how may it speed up the computation time?

* Is SR with a limited number of features, but the unlimited depth of such
features can be considered as a universal approximator analogously to
deep neural networks? Which features should be used?
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Appendix A
Benchmarks

A.1 1-DOF pendulum swing-up

The inverted pendulum consists of a mass m attached to an actuated link
that rotates in the vertical plane (see Figure A.1). The available torque is
insufficient to push the pendulum up in a single rotation from the majority
of initial states. Instead, from a certain state (e.g., pointing down), the
pendulum needs to be swung back and forth to gather energy, before it can
be pushed up and stabilized.

The continuous-time model of the pendulum dynamics is:

α̈ = 1
J
·
[
mgl sin(α)− bα̇− K2

R
α̇+ K

R
u

]
(A.1)

where J = 1.91 · 10−4 kgm2, m = 0.055 kg, g = 9.81ms−2, l = 0.042m,
b = 3 · 10−6 Nms/rad, K = 0.0536Nm/A, R = 9.5 Ω. The angle α varies
in the interval [−π, π], with α = 0 pointing up, and ‘wraps around’ so that
e.g. α = 3π/2 corresponds to α = −π/2. The state vector is x = [α, α̇]T .
The discrete-time transitions are obtained by numerically integrating the
continuous-time dynamics. The control action u is limited to [−2, 2]V, which
is insufficient to push up the pendulum in one go.

The control goal is to stabilize the pendulum in the unstable equilibrium
α = α̇ = 0 = xdes using desired control input udes = 0.

Figure A.1: Inverted pendulum schematic.
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A.2 2-DOF pendulum swing-up

The double pendulum is described by the continuous-time fourth-order non-
linear model:

u = M(α)α̈+ C(α, α̇)α+G(α)

M(α) =
[
P1 + P2 + 2P3 cos(α2) P2 + P3 cos(α2)

P2 + P3 cos(α2) P2

]

C(α, α̇) =
[
b1 − P3α̇2 sin(α2) −P3(α̇1 + α̇2) sin(α2)
P3α̇1 sin(α2) b2

]

G(α) =
[
−F1 sin(α1)− F2 sin(α1 + α2)

−F2 sin(α1 + α2)

]
(A.2)

where α = [α1, α2]T contains the angular positions of the two links, u =
[u1, u2]T is the control input which contains the torques of the two motors,
M(α) is the mass matrix, C(α, α̇) is the Coriolis and centrifugal forces matrix
and G(α) is the gravitational forces vector. The state x contains the angles
and angular velocities and is defined as x = [α1, α̇1, α2, α̇2]T . The angles
[α1, α2] vary in the interval [−π, π) rad and wrap around. The auxiliary
variables are defined as P1 = m1c

2
1 +m2l

2
1 + I1, P2 = m2c

2
2 + I2, P3 = m2l1c2,

F1 = (m1c1 + m2l2)g and F2 = m2c2g. The control action u is limited to
[−3, 3] for the first link and [−1, 1] for the second link. The control goal is to
stabilize the two links at the unstable equilibrium α = α̇ = 0. The discrete-
time transitions are obtained by numerically integrating the continuous-time
dynamics. The meaning and values of the system parameters are given in
Table A.1.

Model parameter Symbol Value
Unit

Link lengths l1, l2 0.4, 0.4 m
Link masses m1,m2 1.25, 0.8 kg
Link inertias I1, I2 0.0667, 0.0427 kgm2

Center of mass coordinates c1, c2 0.2, 0.2 m
Damping in the joints b1, b2 0.08, 0.02 kg/s
Gravitational acceleration g 9.81 m/s2

Table A.1: Double pendulum parameters

A.3 Magnetic manipulation

Magnetic manipulation (abbreviated as Magman) is an challenging nonlinear
control problem. In the setup used for this thesis, the current through the
electromagnets is controlled to dynamically shape the magnetic field above
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the magnets and so to accurately and quickly position a steel ball to the
desired set point. The setup is depicted schematically in Figure A.2.

Figure A.2: Magman schematic.

The horizontal acceleration of the ball is given by:

ÿ = − b

m
ẏ + 1

m

1∑
i=0

g(y, i)ui (A.3)

with

g(y, i) = −c1 (y − 0.025i)(
(y − 0.025i)2 + c2

)3 . (A.4)

Here, y denotes the position of the ball, ẏ its velocity and ÿ the acceleration.
With ui the current through coil i, g(y, i) is the nonlinear magnetic force
equation, m (kg) the ball mass, and b (Nsm ) the viscous friction of the ball on
the rail. The number of coils in the benchmark is adjustable. E.g. the five-coil
variant uses i = 0, 1, 2, 3, 4. The model parameters are listed in Table A.2.
The discrete-time transitions are obtained by numerically integrating the
continuous-time dynamics. State x is given by the position and velocity of

Model parameter Symbol Value Unit
Ball mass m 3.200 · 10−2 kg
Viscous damping b 1.613 · 10−2 Nms
Empirical parameter c1 5.520 · 10−10 Nm5A−1

Empirical parameter c2 1.750 · 10−4 m2

Table A.2: Magnetic manipulation system parameters

the ball.

