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Abstrakt: Nech´ t1, . . . , tm ∈ N0, tm 6= 0 jsou koe�cienty lineárn¥ rekurentní posloupnosti Bk =∑m
i=1 tiBk−i s po£áte£ními podmínkami B0 = 1, B1 = t1 + 1, . . . , Bm−1 =

∑m−1
j=1 tjBm−1−j + 1.

Kaºdá taková posloupnost ur£uje numera£ní systém, kde kaºdému n ∈ N0 je p°i°azeno slovo
wN−1 · · ·w0 z celo£íselných cifer spl¬ující rovnost n =

∑N−1
i=0 wiBi. Dané £íslo n m·ºe mít více

takových reprezentací, ozna£ímeR(n) po£et reprezentací n nad kanonickou abecedou. Zkoumáme
vlastnosti R(n) v kon�uentních numera£ních systémech a zobec¬ujeme výsledky P. Kocábové,
Z. Masákové a E. Pelantové týkající se R(n) v soustavách zaloºených na Fibonacciho a m-
bonacciho posloupnostech. Dokazujeme maticový vzorec pro R(n) v kon�uentních systémech a
ur£ujeme maxima funkce R(n) ve v²ech kon�uentních systémech. Dále ukazujeme, ºe v sous-
tavách zaloºených na posloupnostech, které mají v²echny koe�cienty rekurence stejné, se max-
imální hodnoty R(n) shodují s t¥mi ve Fibonacciho a m-bonacciho soustavách.

Klí£ová slova: kon�uentní numera£ní systémy, lineární numera£ní systémy, redundance
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Representations of Numbers in Linear Recurrent Systems

Author: Hynek Pe°ina

Abstract: Given coe�cients t1, . . . , tm ∈ N0, tm 6= 0, the linear recurrent sequence Bk =∑m
i=1 tiBk−i with initial conditions B0 = 1, B1 = t1 + 1, . . . , Bm−1 =

∑m−1
j=1 tjBm−1−j + 1

de�nes a numeration system. Every n ∈ N0 can be represented by a word wN−1 · · ·w0 consisting
of integer digits that is de�ned by the equality n =

∑N−1
i=0 wiBi. A given n can have several such

representations. Let R(n) be the function that counts the number of distinct representations
of n over the canonical alphabet. We study the properties of the function R(n) in con�uent
numeration systems and extend the results of P. Kocábová, Z. Masáková, and E. Pelantová for
R(n) in the Fibonacci and m-bonacci systems. We prove a matrix formula for R(n) in con�uent
systems and determine the maxima of R(n) in all con�uent systems. Namely, we show that in
systems based on sequences whose recurrence coe�cients are all identical, the maximal values of
R(n) equal those in the Fibonacci and m-bonacci systems.
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Introduction

Numbers are intrinsincally linked with the way we write them. In our daily life, the dec-
imal system is the most practical, whereas computers store numbers using the binary system.
A numeration system is a set of rules that we use to assign strings of digits to values and vice
versa.

The most commonly used numeration system is the standard b-ary system. In this numeration
system, we construct a representation of an integer x by �rst �nding the largest power of b that
is smaller than x, then dividing x by this power of b and storing the result as the most signi�cant
digit, then diving the remainder by the next smaller power of b, recording that as the next digit
and repeatedly dividing the remainder by smaller and smaller powers of b until we construct the
whole representation. However, we do not necessarily have to use a geometric sequence. It is
easy to prove that any strictly increasing sequence starting by 1 can be used to represent natural
numbers. We will call numeration systems based on such sequences the B-systems. In literature
[5], the name U -systems is also used.

Of particular interest are numeration systems based on a sequence satisfying a linear recur-
rence with integer coe�cients. The most famous example is the Fibonacci representation, also
called Zeckendorf representation [14] after its discoverer, which uses the Fibonacci sequence. For
example, in the Zeckendorf representation, the number six has the representation 1001, since
6 = 5 + 1 and 5 and 1 are the �rst and fourth Fibonacci numbers, respectively. Much has been
done in the study of the Fibonacci system and B-systems in general and the language of nor-
mal representations. For example, Hollander [8] studied the conditions needed for a B-system's
language of normal representations (obtained by the usual greedy algorithm) to be regular.

B-systems based on a linear recurrent sequence have the property that they are redundant,
i.e. a given number may have multiple representations in such a system. The number six has
another valid representation in the Fibonacci numeration system, namely 111, because 6 =
3 + 2 + 1. The focus of this work will be quantifying the degree of this ambiguity for a selected
class of linear numeration systems, namely the con�uent systems. Denote by R(n) the number of
representations of the number n ∈ N0 in a given B-system. Kocábová, Masáková, and Pelantová
studied the properties of the function R(n) in the systems based on the Fibonacci and m-bonacci
sequences [12, 11]. By the m-bonacci sequence we mean the sequence whose every element is
the sum of m > 2 consecutive preceding elements. We will expand on their work and study the
properties of R(n) in their generalisation, the con�uent systems. Established by Frougny in [3],
they are linear numeration systems which generate a rewriting system that is con�uent. We will
specify this in more detail in Chapter 2.

