
Czech Technical University in Prague
Faculty of Nuclear Sciences and Physical Engineering

Supervised and Unsupervised Learning for Heavy
Ion Physics

Supervizované a nesupervizované učení pro fyziku
těžkých iontů

Master’s Thesis

Author: Bc. Kateřina Hladká

Supervisor: Ing. Václav Kůs, Ph.D.

Consultant: prof. Dr. Boris Tomášik,
Iurii Karpenko, Ph.D.

Academic year: 2020/2021

České vysoké učení technické v Praze, Fakulta jaderná a fyzikálně inženýrská

Katedra: matematiky Akademický rok: 2020/2021

ZADÁNÍ DIPLOMOVÉ PRÁCE

Student: Bc. Kateřina Hladká

Studijní program: Aplikace přírodních věd

Studijní obor: Aplikované matematicko-stochastické metody

Název práce (česky): Supervizované a nesupervizované učení pro fyziku těžkých iontů

Název práce (anglicky): Supervised and Unsupervised Learning for Heavy Ion Physics

Pokyny pro vypracování:

1) Nastudujte problematiku QCD hmoty se zaměřením na povahu QCD fázových přechodů
v relativistických srážkách těžkých jader. Seznamte se se simulovaným datovým
souborem odpovídajícím různým typům těchto přechodů.

2) Zabývejte se problematikou reziduálních a konvolučních neuronových sítí. Vytvořte
optimalizovaný klasifikátor vzhledem k fyzikálně vhodné metrice a proveďte klasifikaci
simulovaného datového souboru dle typu fázového přechodu. Pro vybrané reprezentanty
daných tříd zkoumejte vývoj tzv. feature maps v jednotlivých vrstvách. Výsledky
diskutujte s fyzikální komunitou.

3) Seznamte se s novým typem dat pro simulace rozpadu mezonu D0, respektive jeho
antimezonu (potenciálně poskytnutých KF při FJFI). Na základě poznatků z bakalářské
práce a výzkumného úkolu navrhněte optimalizovaný klasifikátor a porovnejte jeho
kvalitu s předchozími dosaženými výsledky.

4) Seznamte se s principy nesupervizovaného učení (např. self organizing maps, k-means...).
Navrhněte modifikaci vybrané metody tak, aby bylo možné provést shlukovou analýzu
dle zvoleného informačně-divergenčního kritéria pro HEP data z rozpadů těžkých jader.

Doporučená literatura:

1) C. C. Aggarwal, Neural Networks and Deep Learning. Springer International Publishing,
2018.

2) C. M. Bishop, Pattern Recognition and Machine Learning. Springer-Verlag New York,
2006.

3) K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition. In '2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)', IEEE Xplore,
2016, 770-778.

4) L. Pardo, Statistical inference based on divergence measures. Chapman & Hall/CRC,
2006.

5) Y. Du, K. Zhou, J. Steinheimer, L. Pang, A. Motornenko, H. Zong, X. Wang, H. Stöcker,
Identifying the nature of the QCD transition in relativistic collision of heavy nuclei with
deep learning. The European Physical Journal C 80, 2020, 516:1-17.

Jméno a pracoviště vedoucího diplomové práce:

Ing. Václav Kůs, Ph.D.
Katedra matematiky, FJFI ČVUT Praha, Trojanova 13, 120 00 Praha 2

Jméno a pracoviště konzultanta:

prof. Dr. Boris Tomášik, Ph.D., Iurii Karpenko, Ph.D.
Katedra fyziky, FJFI ČVUT Praha, Břehová 7, 115 19 Praha 1

Datum zadání diplomové práce: 31.10.2020

Datum odevzdání diplomové práce: 3.5.2021

Doba platnosti zadání je dva roky od data zadání.

Acknowledgment:
I would like to thank my supervisor, Ing. Václav Kůs, Ph.D., for his expert guidance and patience
throughout the past 3 years. I’m extremely grateful to my consultants, prof. Dr. Boris Tomášik and
Iurii Karpenko, Ph.D., for the support, many expert insights and helpful advices during the project. I
gratefully acknowledge the effort of Ing. Jakub Cimerman and Ing. Lukáš Kramárik when providing the
data used for the purposes of this project. I also very much appreciate STAR collaboration’s willingnes
to provide HIJING simulation used in this thesis. I must also thank to doc. Mgr. Jaroslav Bielčík, Ph.D.
for continuous support of my work during past 3 years. Last but very special thanks to my family and
partner.

Author’s declaration:
I declare that this master thesis is entirely my own work and I have listed all the used sources in the
bibliography.

Prague, May 3, 2021 Kateřina Hladká

Název práce:

Supervizované a nesupervizované učení pro fyziku těžkých iontů

Autor: Kateřina Hladká

Obor: Aplikované matematicko-stochastické metody

Druh práce: Diplomová práce

Vedoucí práce: Ing. Václav Kůs, Ph.D., Katedra matematiky, FJFI ČVUT Praha

Konzultanti: prof. Dr. Boris Tomášik, Ph.D. a Iurii Karpenko, Ph.D., Katedra fyziky, FJFI ČVUT Praha

Abstrakt: Potřeba řešení komplexních problémů binární klasifikace ve fyzice těžkých iontů vyústila v
častější užívání supervizovaných i nesupervizovaných algoritmů strojového učení. Spolu s vhodným
předzpracováním dat a optimalizací hyperparametrů tak tvoří silný nástroj pro řešení takovýchto pro-
blémů. Tato práce porovnává několik přístupů strojového učení a efektu více typů předzpracování dat
pro dva problémy fyziky těžkých iontů: identifikaci produktů rozpadu D0 a identifikaci povahy QCD fá-
zového přechodu. Metody použité v této práci zahrnují náhodný les, hluboké neuronové sítě a konvoluční
neuronové sítě s i bez reziduálních bloků.

Klíčová slova: binární klasifikace, D0 rozpad, optimalizace, QCD fázové přechody, strojové učení

Title:

Supervised and Unsupervised Learning for Heavy Ion Physics

Author: Kateřina Hladká

Abstract: The need of solving complex binary classification problems in the heavy ion physics has
resulted in the usage of both supervised and unsupervised machine learning algorithms. Together with
appropriate data preprocessing and hyper-parameters optimization they form a strong tool for addressing
such problems. This study compares multiple machine learning approaches and data pre-processing
dependencies for two heavy ion physics problems: D0 decay classification and identification of the nature
of the QCD phase transition. The methods used in this thesis include random forest, deep neural networks
and convolutional neural networks with and without residual blocks.

Key words: binary classification, D0 decay, machine learning, optimization, QCD phase transition

Contents

Introduction 7

1 Data science challenges of heavy-ion physics 8
1.1 D0 decay . 8
1.2 QCD transitions . 10

2 Supervised machine learning 12
2.1 Binary classification . 12
2.2 Ensembles of trees . 15
2.3 Deep neural networks . 18
2.4 Convolutional neural networks . 24
2.5 Residual neural networks . 25

3 Unsupervised machine learning 26
3.1 K-means . 26
3.2 Self organizing maps . 27

4 Experimental results 29
4.1 D0 decay data . 29

4.1.1 Random forests (RF) . 33
4.1.2 Deep neural network (DNN) . 36
4.1.3 Comparison of RF and DNN with boosted decision trees (BDT) 42
4.1.4 Application of the existing classifier . 43

4.2 Data on QCD phase transitions . 44
4.2.1 Convolutional neural networks . 46
4.2.2 Residual neural networks . 55

Conclusion 57

6

Introduction

Nowdays, complex data science challenges of heavy-ion physics are handled by introducing ad-
vanced techniques of machine learning. This study aims to explore two binary classification problems,
identification of D0 decay products and identification of the QCD phase transition nature, and their pos-
sible solution using several machine learning approaches. Furthermore, appropriate data pre-processing
and trained model’s performance dependency on given pre-processing type was explored as well.

The thesis is divided into four parts. Chapters 1–3 describe theoretical background. Specifically,
Chapter 1 introduces challenges of D0 decay analysis and QCD phase transitions as well as the data
that were used for machine learning models training. Chapter 2 describes supervised machine learning
algorithms that were used to address challenges defined in Chapter 1, such as random forests, deep
neural networks, convolutional neural networks and residual neural networks. In addition, techniques of
optimization are introduced in Chapter 2. Chapter 3 proposes unsupervised machine learning algorithms
suitable for usage in heavy-ion physics, e.g., self-organizing maps, and completes the theoretical part
of the thesis. Finally, Chapter 4, presents multiple data science pipelines including the statistical tests
of hypotheses for suitable representation of binary classes, data pre-processing, optimizing machine
learning models and their evaluation and comparison over test sets.

7

Chapter 1

Data science challenges of heavy-ion
physics

1.1 D0 decay

Undoubtedly one of the most interesting state of matter studied by the modern physics is the quark-
gluon plasma (QGP). Fractions of a second after the Big Bang, all matter existed in such form due to high
temperature and pressure. Today, heavy-ion collisions are used to recreate similar conditions in order to
produce small amount of QGP. So far, current detectors are not able to detect quark-gluon plasma itself,
since is exists only for an extremely short period of time. However, studying final-state particles coming
from the QGP or decay products of short-lived particles is possible and reverse process reconstruction
may bring new insights to the research field.

One of the experiments taking place in Brookhaven National Laboratory is the STAR experiment
named after the same named detector working at the Relativistic Heavy Ion Collider. Among other
things, its purpose is to study of heavy-ion collision products, one of them being meson D0. It is not
possible to detect meson D0 itself. However, products of its decay, pions π and kaons K, can be detected
and measured in terms of physical properties listed in Table 1.1.

Reconstructed D

π

K

0

D
0

0

1

2 3

θ 45

Figure 1.1: D0 decay scheme.

A challenging classification problem is inevitably triggered: which pairs of pions π and kaons K are
truly D0 decay products (signal) and which detected pairs are just combinatorial background? In [1]
and [2] we introduced a solution based on random forest, AdaBoost and deep learning approach built
over PYTHIA signal simulation and measured data provided by STAR collaboration. Each data point

8

id shortcut description pre-cut criterion

0 DCAπ distance of the closest approach of π to primary vertex [cm] 0.002 < DCAπ < 0.2
1 DCAK distance of the closest approach of K to primary vertex [cm] 0.002 < DCAK < 0.2
2 ldecay D0 decay length [cm] 0.0005 < ldecay < 0.2
3 DCAπ,K distance of the closest approach of K and π [cm] DCAπ,K < 0.02
4 cos θ cosine of the pointing angle θ between reconstructed D0 mo-

mentum and decay length vector
cos θ > 0.7

5 DCAD0 distance of the closest approach of the reconstructed D0 and
primary vertex [cm]

DCAD0 < 0.05

6 cos θ∗ cosine of the pointing angle between reconstructed D0 mo-
mentum and K momentum

7 D0
mass D0 invariant mass [GeV/c2]

8 pT transverse momentum of D0 [GeV/c]

Table 1.1: Features of K and π with pre-cut criteria

in PYTHIA simulated data set and measured data set was described by 9 features as listed in Table 1.1.
Unlike the simulation, measured data were subdivided into two disjoint subsets, unlike-sign set and like-
sign set. The division was based on the D0 charge nature which conditioned the required combination of
its decay products’ charges. Since D0 meson decay D0 → K− + π+ was used, unlike-sign K π pairs are
expected to contain D0 signal together with some combinatorial background. In order to enhance size of
the sample, D0 → K+ + π− was also taken as signal. Naturally, not all unlike-sign pairs are signal pairs.
However, all like-sign pairs are background pairs as described in Fig. 1.2. Assuming that the like-sign
background is homogeneous with unlike-sign background in terms of joint probability distribution of fea-
tures 0–8 from Table 1.1, it may be used as overall background representation. By fusion with PYTHIA
simulation learning set for training the classification model is created. This was indeed performed in [1]
and [2]. Learning set was divided into three subsets based on pT value of the data points, pre-cut criteria
listed in Table 1.1 were applied to all individual samples. Three models were trained over matching data
subset and later applied to similarly pre-processed unlike-sign subset of the measured data to filter out
the signal candidates. The quality of classification was studied not only using traditional binary classifi-
cation metrics, but also by defining the concept of generalized significance. Different machine-learning
algorithms were optimized and tested within proposed pipeline. Later, comparison to the approach of
boosted decision trees, a concept widely used in high energy data community, was performed.

signal

���������

����������������� ���������������

���������

������

Figure 1.2: Schema of measured data structure.

9

For purposes of this thesis, new simulation (HIJING) was provided instead of PYTHIA simulation.
Unlike PYTHIA, HIJING contains simulation of unlike-sign and like-sign background as well. The
representation of the signal is of better quality in terms of reality representation. The new simulation
structure triggered multiple data science and/or statistical questions:

• Is the simulated unlike-sign background statistically homogeneous with the like-sign background?
If not, how the signal class should be represented during the training?

• Is the simulated like-sign background statistically homogeneous with the like-sign background of
measured data?

• What are the statistical differences between PYTHIA and HIJING?

• If the HIJING signal and background representation is "similar enough" to PYTHIA simulation
and like-sign background of measured data, how successful will be the model used in [2] when
applied to HIJING simulation?

• Since the model trained over HIJING should be validated over HIJING as well (and not over
unlike-sign set of measured data), what is the most suitable metrics to use for evaluation instead
of generalized significance as proposed in [2]?

• What is the quality of chosen Python 3 classification model compared to the widely used boosted
decision tree model implemented using The Toolkit for Multivariate Data Analysis (TMVA) in
ROOT programming language?

Questions stated above and the development of new classification models are to be described by this
thesis.

1.2 QCD transitions

When studying QGP attributes, one could ask the question what conditions have to be met to create
such state of matter. According to the theory of quantum chromodynamics (QCD), matter in a form
of hadron gas makes smooth crossover transition to QGP at the high temperature T ∼140 – 180 MeV
(2 × 1012 K) while the net baryon density is low. Theoretical models assume that another type of phase
transition (first order) should be expected when the net baryon density is high. However, this has yet to be
confirmed both theoretically and experimentally. Inconspicuously, this leads us to another data science
challenge. How the type of phase transition can be detected when QGP is formed? In [3], prediction
model built over pion spectra retrieved from simulated high energy nucleus-nucleus collisions was in-
troduced. Naturally, this has opened the question, which parameters of the simulation were significant
for the phase transition prediction (including the energy of simulated collision itself). This thesis aims
to explore performance dependence of phase-transition model inspired by [3] on simulation parameters
such as collision energy or centrality class. Centrality class is defined as a measure of how precisely the
nuclei hit each other tip-on-tip, with 0 % meaning exact overlap of the two nuclei and 100 % just grazing
each other.

Data description

Data were simulated using a hybrid hydrodynamic model with viscous relativistic hydrodynamics
[4]. After the Au+Au nucleus-nucles collision, detector is able to detect some of its products, for in-
stance, pions π+,π0 and π−. Each of the pions may be described by its detected energy E and momentum
−→p = (px, py, pz). Using this, other variables are derived such as azimuthal angle Φ

Φ = arctan
py
px
, (1.1)

10

transverse momentum pT

pT =

√
p2

x + p2
y, (1.2)

and rapidity y

y =
1
2

ln
E + pz

E − pz
. (1.3)

In accordance with [3], only pions meeting the condition pT ≤ 2 GeV/c, |y|≤ 1 and Φ ∈ [0, 2π] are later
used to produce an input for the binary classification model. For given set of simulation parameters and
equation of state (EoS), .root file containing set of events is available. For each event, pions meeting the
requirements on pT, y and Φ value are filtered out and discrete representation of (pT,Φ) joint distribution
is produced (raw histogram). Later, in chapter 4, classifier’s robustness towards event rotation within
transverse plane (px, py) will be tested due to presence of such effect in real collisions. For such scenario,
random angle α ∼ U(−π, π) is generated for each event and px, py of each pion within given event is
transformed in original .root data set. Transverse momentum pT, rapidity y and azimuthal angle Φ are
calculated. Based on their values, pions are filtered to produce discrete representation of (pT,Φ) joint
distribution (raw rotated histogram). Additional pre-processing types are to be described in chapter 4.

