
Czech Technical University in Prague
Faculty of Nuclear Sciences and Physical Engineering

Real Options Valuation: A Dynamic Programming
Approach
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Chapter 1

Introduction

Investing is a problem of optimal allocation of resources (mostly money) between investor’s alterna-
tive choices. Two main groups of investments can be recognized as first, the investment in the financial
(or commodity) market, and second, the direct investment in business ventures. The first type of invest-
ment can be approached by a deeper mathematical analysis as it consist of a relatively limited number of
different products traded in large quantities, producing huge analyzable datasets. Such structured datasets
do not exist for the second type of investment and thus it cannot be approached in the same sense.

In this thesis, we will focus on investments in projects (new businesses or alternations of old ones),
where the problem of resource allocation between various opportunities is being solved with the metric
of project valuation. From the various project valuation techniques, we have chosen the theory of real
options (ROA) as an inspiration for creating a valuation model based on the ideas of statistical decision
theory (SDT).

First, we describe the historical background of the ROA valuation. Next, we focus on the reasons
why we investigate the idea of SDT interpretation of ROA. In the remainder of this chapter, we present
the outline of this thesis.

1.1 Historical Background - Real Options

The foundations of financial derivatives1 date back to the origins of commerce in Mesopotamia in
the fourth millennium BC [46]. The derivative market consisted mainly of forward contracts2 and it was
introduced to the European continent through Spain in Roman times. After the expulsion of derivative
trading in Spain the center of this type of commerce for Europe were the Low Lands, where at the end
of the 17th century, the first ideas about options3 and option trading were published by La Vega [43].

The first attempts of a mathematical option pricing come from Bachelier (1900) [5] and Bronzin
(1908) [14]. Based on their work, the boom of option pricing methods in the 1970’s culminated in
Nobel-prize-awarded Black-Scholes model (BSM) [9], which is today’s standard in the financial option
pricing theory [47].

The publicity and wide adoption of the BSM most likely inspired an expert on capital budgeting,
Stewart Myers, to introduce the term “real options“ [31], one of two main pillars of this thesis. Myers

1Derivatives are financial arrangements between two parties whose payments are based on, or “derived“ from, the perfor-
mance of some agreed-upon benchmark. They can be issued on currencies, commodities, government or corporate debt, home
mortgages, stocks, interest rates, or any combination [11].

2A forward contract is a contract to purchase an asset at a fixed price on a particular date in the future [7].
3A financial option is the ability to buy (call option) or sell (put option) a defined volume of an asset for a specified amount

of money at some future time instant [7].
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builds on the idea that real options - the ability to alter the project in the future - are able to bring
significantly larger value in comparison to the same project without them. Myers’ approach to the real
options is mostly philosophical in a sense that he stresses out the importance of thinking about the
additional value real options can bring. At the same time, he does not present any computational tool for
the said value.

The idea of real option analysis (ROA) as a valuation tool for projects was further developed by
several influential authors in the following decades, for example Guthrie [22], Pindyck [19] or Kulatilaka
[3].

The valuation of project’s free cash flows with ROA is in corporate finance understood as very ad-
vanced, and its adoption in practice is slow [2]. It is argued that this slow adoption is caused mainly by
misunderstanding the more difficult mathematical concept of ROA [41] and the low adoption rate of the
competition: “Why should our company use a new tool that no one else is using?“ [17].

1.2 Research Motivation

Through the author’s studies at FNSPE CTU, he has specialized in the theory of dynamic decision-
making under uncertainty. In his final years at the university he also became curious about the world of
corporate finance, since he was working for a venture capital investor Presto Ventures. This combination
of his professional interests is pleasantly reflected in the assignment of this thesis - the interpretation of
ROA in terms of SDT.

Through the study of the ROA state of the art, we have found out that the term real options is not
clearly defined. As will be illustrated in-depth in section 3.4 we identify three classes of ROA authors
based on the level of analogy to the BSM model.

In this thesis, we focus on the class of ROA authors, which utilize only the non-arbitrage principle
to determine the probabilities of used models. We build mostly on the state-of-the-art textbook from
Guthrie [22] and the analysis of the potential real option representation via SDT from Vollert [45].

The goal of this thesis is to take the project valuation problem structure as is understood in ROA and
look at it from the SDT perspective. One of the challenges of this task is to implement the business-
specific concepts about investors’ behavior and the way they perceive value. Two main addressed con-
cepts are the time value of money and the risk aversion of investors.

The goal of this thesis is to provide an SDT-based valuation algorithm for projects, whose value is
understood as a maximal possible present cash equivalent (PCE)4 of the uncertain future cash flows. This
valuation algorithm covers the classes of problems now solved by ROA and allows for new ones.

The new SDT based valuation algorithm enables:

• seamless integration of multiple uncertainty sources;

• integration of theoretically any probability distribution as a model of uncertain variables;

• usage of a high number of possible actions (options), regardless of their nature;

• utilization of approximate dynamic programming tools for high-dimensional problems;

• preservation of the business-specific concepts as time value of money and the risk aversion of
investors.

To illustrate the usage of the new SDT-based algorithm a valuation of a project from a selected class
is performed. This class is denoted as simple flow businesses and is defined as the type of businesses

4A proposed valuation metric that incorporates the capital management of a project.
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1.3. OUTLINE OF THE THESIS 17

that can, for the purpose of their valuation, be described by a straightforward transformation of inputs
to outputs. It covers all projects whose cycle time is equal to zero, and the input-output transformation
rate is constant. This class is a generalization motivated by an example of a gas power plant valuation
presented by Guthrie in [22].

1.3 Outline of the Thesis

The thesis is structured into 7 chapters, introduction being the first.
Chapter 2 defines the mathematical notation and presents the mathematical concepts used through

the thesis. Useful probability concepts are reminded at the beginning while the rest of the chapter is
reserved for the SDT.

Chapter 3 introduces the second pillar of this thesis that is the economic concept of a project valua-
tion. The chapter begins with a description of a classic valuation technique called the net present value
(NPV), which is, for the purpose of this thesis, upgraded to a new concept of present cash equivalent
(PCE). The remainder of the chapter is left for the discussion about financial and real options.

Chapter 4 represents the core of this thesis. First, we define what will be understood as a problem
of ROA project valuation. We state the key features that define a project, and we limit these features
accordingly. Then we focus on the interpretation of the problem by a general SDT framework. We illus-
trate the identification of ROA project features in SDT. The remainder of the fourth chapter is reserved
for resolving the economic nuances that need to be accounted for in the SDT framework in order to make
the valuation procedure consistent with the economic reality of investors’ behavior.

Chapter 5 illustrates the new valuation algorithm from chapter 4 on a valuation example of a simple
flow business. A valuation of a gas power plant is chosen as the representative of this class. The first
half of the chapter focuses on the value sensitivity with regard to the volume of available managerial
actions in the project. The second half presents a value comparison of project alternations in different
price variances, and it is aimed to demonstrate the increase in value of a more uncertain environment.

Chapter 6 discusses the new findings, both theoretical and observed, from the performed experiments.
Chapter 7 summarizes the thesis - reminds the motivation, underlines the main message, and lists all

contributions of this thesis. Furthermore, it outlines many possible future research paths in this field as it
is one of the first available publications on this topic.
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Chapter 2

Preliminaries

To properly understand a mathematical text, it is essential to first define the used symbolism and
notions. The used mathematical notation comes from influential authors in their respective fields of
study:

• statistical decision theory - Bacci and Chiandotto [4] and Puterman [34];

• probability theory - Jaynes [24];

• approximate dynamic programming - Powel [33].

The mathematical symbolism comes from the author’s studying experience at FNSPE CTU demon-
strated also in his previous publications [36] and [37].

2.1 Probability Theory

In the whole thesis, bold capital letters, such as X, represent a set of all elements x ∈ X as in [36].
The cardinality of a finite set X is denoted with two vertical lines as |X|.

Random variables, understood in the sense of the standard Kolmogorov’s probability theory [27],
are denoted with a tilde above the variable, e.g., x̃. Values of random variables are denoted by the same
letters as the random variable without the tilde, e.g., x.

Definition 2.1. (Probability) Let x̃ be a discrete random variable. Then P(x) denotes a value of the
probability mass function (p.m.f.) for the realization x̃ = x. Similarly, if x̃ is a continuous random
variable, then p(x) denotes the value of a probability density function (p.d.f.) at x.

Next, we define the concept of conditional probability [24].

Definition 2.2. (Conditional probability) Let symbol P(x|y) represent the conditional probability of a
discrete random variable x̃ given y. Then, if P(y) , 0, we define P(x|y) as:

P(x|y) =
P(x, y)
P(y)

, (2.1)

where P(x, y) is a joint p.m.f. of x̃ and ỹ.

A similar concept is also used for the continuous random variables with the name of conditional
probability density [24].

19



20 CHAPTER 2. PRELIMINARIES

Definition 2.3. (Conditional probability density) Let symbol p(x|y) represent the conditional probability
density of a continuous random variable x̃ given y. Then, if p(y) , 0 we define p(x|y) as:

p(x|y) =
p(x, y)
p(y)

, (2.2)

where p(x, y) is a joint p.d.f. of x̃ and ỹ.

Definition 2.4. (Expected value) Expected value of a discrete random variable x̃ is defined as:

E[x̃] =
∑

X
P(x)x. (2.3)

Similarly, for the continuous random variable ỹ the expected value is defined as:

E[ỹ] =

∫
Y

p(y)y dy. (2.4)

2.1.1 Probability distributions

Through this thesis, the following distributions will be referenced, either as an expected model of
some random variable or in a broader discussion [10].

Bernoulli distribution The Bernoulli distribution Be(p) models the probability of success (1) or failure
(0) with p ∈ [0, 1] by the p.m.f.:

P(x̃ = x, p) =

{
p x = 1
1 − p x = 0.

(2.5)

This distribution is widely used in ROA, usually for the modeling of the up (1) and down (0) movement
of asset or commodity prices.