In Chapter 1, we introduce some basic terminology from combinatorics on words, since that
will be needed for working with representations of numbers (which are strings of digits, i.e. words).

In Chapter 2 we establish linear numeration systems and verify some of their properties.
Namely, we will introduce the (F) systems and con�uent systems and derive a way how to
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recognise a greedy representation in an (F) system.
In Chapter 3 we present the algorithm for calculating R(n) and the computational results of

our survey of the function R(n) in several con�uent systems. Our data suggests that con�uent
systems are a close generalisation of the Fibonacci and m-bonacci systems, since in two large
subclasses of con�uent systems the function R(n) displays substantially similar behaviour to the
Fibonacci and m-bonacci systems. In this section we also conjecture expressions for the values
of the maxima of R(n) and the number of arguments of the maxima of R(n).

In Chapter 4 we study the theoretical properties of the function R(n) and derive a closed-form
matrix formula for the calculation of R(n) in con�uent systems. We then use this matrix formula
to verify our hypotheses from Chapter 3 and show that con�uent systems with all recurrence
coe�cients equal behave identically to the Fibonacci and m-bonacci systems as well as show the
di�erence to the con�uent systems where the last recurrence coe�cient is strictly smaller.

Lastly, in the Appendix, we describe in detail our program for calculating R(n).
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Chapter 1

Preliminaries

The focus of this work will be representations of numbers. Numbers are represented by words,
i.e. sequences of characters (digits) from a a �nite set. Therefore, in this section we will establish
some basic terminology related to combinatorics on words.

An alphabet is any �nite set A. Its elements are known as letters or symbols. In our case A
will be typically a �nite subset of integers. A word or string over A is some sequence of letters
from A. Formally, a word w is de�ned as w = wnwn−1 · · ·w0, where wi ∈ A, n ∈ N. The length
of a word w = wnwn−1 · · ·w0 is denoted |w| = n+1. The set of all �nite words over A is denoted
by

A∗ = {ε} ∪
⋃

n∈N0,wi∈A
wnwn−1 · · ·w0.

where ε is the empty word, i.e. a sequence of length zero. The set A∗ is endowed with the
binary operation concatenation of words ◦ : A∗ × A∗ → A∗ which is de�ned followingly: For
u = unun−1 · · ·u0, v = vmvm−1 · · · v0 ∈ A∗ set

u ◦ v = unun−1 · · ·u0vmvm−1 · · · v0.

The circle operator ◦ is however usually left out and we write w = uv. The structure (A∗, ◦)
is a free monoid, ε being the neutral element. The concatenation of w with itself is de�ned
recursively as

w0 = ε, wn+1 = wnw.

We say that u is a pre�x of w if w can be factorised as w = uv, v ∈ A∗. Analogically, u is a
su�x of w if w can be factorised as w = vu, v ∈ A∗. Additionally, u is said to be a proper pre�x

or proper su�x if v from the above factorisations is non-empty. Lastly, u is a factor of w if there
exists a factorisation of w such that w = xuv, x, v ∈ A∗. Likewise, if x or v are not equal to ε
then u is a proper factor. Note: In all cases the words u, v, x can equal ε (ε is the pre�x, su�x
and factor of every word).

A language is any subset of A∗. We say that a word w ∈ A∗ avoids a set X ⊂ A∗ if no word
x ∈ X is a factor of w. By extension we say that a language L avoids X if all w ∈ L avoid X.

We de�ne two canonical orderings on the set A∗.

De�nition 1.1. Consider the two words x = xNxN−1 · · ·x0, y = yMyM−1 · · · y0 over a totally
ordered alphabet A. Then x is said to be lexicographically greater than y (denoted x �lex y),
when one of the following conditions holds:

� N > M (i.e. x is longer than y) and y is a pre�x of x.

13



14 CHAPTER 1. PRELIMINARIES

� There exists an index r ≤ N such that xr > yr and xi = yi for all r < i ≤ N .

De�nition 1.2. Again let x = xNxN−1 · · ·x0, y = yMyM−1 · · · y0 be words over a totally ordered
alphabet A. Then x is said to be radix greater than y (denoted x � y) when one of the following
conditions holds:

� N > M , i.e. x is longer than y.

� N = M and there exists an index r ≤ N such that xr > yr and xi = yi for all r < i ≤ N .

