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Abstrakt: Necht t1,...,tm € Ny, tm # 0 jsou koeficienty linearné rekurentni posloupnosti By =
S tiBy_; s pocatetnimi podminkami By =1, By =t1+1, ..., Bn1= Y11 ;B 1 + 1.
Kazd4a takova posloupnost uréuje numeraéni systém, kde kazdému n € Ny je pfifazeno slovo
wy_1 - wo z celoCiselnych cifer spliwujici rovnost n = Zﬁ\;_ol w; B;. Dané ¢islo n maZze mit vice
takovych reprezentaci, oznacime R(n) pocet reprezentaci n nad kanonickou abecedou. Zkoumame
vlastnosti R(n) v konfluentnich numera¢nich systémech a zobeciiujeme vysledky P. Kocébové,
Z. Masékove a E. Pelantové tykajici se R(n) v soustavach zalozenych na Fibonacciho a m-
bonacciho posloupnostech. Dokazujeme maticovy vzorec pro R(n) v konfluentnich systémech a
ur¢ujeme maxima funkce R(n) ve vSech konfluentnich systémech. Dale ukazujeme, ze v sous-
tavach zalozenych na posloupnostech, které maji vSechny koeficienty rekurence stejné, se max-
imélni hodnoty R(n) shoduji s témi ve Fibonacciho a m-bonacciho soustavach.
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defines a numeration system. Every n € Ny can be represented by a word wy_1 - - - wg consisting
of integer digits that is defined by the equality n = Zfi 61 w; B;. A given n can have several such
representations. Let R(n) be the function that counts the number of distinct representations
of n over the canonical alphabet. We study the properties of the function R(n) in confluent
numeration systems and extend the results of P. Kocabova, Z. Masakova, and E. Pelantova for
R(n) in the Fibonacci and m-bonacci systems. We prove a matrix formula for R(n) in confluent
systems and determine the maxima of R(n) in all confluent systems. Namely, we show that in
systems based on sequences whose recurrence coefficients are all identical, the maximal values of

R(n) equal those in the Fibonacci and m-bonacci systems.

Key words: confluent numeration systems, linear numeration systems, redundancy






Contents

Contentsl

Introduction|

I Proliminaries

|2 Linear Numeration Systems|

[2.1 Combinatorics of Linear Numeration Systems| . . . . . . . . ... ... ... ...

[2.1.1  Abstract Rewriting and Confluent 5-Systems| . . . . . . . . . ... .. ..

[2.1.2  Recognising Greedy Representations| . . . . . . .. ... .. ... ... ..

Ambiguity of Linear Numeration Systems|

B.1

Calculating R(n)| . . . . . .. .. ..

B2

Computational Results| . . . . . . ..

[3.2.1  Confluent Systems with a =b and order m=2 . . . . ... ... .. ...

13.2.2  Confluent Systems with a =band order m >2 . . . . . .. .. ... ...

13.2.3  Confluent Systems with a > 0|

Properties of R(n) in Confluent B-systems|

4.1

Palindromic Structure of Rtn)| .

4.2

Matrix Formula for Rln)| .......

4.3 Maxima of R(n) in General Confluent Systems| . . . . ... ... ... ... ...

4.3.1 Confluent Systems witha=bandorderm=2/ . . . ... ... ... ...

4.3.2 Confluent Systems with a =b and order m > 2| . . . . . .. .. ... ...

4.3.3  Confluent Systems with a > 0|

Arguments of the Maxima of R(n) in Confluent Systems| . . . . . . ... ... ..

i4.4.1  Confluent Systems witha =bandorderm=2/ . . . .. .. ... .. ...

4.4.2  Confluent Systems with a > 0|

iConclusion
APP Cl

11

13

15
22
22
26

33
34
40
43
47
52

59
59
60
67
68
75
78
81
81
83

89

91

95



10



Introduction

Numbers are intrinsincally linked with the way we write them. In our daily life, the dec-
imal system is the most practical, whereas computers store numbers using the binary system.
A numeration system is a set of rules that we use to assign strings of digits to values and vice
versa.

The most commonly used numeration system is the standard b-ary system. In this numeration
system, we construct a representation of an integer x by first finding the largest power of b that
is smaller than x, then dividing x by this power of b and storing the result as the most significant
digit, then diving the remainder by the next smaller power of b, recording that as the next digit
and repeatedly dividing the remainder by smaller and smaller powers of b until we construct the
whole representation. However, we do not necessarily have to use a geometric sequence. It is
easy to prove that any strictly increasing sequence starting by 1 can be used to represent natural
numbers. We will call numeration systems based on such sequences the B-systems. In literature
[5], the name U-systems is also used.

Of particular interest are numeration systems based on a sequence satisfying a linear recur-
rence with integer coefficients. The most famous example is the Fibonacci representation, also
called Zeckendorf representation [14] after its discoverer, which uses the Fibonacci sequence. For
example, in the Zeckendorf representation, the number six has the representation 1001, since
6 =5+ 1and 5 and 1 are the first and fourth Fibonacci numbers, respectively. Much has been
done in the study of the Fibonacci system and B-systems in general and the language of nor-
mal representations. For example, Hollander [§] studied the conditions needed for a B-system’s
language of normal representations (obtained by the usual greedy algorithm) to be regular.

B-systems based on a linear recurrent sequence have the property that they are redundant,
i.e. a given number may have multiple representations in such a system. The number six has
another valid representation in the Fibonacci numeration system, namely 111, because 6 =
34 2+ 1. The focus of this work will be quantifying the degree of this ambiguity for a selected
class of linear numeration systems, namely the confluent systems. Denote by R(n) the number of
representations of the number n € Ny in a given B-system. Kocabova, Masakové, and Pelantova
studied the properties of the function R(n) in the systems based on the Fibonacci and m-bonacci
sequences [12, [11]. By the m-bonacci sequence we mean the sequence whose every element is
the sum of m > 2 consecutive preceding elements. We will expand on their work and study the
properties of R(n) in their generalisation, the confluent systems. Established by Frougny in [3],
they are linear numeration systems which generate a rewriting system that is confluent. We will
specify this in more detail in Chapter 2.

In Chapter 1, we introduce some bagic terminology from combinatorics on words, since that
will be needed for working with representations of numbers (which are strings of digits, i.e. words).
In Chapter 2 we establish linear numeration systems and verify some of their properties.
Namely, we will introduce the (F) systems and confluent systems and derive a way how to
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recognise a greedy representation in an (F) system.

In Chapter 3 we present the algorithm for calculating R(n) and the computational results of
our survey of the function R(n) in several confluent systems. Our data suggests that confluent
systems are a close generalisation of the Fibonacci and m-bonacci systems, since in two large
subclasses of confluent systems the function R(n) displays substantially similar behaviour to the
Fibonacci and m-bonacci systems. In this section we also conjecture expressions for the values
of the maxima of R(n) and the number of arguments of the maxima of R(n).

In Chapter 4 we study the theoretical properties of the function R(n) and derive a closed-form
matrix formula for the calculation of R(n) in confluent systems. We then use this matrix formula
to verify our hypotheses from Chapter 3 and show that confluent systems with all recurrence
coeflicients equal behave identically to the Fibonacci and m-bonacci systems as well as show the
difference to the confluent systems where the last recurrence coefficient is strictly smaller.

Lastly, in the Appendix, we describe in detail our program for calculating R(n).

12



Chapter 1

Preliminaries

The focus of this work will be representations of numbers. Numbers are represented by words,
i.e. sequences of characters (digits) from a a finite set. Therefore, in this section we will establish
some basic terminology related to combinatorics on words.

An alphabet is any finite set A. Its elements are known as letters or symbols. In our case A
will be typically a finite subset of integers. A word or string over A is some sequence of letters
from A. Formally, a word w is defined as w = wywy—1 - - - wg, where w; € A, n € N. The length
of a word w = wypwy_1 - - - wp is denoted |w| = n+1. The set of all finite words over A is denoted
by

A*={e}U U WpWy—1 - Wo.
neNp,w; EA

where ¢ is the empty word, i.e. a sequence of length zero. The set A* is endowed with the
binary operation concatenation of words o : A* x A* — A* which is defined followingly: For
U = Uplp_1° Uy, V= UpUm_1-- Vg € A" set

UOV = UpUnp—1 """ UYUMUm—1 " VQ-

The circle operator o is however usually left out and we write w = wv. The structure (A*, o)
is a free monoid, € being the neutral element. The concatenation of w with itself is defined
recursively as

0 n+1

w =g, w = w"w.

We say that u is a prefix of w if w can be factorised as w = uv,v € A*. Analogically, u is a
suffir of w if w can be factorised as w = vu,v € A*. Additionally, u is said to be a proper prefiz
or proper suffir if v from the above factorisations is non-empty. Lastly, u is a factor of w if there
exists a factorisation of w such that w = zuv,x,v € A*. Likewise, if  or v are not equal to ¢
then u is a proper factor. Note: In all cases the words u, v,z can equal € (e is the prefix, suffix
and factor of every word).

A language is any subset of A*. We say that a word w € A* avoids a set X C A* if no word
x € X is a factor of w. By extension we say that a language L avoids X if all w € L avoid X.

We define two canonical orderings on the set A*.

Definition 1.1. Consider the two words © = xyTN_1- " T0, ¥ = YMYM—1 - Yo over a totally
ordered alphabet A. Then x is said to be lexicographically greater than y (denoted = »iex y),
when one of the following conditions holds:

e N > M (i.e. z is longer than y) and y is a prefix of z.
13



14 CHAPTER 1. PRELIMINARIES

e There exists an index r < N such that x, > y, and x; = y; for all r <i < N.

Definition 1.2. Againlet x = xyaxn_1- - To, Yy = YmYm—1 - Yo be words over a totally ordered
alphabet A. Then z is said to be radiz greater than y (denoted = > y) when one of the following
conditions holds:

e N > M, i.e. zis longer than y.
e N = M and there exists an index r < N such that =, > y, and z; = y; for all r <i < N.

The lexicographic ordering is equivalent to the alphabetic ordering whilst the radix order is
equivalent to ordering by value. Consider for example numbers written in the decimal represent-
ation. The string 42 is lexicographically greater than 107, even though the value it represents is
smaller, whereas by radix order 107 > 42. The radix order can also be understood followingly:
align z and y to the least significant digit (to the right), pad the shorter word with zeroes on the
left until both words have the same length, and then compare them lexicographically. On the
other hand, in the lexicographic order we align the two words to the most significant digit (to
the left), pad the shorter word with zeroes on the right and then compare them by radix order.
Lastly, it is evident that for two words of the same length the lexicographic and radix order are
equivalent.

In later sections, we will use terminology from abstract rewriting systems, which we will
define here. We will largely follow the notation and terms used in [3], as that will suffice for our
needs. More on the theory of abstract rewriting systems may be found in [9] and [10].

A rewriting system p over A* is a set of rewriting rules s — ¢, where s,t € A*. The regular

closure of p is denoted — and defined followingly:
P

x—vy ifand onlyif =z = fsg,y= ftgand (s —>t) € p.
P
This relation can be called ,,x is rewritten to y using rule (s — ¢)“

The reflexive and transitive closure of — is denoted —. In other words, z — vy if y = x or
p p

there exists a sequence of rewritings x — t; =ty — y.
p P p

The relation — is called confluent if for every three words z, s, t such that z = s and z — ¢
P p p

there exists a word v satisfying s — v and t — v. A rewriting system p is confluent if the relation
p p

— is confluent.
P

If no word ¢ # s exists such that s = t we say that s is #rreducible modulo p. If v = s where

s is irreducible, we say that v reduces tg s or that s is the result of reduction of v. Furﬁ‘)chermore,
if p is confluent, then there exists a reduction function p* : A* — A* which maps every word
w € A* to the irreducible word p*(w) (which is the result of reduction of w). Let us confirm that
p* is truly a function. Let w € A* be reducible modulo p. Then rewrite w using rules from p
until an irreducible word t is reached. Take w and start rewriting it again and if possible, select
in each step a different rewriting rule than that used in deriving ¢. Continue this process until
an irreducible word s is reached. Because p is confluent, s must equal ¢, otherwise we would

have words w, s, ¢ such that w — s and w - ¢, but no v would exist such that s — v and t - v,
P P P p

which is in contradiction with the confluence property of p. Thus the irreducible word p*(w) is
uniquely defined for every w and p* is indeed a function.



Chapter 2

Linear Numeration Systems

In this section we shall introduce linear numeration systems, the focus of our study. Inform-
ally, a numeration system is the set of rules that we use to assign a word (a representation) to
a given value. More formally, a numeration system for the integers can be understood as a map
from Ny to some subset of A*, where A is a finite alphabet. For example, the standard b-ary
system for integers is a map N : Ng — {0,1,...,b—1}* such that N (z) = xy_1 - x120, where
beN, b>2, N is defined by b > 2 > bV ~! and the digits are defined as zj, = Lb%J — Zi':ol z;b’
for all k € {0,1,..., N—1}.

Along with the standard b-ary representation, multiple other numeration systems exist. In
the standard b-ary system, a letter represents how many times a given power of b is included in
the number that it represents. For example, the string 203, understood as a decimal expansion,
represents the value composed by adding 2102, 0-10', and 3-10°. Thus, in the decimal system,
we represent numbers using the geometric sequence B,, = 10", n € Np.

However, this is not the only type of sequence that can be used. It is easy to show that
(Br)o2y can be any strictly increasing sequence of positive integers. Numeration systems based
on such a sequence are known as B-systems (also called U-systems in literature, see Frougny
[6]). Such systems can be used to represent all natural numbers, and with a slight modification
all integers. In this work we will focus solely on representing natural numbers.

It must be noted that not all sequences generate a numeration system whose language of
normal representations (which we will define later) is well-behaved. However, a class of sequences
that generate numeration systems with reasonable properties are the linearly recurrent sequences
with natural coefficients. We will call any such sequence a basts.

Definition 2.1. Let (B,)52, be a sequence of positive integers satisfying
Bn - tan—l + tZBn—Q +--+ thTL—WH (21)
where t1,t2,...,tym € Ny, t,, # 0. Set the m initial conditions equal to

By =1,
B =t +1,
By =t1B1 +t2 +1,

Bm1=tBm_a+tBm_3+ - +tm_1 + 1. (2.2)

Then (By)o2, is a basis and m > 1 is its basis order.
15



16 CHAPTER 2. LINEAR NUMERATION SYSTEMS

We can see that this is indeed a generalisation of the b-ary system, since for any natural b > 2
the sequence (By)02, = (b")o2, satisfies the recurrence B,, = b- B,_1 and so it is a basis of
order 1.

A basis can be used to assign a value to a word over an alphabet of integers followingly.

Definition 2.2. Let (B,)22, be a basis. Then a B-representation of the number x € Z is any
string xyxn—1--- 2o over a subset of Z with N € Ny such that x = Zi]\;(] x;B;. The empty word
€ is understood as a B-representation of zero.

When it will be necessary to differentiate a B-representation from other representations
(typically a decimal representation), we will label the B-representation with a subscript B, as in
the following example.

Example 2.3. Let (B,)>2, be the Fibonacci sequence, i.e. B, = By_1 + B,—2, By = 1,
By = 2. Then (B,)52, ={1,2,3,5,8,...} and 10013 is a B-representation of the number six,
since 1-54+0-340-24+1-1= 6. Another possible B-representation of six is 111p, since
1-34+1-24+1-1=6.

Remark 2.4. Even though in Definition we allowed digits to be from Z, we will focus solely
on representations of non-negative integers, where non-negative digits will suffice. Therefore,
from now on a B-representation is understood to be a word consisting of non-negative digits
only (unless specified otherwise).

Remark 2.5. Consider a basis (By)22, with coefficients t1, 2, ..., t,. For brevity, we will often
use the expression (t1,ta,...,ty,)-B-system or just (t1,t2,...,tn)-system when speaking about
the numeration system generated by this basis. For example, the Fibonacci numeration system
from Example [2.3| would be known as the (1, 1)-system.

Using Definition a numeric value can be assigned to any string of integer digits, but
typically we want to do the opposite — that is to generate a string representing a given value.
To prove that this is possible for any non-negative integer z, we will use the greedy algorithm.
However, first, we need to prove a technical lemma.

Lemma 2.6. Every polynomial of the form
flx) =2 — ™t —tex™ 2 — e — b — b,

where m > 1, t1,ta,...,tym € No, ty # 0, has exactly one real positive root 5. Furthermore, all
other roots of f(x) lie in the circle |x| < 8 and if " t; > 1, then § > 1.

This lemma is required to show that the alphabet of digits will be finite. In its proof we will
utilise the following theorem (from Marden [13] (Theorem 27.2), originally by Cauchy).

Theorem 2.7. Given a polynomial p(z) = apa™ + ap_12" 4+ -+ + a1z + ag, where a, # 0,
define the polynomial

Q(z) = |ap|z"™ — ]an_l\xnfl — o —ai|x — |ag. (2.3)

By Descartes’ rule of signs, Q(x) has precisely one positive real root R. Then all zeroes of p(x)
lie in the circle |z| < R.
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Proof of Lemma 2.6 Suppose that f(x) has no real root larger than 1. Clearly f(x) is the
characteristic polynomial of the basis B, = t1B,-1 +teBn_2+ -+ + t;nBn_m. Set the m initial
conditions equal to

By=1,Bi=t1+1,Bo=t1B1+to+1,..., B 1=t1Bpm_o+ - +tm_1+1.

Since Y, t; > 1, this yields a basis (B,,)22, that is strictly increasing. Therefore, if we solve
the recurrence for By, at least one root of f(x) must have absolute value larger than 1. Take the
root maximum in modulus and label it Spax. By assumption, Spax cannot be real and positive.

From Descartes’ rule of signs we can see that f(x) has exactly one positive real root. Label
this root Bpes. Evidently by assumption fBp0s < 1. Additionally, we can see that f(x) is in the
same form as the right-hand side of [2.3), i.e. Q(z) = f(z). Therefore, by Theorem all roots
of f(x) lie in the circle |z| < R = fpos < 1. However, at least one root outside this circle exists
(Bmax), leading to a contradiction. O

Now we can prove that every number can be represented using a given basis.

Theorem 2.8 (B-Representation.). Let (By,)22, be a basis with coefficients satisfying > .- t; >
1 and t,, # 0. Then for every x € Ny there exists an N € Ny and coefficients a; € A =
{0,1,2,...,a}, i =0,1,2,..., N such that

r=anBy+any_1Bny_1+ -+ a1B1 + apBo,

where a € N is a constant satisfying {SUPNGNO Bg]le > a. In other words, every x € Ny has a

B-representation ayan_1---a1ag over the canonical alphabet A.

Proof. We will prove the existence of the B-representation of x by constructing it. Given an
x € Ny and a basis (B),)52, we proceed by the following greedy algorithm. Set

N :=max{n|z > B,}
and let initially R := x,4 := N. Then in the ¢-th iteration of the algorithm do the following:
1. Set a; := |R/B;].
2. Set R equal to the remainder of the division by B;, i.e. R:= R —a;B;
3. If i = 0, terminate, otherwise lower i by one and repeat from step 1).

The representation is generated from the most significant digit. It is evident that this al-
gorithm always terminates, since the number of iterations is finite. Also, the resulting word
anan—_1---aiag is clearly a B-representation of z. What remains is to verify that all digits
belong to the set A =1{0,1,2,...,a}.
Evidently, for every non-zero x an N exists such that Byy1 > x > By. Dividing by By
yields the inequality
BN+1/BN>:E/BN21. (2.4)

Since B, is linearly recurrent and real, we can write it as a linear combination of m real base
sequences (7', ... (), which we will construct from the m roots 1, B2, ..., Bm € C of the charac-
teristic polynomial of the basis B,,.

The characteristic polynomial of the basis B,, is of the form

f(q;) =M - tlajm*l — tgl’m72 — .=ty — Ty
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The polynomial f(x) has real coefficients, therefore for every complex root §; of f(x) its conjugate
B; will also be a root of f(x). Suppose, without loss of generality, that the roots are ordered
by modulus and multiplicity, that is |81 > |B2] > -+ > |Bm| and repeated roots are ordered
adjacently. That is for every root [, with multiplicity v, there exists exactly one 1 < k < m
such that B = Bye1 = = By = -+ = Brrup_1.

Let us now construct the sequences (;'. For every root 8, € R with multiplicity v, where k
is such that By =41 = =0, =+ = Brtv,—1,set forall 0 < j <1y —1

Cl?+j =n’ B

By Lemma , f(z) will have exactly one positive real root larger than 1 and all other roots
will be smaller in modulus, denote this root 8 = ;.

For every B € C\R with multiplicity v, denote its complex conjugate 8; = By, v; = Vg, where
the index 1 <1 < m is again minimal. For unambiguity let k¥ < I. Then for all 0 < j <y — 1
set

B+ B : Re(Bk)
Cry:i=n)——— =nl|Bg|" cos [ n ,
w 2 | B
B = Bf' ; : Im(Bk)
(=t ——— =nd|B|"sin [ n )
I+j 2 ‘ ’ ’/Bk‘
In this way the m basic real sequences (7', ..., (,, are constructed. Substituting initial conditions
for B, yields coefficients aq, ..., a;, € R such that
m
i=1
Substituting (2.5) into (2.4) and the fact that (' = gV = N+ yields for all N € Ny
m N+1 m N+1 m oG
1< BN+1 _ Zi:l aiCi + _ 041,8N+1 + Zi:Q OziCi + _ o1 + Zi:2 ai5N+1
By X el BN + 350, i)Y o1+ Yy i

By Lemma [2.6] it is evident that

. By
1 = 1.
N—1>r-ri-loo BN 6 >

The ratio of consecutive elements of B,, is therefore for all N € Ny bounded by some constant
K = supyepy BBN—&”, K € Q. Together with (2.4) this results in

K > By4+1/By > x/By > 1.

The digit ay = |z/Bx| can therefore have only a finite number of values. Consider now other
digits a;, 0 <4 < N. As the remainder of the division by B;y; will always be smaller than B;
(step 2. of the greedy algorithm), in the i-th iteration the following will hold:

Bii1 > R,
dividing by B; this leads to

By
B;

R
K > — > 0.
Z >Bi_
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After rounding we can see that a; = [R/B;| can also have only a finite number of values. The
digit a; is non-negative because R is non-negative and B; is positive.