11

Chapter 2

Supervised machine learning

2.1 Binary classification

Definition 2.1.1. Let xi = (xi1, ..., xir), where xi j ∈ IR, i ∈ {1, ..., n}, j ∈ {1, ..., r} and r, n ∈ IN be
observation of random variable X = (X1, ..., Xr) from sample space Ω. Let C0, C1 be two disjoint classes,
such as for every i ∈ {1, ..., n}

IC0(xi) = 1 ∧ IC1(xi) = 0 ⇔ xi ∈ C0 (2.1)

or
IC1(xi) = 1 ∧ IC0(xi) = 0 ⇔ xi ∈ C1, (2.2)

where IC0 and IC1 are indicators of classes C0, C1. Let y = (y1, ..., yn) be observations of random
variable Y, such as for every i ∈ {1, ..., n}, yi = IC1(xi). Then, learning set L is defined as set of tuples
{(x1, y1), ..., (xn, yn)} = (X, y).

As indicated by definition 2.1.1, the goal is to find the classifier C estimating probability P(Y | X = xi),
which assigns class C0 or C1 to the sample xi. Let’s denote prior a probability of event IC1(xi) = 1 as p1.
Similarly, prior probability of event IC1(xi) = 0 will be denoted p0. Using Bayes rule

P(Y = 0 | xi) =
p0P(X = xi | Y = 0)

P(X = xi)
(2.3)

and

P(Y = 1 | xi) =
p1P(X = xi | Y = 1)

P(X = xi)
. (2.4)

This enables us to redefine conditions for IC0(xi) and IC1(xi) as

P(Y = 0 | xi) > P(Y = 1 | xi) ⇔ xi ∈ C0 (2.5)

and

P(Y = 1 | xi) > P(Y = 0 | xi) ⇔ xi ∈ C1. (2.6)

12

By this moment, classifier C itself may be defined.

Definition 2.1.2. Let l(x) be a likelihood ratio

l(xi) =
P(xi|Y = 1)
P(xi|Y = 0)

. (2.7)

Binary classifier is then defined as C : Ω→ {0, 1}, such as

C (xi) =

1, if l(xi) >
p0

p1
,

0, otherwise.
(2.8)

Typically, p0 and p1 are unknown parameters when dealing with binary classification problems. There-
fore, ratio p0

p1
is replaced by threshold δ which may be optimized with respect to maximization of given

binary classification metrics.

Estimating quality of the binary classifier C

Definition 2.1.3. Let be C a binary classifier C : Ω→ {0, 1}. Let l be a loss function l: {0, 1}×{0, 1} → IR.
Then, general error of the classifier C is defined as

G (C) = IEX1,...,Xr ,Y [l (Y,C (X))] . (2.9)

Direct evaluation of general error is not possible for obvious reasons. The fact that learning set L contains
finite number of tuples, creates also the need of forming at least two disjoint subsets. One would be
used to find the mapping from X to Y (training stage) and the second subset would be used to evaluate
the quality of C . Such approach would prevent us of finding sufficient mapping over limited number
data samples (over-training the classifier C) while at the same time being unable to perform sufficient
predictions over additional samples from sample space Ω.

Definition 2.1.4. Let n, p ∈ IN such as 1 << p << n. Let L = {(x1, y1), ..., (xn, yn)} be a learning set.
Train set Ltrain is then defined as random subset of p tuples (xi, yi), where i ∈ {1, ..., n}. Next, test set Ltest

is defined as L \ Ltrain.

Definition 2.1.5. Let xi ∈ C0 for i ∈ n̂. Prediction C (xi) = 0 is called true negative. Prediction C (xi) = 1
is called false positive.

Definition 2.1.6. Let xi ∈ C1 for i ∈ n̂. Prediction C (xi) = 1 is called true positive. Prediction C (xi) = 0
is called false negative.

Definition 2.1.7. Let L∗ be a subset of learning set L. Number of true positive predictions made by
classifier C over set L∗ is denoted by T P. Number of true negative predictions made by classifier C over
set L∗ is denoted by T N. Number of false positive predictions made by classifier C over set L∗ is denoted
by FP. Number of false negative predictions made by classifier C over set L∗ is denoted by FN.

Definition 2.1.8. Let L∗ be a subset of learning set L. Confusion matrix over for subset L∗ is defined asT N FP
FN T P

 .
Defining T P, FP, FN and FP will alow us to describe classification quality of the classifier C from
multiple point of views.

Definition 2.1.9. Precision (positive predicted value, signal purity) is defined as

P = PPV =
TP

TP + FP
. (2.10)

13

Recall (true positive rate, signal efficiency) is defined as

R = T PR =
TP

TP + FN
. (2.11)

Negative predicted value (background efficiency) is defined as

NPV =
TN

TN + FN
. (2.12)

True negative rate is defined as

T NR =
TN

TN + FP
. (2.13)

False positive rate is defined as

FPR =
FP

FP + TN
. (2.14)

Accuracy is defined as

ACC =
TP + TN

TP + TN + FN + FP
. (2.15)

The definition above states the most common binary classification metrics. In some cases, especially
when C contains hyper-parameters to be optimized, more complex decomposition of learning set L is
required. Binary classification metrics are then evaluated on such subsets.

Definition 2.1.10. Let {L1, ..., Lk} be disjoint subsets of learning set L for k ∈ IN. Let {L1 train, ..., Lk train}

be set of training sets, such as Li train = L \ Li for every i = 1, ..., k. By k-fold cross validation we
understand training the classifier C over Li train and evaluating chosen binary classification metrics over
Li. The overall performance of the classifier C is then derived as a statistics of k performances over
{L1, ..., Lk}.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver operating characteristic

ROC curve (AUC = 0.78)

Figure 2.1: Example of ROC.

All the definitions introduced in this section are indirectly dependent on the threshold δ (or its optimized
value with respect to given binary classification metrics). Therefore, it would be useful to map trade-
off between some binary classification metrics values and threshold values. Such relationship may be
tracked using receiver operating characteristics (ROC). ROC provides visualization of T PR and FPR
dependency on different threshold values δ ∈ [0, 1] used during the classification process. The example
of ROC is displayed in Fig. 2.1. The more ROC curve tends to both coordinates [0,1], the better is the
classification. To evaluate the closeness of approach, the area under curve (AUC) is estimated.

14

2.2 Ensembles of trees

Contrary to the trend of investing many resources to the deep learning research, empirically, binary
classification over data consisting of continuous features is in the most cases still better performed by
robust, easily interpretable and fast-to-train ensembles of trees. In [1] we have introduced the most
common algorithms such as random forests and shallow decision trees linked with AdaBoost algorithm.
To compare two approaches for D0 binary classification different enough with respect to boosted decision
trees, deep neural networks and random forests were selected. In this chapter, theoretical summary of
random forest algorithm and its optimization will be described.

Decision trees

Binary decision tree can be represented as oriented and rooted tree graph. For binary decision trees,
every two nodes may be connected with exactly one path. This path (oriented vertex) determines parent
node - child node relationship. The node with no parent is defined as the root node. A node with no
children is defined as the leaf node. But how the idea of decision tree graph may be used in binary
classification problems? We will demonstrate the classification approach on shallow tree with depth
equal to one. In general, classification for arbitrarily deep tree can be done by applying the process of
growing child nodes from root node to child nodes themselves. Let L = (X, y) be a learning set. Let
n0 denote the root and parent node of n1 and n2. Symbolically, let n0 contains samples X, which can be
either assigned to class C0 or C1. Performing binary classification means to subdivide X into two disjoint
subsets, one which will be contained in n1, second which will be contained in n2. The rule to perform
such partition is provided by appropriate subset purity metrics introduced below.

Definition 2.2.1. Impurity function of binary partition is defined as mapping φ(p0, p1): [0, 1] × [0, 1]→
IR such as

• φ is concave function

• p0 + p1 = 1

• argmax
p0,p1

φ =

(
1
2
,

1
2

)
• argmin

p0,p1
φ = {(1, 0), (0, 1)}

• φ is symmetrical with respect to p0, p1.

Definition 2.2.2. Let X̂ ⊆ X. Let n j be a node of decision tree containing X̂. Let X̂C0 ⊆ X̂ be a subset of
all samples form C0. Let X̂C1 ⊆ X̂ be a subset of all samples form C1. Impurity measure i(n j) of node n j

is defined as i(n j) = φ
(
p0

n j
, p1

n j

)
, where

p0
n j

=
|X̂C0 |

|X̂|
and p1

n j
=
|X̂C1 |

|X̂|
.

Definition 2.2.3. Let B be a family of binary partitions available to use for partitioning of subset X̂ ⊆ X
contained in the node n j. Let b ∈ B divide n j into child n jL and child n jR such that X̂L ⊆ X̂ is contained
in n jL and X̂R ⊆ X̂ is contained in n jR. Decrese of impurity caused by binary partitioning b is defined as

∆i(b, n j) = i(n j) −
|X̂L|

|X̂|
i(n jL) −

|X̂R|

|X̂|
i(n jR). (2.16)

15

Definition 2.2.4. Gini impurity measure of node n j is defined as

iG(n j) =

1∑
k=0

pk
n j

(1 − pk
n j

). (2.17)

Entropy impurity measure of node n j is defined by

iH(n j) = −

1∑
k=0

pk
n j

log pk
n j

. (2.18)

Definition 2.2.5. Let {(x1, y1), ..., (xn, yn)} be a learning set L. Let xi = (xi1, ..., xir), where xi j ∈ IR,
i ∈ {1, ..., n}, j ∈ {1, ..., r} and r, n ∈ IN be observation of random variable X = (X1, ..., Xr). Let X̂ ⊆ X.
Let m ∈ r̂ and ε ∈ IR. Binary partitioning bXm

ε ∈ B of X̂ by Xm is defined as creating two disjoint subsets
X̂L and X̂R such that

• X̂L ∪ X̂R = X̂,

• X̂L , ∅ , X̂R,

• for every xi ∈ X̂L, xim < ε,

• for every xi ∈ X̂R, xim ≥ ε.

Optimal binary partitioning bXm
ε∗ ∈ B of X̂ by Xm is found as

bXm
ε∗ = argmax

ε∈IR
∆i(bXm

ε , n j). (2.19)

Definition 2.2.6. Let X̂ ⊆ X be contained in node n j. Let bXm
ε∗m

be optimal binary partitioning by Xm for
m ∈ r̂. Overall optimal partitioning b∗ is found as

b∗ = argmax
m∈{1,...,r}

∆i(bXm
ε∗m
, n j). (2.20)

When training the decision tree classifier, each node n j is assigned a class based on the samples it con-
tains. If the majority belongs to C0 (C1), node is assigned label C0 (C1) and every sample in the node is
considered to be from C0 (C1) class. Let N0 be number of samples from C0 in the node n j and let N1 be
number of samples from C1 in the node n j. Let N0 > N1. In addition to the assigned label, we consider

that sample contained in the node n j is from C0 with
N0

N0 + N1
probability (similarly, we can reproduce

the approach for scenario, when N1 > N0).

Building and randomizing the ensemble

When thinking about the best possible decision tree that can be trained, naturally, the idea of fully
developed tree emerges. By fully developed tree we understand a tree with nodes containing only one
sample. Hence, the class C0 or C1 is assigned with 100 % accuracy over the training set. However, such
tree would be of dubious classification quality over data not included in the training set. This behaviour
pushes to introduce stopping rules in order to control the tree growth, e.g. maximum tree depth, minimum
samples in the leaves, etc. Inevitably, this fact limits the possible number of Ω space partitioning. To
increase this number, further maximization of information extraction from the data avoiding over-training
at the same time, different ideas of using multiple classifiers were proposed since the second half of 20th

century. E.g., boosted decision trees, ensemble linked using AdaBoost algorithm described in [1], are
widely used in high energy physics community for data analysis today. In order to test these approaches,
random forest, will be applied and tested over D0 decay data. Random forest is an ensemble of trees
grown over the training sets formed from original training set using bagging.

16

Definition 2.2.7. Let M ∈ IN and let Ltrain exists. Bagging is defined as producing Ltrain 1, ..., Ltrain M sets,
such that for m ∈ M̂, |Ltrain m|= n

′

for any n′ ∈ IN. Elements of Ltrain m are drawn from Ltrain uniformly
randomly with replacement.

When the ensemble is trained and fixed, each sample is classified separately by every tree in the
forest. Finally, the sample is assigned to a class Ci, i ∈ {0, 1} based on the majority of the votes of trees.
Since every tree in the ensemble is grown over the very similar training set and optimal partitioning
of the data contained in each node is deterministic, this would produce a forest of N similar trees. To
avoid such situation and also to enable sub-optimal partitioning in the nodes to be used, randomness is
introduced when looking for the optimal partitioning b∗. Optimization over m ∈ {1, ..., r} is not allowed.
Instead, random subset M ⊆ {1, ..., r} is selected and optimization is performed for m ∈ M. Exploitation
of sub-optimal partitioning and difference in trees architecture is ensured.

Hyper-parameters to be optimized

As mentioned in the previous two sections, when training tree or ensemble of trees, some hyper-
parameters are to be selected. In order to perform optimal (or at least sub-optimal) selection automat-
ically, k-fold cross-validation is used with specific metrics. Set of the parameters achieving the best
average result over k-folds is selected as optimal. Below, the list of parameters optimized for D0 classi-
fication problem is provided:

• Number of trees in the forest N

• Tree depth d

• Impurity measure (gini or entropy).

Optimization of selection of M ⊆ {1, ..., r}, where |M| is either rounded value log2 r or rounded value
√

r
and elements of M are drawn uniformly randomly from set {1, ..., r} could not be performed, since for D0

problem log2 r ∼
√

r.

17

2.3 Deep neural networks

Universal Approximation Theorem

Since 1989, various and improved versions of one of the most important theorems of machine learn-
ing have been stated. The key outcome of these theorems was that a function of certain attributes may be
approximated as partial result (first layer output) of machine learning model known as neural network.
Such version is known as universal approximation theorem for arbitrary width of the network. More
general versions of the theorem for arbitrary depth of the network have been stated as well. But one
thing is common for all the cases: Although the existence of such approximation is guaranteed, the the-
orem does not provide any instructions how network architecture should be built. In this section, theory
introduced in [2] will be summarized to support following sections describing convolutional and residual
neural networks.

Multilayer perceptron

Definition 2.3.1. Let x ∈ IR. Linear activation function f is defined as

f (x) = x. (2.21)

Sigmoid activation function f is defined as

f (x) =
1

1 + e−x . (2.22)

Hyperbolic tangent activation function f is defined as

f (x) =
e2x − 1
e2x + 1

. (2.23)

Rectified Linear Unit (ReLU) activation function f is defined as

f (x) = max{x, 0}. (2.24)

Parametric Rectified Linear Unit (PReLU) activation function f is defined as

f (x) =

x, if x ≥ 0,
ax, otherwise,

(2.25)

where a ∈ IR is learnable parameter.

Definition 2.3.2. Let C be a binary classifier. Let L = {(x1, y1), ..., (xn, yn)} = (X, y) be a learning set.
Binary cross-entropy loss function lBCE is defined over L as

lBCE = −
1
n

n∑
j=1

y j log(C (xj)) + (1 − y j) log (1 − C (xj)). (2.26)

Note 2.3.1. For distribution p j ∈ {y j, (1 − y j)} and distribution q j ∈ {C (xj), (1 − C (xj))} lets define
cross-entropy H(p j, q j). Binary cross-entropy loss function lBCE can be then rewritten as

lBCE =
1
n

n∑
j=1

H(p j, q j). (2.27)

18

Input layer Hidden layer Hidden layer Output layer

x j1

x j2

x j3

x j4

w11

w12

w13

w14

w21

w22

w23

w24

w31

w32

w33

w34

w41

w42

w43

w44

w11

w12

w13

w14

w21

w22

w23

w24

w31

w32

w33

w34

w41

w42

w43

w44

W1 {

W2 { W3 {

Figure 2.2: Multi-layer perceptron example.

Neural network model is a machine learning tool that can be represented as a set of elementary
computational units (neurons) that may be connected. The connections enable the input information
to be processed by one neuron and forwarded to the other. Each connection contains a weight, a real
number, that scales the transferred information. Example of neural network model is displayed in Fig.
2.2.