The lexicographic ordering is equivalent to the alphabetic ordering whilst the radix order is
equivalent to ordering by value. Consider for example numbers written in the decimal represent-
ation. The string 42 is lexicographically greater than 107, even though the value it represents is
smaller, whereas by radix order 107 � 42. The radix order can also be understood followingly:
align x and y to the least signi�cant digit (to the right), pad the shorter word with zeroes on the
left until both words have the same length, and then compare them lexicographically. On the
other hand, in the lexicographic order we align the two words to the most signi�cant digit (to
the left), pad the shorter word with zeroes on the right and then compare them by radix order.
Lastly, it is evident that for two words of the same length the lexicographic and radix order are
equivalent.

In later sections, we will use terminology from abstract rewriting systems, which we will
de�ne here. We will largely follow the notation and terms used in [3], as that will su�ce for our
needs. More on the theory of abstract rewriting systems may be found in [9] and [10].

A rewriting system ρ over A∗ is a set of rewriting rules s → t, where s, t ∈ A∗. The regular
closure of ρ is denoted −→

ρ
and de�ned followingly:

x −→
ρ
y if and only if x = fsg, y = ftg and (s→ t) ∈ ρ.

This relation can be called �x is rewritten to y using rule (s→ t)�.
The re�exive and transitive closure of → is denoted ∗−→

ρ
. In other words, x ∗−→

ρ
y if y = x or

there exists a sequence of rewritings x −→
ρ
t1 −→

ρ
t2 · · · −→

ρ
y.

The relation −→
ρ

is called con�uent if for every three words z, s, t such that z ∗−→
ρ
s and z ∗−→

ρ
t

there exists a word v satisfying s ∗−→
ρ
v and t ∗−→

ρ
v. A rewriting system ρ is con�uent if the relation

−→
ρ

is con�uent.

If no word t 6= s exists such that s ∗−→
ρ
t we say that s is irreducible modulo ρ. If v ∗−→

ρ
s where

s is irreducible, we say that v reduces to s or that s is the result of reduction of v. Furthermore,
if ρ is con�uent, then there exists a reduction function ρ∗ : A∗ → A∗ which maps every word
w ∈ A∗ to the irreducible word ρ∗(w) (which is the result of reduction of w). Let us con�rm that
ρ∗ is truly a function. Let w ∈ A∗ be reducible modulo ρ. Then rewrite w using rules from ρ
until an irreducible word t is reached. Take w and start rewriting it again and if possible, select
in each step a di�erent rewriting rule than that used in deriving t. Continue this process until
an irreducible word s is reached. Because ρ is con�uent, s must equal t, otherwise we would
have words w, s, t such that w ∗−→

ρ
s and w ∗−→

ρ
t, but no v would exist such that s ∗−→

ρ
v and t ∗−→

ρ
v,

which is in contradiction with the con�uence property of ρ. Thus the irreducible word ρ∗(w) is
uniquely de�ned for every w and ρ∗ is indeed a function.



Chapter 2

Linear Numeration Systems

In this section we shall introduce linear numeration systems, the focus of our study. Inform-
ally, a numeration system is the set of rules that we use to assign a word (a representation) to
a given value. More formally, a numeration system for the integers can be understood as a map
from N0 to some subset of A∗, where A is a �nite alphabet. For example, the standard b-ary
system for integers is a map N : N0 → {0, 1, . . . , b−1}∗ such that N (x) = xN−1 · · ·x1x0, where
b ∈ N, b ≥ 2, N is de�ned by bN > x ≥ bN−1 and the digits are de�ned as xk =

⌊
x
bk

⌋
−
∑k−1

i=0 xib
i

for all k ∈ {0, 1, . . . , N−1}.
Along with the standard b-ary representation, multiple other numeration systems exist. In

the standard b-ary system, a letter represents how many times a given power of b is included in
the number that it represents. For example, the string 203, understood as a decimal expansion,
represents the value composed by adding 2 ·102, 0 ·101, and 3 ·100. Thus, in the decimal system,
we represent numbers using the geometric sequence Bn = 10n, n ∈ N0.

However, this is not the only type of sequence that can be used. It is easy to show that
(Bn)∞n=0 can be any strictly increasing sequence of positive integers. Numeration systems based
on such a sequence are known as B-systems (also called U -systems in literature, see Frougny
[6]). Such systems can be used to represent all natural numbers, and with a slight modi�cation
all integers. In this work we will focus solely on representing natural numbers.

It must be noted that not all sequences generate a numeration system whose language of
normal representations (which we will de�ne later) is well-behaved. However, a class of sequences
that generate numeration systems with reasonable properties are the linearly recurrent sequences
with natural coe�cients. We will call any such sequence a basis.

De�nition 2.1. Let (Bn)∞n=0 be a sequence of positive integers satisfying

Bn = t1Bn−1 + t2Bn−2 + · · ·+ tmBn−m, (2.1)

where t1, t2, . . . , tm ∈ N0, tm 6= 0. Set the m initial conditions equal to

B0 = 1,

B1 = t1 + 1,

B2 = t1B1 + t2 + 1,

...