Clearly, a maximum digit a € N exists such that a; < a for all¢=0,1,..., N and
B
o< | s 5| = 1,
NeN, Bn
The canonical alphabet A ={0,1,...,a} for the basis (B),);> is therefore well-defined. O

In general the value of a can be known only by calculating the elements of the basis. However,
if the basis coeflicients satisfy the inequality t; > t9 > --- > ¢, > 1, it is possible to deduce a
immediately from the coefficients of the recurrence, which we will prove shortly. This type of
basis will also have certain other practical properties, so we will give it a name.

Definition 2.9. Let (B,)2, be a basis of order m whose coefficients satisfy
f >t > >t > L. (2.6)

Then we say that the basis (B,)22, has the (F) property or that (B,)>%, is an (F) basis. By
extension a B-system is said to have the (F) property if its basis has the (F') property.

The above definition is carried over from numeration systems with a non-integer base, the so
called [3-systems, which are studied for example in [5, [6]. The F stands for finite, as a real base
B > 1 is said to have the (F) property if every member of Z [B‘l] NR* has a finite B-expansion.
Take the polynomial

m—1

x(z) =a2™ — iz =t — by, (2.7)

whose coefficients satisfy and denote 5 > 1 its root greatest in modulus. In [4] Frougny and
Solomyak prove that ( is a Pisot number and that it has the (F) property. A Pisot number is an
algebraic integer whose conjugates are all less than one in modulus. Notice that the polynomial
x(z) is the characteristic polynomial of a basis satisfying Definition which is why we use this
name.

Moreover, [-systems are closely tied to B-systems. Every B-system can be uniquely as-
sociated with a [-system whose language of greedy representations shares many combinatoric
properties with the language of greedy B-representations. More on this association can be found
in [5, [6].

We proceed with determining the canonical alphabet of B-systems with the (F) property.

Lemma 2.10. Let (B,)52, be an (F) basis. Then the canonical alphabet of the numeration
system generated by (By)2, is equal to A ={0,1,...,%1}.

Proof. Take x € Nand an (F) basis (B,,)52,. Suppose that we are generating the B-representation
of x using the algorithm from Theorem [2.8] Let N € Ny such that Byy1 > = > By. Substituting
for By1 from the recurrence (2.1) and dividing by By yields

t1By +t2BN_1+ - + tmBN_m+1 > T > Bp,
toBy—1+ -+ tmBN_m+1

t1 + >x/BN2 1. (2.8)
By

Let us now focus on the fraction on the left hand side of (2.8)). Substituting for By in the
denominator yields

toBn_1+ -+ tmBN_m+1
t1BN_1+ -+ tm—1BN-m+1 T tmBN-m

<1. (2.9)
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The inequality holds thanks to the (F) property t; >ty > --+ > t,, > 1, which implies that the
denominator is strictly larger than the numerator. Let us now return to the inequality ({2.8)).
Due to inequality (2.9)), by rounding we get

t1 > Lx/BNJZ 1.

Consider now the other digits. Because the remainder after division by B;;1 will always be
smaller than B;,1, in the i-th iteration of the algorithm we will have

Biy1 > R.

Following the same steps as above we arrive at

toB._ t. B
R ERE G R
3

and thus the digit a; = [R/B;]| is bounded by
t1 > |R/B;] > 0.
All digits an,an—1,...,a1,ap are contained in the finite alphabet A = {0,1,...,¢1}. O

For further study of B-representations, we define the value of a word.

Definition 2.11. Given a basis (B,)22, and some alphabet C C Z, the evaluator function
m: C* — Z is defined for every word w = wywy_1---wiwg € C* as

N
W(w) = Z wiBZ-,
=0

for the empty word we set w(¢) = 0. More often we will say that w(w) is the value of word w (in
the numeration system with basis (By,)22).

As is evident from Definition several words can represent the same value. In other words,
in general the map 7 is not injective. The only case when it is injective is when a B-system
coincides with the standard b-ary system, that is, the basis is of the form B, = bB,,_1 for some
beNb>2.

Example 2.12. Consider the basis B,, = 3B,,—1+ Bj—2. Then (B,,)72, = {1,4,13,43,142,... },
the canonical alphabet is equal to A = {0, 1,2, 3} and the number & = 286pgc has three different
B-representations (over A).

286pEC = 200025 (2.10)
= 131025
= 13033p.

Only the first representation (2.10) could have been constructed by the algorithm in Theorem
since it has the largest possible most significant digit. Accordingly, the representation (2.10))
is largest by the radix order. This representation will be known as the greedy representation.
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Definition 2.13. Let x € Ny. Then the B-representation constructed by the algorithm from
Theorem is called the greedy representation, or equivalently, the normal representation. It
will be denoted (z)p. The set of all greedy B-representations will be known as the language of
greedy representations, denoted L(B).

Theorem 2.14 (Properties of Greedy Representations.). Let xyxn_1---z120 = (z)p be the
greedy B-representation of some x € N. Then the following holds:

1. N 7§ 0.
2. (x)p 1is the greatest by radiz order among all B-representations of x.
3. (x)p = (y)p & x>y for every two z,y € Ny.

Proof. Property 1. Evident from the proof of Theorem 2.8]

Property 2. The greedy representation is the longest among all B-representations of x, since
the most significant digit x is obtained by dividing x by the greatest element of the basis B
that is smaller than z. Additionally, this digit will be the greatest possible:

xy =max{k|kBy < z}.

Suppose now a different representation of x, denote it & = T3 Z5_ -+ Z1Z0. Evidently no Z can
have Ty > xn, so one of the following must occur:

a) [(z)p| > |7|
b) |[(z)g| = |Z| and Ty < xpN.
C) |<:L‘>B’ = |fL"‘ and i’N = ITN.

In cases a), b) we immediately obtain (x)p > Z. In case ¢) the words (z)p and 7 share a common

prefix beginning with (but not limited to) the digit zy. Removing this prefix yields two words

()%, &* of length M +1 < N +1 that start with digits s # /. Because the greedy algorithm

always selects the greatest digit, the inequality xps > Zp; must hold and so case b) applies.
Property 3. (=) :

Let zyxn_1--x0 = (x)p = (Y)B = Ymym—1---Yo- Then from the definition of the radix

ordering one of the following holds:

a) |[(z)B| > [(y)B|,i.e. N > M.
b) N = M and an r < N exists such that z, >y, and x; = y; for all N > i > r.

In case a) the inequality x > y is evident from the fact that Byy1 > x > By, Byy1 >y > By
and N > M implies N > M + 1. In total x > By > y.
Case b) warrants a more thorough analysis. Clearly

N N r T
v—y=Y xBi—Y yBi=)» wBi—» B
i=0 i=0 i=0 i=0

Because z,, — y, > 1, this can be bounded from below by

r—1

T T r—1
Z%’Bz' - ZyiBi > B, + Z(xz‘ —vi)Bi > B, — ZyiBi-
i=0 i=0 i=0

=0
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The word y,—1Yyr—2...y0 is a greedy representation of some value § < y (due to the already
proven case a) and also due to the fact that any suffix of a greedy representation is a greedy
representation). Since its length is precisely r, the value § must satisfy B, >y > B,_1. Therefore

r—1

By = yiBi >0
1=0

from which x > y follows.

(<) :
The reverse implication is a corollary of the greedy algorithm. Let z > y. If an N exists such
that x > By > y, the greedy representation (x)p will be longer than (y)p and so (x)p >~ (y)B.
If Byy+1 > 2 >y > By, then an 0 < r < N exists such that in the r-th step of the greedy
algorithm run simultaneously for = and y we will have remainders R® a R®) which will satisfy

[R /By | > [RY /By

For the (N — r)-th digits this will result in zy_, > yny_, and x; = y; for all N —r < i < N,
therefore (x)p > (y)B, by the definition of the radix order. O

2.1 Combinatorics of Linear Numeration Systems

In this section we will explore some further combinatorial properties of B-systems, most
importantly factors of value zero and rewriting rules generated by B-systems. This will be
followed by establishing the confluent B-systems. Finally, we will show a way how to recognise
greedy representations in (F) systems. More on other properties of B-systems (for example, the
regularity of L(B)) can be found in [5 [6] §].

2.1.1 Abstract Rewriting and Confluent B-Systems

In this section we will introduce the confluent numeration systems, first established and
studied by Frougny [3]. The first step is to realise that all linear numeration systems implicitly
generate a rewriting system that is given by the basis recurrence.

Definition 2.15. Consider some alphabet C' = {0,1,...,c}. Then the rewriting system gener-
ated by the rule Otity - --t,, — 10™ is defined as

pc ={xmTm-1- 20 = (Xm+1) (Tm_1—t1) - (o—tm)|
0<zp <cand xp_; >t; foralli>1}.

Every B-system with coefficients 1,9, ..., ¢, thus defines a rewriting system generated by
the rule Otqts - - - t,,, — 10" on its canonical alphabet A, which we denote p4. We will call py
the rewriting system associated with the (t1,ta,. .., t,)-system. Because of the basis recurrence,
this rewriting system has the practical property that it preserves the numerical value of words.
More formally, given a basis, every two words w and v over the canonical alphabet A satisfy

w — v iff 7(w) = 7 (v).
PA
Fact 2.16. Take a B-system with canonical alphabet A and its associated rewriting system pa.
Then evidently all words w # v for which w — v satisfy w > v.
pa
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We will now show an example of a confluent rewriting system in the context of B-systems.

Example 2.17. Consider the basis B,, = 3B, _1+3B,—2+2B,,—3. Then B,, = {1,4,15,59,...},
the canonical alphabet is A = {0, 1,2,3}, and py4 is generated by the rule 0332 — 1000:

0332 — 1000, 0333 — 1001,
pa =< 1332 — 2000, 1333 — 2001,
2332 — 3000, 2333 — 3001.

Let w = 0332333. Then there are two possible reductions of w:

0332333 — 1000333 — 1001001,
PA PA

and
0332333 — 0333001 — 1001001.
pA pA

Both reductions lead to the same result, because the rewriting system p4 is confluent. (See

Theorem [2.19)).

Compare this with an example of a rewriting system that is not confluent:

Example 2.18. Consider the basis B, = 3B,,_1 +2B,—2+ B,—3. Then B,, = {1,4,14,51,...},
the canonical alphabet is A = {0, 1,2, 3}, since B, satisfies the (F) property and p4 is generated
by the rule 0332 — 1000:

0321 — 1000, 0322 — 1001, --- 0333 — 1012,
pa =< 1321 — 2000, 1322 — 2001, -.-- 1333 — 2012,
2321 — 3000, 2322 — 3001, --- 2333 — 3012.

Let w = 032333. Then there are two possible reductions of w. Either

032333 — 100232,
pA

or
032333 — 033011.
pA

Both 100232 are 033011 are irreducible modulo p4, thus p4 is not a confluent rewriting system.

Naturally, we are led to ask for what B-systems is the associated rewriting system confluent.
Frougny showed in [3] that confluent systems can be characterised by the coefficients of their
basis.

Theorem 2.19 (Frougny). Suppose a basis (By)52, of order m with coefficients t1,ta, ... ty €
Ng and canonical alphabet A. Then the rewriting system pa associated with the B-system is
confluent if and only if the coefficients of (By)o2, satisfy

tl :tQZ-":tm_l =a, tm:b, (2.11)
where a > b > 1.

The above theorem justifies the following definition.

Definition 2.20. A basis (B,,)22, of order m is called confluent if its coeflicients satisfy (2.11)).
By extension, a B-system is confluent if its basis is confluent.
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Remark 2.21. Evidently, all confluent B-systems are also (F) systems. The opposite inclusion
does not hold, as was illustrated by Example [2.18 However, if we limit ourselves to only B-
systems of order 2, the confluent and (F) systems coincide.

Importantly, the confluence property allows us to perform normalisation by means of a finite
transducer, a result due to Frougny [3]. This was one of the initial motivations of the study of
such systems. We define what is meant by normalisation.

Definition 2.22. Take a B-system with canonical alphabet A and some other alphabet C' O A.
Then normalisation is the map v : C* — A* that assigns to a word w the greedy (normal)
representation of the value represented by w, i.e.

In effect, when reducing using the rewriting system p4 associated with a confluent B-system,
we are performing normalisation. This can be restated as the following theorem, also from [3]:

Theorem 2.23 (Frougny). Suppose a confluent B-system with canonical alphabet A. Then
normalisation in this system is equivalent to reduction in the associated rewriting system pa.
Formally for every w € A*

Recall now Example

0332333 — 1000333
pa

oul oal

0333001 — 1001001
PA

We can say that the three words 0332333, 0333001, and 1000333 normalise to 1001001.

The interesting property of confluent numeration systems is that in order to perform norm-
alisation, it suffices to use only rules from p4. In other numeration systems, sometimes we have
to go backwards, i.e. use a rule from pgl. Take the representation 033011 from Example
Then 033011 normalises by the use of one backward rule and one forward rule:

033011 <— 032332 — 100232.
pA pa

Another interesting property of confluent systems is that the rewriting system consisting of
rules applied in reverse is also confluent. We will call this system the inverse (reverse) rewriting
system p~'. Hence, for a given B-system with coefficients ¢1, %, ..., %, and canonical alphabet
A=H0,1,...,a}, the associated inverse rewriting system p;ll is defined as

p;ll ={rmrm-1- 20— (Tm—1) (Tm-1+t1) - (To+tm)]
l1<zp<aand 0 <y <a—t;foralli>1}.

For completeness, we shall establish the concept of the lazy representation of an integer.

Definition 2.24. Suppose a B-system with canonical alphabet A. Then for every n € Ny we
define the lazy representation of n as the word )n(z € A* that is radix smallest among all the
representations of x over the alphabet A.
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The lazy representation is well-defined, since the set of representations of a number n € Ny
is finite and two different words w # v cannot have the same radix value (because that occurs
only when w and v are identical). Clearly, if a given number n has only one representation, its
lazy and greedy representation coincide.

Example 2.25. Take the (2,1)-system. Then the canonical alphabet is A = {0,1,2}, the
basis is equal to B, = {1,3,7,17,41,99, ...} and the associated rewriting system consists of the
rules py = {021 — 100,121 — 200,022 — 101,122 — 201}. The greedy representation of 49 is
10101 p, whereas its lazy representation is 02122p.

Unfortunately, no direct algorithm for constructing lazy representations is known. The only
way they can be obtained is by constructing the greedy representation and reducing it using the
associated reverse rewriting system until the lazy representation is reached.

We will now move on to introduce another practical concept for dealing with B-systems,
which we will utilise in proofs. It is the concept of the so-called factors of value zero, a subset of
the B-representations of zero. For a given B-system, they are easy to determine.

Definition 2.26. Consider a B-system of order m with coefficients ¢1,t2,...,%, € Ng and
canonical alphabet A. Denote by the overline a minus sign, i.e. t; = —t;. Then the factors of
value zero are the words

1@ “tm—1tm, Ttth o tp—1tm.

Furthermore, the m — 1 initial representations of zero (initial factors of value zero) are the
B-representations

1 tq 72 SR 7)) tm—1+17 1 711 to -+ tm2 tm—1+17
1Lt - tp3 tmotl, It - tpe3 tmatl,
1 t1 to+1, 1 t1 to+1,
1 tl—i—l, 1 t1+1.
If we denote the canonical alphabet A = {0,1,...,a}, then the factors of value zero are the
only words z over {—a,...,0,...,a} such that 7(z) = 0 and |z| = m + 1. We call them factors

of value zero because they satisfy this property regardless of how many zeros we write to their
right.

On the other hand, the initial representations of zero in general need not have digits contained
in {—a,...,0,...,a}. This will in occur systems with the (F) property whenever a recurrence
coefficient ¢,., r > 2 exists such that ¢, = ¢;. Also, all the confluent systems have this property.
Moreover, they satisfy 7(z) = 0 only if their least significant digit is in the place of By. That is
why we will refer to them as initial representations of zero. Note that they are needed because
of the initial conditions that we adopted in Definition

In further sections, we will use these representations in proofs when we will need to rewrite
a word to another one representing the same value and to ensure that the resulting word has
its digits contained in the canonical alphabet A. In effect, adding the factor 11t - tm_1tm
digit by digit to some B-representation w over an alphabet C containing A corresponds to using
one of the rules from the rewriting system pc generated by the rule 0tity---t,, — 10™. On
the other hand, the initial representations of value zero will serve their purpose at the end of
representations, where the standard factor of value zero does not fit.
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2.1.2 Recognising Greedy Representations

Definition 2.27. Let (B),)52, be an (F) basis with coefficients ¢1, o, ..., t,,. Then the mazimal
factor is the word

tity - tm_1(tm—1).

This factor will be pivotal to recognising greedy representations in B-systems with the (F)
property. Namely, we will prove that a word over the canonical alphabet is a greedy repres-
entation if and only if it avoids factors which are lexicographically greater than the maximal
factor and whose length is smaller than or equal m. To ensure that the B-system posesses this
behaviour is the reason why in Definition the basis initial conditions are chosen in the form
. In a way, the initial conditions are optimal, which we show in the following example.

Example 2.28. Consider the basis B,, = 3B, 1 + 2B,,—2 + B,—3. Then A = {0,1,2,3} is the
canonical alphabet and the maximal factor is equal to tat1(tp—1) = 320. Suppose three sets of
initial conditions:

By =1,
(A) ¢ B1 =3By =3,
By =3B1+2By=11.

By, =1,
(B) B, =3By+1=4,
By, =3B1+2By+1=15.

By =1,
(C) ¢ By =3By+2=5,
By =3B1+2By+2=19.

Then in case (A) there are words that are not a greedy representation, but do not contain
a factor lexicographically greater than the maximal factor. It is for example 7(3p) = 3prpc =
W(lOB) but 3 ¥ 1ex 320.

On the other hand, in case (C) there exist values which cannot be represented by a word
above the canonical alphabet — for example there is no word w € A* such that m(w) = 4.
In case (B) none of these occur. Once a word contains a factor greater than the maximal factor,
the word is not a greedy representation. Compare:

7(32B) = 14pkc, 32 <jex 320.
m(100p) = 7(33p) = 15pEC, 33 >1ex 320.

With initial conditions in the form (2.2)), we will now proceed with proving that greedy
representations avoid factors greater than the maximal factor. For that we will require the
following technical lemma.

Lemma 2.29. Let (B,)%, be an (F) basis of order m with canonical alphabet A. Then every
word w € A* that has length |w| < N and value w(w) > By where N € N, contains a factor of
length less than or equal to m that is lexicographically greater than the mazimal factor.

Proof. We will prove the claim by induction on the length of the word w.
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CNe{1,2,...,m—1}:

Suppose that w = wpwps—1 ... wo, where jw| = M+1 < N and n(w) > By. f M+1 < N,
extend w to length N by adding zeroes to the left.
Then

N N
m(w) = ZwN—iBNﬂ' > By = ZtiBNfi + 1.
i=1 i=1
The equality on the right hand side follows from the recurrence relation and initial condi-

tions for B,. Together this implies

N

> (wy—i—t:)By_i —1>0. (2.12)
=1

Suppose now that
WN_1WN—2 - WWo =lex t1t2 - IN_1EN <lex t1t2 - tm—1(tm—1),

i.e. that there exists an 1 < r < N such that wy_, <t and wy_; =t; forall 1 < j <.
Then, we can rewrite inequality (2.12)) as

N
> (wy—i—t:)By_i — 1> —(wy_p — t;) By (2.13)
i=r+1
Because t; > 1 for all ¢ € {1,2,...,m} and 0 < wy_; < ¢; for all 1 < ¢ < N, the
coefficients (wy—; — t;) in the sum on the left hand side of (2.12)) (and (2.13])) are at most
equal to t; — 1 for all r < i < N. We can therefore bound the left hand side of (2.13)) by

N N
Z (wy—i —t;))Bn—i — 1< Z (t1 = 1)Bn_i,
i=r+1 i=r+1

which after reindexing is equivalent to

N-—r N—r
D (WN—rei = trpi) BNorei — 1< Y (t1 = 1)By_r_. (2.14)
=1 i=1

On the other hand, (wy_, —t,) is smaller than or equal to —1, so we bound the right hand

side of (2.13) followingly:
-r
—(WN—r —t:)BN_p > By_p = > By r_i+1. (2.15)
=1
Lastly, we will verify that
N—r N—r
> tiBn_pi+1> Y (t1 —1)By_pi. (2.16)
=1 =1

We can rewrite this inequality as

N—r N—r

Z tiBN_r—i — Z(tl —1)BN—y—i+12>0,
i—1 i—1
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and write it as the digit by digit sum

t1 12 JEICI 7\ Ry g o |
=1 =1 --- -1 -1

We want to prove that all digits marked * will be non-negative. If N —r < 1, the proof is
completed. Hence suppose now that N —r > 1.

Then using the initial conditions of the basis we may add the first NV — r — 1 initial
representations of zero, resulting in

t to ts 0 IN—p-1 EN—ptH]
th to 0 IN—p—2 tN—p_1+1
t1 - IN—p—3 tN—p2t]

IN—r—4 tN—r—3+1

1 t1+1
ti—1 tH1—1 t;—-1 --- t1—1 t1—1

Due to the (F) property, all digits marked * will be non-negative, thus proving inequality
(2.16). Together with the previous inequalities (2.13)), (2.14)), and (2.15) we have derived

the contradiction

N—r e N
Z(tl —1)By_r—; Z (wy—i —t;)Bn_; — 1
i—1 i=rt1
E-13) @) N=r ey V=
> _(U)N—r - BN r 2 tiBN_r—i +1 > Z t1—1 BN r—i-

=1 =1

In other words, if there is some digit w, < ¢, and wy,—; = t; for all 1 < j < r, then
regardless of how large the digits wy,_1, wy—oa,...,wy € A are, they will not be sufficient to
satisfy the inequality and ensure that the expression on the left hand side is non-
negative, which is a contradiction.

Finally, if wy_; = tj for all 1 < j7 < N, then the sum Ef\il wy_;Bny_; is equal to
Zi]\il t; Bn—i, which is again in contradiction with .

Therefore, there must exist a 1 < r < N such that wy_, > t, and wy_; = t; for all
1 < j < r, from which by definition

WN_1WN—2 " WWo >lex t1t2 - tm—1(tm—1).

A{1L,2,...,N} — N +1, where N > m :

Consider aword z = zprzpr—1 -+ - 2120 € A* such that |z2| = M+1 < N+1and 7(z) > Bn41,
where N > m. If M +1 < N + 1, extend z to length N 4+ 1 by adding zeroes to the left.
Then clearly

N
ZZijZ m(2) > Byy1 = ZtBNH -
=0
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Subtracting zy By yields

N-1 m
Z zjBj > (t1 — 2n) BN + ZtiBNH—i.
=0 =2

If zny < t1, then the word zy_1 - 2120 of length N represents a value larger than By. By
induction it contains a factor larger than the maximal factor and since zy_1--- 2120 is a
suffix of z, z also contains this factor.