Neurons are arranged in individual layers `1, ...`k. Layer `i contains Ni neurons. Layers are connected
only with those layers and neurons situated directly in front of/behind them. The connection is mediated
via real-valued matrix Wi, which transforms the information contained in layer `i. Values contained in
individual neurons may be also transformed by activation function f , e.g. as defined in Definition 2.3.1.
In general, neurons may have different activation functions. In practice, the same activation function
fi is used for neurons in the layer `i. The introduced type of neural network is referred as multi-layer
perceptron. Multi-layer perceptron may dispose of bias neurons, additional neurons containing trainable
values that are added to the layer’s output. However, such case can be represented by an input neuron
containing value 1 for all the samples in the data set. Information inside the multi-layer perceptron travels
as follows:

data contained in input layer: `1 = x (2.28)

transfer from i-th layer to (i + 1)-th layer: `i+1 = [fi+1((WiT `i) j)] j=1,...,Ni+1∀i ∈ {1, ..., k − 2} (2.29)

transfer from last inner layer to output layer: `k = [fk((Wk−1T
`k−1) j] j=1,...,Nk . (2.30)

Prediction C (x) can be retrieved from `k by rounding the float contained in it for Nk=1. Otherwise it is
found as argmax

{1,...,Nk}

`k
j .

19

Backpropagation

Although the previous section provided answer regarding the prediction system of the neural net-
work, question regarding the network training emerged. It is clear, that the information transferred
throughout the network is dependent on the set of weight matrices W1, ...,Wk−1. When prediction of the
set (or batch of the set) is provided, loss function, e.g. lBCE , may be evaluated. To improve prediction
ability, minimization of lBCE value is necessary. Loss function lBCE is composed function of elements of
all matrices W1, ...,Wk−1. Derivative with respect to all elements has to be provided to minimize the loss
lBCE . Therefore, solution decreasing computational difficulty is proposed: backpropagation algorithm.
Let now wi

s j be an element of Wi, where i ∈ k̂. Let also denote WiT li as ai+1 (pre-activation value of the
layer li+1). We will demonstrate finding partial derivative of lBCE with respect to wi

s j.

∂lBCE

∂wi
s j

=
∂`BCE

∂ai+1
j

∂ai+1
j

∂wi
s j

. (2.31)

Let us denote

δi+1
j ≡

∂`BCE

∂ai+1
j

. (2.32)

Also,

∂ai+1
j

wi
s j

= `i
s, (2.33)

therefore

∂lBCE

∂wi
s j

= δi+1
j `i

s. (2.34)

Finding δi+1
j is performed by starting from the last layer, for example, for Nk = 1, j ∈ {1} and

δk
1 =

∂lBCE

∂ak
1

. (2.35)

For hidden layers we obtain

δi+1
j =

∂lBCE

∂ai+1
j

=

Ni+2∑
r=1

∂lBCE

∂ai+2
r

∂ai+2
r

∂ai+1
j

=

Ni+2∑
r=1

δi+2
r
∂ai+2

r

∂ai+1
j

=

Ni+2∑
r=1

δi+2
r wi+2

jr f
′

i+1(ai+1
j). (2.36)

Therefore, δi+1
j is depedent on δi+2

j . Backpropagation algorithm provides us with a way how gradient
of loss function may be estimated. Let W denote set of all elements of all matrices of weights in the
network. Let l j

BCE denote loss function evaluated for only one sample x j from the learning set L, j ∈ n̂.
Let b denote indices of batch (learning set L subset for b ⊆ 1, ..., n). W may be optimized after each
sample j that travels throughout the network as

W⇐=W − ∇Wl j
BCE , (2.37)

or after given batch travels through the network as

W⇐=W −
∑
j∈b

∇Wl j
BCE . (2.38)

When samples are drawn randomly from learning set L to be fed into the neural network, equation (2.37)
is referred as stochastic gradient descent algorithm.

20

Optimizers

Stochastic gradient descent algorithm may be extended by learning rate γ which influences impact
of computed gradient to the weight updating as

W⇐=W − γ∇Wl j
BCE , (2.39)

or using batch as
W⇐=W − γ

∑
j∈b

∇Wl j
BCE . (2.40)

The value of learning rate is static throughout the whole training process. When learning rate is set too
high, stochastic gradient descent may suffer from skipping the global minimum of the loss function. On
the other hand, setting learning rate too low may lead to extremely slow algorithm convergence or not
reaching the global minimum (or sufficient local minimum) at all since the optimizer would stay trapped
inside insufficient local minimum. Therefore, it would be more convenient to use dynamic learning rate
γt, that would reflect the loss function complexity during the process of weight updating. There exist two
basic strategies for including the dynamic into learning rate

• exponential decay γt = γ0 exp(−kt)

• inverse decay γt = γ0(1 + kt)−1,

where γ0 is positive real number and fixed parameter set at the beginning. To avoid being trapped inside
the local minimum of loss function, other strategies forW update were introduced:

• Optimization based on inertia parameter β ∈ (0, 1) is defined by

W⇐=W − (β + 1)γ∇Wl j
BCE , (2.41)

• AdaGrad optimization for initial value Ai = 0 is defined by

Ai ⇐= Ai − γ
∂lBCE

∂w
, ∀w ∈W, (2.42)

and then
w⇐= w −

γ√
Ai + ε

∂lBCE

∂w
, ∀w ∈W, (2.43)

where ε is regularization parameter to avoid division by zero.

• RMSProp optimization for initial value Ai = 0 and decay parameter ρ ∈ (0, 1) is defined by

Ai ⇐= ρAi − (1 − ρ)
(
∂lBCE

∂w

)2

, ∀w ∈W, (2.44)

and
w⇐= w −

γ√
Ai + ε

∂lBCE

∂w
, ∀w ∈W. (2.45)

• Adam optimization for initial value Ai = Fi = 0 and decay parameters ρ, ρ f ∈ (0, 1) is defined by

Ai ⇐= ρAi − (1 − ρ)
(
∂lBCE

∂w

)2

, ∀w ∈W, (2.46)

next
Fi ⇐= ρ f Fi − (1 − ρ f)

∂lBCE

∂w
, ∀w ∈W. (2.47)

21

and

γt =
γ0

(√
1 − ρt

)
1 − ρt

f
. (2.48)

Finally,
w⇐= w −

γt√
Ai + ε

Fi, ∀w ∈W. (2.49)

Adam optimization is based on the L2 norm. Variant of Adam with usage of infinity norm is
referred to as Adamax.

Generalization techniques and hyper-parameter selection

For deep neural networks, the training may be influenced by the problems of vanishing/exploding
gradient. For activation functions which absolute output values are between (0,1), multiplying their
derivatives throughout many layers resolves in almost zero value due to number representation in the
computer. Therefore, weights in the network are not updated accordingly. On the other hand, for acti-
vation functions with output grater than 1, multiplication of big numbers may resolved into NaN values
in the algorithm. Therefore, wise selection of activation functions must be done. Training the neural
network model is influenced by the initial weight values. Many approaches for smarter selection of ap-
propriate weight distribution in the layers were introduced during the recent years. When implementing
the neural network, each layer can be initiated differently.

Definition 2.3.3. Let Ni be number of neurons in layer `i. Then, weights between layer `i and `i+1

initiated by distribution

U

−
√

6
Ni
,

√
6
Ni

 (2.50)

are initiated with He uniform kernel.

Definition 2.3.4. Let Ni, Ni+1 be number of neurons in layer `i and `i+1 respectively. Then, weights
between layer `i and `i+1 initiated by distribution

U

−
√

6
Ni + Ni+1

,

√
6

Ni + Ni+1

 (2.51)

are initiated with Glorot uniform kernel.

To increase generalization ability over the data, that model was not trained over, multiple generalization
techniques may be introduced. For instance L1/L2 normalization penalized the loss function with L1/L2
norm of specified weights or outputs. This helps to suppress the influence of dominant connections of
neurons formed over the training set.

For the better performance of the deep neural network model, standardization of the data set is
recommended. There are multiple types of the standardization, that is usually fitted over training data
and applied to whatever is fed to the network after the training.

Definition 2.3.5. Let xi = (xi1, ..., xir), where xi j ∈ IR, i ∈ {1, ..., n}, j ∈ {1, ..., r} and r, n ∈ IN is
observation of random variables (X1, ..., Xr). MinMax scaling is defined as

xi jnew =
xi j − m j

M j − m j
, (2.52)

where m j = min {x1 j, x2 j..., xn j}, M j = max {x1 j, x2 j..., xn j} for ∀i ∈ {1, ..., n}, j ∈ {1, ..., r}.

22

Definition 2.3.6. Let xi = (xi1, ..., xir), where xi j ∈ IR, i ∈ {1, ..., n}, j ∈ {1, ..., r} and r, n ∈ IN is
observation of random variables (X1, ..., Xr). Feature-wise standardization is defined as

xi jnew =
xi j − x̄ j

σ j
(2.53)

where x̄ j =

∑n
i=1 xi j

n
a σ j =

√√∑n
i=1

(
xi j − x̄ j

)2

n
pro ∀i ∈ {1, ..., n}, j ∈ {1, ..., r}.

Another possibility, how the classifier’s quality may be improved, is usage of batch normalization tech-
nique. This technique may be applied to the arbitrary neural network hidden layer after or before ac-
tivation function is applied. Batch normalization performs feature-wise standardization of the batch of
inputs it is fed. Therefore, the mean and variance of the batch coming from previous layer are learnable
parameters of this transformation and influence form of backpropagation algorithm. The technique is
used when coping with exploding/vanishing gradient problem. Other significant techniques for improv-
ing learning dynamics and generalization is dropout. During the training process, all available inputs of
the training set are fed to the network multiple times repeatedly (epochs). When dropout of rate d ∈ (0, 1)
is introduced in between the layers, it forces the network to "forget" 100 × d percent of the randomly
selected connections (weights) of the layers it is placed between during one epoch. During following
epoch, the "dead" connections are put back alive and 100 × d percent of randomly selected connections
are ignored again, until the learning is stopped by given stopping criterion.

23

2.4 Convolutional neural networks

Since convolutional neural network’s theory was already described in [2], only brief summary will
be provided in this section. For the situation, where the input type is matrix of tensor, taking into account
the feature distribution in space is key driver for succesful classfication of such type of data. To put this
idea into artificial neural network framework, discrete convolution plays a crucial role. Let F and G be
real-valued matrices of arbitrary size. The product of their discrete convolution is defined by

(F ~G)k,l = Jk,l =
∑

i

∑
j

Fi, j ·Gk−i,l− j, (2.54)

where the sum is performed using existing elements of F and G. Convolution result, J, is again a real
valued matrix. Similarly, convolution for tensors may be defined. In this section, attributes of neural
network type applicable to matrix/tensor inputs will be described.

Convolutional neural network architecture

Convolutional layer `i is characterized by set of filters (tensors or matrices) it contains. Elements
of filters are learnable parameters during the training. When input is fed to the convolutional layer, it
produces convolution of input with each filter in the layer. Such product of all convolutions is referred
as feature map. The convolutional layer dimensionality is dependent on the number of filters it con-
tains. The fact that convolution operation is translation invariant causes classificator invariance with
respect to feature position within the input. Number of filters inside the convolutional layer determines
the number of higher-level features extracted to the feature map. Feature map produced by previous
convolutional layer may be input of further layer in order to extract even higher-level features. In con-
volutional neural network (CNN) architecture, usage of ReLU and PReLU activation functions is very
common. The activation function may be applied to each element of given feature map individually.
To reduce growing network dimensionality caused by usage of many filters in the process, introducing
dimensionality-reduction techniques is beneficial. The most used are

• Strides: In general, filter with an input is moved during the convolution with step s = 1 and takes
into account every element of input matrix/tensor. However, this step may be magnified and some
elements of input matrix/tensor may be ommited.

• Pooling: Pooling layer P is special type of layer within the CNN architecture. Its dimensionality
reflects the output dimensionality of previous layer. Let us denote output of previous layer `õ as
tensor õ with dimensionality a×b× c. Such tensor is an input of pooling layer P of dimensionality
p × p × c which may produce two types of outputs:

– Max pooling: P is moving over input tensor with step size s and produces the output reduced
to the dimensionality (a − p)/s + 1 × (b − p)/s + 1 × c, where each element is the maximum
value of the input tensor area covered with P in a given step.

– Average pooling: P is moving over input tensor with step size s and produces the output
reduced to the dimensionality (a − p)/s + 1 × (b − p)/s + 1 × c, where each element is the
average value of the input tensor area covered with P in a given step.

Padding

Moving filter of convolutional layer or padding layer P over input tensor is not well-defined instruc-
tion. To resolve the question, what input elements should be available for the operations in individual
layer, padding is introduced. Let p = d for pooling layer P or let filter within convolutional layer be
squared with height d.

24

Following types of padding may be used:

• Half padding: Input is padded with d−1
2 zeros in its direct neighborhood.

• Valid padding: Input is not padded at all.

• Full padding: Input is padded with d − 1 zeros in its direct neighborhood.

(a) Half padding

0 0 0 0 0 0

0 4 0 5 1 0

0 8 9 0 4 0

0 1 3 3 0 0

0 5 3 6 2 0

0 0 0 0 0 0

(b) Full padding

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 4 0 5 1 0 0

0 0 8 9 0 4 0 0

0 0 1 3 3 0 0 0

0 0 5 3 6 2 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Table 2.1: Padding for d=3.

When high-level features are extracted and contained as product of the final convolution, the tensor is
flattened and used as an input of multi-layer perceptron which performs the classification based on high-
level features. As for the DNN models, usage of generalization techniques, such as batch normalization
or dropout inbetween the layers, is possible.

2.5 Residual neural networks

Networks of many layers may suffer from vanishing/exploding gradient problems. Until 2015, the
problem have been solved with smarter application of weight (kernel) initialization of by batch nor-
malization usage. However, in 2015, the concept of deep residual learning for image recognition was
introduced. The idea behind residual learning lies in creating shortcuts in between the layers. For fi+1
being a ReLU function, a shortcut is defined as

`i+1 = fi+1(WiT `i + `i−1) (2.55)

for matching dimensions of WiT `i and `i−1. When the dimensions do not match, e.g. after the usage
of strided convolutions, trainable mapping Ws (linear projection matrix) to the appropriate dimension
for `i−1 as Ws`i−1 is used. When the dimensions are matching and Ws is identity matrix, the short-
cut has fixed weights that are not changed during the iterations of optimization. Otherwise, standard
backpropagation algorithm is used. Adding a residual blocks to the deep learning model architecture
provides easier-to-optimize model of low complexity and solves the problem with gradient degradation.
Improved gradient flow enables model architect to add more layers and improve model performance
quality at the same time. The skip connections proposed in [5] connect layers `i up to `i+a, where a > 1
and the architecture composed of many similar residual modules and only additive connections without
trainable mapping Ws were present. In this thesis, model from [5] is not applied, however, feed forward
convolutional network with additive residual module for a = 1 is built.

25

Chapter 3

Unsupervised machine learning

Models of binary classification described in the previous sections were trained over labeled learning
set L. Very often, labels y for the learning samples are not available. Therefore, different approach than
minimizing loss function or impurity measures must be introduced. Usage of spatial attributes of data X
is common way how to perform classification into K classes represented by K clusters in r-dimensional
Euclidean space, where K, r ∈ IN. Finding similarities is not only important for classification problems.
Clustering data of X helps to join similar objects together, project them for better visualization of high
dimensional input data or better understanding the data set. Such approach may be applicable for instance
when finding similarities of events based on histograms of observed variables of the produced particles.

3.1 K-means

Let X = {x1, ..., xn}, where xj = {x j1, ..., x jr} and x jr ∈ IR, be a set of vectors in r-dimensional
Euclidean space. Assigning each vector from X to the one of the k classes (clusters) for K ∈ IN is
performed by finding set of vectors (centroids) {c1, ..., cK} that would represent center of given class, and
xj is assigned to the class k∗ if

k∗ = argmin
k∈{1,...,K}

||xj − ck||
2. (3.1)

K - means algorithm provides a way, how {c1, ..., cK} may be found.