Binomial distribution Binomial distribution Bi(n, p) represents the number of successes of n indepen-
dent random variables distributed by Be(p) with p.m.f.:

P(x̃ = k, n, p) =

(
n
k

)
· pk(1 − p)n−k, k ∈ {0, 1, 2, . . . , n}. (2.6)

This distribution is used in a popular ROA modeling tool - the binomial model [22]. The idea is that
a random variable (price, quantity, etc.) evolves as a realization of consequential up or down movements
distributed by Be(pu), where pu is the probability of the up movement. Each move then updates the vari-
able’s value by multiplying it by a given coefficient U or D. To ensure that the number of possible values
rises linearly and not exponentially with the number of time epochs, the model limits the parameters as
D = 1/U.

Based on the number of up movements nu (as a realization of Bi(n, pu)) until the n-th time epoch,
and the initial value vinit, the realization of the modeled variable can be expressed as:

v = vinit · U2nu−n. (2.7)
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Poisson distribution Poisson distribution Po(λ) is a popular discrete distribution used in modeling of
the number of successes in a given time interval, so-called “arrivals“ [10]. This distribution is used for
the modeling of the number of incoming emails or the number of earthquakes in a given area in one year.

Its p.m.f. given parameter λ is:

P(x̃ = x, λ) =
λxe−λ

x!
, x ∈ {0, 1, 2, . . . }. (2.8)

Also, it is worth noting that a Poisson distribution Po(λ) with λ = np is the limit distribution of a
Bi(n, p) for n→ ∞, if the product λ = np, which is the expected value of the number of arrivals, remains
constant.

Log-normal distribution Another useful distribution for this thesis is the log-normal distribution
LogN(µ, σ). It represents a continuous random variable, a logarithm of which is distributed normally.

The p.d.f. of such variable is:

p(x) =
1

xσ
√

2π
exp

(
(ln(x) − µ)2

2σ2

)
. (2.9)

This distribution is again used mostly for modeling of asset or commodity prices, arguably for two
main reasons. The first is that its realizations are positive, and the second being that variance reflects not
only the parameter σ but also µ, where µ usually represents the previous price.

2.2 Statistical Decision Theory

The first pillar upon which this thesis stands is the statistical decision theory (SDT). An area of
applied mathematics that formalizes and studies optimal decision making of agents. As decision making
under uncertainty in its broadest sense encapsulates the majority of human behavior, the class of problems
it is able to solve (at least theoretically) is quite large.

The SDT’s primary focus is to determine the optimal strategy (a sequence of decisions) to act upon,
generally in a dynamic and uncertain environment. The optimality of a given strategy is measured by
some reward metric, in the simplest case by a pure monetary gain. This metric is, however, not sufficient
for many applications, so a general metric of agent’s reward via utility (described in section 2.2.4) is
used.

2.2.1 Markov decision process

In this thesis, we will be modeling the decision-making problems using the standard framework of
the Markov decision process (MDP) [34].

Definition 2.5. (Markov decision process)
Markov decision process is defined by its five building blocks:

• The set of time epochs - T;

• The set of states in those epochs - St, t ∈ T;

• The set of actions in those states - Ast , st ∈ St, t ∈ T;

• The reward function of transition from one state to another - r(st, at−1, st−1), where st, ∈ St, st−1, ∈

St−1, and at−1 ∈ Ast−1;
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• Transition probabilities governing the transition from one state to another p(st|at−1, st−1), where
st, ∈ St, st−1, ∈ St−1, and at−1 ∈ Ast−1 .

Remark. The set of time epochs, states and actions is usually known, defined by the structure of the
decision making problem that is being solved. Reward and transition functions tend to be unknown, and
they need to be estimated.

Remark. For a further simplification of the text, we define S =
⋃
t∈T

St and A =
⋃
s∈S

As.

Usually, the biggest task in SDT is to correctly approach the uncertainty about transition probabilities
between different states of a decision making problem. There are two approaches to parameter estimation
in statistics, a classical approach, and a Bayesian approach. Since the Bayesian approach seems to fit
the decision-making format better, allowing for the notion of prior probabilities, incorporating expert
knowledge, and the possibility for smooth updating on newly observed data - it is a preferable choice.

In this thesis, however, we will not go into the detail of the transition probability function’s modeling,
and we will assume it to be known.

As outlined above, the goal of SDT is to find the optimal strategy - sequence of actions. The optimal-
ity of such strategy is defined as it having the maximal expected cumulative reward among all eligible
strategies Π:

π∗ = arg max
π∈Π

E

∑
t∈T

r(st, at−1, st−1)

∣∣∣∣∣∣π
 . (2.10)

Remark. This definition of the optimal strategy is used mainly for finite MDP’s or MDP’s with exponen-
tial discounting of future rewards. Alternative definitions of optimality, for example, maximal average
reward per period, exist.

Due to the nature of project valuation, where projects are considered to be finite or their cash flow
exponentially discounted, this thesis will focus on a metric based on the presented notion of expected
cumulative reward.

2.2.2 Dynamic programming

Finding the optimal policy by computing the expected reward for all policies π ∈ Π is due to the
cardinality of Π:

|Π| =
∏
t∈T

∏
st∈St

|Ast | (2.11)

a very demanding task, even for low-dimensional MDP’s.
To cope with such computational complexity clever algorithms were developed, most notably the

dynamic programming (DP) approach and the reinforcement learning approach. In this thesis we will
focus on the first one, which is based on the idea of backward induction.

The core of dynamic programming is to define the so-called value function v(s) on each of the possi-
ble states s ∈ S. Each of the values is computed via the Bellman equation:

v(st−1) = max
at−1∈Ast−1

∑
st∈St

P(st|at−1, st−1)[r(st, at−1, st−1) + v(st)]. (2.12)

The value function represents the expected cumulative reward from a given state onward. The idea
of computing this value through the backward induction is based on the truth that a sequence of actions
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is optimal if and only if its last action is optimal. Optimal strategy comes together with the value func-
tion seemingly as a byproduct, where in each state, the optimal action is the argument maxima of the
expression in equation 2.12.

This approach significantly reduces the computational complexity to∑
t∈T

∑
st∈St

|Ast | (2.13)

expected value computations.

Remark. For a constant number of states in each time epoch |St| and a constant number of actions in
each state |Ast |, this reduction is from |Ast |

|St |
|T|

to |Ast | · |St| · |T|.

The reduction of computational complexity with the DP algorithm is significant. However, for the
majority of real-world applications it is not sufficient. In reality, due to the structure of decision-making
problems and their formulation, the cardinality of state space can explode even for fairly simple problems.

The problem of remaining computational complexity of DP algorithm is in literature addressed as
“three curses of dimensionality“ by Powel [33], who, among others, proposes solutions under the label
of approximate dynamic programming (ADP).

2.2.3 Approximate dynamic programming

The computational complexity of dynamic programming for middle and high-dimensional MDP’s is
so demanding that its results cannot be obtained in a reasonable amount of time.

To cope with this problem, a relevant topic to look at is the section of SDT called approximate
dynamic programming (ADP). The ADP label can be understood as a unifying name for a number
of algorithms trying to obtain quasi-optimal strategies for decision-making problems with reasonable
demands for computational power1.

ADP algorithms can be divided into two main classes, policy and value iteration algorithms. In this
thesis, we will be focusing on the value iteration class since we believe that due to the structure of project
valuation problems (rather large |S| and rather small |A|), it is a better fit.

The idea of value iteration is to have some initial heuristic value function approximation, which is
being updated based on samples of possible paths.

In this section of the thesis, we present the most general form of the value function approximation
model, which aims to describe the general shape of the value function by a small number of parameters2.
We will model the value function in each time epoch vt as a function of the state s itself and a parametric
function f as:

vt(s) = f (s, θi,t), θi,t ∈ Θt, (2.14)

where the cardinality |Θt| is finite and preferably small.

Remark. To clarify the general formula represented by the equation 2.14, we present an example, where
the parametric function f is a linear combination of some basis functions φi:

vt(s) =
∑

i

θi,t · φi(s), (2.15)

1For details, please see Powell [33].
2A value function is in classical DP similar to a look-up table. There is no simple functional relationship between states and

the values of value functions.
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where each of the basis functions φi represents some heuristically important feature of each state s ∈
S. A project valuation example of such basis function might be a difference between state elements
representing prices of inputs and outputs or indicator function of a state element representing the running
production.

Remark. Because of the option-like structure of the investment opportunities in projects, it is worth it to
define the piecewise linear function, which is a potential candidate for a function f .

Definition 2.6. (Piecewise linear function) In this thesis, we define a piecewise linear function as a
two-segment piecewise linear function with four parameters x0, y0, k1, k2 as:

pw(x, x0, y0, k1, k2) =

{
y0 + k1(x − x0) if x ≤ x0
y0 + k2(x − x0) if x > x0

(2.16)

where k1 and k2 represent the slopes of the first and second segment and the pair x0, y0 the single breaking
point.

To determine the parameters θi,t for each value function approximation vt we first need to heuristically
derive the parameters for the value function in the last time epoch θ|T|,t. This is done with the respect
to the specific MDP and its meaning. Then, gradually, starting from the last time epoch by a backward
induction we discover all the remaining θi,t by the following steps.

• We generate a sample of states St in time t ∈ T3.

• In each st ∈ St we determine the optimal action a∗t as the argument maximizing the Bellman
equation 2.12, where the future value function vt+1 is understood as its approximation from the
previous step.

• In each st ∈ St we undertake the action a∗t and simulate the transition to the following state st+1.
The reward-state pair (st, r(st+1, a∗t , st)) is saved.

• Based on all state-reward pairs, we fit the parametric function f , resulting in parameters θi,t.

With the obtained parameters θi,t for all time epochs t ∈ T, we are able to represent our best approx-
imation of the value function in each state and thus replicate the optimal decision making.

2.2.4 Utility

In many decision-making situations, rational decision makers do not behave in a way that their deci-
sions would maximize the expected nominal monetary value.

One of the simplest examples used to demonstrate this behavior is given by Bacci and Chiandotto
[4]. Imagine an individual is given a choice, either to get $500 right away or to gamble for $1000 in a
fair coin toss. A rational decision maker, driven only by his actions’ expected value, would be indifferent
to the two choices. However, the majority of people tend to take a certain amount of $500, implying that
the gamble’s perceived value is lower than $500.

This effect and its implications become more understandable for substantial sums of money. There
is a little difference for an average human in obtaining $10M and $20M in a fair coin toss. The change
in his quality of life will be almost the same and presumably positive. However, in one case, the benefit
is certain and in the other case, there is only a 50% chance of win.