Bm−1 = t1Bm−2 + t2Bm−3 + · · ·+ tm−1 + 1. (2.2)

Then (Bn)∞n=0 is a basis and m ≥ 1 is its basis order.
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16 CHAPTER 2. LINEAR NUMERATION SYSTEMS

We can see that this is indeed a generalisation of the b-ary system, since for any natural b ≥ 2
the sequence (Bn)∞n=0 = (bn)∞n=0 satis�es the recurrence Bn = b · Bn−1 and so it is a basis of
order 1.

A basis can be used to assign a value to a word over an alphabet of integers followingly.

De�nition 2.2. Let (Bn)∞n=0 be a basis. Then a B-representation of the number x ∈ Z is any
string xNxN−1 · · ·x0 over a subset of Z with N ∈ N0 such that x =

∑N
i=0 xiBi. The empty word

ε is understood as a B-representation of zero.

When it will be necessary to di�erentiate a B-representation from other representations
(typically a decimal representation), we will label the B-representation with a subscript B, as in
the following example.

Example 2.3. Let (Bn)∞n=0 be the Fibonacci sequence, i.e. Bn = Bn−1 + Bn−2, B0 = 1,
B1 = 2. Then (Bn)∞n=0 = {1, 2, 3, 5, 8, . . . } and 1001B is a B-representation of the number six,
since 1 · 5 + 0 · 3 + 0 · 2 + 1 · 1 = 6. Another possible B-representation of six is 111B, since
1 · 3 + 1 · 2 + 1 · 1 = 6.

Remark 2.4. Even though in De�nition 2.2 we allowed digits to be from Z, we will focus solely
on representations of non-negative integers, where non-negative digits will su�ce. Therefore,
from now on a B-representation is understood to be a word consisting of non-negative digits
only (unless speci�ed otherwise).

Remark 2.5. Consider a basis (Bn)∞n=0 with coe�cients t1, t2, . . . , tm. For brevity, we will often
use the expression (t1, t2, . . . , tm)-B-system or just (t1, t2, . . . , tm)-system when speaking about
the numeration system generated by this basis. For example, the Fibonacci numeration system
from Example 2.3 would be known as the (1, 1)-system.

Using De�nition 2.2 a numeric value can be assigned to any string of integer digits, but
typically we want to do the opposite � that is to generate a string representing a given value.
To prove that this is possible for any non-negative integer x, we will use the greedy algorithm.
However, �rst, we need to prove a technical lemma.

Lemma 2.6. Every polynomial of the form

f(x) = xm − t1xm−1 − t2xm−2 − · · · − tm−1x− tm,

where m ≥ 1, t1, t2, . . . , tm ∈ N0, tm 6= 0, has exactly one real positive root β. Furthermore, all

other roots of f(x) lie in the circle |x| ≤ β and if
∑m

i=1 ti > 1, then β > 1.

This lemma is required to show that the alphabet of digits will be �nite. In its proof we will
utilise the following theorem (from Marden [13] (Theorem 27.2), originally by Cauchy).

Theorem 2.7. Given a polynomial p(x) = anx
n + an−1x

n−1 + · · · + a1x + a0, where an 6= 0,
de�ne the polynomial

Q(x) = |an|xn − |an−1|xn−1 − · · · − |a1|x− |a0|. (2.3)

By Descartes' rule of signs, Q(x) has precisely one positive real root R. Then all zeroes of p(x)
lie in the circle |x| ≤ R.
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Proof of Lemma 2.6. Suppose that f(x) has no real root larger than 1. Clearly f(x) is the
characteristic polynomial of the basis Bn = t1Bn−1 + t2Bn−2 + · · ·+ tmBn−m. Set the m initial
conditions equal to

B0 = 1, B1 = t1 + 1, B2 = t1B1 + t2 + 1, . . . , Bm−1 = t1Bm−2 + · · ·+ tm−1 + 1.

Since
∑m

i=1 ti > 1, this yields a basis (Bn)∞n=0 that is strictly increasing. Therefore, if we solve
the recurrence for Bn, at least one root of f(x) must have absolute value larger than 1. Take the
root maximum in modulus and label it βmax. By assumption, βmax cannot be real and positive.

From Descartes' rule of signs we can see that f(x) has exactly one positive real root. Label
this root βpos. Evidently by assumption βpos ≤ 1. Additionally, we can see that f(x) is in the
same form as the right-hand side of (2.3), i.e. Q(x) = f(x). Therefore, by Theorem 2.7 all roots
of f(x) lie in the circle |x| ≤ R = βpos ≤ 1. However, at least one root outside this circle exists
(βmax), leading to a contradiction.

Now we can prove that every number can be represented using a given basis.