Definition 3.1.1. Let n,K ∈ IN, j ∈ n̂ and k, k∗ ∈ K̂. Let

k∗ = argmin
k∈{1,...,K}

||xj − ck||
2. (3.2)

Let γ jk = 0 for k , k∗ and γ jk = 1 for k = k∗. Distortion measure J is defined as

J =

n∑
j=1

K∑
k=1

γ jk||xj − ck||
2. (3.3)

Values γ jk and {c1, ..., cK} are found by minimizing distortion measure J. In extreme case K = n and
xj = cj for all j ∈ n̂. However, such clustering would not bring any new insight to the problem. Therefore,
K must be chosen based on prior (expert) information about the data. Distortion measure J is minimized
by EM algorithm in two steps, E (expectation) and M (maximization). First k∗ is computed. This
determines the values of γ jk.

26

Next, for γ jk fixed, ck is estimated by

ck =

∑n
j=1 γ jkxj

γ jk
. (3.4)

Convergence of K-means is guaranteed by convergence of EM algorithm as previously proved in [1].
Initialization of {c1, ..., cK} for the first iteration may be random (e.g. K samples from X are selected).
Although K-means is able to cluster data into subsets based on their spatial similarity, it does not provide
direct answer if data from cluster of ca are more similar to data from cluster of cb or data from cluster of
cd, especially in case for ||ca−cb||

2∼ ||ca−cd||
2, for a, b, d ∈ K̂. For applications, where such relationships

need to be estimated, self organizing maps may provide answer to this question.

3.2 Self organizing maps

Let X1, X2, ..., Xn be random variables of continuous probability distributions f1, f2, ..., fn. Let h1, h2, ..., hn

be a normalized discrete representations (histograms) of f1, f2, ..., fn from the experimental measurement,
where X1, X2, ..., Xn are observed. Let each histogram be of r bins. For histogram hi, where i ∈ n̂, value
(count) in bin j ∈ r̂ will be denoted as pi j. Let pi = (pi1, ..., pir). We aim to find an ordering function
φ : pi −→ IR, which provides us with ordering of φ(p1),...,φ(pn) in terms of <, >,=. By transforming
h1, h2, ..., hn to the p1,p2, ...,pn we are able to perform ordering of histograms themselves. The order-
ing will be found using special type of artificial neural network: self organizing maps. Let N � r for
N ∈ IN. Let s1, ..sN be representation of N neurons within a layer S N . Let every neuron from s1, ..sN be
connected with r-dimensional input layer Ir. At the same time, let all neurons from s1, ..sN be connected
via a grid. Example of such network/map for r = 7, where pi are fed to the input layer Ir=7, is visualized
in Fig. 3.1.

.

�
 !

�
 "

�
 #

�
 $

�
 %

�
 &

�
 '

('

)*

+! +" +# +$ +*,# +*," +*,! +*

�
�

Figure 3.1: Self organizing map for r = 7

The connection between j-th input neuron, where value pi j is placed, and neuron in layer sk may be
represented as a real number qk j. Let qk = (qk1, ..., qkr) be real-valued r-dimensional vector. When pi

is fed to the map, and q0
1, ..q

0
N are initialized randomly for the first iteration t = 0, value of neuron s0

k is
given as a dot product

s0
k = pi · q0

k (3.5)

Next, φ(pi)0 is calculated as

φ(pi)0 = max {s0
1, ..., s

0
N} = s0

k∗ . (3.6)

Neuron s0
k∗ is recognized as best matching at t = 0, since the similarity between pi and q0

k was maxi-
mized. However, such ordering would be purely dependent on random initialization of q0

1, ..q
0
N at t = 0.

27

Therefore, system for updating of qt
1, ..q

t
N to qt+1

1 , ..qt+1
N must be introduced. Updating weights is also

conditioned by the requirement, that in case when φ(pi)t = st
k∗ , φ(pm)t = st

k∗+1 and φ(pl)t = st
k∗−1, his-

tograms hm, hl are the most similar to hi. However hm is more similar to the hi than to the hl. In the
same manner, hl is more similar to the hi than to the hm. This attribute is guaranteed by the concept of
competitive learning. When qt

k∗ is updated, weight vectors corresponding to the rest of the neurons are
updated as well based on the neurons’ closeness to st

k∗ . The closer to the st
k∗ the bigger the update impact.

The closeness is mediated using the grid between neurons (Euclidean distance of the value carried by the
units). The iteration algorithm for weight update is given by the equation 3.7

qt+1
k = qt

k + γt[pt − qt
k]Kt(k∗, k), (3.7)

where Kt(k∗, k) is a smoothing kernel reflecting distance of st
k∗ and st

k at iteration/time t as

Kt(k∗, k)

= 1, if k∗ = k,
< 1, otherwise.

(3.8)

At time t, sample pi is drawn randomly from the set {p1, ...,pn} and values of qt
1, ..q

t
N are updated. The

algorithm performs given amount of steps t ∈ {1, ...,T }, where T ∈ IN. Since self organizing maps
allow forming the projection of r-dimensional input space to the IR, clustering over IR is rather trivial.
Moreover, samples projected to such clusters may be still compared (ordered) using ordering function φ.

28

Chapter 4

Experimental results

In this chapter, experimental results for D0 decay and QCD transitions studies are presented. In
both cases, experiments were implemented using Python 3 programming language with the following
libraries: Keras with TensorFlow backend, matplotlib, numpy, pandas, scikit-learn, seaborn, statsmodels
and uproot with required dependencies. To obtain results in reasonable time, HELIOS cluster at the
Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical
University in Prague was used for computation tasks. Data for D0 decay experiment were obtained
from the STAR experiment and physics-wise pre-processing was performed by Ing. L. Kramárik from
the Department of Physics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical
University in Prague. Data for QCD transitions experiment were simulated by Ing. J. Cimerman from
the Department of Physics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical
University in Prague.

4.1 D0 decay data

In this section, the problem of identifying D0 decay products as introduced in section 1.1 is presented.
The classification was performed based on the subset of features available in Table 1.1. Before starting
the training of optimized classifiers, question about suitable background class representation as proposed
in 1.1 needed to be resolved. Since the background could have been represented by non-signal unlike-
sign pairs or like-sign pairs, a test of distribution homogeneity of such populations was performed. The
test was performed, after pre-cuts from Table 1.1 were applied to the data. Since the training of classifiers
described in this chapter will be performed over the samples from narrow pT value range, homogene-
ity was tested within the same pT intervals. As described in Fig. 4.1, 4.2 and 4.3, homogeneity for
the features was accepted on significance level 0.01 when Kolmogorov-Smirnov test was applied to the
population of 2000 samples randomly selected from each type of background representation. Further-
more, during the initial phase of analysis, it was observed that representing the background as non-signal
unlike-sign pairs resulted in almost the same classification quality as using like-sign pairs as background
representation. Therefore, based on this empirical experience, only unlike-sign background representa-
tion was eventually used for the experiments described in the following sections. However, on the same
significance level, the homogeneity was not always accepted (Fig. 4.4, 4.5, and 4.6) when comparing
HIJING background representation and background representation from [2] (data). Specifically, the ho-
mogeneity was rejected for DCAK distribution in 1<pT<2 GeV/c, for DCAπ, DCAK, ldecay, DCAπ,K,
DCAD0 and cos θ∗ distributions in 2<pT<3 GeV/c and for DCAπ, DCAK, ldecay, DCAπ,K, DCAD0 , cos θ,
cos θ∗ and pT distributions in 3<pT<5 GeV/c. Still, the similarity was sufficient for satisfying applica-
tion of the existing classifier trained in [2] to HIJING data transformed with feature-wise standardization
fitted over training set in [2]. Details of the application are listed in subsection 4.1.4.

29

0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

0.0
25

0.0
30

0.0
35

0.0
40

0.0
45

DCAπ [cm]

0

20

40

60

80

100

120

no
rm

al
iz
ed

 c
ou

nt
s

DCAπ
 homogeneity accepted on sign. lvl 1% (pval = 0.5858)

unlike-sign background pairs
like-sign background pairs

0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

0.0
25

0.0
30

0.0
35

0.0
40

0.0
45

DCAK [cm]

0

50

100

150

200

no
rm

al
iz
ed

 c
ou

nt
s

DCAK
 homogeneity accepted on sign. lvl 1% (pval = 0.7445)

unlike-sign background pairs
like-sign background pairs

0.0
0

0.0
1

0.0
2

0.0
3

0.0
4

0.0
5

0.0
6

0.0
7

ldecay [cm]

0

20

40

60

80

no
rm

al
iz
ed

 c
ou

nt
s

ldecay
 homogeneity accepted on sign. lvl 1% (pval = 0.8836)

unlike-sign background pairs
like-sign background pairs

0.0
00
0

0.0
02
5

0.0
05
0

0.0
07
5

0.0
10
0

0.0
12
5

0.0
15
0

0.0
17
5

0.0
20
0

DCAπ,K [cm]

0

20

40

60

80

100

no
rm

al
iz
ed

 c
ou

nt
s

DCAπ,K
 homogeneity accepted on sign. lvl 1% (pval = 0.1032)

unlike-sign background pairs
like-sign background pairs

0.7
0

0.7
5

0.8
0

0.8
5

0.9
0

0.9
5

1.0
0

cosθ

0

1

2

3

4

5

6

no
rm

al
iz
ed

 c
ou

nt
s

cosθ
 homogeneity accepted on sign. lvl 1% (pval = 0.6389)

unlike-sign background pairs
like-sign background pairs

0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

0.0
25

0.0
30

0.0
35

0.0
40

0.0
45

DCAD0 [cm]

0

25

50

75

100

125

150

175

no
rm

al
iz
ed

 c
ou

nt
s

DCAD0

 homogeneity accepted on sign. lvl 1% (pval = 0.8416)

unlike-sign background pairs
like-sign background pairs

0.4 0.5 0.6 0.7 0.8 0.9 1.0

cosθ *

0

2

4

6

8

no
rm

al
iz
ed

 c
ou

nt
s

cosθ *

 homogeneity accepted on sign. lvl 1% (pval = 0.5339)

unlike-sign background pairs
like-sign background pairs

1.7
0

1.7
5

1.8
0

1.8
5

1.9
0

1.9
5

2.0
0

D0
mass [GeV/c2]

0

1

2

3

4

5

no
rm

al
iz
ed

 c
ou

nt
s

D0
mass

 homogeneity accepted on sign. lvl 1% (pval = 0.2742)

unlike-sign background pairs
like-sign background pairs

1.0 1.2 1.4 1.6 1.8 2.0

pT [GeV/c]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

no
rm

al
iz
ed

 c
ou

nt
s

pT
 homogeneity accepted on sign. lvl 1% (pval = 0.1725)

unlike-sign background pairs
like-sign background pairs

HIJING simulation 1< pT<2 [GeV/c]

Figure 4.1: Homogeneity test for possible background class representation in 1 < pT < 2 GeV/c.

0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

0.0
25

0.0
30

0.0
35

0.0
40

0.0
45

DCAπ [cm]

0

20

40

60

80

100

120

no
rm

al
iz
ed

 c
ou

nt
s

DCAπ
 homogeneity accepted on sign. lvl 1% (pval = 0.3292)

unlike-sign background pairs
like-sign background pairs

0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

0.0
25

0.0
30

0.0
35

0.0
40

0.0
45

DCAK [cm]

0

50

100

150

200

no
rm

al
iz
ed

 c
ou

nt
s

DCAK
 homogeneity accepted on sign. lvl 1% (pval = 0.2117)

unlike-sign background pairs
like-sign background pairs

0.0
0

0.0
1

0.0
2

0.0
3

0.0
4

0.0
5

0.0
6

0.0
7

ldecay [cm]

0

20

40

60

80

no
rm

al
iz
ed

 c
ou

nt
s

ldecay
 homogeneity accepted on sign. lvl 1% (pval = 0.7185)

unlike-sign background pairs
like-sign background pairs

0.0
00
0

0.0
02
5

0.0
05
0

0.0
07
5

0.0
10
0

0.0
12
5

0.0
15
0

0.0
17
5

0.0
20
0

DCAπ,K [cm]

0

20

40

60

80

100

no
rm

al
iz
ed

 c
ou

nt
s

DCAπ,K
 homogeneity accepted on sign. lvl 1% (pval = 0.2262)

unlike-sign background pairs
like-sign background pairs

0.7
0

0.7
5

0.8
0

0.8
5

0.9
0

0.9
5

1.0
0

cosθ

0

2

4

6

8

no
rm

al
iz
ed

 c
ou

nt
s

cosθ
 homogeneity accepted on sign. lvl 1% (pval = 0.1294)

unlike-sign background pairs
like-sign background pairs

0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

0.0
25

0.0
30

0.0
35

0.0
40

0.0
45

DCAD0 [cm]

0

50

100

150

200

no
rm

al
iz
ed

 c
ou

nt
s

DCAD0

 homogeneity accepted on sign. lvl 1% (pval = 0.7445)

unlike-sign background pairs
like-sign background pairs

0.4 0.5 0.6 0.7 0.8 0.9 1.0

cosθ *

0

2

4

6

8

10

12

14

no
rm

al
iz
ed

 c
ou

nt
s

cosθ *

 homogeneity accepted on sign. lvl 1% (pval = 0.4132)

unlike-sign background pairs
like-sign background pairs

1.7
0

1.7
5

1.8
0

1.8
5

1.9
0

1.9
5

2.0
0

D0
mass [GeV/c2]

0

1

2

3

4

no
rm

al
iz
ed

 c
ou

nt
s

D0
mass

 homogeneity accepted on sign. lvl 1% (pval = 0.7185)

unlike-sign background pairs
like-sign background pairs

2.0 2.2 2.4 2.6 2.8 3.0

pT [GeV/c]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

no
rm

al
iz
ed

 c
ou

nt
s

pT
 homogeneity accepted on sign. lvl 1% (pval = 0.8416)

unlike-sign background pairs
like-sign background pairs

HIJING simulation 2< pT<3 [GeV/c]

Figure 4.2: Homogeneity test for possible background class representation in 2 < pT < 3 GeV/c.

30

0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

0.0
25

0.0
30

0.0
35

0.0
40

0.0
45

DCAπ [cm]

0

20

40

60

80

100

120

no
rm

al
iz
ed

 c
ou

nt
s

DCAπ
 homogeneity accepted on sign. lvl 1% (pval = 0.9933)

unlike-sign background pairs
like-sign background pairs

0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

0.0
25

0.0
30

0.0
35

0.0
40

0.0
45

DCAK [cm]

0

50

100

150

200

250

no
rm

al
iz
ed

 c
ou

nt
s

DCAK
 homogeneity accepted on sign. lvl 1% (pval = 0.8836)

unlike-sign background pairs
like-sign background pairs

0.0
0

0.0
1

0.0
2

0.0
3

0.0
4

0.0
5

0.0
6

0.0
7

ldecay [cm]

0

20

40

60

80

no
rm

al
iz
ed

 c
ou

nt
s

ldecay
 homogeneity accepted on sign. lvl 1% (pval = 0.3101)

unlike-sign background pairs
like-sign background pairs

0.0
00
0

0.0
02
5

0.0
05
0

0.0
07
5

0.0
10
0

0.0
12
5

0.0
15
0

0.0
17
5

0.0
20
0

DCAπ,K [cm]

0

20

40

60

80

100

no
rm

al
iz
ed

 c
ou

nt
s

DCAπ,K
 homogeneity accepted on sign. lvl 1% (pval = 0.0587)

unlike-sign background pairs
like-sign background pairs

0.7
0

0.7
5

0.8
0

0.8
5

0.9
0

0.9
5

1.0
0

cosθ

0

2

4

6

8

10

no
rm

al
iz
ed

 c
ou

nt
s

cosθ
 homogeneity accepted on sign. lvl 1% (pval = 0.5339)

unlike-sign background pairs
like-sign background pairs

0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

0.0
25

0.0
30

0.0
35

0.0
40

0.0
45

DCAD0 [cm]

0

50

100

150

200

no
rm

al
iz
ed

 c
ou

nt
s

DCAD0

 homogeneity accepted on sign. lvl 1% (pval = 0.3697)

unlike-sign background pairs
like-sign background pairs

0.4 0.5 0.6 0.7 0.8 0.9 1.0

cosθ *

0

5

10

15

20

25

30

no
rm

al
iz
ed

 c
ou

nt
s

cosθ *

 homogeneity accepted on sign. lvl 1% (pval = 0.0454)

unlike-sign background pairs
like-sign background pairs

1.7
0

1.7
5

1.8
0

1.8
5

1.9
0

1.9
5

2.0
0

D0
mass [GeV/c2]

0

1

2

3

4

no
rm

al
iz
ed

 c
ou

nt
s

D0
mass

 homogeneity accepted on sign. lvl 1% (pval = 0.1608)

unlike-sign background pairs
like-sign background pairs

3.0
0

3.2
5

3.5
0

3.7
5

4.0
0

4.2
5

4.5
0

4.7
5

5.0
0

pT [GeV/c]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

no
rm

al
iz
ed

 c
ou

nt
s

pT
 homogeneity accepted on sign. lvl 1% (pval = 0.1294)

unlike-sign background pairs
like-sign background pairs

HIJING simulation 3< pT<5 [GeV/c]

Figure 4.3: Homogeneity test for possible background class representation in 3 < pT < 5 GeV/c.