A.4 Drone strike

Drone strike is a challenging nonlinear control problem designed to test the
scalability aspects of the proposed methods. The harsh initial state represents
thrown drone. The goal of the benchmark is to stabilize it and then hit the
desired point in a kamikaze way. The state-space of the system is represented
by a 12-D vector, while a 4-D vector represents the action space. For this
work, the dynamics model was adapted from [109], including a comprehensive
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A. Benchmarks .....................................
mathematical model. Drone parameters are given for commercially avail-
able HobbyKing FPV250 V2 Quadcopter. The parameters are obtained by
modeling the plant in Solidworks, as described in [110, 111].

The dynamics of the drone is described in two coordinate systems: the
inertial and body-fixed coordinates. The transformation between these two
systems is done using Euler angles, where φ, θ, and ψ stand for roll, pitch, and
yaw, respectively. The rotation matrix from the body frame to the inertial
frame is described by:

Rib =
cos(θ) cos(ψ) sin(φ) sin(θ) cos(ψ)− cos(φ) sin(ψ) cos(ψ) sin(θ) cos(ψ) + sin(φ) sin(ψ)

cos(θ) sin(ψ) sin(φ) sin(θ) sin(ψ) + cos(φ) cos(ψ) cos(ψ) sin(θ) sin(ψ)− sin(φ) cos(ψ)
− sin(θ) sin(φ) cos(θ) cos(φ) cos(θ)


(A.5)

Inverse transformation is defined as:

Rbi =
 cos(θ) cos(ψ) cos(θ) sin(ψ) − sin(θ)

sin(φ) sin(θ) cos(ψ)− cos(φ) sin(ψ) sin(φ) sin(θ) sin(ψ) + cos(φ) cos(ψ) sin(φ) cos(θ)
cos(φ) sin(θ) cos(ψ) + sin(φ) sin(ψ) cos(φ) sin(θ) sin(ψ)− sin(φ) cos(ψ) cos(φ) cos(θ)


(A.6)

The setup is depicted schematically in Figure A.3 alongside with both
coordinate systems.

Figure A.3: Drone schematic.
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The following set of equations represents the complete 6-DOF drone model:ẋẏ
ż

 = Rib

uv
w


φ̇θ̇
ψ̇

 =


1 sin(φ) sin(θ)

cos(θ)
cos(φ) sin(θ)

cos(θ)
0 cos(φ) − sin(φ)
0 sin(φ)

cos(θ)
cos(φ)
cos(θ)


pq
r


u̇v̇
ẇ

 =

 0
0

−T/m

+Rbi

0
0
g

+

rv − qwpw − ur
qu− pv


ṗq̇
ṙ

 =


Iyy−Izz

Ixx
qr

Izz−Ixx
Iyy

pr
Ixx−Iyy

Izz
pq

+


1
Ixx
l

1
Iyy
m

1
Izz
n



(A.7)

All the variables are described in Table A.3 alongside plant parameters.

Variable Meaning Unit Lower limit Upper limit

State

x Position along x axis m -2 2
y Position along y axis m -2 2
z Position along z axis m 0 2
φ Roll angle rad -1.5 1.5
θ Pitch angle rad -1.5 1.5
ψ Yaw angle rad -1.5 1.5
u Velocity along roll axis m/s -2 2
v Velocity along pitch axis m/s -2 2
w Velocity along yaw axis m/s -2 2
p Roll rate rad/s -1.3 1.3
q Pitch rate rad/s -1.3 1.3
r Yaw rate rad/s -1.3 1.3
T Thrust N -3.3354 5.0031