Theorem 2.8 (B-Representation.). Let (Bn)∞n=0 be a basis with coe�cients satisfying
∑m

i=1 ti >
1 and tm 6= 0. Then for every x ∈ N0 there exists an N ∈ N0 and coe�cients ai ∈ A =
{0, 1, 2, ..., a}, i = 0, 1, 2, ..., N such that

x = aNBN + aN−1BN−1 + · · ·+ a1B1 + a0B0,

where a ∈ N is a constant satisfying
⌊
supN∈N0

BN+1

BN

⌋
≥ a. In other words, every x ∈ N0 has a

B-representation aNaN−1 · · · a1a0 over the canonical alphabet A.

Proof. We will prove the existence of the B-representation of x by constructing it. Given an
x ∈ N0 and a basis (Bn)∞n=0 we proceed by the following greedy algorithm. Set

N := max{n|x ≥ Bn}

and let initially R := x, i := N. Then in the i-th iteration of the algorithm do the following:

1. Set ai := bR/Bic.

2. Set R equal to the remainder of the division by Bi, i.e. R := R− aiBi

3. If i = 0, terminate, otherwise lower i by one and repeat from step 1).

The representation is generated from the most signi�cant digit. It is evident that this al-
gorithm always terminates, since the number of iterations is �nite. Also, the resulting word
aNaN−1 · · · a1a0 is clearly a B-representation of x. What remains is to verify that all digits
belong to the set A = {0, 1, 2, ..., a}.

Evidently, for every non-zero x an N exists such that BN+1 > x ≥ BN . Dividing by BN
yields the inequality

BN+1/BN > x/BN ≥ 1. (2.4)

Since Bn is linearly recurrent and real, we can write it as a linear combination of m real base
sequences ζn1 , . . . ζ

n
m, which we will construct from the m roots β1, β2, . . . , βm ∈ C of the charac-

teristic polynomial of the basis Bn.
The characteristic polynomial of the basis Bn is of the form

f(x) = xm − t1xm−1 − t2xm−2 − . . .− tm−1x− tm.
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The polynomial f(x) has real coe�cients, therefore for every complex root βi of f(x) its conjugate
βi will also be a root of f(x). Suppose, without loss of generality, that the roots are ordered
by modulus and multiplicity, that is |β1| ≥ |β2| ≥ · · · ≥ |βm| and repeated roots are ordered
adjacently. That is for every root βr with multiplicity νr there exists exactly one 1 ≤ k ≤ m
such that βk = βk+1 = · · · = βr = · · · = βk+νr−1.

Let us now construct the sequences ζnk . For every root βk ∈ R with multiplicity νk, where k
is such that βk = βk+1 = · · · = βr = · · · = βk+νr−1, set for all 0 ≤ j ≤ νk − 1

ζnk+j = njβnk .

By Lemma 2.6, f(x) will have exactly one positive real root larger than 1 and all other roots
will be smaller in modulus, denote this root β = β1.

For every βk ∈ C\R with multiplicity νk denote its complex conjugate βl = βk, νl = νk, where
the index 1 ≤ l ≤ m is again minimal. For unambiguity let k < l. Then for all 0 ≤ j ≤ νk − 1
set

ζnk+j := nj
βk

n + βnl
2

= nj |βk|n cos

(
n
Re(βk)
|βk|

)
,

ζnl+j := nj
βk

n − βnl
2

= nj |βk|n sin

(
n
Im(βk)

|βk|

)
.

In this way the m basic real sequences ζn1 , . . . , ζ
n
m are constructed. Substituting initial conditions

for Bn yields coe�cients α1, . . . , αm ∈ R such that

Bn =

m∑
i=1

αiζ
n
i . (2.5)

Substituting (2.5) into (2.4) and the fact that ζN+1
1 = βN+1

1 = βN+1 yields for all N ∈ N0

1 <
BN+1

BN
=

∑m
i=1 αiζ

N+1
i∑m

i=1 αiζ
N
i

=
α1β

N+1 +
∑m

i=2 αiζ
N+1
i

α1βN +
∑m

i=2 αiζ
N
i

= β
α1 +

∑m
i=2 αi

ζN+1
i

βN+1

α1 +
∑m

i=2 αi
ζNi
βN

.

By Lemma 2.6, it is evident that

lim
N→+∞

BN+1

BN
= β > 1.

The ratio of consecutive elements of Bn is therefore for all N ∈ N0 bounded by some constant
K = supN∈N

BN+1

BN
, K ∈ Q. Together with (2.4) this results in

K ≥ BN+1/BN > x/BN ≥ 1.

The digit aN = bx/BNc can therefore have only a �nite number of values. Consider now other
digits ai, 0 ≤ i < N . As the remainder of the division by Bi+1 will always be smaller than Bi+1

(step 2. of the greedy algorithm), in the i-th iteration the following will hold:

Bi+1 > R,

dividing by Bi this leads to

K ≥ Bi+1

Bi
>

R

Bi
≥ 0.
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After rounding we can see that ai = bR/Bic can also have only a �nite number of values. The
digit ai is non-negative because R is non-negative and Bi is positive.