0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

0.0
25

0.0
30

0.0
35

0.0
40

0.0
45

DCAπ [cm]

0

20

40

60

80

100

120

no
rm

al
iz
ed

 c
ou

nt
s

DCAπ
 homogeneity accepted on sign. lvl 1% (pval = 0.3697)

US + LS background pairs
like-sign pairs: data

0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

0.0
25

0.0
30

0.0
35

0.0
40

0.0
45

DCAK [cm]

0

50

100

150

200

no
rm

al
iz
ed

 c
ou

nt
s

DCAK
 homogeneity rejected on sign. lvl 1% (pval pval<0.01)

US + LS background pairs
like-sign pairs: data

0.0
0

0.0
1

0.0
2

0.0
3

0.0
4

0.0
5

0.0
6

0.0
7

ldecay [cm]

0

20

40

60

80

no
rm

al
iz
ed

 c
ou

nt
s

ldecay
 homogeneity accepted on sign. lvl 1% (pval = 0.8633)

US + LS background pairs
like-sign pairs: data

0.0
00
0

0.0
02
5

0.0
05
0

0.0
07
5

0.0
10
0

0.0
12
5

0.0
15
0

0.0
17
5

0.0
20
0

DCAπ,K [cm]

0

20

40

60

80

100

no
rm

al
iz
ed

 c
ou

nt
s

DCAπ,K
 homogeneity accepted on sign. lvl 1% (pval = 0.4838)

US + LS background pairs
like-sign pairs: data

0.7
0

0.7
5

0.8
0

0.8
5

0.9
0

0.9
5

1.0
0

cosθ

0

1

2

3

4

5

6

7

no
rm

al
iz
ed

 c
ou

nt
s

cosθ
 homogeneity accepted on sign. lvl 1% (pval = 0.1849)

US + LS background pairs
like-sign pairs: data

0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

0.0
25

0.0
30

0.0
35

0.0
40

0.0
45

DCAD0 [cm]

0

25

50

75

100

125

150

175

no
rm

al
iz
ed

 c
ou

nt
s

DCAD0

 homogeneity accepted on sign. lvl 1% (pval = 0.3292)

US + LS background pairs
like-sign pairs: data

0.4 0.5 0.6 0.7 0.8 0.9 1.0

cosθ *

0

2

4

6

8

no
rm

al
iz
ed

 c
ou

nt
s

cosθ *

 homogeneity accepted on sign. lvl 1% (pval = 0.2415)

US + LS background pairs
like-sign pairs: data

1.7
0

1.7
5

1.8
0

1.8
5

1.9
0

1.9
5

2.0
0

D0
mass [GeV/c2]

0

1

2

3

4

5

no
rm

al
iz
ed

 c
ou

nt
s

D0
mass

 homogeneity accepted on sign. lvl 1% (pval = 0.6389)

US + LS background pairs
like-sign pairs: data

1.0 1.2 1.4 1.6 1.8 2.0

pT [GeV/c]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

no
rm

al
iz
ed

 c
ou

nt
s

pT
 homogeneity accepted on sign. lvl 1% (pval = 0.0122)

US + LS background pairs
like-sign pairs: data

HIJING background simulation vs data 1< pT<2 [GeV/c]

Figure 4.4: Homogeneity test for HIJING background class representation and measured data repre-
sented background in 1 < pT < 2 GeV/c.

31

0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

0.0
25

0.0
30

0.0
35

0.0
40

0.0
45

DCAπ [cm]

0

20

40

60

80

100

120

140

no
rm

al
iz
ed

 c
ou

nt
s

DCAπ
 homogeneity rejected on sign. lvl 1% (pval pval<0.01)

US + LS background pairs
like-sign pairs: data

0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

0.0
25

0.0
30

0.0
35

0.0
40

0.0
45

DCAK [cm]

0

50

100

150

200

no
rm

al
iz
ed

 c
ou

nt
s

DCAK
 homogeneity rejected on sign. lvl 1% (pval pval<0.01)

US + LS background pairs
like-sign pairs: data

0.0
0

0.0
1

0.0
2

0.0
3

0.0
4

0.0
5

0.0
6

0.0
7

ldecay [cm]

0

20

40

60

80

no
rm

al
iz
ed

 c
ou

nt
s

ldecay
 homogeneity rejected on sign. lvl 1% (pval pval<0.01)

US + LS background pairs
like-sign pairs: data

0.0
00
0

0.0
02
5

0.0
05
0

0.0
07
5

0.0
10
0

0.0
12
5

0.0
15
0

0.0
17
5

0.0
20
0

DCAπ,K [cm]

0

20

40

60

80

100

120

no
rm

al
iz
ed

 c
ou

nt
s

DCAπ,K
 homogeneity rejected on sign. lvl 1% (pval pval<0.01)

US + LS background pairs
like-sign pairs: data

0.7
0

0.7
5

0.8
0

0.8
5

0.9
0

0.9
5

1.0
0

cosθ

0

2

4

6

8

10

no
rm

al
iz
ed

 c
ou

nt
s

cosθ
 homogeneity accepted on sign. lvl 1% (pval = 0.2575)

US + LS background pairs
like-sign pairs: data

0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

0.0
25

0.0
30

0.0
35

0.0
40

0.0
45

DCAD0 [cm]

0

50

100

150

200

no
rm

al
iz
ed

 c
ou

nt
s

DCAD0

 homogeneity rejected on sign. lvl 1% (pval pval<0.01)

US + LS background pairs
like-sign pairs: data

0.4 0.5 0.6 0.7 0.8 0.9 1.0

cosθ *

0

2

4

6

8

10

12

no
rm

al
iz
ed

 c
ou

nt
s

cosθ *

 homogeneity rejected on sign. lvl 1% (pval pval<0.01)

US + LS background pairs
like-sign pairs: data

1.7
0

1.7
5

1.8
0

1.8
5

1.9
0

1.9
5

2.0
0

D0
mass [GeV/c2]

0

1

2

3

4

no
rm

al
iz
ed

 c
ou

nt
s

D0
mass

 homogeneity accepted on sign. lvl 1% (pval = 0.3911)

US + LS background pairs
like-sign pairs: data

2.0 2.2 2.4 2.6 2.8 3.0

pT [GeV/c]

0.0

0.5

1.0

1.5

2.0

no
rm

al
iz
ed

 c
ou

nt
s

pT
 homogeneity accepted on sign. lvl 1% (pval = 0.2262)

US + LS background pairs
like-sign pairs: data

HIJING background simulation vs data 2< pT<3 [GeV/c]

Figure 4.5: Homogeneity test for HIJING background class representation and measured data repre-
sented background in 2 < pT < 3 GeV/c.

0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

0.0
25

0.0
30

0.0
35

0.0
40

0.0
45

DCAπ [cm]

0

20

40

60

80

100

120

140

no
rm

al
iz
ed

 c
ou

nt
s

DCAπ
 homogeneity rejected on sign. lvl 1% (pval pval<0.01)

US + LS background pairs
like-sign pairs: data

0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

0.0
25

0.0
30

0.0
35

0.0
40

0.0
45

DCAK [cm]

0

50

100

150

200

250

no
rm

al
iz
ed

 c
ou

nt
s

DCAK
 homogeneity rejected on sign. lvl 1% (pval pval<0.01)

US + LS background pairs
like-sign pairs: data

0.0
0

0.0
1

0.0
2

0.0
3

0.0
4

0.0
5

0.0
6

0.0
7

ldecay [cm]

0

20

40

60

80

no
rm

al
iz
ed

 c
ou

nt
s

ldecay
 homogeneity rejected on sign. lvl 1% (pval pval<0.01)

US + LS background pairs
like-sign pairs: data

0.0
00
0

0.0
02
5

0.0
05
0

0.0
07
5

0.0
10
0

0.0
12
5

0.0
15
0

0.0
17
5

0.0
20
0

DCAπ,K [cm]

0

20

40

60

80

100

120

no
rm

al
iz
ed

 c
ou

nt
s

DCAπ,K
 homogeneity rejected on sign. lvl 1% (pval pval<0.01)

US + LS background pairs
like-sign pairs: data

0.7
0

0.7
5

0.8
0

0.8
5

0.9
0

0.9
5

1.0
0

cosθ

0

2

4

6

8

10

12

14

no
rm

al
iz
ed

 c
ou

nt
s

cosθ
 homogeneity accepted on sign. lvl 1% (pval = 0.1392)

US + LS background pairs
like-sign pairs: data

0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

0.0
25

0.0
30

0.0
35

0.0
40

0.0
45

DCAD0 [cm]

0

50

100

150

200

no
rm

al
iz
ed

 c
ou

nt
s

DCAD0

 homogeneity rejected on sign. lvl 1% (pval pval<0.01)

US + LS background pairs
like-sign pairs: data

0.4 0.5 0.6 0.7 0.8 0.9 1.0

cosθ *

0

5

10

15

20

25

no
rm

al
iz
ed

 c
ou

nt
s

cosθ *

 homogeneity rejected on sign. lvl 1% (pval pval<0.01)

US + LS background pairs
like-sign pairs: data

1.7
0

1.7
5

1.8
0

1.8
5

1.9
0

1.9
5

2.0
0

D0
mass [GeV/c2]

0

1

2

3

4

no
rm

al
iz
ed

 c
ou

nt
s

D0
mass

 homogeneity accepted on sign. lvl 1% (pval = 0.8188)

US + LS background pairs
like-sign pairs: data

3.0
0

3.2
5

3.5
0

3.7
5

4.0
0

4.2
5

4.5
0

4.7
5

5.0
0

pT [GeV/c]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

no
rm

al
iz
ed

 c
ou

nt
s

pT
 homogeneity rejected on sign. lvl 1% (pval pval<0.01)

US + LS background pairs
like-sign pairs: data

HIJING background simulation vs data 3< pT<5 [GeV/c]

Figure 4.6: Homogeneity test for HIJING background class representation and measured data repre-
sented background in 3 < pT < 5 GeV/c.

32

4.1.1 Random forests (RF)

Random forest classifier was applied to HIJING simulation in two different setups. First setup starts
with dividing the data into training and test set (6:4 ratio) after application of pre-cuts described in Table
1.1. Next, each of these two parts was subdivided by the value of pT into five disjoint pT bins: 0–1
GeV/c, 1–2 GeV/c, 2–3 GeV/c, 3–5 GeV/c and 5–8 GeV/c. For each pT bin, optimized random forest
was trained. But before that, balancing of the data set was performed. Number of samples of each class
is estimated in the training set. Size of the class with the lower number of samples is used as maximum
allowed size of the class in the training set of given pT bin. Appropriate number of samples from the
second class is then removed using random selection, until both of the classes are of the same size.
The same procedure was performed for the test set. The hyper-parameter space for optimization of the
classifier is given by Table 4.5 and is the same for all pT bins. During the training phase, training set of
given pT bin is used and the 3-fold cross-validation is applied to train random forest for each combination
of hyper-parameters. Classifier with the highest AUC value is selected as the optimized one and tested
over test part of matching pT bin value data. AUC and other binary classification metrics are monitored
as well (P, R, NPV , T NR, ACC and AUC) and their evaluation over test set is described by Table 4.1.
The parameters of classifier with the highest AUC are for each pT bin described in Table 4.3. For the
second experiment setup, the whole process described above is applied in the same manner, but pre-cuts
from Table 1.1 are not applied this time. In [1], we have already confirmed, that application of pre-cuts
has positive effect on the classifier quality. However, pre-cuts are chosen empirically and may differ for
different applications in physics. Therefore, comparison of classifiers (not only hyper-parameters) for
non-pre-cut data is required as well. For the second setup, optimal parameters are presented in Table 4.4
and performance of optimized classifiers in Table 4.2. We explain the decrease of P and T NR in Table
4.1 for pT bin 5–8 GeV/c by smaller amount of data in test set. Impurity measure selected as optimal
for each scenario was entropy, however there seems to be no trend with respect to increasing pT value
in selection of number of tree and maximum depth of the ensemble. However, in the scenario, where
pre-cuts are not applied, optimization selected deeper trees within the ensemble, since more complex
input space partition was needed.

pT bin id pT [GeV/c] P R NPV T NR ACC AUC

bin0 0–1 0.74 0.68 0.70 0.76 0.72 0.81
bin1 1–2 0.81 0.73 0.75 0.83 0.78 0.87
bin2 2–3 0.89 0.82 0.83 0.89 0.86 0.94
bin3 3–5 0.91 0.85 0.86 0.92 0.89 0.95
bin4 5–8 0.89 0.92 0.91 0.89 0.90 0.96

Table 4.1: Evaluation of optimized random forest classifiers over test set, pre-cuts applied.

pT bin id pT [GeV/c] P R NPV T NR ACC AUC

bin0 0–1 0.68 0.60 0.64 0.72 0.66 0.73
bin1 1–2 0.72 0.68 0.70 0.74 0.71 0.79
bin2 2–3 0.73 0.76 0.75 0.72 0.74 0.82
bin3 3–5 0.84 0.79 0.80 0.85 0.82 0.90
bin4 5–8 0.89 0.82 0.84 0.90 0.86 0.94

Table 4.2: Evaluation of optimized random forest classifiers over test set, pre-cuts not applied.

In accordance with key outcomes of [1] and [2], the overall classification quality decreases when pre-
cuts are not applied and increases with pT value as presented in Fig. 4.7 where models achieved higher

33

AUC when pT value was also higher. As visualized in Fig. 4.8, relatively higher rates of FP and FP are
present for lower pT bins with respect to test set size.

pT bin id pT [GeV/c] number of trees maximum depth impurity measure

bin0 0–1 1200 10 entropy
bin1 1–2 600 13 entropy
bin2 2–3 1000 12 entropy
bin3 3–5 200 10 entropy
bin4 5–8 200 7 entropy

Table 4.3: Parameters of optimized random forest classifiers, pre-cuts applied.

pT bin id pT [GeV/c] number of trees maximum depth impurity measure

bin0 0–1 1200 15 entropy
bin1 1–2 600 15 entropy
bin2 2–3 1000 12 entropy
bin3 3–5 1200 12 entropy
bin4 5–8 200 7 entropy

Table 4.4: Parameters of optimized random forest classifiers, pre-cuts not applied.

parameter type optimization range

number of trees 200, 400, 600, 800, 1000, 1200
maximum depth 5, 7, 10, 12, 15, 17, 20
impurity measure gini, entropy

Table 4.5: Hyper-parameter space definition for random forest optimization.

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os
iti
ve
 ra

te

ROC, RF model, pre-cuts applied

0< pT<1 Gev/c, AUC = 0.806
1< pT<2 Gev/c, AUC = 0.873
2< pT<3 Gev/c, AUC = 0.94
3< pT<5 Gev/c, AUC = 0.955
5< pT<8 Gev/c, AUC = 0.958

(a) ROC, pre-cuts applied.

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue
 p
os
iti
ve
 ra

te

ROC, RF model, pre-cuts not applied

0< pT<1 Gev/c, AUC = 0.725
1< pT<2 Gev/c, AUC = 0.788
2< pT<3 Gev/c, AUC = 0.821
3< pT<5 Gev/c, AUC = 0.903
5< pT<8 Gev/c, AUC = 0.937

(b) ROC, pre-cuts not applied.

Figure 4.7: RF model, comparison of ROC and AUC for scenario with and without cut application,
evaluated over test set.