Suppose now that zy = t1. We know that

N-1 m
Z zjBj > ZtiBN+17i (2.17)
§=0 i—2

and one of the following three cases occurs:

(a) zn41-r > t, holds for some r € {2,...,m} and 2y41; = t; for all 2 <[ < r. Then
evidently the prefix zyzn—_1 -+ 2nv+1— of the word z is lexicographically greater than
the maximal factor.

(b) zyg1-1 =t; for all 2 <1 < m. Then clearly
INZN-1" " ZN42-mZN+1—m = tita - tm—1tm >lex tita -+ - ty—1(tm—1).

(¢) z2N41—r < t, for some r € {2,...,m} and zy41-; = ¢; for all 2 < < r. The word
z and maximal factor have the common prefix t1¢s---t,_1. Consider the word 21
obtained by removing this prefix from z and the word y() formed from the coefficients
of the sum on the right hand side of also with the same prefix removed:

2V = aniioe AN—r ot ENHlem AN—m 0 A 20,
y = t, try1l - tm 0 .. 0 0.

Surely 7(z() > 7(y(1), as the inequality (2.17) cannot change by removing the same
prefix (which corresponds to subtracting the same value from both sides). Then the
inequality (2™ > 7(y(M) is equivalent to

N-—r m
ZN41-rBNy1-r + Z 2jBj > t,BNy1-¢ + Z tiBNy1—r—i-
=0 i—2

After subtracting zyy1_» BN11—» We obtain

N—r

§ 2;Bj > (t, — 2n41—7) BN41-r-
: NG

Jj=0

>1

Hence the word 2(2) = ZN—rZN—r—1- - 2120 has length N+1—r, but represents a value
greater than Byy1_,. By induction z(?) contains a factor greater than the maximal
factor and so does the word z.

O
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We will now use the above lemma to prove the fundamental theorem about the language of
greedy representations.

Theorem 2.30 (Language of Greedy Representations). Let (By,)5> be an (F) basis of order m
with canonical alphabet A. Then L(B) is equal to

L(B) ={w € A*| no factor u of w of length |u| =d <m (2.18)

is lexicographically greater than the mazimal factor.}.

Proof. We will prove two inclusions. Denote X the set on the right hand side of (2.18).
L(B)CX:
Consider some x € L(B) and suppose that x contains a factor u of length 2 < d < m such
that
U= T T2 Timd1Ti—d =lex t1t2 -+ tm—1(tm—1),

where ¢ > m. Let i be the maximal index with this property. From the definition of the
lexicographic order this means that an r € {1,2,...,d} exists such that z;_, > t, and z;_s = t4
forall 1 < s < r, or that d = m, and x;_4 = ¢, for all 1 < ¢ < m. In the latter case, we can
surely rewrite x by adding a factor of value zero starting at the digit ;.

x; Ti-1 Tig e Ti—m+1 Tiom -
1 o e [— - (2.19)
i+l wia—t1 vio—te - Tiimii—tm-1 Tiim—lm -

In the former case, we have to proceed more carefully. There can be a digit x;—, < t, for some
s < p < m, thus we have to add another factor of value zero (but with the opposite sign) in
place of x;_,. We can do this because we know that x;_, > ¢,:

L LTi—1  Tji—p Tj—p—-1 -*° Li—p Ti—p Ti—p ° Li—m Li—m-1
1 t1 - § tri1 tp—1 g tpt1 - tm
1 31 C tp—r—l tp—r tp—r-i—l o by tm—r—‘rl
(2.20)

Since the basis has the (F) property, all the resulting digits marked with an asterisk x are
non-negative and contained in the alphabet A. Digits marked 7 will be also non-negative, but
not necessarily contained in A. There can be an index ¢ € {r + 1,...,m}, ¢ # p such that
Ti—q—tq+tq—r >ty or anindex s € {m —r+1,...,m} such that x;_s, +t; > t1. In that case
we can again add another factor of value zero and reduce the value of the digit concerned whilst
keeping the value of the whole representation unchanged. This may again introduce digits that
are not contained in A, but since the representation is finite, this rewriting process will always
end and yield a representation with digits contained in A. It is because we will never create
digits strictly larger than ¢; to the left of the digit x;_, and because the index r will be strictly
smaller in each subsequent addition. If we encounter digits not contained in A close to zp (the
digit at Bp), we proceed as in the following paragraph.

Suppose now that ¢ < m. We will use the same approach as above, the only difference is that
we will use the initial representations of zero instead of the factors of value zero. Analogically to
[2.19), if @;—; > ¢; for all 1 < j < i and xo > t;, we add a representation of zero:

Xg xi;l T z1 Zo
1 i ce ti1 t;+1 (2.21)
z;+1 xi_1—t1 - x1—ti_1 x0—1t;—1.
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On the other hand, if x;—, > ¢, and z;_; = t; for all 1 < 7 < r — 1 and there exists a
r+1 < p < isuch that z;_, < t,, we add two initial representations of zero, analogically to
what was done in (2.20)):

T Ti—1 " Lj—yr Tj—p—-1 =" LTi—p Ti—p Ti—p T x1 Zo
1 t L T T B T |
1 1 U tpfrfl tpfr tpfrJrl o bis—1 tims+ 1
r;+1 * * ? e ? * ? e ? ?
(2.22)

Again, due to the (F) property, all digits marked * will be non-negative and contained in A.
Digits marked 7 are also non-negative, but not necessarily contained in A. If there is a digit
among them that is not contained in A (i.e. there exists an index s+ 1 < ¢ < 7, ¢ # p such that
Ti—q — tq + tg—s > t1), we repeat adding initial representations of zero as in and
until all the resulting digits are contained in A. This process must end because of three reasons:
we will never create digits strictly larger than ¢; to the left of the digit x;_,, » will be smaller in
each subsequent addition, and the representation is finite.
Lastly, notice that x; + 1 < t1, because if x; + 1 > t1, then x; = t; and we would have

LT Ti—2 *** Tied42Ti—d1Ti—d >lex L1t1t2 - tm—otm—1(tm—1). (2.23)
From the (F) property we can see that
titite - tn—otm—1(tm—1) Zlex titats - ty—1(tm—1)(tm—1),

using this with (2.23)) and removing the last digit (¢,,—1) from both strings (which does not
change the inequality) yields

TiTi1 - Tiod+2Ti—d+1 >lex titats - - tm—1(tm—1),

which is a contradiction with our definition of i.

In all four cases (2.19), (2.20)), (2.21), (2.22) we have constructed a representation & € A*
which satisfies 7(2) = w(x) and & > x , which is a contradiction with property 2 of greedy
representations — if x is greedy, then it must be the greatest among all representations of 7(x)
in the radix order. Therefore L(B) C X.

L(B) DX :

Let w = wprwpr—1 - - - wiwo € A* and suppose that w ¢ L(B). We will show that w contains
a factor greater than the maximal factor.

Take the greedy representation of the value 7(w) and denote its digits (m(w))p = xn - - Tp.
From property 2 of greedy representations we have (m(w))p = w. By definition of the radix
order, precisely one of the following occurs:

a) |(m(w))p| > [w].

b) |[(m(w))g|] = |w| = N + 1 and an index r, N +1 > r > 0 exists such that z, > w, and
zy=w;forall N+1>1>r.

Case a): From the greedy algorithm we know that m(w) > By. At the same time |w| < N.
Hence, by Lemma the word w contains a factor greater than the maximal factor.
Case b): Let [(r(w))p| = |lw| =N +1 and 2, > w, for some N+1>r>0and N+1>1>1i
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for all ; = w;. We will modify the words w and (7(w))p and then apply the Lemma By
removing the common prefix wijws - - - wy_1 we obtain the words

1)
1)

J:( =IN—yTN—r—1"""T120,

w( = WN—yWN—p—1 """ W1WQ.

Evidently 7(z()) = w(w(), therefore

N—r N—r
INy1-+BNy1—r + Z zjBj = wNy1-+BNy1—r + Z w; By,
j=0 7=0
subtracting wy41—rBny1—r yields
N-—r
Z wjBj > (*N41—r — WN41—r) BNi1—-
Jj=0 >1
The word w(? = WN—_rWN—p—1 - wiwg has length N + 1 — r, but represents a value greater

than By41—r. Thus by Lemma w® contains a factor greater than the maximal factor, and
since it is a suffix of w, w contains this factor too. O



Chapter 3

Ambiguity of Linear Numeration
Systems

As has been noted in the previous chapter, B-systems are redundant. In a given B-system,
most natural numbers have more than one representation over the canonical alphabet. For the
Fibonacci and m-bonacci systems, much has been done to describe and quantify the ambiguity
of such systems [, 2, [T, 12]. Our main contribution consists in generalising these results to all
confluent B-systems.

In this and next chapter we study the redundancy of confluent B-systems in terms of the
redundancy function R(n).

Definition 3.1. Consider a B-system. Then the redundancy function R(n) is defined as the
number of all B-representations of the natural number n over the canonical alphabet A. Formally,

R(n) :=#{ve A" |n(v) =n}.

Similarly, for a greedy representation w = (n)p, denote by R(w) the number of possible B-
representations of the number n.

In this chapter we will mostly use the function R in the latter notation. In Section we
will introduce the algorithm for calculating R(n) and lay out its technical requirements. A more
detailed description of the C+-+ program can be found in the Appendix along with instructions
on its usage. We will follow this in Section with computational results of our algorithm and
statement of claims that can be inferred from the data, which will be later verified and proved
in Chapter [4] We start with a motivational example.

Example 3.2. Consider the B-system with basis B,, = 2B,_1 + B,—1. Then the first elements
of the basis are (By,),—, = {1,3,7,17,41,99,239, ...}, and the associated rewriting system py
conists of four rules: 100 — 021, 101 — 022, 200 — 121, and 201 — 122. Let w = 1020100.
Then R(w) = 6, since all the possible B-representations representing the value 7(w) = 1-239 +
2-414+1-7 = 328 are 1020100, 1020021, 1012200, 1012121, 0222200, and 0222121, and the
representations are related to each other by the following rewritings:

1020100 <+— 1012200 <+— 0222200
pA pA

pAT pAT pAT

1020021 <«+— 1012121 <«+— 0222121
pA pA
33
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On the other hand, let u = 1020202. Then R(u) = 1, since there is no way any factor of u can
be rewritten using the four rules from the associated rewriting system p4. Another possible view
can be that the addition of the factor of value zero 121 to some factor of u would result in a
string that has digits not contained in the canonical alphabet {0, 1,2}.

3.1 Calculating R(n)

This section lays out the technical requirements for the practical calculation of R(n).

To be able to calculate the R(n) function and to study its properties in all (F') systems, we
have to bound the interval on which it will be calculated. Suppose we have chosen some bounds
Tmin, Pmax- Lhen the calculation of R(n) for all nyin < n < npay is done by a simple algorithm:

Algorithm :

Denote by R(n) the intermediate values of R(n). Initialise R(n) to zero for all nyin < n < Npax-

Then, for all words w € A* that satisfy (nmin) 5 < W < (Nmax) g do:

1. Set R(m(w)) :=R(m(w)) + 1.

2. Increment w by one in the radix order, i.e. increment it as if it was a standard b-ary
representation.

After the algorithm terminates, R(n) will equal R(n) for all npin < n < npax. However, this
simple algorithm can fail to compute correct values of R(n) for n that are close to the bound
Nmin. Since we are counting all representations and not just the greedy representations, there
can surely be a representation u such that u < (nmin) 5 but 7(u) > nmin, as in the following
example:

Example 3.3. Consider the (2,1)-B-system. Then B,, = (1,3,7,17,...). Let (nmin) 5 = 1005
and u = 022p. Then u < (Nyin) g but m(w) =8 > 7 = Npyin.

Therefore, if we set nyin := 7 and proceeded with counting R(n) as in the above algorithm,
we would come to the false result that R(8) = 1, because we would have omitted the non-greedy
representation 022p.

The converse case, i.e. a representation v such that v > (nmax)g but m(v) < nmax cannot
occur due to property 3 of greedy representations (see Theorem . We thus have to replace
the bound (nmin) g With )nmin (5, counting all the words )nmin (5 < w = (Mmax) 5-

Unfortunately, in general there is no way to obtain )nmin (5 other than determining all the
possible B-representations of nyi, and selecting the radix smallest one. To rectify this, we have
to select the bound nmi, such that every representation u < (nmin)p has a value 7(u) strictly
smaller than ny;,. Thankfully, such bounds are easy to find, which we do in the following
technical lemma.

Lemma 3.4. Consider an (F) basis (By)5o. Then for every k € Ny the following holds:
1. R(Bp—1)=1.
2. For every word w € A*, where A is the canonical alphabet, w < (By,—1)p iff m(w) < Br—1.

3. Likewise, for every word w € A*, w > (B, — 1)p iff m(w) > By — 1.



3.1. CALCULATING R(N) 35

Proof. Let (By,)>2, be an (F) basis of order m, denote its coefficients t1, %2, ..., tn. Let k € No.
Then the greedy representation of By — 1 will have the form

k
(B, — 1)p = (tity - ty1 (tm—1)) L1ty -ty 11y, (3.1)

where ¢ is the remainder of the division of k& by m, formally ¢ = k — L%J m. (B — 1)p will be
equal to because of two reasons.

Firstly, (Br — 1)p must be the largest greedy representation of length k, since the greedy
representation of By is (By)p = 10%, which has length k + 1 (and it is the radix smallest
representation of length k + 1).

Secondly, due to Theorem a greedy representation in a B-system with the (F) property
avoids any factor larger than the maximal factor. The representation on the right hand side of
is precisely the (radix) largest possible B-representation of length k that does not contain
a maximal factor, so it must be equal to (B — 1)p.

Let us now prove statement 1 of the lemma. The case k = 0 is trivial, since Bg—1 = 0, which
has only one representation over the canonical alphabet A. Hence, let k£ > 0 and suppose now
that By — 1 has another B-representation w. Surely w can be reached by one or more additions
of the factor of value zero to (B — 1) . However, we will show that any word created this way
will have digits that are not contained in A. Because the B-system has the (F) property, the
canonical alphabet is equal to A = {0,1,...,t1}. As the greedy representation (Bj, —1)p is equal
to , there is no valid location to add the factor of value zero, because at least one resulting
digit will be strictly greater than t;. Furthermore, if we try to subsequently shrink this digit by
adding ¢,41 factors of zero, we will again introduce at least one digit that is greater than t;, as
seen below in (3.2)).

Be—1llp= t - & trt1 try2 tr+s
1 t1 to t3
tr=1 tr 1+t tryotto tr+3+ts
T t t
1 t1 to (3.2)
1 t to
w= w1 - b1 t1 tryottottrir-ty  trysgt+ts+iryi-to

This applies also if we add the factor of value zero in the place of t,,—1 (thus adding ¢; in the
place of t,, — 1). If t,, —1 =0, then ¢, — 1 +; € A, but we will again introduce digits that are
not contained in A in other locations, as seen below in ({3.3).

(B,—1)p= t1 tg --- tmifl tm—1 t1 to
1 t1 to t3
t1 to - tm_1—1 t1 t1+ty totts --- (3.3)
1 2 ty
w = t1 toa -+ tm—1—1 t1+1 to t3

The same argument holds also at the end of the representation (i.e. close to the digit at By).
Therefore, w cannot have its digits contained in A, which is a contradiction.

Statement 2; (=) : Take a word w € A* such that w < (Bx — 1) 5. Then by definition of the
radix order, it is either a) shorter than (B —1)p, denote |w| =1 < k, or b) it has the same length
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as (Bj, — 1) p and there exists an index s € {0, 1,...,k—1} such that wy_s < ((Bx — 1)B);,_, and
w and (Bj, — 1) p share a common prefix of length s. We will treat both cases simultaneously.
In case b) first remove the common prefix from both words. This yields the words

W' = Wh—g— 1 Wh—g—2 - - - W1 W,
(Bp — 1) = tptpr1 - tme1 (bm—1) (t1te -ty (tn—1))t1te - - tp_1ty, (3.4)

where 1 <p<m-—1,and 0 < g < L%J

Case a) can be converted to case b) by setting s = 0 and wg_1 = wx_2 = - -+ = w; = 0, which
yields w* = 0---Ow. Lastly, set (B — 1) = (Br — 1)B.

To prove By, — 1 > w(w) we will evaluate the sign of 7((By, — 1)3) — m(w*), because clearly

7((By — 1)%) — m(w*) > 0 implies By, — 1 > mw(w). Evidently, we can bound 7(w*) followingly:

k—s—2
T(w*) < wp—s—1Br—s—1 + Z t1B;.
=0

That is, we replace every digit of w* other than the most significant one with #;.
Using (3.4), we can write the expression

k—s—2
7((Br = 1)) —wk—s1Brs1— > hBi
i=0
digit by digit as
ty tlirl trﬁl tm:l ti tj tntl tm:l ti ttl tl
Wg—s—1 t1 -~ 1 ty t1 1 3] 1 tv -0 t1 t1’

where by vertical lines we delimit each repetition of the factor t1ta - - ty—1(tm—1) in (B —1)7%.
We know that t, > wy_s_1, and since the basis has the (F) property, ¢; > 1 holds for all
i=1,2,...,m. We can thus add the factor 1t1ty - -t _ot;m_1tm, (that has numeric value zero)
at every digit. This results in adding ¢; to the next digit to the right, which cancels out with
t; and together this always yields a digit that is non-negative. The only location in which we
cannot subtract 1 is in the location of the digit ¢,,—1, because if ¢,, = 1, then ¢,, — 1 = 0.
However, as can be seen from and due to the fact that m is at least 2 and ¢t; > 1, we will
still obtain a non-negative digit at that location. Also, this results in an addition of at least 1
to the digit to the right of ¢, — 1, allowing us to subtract 1 again and cancel out #; in every
location in the following appearance of the t1tots - - - t,,—1t,,—1 factor.



b tprr ot b=l | ty ooty oty o tme1 tm—1 | #
1 tj to tm—p—2 tm—p—l tm—p tm—p—i—l to tin
1 o tm—p—S tm—p—2 tm—p—l tm—p SR | tm
1 1 t t3 s tpp1 tpyo oo tm
1 tj to tp—l tp—2 to tm—2 tin—1 tn
tp—? tp—3 to tm—3 tin—2 tm—1
_ 3.5
1 tq e tm—p—2 tm—p—l tm—p ( )

tm—p—S tm—p—Z tm—p—l

—_ .

t1 to
1
W51 bt - h t 2 R U T ! 1 2

At the start and in the middle of the representation, the subtraction will proceed as shown above in ([3.5). In the middle, Tt1to - - - ty—otm—1tm
is repeatedly shifted and added at every digit except for the digit that has value ¢,,—1.

Ie

(N)Y DNILVIADTVO

LE
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At the end of the representation, if 7 > 1, the subtraction is as in (3.6). In total, all digits
marked with an asterisk (x) will be non-negative, and the digit at By (marked with a plus sign
+) will be always positive:

tm—1 tm—1|t1 t2 -+ {1 ty
1 131 ta 13 tim—1 tm
T t1 - tmo tmoa+l
T : : (3.6)

t1 to+1

1 t1+1
t1 t1 t1 1 t1 51
* * * ok * * +

Otherwise, if r = 0, then the addition is as follows:

tm—1 tm—11t1 to -+ tme1 tm—1
1 t1 |t2 t3 -0 tpme1 tm
1 t1 -+ tjo tm_1+l1
1 : :
1 to+1
1 t1+1
t i |ttt t t1

and again the digit at By is positive.

Together, this yields the desired inequality = ((By — 1)) — 7 (w*) > 0 and so By —1 > m(w).

Part 2; (<) @ Let m(w) < B — 1. Then w < (By — 1)p follows from properties 2 and 3
of the greedy representation, i.e. every representation w such that w(w) < Bp — 1 must satisfy
w =X <7r(w)>B =< (Bk — 1>B-

Part 3; (=) : Let w > (Bx — 1)p. Then either w is longer than (By — 1)p and so m(w) >
By, from which 7(w) > By — 1 clearly follows, or |w| = [(Br — 1)p| and there exists an s €
{0,1,...,k — 1} such that w and (By — 1)p share a common prefix of length s and wy_s_1 >
((Bk —1)B)j_s_1- In this case, remove the common prefix, which yields the representations

W = Wg—s-1Wk—s-2 * - W1Wo,

(Br — 1)B =tptpt1 - - tm—1(tm—1)(t1t2 - - t—1(tm—1))t1ta - - - t,_1ty, (3.7)

where again 1 < p <m—1,and 0 < q < L%J The number 7 (w) can clearly be bounded
followingly:
™ (UA}/) > Wg—s-1Br_s-1,

and so we can write

—_~— P

T (@) — (<Bk - 1>B) > wy_s_1Bp_g_1 — ((Bk - 1>B) . (3.8)
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The expression on the right of (3.8]) can be written digit by digit as

0 0 o -- 0

Wg—s-1 0 -~ 0 0
b1 tm—1|t1 - t_1 .

ty  tpr1 o tme1 1

We will now proceed as in part 2. Clearly the digit wy_s_1 satisfies wp_s_1 > t;,, so we can add
the factor Tt1ty -« - ty—otm—1tm- Then, since the basis has the (F) property, t1 > to > -+ > ¢,
and so we will obtain a non-negative digit (marked ) in every column:

Wp—s—1 O - 0 0 0 0o - 0 0 0
1 t1 o tm—p—Z tm,—p—l o tm
1 t tpi1 tpio tmo1  tm
Lot (3.9
g tpi tm—1 t g tpi tm—1 tm—1 t

The subtraction is much simpler than in part 2, and like in part 2 we are left with a positive
digit at By:

0 0 o 0 --- 0 0
tm—1 th
1 t1 to -+ t._1 tr+1
tm—1 tm—11%t1 to --- t,._1 t,.

Together this yields

~——

Wg—s1Bp-s1— (<B/€ - 1>B) >0

and so the desired inequality 7(w) > By — 1.