3Usually based on the model of state distribution in time t.
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Another interesting example of the non-linear gain perception of individuals is the famous St. Pe-
tersburg paradox first formulated by Bernoulli in 1738 [8]. This paradox is illustrated on a game with the
following rules.

A fair coin is being repeatedly tossed until the result is tails, say in n-th toss. Then the reward for the
participant is driven by the equation 2n−1, where, for example, the first appearance of tails in fourth toss
rewards the participant with 8 units of currency.

The expected value of the proposed game is infinite. However, it is shown that people would seldom
pay more than $25 to play it. Interestingly, that this amount corresponds with the assumption that the
counterparty does not possess an infinite amount of money but rather a more reasonable amount of $16M
[32].

By these two examples, we demonstrate that real decision makers must, in some cases, decide based
on something different than the expected value. Building on the extension of the first example, we say
that decision makers maximize their well-being measured in the utility of the given monetary rewards.

This relation between the perceived utility and monetary value is formalized by the utility function,
which existence for rational decision makers is conditioned on a set of axioms (for more details, please
see [4]).

Definition 2.7. (Utility function) The utility function is a real value function, that, in accordance with the
decisional setting, represents the decision maker’s preferences. The maximum well being of a decision
maker is achieved through the action that maximizes the expected utility of the outcome.

Based on the shape of the utility function, we can define three classes of decision makers:

• Risk-averse decision makers (the majority of the population) have concave utility functions. They
value uncertain monetary gain lower than its expected value.

• Risk-neutral decision makers have linear utility functions. They value uncertain monetary gain
exactly as its expected value.

• Risk-seeking decision makers have convex utility functions. They value uncertain monetary gain
more than its expected value.

The examples above illustrate that the majority of people are risk-averse. This statement is sup-
ported by many publications (for example [23]). An individual’s utility function can be obtained from a
questionnaire by an algorithmic approach that ensures the individual’s consistency of responses [4].

As an illustration, we present an example of a utility function of a risk averse investor.
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Fig. 2.1. An example of a utility function of a risk-averse decision maker.



Chapter 3

Valuation - State of the Art

This thesis is built on two main theoretical pillars. The first, described in the previous chapter, is the
SDT. The second is the project valuation principles of corporate finance [7], an overview of which will
be presented in this chapter.

First, we will define the necessary project valuation terminology that will be used throughout the
thesis.

Then, we will describe the industry standard for project valuation, which is the idea of discounted
cash flow (DCF) and the corresponding metric called the net present value (NPV). Together with NPV,
we also present a new useful tool for the project’s capital management called the present cash equivalent
(PCE). In addition, we recall the risk aversion of investors.

At the end of this chapter we will look at an advanced project valuation technique called the real
option analysis (ROA), which is based on the financial options valuation ideas.

3.1 Terminology

Let us now introduce the project valuation terminology used in this thesis.

Process A process is understood as the production, purchase and trade of goods or services, driven by
the supply of inputs and demand for outputs.

Project A project is defined as a sequence of actions that realize the implementation or innovation of a
process, purposefully allocating existing sources to increase the economic value of a process in question.

Project’s free cash flow The incremental effect of a project on the firm’s available cash is the project’s
free cash flow (FCF) [7].

Economic value An economic value of a project is understood to be in the FCFs. In this thesis, the
economic value of a project is the amount of cash to which the investor is logically indifferent to having
in comparison to the FCF vector.

Remark. The indifference is in this thesis understood in the presented concept of PCE, which incorpo-
rates the problem of project’s financing in addition to the time value of money already covered by the
NPV.

27
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Risk averse investors A risk-averse investor is an investor, who prefers a low-volatile investment de-
spite its lower expected return.

Remark. According to the observations made in [7], there is a positive correlation between the volatil-
ity of an investment and its average profit. This correlation is being explained by the risk aversion of
investors, who keep investing in assets with a lower expected return. This phenomenon, also well docu-
mented in psychological publications1, has a link to the concept of utility from SDT discussed in section
2.2.4.

3.2 Net Present Value

The net present value (NPV) is an industry-standard valuation metric used in capital investments.
Its computation is simple and it respects the time value of money by an exponential discounting of
the FCF by a constant rate r (usually a risk-free interest rate). The exponentially discounted elements
ct, t ∈ {1, ..., |c|} of a FCF vector c form a discounted cash flow (DCF) vector, and their sum is the NPV
of c:

NPV(c) =
∑
t∈T

ct

(1 + r)t . (3.1)

There are deep economical reasons for the usage of this valuation metric in capital investment as
presented in chapter 3 of [17]. However, for the purpose of our thesis, it is worth to present a generalized
version of NPV, which also incorporates the process of borrowing and repayment of cash, so called
capital budgeting, which is a broad topic on its own.

We call this new metric the present cash equivalent (PCE) and we present it the following section.

3.2.1 Present cash equivalent

The goal of the present cash equivalent (PCE) is to value a FCF vector, while covering the problem
of capital budgeting (borrowing and repayment of cash needed to proceed with the project). The usual
problem of the capital budgeting needs to discuss the specific types of loans (issuing bonds, shares,
taking mortgages, etc.), their different interest rates and the repayment structure. This certainly reflects
the reality better, however it brings a significant overhead to the project valuation problem.

This is why we present PCE, which incorporates the costs and the usually complex borrowing struc-
ture of the capital budgeting based on two assumptions. First is that there is a possibility of a fully liquid
loan financing with a constant interest rate rb.

Definition 3.1. (Fully liquid loan) A fully liquid loan (FLL) with an interest rate rb for n periods is a
loan, the initial principal of which changes after each predefined period as follows:

• If the borrower needs to borrow more money m, the principal from previous period increases by
the interest rate factor 1 + rb and the m is added to the principal.

• If the borrower repays the amount of money m in a given period, the previous principal increases
by the interest rate factor 1 + rb and the m is subtracted.

The fully liquid loan ends in two scenarios. Either the principal was fully repaid in some period
t ≤ n, or it was not, the borrower is unable to pay back and defaults on the FLL.

1E.g., [23], where it is observed that people value the uncertain rewards below their expected value
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Remark. A fully liquid loan is a simplification of a mortgage, where the borrower is not obliged to follow
a predefined payment calendar and has more flexibility even to the extend of borrowing more money. It
is an idealistic representation which in real life would need to impose limits preventing the increased
probability of borrower’s default.

Example 1. Investor borrows 1M for a new factory with a FLL with rb = 5% for the maximum of n = 5
years. He repays all his FCF, which is 400k in all years except of year 2. The second year ended up in
a loss of 100k which investor borrows based on the ideas of FLL. This results in the following vector of
principal in year 0 to year 52:

[1M, 0.65M, 782.5k, 421.6k, 42.7k, 0]. (3.2)

The second assumption for the concept of PCE is the ability to invest money with a constant risk-free
interest rate rr.

When the investor can take advantage of both the FLL and the ability to invest money with risk-
free interest rate, we argue that there is only a single amount of cash, to which the investor should be
indifferent to having, instead of a given FCF vector, thus making it the present cash value of such FCF
vector.

For the purpose of PCE, let us also prepare the notion of the so-called responsible manager (RM).
RM’s task is to reinvest the positive balance (with the rate rr) and borrow more funds in case of a negative
balance for the rate of rb.

We represent this behavior by the RM function, where the constant rates are not explicitly denoted
but rather implicitly assumed:

RM(b) =

{
b · (1 + rr) if b ≥ 0
b · (1 + rb) otherwise

(3.3)

Then, based on the two assumptions, we model the behavior of RM on a given cash flow vector
c = {c0, ...ct} t ∈ N as:

RM(c) = RM(...RM(RM(c0) + c1)... + ct). (3.4)

The amount of RM(c) represents the amount of money at time t obtained from the cash flow vector c
and a logical money management. Then, the PCE(c) can be finally derived as:

PCE(c) =


RM(c)
(1+rr)t if RM(c) ≥ 0
RM(c)
(1+rb)t if RM(c) < 0

(3.5)

representing the logic that having PCE(c) at time t = 0 would result in the same outcome at time t.
Thus, an investor should be logically indifferent to obtaining PCE(c) now and c by its parts at different
times.

Remark. Based on the straightforwardness of the PCE computation, we argue that for each FCF vector,
a unique PCE equivalent always exists. In the remainder of the thesis, we will understand the value of
an FCF vector to be its PCE value.

Example 2. Let us for the illustration value the following cash flow vector c = [−200, 100, 100, 100],
which represents an initial loss and three constant follow-up profits. Assume that rb = 10% and rr = 2%.
Then the RM(c) = 64.80 and the PCE(c) = 61.063. For comparison, the NPV(c) = 88.39.

2The figures from year 3 are rounded to one decimal place.
3Both values are rounded to two decimal places.
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3.3 Financial Option Valuation

There exist two types of financial options, calls and puts.

Definition 3.2. (Call option) A call option gives its owner the right to buy stock (or a commodity) at a
specified exercise or strike price on or before a specified maturity date. If the option can be exercised
only at its maturity date it is known as European call, in other cases the option can be exercised at any
time before its maturity date and it is then known as American call [12].

Example 3. One share of Tesla stock is traded at $700 at the moment (30.5.2021). An European call
option with a strike price of $2500 with a maturity date of 1.1.2022 costs $1.25. An investor buys this
option and two things can happen on 1.1.2022. First, more probable case is that the Tesla stock price will
be lower than $2500 and thus, exercising the option (buying the stock at $2500) would be unprofitable.
Investor doesn’t do anything and he lost $1.25. In a second, less probable case, the stock price rises to
x > $2500. In this case, the investor will use his right to buy the stock for $2500, which he is able to
immediately sell on the market and pocket the difference $(x − 2500).

Definition 3.3. (Put option) Similarly to call options, which allow the investor holding them to buy the
stock or the unit of a commodity on or before the maturity date, the put option allows the investor to
sell for a given exercise price. American and European puts are again distinguished by the possibility to
exercise before or precisely on the maturity date.

Example 4. One share of Tesla stock is traded at $700 at the moment (30.5.2021). An European put
option with a strike price of $150 with a maturity date of 1.1.2022 costs $1.25. An investor buys this
option and two things can happen on 1.1.2022. First, more probable case is that the Tesla stock price
will be higher than $150 and thus, exercising the option (selling the stock at $150) would be unprofitable.
Investor doesn’t do anything and he lost $1.25. In a second, less probable case, the stock price drops to
x < $150. In this case, the investor is able to buy the share on the market for x and exercise the option
(selling the share for $150) pocketing the $(150 − x) difference.