Action l Rolling moment Nm -0.408 0.408
m Pitching moment Nm -0.408 0.408
n Yawing moment Nm -0.408 0.408
Ixx Moment of inertia along

roll axis
kgm2 321862.60 · 10−9

Parameter Iyy Moment of inertia along
pitch axis

kgm2 305825.42 · 10−9

Izz Moment of inertia along
yaw axis

kgm2 576255.87 · 10−9

g Gravitational accelera-
tion

m/s2 9.81

Table A.3: Drone strike variables and system parameters

The benchmark is designed w.r.t. the following assumptions:. Aerodynamic forces are insignificant and can be neglected. Thus, only
the propulsion and gravitational forces are considered.
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. Drone is symmetric along both roll and pitch axes. In other words, it is

assumed that the drone is a standard quadcopter.. No noise is presented for the sake of simplicity.. Any crash to land is considered catastrophic; thus, the drone’s position
is not changing after the strike.
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Appendix B
Single Node Genetic Programming

Single Node Genetic Programming (SNGP) is a graph-based GP method that
evolves a population of individuals, each consisting of a single program node.
The node can be either a terminal, i.e., a constant or a variable in case of
the symbolic regression problem, or a function chosen from a set of functions
defined for the problem at hand. The individuals are not entirely distinct;
instead, they are interlinked in a graph structure, so some individuals act as
input operands of other individuals.

Formally, a SNGP population is a set of L individuals M = {m0,m1, . . . ,
mL−1}, with each individual mi being a single node represented by the tuple
mi = 〈ei, fi, Succi, P redi, Oi〉, where. ei ∈ T ∪F is either an element chosen from a function set F or a terminal

set T defined for the problem;. fi is the fitness of the individual;. Succi is a set of successors of this node, i.e. the nodes whose output
serves as the input to the node;. Predi is a set of predecessors of this node, i.e. the nodes that use this
node as an operand;. Oi is a vector of outputs produced by this node.

The following basic operators and functions to build the symbolic expressions
were used throughout the thesis, namely, F = {∗,+,−, square, cube, sin, tanh,
BentGeneral, Logistic3} where

BentGeneral(x1, . . . , xN ) =
N∏
i=1

[
xi + (

√
x2
i + 1.0− 1)/2

]
(B.1)

and

Logistic3(x1, x2, x3) = x1(1−(1/(1 + e−x3))))+
+x2(1/(1 + e−x3))

(B.2)

and N is the arity of input. The terminal set T consisted of the state variables
xi and basic constants 0, 1, 2, and 3.
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Typically, the population is partitioned so that the first Lterm nodes are

terminals, basic constants, and variables, followed by function nodes. Links
between nodes in the population must satisfy a condition that any function
node can use as its successor (i.e., the operand) only nodes positioned lower
down in the population. This means that for each mj ∈ Succi it holds
0 ≤ j < i. Similarly, predecessors of individual i must occupy higher positions
in the population, i.e. ∀mj ∈ Predi, i < j < L. Note that each function node
is, in fact, a root of a program tree that can be constructed by recursively
traversing its successors towards the leaf terminal nodes.

An operator called successor mutation (smut), proposed in [21], is used to
modify the population. It takes an individual and replaces one of its successors
by a reference to another randomly chosen individual of the population,
making sure that the constraint imposed on the successors is satisfied. Output
values of the mutated node and all nodes higher up in the population affected
by the mutation operation are recalculated. Moreover, the predecessor lists
of all affected nodes are updated accordingly.

Finally, the population is evolved using a local search-like procedure. In
each iteration, a new population is produced by the smut operator, which
is then accepted for the next iteration if it is no worse than the original
population.

The SNGP implementation used in this thesis evolved over time, resulting
in three different versions. They are all based on the implementation described
in [22, 21] but differ in several aspects listed below. The presented version is
considered to be a default one unless some aspects are stated to be different.

B.1 SNGP v1

.Organization of nodes in the population. Typically, the function set
contains functions that might produce invalid output values, such as a
division by zero. In order to avoid such cases, protected versions of these
functions are used instead. These functions are forced to produce a valid
output for any input. For example, the protected division outputs a
predefined value whenever the denominator is zero. Thus, the output
of any candidate expression is ensured to be a valid number. However,
due to such hard-coded irregular behavior of the protected functions,
expressions using the protected functions can still exhibit undesired
behavior, e.g., the expressions might become non-differentiable at some
data points or contain local approximation artifacts. Even though it
has a minimal error on the training data, such a symbolic function can
be effectively useless when applied to previously unseen data. Here, a
partitioned population is proposed. It is divided into two parts – head
and tail. The head part contains nodes that are roots of constant-
valued expressions only. It uses extended function set Fe including the
protected functions. Each head node can use other head nodes and
constant terminal nodes as its input. The tail part contains nodes that
can only be chosen from a set Fs of simple non-conflicting functions (i.e.,
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no protected functions). Tail nodes can use all preceding head and tail
nodes and both constants and variables as their input. In this way, a
“reasonable” behavior of expressions rooted in tail nodes is ensured since
the protected functions are used only to produce constants.. Selection strategy used to choose the nodes to be mutated. The original
SNGP selects the nodes to be mutated purely at random. Here the
so-called depth-wise selection introduced in [112] is used. This selection
method is biased toward deeper nodes of well-performing expressions.
The idea behind such a strategy is that changes made to the nodes at
deeper levels are more likely to bring an improvement than changes
applied to the nodes closer to the root of the expression. The quality of
the individual nodes is assessed as the mean squared error produced by
the expression rooted in the node.