Part 3; (<) : Let m(w) > By — 1. In case when w is longer than (Bj — 1)p, the inequality
w = (B — 1)p is evident from definition, so let w be such that |w| = [(By — 1)p|. Then since
(Br—1) p is the radix largest greedy representation of this length, w is not a greedy representation.
Therefore, w contains a factor that is larger than the maximal factor and so w > (B —1)p. O

With Lemma in hand, we can proceed to calculate R(n). In effect, part 2 of Lemma
would be sufficient for our needs. In counting R(n) for all n € {Nmin, Pmin + 1, .., Nmax} We
will traverse all the words(nmin)g =< W =< (Nmax)p, and since the greedy representation is the
radix greatest among all representations of a given number, we will not omit any representation
of Nmax. If we encounter a w such that 7m(w) > npax, we can ignore it.

Thus, if we want to determine R(n) on the interval n € {nmin, Pmin+1, . . ., Nmax } for arbitrary
Nmin and Nmax, we have to find the largest basis element By such that By — 1 < npyiy, traverse
all the words (By — 1) =< w = (Nmax)p and then discard the values of R(n) for all n in the
interval {Bx — 1, By, ..., nmin — 1}

However, we will still usually set nymin = Br — 1 , %max = Bg4+1 — 1, because this precisely
delimits all representations of length k£ + 1. Calculating R(n) on such intervals allows us to
uncover the palindromic structure of R(n), as well as trends in the number of its maxima and
the sequence of numbers that have a unique representation.
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R(n) on representations of length 5

2 (X X X X J (X X X X J 00000 OO o0 000000 (X X X X J (X X X X J

Figure 3.1: R(n) in the (2,1)-B-system on all n whose greedy representation has length 5.

3.2 Computational Results

In this section we will present computational results of our survey of R(n) in various confluent
systems. We will begin by presenting results for the (2,1)-B-system as a model example. In this
system, R(n) was calculated for all representations with lengths up to 23 (i.e. up to By — 1 &~
768 - 108). In Figures see the graph of R(n) for all n whose representations
have lengths 5-8. We can see that R(n) is symmetric on the interval B;_; — 1 to B; — 1. This
precisely delimits representations of length [ (plus the element B;_; — 1), the representation
(n)z = 1! being the center of symmetry. We will later prove that the R(n) function displays
such a palindromic structure in all B-systems with the (F) property. We will also show this
palindrome is precisely aligned with this interval (i.e. the numbers By — 1 <n < Bpy1 — 1) in
all confluent systems of order 2 with coefficients a, 1, where a is some natural number.

For further study of the maxima of R(n), we will establish some notation. The value of
R(n) depends on the length of representation, thus it suffices to restrict our analysis of R(n) to
representations of a given length. Denote

(1) ;== max R(n)=max{R(n)|B-1—1<n< B —1},

|<”>B|:l

and
U(l):=<arg max R(n),.
|<n>B|:l

Note: We count Op, the representation of zero, among the representation of length 1.

In Table the maxima of R(n) with respect to the length of the representation are dis-
played, along with the first 4 members of the set W(l). We notice that the value of ¥ (l) satisfies
the following relation

w1y =201, (3.10)
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R(n) on representations of length 6

r020coc
r 100¢0¢
r0¢110C
r T0T10C
r0T0T0C
r 10C00C
r0T100C
r ¢1000¢
 00000¢
r¢11oct
r00T0CT
r ¢000<T
rTT0CTT
r COCTITT
rTTTITT
r0C0TTT
r TOOTTT
r0CTIO0TT
r TOTOTT
r0TOO0TT
r Z10201
r 000¢0T
r¢ITT0T
r00TTOT
r C00TOT
002001
r ¢0T00T
r TT000T
r 2¢0coc

(u)y

(s
Figure 3.2: R(n) in the (2,1)-B-system on all n whose greedy representation has length 6.

R(n) on representations of length 7

r ¢0¢0coc
0T00C0C
r 00CT10C
r TOOTTOC
r ¢100T0C
r ¢0C¢T00¢
r0TOT00C
r 00T000¢C
r 10020ZT
r ¢10TO0ZT
r ¢0100ZT
r0C¢T10CTT
- 0000CTT
FTTITITT
r TOCOTTT
 CO000TTT
0CTITOTT
000TOTT
r TT000TT
r T0T0C0T
r ¢00CT10T
00110t
rOTTOTOT
1102001
r TOTTO0T
110001

r020z0C

(u)y

(n)s
Figure 3.3: R(n) in the (2,1)-B-system on all n whose greedy representation has length 7.
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First 4 elements of W(I)

#V(1)

P(l)

20
201

1010

20101
100201
2010101
10020101
201(01)201
1002(01)201

12
200

1002

20100
100200
2010100
10020100
201(01)200
1002(01)200

11
101

1001

10101
100101
1010101
10010101
101(01)201
1001(01)201

10
100

1000

10100
100100
1010100
10010100
101(01)200
1001(01)200

16

32

4
48

4
64

16
16
32

10
11
12
13
14
15
16
17
18
19
20
21

201(01)301
1002(01)301

201(01)300
1002(01)300

101(01)301
1001(01)301

101(01)300
1001(01)300

4
80

32

201(01)*01
1002(01)%01

201(01)*00
1002(01)%00

101(01)401
1001(01)%01

101(01)*00
1001(01)*00

4
96

64
64
128
128
256
256
512
512
1024
1024

201(01)°01
1002(01)°01

201(01)%00
1002(01)%00

101(01)%01
1001(01)°01

101(01)500
1001(01)%00

4
112

201(01)%01
1002(01)%01

201(01)%00
1002(01)%00

101(01)%01
1001(01)%01

101(01)%00
1001(01)00

4
128

201(01)701
1002(01)701

201(01)700
1002(01)700

101(01)701
1001(01)701

101(01)700
1001(01)700

4
144

201(01)%01
1002(01)%01

201(01)%00
1002(01)%00

101(01)%01
1001(01)%01

101(01)%00
1001(01)%00

4
160

22

101(01)°01  201(01)%0  201(01)01

101(01)00

4

23 2048

Table 3.1: Maxima of R(n) in relation to the length of representation in the (2, 1)-system.
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R(n) on representations of length 8

8 1 [ J ( N N J [ ] [ ] [ J [ J (X N J [ J
7—
6 1 CEOOO O OGO oot o [ X J [ J o [ X J OCENNOO O GO oo
54 [ J [ J [ ] [ ] [ J [ J [ J [ J
<
£
e
4 [ ] (. I I ] [ x N  _N] (x N X ] ( I I ] [ ]
3 [ ] [ 1 ] ap oo 0 & b e [ ]
21 (X N J (X N J (N 3 I . By N _ _J o oEle ¢ o oEle ¢
14 ( ] ( J [ J (N _ N J o o o
|||||||||||||||||||||||||||||||||||||||||||||||||
NANANANANANANANNANANANANANNAAAAAAAAAAAAAA0000000000000000O0O0OO0OO0
OO0 O00O0O0CO0O 0O A MM HEHAHOO0OO0O000O0O0O MM Et OO0 000000 A M HHHHNNNNONON
NANNHAF OO0 O0OHHOOOONNMHHFHOOOOHHOOOONNMHHFHOOOOHHFHOOOOHHOOOO
OO O HOOHNOHOOANOHOHOOANOHOOHNOHOHOOHNOHOOHNOHOOHAMN
NOOH 1 NOOOHH NOOOOOHH NOOOHHNOOOOOHHNOOOHANOOOHHANOOO
OO0 00O MEHHH A HANNNOOOOOH MMM ANNNOOOODOOOOOOOHMHMHHHHNNN
NOOOOOOOO0OOOCOOOOO A H A MMMl AANANANANNOOOOOOOOOOOOOOO
4t~ A~ A A A A A A AAAAAAAAAAAA A A A A A A A AN NN ANNANANANNNNONONNN
(n)s

Figure 3.4: R(n) in the (2,1)-B-system on all n whose greedy representation has length 8.

and that for the size of the set W(l) the following holds — for every [ > 3:

4 for [ odd,
#\Il(l) = l
16 (5 - 1) for [ even.

We will later prove these two claims using the formula for R(n) that will be introduced in
Chapter [

For other confluent B-systems, closed-form expressions for ¢ (1) and #W¥(l) can be found as
well, which we will show in the following tables. Our survey of confluent systems revealed that
confluent numeration systems can be divided into three groups according to the behaviour of
R(n). These groups are distinguished by whether the last coefficient is equal or strictly less than
the other coefficients and the order of recurrence. More precisely, the confluent systems with
a = b and order m = 2 show very similar behaviour to the Fibonacci system, those with and
a = b and order m > 2 behave analogically to the m-bonacci systems, whilst confluent systems
with a > b can be grouped together as they all satisfy . We will verify these statements in
Chapter [

3.2.1 Confluent Systems with ¢ = b and order m = 2

Confluent systems with a = b and order m = 2 show analogous behaviour to the Fibonacci
system. See Table where we present the values of ¥(l) and #V(l) as well as the first four
elements of W(l) for the (2,2)-system. In Figures and see the graph of R(n) for the
systems with coefficients (2,2) and (3,3) on all n whose representation has length 7. Lastly, in
Table we have the sizes of the set ¥([) for all surveyed systems of this type.

Notice that for the value of ¥(I) the following holds:
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Y2l+1)=F  forl>0,
(2l 4+2) =2F,_; for 1 > 1.

Furthermore, except for the initial cases [ = 1,2,3,4 and [ = 6,9, 12 we can see from Table
that the sizes of the set W(l) satisfy

#U2k+1)=2-a fork>1k#4,
HU(2k) =4-a® for k> 4,k #6.

For lengths [ = 1 and [ = 2 the set W(l) is simply composed of all numbers with greedy repres-
entations over the alphabet A = {0,1,...,a} (where we count 0 among the representations of
length 1), of which there are #¥(1) = a + 1 and #¥(2) = (e + 1) - a — 1. For example for the
(3, 3)-system we have ¥(2) = {10, 11,12, 13, 20, 21, 22, 23, 30, 31, 32}.

For [ = 3 the set W(l) consists solely of numbers whose greedy representation has the form
z00, because then we can perform one interchange 00 <> (z—1)aa. Hence #V(3) = a because
the most significant digit « can be any nonzero digit from A.

The situation for [ = 4 is similar, WU(l) will consist of numbers with greedy representations
00y and zy00. In the first case, x € {1,2,...,a} and y € A, so we obtain a - (a + 1) possible

representations. In the latter case, x € {1,2,...,a} again but the situation for y is more
complicated. The digit y cannot be zero, since y = 0 has been counted as part of the first string
200y. Then, if z = a, then y can only be from the set {1,...,a — 1} because the representation

xy00 is greedy. Thus xy00 accounts for (a — 1) -a+ (a — 1) = a® — 1 representations. In total we
obtain #V¥(4) =a- (a+ 1) +a® — 1 = 2a% + a — 1 possible representations.

The case | = 6 can be solved by a similar analysis. The value 1(6) = 4 is reached on rep-
resentations of the form x00y00, where z,y € {1,2,...,a}, because that allows two independent
interchanges 200 <+ (r—1)aa and 300 > (y—1)aa. Hence #¥(6) = a>.

The case | = 9 is more complicated. There are three basic forms of words w on which the value
R(w) = 8 = 9(9) is reached. They are 00010000, £00y00z00, and x01000100, where z,y, z €
{1,2,...,a}. The string 00y00z00 allows three independent interchanges %00 <+ (x—1)aa, this
corresponds to a® elements of ¥(9). The words 01000100, 00010000 contribute another 2a
elements of W(9).

Lastly, all the maximal representations of length [ = 12 are precisely the words with one of
the forms

200y00z00v00, x00y00010000, z00y01000100, x01000100y00, and x00010000y00,

where again x,y, z,v € {1,2,...,a}, thus we obtain #W¥(12) = a* + 4 - a>.
We will revisit the cases ¥(9) and ¥(12) in Chapter 4 when we have proven the matrix
formula for R(n) and proven the expression for the value of ¥(1).
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R(n) in (2,2)-System on representations of length 7
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Figure 3.5: R(n) in the (2,2)-B-system for all n whose greedy representation has length 7.

R(n) in (3,3)-System on representations of length 7

rCETZECE
r CECETLE
r CE0TCZE
rCETCTIZE
rceceoce
r CEOTOZE
rECCIELE
rECETTIE
r €CI0CIE
rECCITIE
r ECETOTE
r €CT00TE
r 0ZE0EOE
r €20¢C0¢
FECIETOE
r 0ZEOTOE
r €20200€E
FECIETET
r0Ze0cee
r €20CTIEC
ECTEOET
r 0ZE00€ET
r0ZIIEee
roceeeee
0200cze
ro0ZIttee
r0Zeceoce
r020002¢
r TTZO0ETC
rLIETCIC
I 0COETTC
r TTIZ0TTIC
r TIETOTC
44
rI1ZeC0C
r TT0TC0C
rII1C10Z
r IIZ€00C
r TT0T00Z
rITICCEL
FTICETET
FrTTIOTTET
rTTICOET
r C0ECECT
I C0T0ECT
20Z1ecI
r C0ECIZT
¢0T0TZT
I ¢0ZT0Z1
r CO0CETT
FZO0TECTT
I CECOCTT
rC00CTTT
r COTEOTT
I CECO0TT
r CEOTEOT
rCETCC0T
I CECETOT
CEOTTOT
r CETC00T
R4X4X4

(u)y

24

(n)s

Figure 3.6: R(n) in the (3, 3)-B-system for all n whose greedy representation has length 7.



Io(l) #9() First four elements of ¥(I)

1 1 3 0 1

2 1 6 2 10 12
3 2 2 100 200

4 2 9 1000 1001 1100
5) 3 4 10000 10100 20100
6 4 4 100100 100200 200200
7 5) 4 1000100 1010000 2010000
8 6 16 10000100 10000200 10010100
9 8 12 100010000 100100100 100200100
10 10 16 1000100100 1000100200 1001000100 1001010000
1 13 4 10001000100 10100010000 20001000100 20100010000
12 16 32 100010000100 100010000200 100100010000 100100100100
13 21 4 1000100010000 1010001000100 2000100010000 2010001000100
14 26 16 10001000100100 10001000100200 10010001000100 10010100010000
15 34 4 100010001000100 101000100010000 200010001000100 201000100010000
16 42 16 1000100010000100 1000100010000200 1001000100010000 1001010001000100
17 55 4 10001000100010000 10100010001000100 20001000100010000 20100010001000100
18 68 16 100010001000100000 100010001000100000 100100010001000000 100101000100010000
19 89 4 1000100010001000000 1010001000100010000 2000100010001000000 2010001000100010000
20 110 16 10001000100010000000 10001000100010000000 10010001000100000000 10010100010001000000
21 144 4 100010001000100000000 101000100010001000000  200010001000100000000  201000100010001000000
22 178 16 1000100010001000000000 1000100010001000000000 1001000100010000000000 1001010001000100000000

Table 3.2: Maxima of R(n) in relation to the length of representation in the (2, 2)-system.

9
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#(1)
I () 1,1 2,2 3,3 44 55 66 71,7
11 2 3 4 5 6 7 8
2 1 1 5 11 19 29 41 55
32 1 2 3 4 5 6 7
4 2 2 9 20 35 54 77 104
5 3 2 4 6 8 10 12 14
6 4 1 4 9 16 25 36 49
7 5 2 4 6 8 10 12 14
8 6 4 16 36 64 100 144 196
9 8 3 12 33 72 135 228 357
10 10 4 16 36 64 100 144 196
1 13 2 4 6 8 10 12 14
12 16 5 32 117 320 725 1440 2597
13 21 2 4 6 8 10 12
14 26 4 16 36 64
15 34 2 4 6 8
16 42 4 16 36
17 55 2 4 6
18 68 4 16 36
19 8 2 4
20 110 4 16
21 144 2 4
22 178 4 16
23 233 2 4
24 288 4 16

47

Table 3.3: Sizes of the set W(l) for all surveyed systems with coefficients a = b and order m = 2.

3.2.2 Confluent Systems with a« = b and order m > 2

Confluent systems with a = b and order m > 2 show analogous behaviour to the m-bonacci

systems. See Table where we display the values of ¥ (l) and the first four elements of the
set W(I) for the (2,2,2)-system. In Figures and [3.8] see R(n) on representations of length

7 in B-systems with coefficients (2,2,2) and (3,3,3). Lastly, we present the values of v (l) for
surveyed B-systems of order m = 3 and m = 4 in Tables 3.5] [3.6]



CHAPTER 3. AMBIGUITY OF LINEAR NUMERATION SYSTEMS

48

R(n) in (2,2,2)-System on representations of length 7

(u)y

r 10Z¢1ZC
444144
r ¢I0TTIZZ
r ¢0I0TZZ
r 02120¢C
r 0TZI0ZZ
r T00T0ZZ
r 12000¢Z
r ¢T0CCIZ
r ¢OTTCIZ
r ¢C10CIZ
r OTZCITZ
- T00ZTITZ
r TZOTTIIZ
r TTIOTIZ
r ¢C1201Z
r ¢ICIOIZ
r OTOTOIZ
r 00T00TZ
r 120¢C0c
r TIT1Z0¢C
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r ¢IZCI0Z
r 0TOZT0Z
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r 0CI0T0Z
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r ¢01000¢C
F¢CIiecl
- ¢TI0l
r 0T00¢ZCT
r 1¢0ZIZI
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r 0T0Z0CT
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r ¢I0ZO0TT
r ¢OTTOTT
- ¢ZIO00TT
r 0CIZC0T
r OTZIZO0T
r T00TZO0T
r 1200¢0T
r ¢OTZIOL
r ¢CITIO0T
r ¢IZOIO0T
- 0TO0TOT
r 1202001
r ITTT00T
r 10Z000T
r Teeriec

(n)s

Figure 3.7: R(n) in the (2,2, 2)-B-system on all n whose greedy representation has length 7.

b and

The expression for (1) is more difficult to uncover than in the previous case a

p(m+1)+q

2. However, as we will show in Chapter the values of ¢ (1) in relation to [

satisfy

m =

mo— 2},

for g € {0,1,..

Y(p(m+1)+q)=2°
¢ (p(m+1)+m—1) =20 42072

ifp>2,

¢ (p(m+1)+m)=2"+201
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R(n) in (3,3,3)-System on representations of length 7

1

0€ECECEE
2eeoeee
TTCITEE
002C0€EE
€E0€EECE
T€00ECE
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€0200€C
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€¢0T¢C0T
C¢10CT0T
T00€00T
CEECEE

(n)s

Figure 3.8: R(n) in the (3,3, 3)-B-system on all n whose greedy representation has length 7.

R(n) in (4,4,4)-System on representations of length 7
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Figure 3.9: R(n) in the (4,4, 4)-B-system on all n whose greedy representation has length 7.



LoYl) #9() First four elements of W(l)

1 1 3 0 1 2

2 1 6 10 11 12 20
3 1 17 100 101 102 110
4 2 2 1000 2000

) 2 10 10000 10001 10002 11000
6 2 41 100000 100001 100002 100010
7 3 4 1000000 1001000 2000000 2001000
8 4 4 10001000 10002000 20001000 20002000
9 4 32 100001000 100002000 100010000 100010001
10 ) 4 1000001000 1001000000 2000001000 2001000000
11 6 16 10000001000 10000002000 10001000000 10001001000
12 8 8 100010001000 100010002000 100020001000 100020002000
13 8 92 1000001000000 1000010001000 1000010002000 1000020001000
14 10 16 10000010001000 10000010002000 10001000001000 10001001000000
15 12 48 100000010001000 100000010002000 100000020001000 100000020002000
16 16 16 1000100010001000 1000100010002000 1000100020001000 1000100020002000
17 16 240 10000010000001000 10000010000002000 10000100010001000 10000100010002000
18 20 48 100000100010001000 100000100010002000 100000100020001000 100000100020002000
19 24 128 1000000100010000000  1000000100010000000  1000000100020000000  1000000100020000000
20 32 32 10001000100010000000 10001000100010000000 10001000100020000000 10001000100020000000

Table 3.4: Maxima of R(n) in relation to the length of representation in the (2,2, 2)-system.
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#V(1)
oY) 1,1,1 2,2,2 3,3,3 4,4,4 5,55
1 1 2 3 4 5 6
2 1 2 6 12 20 30
3 1 3 17 47 99 179
4 2 1 2 3 4 5]
5 2 3 10 21 36 95
6 2 7 41 119 259 479
7 3 2 4 6 8 10
8 4 1 4 9 16 25
9 4 5 32 99 224 425
10 5 2 4 6 8 10
11 6 4 16 36 64 100
12 8 1 8 27 64 125
13 8 9 92 411 1224 2885
14 10 4 16 36 64
15 12 6 48 162 384
16 16 1 16 81
17 16 13 240 1575
18 20 6 48 162
19 24 8 128
20 32 1 32
21 32 17 592
22 40 8 128

Table 3.5: Sizes of the set () for all surveyed systems with coefficients a = b and order m = 3
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#P(1)
I o) 1,1,1,1 2,2,2,2 3,3,3,3 4,4,4,4
11 2 3 4 5
2 1 2 6 12 20
31 4 18 48 100
4 1 7 53 191 499
5 2 1 2 3 4
6 2 3 10 21 36
702 8 42 120 260
8 2 19 161 623 1699
9 3 2 4 6 8
10 4 1 4 9 16
11 4 5 32 99 224
12 4 18 180 756 2160
13 5 2 4 6 8
14 6 4 16 36 64
15 8 1 8 27 64
16 8 7 88 105
17 8 34 628 3894
18 10 4 16
19 12 6 48
20 16 1 16
21 16 9
22 16 54

Table 3.6: Sizes of the set W(I) for all surveyed systems with coefficients @ = b and order m = 4

3.2.3 Confluent Systems with a > b

Confluent systems with a > b differ from the m-bonacci systems. Besides the (2, 1)-system
that served as our introductory example, we also looked at further systems of this kind. The
values of 1(1) and #¥(l) can be seen in Table[3.7]for systems of order m = 2 and in Table 3.§|for
systems of order m = 3 and in Table for systems with m = 4. As in the case of the systems
with coefficients a = b, the maximal value of R(n) is independent of the recurrence coefficients
and depends solely on the order of recurrence and length of representation. In Chapter [ we will
prove that for all confluent systems with a > b it is in fact equal to

p(o) =201
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Furthermore, the maxima are always concentrated in a clusters, as could be seen in the (2,1)-
system and in Figures 3.11], and where we show R(n) in the systems with coefficients
(3,1), (3,2) and (2,2, 1) on all representations of length 7. Notice that only in the (3, 1)-system
the graph is symmetric as in the (2, 1)-systems.

Looking at Tables & further, we may uncover a pattern in the size of the set W(l).
Whenever [ =1 mod m, the size of the set ¥(l) is equal to

#U() =a-(a—b)lw)Na—b+1).