34

B S

B
S

14300 4434

5994 12740

Confusion matrix, 0< pT<1 Gev/c

6000

8000

10000

12000

14000

(a) pT bin 0–1 GeV/c, pre-cuts applied.

B S

B
S

67064 25736

37256 55544

Confusion matrix, 0< pT<1 Gev/c

32000

40000

48000

56000

64000

(b) pT bin 0–1 GeV/c, pre-cuts not applied.

B S

B
S

28516 5741

9277 24980

Confusion matrix, 1< pT<2 Gev/c

8000

12000

16000

20000

24000

28000

(c) pT bin 1–2 GeV/c, pre-cuts applied.

B S

B
S

88241 31203

37752 81692

Confusion matrix, 1< pT<2 Gev/c

40000

50000

60000

70000

80000

(d) pT bin 1–2 GeV/c, pre-cuts not applied.

B S

B
S

18885 2232

3836 17281

Confusion matrix, 2< pT<3 Gev/c

3000

6000

9000

12000

15000

18000

(e) pT bin 2–3 GeV/c, pre-cuts applied.

B S

B
S

46387 17864

15436 48815

Confusion matrix, 2< pT<3 Gev/c

18000

24000

30000

36000

42000

48000

(f) pT bin 2–3 GeV/c, pre-cuts not applied.

B S

B
S

5233 472

831 4874

Confusion matrix, 3< pT<5 Gev/c

800

1600

2400

3200

4000

4800

(g) pT bin 3–5 GeV/c, pre-cuts applied.

B S

B
S

31477 5563

7711 29329

Confusion matrix, 3< pT<5 Gev/c

10000

15000

20000

25000

30000

(h) pT bin 3–5 GeV/c, pre-cuts not applied.

B S

B
S

403 49

38 414

Confusion matrix, 5< pT<8 Gev/c

80

160

240

320

400

(i) pT bin 5–8 GeV/c, pre-cuts applied.

B S

B
S

4088 440

806 3722

Confusion matrix, 5< pT<8 Gev/c

800

1600

2400

3200

4000

(j) pT bin 5–8 GeV/c, pre-cuts not applied.

Figure 4.8: RF model, comparison of confusion matrices for scenario with and without cut application,
evaluated over test set.

35

4.1.2 Deep neural network (DNN)

In the similar manner as random forests, deep neural networks are optimized over train set and
evaluated over the test set. However, slightly different modifications are performed inside the pipeline.
As for the random forests case, two setups exist for deep neural models as well: first for the data set under
pre-cuts from Table 1.1, second for no such pre-processing. Unlike for random forests, data are divided
into three subsets: training, validation and test in 6:2:2 ratio. Each of these three parts was subdivided
into 5 pT bins (same as in the random forest approach). For each pT bin, balancing of the training,
validation and test set was performed since neural networks would not be able to converge over the
extremely unbalanced training set. In [2], the architecture and the hyper-parameters were not optimized
but selected empirically. In the architecture we are introducing for the purposes of this thesis, high rate of
regularization techniques is applied (drop out rate, batch normalization), due to increased similarity of the
inputs available for training (simulation). In Fig. 4.9, fixed and trainable parameters of the deep neural
network model are described and model from [2] is compared to the current architecture. The architecture
was derived from the architecture used in [2]. Before training or applying the classifiers, feature-wise
standardization was fitted over training set of given pT bin and applied to the corresponding validation
and test set. The hyper-parameter space for optimization of the classifier is given by Table 4.6 and again
it is the same for all pT bins. Hyper-parameter ranges were selected empirically. The training phase over
given pT bin was performed in two steps. During the first step, for each combination of hyper-parameters,
deep neural network model is trained for 70 epochs. During the training, values of training and validation
ACC is monitored. Loss function lBCE evaluated over training and validation set is monitored as well.
The parameters of the model with the highest AUC are then used to perform the second step, where the
training of the model starts all over again with parameters values fixed. The training is now performed
for 500 epochs and is stopped only in case, that validation ACC was not improved during the last 60
epochs (early stopping rule). Since the validation set was already used for hyper-parameter selection
and influences the time classifier is trained for, binary classification metrics (AUC, P, R, NPV , T NR,
ACC and AUC) are evaluated over the test set only. Values of optimal hyper-parameters of given pT bin
are described in Table 4.7 (pre-cuts applied) and 4.8 (pre-cuts not applied). Classifiers performance is
described in Table 4.9 (pre-cuts applied) and 4.10 (pre-cuts not applied). Additionally, in Fig. 4.10 and
4.11, the second step of optimized classifier’s training is visualized by the evolution of the accuracy and
the loss function value (binary crossentropy lBCE .) When comparing speed of loss minimization, there
was no major diference for over the pre-cut data and non pre-cut data. However, training the model over
data where pre-cuts were not applied took more epochs. The slowest loss function minimization was to
be seen in the last pT bin. We assume that this effect is caused by smaller training set size. Application
of pre-cuts resulted in classifiers’ performance improvement (the same as for random forests) and as
expected, for higher pT values classifiers achieved better quality as well. As experienced with random
forests over data under pre-cuts, some binary classification metrics decreased for pT bin 5–8 GeV/c
(T NR, AUC). The same as in previous case we explain such behavior as statistical fluctuation caused
by unsufficient number of samples in test set for such high pT value. Unlike optimization result for
random forest, optimized parameters for all pT bins for both scenarios of pre-cut usage are rather similar
as presented in Table 4.7 and 4.8.

36

(a) DNN model proposed in [2].

(b) DNN model proposed in this thesis.

Figure 4.9: Comparison of DNN models proposed in [2] and in this thesis

37

parameter type optimization range

activation function ReLU, tanh
learning rate 0.000001,0.000005, 0.00001
dropout 0.2, 0.3, 0.4
kernel lecun uniform, he normal, he uniform
hidden layer width 64, 128, 256
optimizer adam, SGD, adamax
batch 64, 128

Table 4.6: Hyper-parameter space definition for deep neural network optimization.

pT bin id pT [GeV/c] activation learn. rate dropout kernel optimizer batch hid. layer width

bin0 0–1 ReLU 1E-05 0.2 adam he normal 64 256
bin1 1–2 ReLU 1E-05 0.2 adam he uniform 64 256
bin2 2–3 ReLU 1E-05 0.2 adam lecun uniform 64 256
bin3 3–5 ReLU 1E-05 0.2 adam lecun uniform 64 256
bin4 5–8 ReLU 1E-05 0.2 adam lecun uniform 64 256

Table 4.7: Parameters of optimized deep neural network classifiers, pre-cuts applied.

pT bin id pT [GeV/c] activation learn. rate dropout kernel optimizer batch hid. layer width

bin0 0–1 ReLU 1E-05 0.2 adam he normal 64 256
bin1 1–2 ReLU 1E-05 0.2 adam lecun uniform 64 256
bin2 2–3 ReLU 1E-05 0.2 adam lecun uniform 64 256
bin3 3–5 ReLU 1E-05 0.2 adam lecun uniform 64 256
bin4 5–8 tanh 1E-05 0.2 adam lecun uniform 64 256

Table 4.8: Parameters of optimized deep neural network classifiers, pre-cuts not applied.

pT bin id pT [GeV/c] P R NPV T NR ACC AUC

bin0 0–1 0.73 0.68 0.70 0.75 0.72 0.79
bin1 1–2 0.77 0.72 0.74 0.79 0.75 0.83
bin2 2–3 0.83 0.80 0.81 0.84 0.82 0.90
bin3 3–5 0.85 0.87 0.87 0.85 0.86 0.93
bin4 5–8 0.82 0.91 0.90 0.80 0.86 0.91

Table 4.9: Evaluation of optimized deep neural network classifiers over test set, pre-cuts applied.

pT bin id pT [GeV/c] P R NPV T NR ACC AUC

bin0 0–1 0.67 0.58 0.63 0.71 0.65 0.70
bin1 1–2 0.73 0.63 0.68 0.76 0.70 0.76
bin2 2–3 0.77 0.73 0.74 0.78 0.75 0.83
bin3 3–5 0.82 0.80 0.80 0.82 0.81 0.89
bin4 5–8 0.83 0.88 0.87 0.82 0.85 0.92

Table 4.10: Evaluation of optimized deep neural network classifiers over test set, pre-cuts not applied.

38

0 100 200 300 400 500
epoch

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700

AC
C

Accuracy during the training, 0< pT<1 Gev/c

training accuracy
validation accuracy

0 100 200 300 400 500
epoch

1

2

3

4

5

6

bi
na

ry
 c
ro
ss
-e
nt
ro
py

Loss during the training, 0< pT<1 Gev/c
training loss
validation loss

0 20 40 60 80 100 120
epoch

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

AC
C

Accuracy during the training, 1< pT<2 Gev/c

training accuracy
validation accuracy

0 20 40 60 80 100 120
epoch

0.5

1.0

1.5

2.0

2.5

3.0

3.5

bi
na

ry
 c
ro
ss
-e
nt
ro
py

Loss during the training, 1< pT<2 Gev/c
training loss
validation loss

0 25 50 75 100 125 150
epoch

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800

0.825

AC
C

Accuracy during the training, 2< pT<3 Gev/c

training accuracy
validation accuracy

0 25 50 75 100 125 150
epoch

0.5

1.0

1.5

2.0

2.5

3.0

3.5

bi
na

ry
 c
ro
ss
-e
nt
ro
py

Loss during the training, 2< pT<3 Gev/c
training loss
validation loss

0 20 40 60 80 100 120 140 160
epoch

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

AC
C

Accuracy during the training, 3< pT<5 Gev/c

training accuracy
validation accuracy

0 20 40 60 80 100 120 140 160
epoch

1.5

2.0

2.5

3.0

3.5

bi
na

ry
 c
ro
ss
-e
nt
ro
py

Loss during the training, 3< pT<5 Gev/c
training loss
validation loss

0 20 40 60 80 100
epoch

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

AC
C

Accuracy during the training, 5< pT<8 Gev/c

training accuracy
validation accuracy

0 20 40 60 80 100
epoch

3.0

3.1

3.2

3.3

3.4

3.5

3.6

bi
na

ry
 c
ro
ss
-e
nt
ro
py

Loss during the training, 5< pT<8 Gev/c
training loss
validation loss

Figure 4.10: Accuracy (ACC) and binary cross-entropy vs epoch number for DNN model in the training
stage, pre-cuts applied.

39

0 100 200 300 400
epoch

0.56

0.58

0.60

0.62

0.64

AC
C

Accuracy during the training, 0< pT<1 Gev/c

training accuracy
validation accuracy

0 100 200 300 400
epoch

1

2

3

4

5

6

bi
na

ry
 c
ro
ss
-e
nt
ro
py

Loss during the training, 0< pT<1 Gev/c
training loss
validation loss

0 100 200 300 400 500
epoch

0.60

0.62

0.64

0.66

0.68

0.70

AC
C

Accuracy during the training, 1< pT<2 Gev/c

training accuracy
validation accuracy

0 100 200 300 400 500
epoch

1

2

3

4

5

6

bi
na

ry
 c
ro
ss
-e
nt
ro
py

Loss during the training, 1< pT<2 Gev/c
training loss
validation loss

0 100 200 300 400 500
epoch

0.64

0.66

0.68

0.70

0.72

0.74

AC
C

Accuracy during the training, 2< pT<3 Gev/c

training accuracy
validation accuracy

0 100 200 300 400 500
epoch

0.5

1.0

1.5

2.0

2.5

3.0

3.5

bi
na

ry
 c
ro
ss
-e
nt
ro
py

Loss during the training, 2< pT<3 Gev/c
training loss
validation loss

0 50 100 150 200 250 300
epoch

0.600

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800

AC
C

Accuracy during the training, 3< pT<5 Gev/c

training accuracy
validation accuracy

0 50 100 150 200 250 300
epoch

0.5

1.0

1.5

2.0

2.5

3.0

3.5

bi
na

ry
 c
ro
ss
-e
nt
ro
py

Loss during the training, 3< pT<5 Gev/c
training loss
validation loss

0 100 200 300 400
epoch

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

AC
C

Accuracy during the training, 5< pT<8 Gev/c

training accuracy
validation accuracy

0 100 200 300 400
epoch

1.0

1.5

2.0

2.5

3.0

3.5

bi
na

ry
 c
ro
ss
-e
nt
ro
py

Loss during the training, 5< pT<8 Gev/c
training loss
validation loss

Figure 4.11: Accuracy (ACC) and binary cross-entropy vs epoch number for DNN model in the training
stage, pre-cuts not applied.

40

B S

B
S

7023 2296

2973 6346

Confusion matrix, 0< pT<1 Gev/c

2400

3200

4000

4800

5600

6400

(a) pT bin 0–1 GeV/c, pre-cuts applied.

B S

B
S

33079 13378

19364 27093

Confusion matrix, 0< pT<1 Gev/c

16000

20000

24000

28000

32000

(b) pT bin 0–1 GeV/c, pre-cuts not applied.

B S

B
S

13588 3617

4899 12306

Confusion matrix, 1< pT<2 Gev/c

4000

6000

8000

10000

12000

(c) pT bin 1–2 GeV/c, pre-cuts applied.

B S

B
S

45280 14353

21781 37852

Confusion matrix, 1< pT<2 Gev/c

18000

24000

30000

36000

42000

(d) pT bin 1–2 GeV/c, pre-cuts not applied.

B S

B
S

8946 1695

2111 8530

Confusion matrix, 2< pT<3 Gev/c

3000

4500

6000

7500

(e) pT bin 2–3 GeV/c, pre-cuts applied.

B S

B
S

24913 6877

8734 23056

Confusion matrix, 2< pT<3 Gev/c

8000

12000

16000

20000

24000

(f) pT bin 2–3 GeV/c, pre-cuts not applied.

B S

B
S

2396 431

358 2469

Confusion matrix, 3< pT<5 Gev/c

400

800

1200

1600

2000

2400

(g) pT bin 3–5 GeV/c, pre-cuts applied.

B S

B
S

15281 3287

3799 14769

Confusion matrix, 3< pT<5 Gev/c

4000

6000

8000

10000

12000

14000

(h) pT bin 3–5 GeV/c, pre-cuts not applied.

B S

B
S

158 40

17 181

Confusion matrix, 5< pT<8 Gev/c

30

60

90

120

150

180

(i) pT bin 5–8 GeV/c, pre-cuts applied.

B S

B
S

1827 401

273 1955

Confusion matrix, 5< pT<8 Gev/c

300

600

900

1200

1500

1800

(j) pT bin 5–8 GeV/c, pre-cuts not applied.

Figure 4.12: DNN model, comparison of confusion matrices for scenario with and without pre-cut ap-
plication, evaluated over test set.

41

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 p

os
iti

ve
 ra

te

ROC, DNN model, pre-cuts applied

0 < pT < 1 Gev/c, AUC = 0.791
1 < pT < 2 Gev/c, AUC = 0.835
2 < pT < 3 Gev/c, AUC = 0.903
3 < pT < 5 Gev/c, AUC = 0.932
5 < pT < 8 Gev/c, AUC = 0.915

(a) ROC, pre-cuts applied.

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

ROC, DNN model, pre-cuts not applied

0 < pT < 1 Gev/c, AUC = 0.7
1 < pT < 2 Gev/c, AUC = 0.762
2 < pT < 3 Gev/c, AUC = 0.83
3 < pT < 5 Gev/c, AUC = 0.889
5 < pT < 8 Gev/c, AUC = 0.924

(b) ROC, pre-cuts not applied.

Figure 4.13: DNN model, comparison of ROC and AUC for scenario with and without cut application,
evaluated over test set.