Clearly, a maximum digit a ∈ N exists such that ai ≤ a for all i = 0, 1, . . . , N and

a ≤
⌊

sup
N∈N0

BN+1

BN

⌋
= bKc ,

The canonical alphabet A = {0, 1, . . . , a} for the basis (Bn)∞n=0 is therefore well-de�ned.

In general the value of a can be known only by calculating the elements of the basis. However,
if the basis coe�cients satisfy the inequality t1 ≥ t2 ≥ · · · ≥ tm ≥ 1, it is possible to deduce a
immediately from the coe�cients of the recurrence, which we will prove shortly. This type of
basis will also have certain other practical properties, so we will give it a name.

De�nition 2.9. Let (Bn)∞n=0 be a basis of order m whose coe�cients satisfy

t1 ≥ t2 ≥ · · · ≥ tm ≥ 1. (2.6)

Then we say that the basis (Bn)∞n=0 has the (F) property or that (Bn)∞n=0 is an (F) basis. By
extension a B-system is said to have the (F) property if its basis has the (F) property.

The above de�nition is carried over from numeration systems with a non-integer base, the so
called β-systems, which are studied for example in [5, 6]. The F stands for �nite, as a real base
β > 1 is said to have the (F) property if every member of Z

[
β−1

]
∩R+ has a �nite β-expansion.

Take the polynomial
χ(x) = xm − t1xm−1 − · · · − tm−1x− tm (2.7)

whose coe�cients satisfy (2.6) and denote β > 1 its root greatest in modulus. In [4] Frougny and
Solomyak prove that β is a Pisot number and that it has the (F) property. A Pisot number is an
algebraic integer whose conjugates are all less than one in modulus. Notice that the polynomial
χ(x) is the characteristic polynomial of a basis satisfying De�nition 2.9, which is why we use this
name.

Moreover, β-systems are closely tied to B-systems. Every B-system can be uniquely as-
sociated with a β-system whose language of greedy representations shares many combinatoric
properties with the language of greedy B-representations. More on this association can be found
in [5, 6].

We proceed with determining the canonical alphabet of B-systems with the (F) property.

Lemma 2.10. Let (Bn)∞n=0 be an (F) basis. Then the canonical alphabet of the numeration

system generated by (Bn)∞n=0 is equal to A = {0, 1, . . . , t1}.

Proof. Take x ∈ N and an (F) basis (Bn)∞n=0. Suppose that we are generating theB-representation
of x using the algorithm from Theorem 2.8. Let N ∈ N0 such that BN+1 > x ≥ BN . Substituting
for BN+1 from the recurrence (2.1) and dividing by BN yields

t1BN + t2BN−1 + · · ·+ tmBN−m+1 > x ≥ BN ,

t1 +
t2BN−1 + · · ·+ tmBN−m+1

BN
> x/BN ≥ 1. (2.8)

Let us now focus on the fraction on the left hand side of (2.8). Substituting for BN in the
denominator yields

t2BN−1 + · · ·+ tmBN−m+1

t1BN−1 + · · ·+ tm−1BN−m+1 + tmBN−m
< 1. (2.9)
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The inequality holds thanks to the (F) property t1 ≥ t2 ≥ · · · ≥ tm ≥ 1, which implies that the
denominator is strictly larger than the numerator. Let us now return to the inequality (2.8).
Due to inequality (2.9), by rounding we get

t1 ≥ bx/BNc≥ 1.

Consider now the other digits. Because the remainder after division by Bi+1 will always be
smaller than Bi+1, in the i-th iteration of the algorithm we will have

Bi+1 > R.

Following the same steps as above we arrive at

t1 +
t2Bi−1 + · · ·+ tmBi−m+1

Bi
> R/Bi,

and thus the digit ai = bR/Bic is bounded by

t1 ≥ bR/Bic ≥ 0.

All digits aN , aN−1, . . . , a1, a0 are contained in the �nite alphabet A = {0, 1, . . . , t1}.

For further study of B-representations, we de�ne the value of a word.

De�nition 2.11. Given a basis (Bn)∞n=0 and some alphabet C ⊂ Z, the evaluator function

π : C∗ → Z is de�ned for every word w = wNwN−1 · · ·w1w0 ∈ C∗ as

π(w) =

N∑
i=0

wiBi,

for the empty word we set π(ε) = 0. More often we will say that π(w) is the value of word w (in

the numeration system with basis (Bn)∞n=0).

As is evident from De�nition 2.2, several words can represent the same value. In other words,
in general the map π is not injective. The only case when it is injective is when a B-system
coincides with the standard b-ary system, that is, the basis is of the form Bn = bBn−1 for some
b ∈ N, b ≥ 2.