This is due to the fact that in all confluent systems with a > b the representations on which the
value ¥ (pm + 1) is reached are of the form

w = wj_1 (Omflcp) - (Omflcl) Omflwo,

p times

where p = LLJ -1, w1 €4{1,2,...,a}, wo € {0,1,...,a—b} and ¢; € {1,2,...,a — b} for all

m

ie{1,2,...,p}.



#V(l)

I () 2,1 3,1 3,2 4,1 4,2 4,3 5,1 52 5,3 5,4 6,1 6,2 6,3 6,4
1 1 3 4 4 5 5 5 6 6 6 6 7 7 7 7
2 1 4 9 10 16 17 18 25 26 2T 28 36 37 38 39
3 2 4 9 6 16 12 8 25 20 15 10 36 30 24 18
4 2 16 o4 38 128 99 68 250 204 156 106 432 365 296 225
5 4 4 18 6 48 24 8 100 60 30 10 180 120 72 36
6 4 32 189 4 640 342 132 1625 1012 537 206 3456 2360 1464 774
7 8 4 36 6 144 48 8 400 180 60 10 900 480 216 72
8 8 48 540 110 2688 972 196 9000 4236 1524 306 23760 13040 6120 2196
9 16 4 72 6 432 96 8 1600 540 120 10 4500 1920 648 144
10 16 64 1404 146 10368 2520 260 46000 16308 3948 406
11 32 4 144 6 1296 192 8 6400 1620 240 10
12 32 80 3456 182 38016 6192 324
13 64 4 288 6 3888 384
14 64 96 8208 218
15 128 4 576
16 128 112
17 256 4
18 256 128

Table 3.7: Sizes of the set ¥(I) for all surveyed systems with order m = 2 and coefficients satisfying a > b.
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R(n) in (3,1)-System on representations of length 7

r C0T0E0E
r 0€0CC0€E
r 00£0C0€E
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r 100200€E
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I 2¢T0eze
r€1ceeee
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r 1000¢ZC
r COETTIZC
r0ETOTZC
r1Z1eoce
r ¢I0T0ZC
r ETCOETC
r0Teecie
r TOTICIC
rECOETTC
FOECITIC
r IZI0TTIC
rCI120T¢C
r €00TOTZ
r0TC0E0C
r 10Czeoe
r €20TC0¢C
[ 0C0ET0C
r 1ZZT10C
r C¢L10T0C
r €01200¢C
r 000T00¢C
 TOEZOET
rECTITOET
- 0Z000€T
rTT0ECCT
B4T4%44"
r€0T0CZT
r00TIcCIZI
r T0E0TZT
r€2220C1
r0Z110ZT
r 11000ZT
r CO00ECTT
F€0CTCIT
r00TOCTIT
rCZO0CTITT
r€ZCOTTT
r0Z¢C0TT
FrTTITOTT
r ¢0000TT
 €0€ZC0T
00CTC0T
I ¢20020T
r€T0CIOT
r0Z¢0T0T
r T1ZZ00T
r COTTO0T
r 0€0€0€E

6 -

(u)y

24

(n)g
Figure 3.10: R(n) in the (3,1)-B-system on all n whose greedy representation has length 7.

R(n) in (3,2)-System on representations of length 7

rECIIELE
r ET0ECIE
r€C0TCIE
r TOECTITIE
rITEOTTIE
r L0CCO0TE
r TTZ00TE
r 1Z20E0E
444
r 1Z1020€
r TT0CIOE
r IZ00TOE
r TECTO0E
r IZIETEC
rLETTTELC
r TZ0E0ET
r TEOTOEC
r€0TTECC
rETETITL
r€00TCZC
reTeeIee
€201
r€11202C
r €21002¢
 TOCOETC
r €20¢eIe
r T0T0CI¢C
FITETTTIC
r T000TTZ
r LICIO0TC
r1¢Z1e0e
rII1EC0C
r IZ11C0C
r TTOET0C
r IZ0TT0C
r 1€¢c00¢
 €0€000C
FTETCIET
r €0COTET
 TEOZOET
r €0T00ET
rETTO0ECT
r€00zeZt
r€100CCT
r€ZCITZL
FETTEOCT
r€CITOCT
r TOCIETT
F€C0ECTT
rTOTICIT
rITECITT
r TOOTTTT
rTTZCO0TT
r I1ZZ00TT
 TECOE0T
1212201
r TET0COT
I 120Z10T
r TEOOTOT
r €0ETO0T
rTETETE

(u)y

(n)s

Figure 3.11: R(n) in the (3,2)-B-system on all n whose greedy representation has length 7.
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#U(1)

I 2,2,1 3,3,1 3,3,2 4,4,1 4,4,2 4,4,3
1 1 3 4 4 b} b} 5}
2 1 6 12 12 20 20 20
3 1 16 45 46 96 97 98
4 2 4 9 6 16 12 8
2 2 20 63 42 144 108 72
6 2 80 351 236 1024 771 516
7 4 4 18 6 48 24 8
8 4 36 207 78 688 360 136
9 4 208 1593 632 6656 3558 1412
10 8 4 36 6 144 48 8
11 8 52 576 114 2832 1008 200
12 8 400 5697 1244 34816 12876 2820
13 16 4 72 6 432 96 8
14 16 68 1476 150

15 16 656 17874 2072

16 32 4 144 6

17 32 84 3600 186

18 32 976

19 64 4

20 64 100

Table 3.8: Sizes of the set ¥(I) for all surveyed systems with a > b and order m = 3.



3.2. COMPUTATIONAL RESULTS

#V(l)

I 9(l) 2,2,2,1 3,3,3,1 3,3,3,2
1 1 3 4 4
2 1 6 12 12
3 1 18 48 48
4 1 52 189 190
5] 2 4 9 6
6 2 20 63 42
7 2 84 360 240
8 2 320 1863 1244
9 4 4 18 6
10 4 36 207 78
1 4 212 1611 636
12 4 1040 10530 4268
13 8 4 36 6
14 8 52 576 114
15 8 404 5733 1248
16 8 2464 45603 10532
17 16 4 72 6
18 16 68

19 16 660

20 16 4848

21 32 4

22 32 84

23 32 980

Table 3.9: Sizes of the set U(!) for all surveyed systems with a > b and order m = 4.
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R(n) in (4,1)-System on representations of length 7

r OETOYOY
r CTZ0E0Y
r 0720C0v
r ¢Ze0Tor
r ¥0¥000v
r ¢ZO0TOvE
r YOTCEEE
rCETTTEE
4144533
r TOECOEE
rvZEEECE
r Tooveee
rvZovIZE
r TT00TZE
r ¥€000Z€E
rTZITETE
r €0CICIE
rLECITIE
rETETOTE
r 00¥CEQE
r ET0ECOE
r00TETOE
r ECIEOOE
r0TZEOVC
r EETOvEC
0¢C0EET
r ¢0€0CET
r0EE0TELC
r C00T0EC
r 0€E0CETT
rcrieeee
roviciee
[ zeeceoce
r YOEEETC
r CEEECTL
r v00¥TTIC
r ZE0V0TC
r ¥1000T¢C
r TOTTEOC
r¥¢1120¢C
rTIZTIT0C
r ¥ECT00C
rTZETOVL
rEOVZEET
r TZOECET
rEOTETET
r TETEOET
rETIOVZT
r00C0€CT
r€220CC1
rOTEOTZT
- EEE00CT
rOTOCETT
r€E0CCIT
FOZICITL
¢0Z¢0T1
r0ECEEONT
r CTEECOT
rOVEETOT
10001
r 0vovor

6 -

(u)y

(n)s

Figure 3.12: R(n) in the (4,1)-B-system on all n whose greedy representation has length 7.

R(n) in (2,2,1)-System on representations of length 7

0¢1202e
r¢I¢Ioce
r0Z010ZZ
r ¢11002¢
r020eeIe
rCIIIZIC
T44%4
r ¢100CTIZ
r00ICITIC
r¢ZITIIC
r000TTTIZ
r ¢Z00TTZ
r0TIC0TIC
r ¢0CI0TIC
F0TOTO0TIC
r ¢0T00T¢C
r010¢C0C
r¢01120C
r 1020C0C
I 200020¢C
r020¢10¢Z
rCIITI0Z
r TT2010Z
I <T00T0C
r001200¢
r ¢C1100Z
r 000T00C
 €20000C
r1¢10eZI
B4Y44%4"
r0T0CIZI
r¢OITIZI
 1020TZT
r C000TZT
r02020Z1
rCITT0ZT
 11200ZT
I Z1000CT
rIICIZIT
rCIOTCIT
rTII0CIT
FCZICITL
F000ZTTI
rCZOTTITIL
r IZIOTTIT
I ¢0ZC0TT
F0T0Z0TI
r COTTOTIT
r T0CO0TT
r ¢0000TT
 T0ZTIZ0T
I Z00TC0T
r 1010Z0T
rCIICI0T
rTICITOL
FCIOTIOT
rIITOTO0T
I ¢Z1¢00T
0002001
I ¢Z0T00T
 TZT000T
r0ceoee

(u)y

24

(n)s

Figure 3.13: R(n) in the (2,2,1)-B-system on all n whose greedy representation has length 7.



Chapter 4

Properties of R(n) in Confluent
B-systems

4.1 Palindromic Structure of R(n)

As noted before, R(n) displays a piecewise palindromic structure. It is not difficult to realise
that this is true in all systems with the (F) property. Take an n € Ny with greedy representation
(n)p = = zy7_1 -+ 1170. The word ¢ = (a—x;)(a—x;_1) - - - (a—21)(a—20), Where a = #; is
the largest digit of the canonical alphabet, is called the complement of x. The word z€ is a
representation of some value 7(z%) = 7. The value of R(n) depends solely on the number of
possible interchanges generated by the rule Otito - - - t;—1t,m — 10, which form the rewriting
system consisting of the rules

Otito - - - tm—1tm — 10m,

Otltl s tit — 10(t1—t2) oo (tl—tm_l)(tl—tm),
1t1to - ty_1tm — 20m’

(tl—l)tltl s tit — t10(t1—t2) s (tl—tm_l)(tl—tm),

along with all the interchanges generated from the initial representations of zero (i.e. the
rules Otity- - (tm_1+1) — 10™71 ... 0(t;+1) — 10 that can be used at the end of a B-
representation). Clearly, the complement of every rewritable factor is rewritable, however, not
necessarily by the same rule. Take for example the (3,2,2)-system. Then the associated rewrit-
ing system p4 is generated by the rule 0322 — 1000 and consists of a total of 12 rules, written
below:

0322 — 1000, 1322 — 2000, 2322 — 3000,
0323 — 1001, 1323 — 2001, 2323 — 3001,
0332 — 1010, 1332 — 2010, 2332 — 3010,
0333 — 1011, 1333 — 2011, 2333 — 3011.

Notice that the complement of every string on the right hand side of a rule appears on the left
hand side of a rule and vice versa. For example, the complement of the right side string 3010

99



60 CHAPTER 4. PROPERTIES OF R(N) IN CONFLUENT B-SYSTEMS

is 0323, which appears on the left side of the rule 0323 — 1001. It is easy to prove that this
in fact holds in general. Take an arbitrary rewritable string v = umum—1Um—2 - - - urug that is
on the left side of a rule. Then u,, < t; and clearly u,,—; > t; for all i € {1,2,...,m}. Then
we get u® = (t1—m)0(t1—Um_2) - - (t1—u1)(t1—ug) and u® is a rewritable string on the right
side of a rule, since u§, < t; and u$_, <t; —t; for all i € {1,2,...,m}. The same statement
can be proved for rewriting rules using the initial representations of zero. However, only if those
initial representations of zero have digits contained in the canonical alphabet A. Omitting those
rewriting rules that have digits not contained in A is not a problem, since we are only interested
in complements of greedy representations.

Let us now return to the number 7 represented by the string #¢. Clearly if a factor of z was
rewritable, then the factor of its complement will be also rewritable. Therefore R(n) = R(n).
Since

!
n+n=a- Z B;,
i=0
the centre of symmetry will correspond to the value which we denote

l

C(z+1):g-ZB,;,
=0

where we use [+ 1 as the argument because that is the length of the word x. Thus, the sequence
(R(n)),~, contains a palindrome ending in the value R(Bj;; — 1) and beginning in the value
a- Zi’:o B; — Bjy1 + 1. As we noted before in Chapter 3, in (a,1)-systems the palindrome
spans precisely the numbers whose representation has length [ + 1 (plus the largest number
whose representation has length [, which is B; — 1). This is a consequence of the fact that in
(a, 1)-systems, the greedy representation of B; — 1 has the form

(a0)
(a0) [2) 4 for 1 odd.

for [ even,

(Bi—1)p= {

The complement of (B; — 1) 5 is thus the word (B;_; — 1) 5. In all other systems, the complement
of (B; — 1) g is a word with value strictly smaller than B;_; —1, thus the palindrome does not align
with representations of a given length. We can say that the palindrome with centre C'(I + 1)
overlaps with the palindromes with centres C(I) and C(I + 2), and possibly others in certain
systems.

4.2 Matrix Formula for R(n)

In this section we will formalise our findings from the previous chapter and derive a closed-
form formula for the function R(n). Throughout this section, we will use the word gap to refer
to factors consisting of consecutive zeroes.

Analogically to the approach used in [II], we will derive a matrix formula for the function
R(n). The formula for R(n) in the Fibonacci system is originally due to Berstel [I]. Kocabova,
Masakovéa and Pelantova [11] then derived a matrix formula for R(n) in the m-bonacci numeration
systems. We will generalise their results to all confluent B-systems. During the time of writing,
we did not know that Edson [2] derived the formula as well, as part of her study of confluent
systems of order two (i.e. the (a,b)-systems, where a > b > 1).
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Firstly, we will explore in detail the proof the matrix formula for R(n) for the B-system with
basis B, = 2B,_1 + B,_1, then generalise our findings to all confluent systems.

In the second half of this chapter, we will use the matrix formula to verify our observations
about the properties of the function R(n) from Chapter |3 We will begin by a trivial observation.

Lemma 4.1. Suppose some representation of the form x10™, where x1 s non-zero, i.e. x1 €
{1,2} and r1 € Ng. Then

R(z10™) =1+ [%J .

Proof. The representation ;0™ is certainly greedy. Using the rewriting rules 100 — 021,200 —
121 we can generate new (non-greedy) representations

210" — (21-1)210" 72 = (21-1)20210" "4 — ...

until the end of the string is reached — i.e. until we cannot apply a rewriting rule any further:

(1-1)2020---20210 if r, is odd,
(x1—1)2020---2021  if r; is even.

Evidently, the string 10" can be rewritten only L%J times in total, since there are r; zeroes
available to be rewritten and each rewriting replaces two zeroes in the suffix 0. We can therefore
write

R(z10™) =1+ {%J ;

where we count the original representation x;0™ plus the L%J representations generated by
subsequent rewritings of z,0™. O

Similarly to the terminology established in [I1], we will distinguish long and short represent-
ations. This will be a key concept for deriving the matrix formula of R(n).

Definition 4.2. Let w = x10™wu be some greedy representation, where x; is non-zero, r; € Ny
and the suffix u is either empty or has a non-zero initial digit. Then a long representation of w
(with respect to x1) is any B-representation v such that

e v € A* where A is the canonical alphabet of the B-system,
e w and v share the prefix 210™.
Conversely, a short representation of w (with respect to x1) is any B-representation u such that
o m(u) = m(w),
e u € A%, where A is the canonical alphabet of the B-system,

e u=(r1—1)uny_oun_3---. Le. the digit x; was rewritten to z1 — 1 using some rewriting
rule generated by the B-system.

The number of long and short representations will be denoted R(z10™u) and R(x10" u), respect-
ively.
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Note: The naming is based on the m-bonacci B-systems, where indeed, every short repres-
entation of w is shorter than a long representation of w. For example, among the two Fibonacci
representations w = 100 and v = 011 of the number three, v is shorter than w (where the length
is understood as to be counted to the first non-zero digit). However, in other B-systems, such
as the (2,1)-system, this need not be the case, since w = 200 is a long representation, while
u = 121 is called a short representation of the same value, even if it has the same length.

A trivial observation is that every greedy representation is a long representation. Recall the
representations from Example [3.2}

1020100, 1002200, 0212200,
1020021, 1002121, 0212121.

Then representations in the left and centre columns are long representations of w = 1020100
with respect to the initial 1, whereas those in the right column are short representations. We
can therefore write R(1020100) = 4 and R(1020100) = 2.

From the above definition and example it is apparent that R(z10"u) = R(z10™u)+R(z10™ )
for every greedy representation x10™wu. In matrix form:

R(z10Mu) = (1 1) (ggig:ig;) .

Let us now consider a more complex example. Suppose that we have a greedy representation
with two non-zero digits, one that can be written as w = x90™x,0™, where z1, 22 € {1,2},
r1,72 € Ng. Then the following holds — if x5 = 2, then ry > 1. This condition is equivalent to the
normality (greediness) of the representation. We will now assess short and long representations
separately before synthesizing our findings into the matrix formula for R(w).

Lemma 4.3. Let x20™210™, where x1,x2 € {1,2}, 11,79 € No, be a greedy representation in
the B-system satisfying the recurrence By, = 2B,_1 + B2, where x1,x9 € {1,2}, r1,72 € Np.
Then the number of long representations of xo0™x10™ is equal to

R(220™2,0™) = (1 1) (2&83) '

Proof. The number of long representations of £20™2x10™ is equal to the total number of repres-
entations of 10" because the only allowed rewritings can be done on the suffix £10™, the prefix
220™ must be kept unchanged. Then, the total number of representations that can be generated

by rewriting the suffix z;0™ is equal precisely to R(z10™) = R(x10™) + R(x10™). O
Lemma 4.4. Let x90™x10™, where x1,x2 € {1,2}, r1,72 € Ny, be a greedy representation in the

B-system satisfying the recurrence By, = 2B,,_1+B,,_2. Then the number of short representations
of x20™x10™ s equal to

ro ro+1 R(xlorl) T -
(1= (=) (jon) 9=t
R(s0722,07) — (A1)

R(z10™ )
(L%J L%J> (Rglaiom;) Zf 1= 2.
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Proof. Suppose initially that 7o = 0. Then evidently xo = 1, otherwise x20™x10™ would not be
greedy. The number of short representations of 1210™ is equal to zero, since even after rewriting
x1 we are left with

1210™ — 1(z1—1)210" 2

where the prefix 1(z1—1)2 cannot be rewritten further, so 120" has no short representations.
Accordingly, both expressions on the right-hand side of are equal to zero when ro = 0.

Consider now the case when ro > 1. Additionally, let o be an even integer. Then apparently
we can rewrite the prefix x90" precisely rq/2 times, until we arrive at the string

xQO’"?mlO” — s = (132*1) 20---2021 :Elom,

T2

where the prefix (r2—1)20---2021 cannot be rewritten further. All of these rewritings have
no effect on the suffix £10™, so the number of short representations of x90™x10™ is equal
simply to % multiplied by the total number of representations of z10™. Furthermore, since
L%J = LL;lJ = 73 for even ro, the formula holds regardless of the value of the digit x7.

Lastly, take an odd ro > 1. Then suppose the prefix 220" was already rewritten L%J times,
yielding the string

(x2—1)20---20210z,0™.
—_—
T2

Now, if 1 = 1, we can rewrite the string once more using the rule 101 — 022 (whose usage is
highlighted in bold), which yields the representation

(22—1)20 - 2021010™ — (25—1)20- - - 2020220"" . (4.2)

Alternatively, x1 could have been rewritten earlier to 0, which would then using the rule 100 —
021 yield
(29—1)20- - - 2020212107 2, (4.3)

Again, in both cases, all rewritings of the prefix 20" can be done independently of whether the
suffix £10™ was rewritten. Therefore, the total number of short representations of x20™2x10™ is
equal to L%J times the number of long representations of 210" (string (4.2))) plus L”—;lj times
the number of short representations of 210™ (string (£.3) plus its | " QJ subsequent rewritings).
Formally

ro + 1

E(xQO’”?xlO”) = \\ J (E(xlo’”l) +E(m10”)),

which is precisely the first row of equation (4.1)).

Consider now the case when 1 = 2. Then after L%J rewritings of the prefix x20™ the
following string is reached:

(22—1)20---2021020".
—_—
T2

The factor 102 (bold) cannot be rewritten further, so the number of short representations of
290" 210™ that are reachable without rewriting the suffix 20" is equal to L%J R(z10™). However,
if the digit x1 = 2 is rewritten using the 200 — 121 rule (which is possible only if r; > 2), the
factor 102 is replaced by 101, which we can rewrite:

- —(29—1)20 - - - 202102000™ 2 —
—(22—1)20---202101210™ 2 —
—(19—1)20 - - - 202022210 2.
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Therefore, the number of short representations of x20™x10™ that are obtained if we also re-
write the suffix ;0™ at least once (making it a short representation of z10™) is equal to
|25 Ray0).

The total number of short representations of x20™x10™ is therefore equal to

— 1
E(xgomxﬂ)m) = LL;J R(SC]O“) + \‘T’z + J E(Ilorl),
which is precisely the second row of equation (4.1)). O

In Lemmas and we saw that the contribution of the factor x20" to the value of R(w)
depends on 79 (the length of the gap) and the digit z1. This is a key difference to the m-bonacci
systems, where we have to only consider the digits 0 and 1. The different contribution of 1 and
2 can be expressed in the form of two matrices:

Definition 4.5. Consider the B-system with basis B, = 2B,,_1 + B,_1. Then for all r € Ny
the redundancy matrices are defined as

L (BTRET =15y (=)

With this definition, we can then synthesise the findings from Lemmas [£.1} [4.3] and [£.4] into
the following theorem.