B.2 SNGP v2

This version extends SNGP v1 by further modifications of the following
aspects:. Form of the final model. A hybrid SNGP proposed in [112] and denoted

as the Single-Run SNGP with LASSO (s-SNGPL) is used. It produces
a generalized linear regression model composed of possibly nonlinear
features represented by expressions rooted in the tail partition nodes. The
generalized linear regression models are built using the Least Absolute
Shrinkage and Selection (LASSO) regression technique [113]. In this
way, precise, linear-in-parameters nonlinear regression models can be
produced. The complexity of the LASSO model is controlled by:. the maximal depth of features evolved in the population. the maximum number of features the LASSO model can be com-

posed of. Fitness function. The generalized regression models are optimized with
respect to the mean squared error calculated over the set of training
samples unless stated otherwise.. Processing mode to evolve the population. The process of evolving the
population is carried out in epochs. In each epoch, multiple independent
parallel threads are run for a predefined number of generations, all of
them starting from the same population – the best final population out
of the previous epoch threads. This reduces the chance of getting stuck
in a local optimum.

The result symbolic model A(x) is then composed from the linear combi-
nation of possibly non-linear analytic expressions p1, . . . , pq, as:

A(x) = β0 + β1p1(x) + β2p2(x) + . . .+ βqpq(x)

the following restrictions are applied in order to control overfitting:
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. For every point in the dataset, the result of an analytic expression lies

within [−108, 108] interval..Difference between the maximum and minimum values of an analytic
expression computed on the given dataset lies within [10−5, 103] interval..Weights β1, . . . , βq lie within [−1, 1] interval.

B.3 SNGP v3

SNGP v3 modifies the processing mode to evolve the population from SNGP
v2. The maximal number of epochs N is shaped dynamically, as well as the
number of parallel threads in each epoch Tk and length of that epoch Lk.
These parameter depend on the maximal number of generations Gmax and
maximal number of threads Tmax. Relations are defined through the following
algorithm:

Algorithm 8: Computation of number of epochs, length of each
epoch and number of threads in each epoch.

Input: Nmax,Tmax

k ← 1
Tk ← Tmax
t = Tmax
while t > 0.5 do

t← t · 0.4
k ← k + 1
Tk ← dte

end
N ← k
for k ← 1toN do

Lk ← d(Gmax/N)/Tke
end
Output: N, [T1 . . . TN ], [L1 . . . LN ]

At the end of each k epoch, best Tk+1 solutions are selected according
to the defined fitness function. These solutions continue in the evolution
process, while others are neglected. This computation scheme runs many
short threads at the beginning, allowing SNGP to test more initial vectors.
This reduces the chance of getting stuck in a local optimum right at the start
of the evolution process.
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Publications

Journal Publications (indexed in Web of Science) related to the
dissertation topic..1. [114] Alibekov, Eduard and Kubalík, Jiří and Babuška, Robert. “Policy
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spaces”. 2018 Pergamon, Engineering Applications of Artificial Intelli-
gence. doi:10.1016/J.ENGAPPAI.2017.12.00

Impact factor: 6.212
Quartile: Q1
Citations: 7

Conference Publications (indexed in Web of Science) related to
the dissertation topic..1. [61] Alibekov, Eduard and Kubalík, Jiří and Babuška, Robert. “Symbolic
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Core: A
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Core: C
CiteScore: 2.1
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Appendix D
Acronyms

. AI - Artificial Intelligence. RL - Reinforcement Learning. SR - Symbolic Regression. SNGP - Single Node Genetic Programming. RQ - Research Question.GP - Genetic Programming. CGP - Cartesian Genetic Programming. DSP - Deep Symbolic Policy. BF - Basis Function. RBF - Radial Basis Function.MSE - Mean Squared Error. RHS - Right-Hand-Side. LHS - Left-Hand-Side. QSPD - Quasi-Symbolic Policy Derivation. TRR - Trust Region Reflective. DOF - Degree(s) of Freedom. CLF - Control Lyapunov Function.MPC - Model Predictive Control. RSPD - Robust Symbolic Policy Derivation. ESRL - Efficient SR for RL
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