4.1.3 Comparison of RF and DNN with boosted decision trees (BDT)

To compare the quality of optimized RF and DNN with BDT implemented in ROOT using TMVA
library, similar analysis was performed by Ing. L. Kramárik from the Dep. of Physics, FNSPE. His
optimized models with respect to AUC were used as a benchmark for comparison. Comparison of AUC
values evaluated over test set for each pT bin separately is available in Tables 4.11 (pre-cuts applied) and
4.12 (pre-cuts not applied). RF models seem to be the best approach in terms of AUC values when cuts
are applied. DNN models were comparable with the qualities of BDT over the test set under pre-cuts.
However, optimization of DNN models was the most time-consuming of all models presented in this
thesis. Classifiers trained over the data under no pre-cut criteria achieved lower AUC values as expected.
In the first two pT bins (0–1 and 1–2 GeV/c), the best result was achieved by RF. In the rest of the
pT bins, RF performance was comparable to BDT performance. DNN model was comparable to BDT
performance in all pT bins except pT bin 5–8 GeV/c, where achieved AUC was the lowest compared to
other classifiers.

pT bin id pT [GeV/c] BDT AUC DNN AUC RF AUC

bin0 0–1 0.78 0.79 0.81
bin1 1–2 0.84 0.83 0.87
bin2 2–3 0.90 0.90 0.94
bin3 3–5 0.93 0.93 0.95
bin4 5–8 0.93 0.91 0.96

Table 4.11: Comparison of optimize classifiers over test set, pre-cuts applied.

pT bin id pT [GeV/c] BDT AUC DNN AUC RF AUC

bin0 0–1 0.70 0.70 0.73
bin1 1–2 0.76 0.76 0.79
bin2 2–3 0.83 0.83 0.82
bin3 3–5 0.89 0.89 0.90
bin4 5–8 0.94 0.92 0.94

Table 4.12: Comparison of optimized classifiers over test set, pre-cuts not applied.

42

4.1.4 Application of the existing classifier

As proposed in Sec. 1.1, application of the existing deep neural network classifier, trained over
PYTHIA and measured data in [2] is to be tested. Since classifiers in [2] were trained only for pT bins
1–2 GeV/c, 2–3 GeV/c, 3–5 GeV/c, test sets of matching pT bins of HIJING simulation were used.
First, feature homogeneity was tested for the signal and background representation used in [2] and in
this thesis. The similarity of distributions was tested using Kolmogorov-Smirnov tests. As described
in Fig. 4.4, 4.5, and 4.6, statistics wise, the homogeneity hypotheses were not always accepted on the
significance level 1 %. However, as demonstrated by the application of the existing classifier to the
HIJING data, similarity was sufficient machine-learning wise. The accuracy over balanced HIJING test
set achieved similar rates as for test set used in [2]. Feature-wise standardization fitted and used for
training set in [2] was applied per each pT bin of the HIJING separately before the classification. In both
cases, pre-processing using the same pre-cuts from Table 1.1 was applied. The absolute difference of
ACC value evaluated over HIJING test set of classifier trained in [2] over PYHTIA signal and like-sign
data background representation and the classifier trained over HIJING as well in this thesis was ∼ 3 %
at maximum. The performance details of the classifier trained in [2] applied to the HIJING test set are
presented in the Table 4.13 and by the confusion matrices in the Fig. 4.14.

pT bin id pT [GeV/c] P R NPV T NR ACC

bin1 1–2 0.83 0.60 0.69 0.87 0.74
bin2 2–3 0.86 0.70 0.75 0.88 0.79
bin3 3–5 0.89 0.75 0.78 0.91 0.83

Table 4.13: Evaluation of existing deep neural network classifiers over HIJING test set, pre-cuts applied.

B S

B
S

15120 2096

6733 10483

Confusion matrix, 1< pT<2 Gev/c

2500

5000

7500

10000

12500

15000

B S

B
S

10486 1319

3457 8348

Confusion matrix, 2< pT<3 Gev/c

2000

4000

6000

8000

10000

B S

B
S

5346 489

1414 4321

Confusion matrix, 3< pT<5 Gev/c

1000

2000

3000

4000

5000

Figure 4.14: Confusion matrices, evaluation of existing deep neural network classifiers over HIJING test
set, pre-cuts applied.

43

4.2 Data on QCD phase transitions

As proposed in Sec. 1.2, classification of equation of state (EoS) type based on the discrete represen-
tation (histogram 24 × 24 bins) of the joint distribution (pT,Φ) of hadrons produced in the event was to
be presented in this section. Data were simulated using a hybrid hydrodynamic model [4]. This model
simulated the complete evolution of Au+Au nuclei collisions at

√
sNN = 200 GeV and

√
sNN = 27 GeV

(energy per nucleon-nucleon pair). On the output, momenta and identities of hadrons were generated as
if they came from a real collision. Two versions of the model were used. One included first order phase
transition from hadronic matter to deconfined matter. The other version of the model assumed a smooth
crossover between the two phases.

At the beginning, histogram inputs needed to be formed directly from available .root file or after
rotating each event within transverse plane (px, py) using random angle α ∼ U(−π, π). When the events
are generated, the geometry is always such, that the two nuclei are shifted with respect to each other in
the x-direction. This cannot be the case in real collisions. Therefore, in order to mimic the analysis in
real data, momenta from the simulated events are randomly rotated in the transverse plane. When the
rotation in the transverse plane was applied, we denote such scenario as event rotation of type "random".
Otherwise we say, that no event rotation was applied.

The events used in the experiment were either of narrow centrality class (0–1 %, 20–21 % and 40–41
%) or wide centrality class (0–40 %). The effect of hadronic rescatterings in the simulation was tested as
well by switching the rescattering parameter on and off for different sets of data. In accordance with [3]
and to supress fluctuations, averaging of N histograms within one centrality class and one EoS type was
also tested for N ∈ {2, 12, 22, 32, 42}. We have tested two averaging setups:

• random: N samples of histograms from given centrality class and EoS type were randomly selected
and averaged to form single sample of the final input,

• batch: N samples of histograms from given centrality class and EoS type were randomly selected
from subset of events coming from the same hydrodynamic evolution on top of which different
sets of hadrons were Monte-Carlo generated. Next, they were again averaged to form one sample
of final input.

For wide centrality class, the events of the same hydrodynamic evolution were stored in batches of 100
consecutive events in the provided .root file. We are aware that such averages can not be formed in
the physics experiment, since information about event’s EoS type would not be theoretically available.
Nevertheless, the goal of this work was to test, if the information about EoS type was carried in event’s
(pT,Φ) joint distribution and which conditions may affect it. For the purposes of the binary classification
metrics evaluation, first order EoS type is considered as negative class C0, crossover EoS type is consid-
ered as positive class C1. Examples of QCD model’s inputs that were fed to the models are presented
in Fig. 4.15. All the inputs were in form of matrices created by histogram averaging and transformed
with feature-wise standardization. Hence, the interpretation of the input is not straightforward in terms
of quantities and units. Therefore, Fig. 4.15 presents examples of the inputs set to the original pT and Φ

directions only for easier interpretation.

44

pT

Φ

crossover EoS type, centrality 00-01%, average of 42

0

1

2

3

4

pT

Φ

first order EoS type, centrality 00-01%, average of 42

0.0

1.5

3.0

4.5

pT

Φ

crossover EoS type, centrality 20-21%, average of 42

−0.4

0.0

0.4

0.8

1.2

pT

Φ
first order EoS type, centrality 20-21%, average of 42

−0.5

0.0

0.5

1.0

1.5

pT

Φ

crossover EoS type, centrality 40-41%, average of 42

−0.6

−0.4

−0.2

0.0

0.2

0.4

pT

Φ

first order EoS type, centrality 40-41%, average of 42

−0.50

−0.25

0.00

0.25

0.50

Figure 4.15: Examples of QCD model’s inputs for N =42 after feature-wise standardization,
√

sNN=27
GeV.

45

4.2.1 Convolutional neural networks

As a benchmark architecture, similar convolutional neural netowork model as proposed in [3] was
used as shown in Table 4.14. Although the loss function used in [3] is categorical crossentropy and
output layer consists of two neurons with softmax activation, technically, it is the same as using the lBCE

for one output neuron activated with sigmoid function. In total, the model contained more than 200000
trainable parameters. We consider this model to be already sufficiently optimized with respect to ACC.
All dropout levels are set to 0.2 except the last dropout rate, which was set to 0.5.

Layer (type) Output Shape Param #

conv2d_1 (Conv2D) (None, 24, 24, 16) 1040
batch_normalization_1 (Batch Normalization) (None, 24, 24, 16) 64
p_re_lu_1 (PReLU) (None, 24, 24, 16) 9216
dropout (Dropout) (None, 24, 24, 16) 0
conv2d_2 (Conv2D) (None, 24, 24, 16) 12560
batch_normalization_2 (Batch Normalization) (None, 24, 24, 16) 64
p_re_lu_2 (PReLU) (None, 24, 24, 16) 9216
dropout_1 (Dropout) (None, 24, 24, 16) 0
average_pooling2d (Average Pooling) (None, 12, 12, 16) 0
conv2d_3 (Conv2D) (None, 12, 12, 32) 18464
p_re_lu_3 (PReLU) (None, 12, 12, 32) 4608
dropout_2 (Dropout) (None, 12, 12, 32) 0
average_pooling2d_1 (Average Pooling) (None, 6, 6, 32) 0
flatten (Flatten) (None, 1152) 0
dense (Dense) (None, 128) 147584
batch_normalization_3 (Batch Normalization) (None, 128) 512
p_re_lu_4 (PReLU) (None, 128) 128
dropout_3 (Dropout) (None, 128) 0
dense_1 (Dense) (None, 2) 258

Total parameters: 203714
Trainable parameters: 203394
Non-trainable parameters: 320

Table 4.14: Benchmark CNN model scheme.

First, experiment A was performed in order to verify the results. It was performed for simulated data
of Au+Au collisions with

√
sNN = 200 GeV as proposed in [3]. Binary classification metrics (ACC, P

and R) are listed in Table 4.15. In general, better classification quality was achieved for higher values of
N as expected.

Next, in experiment B, dependence of
√

sNN was tested by performing exactly the same setup, but
using simulated data with

√
sNN = 27 GeV. The classification quality was not reduced with the

√
sNN

value decreased.
In experiment C, effect of random event rotation was tested for data with

√
sNN = 27 GeV. As

demonstrated in Table 4.15, rotating the event did not result in reduced classification quality as well.
We did not detect any effect of hadronic rescatterings in the simulation during the experiment D,

which tested classification qualities over
√

sNN = 27 GeV data with random event rotation. However,
using narrow centrality types instead of wide centrality type as in experiments E and F seemed to have

46

major effect on the classification quality and speed of loss function minimization. Metrics available in
Table 4.15 are evaluated over validation set (20 % of available data). The training of all experiments was
performed over training set and unlike for D0 experiment, no early stopping rule was applied since speed
of overtraining was monitored as well. The training was stopped after exactly 250 epochs. In general,
the higher the N value, the better was model’s performance unless overtraining appeared, although gen-
eralization techniques were introduced heavily. In Fig. 4.16–4.21, training dynamics is visualized. Es-
pecially in 4.20, heavy overtraining was experienced (experiment E). However, during the initial epochs,
some learning ability was present, therefore we assume that hyper-parameter optimization could lead to
(at least small) learning dynamics improvement.

To test, if the convolutional layers focus on some physics-wise interpretable area in the inputs, fea-
ture maps for first order phase transition input type and crossover input type were visualized for each
available convolutional layer (examples available in Fig. 4.22–4.25). Unfortunatelly, we were not able
to draw evidence-based conclusion from the feature maps only. Since all the inputs fed to the benchmark
model were transformed using feature-wise standardization fitted over training data, we assumed that
the model focuses on gradient volume in pT direction, since it is expected to be different for EoS types.
To intentionally damage the inputs, feature-wise standardization was not fitted over the whole training
set, but per class separately (and later for validation again applied per class). Hence, the gradient in pT
direction differences were reduced. The model was expected to reduce its performance and indeed it
resulted in drastic reduction of classification ability (experiment G in Table 4.15). Training experiments
A-B was performed over fixed training set size. The training set size was approximately 3000 samples
(of averaged histograms = inputs) for experiments A and B, 16000 samples for experiments C-G, hence
faster network convergence. The training set was balanced in terms of number of samples of both EoS
classes.

47

Exp.
√

sNN
[GeV]

event
rotation

centrality averaging
setup

hadronic
rescat.

N ACC % P % R %

A

200 none narrow random on 2 74.47 77.35 69.17
200 none narrow random on 12 92.69 96.77 88.34
200 none narrow random on 22 91.17 98.72 83.42
200 none narrow random on 32 95.94 99.72 92.14
200 none narrow random on 42 94.42 99.81 89.00

B

27 none narrow random on 2 81.26 79.70 84.15
27 none narrow random on 12 96.36 94.77 98.18
27 none narrow random on 22 98.60 97.70 99.56
27 none narrow random on 32 99.40 99.69 99.10
27 none narrow random on 42 99.76 99.70 99.82

C

27 random narrow random on 2 80.39 78.40 84.17
27 random narrow random on 12 95.31 94.67 96.08
27 random narrow random on 22 96.73 94.73 99.00
27 random narrow random on 32 97.63 96.77 98.85
27 random narrow random on 42 97.71 96.66 98.86

D

27 random narrow random off 2 80.77 78.82 84.16
27 random narrow random off 12 96.47 96.88 96.46
27 random narrow random off 22 95.40 92.42 98.91
27 random narrow random off 32 97.41 95.93 99.03
27 random narrow random off 42 99.73 95.38 99.59

E

27 random wide random on 2 55.55 56.12 51.43
27 random wide random on 12 69.67 68.93 71.76
27 random wide random on 22 71.88 65.49 92.67
27 random wide random on 32 69.02 62.03 98.23
27 random wide random on 42 50.56 50.31 99.99

F

27 random wide batch on 2 56.35 55.94 59.44
27 random wide batch on 12 60.33 57.73 77.48
27 random wide batch on 22 61.15 57.83 82.65
27 random wide batch on 32 61.67 58.02 84.75
27 random wide batch on 42 65.06 63.72 70.14

G

27 random narrow random on 2 59.65 47,75 57.50
27 random narrow random on 12 59.32 75.66 28.09
27 random narrow random on 22 59.72 59.77 60.72
27 random narrow random on 32 64.09 80.47 37.70
27 random narrow random on 42 69.01 75.92 56.15

Table 4.15: Evaluation of the classifiers over validation set for different data pre-processing types

48

(a) Train accuracy during the training. (b) Valid. accuracy during the training.

(c) Train loss during the training. (d) Valid. loss during the training.

Figure 4.16: Experiment A: Training validation plots,
√

sNN = 200 GeV, no event rotation, narrow
centrality class, random averaging setup, post hydro rescattering included.

(a) Train accuracy during the training. (b) Valid. accuracy during the training.

(c) Train loss during the training. (d) Valid. loss during the training.

Figure 4.17: Experiment B: Training validation plots,
√

sNN = 27 GeV, no event rotation, narrow cen-
trality class, random averaging setup, post hydro rescattering included.

49

(a) Train accuracy during the training. (b) Valid. accuracy during the training.

(c) Train loss during the training. (d) Valid. loss during the training.

Figure 4.18: Experiment C: Training validation plots,
√

sNN = 27 GeV, random event rotation, narrow
centrality class, random averaging setup, post hydro rescattering included.

(a) Train accuracy during the training. (b) Valid. accuracy during the training.

(c) Train loss during the training. (d) Valid. loss during the training.

Figure 4.19: Experiment D: Training validation plots,
√

sNN = 27 GeV, random event rotation, narrow
centrality class, random averaging setup, post hydro rescattering excluded.

50

(a) Train accuracy during the training. (b) Valid. accuracy during the training.

(c) Train loss during the training. (d) Valid. loss during the training.

Figure 4.20: Experiment E: Training validation plots,
√

sNN = 27 GeV, random event rotation, wide
centrality class, random averaging setup, post hydro rescattering included.

(a) Train accuracy during the training. (b) Valid. accuracy during the training.

(c) Train loss during the training. (d) Valid. loss during the training.

Figure 4.21: Experiment F: Training validation plots,
√

sNN = 27 GeV, random event rotation, wide
centrality class, averaging within bunches, post hydro rescattering included.