Theorem 4.6. Consider the B-system with basis B, = 2B,_1 + Bp_1. Then every greedy
representation can be written in the form

w= x40 xs_10""1 - 210™,

where x; € {1,2},r; € Ny for all i, and the following holds: If x; = 2 for some index i > 1, then
r; > 1. Consider some greedy representation w thus written. Then R(w) has the closed form

R(zs0™ -+ 210™) = (1 1) My, (rs)- -+ My, (r2) (Viﬂ) : (4.4)

Proof. By induction on s € Ng. Case s = 1 is treated in Remark case s = 2 is an immediate
corollary of Lemmas [4.3] and

Suppose now that s > 2 and that the formula holds for some s. To prove that it holds
for s + 1, recall the proofs of Lemmas and . We never evaluated R(z10™) and R(x10™),
so the factor 10" can be replaced by any xsu, where x5 € {1,2}, u € A* and z,su is a greedy
representation. Setting z,u = 20" x,_10™~!--- 210" and using Lemmas [£.3] yields

T Ts YA 1
R(zs5410™F 2,0 - 210™) = (1 1) Mg (rs41) Mz, (rs) - - My, (r2) (LHJ> ’
2

which proves the theorem. O

The above theorem proven for the (2, 1)-system can be generalised to all confluent B-systems.
However, another, third case of a digit ending the factor of consecutive zeroes has to be proven
first. We will first introduce some notation.
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Definition 4.7. Consider a confluent B-system of order m with coefficients a > b > 1. Then
for all » € Ny the three redundancy matrices are defined as

Mc(r):Q?ﬂ-lli LTLJ), Ma—b—i—l(r):(L?l“J Lr-luJ>? Md(r):<L1J L1J>’
forall digits 1 <c<a—b+landa—b+1<d<a.

Evidently, not all three matrices are defined for all possible pairs of coefficients a,b. For
example, in the case when a = b, only the matrices M,_y11(7), My(r), d € {2,...a} are defined,
since there is no digit ¢ in the canonical alphabet that would satisfy 1 < c¢ <a —b+ 1. On the
other hand, all three matrices are defined for example in the (3, 2)-system. Note that M,_p41(7)
is the same matrix as in the matrix formula for the m-bonacci systems [11]. We will prove three
propositions establishing the origin of these matrices, from which the matrix formula for R(n)
will follow.

Proposition 4.8. Suppose a confluent B-system of order m with coefficients a > b > 1. Consider
a greedy representation of the form w = x0"cu, where x € {1,...,a}, r € Ny, c is a digit satisfying
1 <c<a—b+1, and u is either the empty word or a word such that cu is a greedy representation.

Then - -
R(x0"cu)\ 1 1 R(cu)
(o) = (1) 120) (alc)
Proof. A generalisation of Lemmas and . The number of long representations R(x0"cu) is
clearly equal to the total number of representations of cu, hence R(x0"cu) = R(cu) + R(cu).
Let us now determine the number of short representations. Suppose p, ¢ such that r = pm-+gq

and ¢ € {0,1,...m— 1}. Clearly the gap 0" may be rewritten p = | £ | times, after rewriting we
are left with the string

(z—1)a™ ! (b—1)---a™ 'b0%cu. (4.5)
If g=m—1, then since 1 < ¢ < a—b+ 1 we can rewrite once more, which yields the string
(z—1)a™ 1 (b=1)---a™ ! (b—1)a™ ! (b+c) u.
If ¢ < m — 1, this rewriting is not possible, so we obtain

r+1
m

R(20"cu) = { J (R(cu) + R(cu)),

which proves the second row of the matrix. O

Proposition 4.9. Consider a confluent B-system of order m with coefficients a > b > 1.
Consider a greedy representation of the form w = x0"(a— b+1)u, where x € {1,...,a}, r € Ny,
and u is either the empty word or a word such that (a— b+1)u is a greedy representation. Then

(oo vim) = (121 1220) (e i)

Proof. Suppose p, q such that r = pm + g and ¢ € {0,1,...m — 1}. Again, the gap 0" may be
rewritten p = L%J times, after which we are left with the string

(x—1)a™ ' (b—1)---a™ 1 (b—1) 0%(a— b+1)u. (4.6)
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Let ¢ = m — 1. Then we can rewrite (4.6) once more only if we rewrite the digit (a— b+1) first.
This yields the string

(z—1)a™ 1t (b—1)---a™ 1 (b—1) a™ Lai,

where u is the suffix of the result of the rewriting (a— b+1)u — (a—b)u. This corresponds to
| ZEL | R((a—b+1)u) representations. If we do not rewrite the digit (a—b+1), we do not gain this
extra rewriting, thus we count another L%J R((a—b+1)u) possible representations. If ¢ < m —1,

this rewriting is not possible, so in total we obtain

R(z0"(a— b+1)u) = L%J B((a— b+1)u) + V;:l

| a1y
which proves the claim. O

Proposition 4.10. Suppose a confluent B-system of order m with coefficients a > b > 1.
Consider a greedy representation of the form w = x0"du, where x € {1,...,a}, r € Ny, the digit
d satisfies d > a — b+ 1, and w is either the empty word or a word such that du is a greedy

representation. Then B B
(toan) = (121 12) (i)

Proof. Suppose p, q such that r = pm + ¢ and ¢ € {0,1,...m — 1}. Clearly the gap 0" may be
rewritten p = L%J times, after which we are left with the string

(z—1)a™ ! (b—1)---a™ 'b0%du. (4.7)
Because d > a — b+ 1, no more rewritings are possible, which leads us to

R(x0"du) = LLJ (R(du) + R(du)),

m

thus proving the claim. 0

Theorem 4.11. Consider a confluent B-system of order m with coefficients a > b > 1. Then
every greedy representation can be written in the form

w= 2,0z, 10 .. 20,
where x; € {1,2,...,a},r; € Ng for all i, and the following holds: If x;x; 1 - Timy1 = a™

for some index i > m — 1, then either x;_p, < b orrp > 1 for some k € {i,i—1,...,i—m}.

Then R(w) has the closed form

R (2p0"" 2y 10" 1 -+ 200™) = (1 1) My, (rn) My, _o(rp—1) -+ My, (r2) <V11J> . (48)

m

Proof. Corollary of Propositions [4.§] and [£.10] O

We will now use Theorem to verify our observations from Section
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4.3 Maxima of R(n) in General Confluent Systems

As said before, when discussing the maxima of R(n), confluent B-systems’ behaviour can be
split into three groups based on their recurrence coefficients and order. For the first two groups
consisting of systems with coefficients satisfying a = b, we will simply generalise findings for the
Fibonacci and m-bonacci systems [11), 12]. The third group with coefficients that satisfy a > b
displays simpler behaviour.

For all three classes of confluent systems we will use the same approach as in [11, [12]. Firstly,
we shall derive a lower bound for ¢(l) by finding representations w of a given length on which
the maximal value of R(w) is reached. Secondly, we will derive an upper bound on () and
prove that it is indeed equal to the value of R(w) that is reached on the representations derived
in the first step. We will do this by showing which factors elements of () must avoid and prove
the expression for () by induction on [, the length of representation.

We will need the following terminology (that is again adapted from |11 12]) that will simplify
our analysis. We shall establish a partial ordering on matrices and prove that this ordering implies
an ordering on the values of R(w).

Definition 4.12. Let X = (ch g), X = <‘2 EZ) be integer matrices with non-negative elements.
Then we say that X majores X (written as X > X) if
a>a, b>b, b+d>b+d, and a+c>a+¢. (4.9)
Furthermore, we say that X weakly majores X (written as X 72 X) if
a > a, bZlNJ, a+c>a-+¢ and b+d>b+d. (4.10)
Lemma 4.13. Let o= (11)AXB (}),a = (11) AXB (}), where
A=1y or A=M,,  (rs)My, ,(rs—1) - My, (72),
B=1I or B=M,_ (p:)My, ,(pi-1) - My (p2),

where Tiy1,pj41 € No, 25,95 € {1,...,a} foralli=1,...,s =1, j=1,...,t -1, and X, X are
non-negative integer matrices. If X = X, then o > &. Furthermore, if (i) = B(§), where u > 0
and v > 1, then if X = X, then a > a.

Proof. Denote (f g) = (1 1)Aand (¥)=B(}). It is easy to see that g > f > 1, u > 1 and

a—a=(f wEZZ)@)U 2 (2 2 ()

=wwﬁﬁ+@—ag<w%ﬁ+w—®m(ﬂ

[STERSN

v
>((@a—a+c—&f (b-b+d—df) <z> > (1 0) <(1)> =1.
Suppose now that u >0, v > 1 and that X, X satisfy (£.10)). Then

oz—d:((a—fl)f—i—(c_é)ga (b—g)f—i—(d—ci)g) <U>

v

>((a—a+c—a)f, b-b+d—df) (Z) > (0 1) <(1)> —1.

\Y
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With Lemma in hand, it is now much easier to find representations w on which the
maximal value of R(w) is reached. We will aim to eliminate factors that are suboptimal for
maximising R(w), i.e. they can be replaced by factors of the same length that contribute more
to R(w). Again, adapting the terminology from [11], [12], we will call these the factors forbidden
for mazimality:

Definition 4.14. Suppose a confluent B-system with canonical alphabet A = {0,1,...,a}.
We say that the string x50 zs_10"1 -+ 210" xg, where x; € {1,2,...,a} for all i € {1,...,s}
and zg € A is forbidden for mazimality if there exists a word 3;0Pty,_10Pt=1 ... 40Py, where
p1,pe > 0,y; € {1,2,...,a} for all j € {1,...,t}, and yo € A such that

rs+rs1t-+rits+l=p+pa+--+pr+Ht+1
st—1 (TS)MIS—Q (Tsfl) T Mxo (Tl) = Myt—l (pt)Myt—Q (ptfl) e Myo (pl)'

We will sometimes say that the word y;0Pt - - - y10Plyg tmproves the factor xs0™ ---x10™ xg.

We have now everything ready for determining the expressions for (1) in all three groups
of confluent systems. We will end this section by stating an evident fact about the ordering of
redundancy matrices:

Fact 4.15. Suppose a confluent B-system with coefficients a > b > 1. Then for all r > 1 such
that r = m — 1 mod m the redundancy matrices satisfy the inequality

Me(r) = Ma—p11(r) Z Ma(r),
forall digits 1 <c<a—-b+1anda—b+1<d<a. Forother values of r they satisfy

Mc(r) = Ma—b+1(r) = Md(r)‘

4.3.1 Confluent Systems with ¢ = b and order m = 2

As shown in Section systems with @ = b and order m = 2 display analogous behaviour
to the Fibonacci system. We will show why the values of 1(1) in such systems equal those in the
Fibonacci system, which has been studied in [I12]. We will follow their approach in this section.

In short, the reason why the maxima of R(n) have the same value as in the Fibonacci system
is due to Fact and the fact that in confluent systems with a = b only the redundancy
matrices Mi(r) = M,_p11(r) and My(r) are defined (where d € {2,...,a}). My(r) does not
increase the value R(n) since it is either weakly majored by or equal to M;(r) —if » > 1 and
r=m —1 mod m then M(r) 2z Ms(r), otherwise My (r) = My(r).

We shall first derive a lower bound on the value of ¥ () by evaluating R(w) on some chosen
representations w. The following lemma is taken from [12] (Lemma 3.1) and adapted to our
notation.

Lemma 4.16. Suppose a confluent B-system with coefficients a = b and order m = 2. Let
x€{1,2,...,a} and let either y € {1,2,...,a} ory=c. Then

R (2 (0°1)" " 0'y)

R (x (031)" 02y)

R

R (201 (01)" 7" 0%y) = Fuy for k> 1. (4.11)

201 (031)"! o4y) = Fopyy for k> 1. (4.12)
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Proof. We have chosen representations of the forms and , because a — b+ 1 = 1.
Hence the expression for R(n) from the matrix formula will include prevailingly the matrix
M (r). Recall the initial conditions for the Fibonacci sequence — we set Fy = 1, F} = 2, plus we
additionally define F__1 = 1. Then we can prove by induction the following

v = (g sgy) = (0 2) - (B2 B ermeen e

The case ¢ = 1 is evident, hence suppose the equality holds for some ¢ > 1. Then using the
induction hypothesis and the fact that 2F, + Fj,_1 = F}, 12 for all p € Ny we obtain

(M (3))7+ = (1 1) <1 1>q _ (1 1) <F2q_3 FQQ_Q) _ <F2q_1 Fyq )
1 2 1 2 1 2 ng,Q ngfl ng F2q+1
Let us now consider the contribution of the suffixes 10%y and 10%y. Suppose first that y €
{1,2,3,...,a}. Then evidently

() -G 5 6)-0)- ).
(%) - )6)-0)- ().

thus both the cases y € {1,2,...,a} and y = ¢ are equivalent for determining the values of R(w)

for words w from and . Using , we determine
k—1 Fop_5 Fo_ 1
R (m (031) 04y> -1 1) ( 2k—5 L2k 4) <2>

Fop—y Fop_3

1
= (Fop—3 Fop—2) (2> = Fog,

k-1 1 1\ [(For_5 Fop_ 1
R (201 (0°1)0%) = (1 1) (o 1) (Fi’;_i FZZS) <1>

1
= (For—3 2Fa—2) <1> = Fop,

R (x (031)k02y) =(1 1) (?Z',j‘i %Z?) G)

1
= (Fop—1 Fop) <1> = Fok4a,

(1 1) 1 1\ (Fop-5 Fop—4q) (1
0 1) \For—a For3) \2

1
= (Fop—2 Fop-1) <2> = Fop41-

and

R (201 (0°1)* " 0'y)
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Thus we can now derive lower bounds on the value of ¥(1).

Corollary 4.17. Suppose a confluent B-system with coefficients a = b and order 2. Then for
alll>1

Y2l +1) > F, and $(20+2) > 2F_;.

Proof. The bound on the maxima of R(w) on representations of odd length (21 + 1) > Fj is
evident from Lemma [.16] if we set y = ¢ and relate the coefficent k to I. According to the
factorisation of the representation in (4.11]) we obtain

20+1=144(k—-1)+4=4k+1,
hence | = 2k. From the factorisation of representation (4.12)) we obtain
20+1=1+4k+2=4k+3

thus we derive I = 2k + 1. In both cases this implies (2] + 1) > F} from the proof of Lemma
416
The bound for representations of even length is a consequence of the fact that for all x €
{1,2,...,a}, y € {1,2,...,a} and u € A* where yu is a greedy representation, the following
holds:
R(z0%yu) > 2R(yu).

This is a consequence of the fact that

(1 1)My(2)=(1 1) G 1):2(1 1).

Likewise, for 1 > 0 also
R(yu0™ x0%) > 2R(yu0™),

since for all integer matrices with a,b > 1 and ¢,d > 0 we have

e (e a)een (=00 (0 (3 m)6)
(2 0)2(14)

Thus we have derived the following lower bound on the value of ¥(2[ 4 2):
B2+ 2) > 2620 1) > 26,
O

With the lower bounds on the value of (1) established, we will now prove that (1) is in fact
equal to these lower bounds. We will first establish some factors that are forbidden in maximal
representations. For that purpose we have to include and slightly adapt results of Kocabovi,
Masakové, and Pelantova [12] about the factors present in representations on which the maxima

of R(n) are reached.
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Proposition 4.18 (Kocabova, Masakova, Pelantova). Suppose a confluent B-system with coef-
ficients a = b and order 2. Take the greedy representation of length | on which the value of (1)
18 reached, i.e.

P(l) = R(xs0™xs—10™1 - 210™),

where r; € Ng and x; € {1,2,--- ,;a} foralli € {1,2,...,s}. Then clearly
l=s+rs+--+ra+m

and all the following hold for the values of |, s, Ts,Xs—1,..., @1 and rg,Ts_1,...,71:

o

. If ri is odd for some i € {2,...,s}, then x;—1 = 1.
2.8>2o0rl<5h.

3. If 1 > 6, then ry is even.

4. 1 <5 forallie{1,2,...,s}.

5. Suppose that | > 6 and r; are odd for all i € {2,3,...,s}. Thenrs € {1,3}, re_1 = -+ =
ro =3, and r € {2,4}.

Proof. Statement 1 is the only new claim compared to those in the Fibonacci system. Parts
2, 3, 4, and 5 are originally proven in [12] (Propositions 4.1, 4.2, 4.5, and 4.6). The proofs of
Statements 2 and 4 for the Fibonacci case can be applied without modification to all confluent
systems with a = b and order m = 2. Furthermore, we do not include the proof of Statement
5, because thanks to Statement 1 it would be identical to the proof in the Fibonacci system.
We will include the proofs of Statement 1 as well as an adaptation of the proof of Statement 3,
because that requires slightly different treatment to that in the Fibonacci system.

Statement 1.

Suppose that an i € {2,..., s} exists such that r; is odd and x;—; > 1. Then L”—;lj is strictly

Ty

greater than | % |, hence the matrix My, , (r;) is weakly majored by M (r;):

Va9 = (1) 130) 3 (15 () =200

Thus, if some 7; is odd, the digit ;1 must be equal to 1.
Statement 3.
Since [ > 5, Part 2 implies s > 2, thus it is sufficient to prove that for odd r; we have

R(x0™xs 1071 -+ 210™) < R(x,0" o, 1071 . 21071, (4.14)

T

Suppose first that ry is even. Then |%| = [, thus M, (rs) = Mi(rs) for all z,_; €
{1,2,...,a}, and we have

(1 1) My, (rs)

Il
—
—
—
SN—
7 N
i
v =
| I
—
v =
| I
~__
Il
/N
‘ =3
vy
+
—_
N———
—~
—_
—_
SN—

Hence we can write

R(zs0™xs_10™~1 -+ - 290™)

I
7\
_l_
—
N—
N
~~
8

7
—
@)
3
o
|
8
—
S
=
S—
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However, because rs + 1 is odd, then from Statement 1 the digit zs_; must be equal to 1 in
order for the value R(zs0™ 1z 10"-1 ... 210" ") to be maximal. From the matrix formula we

obtain

- 1 1 R(107s-1 -+ . 0™ 1)
R(z0ms 11071 o0 ) = (11 < r )(
¢ A0 =00 ety 2y ) (R0 00
= (% + 1) R(10™s1 - .. 3710”_1) + (% + 2) R(107s1 - - 56107’1—1)'

To obtain (#.14), we have to show that R(107s-1 - .- 210" ~1) > 0. Clearly, R(10™s-1 --. 210"~ 1) =
0 together with r; odd implies either

a) that there exists an index s —1 > ¢ > 2 such that 2,y > land 5o =--- =2, =1 and
Ts—1=Tg2=---=74=1,0r
b) that Tg—1 =Tg_9 =+ =171 = 1.

In both cases there is no way to perform a sequence of rewritings by which we would create a
short representation of z,0"F1107-1 ... 210" !, Let us treat case a) first. First note that

00 () (fe)) =550 2+,

and that (§§)” = (§3§) for all p € N. Suppose first that rg—1 > 2. Then clearly we have
R(z4—10"1 - 210"~ 1) > 0 and from the fact that

0= (5 o) 2 (5 1) =m0

we derive

R(J,‘SOT‘Q+110 - ]_qu_10qu1 . 1,107"1—1) _

_ (s rs 11\ E(xqflorq_l e 1,107“1—1)
= (? + 17 5 + 2) <O O) <R($q-107ﬂql . $10T1_1)

~rs e E(:rq_lo”q—l . xlomfl)
= (2 +17 2 +2) (R(xq_lorql -'-$10T1_1) Y

R(x,0"1110--- 101071 ... 2,07 Y) =
11 st 11 R(lo’”q—l...xloh—l)
__(rs Ts
s R(l()”q—l ...xlorlfl)
= (% + 1, rs + 3) (R(lorq1 - xlorl—l) )

hence

R(zs0™10 -+ - 10m,_10"1 - 210" 1) < R(2,0™1110--- 101071 -+ - 10" 1),
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which is a contradiction with the maximality of z,0™*110--- 10241071 - 210"~ Suppose
now that r,_1 = 1. Then the prefix z50"*1(10)*"%z,_; is forbidden for maximality. Consider
the prefix :1:307"5““'2(5_‘1)%,1 with the same length. Then

e+ (g o) = (my m2) (0 o)

1 1 1 1
= (Lrs—‘rlJ Lrs2+1J> = (VSHH(S_(])J \fﬁﬁ-l—&-?(s—q)J) =My, ,(rs +1+2(s —q)).

2 2 2

The inequality L%MJ > L%J holds because s — ¢ > 1. We have thus derived a
contradiction.

Let us now treat case b). Then, from Statement 2 it follows that s > 2, because by assumption
[ > 6. Similarly to the end of case a), consider the string z,07s 1261 which has the same
length as x,0"+1102,_50---210. Again, we obtain the inequality

My, (rs +1) <(1) (1)>S_1 - <L’"Si“J V“i“J)

1 1 1 1
r r < Ts s— Ts s— :M:p, s+1+2 -1 )
<L ]| S+1J> (L +1+22( I)J L +1+22( 1)J> o (7 (s—1))

2 2

and thus a contradiction with the maximality of 250" 71102, 50 ---210. In both cases a) and b)
we have shown that R(10™-1! .- 210" ~!) cannot be equal to zero, proving the inequality
when ry is even.

Suppose now that rs is odd. Since Mj(rs) 77 My(rs) for all d > 1, the digit xs—1 must equal
1. Then from the matrix formula we obtain

s\ s+ 1
R(z,07 1071 - 2, 0™) = (1 + L%J) R(107™" -+ 210™) + (1 + V ; J) R(1071 - 210™),

R(x,0mT110™1 ... 210" = R(10"T1107-1 ... 2,0™)

s 1 =
= <1 + \‘7‘ ;_ J) (R(lorsfl . --m10”) +E(10T571 . ":1310”)) .

thus proving , because L%&J < L%J O

Using Proposition we can now prove the formula for ¢ (1). The proof is almost identical
to that for the Fibonacci system ([12], Theorem 4.7). We include the proof because we will
utilise it for determining the arguments of the maxima of R(n), i.e. in Section where we
will determine the greedy representations that form the set ¥(l) in all confluent systems with
a = b and order m = 2.

Theorem 4.19 (Kocabova, Masakova, Pelantovd). Suppose a confluent B-system with coeffi-
cients a = b and order m = 2. Then

Vv(2k 4+ 1) = Fy, fork >0,
VW(2k +2) = 2F; 1 fork > 1.
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Proof. In the proof we shall use the following inequalities for the Fibonacci numbers, which are
simple to demonstrate. Recall that Fy =1, F} =2, and F_; = 1.Then

FoFy <2F, 41 forp,qg>0, (4.15)
where the equality holds only if p =1 or ¢ = 1.
2F)F; < Fpig4o forp,qg>0, (4.16)

where the equality holds only if p = ¢ = 1.