As outlined in the first chapter, the idea of options and option trading dates back to 17th century.
However, the motivation for a proper option valuation technique came with the increased adoption of
derivative trading after WWII.

The famous 1973 article from Black and Scholes [9] describes today’s standard tool in the financial
option valuation - the BSM model.

Remark. The M in BSM model stands for Merton, who expanded on [9] with his article [30] and
received the Nobel price together with Scholes.

In what follows, we will present the BSM model in the form of a theorem [11]. In addition, we will
offer an opinion that should summarize the idea of the BSM model in few sentences.

Theorem 1. (BSM model) The Black-Scholes-Merton option valuation model says that if the following
list of assumption is satisfied:

• risk-free interest rate and volatility4 of the underlying asset are constant;

• the underlying asset pays no dividends and its price is continuous;

• the asset price evolves according to a log-normal process;

4A variance of asset price understood as a random variable.
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• the markets are efficient - the no-arbitrage principle holds;

• the option is of the European style;

• there are no commission or service charges;

• market is perfectly liquid5;

then based only on the knowledge of time to maturity T , option’s strike price K, the current price of
underlying asset S and its volatility σ the value of a call6 option can be computed as:

C = S N(d1) − PV(K)N(d2), (3.6)

where PV(K) is the present value of a strike price K7 and N(d) is a cumulative standard normal distri-
bution, the probability that a normally distributed variable with parameters µ = 0 and σ = 1 is less than
d. Values of d1 and d2 are then defined as:

d1 =
ln(S/PV(K))

σ
√

T
+
σ
√

T
2

, d2 = d1 − σ
√

T (3.7)

Remark. The option’s value is positively dependent on the volatility and the time to maturity. An in-
crease in these parameters leads to a higher option value. On the contrary, the rise in the current stock
price or strike price of the options lowers an option’s value.

From the combination of remarks about the BSM model from authors like [11] and [38] we formulate
our own remark of what does the BSM model represent.

Remark. The core of the BSM model, assuming that “smooth“ conditions hold, is that we are able
to derive the missing parameter µ of the asset’s log-normal price model (known σ is an assumption).
Building on this, the value of an option is then the expected value of the maximum of the difference
between the strike price and the asset’s realized price and zero8, discounted by the risk-free interest rate.

Finally to illustrate the usage of BSM model we present an option valuation example from [38].

Example 5. Suppose that a stock’s current value is 30, the risk-free interest rate 8% and the volatility
of the stock is 0.2. Assume that all assumptions for the BSM model hold. Then the call option with strike
price 34 that expires in three months has a value of 0.24.

3.4 Real Option Valuation

As outlined in the introduction, the theory of real option analysis (ROA), a project valuation tech-
nique inspired by the valuation of financial options, was born after the boom in publications following
the BSM model in the 1970s. The first ideas presented by Myers [31] are of a philosophical nature -
options (ability to make project changes) help to extract the value from a project.

Many publications were published on the ROA topic since. Through our studies of the state of the
art, we have identified three classes of authors that differ by the level of analogy with the BSM model.

5The investor is able to buy and sell any amount of the asset at any time and and as frequently as he wishes to.
6Similar equation holds also for put options.
7Price of a bond paying K on the expiration day of the option.
8Since when the option is not realized no further loss occurs.
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No analogy The first class is the class of the ROA founder, Myers. This class understands ROA as a
useful lens for looking at the project valuation. Authors like Kassar [26] and Guerra [21] accentuate the
value of further managerial decisions, but the valuation strategy they use is NPV with scenarios (so-called
decision tree analysis (DTA)).

Partial analogy The second class of ROA authors takes advantage of the financial option valuation’s
core property, which is the no-arbitrage principle. Based on this principle and further assumption of
replication portfolio existence, this class of authors, represented by, e.g., Guthrie [22], Thoma [42] and
Ryu [39], derives so-called risk-neutral probabilities, which are then used for modeling of project’s
internal variable of the cash flow functions9.

Because we find this type of approach to real options the best and because we build on and respect
the work of Guthrie [22], this approach is the one considered as representative of the term ROA.

Another notable author in this class is Vollert [45], who goes deep into details, building a modeling
framework which allows the implementation of complex conditional options. Vollert’s publication is
very advanced, using, for example, stochastic differential equations, which might be an obstacle for
practitioners and real-world applications.

Full analogy The final class of authors describing the ROA principle understands it as a complete
analogy to the BSM model for the financial option valuation. This class of authors is predominantly
represented by voluminous economic textbooks, e.g., Berk and DeMarzo [7], Brealey [12], or Crundwell
[18]10.

A complete analogy means to identify all parameters of a financial option with parameters of given
investment. For example in [7] the following identification table is presented:

Financial option Real option
Stock price Current market value of an asset

Strike price Upfront investment required

Expiration date Final decision date

Risk-free rate Risk-free rate

Volatility of stock Volatility of asset value

Dividend11 FCF lost from delay

Table 3.1: Identification of financial option parameters as parameters of a real option (investment oppor-
tunity) [7].

Another example published by Quélin [35] describes a telecommunication company valuation with
the same one-to-one identification of BSM model parameters.

By focusing on the complete analogy, the authors of this class strictly limit the application scope
of their approach. One of the problematic assumptions (that is in the partial-analogy class solved by
the CAMP model12) is that there exists a market tradeable replicating portfolio of the asset we want to
evaluate. Another limitation is that this approach considers only one possible action, which is usually to
invest in the project now or later13.

9In the majority of cases the binomial models are used.
10Crundwell also discusses the partial analogy approach in detail.
11In this example from [7] the analogy is made with a generalized BSM formula for stocks with dividends. When we set

dividends equal to 0, the analogy holds with the original BSM model as presented above.
12Capital asset pricing model - for details please see [22].
13Timing option in Guthrie’s terminology.
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As explained in the partial analogy paragraph we base our understanding of ROA on Guthrie’s work.
A rigorous definition of ROA as used in this thesis will be presented in the beginning of the following
chapter.
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Chapter 4

Project Valuation Revisited from the SDT
Perspective

In this chapter, we develop the core idea of this thesis. The idea is to take the project valuation prob-
lem as defined in ROA, reframe it as a Markov decision process and then use the SDT techniques (such
as the approximate dynamic programming) to solve it while preserving the business-specific concepts of
the project valuation, such as time value of money and risk aversion of investors.

We begin by clarifying the meaning of the term project valuation as is used in the ROA publications,
and we identify the main limitations of this approach.

Next, we focus on the identification of the project valuation in terms of the SDT framework. We
define all the relevant sets and functions to be able to talk about project valuation as a structured problem
of decision making under uncertainty.

The remainder of this chapter is reserved for the incorporation of the business-specific concepts to
the model, namely the time value of money and the risk aversion of investors.

4.1 Project Valuation - Problem Definition

To be able to talk about the project valuation rigorously, we need to define what a project is and what
we mean by its valuation in ROA. The inspiration for these definitions comes from examples and used
rhetoric in the ROA publications, namely [22], [45] and [3].

None of the publications that we have studied goes into detail to define a project as a collection of
mathematical constructs, as, for example, SDT does with MDPs. Guthrie in [22] opens with three initial
examples of a project and in each chapter adds a new real-life investment opportunity. This investment
opportunity is presented in such a way that it is clear what the project is, what its parameters are, and
what metric is being optimized by the investor.

In other publications like Vollert’s [45] and Kulatilaka’s [3], a definition of a project is also not given.
Rather, it is assumed that the used terms project, capital investment, or investment opportunity are clear.

It is worth noting that a definition of project valuation is also not deeply discussed in the ROA books.
We feel like the term of valuation is assumed to be clear and is always represented by the expected NPV.

As outlined above, nothing like a clear mathematical definition of a project valuation is presented
in the ROA publications. However, the used rhetoric is similar, and we strongly believe that the project
valuation in the ROA field can be summarized as: “Determining the amount of value that an investor is
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able to create with actions that can be considered as a part of one project1, measured by the metric of
expected NPV with a special non-axiomatic determination of the discount rate.“

Now that the position of ROA to project valuation is clearer, we can follow with its interpretation in
the SDT framework.

4.2 Project Valuation in the Statistical Decision Theory Framework

Trying to solve the project valuation task as a statistical decision problem means, first and foremost to
identify all the necessary parts of the SDT framework in the ROA formulations. This is not a particularly
hard task given the rather loose definition given above.

After this identification, the standard tool of SDT, dynamic programming (or potentially approximate
dynamic programming), can be used to solve the valuation problem.

Solving a valuation problem in SDT means in our case to define it as MDP, which consists of two
parts. First, there are three sets: the time set T, the state set S and the action set A, which describe
the structure of the MDP. The second part consists of two functions: transition probability function p
and reward function r, where p is responsible for describing the project’s stochastic evolution and r for
informing about the value gains in each time epoch.

In the following sections, we will focus on each of these five important building blocks in detail. To
better illustrate each of the building blocks, and to prepare the ground for the experiment, an example
concerning the valuation of a gas power plant is presented.

4.2.1 Time sets

Even though the SDT theory is capable of handling infinite time horizons and continuous-time mod-
eling, these sophisticated formats are not needed for the valuation of real-life projects. The time dimen-
sion of a project can be reasonably described by a discrete set with a known finite horizon, which is valid
for two reasons.

First is that observing new information and making impactful decisions by the project’s manager is
not done continuously at all times but discretely after some practical time intervals. No manager changes
the course of a project ten times a day2.

The second reason is that managers do not think about projects as ever-lasting. Potential profits after
a certain time threshold are neglected. This is given either by the finite-lifespan nature of the projects
(gas power plant lifespan) or the extreme uncertainty in the modeling of FCFs (and their equivalent in
present values) in the far future. To have a good model of the project’s FCF in 100 years is wishful
thinking.

Time intervals in our model reflect the frequency of influential management meetings at which the
project’s course can be significantly changed, e.g., week, month, or quarterly intervals. This notion is
further supported by its usage in ROA publications.

Example 6. Monthly decision time intervals in a duration of gas power plant lifespan, say 25 years. The
time set is then T = {0, 1, 2, ..., 300}.