Example 2.12. Consider the basis Bn = 3Bn−1+Bn−2. Then (Bn)∞n=0 = {1, 4, 13, 43, 142, . . . },
the canonical alphabet is equal to A = {0, 1, 2, 3} and the number x = 286DEC has three di�erent
B-representations (over A).

286DEC = 20002B (2.10)

= 13102B

= 13033B.

Only the �rst representation (2.10) could have been constructed by the algorithm in Theorem
2.8, since it has the largest possible most signi�cant digit. Accordingly, the representation (2.10)
is largest by the radix order. This representation will be known as the greedy representation.
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De�nition 2.13. Let x ∈ N0. Then the B-representation constructed by the algorithm from
Theorem 2.8 is called the greedy representation, or equivalently, the normal representation. It
will be denoted 〈x〉B. The set of all greedy B-representations will be known as the language of

greedy representations, denoted L(B).

Theorem 2.14 (Properties of Greedy Representations.). Let xNxN−1 · · ·x1x0 = 〈x〉B be the

greedy B-representation of some x ∈ N. Then the following holds:

1. xN 6= 0.

2. 〈x〉B is the greatest by radix order among all B-representations of x.

3. 〈x〉B � 〈y〉B ⇔ x > y for every two x, y ∈ N0.

Proof. Property 1. Evident from the proof of Theorem 2.8.
Property 2. The greedy representation is the longest among all B-representations of x, since

the most signi�cant digit xN is obtained by dividing x by the greatest element of the basis B
that is smaller than x. Additionally, this digit will be the greatest possible:

xN = max {k | kBN < x} .

Suppose now a di�erent representation of x, denote it x̃ = x̃Ñ x̃Ñ−1 · · · x̃1x̃0. Evidently no x̃ can
have x̃N > xN , so one of the following must occur:

a) |〈x〉B| > |x̃|

b) |〈x〉B| = |x̃| and x̃N < xN .

c) |〈x〉B| = |x̃| and x̃N = xN .

In cases a), b) we immediately obtain 〈x〉B � x̃. In case c) the words 〈x〉B and x̃ share a common
pre�x beginning with (but not limited to) the digit xN . Removing this pre�x yields two words
〈x〉∗B, x̃∗ of lengthM+1 < N+1 that start with digits xM 6= x̃M . Because the greedy algorithm
always selects the greatest digit, the inequality xM > x̃M must hold and so case b) applies.

Property 3. (⇒) :
Let xNxN−1 · · ·x0 = 〈x〉B � 〈y〉B = yMyM−1 · · · y0. Then from the de�nition of the radix
ordering one of the following holds:

a) |〈x〉B| > |〈y〉B|, i.e. N > M .

b) N = M and an r ≤ N exists such that xr > yr and xi = yi for all N ≥ i > r.

In case a) the inequality x > y is evident from the fact that BN+1 > x ≥ BN , BM+1 > y ≥ BM
and N > M implies N ≥M + 1. In total x ≥ BN > y.

Case b) warrants a more thorough analysis. Clearly

x− y =

N∑
i=0

xiBi −
N∑
i=0

yiBi =
r∑
i=0

xiBi −
r∑
i=0

yiBi.

Because xr − yr ≥ 1, this can be bounded from below by

r∑
i=0

xiBi −
r∑
i=0

yiBi ≥ Br +

r−1∑
i=0

(xi − yi)Bi ≥ Br −
r−1∑
i=0

yiBi.
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The word yr−1yr−2 . . . y0 is a greedy representation of some value ỹ < y (due to the already
proven case a) and also due to the fact that any su�x of a greedy representation is a greedy
representation). Since its length is precisely r, the value ỹ must satisfy Br > ỹ ≥ Br−1. Therefore

Br −
r−1∑
i=0

yiBi > 0

from which x > y follows.
(⇐) :

The reverse implication is a corollary of the greedy algorithm. Let x > y. If an N exists such
that x ≥ BN > y, the greedy representation 〈x〉B will be longer than 〈y〉B and so 〈x〉B � 〈y〉B.
If BN+1 > x > y ≥ BN , then an 0 ≤ r ≤ N exists such that in the r-th step of the greedy
algorithm run simultaneously for x and y we will have remainders R(x) a R(y) which will satisfy⌊

R(x)/BN−r−1

⌋
>
⌊
R(y)/BN−r−1

⌋
.

For the (N − r)-th digits this will result in xN−r > yN−r and xi = yi for all N − r < i ≤ N ,
therefore 〈x〉B � 〈y〉B, by the de�nition of the radix order.

2.1 Combinatorics of Linear Numeration Systems

In this section we will explore some further combinatorial properties of B-systems, most
importantly factors of value zero and rewriting rules generated by B-systems. This will be
followed by establishing the con�uent B-systems. Finally, we will show a way how to recognise
greedy representations in (F) systems. More on other properties of B-systems (for example, the
regularity of L(B)) can be found in [5, 6, 8].