We shall prove the statement by induction on &, the length of representation. From Corollary
we already know that ¢(2k + 1) > Fj and ¢(2k 4+ 2) > 2F}_1, so it suffices to show that
these lower bounds are also upper bounds, i.e. we shall prove that

W2k +1) < Fp and 2k +2) < 2F,_1. (4.17)

The initial values of ¥ (k) are clearly (1) = 1 and ¢(2) = 1, since no interchange 200 +» (z—1)aa,
where z € {1,2,...,a} and a is the greatest digit of the canonical alphabet, is possible on these
lengths. Continuing further, 1(3) = 2, since into a greedy representation of length 3 we can fit
precisely one rewriteable factor x00. We conclude 1(4) = 2 by the same argument.
Furthermore, notice that for r; even we have My(r;) = My(r;) (3) (11) and My(ry) (§) =

( L%J ) for all x € {1,2,...,a}. This means that for r; even we can say
R(.%SOTS s iL'i()TiiL'i_lom_l . . -.1‘10“) = R(xSO” cee aciO’"i)R(xi_lorH .o -1’107"1).

We are now ready to prove (4.17)).

1. Let us first show that ¢ (2k + 2) < 2F_;.
Let w = zs0™ 25101 .- 210", where r; € No, z; € {1,2,...,a}, be a greedy repre-
sentation such that R(w) = ¥ (2k + 2), where k > 2. Statement 3 of Proposition
implies that ry is even. Because rs +1rs_1 + -+ 11 +s = 2k + 2, there must exist an
s >4 > 1 such that r; is even. Let ¢ be the minimal index with this property. The number
rici+--+r+(s—i)isodd, eg. 2p+1. Thenrs+---+r;+i=2k+2—(2p+1). Using
the inequality and the induction hypothesis we then obtain

Y2k +2) = R(xs0™zs_10™ 1 -+ - 210™) = R(xs0" -+ - ;0" ) R(2;—10™1 -+ - 210™)
< (2 -2+ )20+ 1) = FyFy < 2F . (4.18)

2. Let us now prove that ¢(2k + 1) < Fj.
Let w = x30™x5_10"s=1 - 210", where r; € Ng, z; € {1,2,...,a}, be a greedy represen-
tation such that R(w) = 1¢(2k + 1), where k > 2. Statement 3 of Proposition implies
that ry is even. Suppose that there exists an index s > ¢ > 1 such that r; is even. Let ¢
be the minimal index with this property. Again, denote r;_1 +---4+r1 + (s — i) =2p+ 1.
Then rg+---+r+i=2k+1— (2p+ 1) = 2k — 2p. Using the inequality and the
induction hypothesis we then obtain

W2k +2) = R(2,0™ 251071 - 210™) = R(z,0™ - - - 20" ) R(2_10" " - - - £,0™)

<Y Rk—=2p)Y (2p+1)=v 2k —-p—1)+2)¢(2p+1)
= 2F;_p_oF, < 2F}. (4.19)
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It remains to consider the case when 7; is odd for all i € {2,...,s}. Then from State-
ment 1 of Proposition 18] clearly z;—1 = 1 for all ¢ and according to Statement 5 of
Proposition [{.18] the only allowed s-tuples (rs,7s—1,...,r1) are of the form (1,3,...,3,4),
(3,...,3,4), (1,3,...,3,2), or (3,...,3,2). For a given length [ only two of these are pos-
sible. Namely, for l =1 mod 4 we can have either (1,3,...,3,2) or (3,...,3,4), because
s+3(s—2)+14+2=4s—3 and s+ 3(s—1)+4 =4s+ 1, whereas for =3 mod 4 we
can have either (1,3,...,3,4) or (3,...,3,2) because s +3(s —2)+1+4 = 4s + 3 and
s+3(s—1)+2 =4s—1. The values of R on representations constructed from such s-tuples
were determined in Lemma [£.16] Thus the theorem is proved.

O

4.3.2 Confluent Systems with a« = b and order m > 2

For confluent systems whose coefficients satisfy a = b and whose order is greater than 2,
findings about the maximal values of R(n) for m-bonacci systems [11] largely carry over. As in
the previous group a = b and m = 2, we will first determine the value of R(w) on chosen greedy
representations w, thus deriving a lower bound for v (l) in such systems. We will then establish
some strings that are forbidden for maximality. Finally, we will use these forbidden strings to
find an upper bound on () and thus prove that it is equal to the values that we observed in
Chapter 3.

We will first estabilish some notation which we will also utilise in Sections and (4.4

Definition 4.20. Let A be some finite alphabet and let , 8 € A*. Then for every finite alphabet
X and every p € N we define the wildcard concatenation symbol [a:c*ﬂ]g( which we set equal to

[z, 5 = (axpB) (azp-18) - (ax18),
where x,,x,_1,...,21 € X. For completeness and consistency, we set [ax*ﬁ]g( = e€.

In essence, the notation [ax*ﬁ]’)’( could be read as “repeat the word af precisely p times and
insert between every o and B a digit from X 7. The wildcard concatenation symbol will allow us
to be efficient when talking about repeating a given factor and inserting a different digit into each
repetition. We will utilise this most when analysing the maxima of R(w) in confluent systems,
since for many different representations w the value R(w) is identical. Similarly to what we saw
in the case a = b, m = 2, in all confluent systems the value R(w) depends largely on the lengths
of factors of consecutive zeros and not so much on the values of non-zero digits. The wildcard
concatenation symbol will allow us to talk more efficiently in general about a set of factors that
include the same number of consecutive zeros but differ in the values of the nonzero digits.

With this notation, we can now determine lower bounds on (l). However, first, let us

determine the value of ¢ (l) for initial values of [. Clearly ¥(1) = ¢(2) = --- = ¢(m) = 1, since
no rewritable factor 0™, where z € {1,2,...,a— 1}, fits into a word of this length. All numbers
n smaller than B,, thus have a unique representation.

The next case to consider is ¥(m + 1) = ¥(m +2) = --- = ¢(2m) = 2, which holds because

only one rewritable factor 0™ fits into a representation of length m 4+ 1 <1 < 2m.

The next case is | = 2m + 1. We have ¥(2m + 1) = 3 because the maximal representations
w will be of the form x0™~110™. After rewriting the suffix 10™ to 0a™ we gain one more zero
for the rewriting 0™ — (z—1)a™. Together this can be written as

0™ 110™ — 0™ 10a™ — (z—1)a™ taa™.
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Lemma 4.21. Suppose a confluent B-system with coefficients a = b and order m > 2. Then the
mazima of the function R defined for this system satisfy:

Y(pm+1)+q) >2° for q€{0,1,...,m —2},
¥ (p(m+1)+m—1)> 204202 if p>2,
Y (p(m+1)+m)>2° 4 2P 1

Proof. Denote by A the canonical alphabet of the B-system. Then denote C' = {1,2,...,a}.
For the first case we determine the value R(w) on greedy representations of the form w €
{[z0™)% ,y [2:0™]7, 40 [z 0™]F, , ..., y0™ 2 [2,0™]F, }, where y € C. Clearly, such representa-
tions have lengths [ = p(m +1),p(m + 1) +1,...,p(m + 1) + ¢q. Then, because M,(m) = (}1)
for all z € C'and (11)(§) = (1), we obtain from the matrix formula

Y(p(m—+1)+q) > Rw)=(1 1) G 1)1”((1))_2]9 for all ¢ € {0,1,...,m — 2}.

For | = p(m+1)+m—1 we evaluate R(w) on the greedy representation w = y0?™~110™ [a:*Om]’é_Q,
where again y € C:

Y(p(m+1)+m—1)>Rw)=(1 1) G ;) G 1)1’1 (é) — P 4 op~2

Lastly, for I = p(m + 1) + m consider the value of R(w) on the greedy representation w =
y0™ 1107 [2,0™]%", where again y € C-

Y (p(m+1)+m) > Rw) = (1 1) <é D G Dp ((1]) — 9P 4 9p— 1
O

We will now show some factors forbidden for maximality and restrict the set of possible
representations w on which R(w) = (1) is reached. Again, most results carry over (with a slight
modification) from the m-bonacci case [11], so we will prove the following claims only if there is
a substantial difference.

Proposition 4.22. Suppose a B-system with coefficients a = b and order m > 2. Suppose a
greedy representation w = xs0" --- 210" of length | such that it is mazimal, i.e. R(w) = ¥(l).
Then for every i =1,2,...,s it holds that r; < 2m or that r; =3m — 1 and x;_1 = 1.

Proof. Analogous to the m-bonacci case ([L1], Claim 5.4). Suppose for some i that r; > 2m and
r; # 3m — 1. Then the string ;0" z;_ is forbidden for maximality for all z; 1 € {1,2,...,a}.
First, note that if x;_; > 1, then either M, ,(r;) S My(r;) or My, _,(ri) = Mi(r;), so it suffices
to treat the case ;1 = 1 only. Consider now the string 2;0"~™=110™2,;_; that has the same
length as x;0"x;_1. In order to verify

)= (12 1sin) < (e iy - s (i) -2)
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we use the fact that

ERENETE
m m m
holds for all r; > 2m and r # 3m — 1. O

Proposition 4.23 (Kocabova, Masakova, Pelantova). Suppose a B-system with coefficients a = b
and order m > 2. Then the following factors are forbidden for maximality for oll x,y,z,v €

{1,2,...,a}:

1. x0m1ly03m—lz,

2. x0m1yom—1ly,

3. x0mly02m—lom—1y,

4. x0mLy0?m 1202~ Ly, whenever m > 4.

5. x0mly2m—ly03m—1y,
Proof. Since Mi(r) 7z My(r) for all z > 1 whenever r = m — 1 mod m, it suffices to consider
the above factors with y = z = v = 1. Furthermore, since the contributions of any of the factors
(i.e. the matrices M,(m — 1), M,(3m — 1), etc.) do not depend on the initial digit , we can
consider only factors with x = 1, fully reducing this statement to the m-bonacci case. Refer thus

to Claims 5.5-5.9 in [II] for the full proofs that these factors are forbidden. For completeness,
we will include the factors which improve upon the factors 1.-5.

1. £0™y0™20%" 3y improves 0™ 1y03" 1z because

M an it e -3 = (3 3) = (5 3) = Maom - DAL - 1),

2. £0?"~11 improves 0™ 1y0™ 'z because
11 1 2
Mi(2m—1) = (1 2) - (0 1> = Mi(m —1)M;(m —1).
3. 20™my0™20*™ 3y improves 0™ 1y02m 120"~y because

M, (m) M, (m)M, (2m — 3) = <j j) - (; 2) — Mi(m — 1)Mi(2m — 1)My (m — 1)

4. Let m > 4. Then [x*om]g Y0242 where C = {1,2,...,a}, improves 0" 1y0?m=1,02m 1y,
because M;(m) = (11) for all x € C and thus

(M, (m))? M, (2m — 3) = <§ 2) . (g g) — My(m — 1)Mi(2m — 1)M;(2m — 1).

forall z € C.
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5. 20%2™y0%m 2023y improves £0™ Ly0?™ 12031y because

M, (2m) M. (2m) M, (2m—3) = (162 162> - (? 1;) — My (m—1)M,(2m—1)M, (3m—1).

With these forbidden factors ready, we can state the central theorem for the value of ¥(1).
The proof is identical to that in the m-bonacci system (see [11], Theorem 5.11), thus we will not
include it in this work. The only difference is that the greedy representations w that form the
set ¥(l) may have the most significant digit larger than 1. Also, because M (r) 2= M,(r) for all
x> 1only if r=m —1 mod m, any factors of even length may end with a digit larger than 1.
Otherwise every step of the proof of Theorem is identical to the m-bonacci case.

Theorem 4.24 (Kocabova, Masékova, Pelantova). Consider a confluent B-system with coeffi-
cients a = b and order m > 2. Then for every p > 1 the mazima of the function R in this system
satisfy

Y(pm+1)+q) =2° for g € {0,1,...,m — 2},
¢ (p(m+1)+m—1)=2" 42077 ifp > 2,
¥ (p(m+1)+m)=2"+2"70

4.3.3 Confluent Systems with a > b

To explain the behaviour of confluent systems with coefficients a > b, we can use what we
found for the (2, 1)-system as a model. Let us start by noting that in representations that have
length [ smaller than or equal to m, no rewriting rule from the associated rewriting system p»
can be applied, therefore (1) =1 for all [ = 1,2,...,m. For representations of length [ > m we
will follow the approach used for the other two groups of numeration systems. Firstly, we will
determine the value of R(w) on some chosen B-representations w and use these for deriving a
lower bound for ¢(1). Secondly, we will show that the value (1) is indeed equal to R(w).

Lemma 4.25. Suppose a confluent B-system with coefficients a > b and order m. Denote its
canonical alphabet A. Then

R (z [om—lc*]gom—lxl) = 2p+1,
1

R (2 [0" e, 0" g ag) = 2P,

R(z[0" e n 0 awy ) = 27,

where p € Ng and z € {1,2,...a}, C ={1,2,...,a—b}, 1 € {0,1,...,a — b} and z; € A for
all7=2,3,...,m—1.

Proof. Let us first realise that for all ¢ € {1,2,...,m — 1} the suffix z1-- -z, contributes the
same value to R(w). Since no rewriting rule from p4 can be used in z1 - - - x4, we obtain

R(c0™ Yy -+ z,) 1 1

<R(00m1:):1 o g) w(m—1) 0 1
for every ¢ € {1,2,...,a}. If ¢ > 1 and x; - - - &4 has a proper prefix consisting of zeroes, i.e. if
there exists an r < ¢ such that 1 = 29 = --- = x,, = 0 then the equality holds as well because
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Mg, (m—=1+r) = M.(m—1) for all z,, € Aand ¢ < a—b. Lastly, in the case when 1 - - - x4, = 07
we obtain the equivalent result

R(com=ta)\ /1

E(ComflJrq) —\1/)-
We can now evaluate R(w) on the whole representation:

R (wy oy [07 7 e]g 07 e ag) = (101) (M(m = 1)) G) |

Finally, because

1 1\’ op—1 9p-1
(Me(m —1))" = <1 1> = <2p_1 2p_1> for all p € N,

this results in
R (wN_1 [Omflc*]g 0" Ly - -a;q) = optl,

Now let us show that the values from Lemma are in fact a lower bound on (1).

Corollary 4.26. Suppose a confluent B-system with coefficients a > b and order m. Then for
alll > 1

(i) > 2lw 11,
Proof. Clearly for every [ > 1 there exist p € Ngand ¢ € {1,2,...,m—1,m} such that | = pm+q.
Denote C' = {1,2,...,a — b}. Then clearly

$(l) = d(pm + q) > Rlwy—y [0 e 0™ ey -z = 20 = 2w =L,

because {%W —-1= {mw —1=np. O

m
We will now establish some strings forbidden for maximality before proving that (1) =
olml-1,
Proposition 4.27. Let r > 2m — 1. Then the string y0"x is forbidden for mazimality for all
z,y € {1,2,...,a}.

Proof. Take any digit ¢ € {1,2,...,a—>b}. Then matrix M,(r;) is majored by or equal to M.(r;),
which is majored by M.(m — 1)M.(r; — m):

ri+1 ri+1 1 1m "
- (L”HJ ri—o—lJ) ~ (LnﬂtlJ LWY:L-IJ) = Mc(ry)
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Proposition 4.28. Take the greedy representation of length | on which the value of () is
reached, i.e. the word w = x40™xs_10"s=1 -+ 210" such that x; € {1,2,...,a}, r; € Ny for all
1=1,2,...,s, and

(1) = R(xs0™xg_10™"1 - - 210™).

Then r1 < 2m.

Proof. Suppose that w is maximal (i.e. that (l) = R(w)) and that r; > 2m. Let ¢ be a digit
ce{l,...,a—>b}. Then

st (1) = (1) (1) = (1))

m

3|

hence for the value of R(w) we obtain

R(z,07 - 210" 10" ™) = (u ) (H) > (u v) (LéJ> ~ a0 n i,

where u,v € N, which is a contradiction with the maximality of w. O

Proposition 4.29. Ifro,7g < m—1 and ro+rg > m—2, then the string z0"x0"%y is forbidden
for mazimality for all nonzero digits z, x, y from the canonical alphabet A.

Proof. This is a consequence of the fact that M,(ro)My(rg) is majored by the matrix (}1):

M (ra) My (rg) = ((1) (1)>2 A G 1)

If ro + g = m — 2, then Mc(rq + 73 + 1), where ¢ € {1,2,...,a — b} is equal to (11). Thus
in this case the factor z0"20"y is improved by the factor z0"«*"s+1c. On the other hand, if
To+7g > m—2 then using the assumption 7o,75 < m—1we derive m—1 < ro+rg+1 < 2m—1,
hence My(ro + 73+ 1) = (11), where f is any nonzero digit from A. Hence in this case the
factor 20" 20"y is improved by the factor z0"eF7s+!f, O

Theorem 4.30. Consider a confluent B-system with coefficients a > b and order m. Then for
the mazima of the function R(w) defined in this B-system the following holds:

p(h) = 2wt

Proof. We prove the theorem by induction on the length [ of the greedy representation. First
write | = pm + ¢, where p € Ny and ¢ € {1,2,...,m — 1,m}. For initial values of [, i.e. for
Il =1,2,...,m we have since shown that () = 1. We have also shown in Corollary that
2l 11 is a lower bound on the value of (1), so it suffices to show that it is also an upper bound.

Take the greedy representation of length [ on which the value of ¥ (1) is reached, i.e. the word
w = xs0"™x5_10"1 .- 210" such that s € Nand z; € {1,2,...,a},r, € Ngforalli =1,2,... s,
and

P(l) = R(xs0"zs_10™1 -+ - 210™).

Suppose first that R (w) = 0. Then clearly

P(l) = R(xs0™ 25101 - 210™) = R(x5—10™1 - - 210™) < (Il — 75 — 1)
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and the statement follows from the induction hypothesis. Consider now the case R (w) > 1.
Then either rs =m — 1 and z5_1 < a — b or s > m, otherwise we would not be able to rewrite
the prefix ;0™ x5_1 to obtain a short representation of w with respect to the digit xs. Let us
show that the coefficients r; and digits x; can only take certain values. Suppose that there is an
index 2 <14 < s — 1 such that 0 <r; <m — 2. Then since M, ,(r;) = (§{), we have

1 1 ‘
rig1+1 rir1+1 if x; <a-—b,
m m
1
Ti+1

L“ IJ L J fz,=a—-b+1,

sz’ (ri+1)M€Bi—1 (Tl) =

ifx; >a—b+2.

In all three cases this implies
Y(l) = R(xs0" -+ - 210™) < R(xs0™ + -+ ;410" 1,071 - oo 07Y) < p(l — 1 — 1),

and the statement follows from the induction hypothesis. Similarly, if there exists an 2 < ¢ < s
such that m +1 <r; <2m —2, then M,, ,(r;) = M, ,(m), and thus (1) < (I —r; +m) and
again the statement follows from the induction hypothesis. Lastly, if an index 2 <1 < s exists
such that r; = m and x; > a—b+1, then for all 1 < ¢ < a—b we obtain My, _1(r;) = M.(m—1),
which implies ¢(1) < ¢(l — 1) and again the statement follows from the induction hypothesis.
Therefore, using Propositions [£.27, [.28] and [{.29] it is sufficient to consider only coefficients
rs = Ts-1 = --- =19 =m—1and r; € {0,1,...,2m — 1} and digits zs_1,25-2,...,21 €
{1,2,...,a —b}. We will now determine R(w) for this combination of coefficients. Since

(1 1) Me (m—1)=(1 1) G D:g(l D,

then using the induction hypothesis we obtain

w(l) = R(xSO’"SmS_lors—l .- -1‘10“) = QR(xs_l()Ts—l . xlorl)
<op(l—m) <22l 17t = ol -1,

which proves the theorem. O

4.4 Arguments of the Maxima of R(n) in Confluent Systems

In this section we will verify our observations from Chapter [3[about the sizes of the set U(I)
in the surveyed B-systems.

4.4.1 Confluent Systems with ¢ = b and order m = 2

In Chapter [3| we found that except for the initial cases | = 1,2,3,4 and [ = 6,9,12, the
following relationship for the size of the set ¥(l) holds:

#U(2k+1)=2-a for k > 1,k # 4,
#U(2k) =4 - a® for k > 4,k # 6.
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We shall prove these relations (as well as derive the ones for [ = 6,9,12) by determining the
greedy representations w of length ! on which the maximal values of (I) = R(w) are reached.
The proof of Theorem will serve for this purpose. We will again closely follow the approach
taken in [12].

Denote by w = z0™xs_10"~1 .- 210", where x; € {1,2,...,a} and r; € Ny for all i =
1,2,...,s, a greedy representation of length | = s 4+ rs + rs_1 + - -+ 4+ r1 such that ¢¥(l) = R(w).

Let us first suppose that [ is odd and that equality is reached in . Recall that the
relation implies that for the equality to be reached, i.e. that

W2k +1) =2k —p—1) +2)¢(2p + 1) = 2F4_p_oF, = Fy,

it is required that p =1 and k = 4. Then F}_, o = F, = F; = 2 and F}, = Fy = 8. From (4.19)
we then obtain
P2k —p—1)+2) =9(6) = R(x0™ -+ 2,0"),
and
Y(2p+1) =9¥(3) = R(z;—10"1 -+~ 210™).

Hence we have determined one of the forms of the maximal representations for length [ = 9.
They will have r3 = ro = 1 = 2, thus they will be of the form w = z300x200x100, where
r3, 72,71 € {1,2,...,a}. In total, this yields a® representations.

Let us now suppose that [ is odd and that equality is not reached in . The proof of
Theorem suggests in this case that unless equality holds in , all the coefficients r; are
odd and thus as a consequence of Proposition [4.1§] they will have a very specific form, which we
show below.

Corollary 4.31. Suppose a confluent B-system with a = b and order m = 2. Then

1. #V(4k + 3) is equal to a for k=0 and to 2-a for k > 1. We have ¥(3) = R(x00), where
x € {1,...,a}, thus a different possible greedy representations, and for k > 1 we have

(ak +3) = R (20 (10°)7"10%) = R (207 (10%) 7 107) .

Again, x € {1,...,a}, thus we obtain a + a possible representations on which (4k + 3) is
reached.

2. #VU(4k + 1) is equal to a+ 1 for k = 0, since (1) is reached on all representations of
length 1. Then #W(4k + 1) is equal to a® + 2a for k = 2, since

$(9) = R (230022002100) = R (301000100) = R (2200010000) ,
where x3,x2,x1 € {1,2,...,a}. Lastly, #VY(4dk+1) =2-a for k > 3 or k = 1, because then
¢(4k + ]_) =R (:1:0 (103)]{*1 102) - R (IEO?’ (103)1671 104) .

The digit x belongs to the set {1,2,...,a}, thus there are a + a possible representations on
which ¥ (4k + 1) is reached.