1Defined as in section 3.1.
2This thesis does not focus on the individual management of the internal processes of a project, but rather on managerial

decisions that modify the project in a major way.
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4.2.2 State sets

Defining the state set S in a project valuation problem means finding a list of relevant, measurable
parameters for both the project and its environment. A state s ∈ S is then a vector of elementary states of
such individual parameters.

The state set S can be constant, meaning that the same parameters are measured in each time epoch.
However, it might also be useful to think about dynamic state sets in time St, t ∈ T, where for some
particular reasons, the structure of a problem changes in time3.

It is worth noting that there are usually some elementary states that are influenceable by the manage-
rial actions and some that are not. This classification is not reflected in our notion.

In our models, each elementary state is understood as a random variable, the probability distribution
of which is conditioned on the previous state and the last action taken. This probability is described with
the transition probability function p, which is discussed in detail below.

Example 7. Relevant features for a gas power plant project might be, for example, price of gas, price
of CO2 allowances, price of power, installed capacity of the plant, or debt to be repaid. The first three
elementary states would then be considered uninfluenceable by investor’s future actions, while the last
two would not.

4.2.3 Action sets

In SDT structure, the action set A is usually understood as an actual set, however in the format of
project valuation, we find it better to represent it as an action function a, whose parameter is a given state
st ∈ St and output is a set of possible actions Ast = a(st).

This is because possible managerial actions are most of the time strictly conditioned on the current
state of the project. Only a small subset of all possible actions might be actually taken in a given state.

In ROA publications, the term options is used to describe possible managerial actions both current
and future. Even though we believe that this terminology helps with understanding that the possibility
of future managerial action has value, we do not embrace a notion of future actions or the term options
since it is not consistent with the SDT terminology.

The advantage of the SDT approach in contrast to ROA is that there is no theoretical complication
in adding an arbitrary amount of actions of any type (as classified in ROA by Guthrie [22], for exam-
ple), possibly even conditioned on one another. The only concern that needs to be reminded is that of
computational complexity, where a large number of possible managerial actions decreases the ability to
compute the valuation in practice.

Example 8. Possible actions for a gas power plant project might be to: build a new block of the plant,
run the plant if it has some installed capacity, or wait for a better situation on the market and do nothing.

We believe that this example shows the dependency of possible actions on a given state and why it is
thus better to use the function notion a(st).

With the definition of action function, we have defined the general structure of a project, boundaries
within which the project will evolve. Now, we will study the rules that guide the evolution and metrics
that measure the value created.

4.2.4 Transition probability functions

Given the nature of projects, the evolution from one state to another is stochastic. In this thesis, we
want to model the project as MDP, and thus, the probability distribution of the next state, described by

3There are more or less relevant parameters to measure.
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the transition probability function, is conditioned only on the previous state and the last action taken. In
mathematical notation:

p(st|at−1, st−1). (4.1)

In this thesis we consider states values as a realizations of discrete or continuous random processes,
described by conditional probability mass or density functions, respectively. Furthermore, as we will
model each elementary state by a different distribution, we need to be able to compute the overall prob-
ability of the future state given the elementary state distributions.

To make things simple, we assume individual elementary states to be represented by independent
variables, and thus the probability (or probability distribution) of the next state is a product of the ele-
mentary probabilities4:

p(st|at−1, st−1) =
∏

i

p(si
t|at−1, st−1), (4.2)

where si
t is the i-th elementary state of st.

Remark. It is possible that some elementary states are fully determined by the managerial action at−1.
Such a corner case does not create a problem for the probabilistic notion above. The new elementary
state si

t is realized with probability p(si
t|at−1, st−1) = 1.

It is clear that in the majority of real-life projects, determining or estimating this transition probability
function is a challenging but crucial task. Decisions will be made based on its values increasing or
decreasing the value of a project.

The approach of ROA authors to the modeling of these probabilities varies a lot. Some authors like
Guthrie [22] or Amram [3] use the no-arbitrage principle to determine the probabilities of their binomial
models. Some authors, like Kulatilaka [28], use the principle of insufficient reasons5, where they assign
50% probability to movements in both directions of their binomial models. Some authors, like Guthrie
[22] and Vollert [45], also offer a more elaborate statistical modeling of the probabilities.

Some details of how does SDT approach the estimation of p(·) will be discussed later in section 4.3.1,
however, we must note that the actual estimation of these probabilities is beyond the scope of this thesis.

Example 9. The evolution of a gas price can be modeled as a lognormally distributed random variable,
with µ being the previous epoch’s gas price and σ an estimate, for example based on historical data.

4.2.5 Reward functions

The final part of modeling the project valuation as MDP is the reward function. Its purpose is to
assign a numerical value to the state realization st given the previous state st−1 and last managerial action
at−1, mathematically:

r(st, at−1, st−1). (4.3)

As discussed in section 3.2, the notion of value is complicated. In our case of project valuation, this
value is represented by the FCF. Thus, the first approximation of the entity to be maximized is the ex-
pected cumulative FCF, which usually consists of expenses resulting mostly from immediate managerial
actions and income, the amount of which tends to result from the environment (supply and demand for
products or services) conditioned on a previous action or action sequence.

4Combination of discrete and continuous variables as elementary state results in continuously distributed global state (and
thus a probability distribution).

5Even though they do not call it that way.
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However, as the economic theory guides us, this approximation is insufficient due to the clear prefer-
ence in having money now instead of later (time value of money) and the fact that investors do not value
uncertain FCF the same as their expected values (risk aversion of investors). Both of these phenomena
lead us to adjust the metric that is to be optimized by the optimal strategy.

The details of this alternation, driven by the two phenomena, will be deeply discussed in the following
sections 4.3.2 and 4.3.3. For now, let us simply declare that the optimal strategy will be derived from
a generalization of expected cumulative FCF, respecting the individual risk preferences, borrowing, and
risk-free investment opportunities of the investor.

Example 10. The reward function of a gas power plant is driven by its ability to make money by trans-
forming the gas and CO2 allowances into electrical power. The initial expenses for building the individ-
ual blocks result in extreme negative rewards (driven by the action of building). At the same time, the
profits are made as a multiple of installed capacity and the difference of input costs plus fixed costs and
the revenue from selling the electricity (conditioned on the action of running the plant).

This paragraph concludes the basic identification of sets required by the SDT framework. In the next
section, we will focus on the solution to the project valuation problem in detail. We will discuss the
sources of transition probability function, the actual incorporation of the time value of money, and the
risk aversion of investors into the model.

4.3 Solution of the Project Valuation as a SDT Problem

In the previous chapter, we have focused on the basic structure of a project valuation understood
as MDP. In this chapter, we go deeper and focus on the details of the actual solution of such valuation
problem.

We begin this section by looking in detail at the estimation of the transition probability function p.
We outline how the SDT can not only incorporate the ideas of ROA but also help with more advanced
estimation techniques.

Then, we continue with the incorporation of the business-specific concepts - time value of money
and risk aversion of investors in the form of utility maximization principle and the notion of PCE. We
focus on implementation details with an accent on applicability by real-life investors.

Finally, the last part of this section addresses the computational complexity problems of classical dy-
namic programming, proposing an ADP class algorithm identified as the best fit for a project-valuation-
style MDPs.

4.3.1 Probability

In this thesis, we focus on real-life projects. Such projects are, by their nature stochastic, and except
for some edge cases, the laws guiding the evolution of the relevant parameters are unknown and complex.
Our search for the optimal strategy is based on the assumption that we have some model estimating the
future paths of the project states, and we act as if this model was the reality. In our case, the model of
this evolution is materialized in the form of transition probability function p, where for example, one of
the assumptions is the Markovian property of the states6.

There are many ways how to model p. Let us discuss the techniques used in ROA publications and
how they can be translated into the SDT terminology. Furthermore, let us also outline the more advanced
techniques that SDT can offer in this section.

6Meaning that the probability of evolution to the state st+1 depends only on st and at.
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Risk neutral probabilities The idea of risk-neutral probabilities together with the binomial model is
the major modeling force in the ROA publications. We observe two levels of its usage, both of which are
based on the principle of arbitrage non-existence.

First, simpler approach, used by Ryu [39] or d’Amato [20], adjusts only for the time value of money
represented by the risk-free rate r f , where the probability of up and down moves are computed as:

πu =
r f X − Xd

Xu − Xd
, πd = 1 − πu, (4.4)

and where X, Xu, and Xd are the values of the asset price now, after one up move and after one down
move. These equations represent the idea that the probability of up and down moves of an asset are such
that its expected appreciation is equal to the risk-free interest rate.

The more complex equation, also adjusting for the specificity of the risk of the field we invest in,
called risk premium, comes from the capital asset pricing model (CAPM). This model is used by the
frequently mentioned Guthrie in [22], but also by other authors, such as Lund [29].

This technique is presented exclusively in the context of binomial models, but it is easy to imagine
its usage for their limit case, which is a variable with the Poisson distribution.

Insufficient reasons The second widely observed modeling style in ROA publications, used mostly in
addition to the binomial model, is to assign 50% to both up and down move. This technique can be used
on different levels of the model, as the final model (as in [28]) or, for example, as a helping distribution
modeling a particular supportive distribution (as in [22]).

It needs to be emphasized that the ROA authors do not use the term insufficient reasons themselves.

More complex models In more mathematical publications, we observe more complex models of the
future state outcomes, for example, the normal process with dynamic parameters [6] or [1], the mean-
reverting process with Poisson jumps [40], or a general Îto process [44].

It seems that these models come from authors with more mathematical than economic background
and their unifying feature is the rigorous usage of random variables and continuous distributions.

SDT interpretation Now we would like to discuss the interpretation of the ROA probability modeling
techniques in SDT. The notion of risk-neutral probabilities can be approached with the framework of
expert knowledge, where the first expert is the one (usually the economist using the CAPM formula)
who determines the individual variables like the risk-premium or expected market growth. In accordance
with the philosophy of experts, the second expert is the market behaving by the non-arbitrage principle,
giving us the equations for risk-neutral probabilities.

The term of insufficient reasons comes from the SDT itself, and thus, it was already interpreted
above.