51

pT
Φ

filter 1

−2

−1

0

1

pT

Φ

filter 2

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

pT

Φ

filter 3

−2.0

−1.5

−1.0

−0.5

0.0

0.5

pT

Φ

filter 4

−1.0

−0.5

0.0

0.5

1.0

pT

Φ
filter 5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

pT

Φ

filter 6

−1

0

1

2

3

pT

Φ

filter 7

−2

−1

0

1

2

pT

Φ

filter 8

−1.0

−0.5

0.0

0.5

1.0

1.5

pT

Φ

filter 9

−2

−1

0

1

2

pT

Φ
filter 10

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

pT

Φ

filter 11

−1.0

−0.5

0.0

0.5

1.0

pT

Φ

filter 12

−3

−2

−1

0

1

2

pT

Φ

filter 13

−2

−1

0

1

2

pT

Φ

filter 14

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

pT

Φ

filter 15

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

pT

Φ

filter 16

−1.5

−1.0

−0.5

0.0

0.5

average of 42, crossover EoS type: feat re maps in layer conv2d_1

(a) Crossover EoS type sample.

pT

Φ

filter 1

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

pT

Φ

filter 2

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

pT

Φ

filter 3

−2.0

−1.5

−1.0

−0.5

0.0

0.5

pT

Φ

filter 4

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

pT

Φ

filter 5

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

pT

Φ

filter 6

−1

0

1

2

pT

Φ

filter 7

−2

−1

0

1

2

pT

Φ

filter 8

−0.5

0.0

0.5

1.0

1.5

pT

Φ

filter 9

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

pT

Φ

filter 10

−1.0

−0.5

0.0

0.5

1.0

1.5

pT

Φ

filter 11

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

pT

Φ

filter 12

−2

−1

0

1

2

pT

Φ

filter 13

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

pT

Φ

filter 14

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

pT

Φ

filter 15

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

pT

Φ

filter 16

−1.5

−1.0

−0.5

0.0

0.5

average of 42, first order EoS type: feat re maps in layer conv2d_1

(b) First order EoS type sample.

Figure 4.22: Feature maps of first convolutional layer of architecture. Feature map shows transformed
distribution of (Φ, pT) using filter’s optics. 52

pT
Φ

filter 1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

pT

Φ

filter 2

−2.5

−2.0

−1.5

−1.0

−0.5

pT

Φ

filter 3

0.5

1.0

1.5

2.0

2.5

3.0

pT

Φ

filter 4

−0.5

0.0

0.5

1.0

1.5

pT

Φ
filter 5

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

pT

Φ

filter 6

0.0

0.5

1.0

1.5

2.0

2.5

pT

Φ

filter 7

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

pT

Φ

filter 8

−1.75

−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

pT

Φ

filter 9

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

pT

Φ
filter 10

0.5

1.0

1.5

2.0

2.5

3.0

3.5

pT

Φ

filter 11

−2.0

−1.5

−1.0

−0.5

0.0

0.5

pT

Φ

filter 12

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

pT

Φ

filter 13

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

pT

Φ

filter 14

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

pT

Φ

filter 15

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

pT

Φ

filter 16

−2.0

−1.5

−1.0

−0.5

0.0

average of 42, crossover EoS type: feat re maps in layer conv2d_2

(a) Crossover EoS type sample.

pT

Φ

filter 1

0

1

2

3

4

5

pT

Φ

filter 2

−7

−6

−5

−4

−3

−2

−1

0

pT

Φ

filter 3

1

2

3

4

5

pT

Φ

filter 4

−3

−2

−1

0

1

2

3

4

5

pT

Φ

filter 5

−4

−3

−2

−1

0

1

2

pT

Φ

filter 6

−5

−4

−3

−2

−1

0

1

2

pT

Φ

filter 7

−4

−3

−2

−1

0

1

2

3

pT

Φ

filter 8

−8

−6

−4

−2

pT

Φ

filter 9

−4

−3

−2

−1

0

1

2

pT

Φ

filter 10

1

2

3

4

5

6

pT

Φ

filter 11

−8

−7

−6

−5

−4

−3

−2

−1

0

pT

Φ

filter 12

−2

−1

0

1

2

3

pT

Φ

filter 13

−4

−3

−2

−1

0

1

2

pT

Φ

filter 14

−6

−5

−4

−3

−2

−1

0

1

pT

Φ

filter 15

−8

−7

−6

−5

−4

−3

−2

−1

0

pT

Φ

filter 16

−8

−7

−6

−5

−4

−3

−2

−1

0

a erage of 42, first order EoS type: feature maps in layer con 2d_2

(b) First order EoS type sample.

Figure 4.23: Feature maps of second convolutional layer of architecture. Feature map shows transformed
distribution of (Φ, pT) using filter’s optics. 53

Figure 4.24: Feature maps of third convolutional layer of architecture, crossover EoS type sample. Fea-
ture map shows transformed distribution of (Φ, pT) using filter’s optics.

Figure 4.25: Feature maps of third convolutional layer of architecture, first order EoS type sample.
Feature map shows transformed distribution of (Φ, pT) using filter’s optics.

54

4.2.2 Residual neural networks

Although adding residual blocks is suitable for deeper architectures than the benchmark model is,
residual neural network model based on the benchmark model was built with more than 6 hundred thou-
sands trainable parameters. The model’s scheme is displayed in the Table 4.16. However, as described
in Table 4.17, no significant improvement was achieved in terms of classification quality.

Layer (type) Output Shape Param # Connected to

conv2d_56 (Conv2D) (None, 24, 24, 16) 1040 input_17
batch_normalization_36 (Batch Norm.) (None, 24, 24, 16) 64 conv2d_56
p_re_lu_53 (PReLU) (None, 24, 24, 16) 9216 batch_normalization_36
dropout_59 (Dropout) (None, 24, 24, 16) 0 p_re_lu_53
conv2d_57 (Conv2D) (None, 24, 24, 16) 12560 dropout_59
add_17 (Add) (None, 24, 24, 16) 0 dropout_59, conv2d_57
re_lu_7 (ReLU) (None, 24, 24, 16) 0 add_17
conv2d_58 (Conv2D) (None, 24, 24, 32) 18464 re_lu_7
p_re_lu_54 (PReLU) (None, 24, 24, 32) 18432 conv2d_58
dropout_60 (Dropout) (None, 24, 24, 32) 0 p_re_lu_54
average_pooling2d_19 (Average Pooling) (None, 24, 24, 32) 0 dropout_60
flatten_18 (Flatten) (None, 4608) 0 average_pooling2d_19
dense_35 (Dense) (None, 128) 589952 flatten_18
batch_normalization_37 (Batch Norm.) (None, 128) 512 dense_35
p_re_lu_55 (PReLU) (None, 128) 128 batch_normalization_37
dropout_61 (Dropout) (None, 128) 0 p_re_lu_55
dense_36 (Dense) (None, 2) 258 dropout_61

Total parameters: 650626
Trainable parameters: 650338
Non-trainable parameters: 288

Table 4.16: Residual neural network model scheme

Exp.
√

sNN
[GeV]

event
rotation

centrality averaging
setup

hadronic
rescat.

N ACC % P % R %

R

27 random narrow random on 2 69.82 65.71 83.53
27 random narrow random on 12 94.88 96.40 93.30
27 random narrow random on 22 96.72 98.11 95.30
27 random narrow random on 32 97.21 95.54 99.07
27 random narrow random on 42 81.50 73.10 99.99

Table 4.17: Evaluation of the residual and benchmark classifier.

As visualized in Fig. 4.26, model’s learning process suffered from instabilities and fluctuations,
therefore the experiment R resulted in worse overall classification performance than experiment C in
terms of binary classification metrics. The fluctuations were indeed caused by fast overtraining. How-
ever, they were present even before the phase of overtraining was achieved as visible in validation ac-

55

CHAPTER 4. EXPERIMENTAL RESULTS 56

curacy development for N = 2. Although improving the benchmark model classification ability using
residual model first seemed to be a reasonable next step, during the experimental phase a more important
question appeared. Learnt classification ability during one experiment (e.g. experiment C) was not di-
rectly applicable to the input data of other experiment (e.g. experiment B) transformed with feature-wise
standardization fitted during the experiment C. AUC of such classification achieved ∼ 50 %, therefore
was comparable to the random classification. Such cross-classification problem was also present when
applying the model from experiment C to the input data of experiment A. Further exploration of possible
data standardization techniques to enable successful transfer learning inbetween the data from different
types of the simulation is therefore necessary.

(a) Train accuracy during the training. (b) Valid. accuracy during the training.

(c) Train loss during the training. (d) Valid. loss during the training.

Figure 4.26: Experiment R: Training validation plots,
√

sNN = 27 GeV, random event rotation, narrow
centrality, random averaging setup, post hydro rescattering included.

Conclusion

In this study we compared multiple machine learning approaches and data pre-processing dependen-
cies for two heavy ion physics problems: D0 decay classification and identification of the nature of the
QCD phase transition.

For D0 decay classification problem, HIJING simulation of d+Au collision with
√

sNN = 200 GeV/c
was provided by the STAR collaboration. We have performed homogeneity tests using Kolmogorov-
Smirnov test of two possible background representations: non-signal unlike-sign pairs and like-sign
pairs. The homogeinity was accepted on significance level 1 % for all tested distributions within all se-
lected pT bins. Therefore non-signal unlike-sign pairs were selected as background class representation.
Two machine learning models were trained and optimized with respect to AUC over feature-wise stan-
dardized training set: random forest model (RF) and deep neural network model (DNN). The features
used in classification were DCAπ, DCAK, ldecay, DCAπ,K, cos θ, DCAD0 and cos θ∗. Two different pre-
processing approaches were tested as well. First approach included training the models over the data un-
der following pre-cut criteria: 0.002 < DCAπ < 0.2 cm, 0.002 < DCAK < 0.2 cm, 0.0005 < ldecay < 0.2
cm, DCAπ,K < 0.02 cm, cos θ > 0.7 and DCAD0 < 0.05 cm. The second approach applied no such pre-
processing. The problem was partitioned into five dijoint pT bins: 0–1 GeV/c, 1–2 GeV/c, 2–3 GeV/c,
3–5 GeV/c and 5–8 GeV/c. The models were trained over balanced data set and compared not only with
respect to each other, but also with respect to optimized boosted decision tree model (BDT) implemented
by Ing. L. Kramárik. Standard binary classification metrics were evaluated such as P, R, NPV , T NR
and most importantly, AUC. Classifiers trained over the data under no pre-cut criteria achieved lower
AUC values than classifiers trained over data under pre-cuts. The most successful classifier over test set
under pre-cuts was RF achieving AUC values 81 %–96 % based on the pT bin (higher pT value resulted
in better classification). For the test set were no pre-cuts were applied, BDT, RF and DNN models per-
formance was comparable with respect to AUC value. However, for pT bins 0–1 GeV/c and 1–2 GeV/c,
RF achieved better performance. The AUC values for the scenario without pre-cuts ranged between
73 %–94 % for RF, 70 %–92 % for DNN and 70 %–94 % for BDT depending on pT bin. The existing
classifier trained in [2] over PYTHIA simulation and measured data was applied to the HIJING test set
as well. The classification quality achieved ACC = 74 % in pT bin 1–2 GeV/c, ACC = 79 % in pT bin
2–3 GeV/c and ACC = 83 % in pT bin 3–5 GeV/c, which is comparable to the values achived over test
sets in [2].

For the identification of the nature of the QCD phase transition, data simulated using a hybrid hydro-
dynamic model [4] were provided by Ing. J. Cimerman. The model simulated the complete evolution of
Au+Au nuclei collisions at different energies per nucleon-nucleon pair. Two versions of the model were
used, one version assumed first order phase transition, the second version assumed a smooth crossover
between the two phases. We trained convolutional neural network model (CNN) based on [3] and applied
it to the data under different pre-processing conditions. Classification quality dependence on parameters
of the simulation, such as centrality class,

√
sNN value and the effect of hadronic rescatterings was tested

as well. The classification was performed based on the discrete representation (histogram) of the joint
distribution (pT,Φ) of hadrons produced in the event. The histograms were produced directly from
the .root files produced by the simulation, or after each event was rotated randomly for random angle
α ∼ U(−π, π) within transverse plane (px, py). To supress fluctuations, N histograms within one central-
ity class and one EoS type were averaged into one input. Tested values of N were 2, 12, 22, 32 and 42.

57

Based on the experiments we performed, we did not detect reduced quality of the classifier when
√

sNN

value decreased from 200 GeV to 27 GeV. The classification was also not influenced by the presence of
hadronic rescatterings in the simulation or by the random rotation of the events within transverse plane.
The classifier’s ACC over test set ranged from 74.47 % to 99.73 % based on the N value (the higher the
N, the better was classification quality). However, we detected strong effect of centrality class selection.
When centrality class was changed from narrow type (0–1 %, 20–21 %, 40–41 %) to wide type (0–40 %),
the classification quality dropped significantly (ACC ranged from 55 % to 65 %). We have tested the
classifier’s dependence on the gradient volume in pT direction by intentionally removing this feature by
applying feature-wise standardization fitted over each EoS type separately. The model’s performance
indeed dropped. ACC ranged from 60 % to 69 % for the narrow centrality class. In order to improve
the learning of the experiments with standard application of feature-wise standardization, residual block
was added to the CNN architecture. However, such approach resulted in instability during the training
and lowered values of binary classification metrics. We explored the possibility of direct application of
the model fitted over one set of simulation and pre-processing parameters to the data pre-processed or
simulated differently. Such classification achieved AUC ∼ 50 %, therefore was comparable to the ran-
dom classification. Further exploration of possible data standardization techniques to enable successful
transfer learning inbetween the data from different types of the simulation is therefore necessary in order
to understand the differences between high-level features as seen by the CNN models.

58

Bibliography

[1] K. Hladká: Statistics and machine learning applied to heavy nuclei collision products. Bachelor’s
Project, FNSPE CTU Prague, 2019.

[2] K. Hladká: Optimization of classification techniques for heavy nuclei collision products. Research
Project, FNSPE CTU Prague, 2020.

[3] Y. Du, K. Zhou, J. Steinheimer, L. Pang, A. Motornenko, H. Zong, X. Wang, H. Stöcker: Identifying
the nature of the QCD transition in relativistic collision of heavy nuclei with deep learning. The
European Physical Journal C 80, 2020, 516:1-17.

[4] Iu. A Karpenko, P. Huovinen, H. Petersen, M. Bleicher: Estimation of the shear viscosity at finite
net-baryon density from A+A collisions data at

√
sNN = 7.7–200 GeV. Physical Review C 91, 2015,

064901.

[5] K. He, X. Zhang, S. Ren, J. Sun: In ’2016 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR)’. IEEE Xplore, 2016, 770-778.

[6] C. C. Aggarwal: Neural Networks and Deep Learning. Springer International Publishing, 2018.

[7] C. M. Bishop: Pattern Recognition and Machine Learning. Springer-Verlag New York, 2006.

[8] B. Zitová, A. Novozámský: Rozpoznávání obrazu 1. Lectures, FNSPE CTU Prague, 2020.

[9] D. P. Kingma, J Ba: Adam: A Method for Stochastic Optimization. arXiv:1412.6980, 2017.

[10] D. Tlusý: A Study of Open Charm Production in p+p Collisions at STAR. PhD Dissertation, FNSPE
CTU Prague, 2014.

[11] G. Louppe: Understanding random forests from theory to practise. PhD Dissertation, University of
Liège, Faculty of Applied Sciences, Department of Electrical Engineering and Computer Science,
2014.

[12] K. He, X. Zhang, S. Ren, J. Sun: Delving Deep into Rectifiers: Surpassing Human-Level Perfor-
mance on ImageNet Classification. arXiv:1502.01852, 2015.

[13] L. Brieman: Random Forests. Statistics Department, University of California, 2001.

[14] L. Pardo: Statistical inference based on divergence measures. Chapman & Hall/CRC, 2006.

[15] P. Bouř: Development of statistical nonparametric and divergence methods for data processing in
D0 and NOvA experiments. Master’s Thesis, FNSPE CTU Prague, 2016.

[16] T. Kohonen Self-organized formation of topologically correct feature maps. Biological Cybernetics
43, 1982, 59–69.

[17] T. Kohonen, T. Honkela: Kohonen network. Scholarpedia, peer-reviewed open-access encyclope-
dia, 2007, 2(1):1568. http://www.scholarpedia.org/article/Kohonen_network

59

[18] F. Pedregosa et al.: Scikit-learn: Machine Learning in Python. Journal of Machine Learning Re-
search 12, 2011, 2825-2830.

[19] F. Chollet et al.: Keras. 2015. https://keras.io

[20] A. LeNail: NN-SVG: Publication-ready NN-architecture schematics.. Journal of Open Source Soft-
ware, 4(33), 2019, 747.

60

	main
	doc
	main