Consider now the case when the length [ is even. Take the greedy representation w =
250" xg_10"—1 - 210" of length [ = 2k + 2 such that the maximum (2k + 2) is reached on w.
Then the proof of Theorem requires that equality is reached in (4.18)), i.e. that

(2K +2) = p(2k — 2p+ 1)p(2p + 1) = Fip_pF, = 2F,_1.
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Relation for the Fibonacci numbers then implies that either K — p = 1 or that p = 1.
This further implies that the maximal representation x;0™xs_10"1---210™ of length 2k + 2
is split at ¢ = 1 or ¢ = s — 1, namely that either ry = 2 and r5_1,...,7r1 are odd, and that
xs—10"s=1 ... 210" is maximal, i.e. R(xs_10"~1 -+ 210™) = ¢)(2k — 1), or that r; = 2 and that
25075 - - - x90™ is maximal.

Corollary 4.32. Let k > 3 and let rs, ..., satisfy Y ;7 +5 =2k +2. Then
R(zs0™xs_10""1 -+ 210™) = ¥(2k + 2)

if and only if
rs =2 and R(xs_10™1 - 290™) =2k — 1), (4.20)

or
r1=2 and R(xzs0"™ ---220") =12k —1). (4.21)

From Corollary we thus obtain all the possible greedy representations of even length.
Proposition 4.33. Let k > 3. Then

#HU(2k+2)=4-a> fork#5,

and
#U(2k +2) = a' +2a®  for k=5.

Proof. Let k # 5. Then we construct elements of W(2k + 2) using the recipe from Corollary
4.32l Denote by u an element of ¥(2k — 1) and let = be a nonzero digit from the canonical
alphabet. Then W(2k + 2) will consist of strings of the forms z00u and uxz00 corresponding to
([@.20) and (£.21)), respectively. Both x00u and ux00 can have 2 - a? different instances, since
z € {1,2,...,a} and in Corollary £.31] we counted that ¥(2k —1) = ¥(2p+1) has 2 - a elements
for p # 4. In total we obtain WU(2k +2) =4 - a2,

Suppose now that k& = 5. Then representations from the set ¥(2k + 2) = ¥(12) will be
constructed by concatenating elements of W(3) with those from ¥(9). Again, denote u an element
of U(9). The set ¥(2k + 2) will again consist of strings of the forms z00u and ux00. However,
in this case, there are a® + 2a possible instances of u. Therefore in total we obtain #¥(12) =
a* + 2a2. O

4.4.2 Confluent Systems with a > b

In Chapter 3] we found that the number of maxima at representation of odd length is constant
and equal to 4 in the (2,1)-system. In this section we will use the matrix formula to explain
the number of arguments of the maxima of R(n), or in other words, the size of the set W(l) for
all studied confluent systems with a > b. We will determine ¥(I) based on the residue class of
modulo m, where m is the basis order. First let us state some general observations. An immediate
corollary of Theorem is that the maxima of R(w) are reached on greedy representations

w= 2,0 x,_10™ .. 210™

where as many r; are equal to m — 1 as possible. Furthermore, when r; = m — 1, the digit x;_1
is forced to be from the set {1,2,...,a —b}. Then M, ,(r;) = (1 1), which majores M,(r;) for
any y >a—b+ 1.

We will start with the simplest case, when [ =1 mod m, i.e. | =km + 1 for some k € Ny.
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Theorem 4.34. Consider a confluent B-system with coefficients a > b and order m. Then the
number of arguments of the mazimum of R(n) on all n whose greedy representation has length
l=km+1 is equal to

#U(km+1D) =a-(a—b)* - (a—b+1) for all k> 1.

Proof. From Theorem we know that the value R(w) = 1)(km + 1) is reached on representa-
tions w of the form

W = Wiyp—1 [om—lc*]’;‘l
where w1 € {1,2,...,a},C={1,2,...,a—b}forall j =1,2,...  k—1,and wg € {0,1,...,a—
b}. We can see that truly |w| = km + 1 and that w includes as many factors 0™~! as possible
on this length. Let us now count the number of possible instances of w. We have a choices for
Wgm—1, then a — b choices for ¢, for every j =1,2,...,k—1, and finally a — b+ 1 choices for wy.
Thus we obtain the result #¥(km + 1) =a- (a — b)* 1 (a — b+ 1). O

Om_1WQ,

Let us now move on to the case [ = km—+2. This residue class requires a much more technical
proof, hence for simplicity we will start by determining the elements of the set ¥(km + 2) in the
(2,1)-system.

Since [ is even, the number of repetitions of the factor 01 will be Léj — 1 because the most
significant digit w;—; cannot be equal to zero. Thus we can construct maximal representations
of length km + 2 by taking the maximal representations for km + 1, which will have the form

w = w;_10101 - - - 01010wp, (4.22)

and extend them by one more digit to length km + 2. We will denote this extra digit x. We
can place x to the left of every 01 factor, to the left of Owg and to the right of wy. All possible
locations are shown below.

wi—1201201 - - - 20120120woz. (4.23)

Other locations of z are either equivalent or would lead to a decrease of R(w), as we would break
apart one of the 01 factors. Let us now evaluate R(w) depending on the value of x and verify
that we will not change it by introducing the new digit z.

If z = 0 and we place z in front of a zero, then since M;(1) = M;(2), the value of R(w) does
not change. Note that because M;(2) = Ma3(2) this further allows us to change the digit that
ends this gap to 2, i.e. we obtain the two possible factors 01 € {001, 002}.

Suppose the other case, i.e. that we place z at the end of the representation. This yields the
suffix 10wg0, which can either contribute to R(w) as 1000 or 1010. Both cases are equivalent,

since
R(1010) (1) 1Y /1 1\ /1\ _ /1\ [ 1Y _ (R(1000)
R(1010)) — "N\ A) T\ 1) \o) T \1) T \[3]) " \R(1000))
If x is a non-zero digit, then its placement anywhere except the end of the representation

introduces the matrix
1 1
Mx(o) - (0 0)

into the product for R(w), because that is the contribution of the factors w;_jz and 1x. In other
words, we introduced a gap of zero length into the representation w. Since the equality

T O G T N (R T R
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holds for all p4+q =1r+s, p,q,r,s € Ny, the value of R(w) does not depend on the placement
of x and we can write

T C O TR (R MR e

Placing x at the end of the representation yields the suffix 10wz, which is realised as 100z or
101z. Since M;(2) = M2(2), the contribution of both suffixes to R(w) is identical:

()=o) D=0
(attorn) =240 (1) = (1) (o 0) )= ()
(atnrs) = (atios) = (sianey) = ()
Using the results for the case when [ is odd and setting p+¢ = |L] — 2 in we obtain

R(w) = (1 1) G 1) e G) —ols]-1

which proves that the value of R(w) does not change by introducing x.
We can now prove why

Hence

£T(1) = 16 <; - 1> (4.26)

when [ is even and greater than or equal to 3. Suppose that | = 4. Then (1) = 2, using the
factorisation introduced above we observe that there are two possible placements of x:

wsrQwyz,
hence elements of ¥(4) must have one of the following forms:

1. w = w30wpx, of which there are 2 -2 -3 = 12 variants, since w3 € {1,2}, wo € {0,1} and
z €{0,1,2}.

2. w = w3x0wy, of which there are 1-2 -2 = 4 variants, since w3 = 1 because w is a greedy
representation, z € {1,2} and wg € {0, 1}, because x = 0 is included in case 1.

Together, we have #W¥(4) = 16, which agrees with formula (4.26)) and results in Table
Let us now consider [ = 6. There are three possible placements of x:

wsx01x0wox,
hence elements of U(6) must one of the following forms:

1. w = w5010wgx, of which there are again 2-2-3 = 12 variants, since ws € {1,2}, wy € {0,1}
and z € {0,1,2}.

2. w = ws01z0wy, of which there are again 2-2-2 = 8 instances, because ws € {1,2} =z € {1,2}
and wp € {0,1}, z = 0 is included in case 1.
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3. w = wsx010wp, amounts to 12 representations in total. If x € {1,2}, then we gain 1-2-2 = 4
representations, since ws = 1 (due to w being a greedy representation) and wg € {0, 1}.
However, if x = 0, we obtain another 2-1-2 -2 = 8 representations, due to the fact we
can exchange wy = 1 for wy = 2, because the rewriting of wsz0 = w500 — (w5—1)21 is
independent of the digit ws.

In total, we obtain #W¥(6) = 32 as expected.
Finally, let us treat W(8) separately. There are now four possible placements of x:

wrx012x0120wqx,

1. w = w;01010wpz, of which there are 2 -2 -3 = 12 possible variants as in ¥(6).
2. w = w7010120wy, of which there are again 2 -2 - 2 = 8 possible instances as in ¥(6).

3. w = w7012010wo amounts to 16 representations. If x € {1,2}, wy € {1,2} and wp € {0,1}
together yield 2 -2 -2 = 8 representations. If x = 0, we can exchange the following 1 for
a 2, i.e. we write w as w70100y0wp, where y € {1,2} and this yields another 2-2-2 =8
representations.

4. w = wyz01010wq contributes 12 representations, as in ¥(6).

Together this yields #W(8) = 48.
Now let us explore the general case W(2k + 2), where k > 3: There are k + 1 possible
placements of x:
wap—1201(201)* 220wz,

where by (£01)*~2 we denote the placement of z in front of precisely one of the k — 3 repetitions
of the 01 factor. As shown in the previous cases,

1. wop_101(01)*20wpz contributes 12 different representations,
2. war_101(01)*~220wq contributes 8 different representations,

3. wap_101(01)*=2=2(01)?0wg contributes 16 different representations for each i € {1,2,..., k—
2}, in total (k — 2) - 16 representations.

4. wgk,lel(Ol)k*QOwo contributes 12 different representations.

In total, we obtain

different representations, which corresponds with (4.26]). We will now determine ¥(2k +2) in all

confluent B-systems with a > b.

Theorem 4.35. Consider a confluent B-system with coefficients a > b and order m. Then the
number of arguments of the mazimum of R(n) on all n whose greedy representation has length
l=km+2is for all k > 1 equal to

- (a—0)"2(a—b+1) ((k—1)a®>+ (a—b) (k+1)a*>+b—1)) ifm=2,
(a—b)F2(a—b+1)((k—1)a®+ (a—b) (k+1)a*+a)) if m > 2.
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Proof. In order to determine #W(km + 2) we will follow the same approach as in the above
analysis for the (2,1)-system. Take a greedy representation w from the set W(km + 1). Clearly

w will have the form
k—1

m—1
c 0

w = w1 [07 ] wo.

where wx—1 € {1,2,...,a}, C = {1,2,...,a — b} and wy € {0,1,...,a — b}. We shall now
ingert a new digit « into w, denote W this new representation of length km + 2. There are k + 1
possible locations for x.

k-1 Om—l

Wink—1T [Om_lc*x] o

wox.

Other locations are again equivalent or would reduce the value of R(w). We shall now determine
how many representations correspond to each placement of z.
) m—1 k=1 ym—1
1. W= wmr_1 [0 C*]C 0 wWox:
In this case, there are evidently a possible values for w,,,_1 and a—>b possible values for each
cx in each of the k — 1 repetitions of 0™ 1c,. The digit wy is from the set {0,1,...,a — b},
thus a — b + 1 possible values and finally, since there are no restrictions on z, the digit x
can be any digit from the alphabet A, thus a + 1 possible values of . In total we obtain
a-(a—b)*1.(a—b+1)-(a+1) representations.
2. W= Wyk—1 [Om_lc*]g_2_l 0™l [Om_lc*]zc 0™ lwg forall 0 < i < k —2:
We again count a possible values for w,,z_1. Then, we have to place x into precisely
one of the repetitions of the factor 0™ lc,, thus we multiply by the coefficient k& — 1.
The factor 0™ '¢; 1z has (a — b + 1) - a possible realisations, since ¢;;1 can now also
be zero whenever z is nonzero. This follows from the fact that M., (m — 1) = M,(m)
for all ¢;41 € {1,2,...,a — b} and = € {1,2,...,a}, thus the contribution of the factor
0™z towards R(w) is identical to Omflczurl . Evidently, both ¢;1+1 and z cannot be zero
simultaneously, but even if ¢;11 # 0, then x cannot be zero. This is because we would
count the same word @ twice. Compare the two placements of x into two consecutive
factors Om_chl and 0" L¢;:

(a) oo oml Ciy1 T 0m=2 0 C;
(b) P | Cit+1 0 om2 c;i T

Setting = 0in case (a) yields the same string as setting ¢; = 0 in case (b). We have already
counted the case ¢; = 0, thus we forbid the case x = 0. There remain k—2 factors 0™ !¢,y
where we have not placed z, and in these, again, ¢;y; can have the values {1,2,...,a — b},
thus we multiply by (a—b)¥~2. Lastly, the digit wo can again have a —b+1 possible values.
In total we count a-(k—1)-(a—b+1)-a-(a—b)*"2-(a—b+1) =a?®-(k—1)-(a—b+1)2-(a—b)+2
possible representations.
3. W= Wyg_1T [ c*]lé_l 0™ Lwy:
In the third possible placement of & we have to split our analysis according to the order of
the basis. We again forbid x = 0 because that is included above in case 2. If m > 2, then
the prefix wy,x_1x has a® possible values. On the other hand, if m = 2, then the prefix
Wmk—12 has 1-(b—1)+(a—1)-a possible realisations, because @ is a greedy representation.
In other words, whenever w,,—1 = a, the digit x must be smaller than b. Lastly, we again
count (a — b)*~1 as the contribution of the k — 1 factors 0™ ¢, and (a — b+ 1) as all the

Om—l
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possible values of wy. In total we obtain
b—14+(a—1)-a)-(a—b)* - (a—b+1)if m=2,
a?-(a—b)" 1. (a—b+1)ifm > 2.
possible representations.

We will now add the above cases 1., 2., and 3. together and simplify. Suppose first that m = 2.
Then

#(km 4 2) =a(a —b)* L(a—b+1)(a+1)
+a?(k —1)(a — b+ 1)*(a — b)*2
+(b—1+ala—1)(a—bra-b+1),
factoring out (a — b)¥2(a — b+ 1) yields
#U(km+2)=(a—b)F2(a—b+1)-A, (4.27)
where we denote
A:=ala+1)(a—b)+a*(k—1)a—b+1)+((a—1a+b—1)(a—b).
The expression A can be further simplified by factoring out (a — b):
A=ala+1)(a—b)+a*(k—1)(a—b+1)+ ((a—1)a+b—1)(a—0),

=(@®4+a+a*—a+b—1)(a—b) +a*(k—-1)(a—b+1),
=(2a®+b—1)(a—0b)+ (k—1)a*(a—b) + (k- 1)a?,

which finally simplifies to
A= (k-1)a*+ (a—0b) ((k+1)a®>+b—1).
Returning to , we obtain the desired result
#U(km+2)=(a—b)* 2(a—b+1) ((k—1)a*+ (a—b) (k+1)a*>+b—1)).
The case m > 2 is derived by the same steps. O

Let us demonstrate our formula for #¥(km + 2) on an example. In Table (3.7) we may find
the value #W¥(8) = 540 for the (3,1)-system. Thus we have a = 3, b = 1, and k = 3, since
8 =2 -3+ 2. Inputting these values yields

#PU318)=(B-1*2B-2+1)(B-1)3+(B-1)(B+1)3*+1-1)),
=2-3-(2-9+2-4-9),
=6-(18+72),
= 540.

Expressions could be derived for #W¥(km + 3), #¥(km + 4), etc., but they would be even more
technical and complex.



Conclusion

In this work we studied linear numeration systems and focused on their ambiguity. In Chapter
2 we introduced and verified basic properties of linear numeration systems. We then derived and
implemented an algorithm for calculating R(n) in a general B-system, which we used to calculate
R(n) on a chosen subclass of B-systems, the confluent systems. Based on our data, we conjectured
that R(n) in confluent systems with a = b behaves very similarly to R(n) defined in the Fibonacci
and m-bonacci systems and gave an expression for the maxima of R(n) in all confluent systems.
Using the matrix formula derived in Chapter ] we then verified that this is true. Furthermore
we showed that the confluent systems can be split into precisely three classes. The function
R(n) in confluent systems with a = b and order m = 2 displayed analogous behaviour to the
Fibonacci system, those with with @ = b and order m > 2 behaved identically to the m-bonacci
systems, and finally the confluent systems with a > b behaved entirely differently. We have thus
generalised the work of Kocabova, Masikova and Pelantova to all confluent systems.

What remains is to derive an expression for the arguments of the maxima in the confluent
systems with order a = b and order m > 2. Unfortunately, in this case the results from the
m-bonacci systems cannot be easily generalised. Furthermore, we did not study the numbers
that have a unique representation in a given confluent system.

Further work could focus on trying to derive a closed-form formula for R(n) (which will not
be a matrix formula) in general (F) systems and on studying the properties of R(n) in thsese
systems, as they are a close generalisation of confluent systems.
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Appendix

In the Appendix we will describe in detail our program for calculating the function R(n) in
arbitrary B-systems. The source code may be found in the following GitHub repository:
https://github.com /hypernek /Redundance-Calculator,
while a compiled and runnable version program can be found in the same repository here:
https://github.com/hypernek /Redundance-Calculator /releases/tag/v1.0.

The program runs on Windows. The source code and compiled program as well as sample
data may be also found on the CD attached with the physical copy of this work.

Usage

Two programs are included — the first calculates R(n) on bounds npyi, and nmax entered by
the user and the other calculates the maxima of R(n) on a range of lengths entered by the user.
The output of both programs is saved as a .csv file to the directory where the program was run.

Both programs are console applications that on initialisation ask the user to enter coefficients
of the basis of the B-system. After entering these coefficients, the basis of the B-system is
initialised. Afterwards, each of the two programs behaves differently.

The first program (Rn_calculator.exe) asks the user to enter the lower and upper bound
Nmin and Nmax of the values npyin < n < Nyax for which the function R(n) is to be calculated.
Alternatively, the user may enter an asterisk x and then enter the bounds [y and [phax of the
range of lengths on which they desire R(n) to be calculated. In effect, this sets npyin and npax
equal to B;_. _; (the smalest n whose representation has length lyin) and By, — 1 respectively
(the largest n whose representation has length lax). Hence, the user does not have to know the
values of the elements of the basis sequence. After the bounds are set, the calculation commences
and the console displays progress information. The values R(nmin), B(Pmin + 1), - .., R(Nmax)
are first stored into the computer’s memory, and after they are all calculated, the program starts
writing them to disc. Each row of the resultant .csv file is the triplet (n,(n)g,R(n)) —ie. for
every 1 = Nmin, Pmin + 1, - - - » Pmax the greedy representation of n is stored along with the value
of R(n). After writing out all the calculated values of R(n), the program writes the time needed
for calculation and writing to disc. A sample output of the program for the (3,2, 1)-system may
be found in Table

The second program (Maxima_of_Rn_calculator.exe) asks the user to input the bounds
Imin and lpax of the range of lengths | = lnin, lmin + 1, - - -, lmax for which the values v (I) and
#W(l) are to be determined. Then the program asks the user to enter a number M, which will
be the maximum number of elements of ¥([) they desire to save for a given length [. As shown in
Chapters 3 and 4, the size of W(l) can be very large and the user does not necessarily need to save
all members of ¥(). For example, the data in Table corresponds to entering coefficients 2, 1,
lengths lnin = 1 and lhax = 22 and setting M equal to 4. For every I = lnin, lmin + 1, - - -, Imax
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n ‘ <n>5
9371 | 10000101
9372 | 10000102
9373 | 10000103
9374 | 10000110
9375 | 10000111
9376 | 10000112
9377 | 10000113
9378 | 10000120
9379 | 10000121
9380 | 10000122
9381 | 10000123
9382 | 10000130
9383 | 10000131
9384 | 10000132
9385 | 10000200
9386 | 10000201

‘ n ‘ (n)p

9355 | 10000000
9356 | 10000001
9357 | 10000002
9358 | 10000003
9359 | 10000010
9360 | 10000011
9361 | 10000012
9362 | 10000013
9363 | 10000020
9364 | 10000021
9365 | 10000022
9366 | 10000023
9367 | 10000030
9368 | 10000031
9369 | 10000032
9370 | 10000100

mwww»&wwwwwwwwwwwg\
SN—
w%wwwwwwwwwwwwwwg
N—

Table 4.1: Sample output data for R(n) calculated in the (3,2, 1)-system for n = 9355, ... ,9386,
i.e. the first 32 numbers whose greedy representation has length 8. Note that along with the rule
1000 < 0321 we may also perform interchanges utilising the rule 100 <+ 033 at the end of the
representation (i.e. only at the suffix zox120), which corresponds to the addition/subtraction of
the initial representation of zero 133.

the program outputs ¢ (1), #¥(l) and the first M elements of ¥(I). The algorithm by which the
values (1) and #¥(l) are determined is as follows.

Algorithm for Determining the Mazxzima of R(n):

Initialisation: Set number_of_maximal_representations:=0.
Then for every | = lin, lmin + 1, - - ., lmax do:

1. Calculate R(n) for every n from the range B;—1 < n < B; — 1 and store the values into
memory in the array Rn_array.

2. Find the maximal value in Rn_array and for every n such that R(n) is maximal (i.e.
R(n) = (1)), increment by one the counter number_of_maximal_representations and
store its greedy representation (n)p into the list representation_list (but only if it
contains less than M representations).

3. Write the triplet (max(Rn_array), number_of_maximal_representations, representation_list)
into the output .csv file (L.e. write the triplet (1), #U (1), ¥(1)).

4. Empty Rn_array, representation_list and set number_of_maximal_representations
equal to zero.

The program also creates a second file recording the time needed for calculation and memory
usage for each [.
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Lastly, in both programs, whenever the user is asked for input, they can enter a percent sign
(%) to reset the basis and enter new coefficients, and then running the calculation of R(n) in a
different B-system.

Note on Systems not Possessing the (F) Property:

When entering the basis coefficients, any sequence of integers separated by commas is a valid
input, thus the program is not limited only to (F) systems. However, the correctness of the
values of R(n) is not guaranteed for non-(F) systems, because we do not a priori know the size
of the canonical alphabet. In the case that a non-(F) system is entered, the program sets the
largest digit of the canonical alphabet to the recurrence coefficient that is maximal. For example,
in the (1,5)-system, it would set the canonical alphabet to {0,1,2,3,4,5}, which is too large, as
in this system greedy representations contain only digits {0, 1,2,3}. Hence the resultant values
of R(n) will be incorrect. For (F) systems however, the correctness of the calculated values of
R(n) is always guaranteed.
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