The class of more advanced approach that we have discussed above is easily covered with the SDT
too, because of its structure. The outputs in terms of distributions, coming either from the data or again
the expert knowledge, are easily incorporated into the SDT framework as prior (static or dynamic) prob-
abilities.

SDT innovation The portfolio of SDT estimation techniques is much broader than what was discussed
so far. Because the probability estimation is not the main focus of this thesis, we will only outline two of
the most interesting techniques.
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First is the Bayesian modeling, where each time new data are being observed, our probability model
is updated by the Bayesian formula. This very influential modeling technique in SDT was not seen in
the studied ROA publications, even though there is certainly a space for it.

The second modeling strategy that we want to talk about is the consistent way of information fusion
from different sources. This niche part of the SDT, lead by Kárný [25], allows for the incorporation of
multiple sources of prior probabilities, for example, multiple experts, data sources, and more.

Summary To conclude, we advice to use one of two approaches to the problem of p estimation. First,
when a lot of information about the project is known, we have a strong case for the parameters behaving
according to given smooth distributions. Additionally if we believe the market to compactly represent
the expert knowledge, we prefer Bayesian updated risk-neutral probabilities.

On the other hand, if the project is truly innovative and there is very little data to base our model on,
we prefer to use a combination of expert knowledge and principle of insufficient reasons to determine
the priors.

In the end, we leave the decision of the actual modeling to the framework user, where we express the
sympathy for simple models, where more “unclear“ models, in spite of their better precision, might not
be accepted by the investment board making the final investment decisions. Clearly, we do not advise
using niche SDT modeling techniques like probability distribution fusion from Kárný [25].

4.3.2 Time value of money

As outlined in 3.2, money does not have the same value through time. This concept is one of the
most important ones in project valuation and capital budgeting. The approach of the economic theory to
this problem is to exponentially discount the FCF with the so-called risk-free interest rate and measure
value of a FCF vector with the NPV metric.

In this thesis, we will use the upgraded version of NPV, described in section 3.2 as PCE, which
already accounts for the process of borrowing and reinvesting the money from the FCF vector in a sense
of a responsible manager. The ability to finance the project with a fully liquid loan (FLL) and the ability
to invest in risk-free asset is assumed.

Earlier in this thesis we have denoted the expected cumulative future FCF as the first approximation
of a metric that we want to maximize with our decision making. Now, we present the second approxi-
mation of the optimized entity, which is original for both the ROA and SDT7 world, the PCE.

The PCE represents the amount of money the investor is logically indifferent to having now instead
of a vector of future cash flows. As argued in section 3.2, this value is unique and always defined.

The following equation represents the update of the Bellman equation 2.12, adjusting the crucial step
in the optimal strategy determination:

v(st−1) = max
at−1∈Ast−1

∑
st∈St

P(st|at−1, st−1)PCE
([

sb
t−1, v(st) + r(st, at−1, st−1)

])
, (4.5)

where sb
t−1 is the project’s balance state in time t − 1.

Remark. In essence, this notion only ensures that different discounting of future cash flow is applied
for cases where the project is in debt (and thus investors value the earlier cash flow more), and when its
balance is already positive. In a case that rr = rb holds for the available FLL, the NPV notion gives the
same results as PCE.

7SDT theory uses exponential discounting, for example, in models with infinite time sets, however, through our study, we
have not encountered the idea of discounting conditioned on a state.
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4.3.3 Risk aversion of investors

As discussed above, the nature of real-life projects is stochastic. The uncertain evolution of states
results in the uncertain FCFs defined by the function r, which has implications for the investor’s decision
making.

As discussed in section 3.1, the majority of investors is risk-averse, meaning that they tend to value
uncertain gains lower than their expected value.

We believe that this characteristic of investors is important to consider in the valuation of a project.
Fortunately, the SDT theory already has a framework for coping with such skewness in reward perception
called the utility theory.

The third and final approximation of the optimized entity and the corresponding adjustment of the
Bellman equation 2.12 is to transform the PCE by the utility function µ(·) of a given investor, which can
be expressed as:

v(st−1) = max
at−1∈Ast−1

∑
st∈St

P(st|at−1, st−1)µ
(
PCE

([
sb

t−1, v(st) + r(st, at−1, st−1)
]))
. (4.6)

Remark. Even though there are consistent methods for obtaining the utility function of individual in-
vestors, it might be hard to get them on board with the idea of utility8. This does not present a fundamen-
tal problem for our valuation technique because we can always use the utility of the risk-neutral investor,
which is unique and its usage supported by the lack of bias against uncertain outcomes.

4.3.4 Approximate dynamic programming

As mentioned in the previous sections of this thesis, the classic DP algorithm can be used for the
computation of MDP’s optimal strategy only with rather small cardinalities of the A, S, and T sets. This
known DP problem is in literature addressed as “three curses of dimensionality“ [33].

Real-life projects, interpreted as MDPs, are usually rather complex and hardly ever fulfill this condi-
tion. For example, when even one measured parameter is modeled to come from a continuous distribu-
tion, the DP algorithm breaks down not only from the limitation of the actual computational complexity
but also theoretically.

It might be clear from the rhetoric of this thesis that our goal is to use the developed valuation
technique in practice. That is why we want to address this problem with the goal to make the solvable
class of project valuation problems as large as possible. We try to accomplish that with the approximate
dynamic programming (ADP) approach.

From the numerous ADP techniques, we have chosen the value iteration with parameter model ap-
proximation for two main reasons, both of which originate in project valuation’s fundamental character-
istics.

First is that the real-life projects tend to have large state spaces (even uncountable), while on the other
hand, the action set is usually limited. We cannot ask the investor to choose between 10 000 actions, for
example. This argument supports the choice of value iteration over a policy iteration class of ADP.

The second reason is that we usually have a good intuition of what precisely in the given states of
the project “makes money“. This allows us to build a good approximation function f with reasonable
parametrization, capturing the most important parts of the model.

It needs to be clarified that even though we believe that our approach is generally good, regarding the
mathematical complexity, its precision and clarity, there might be better ADP algorithms for individual
projects the reader intends to value.

8The investor might not have time to answer the utility questionnaire as suggested by [4], or he might be discouraged by the
idea of his own skewed perception of rewards.
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4.3.5 Summary

This subsection summarizes the core idea of this thesis.
First, we have presented the interpretation of the project valuation problem as a MDP. We have

defined all its important parts in detail and offered examples for clarity.
Then, we have adjusted the Bellman function 2.12 to respect the business-specific concepts with the

notion of PCE (respecting the time value of money and incorporating the capital budgeting problem) and
utility function (the interpretation of investors’ risk aversion).

In the end, we have advised a favorable ADP algorithm that copes with the problems of computational
complexity of the usual DP solving algorithm for non-trivial projects that can naturally be used with the
adjusted Bellman equation 4.6.



44 CHAPTER 4. PROJECT VALUATION REVISITED FROM THE SDT PERSPECTIVE



Chapter 5

Valuation of Simple Flow Businesses

In the previous chapter, we have presented an algorithmic approach to a project valuation based on
the SDT framework and its ideas. Now we want to illustrate the actual usage of this algorithmic approach
on a chosen class of projects.

We have chosen a class of projects that can be labeled as an investment in simple flow business
(businesses that can, for the valuation purposes, be described by a straightforward transformation of
inputs to outputs). This class is characterized by a large outflow of money at the beginning, which is
used for building the business (or its first functional part) and a small but long-term positive FCFs driven
by the difference in the price of inputs and outputs and the further managerial decisions.

This class choice is supported by its appropriate level of complexity, which allows demonstrating the
power of the proposed algorithm while at the same time not being too complicated. It is also a type of
project that is substantially represented in the world of capital investment.

We could write this whole chapter using a general description of the chosen project class, however,
we believe that using only one specific representative will result in a clearer picture of the situation.

Our choice of the representative - an investment into a gas power plant - is based on three grounds.
First, there is certainly an influence by Guthrie’s example of a similar valuation problem [22]. Second,
as we will see, this valuation problem has reasonable dimensions that allow for a good presentation of
the valuation algorithm. Lastly, the author of this thesis has proven domain knowledge based on his short
but intensive work experience in the field of electricity trading.

In the first part of this chapter, we will describe the valuation problem in detail.
In the second part, we will compare the PCEs of three baseline operational strategies and the optimal

one derived from the valuation algorithm. Furthermore, we will study the influence of the increased
volatility of prices on the final valuation. From what we have learned about the value of real options, the
project’s value should increase together with the volatility increase.

It needs to be emphasized that the aim of this experiment is to present the valuation algorithm,
observe and describe its possible shortcomings and support its viability, not to prove any other theorems
or ideas about project valuation.

5.1 General Settings of the Experiment

First, let us clarify what we mean by the phrase investment in the gas power plant. We are positioning
ourselves in the role of an investment analyst of a large utilities company1 whose task is to evaluate the
value of building and managing a new gas power plant.

1Companies that generate electric power usually provide also gas, water, sewage or other basic services.

45
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For simplicity, we are considering building only one or two 200MW blocks, the lifespan of which
ends 25 years from now, disregarding the time they were built [15]. We assume that each block’s price is
65M EUR, which is a rough estimate based on [13].

We model the power plant to be managed in a monthly pattern. Its power is being sold by monthly
contracts at the beginning of each month when the needed gas and CO2 inputs are also modeled to be
purchased. This results in certain FCFs that are assumed to be obtained immediately after taking one
of the allowed actions. As was indicated earlier in this thesis, we do not want to go deep into the plant
management and its internal processes.

The project’s financing is done by a FLL with rb = 6% and rr = 2%. The reality of having non-zero
initial funds is reflected in the existence of the corresponding elementary state.

Now that we have clarified the project that we want to value, we can proceed with its precise defini-
tion in the MDP format.

5.1.1 Time set

As outlined in the introduction of this chapter we assume that the lifespan of the project is 25 years
disregarding the epoch in which the plant is built. The plant management is done on monthly basis and
thus the time set is defined as:

T = {0, ...300}, (5.1)

where the epoch 300 is understood as the final epoch, where no actions can be made, and no FCF can be
obtained.

5.1.2 State set

The state set needs to consist of the smallest number of relevant parameters that enable us to model
the process of building and running the power plant and capturing the FCF and its derived metrics for
the project.

As such, we identify five elementary states as parameters describing:

• the price of gas - s1;

• the price of CO2 allowances - s2;

• the price of power - s3;

• number of power plant blocks built - s4;

• cash balance of the project (modeling the debt) - s5;

at the start of each time epoch.
The states of the state set are defined as having a constant length since there is no significant change

in relevant parameters through project’s lifespan.
Mathematically the state set S is defined as:

S = {(s1, . . . , s5)|si ∈ Si, i ∈ (1, ..., 5))}, (5.2)

where Si represents the limitation of the individual elementary states. These limitations will be in detail
discussed now.

For the states representing prices, si, i ∈ {1, 2, 3}, we define:

Si = R+
0 . (5.3)
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The next elementary state, s4, represents the number of blocks built, simply:

S4 = {0, 1, 2}, (5.4)

The final elementary state, representing the financial balance of our project, is then allowed to have
any real value:

S5 = R. (5.5)

The defintion of the state set S represents the problem structure, the boundaries within which the
simulation of initial investment and further managerial actions will take place.

5.1.3 Action function

In this experiment, we consider four managerial actions. They could be understood as two-dimensional,
where the first dimension represents the act of running the installed capacity of the plant (if one exists),
whereas the second manages the action of building new blocks. However, we have decided to use the
following one-dimensional encoding:

• 0 - do nothing (don’t build a new block and do not run the production);

• 1 - run the existing installed capacity;

• 2 - run the existing capacity and build a new 200MW block;

• 3 - build a new 200MW block.

As discussed earlier in this thesis, certain actions are available only in certain states. The state that
determines what actions are possible is exclusively the elementary state s4 describing the number of
blocks built.

In the following list, we express the possible action set as a result of the action function in all possible
elementary states s4 with a short explanation of its meaning.

• a(s4 = 0) = {0, 3} - when nothing is built, we can build the first block or do nothing and wait.

• a(s4 = 1) = {0, 1, 2, 3} - when only one block is built, all actions are possible.

• a(s5 = 2) = {0, 1} - when two blocks are built, the building actions are not possible.

5.1.4 Transition probability function

The best way to describe the model of evolution from one state to another is to assume the inde-
pendence of random variables representing the individual elementary states. This allows computing the
probability of state transformation as a product of transition probabilities of the individual states:

p(st+1|st, at) =

5∏
i=1

p(si
t+1|s

i
t, at). (5.6)

In our example, there are five elementary states, where the ones representing prices of gas, CO2
allowances, and power are modeled in the same way. The other two elementary states are deterministic
but differ in the dependency on the previous state and action. Let us now describe the evolution of the
individual elementary states in detail.
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Initial price [EUR] Volatility 1 Volatility 2
Gas 25 0.12 0.144
CO2 10 0.10 0.12
Power 37 0.15 0.18

Table 5.1: Initial prices of commodities and their illustrative volatilities used in the experiment.

Commodity prices The prices of gas, CO2, and power are modeled by a Geometric Brownian motion,
the model used in the BSM model and other publications like [45].

The probability of the next elementary state is thus conditioned only on the value of the previous
state as:

p(si
t+1|s

i
t) = si

t · exp
µ − σ2

i

2

 ∆t + σiW∆t

 (5.7)

for i ∈ {1, 2, 3}, where ∆t represents a time fraction in years, for us 1/12, the epoch time t + 1 = t + ∆t,
and Wt is a Wiener process with probability density function defined as:

pWt (x) =
1
√

2πt
· exp

(
−x2

2t

)
. (5.8)

To be able to model the prices, we need to present the variances σi and the initial values si
0 for all

i ∈ {1, 2, 3}.
The initial prices that we use are inspired by the real prices of commodities that are being traded

on the Intercontinental Exchange (ICE). In this thesis, we would like to avoid going into the details of
plant efficiency and unit transformation. Thus we present the initial prices as illustrative and already
transformed to EUR per MWh produced.

Similarly, the values of individual commodity variance σi are inspired by our experience with the
ICE and the realization of commodity prices in recent years. However, they still remain only illustrative.

In table 5.1, we can see the chosen initial prices and two triplets of volatilities, which are presented
due to the second goal of this experiment, determining the influence of volatility on the value of a gas
power plant project. The second triplet is chosen simply as a 20% increase of the first.

Installed capacity The evolution of elementary state s4 representing the number of blocks built is
deterministic and conditioned on the previous action. If the chosen action is a = 2 or a = 3, representing
building a new block, then the elementary state of the number of blocks increases by 1 with probability
1. If the chosen action is a = 0 or a = 1, this elementary state is not changed with probability 1,
mathematically:

P(s4
t+1 = y|s4

t = x, at) =


1 if x = y ∧ at ∈ {0, 1}
1 if x + 1 = y ∧ at ∈ {2, 3}
0 otherwise

(5.9)

Clearly s4
0 = 0.

Balance The last model that needs to be discussed is the one representing the financial balance of the
project, s5, which is driven by the simulation of an RM behavior with rb = 6% and rr = 2%. This
evolution is mathematically described as:
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P(s5
t+1 = y|st, at, s5

t = x) =

{
1 if y = RM(FCF(st, at) + x)
0 otherwise,

(5.10)

which means that this elementary state is deterministic, and its value s5
t+1 is computed as a result of

responsible managerial actions with the previous balance x adjusted for the FCF obtained in the previous
state st given the action at.

The actual computation of FCF(st, at) will be revealed in the next section, whereas the RM function
can be found in section 3.2.1. The model allows for easy interpretation of non-zero initial balance,
however, in our experiment, we define s5

0 = 0.

5.1.5 Reward function

The FCF model in our example, and actually in all projects in the class of simple flow businesses, is
fairly straightforward.

First, we account for the fixed price of maintenance Cm, which in our case is illustrative and defined
as Cm = 6 EUR/MW of installed capacity for each hour.

Then, conditioned on the action of running the business, we account for commodity input costs (here
gas and CO2). Finally, we add the profit from selling our product on the market, and the computation for
FCF is complete.

The mathematical expression of the sentences above can be presented as:

FCF(st, at) = s4
t ·

[
−Cm + I{1,2}(at) · (s3

t − s2
t − s1

t )
]
· 200 · hm, (5.11)

where hm = 720 is a constant representing approximation of hours in month, not accounting for the
changes in month lengths.

Remark. As discussed earlier, the optimal strategy is not being optimized for the expected cumulative
FCF, but rather each action optimizes the expected utility of the PCE in the current state.

5.1.6 Utility function

The chosen utility function v for this example was chosen as:

µ(x) =

{
−(−x)0.9 if x < 0,
x0.85 otherwise.

(5.12)

This choice represents slight risk aversion of the investors, with an asymmetric perception of losses
and gains. Its purpose is only illustrative as the details of utility function creation, its meaning, and
derivation are out of the scope of this thesis.

5.2 Approximate Dynamic Programming

In preliminaries we have discussed the algorithm for modeling the value function with some general
function vt(s) = f (s, θi,t). Now, as we have defined our problem, we are able to describe the specific
model for our case.

Based on the initial observations of state-utility pairs coming from the performed simulation (see
algorithm 1 step 10 and figure 5.1) and the intuition that the FCF function, equation 5.11 gives us, we
have decided to model the value function with a model of three picewise linear models with one breaking
point xi,t, yi,t:
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vt(s) =

2∑
i=0

Ii(s4)pw(s3 − s2 − s1, k1
i,t, k

2
i,t, xi,t, yi,t), (5.13)

where Ii is an identificator function of installed capacity s4, and k1
i,t, k2

i,t represent the slopes of the
piecewise linear function model. For a better illustration, we present an example of such model fitted to
the real data in figure 5.1.

Fig. 5.1. Example of a piecewise linear fit.

This model effectively reflects only two variables, the installed capacity of the power plant, reflected
by the choice of three models and generalized “spark spread“ s3

t − s2
t − s1

t , which reflects how much
money is being made by running the plant with the current costs of inputs and the market price of power.

The value function in each time epoch t can thus be represented by twelve variables k1
i,t, k

2
i,t, xi,t, yi,t

for i ∈ {0, 1, 2}.
To determine these parameters for our example, we will use the ADP algorithm of value iteration,

which we describe in general by a pseudo-code in Algorithm 1. The important details of this algorithm
are then discussed in the individual paragraphs.

Last VF For the consistency in notation, there is a need for the definition of the value function in
the last epoch, where no action is possible anymore. Since the value function represents the metric of
expected reward in the future, its value is 0. In our case, the v300 is represented by the same model shown
in equation 5.13 with all parameters equal to 0.

State sampling In the third step of our algorithm, we define a state sample. This state sample serves
the purpose of a reasonable coverage of the uncountable state space with a finite number of values. In this
thesis, we create the sample by making samples of individual elementary states, which are then randomly
put together, creating a random realization of a global state.
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Algorithm 1 ADP value iteration algorithm
Require: v300(s)

1: Prepare empty list L for vf model parameters
2: for t ∈ (299, 298, ...0) do . Backward epoch induction
3: Prepare state sample S t . See paragraph state sampling
4: Declare empty list of state utility pairs l
5: for s ∈ S t do
6: for a ∈ a(s) do . All allowed actions in given state
7: Evaluate the expected utility of an action a, µa

given vt+1 approximation
. See expected utility paragraph

8: Determine maxa∈a(s) µa = µ.
9: Save (s, µ) pair in a list l.

10: Fit the (s, µ) pairs from l to the model described by equation 5.13
11: Save the fit parameters k1

i,t, k
2
i,t, xi,t, yi,t for all i ∈ {1, 2, 3} in a list L

12: return L

In the following table, we describe the distributions out of which the elementary realizations are
taken.

Elementary state Distribution
Gas price Uniform (0,30)
CO2 price Uniform (0,40)
Power price Uniform (10,80)

Number of blocks
p(s4 = 0) = 0.3
p(s4 = 1) = 0.35
p(s4 = 2) = 0.35

Balance Uniform (-60M, 60M),

All the random variables are generated by the Python library NumPy, and the sample size was chosen
as |S t| = 100.

Expected utility In step 7 of algorithm 1, we want to assign individual action a in state s the expected
utility. This assignment is made with the help of the equation 4.6, respective its part:∫

st∈St

p(st|at−1, st−1)µ
(
PCE

([
sb

t−1, v(st) + r(st, at−1, st−1)
]))

dst, (5.14)

which was adjusted for our continuous case, changing the sum for an integration.
To compute this expression, we use a simple numerical integration technique. Based on the state

in which we are in st and the transition probability function p(st|at−1, st−1) defined above, we simulate
chosen number of state evolutions, here n = 100. Then the result of the numerical integration is the
average of the individual utilities of PCEs of the realizations st.

Model fitting In step 10 of our ADP algorithm, the data from list l are being fitted by the model
described by equation 5.13. We do this in reality by fitting three individual subsets, one for each of the
plant states, by the piecewise linear function with one breaking point. The individual fits are done with
the help of Python library lmfit, which is using the least square evaluation metric.
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5.3 Optimal Strategy Performance

Now that we have the estimation of the value function in our hands, we are able to value the project.
The only thing that we need to do is to insert the chosen initial state sinit = (25, 10, 37, 0, 0) defined above
by parts into the model as v0(sinit), which gives us the result of 388M EUR.

Now, we want to verify the sensibility of this result by a simulation of the actual decision-making
process and comparing it with some baseline strategies. Let us first define these strategies and then the
simulation algorithm according to which we will compare them to the optimal strategy.

Baseline strategies

• Strategy B1 builds two blocks of the powerplant in time epoch 0 and 1 and then runs them disre-
garding all the other factors.

• Strategy B2 builds two blocks of the power plant similarly to strategy B1, but it runs the plant only
if the prices are favorable, meaning s3

t − s2
t − s1

t −Cm > 0.

• Strategy B3 does not build the blocks right away but waits for more favorable market states than
the sinit provides. It builds a new block only when the generalized spark price rises above the
arbitrarily chosen amount of 40 EUR (s3

t − s2
t − s1

t − Cm > 40). The rule for running the installed
capacity remains the same as for the strategy B2.

Simulation algorithm In this paragraph, we will describe the simulation of the decision making upon
which we compare the performance of our optimal strategy and the baseline strategies Bi, i ∈ {1, 2, 3}.

Algorithm 2 Strategy performance algorithm
Require: Strategy B

1: Define intitial state s0 = (25, 10, 37, 0, 0)
2: for t ∈ {0, 1, ...299} do
3: Determine action at in state st according to strategy B . See determine actions below
4: Compute st+1 realization from the transition probability function p and st, at pair

return PCE(s5
300) . The PCE of final balance of the project

Determining actions The general step 3 in the algorithm differs based on the type of strategy. The
actions of baseline strategies are clearly defined, however, the action of the optimal strategy computed
by the ADP algorithm needs to be computed again.

The action taken in the case of the optimal strategy is determined as the action with the highest
expected utility, computed as a numerical approximation of the equation 5.14 with 100 numerical inte-
gration samples as before.

5.3.1 Results - initial setup

Now, we are able to use algorithm 2 to compare the optimal strategy to the baseline strategies. We do
this by running the simulations 3000 times and comparing the average gains (in terms of PCE) of each
strategy, a Monte Carlo approach. The results of the simulations can be seen in figure 5.2.
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Fig. 5.2. Comparison of average PCE equivalents of individual strategies, realization histograms and
averages with initial settings.

Setup Strategy Baseline 1 Baseline 2 Baseline 3 Optimal strategy
Initial setup -103M 195M 330M 388M
Increased volatility -108M 181M 351M 410M

Table 5.2: Comparison of PCE for different strategies and settings.

5.3.2 Results - increased volatility

The second part of the simulation is exactly the same as the first part, the only change is in increase
of all price volatilities by 20%, as can be seen in table 5.1. The results of this simulation can be seen in
figure 5.3, while the comparison of individual results for both cases can be found in table 5.2.
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Fig. 5.3. Comparison of average PCE equivalents of individual strategies, increased volatility.



Chapter 6

Discussion

We believe that in the presented experiments, we have shown the usage of the SDT-based valua-
tion technique algorithm on an example with a reasonable complexity. We managed to cope with the
uncountable state space caused by the assumption of continuous prices and also with the modeling of
approximate value functions guided by the theory of ADP.

The business-specific concepts that we wanted to preserve from the field of capital investment bring
after the experiment mixed feelings. The notion of PCE and its usage in the experiment seems to make
logical sense. However, the notion of utility and risk-aversion of investors might make better sense in
the evaluation of the project as a whole. The usage of utility will be discussed in more detail below.

6.1 Value Function Approximation

In the first attempts to construct the experiment for this thesis, we came up with a much more complex
example than the one finally presented. There were nine elementary states concerning, for example, the
government’s support of renewable sources of energy, which influenced the future volatility of the power
prices. We also firstly introduced actions like mothballing or selling the plant for salvage value. From
the study of value function approximations, it seemed like that it will be enough to use only the linear
model and choose good basis functions. Nevertheless, we were wrong.

The complexity and non-linearity of the value functions can be seen in the final simplified example
as well. It is clear now that the option-like pattern appears, but the future users of this algorithm need to
keep in mind is that the complexity of the project model will most likely be reflected in the complexity
of the value functions.

In our case, three piecewise linear models were enough to cover the state space reasonably, but for
more complex models, there might not be such clear patterns as we observed in our example.

The final choice of a simpler model was motivated by a concern that a more complex value function
could take too much of the reader’s attention from the main message, which is the illustration of the
valuation algorithm itself.

We would like to raise a concern about the possible future adoption of the algorithm from the capital
investment companies due to the complexity of the value function modeling for more real-life complex
investments.
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6.2 Usage of Utility

In this thesis, we wanted to preserve the notion of risk-averse investors. We did this by making the
optimal decision strategy the one that maximizes the expected utility of the decision maker (manager of
the project) in each decision made. However, when we thought deeper about the global view of investors,
the real decision makers, the incorporation of the risk-aversion through the utility function might have
been done differently.

We have used the utility function for decisions on the micro-level when the project is being further
managed. However, in reality, the group of people that make the investment decision does not usually
further manage the project.

On the macro level, the final valuation of a project is usually used for comparison to other investment
opportunities, and we believe that this is where the utility function should come into the picture.

When looking at the results of our simulation, we, for example, see that the baseline strategy B3 is
more conservative than the optimal one we derived from our algorithm. Here, we can easily imagine a
very risk-averse investor who would prefer the results of strategy B3 over the optimal strategy we have
derived.

Thus, we believe there might be two utility adjustments, first on the micro-level, where the plant
manager optimizes the utility of each action. The second utility adjustment for the valuation is for the
macro level, where the board of decision makers will compare individual projects.

6.3 Computational Complexity

In section 2.2.2 we have talked about the computational complexity of dynamic programming. For
our setup of the experiment (with uncountable state space), the DP approach is not even theoretically pos-
sible, but we would still like to address the computational complexity and the challenges our algorithm
faces.

We needed to compute three models for each of 300 time epochs. For each model, we needed to have
100 state samples to cover the state space reasonably. For each state, we needed to numerically compute
the expected utility, which was in the form of integral, to which we have also used 100 integral samples.
This resulted in 90 000 state-utility pairs and 9M of integral samples created as an evolution of state with
a length of 5. The computations took several hours on a 2-core device with 16GM of RAM, where it
needs to be said that the code was optimized without special care.

This is to say that more complex valuation problems might also bring with them the need for either
faster hardware or better techniques in numerical approximation of integrals and/or more robust models
for the value function approximation.

6.4 Experimental Results

Even though the main focus of the experiments was to present a reasonable illustration of the valua-
tion algorithm we can also see the individual ROA narratives in the results.

First is the notion that the value of a project increases with the inner uncertainty of its parameters.
The value of a project rises together with the volatility from 388M to 410M EUR in our experiment.

By observing the shapes of histograms of different strategies, we can also observe the narrative of
ROA that “options have value“. The baseline strategy B1 factually represents no options in the ROA
sense. We simply build the plant and run it until the end of the observation period.
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The baseline strategy B2 represents the option not to run the plant when the market prices are not
favorable. We can see that this option has a significant value, bringing the value of a given project from
negative to positive.

The baseline strategy B3 represents the combination of the time option (waiting for favorable com-
modity prices) and the option from strategy B2. We see that for our initial state, this option also brings
significant value to the project.

The final remark to the experimental results is that our intuition says that the baseline strategy B3
could be a very good approximation for the optimal strategy derived by our algorithm with a better
threshold than 40 EUR. The idea is that for our simple experiment, the optimal strategy simply finds the
best thresholds of the spark price to build the first and second block. However, in comparison to B3, the
optimal strategy presumably also considers the number of epochs left until the 300 threshold.
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Chapter 7

Conclusion

The core message of this thesis is to interpret the problem of project valuation in the language of sta-
tistical decision theory. We can declare that the aforementioned contributions of the developed algorithm
have been presented by our experiment, most notably in contrast to the current valuation techniques as:

• the seamless integration of multiple uncertainty sources;

• the integration of continuous probability distribution models of variables;

• the easy representation of actions;

• the increased speed of computation by the usage of ADP algorithm to compute the value function
approximations;

• the preservation of the domain-specific concepts like the time value of money and the risk aversion
of investors.

Furthermore, through the thesis, we have discussed other relevant ideas about capital investment,
where we believe we can add some value. We talk about the term of utility in a field, which is influenced
by it but is not using this notion. We also present the notion of present cash equivalent (PCE), where we
argue that for each FCF vector, there is an amount of present cash that the decision maker is logically
indifferent to having now instead of the proposed FCF vector.

We have demonstrated the discussed ideas and the valuation algorithm on an example of gas power
plant valuation. The additional value of the experiment is in the confirmation of the ROA narratives, such
as that options have value and that this value rises with the inner uncertainty of the project.

We have also outlined the limitations of our approach when applied on more complex projects such
as:

• complexity of value function models;

• numerical integration of continuous state evolutions;

• computational complexity driven by both points above.

Finally, through the time of writing this thesis, we have identified the following directions for further
research:

• valuation of a more complex project in cooperation with an actual investment company;
59



• sensitivity analysis of the time granularity of decisions in our example;

• a proper sensitivity analysis of price volatilities in our example;

• so-called option games, which combine elements of SDT and game-theory (studying, for example,
the optimality of companies’ competition vs. collaboration) [16];

• model of investments with more complex internal processes than the simple flow process;

• a deeper study of the macro vs. micro-optimization of the utility and its effects on consistency of
decision making at individual levels of the investment.
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