2.1.1 Abstract Rewriting and Con�uent B-Systems

In this section we will introduce the con�uent numeration systems, �rst established and
studied by Frougny [3]. The �rst step is to realise that all linear numeration systems implicitly
generate a rewriting system that is given by the basis recurrence.

De�nition 2.15. Consider some alphabet C = {0, 1, . . . , c}. Then the rewriting system gener-

ated by the rule 0t1t2 · · · tm → 10m is de�ned as

ρC = {xmxm−1 · · ·x0 → (xm+1) (xm−1−t1) · · · (x0−tm)|
0 ≤ xm < c and xm−i ≥ ti for all i ≥ 1} .

Every B-system with coe�cients t1, t2, . . . , tm thus de�nes a rewriting system generated by
the rule 0t1t2 · · · tm → 10m on its canonical alphabet A, which we denote ρA. We will call ρA
the rewriting system associated with the (t1, t2, . . . , tm)-system. Because of the basis recurrence,
this rewriting system has the practical property that it preserves the numerical value of words.
More formally, given a basis, every two words w and v over the canonical alphabet A satisfy

w
∗−→
ρA

v i� π(w) = π(v).

Fact 2.16. Take a B-system with canonical alphabet A and its associated rewriting system ρA.
Then evidently all words w 6= v for which w

∗−→
ρA

v satisfy w � v.
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We will now show an example of a con�uent rewriting system in the context of B-systems.

Example 2.17. Consider the basis Bn = 3Bn−1+3Bn−2+2Bn−3. Then Bn = {1, 4, 15, 59, . . . },
the canonical alphabet is A = {0, 1, 2, 3}, and ρA is generated by the rule 0332→ 1000:

ρA =


0332 → 1000, 0333 → 1001,
1332 → 2000, 1333 → 2001,
2332 → 3000, 2333 → 3001.


Let w = 0332333. Then there are two possible reductions of w:

0332333 −→
ρA

1000333 −→
ρA

1001001,

and
0332333 −→

ρA
0333001 −→

ρA
1001001.

Both reductions lead to the same result, because the rewriting system ρA is con�uent. (See
Theorem 2.19).

Compare this with an example of a rewriting system that is not con�uent:

Example 2.18. Consider the basis Bn = 3Bn−1 + 2Bn−2 +Bn−3. Then Bn = {1, 4, 14, 51, . . . },
the canonical alphabet is A = {0, 1, 2, 3}, since Bn satis�es the (F) property and ρA is generated
by the rule 0332→ 1000:

ρA =


0321 → 1000, 0322 → 1001, · · · 0333 → 1012,
1321 → 2000, 1322 → 2001, · · · 1333 → 2012,
2321 → 3000, 2322 → 3001, · · · 2333 → 3012.


Let w = 032333. Then there are two possible reductions of w. Either

032333 −→
ρA

100232,

or
032333 −→

ρA
033011.

Both 100232 are 033011 are irreducible modulo ρA, thus ρA is not a con�uent rewriting system.
Naturally, we are led to ask for what B-systems is the associated rewriting system con�uent.

Frougny showed in [3] that con�uent systems can be characterised by the coe�cients of their
basis.

Theorem 2.19 (Frougny). Suppose a basis (Bn)∞n=0 of order m with coe�cients t1, t2, . . . , tm ∈
N0 and canonical alphabet A. Then the rewriting system ρA associated with the B-system is

con�uent if and only if the coe�cients of (Bn)∞n=0 satisfy

t1 = t2 = · · · = tm−1 = a, tm = b, (2.11)

where a ≥ b ≥ 1.

The above theorem justi�es the following de�nition.

De�nition 2.20. A basis (Bn)∞n=0 of order m is called con�uent if its coe�cients satisfy (2.11).
By extension, a B-system is con�uent if its basis is con�uent.
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Remark 2.21. Evidently, all con�uent B-systems are also (F) systems. The opposite inclusion
does not hold, as was illustrated by Example 2.18. However, if we limit ourselves to only B-
systems of order 2, the con�uent and (F) systems coincide.

Importantly, the con�uence property allows us to perform normalisation by means of a �nite
transducer, a result due to Frougny [3]. This was one of the initial motivations of the study of
such systems. We de�ne what is meant by normalisation.

De�nition 2.22. Take a B-system with canonical alphabet A and some other alphabet C ⊃ A.
Then normalisation is the map ν : C∗ → A∗ that assigns to a word w the greedy (normal)
representation of the value represented by w, i.e.

ν(w) = 〈π(w)〉B .

In e�ect, when reducing using the rewriting system ρA associated with a con�uent B-system,
we are performing normalisation. This can be restated as the following theorem, also from [3]:

Theorem 2.23 (Frougny). Suppose a con�uent B-system with canonical alphabet A. Then

normalisation in this system is equivalent to reduction in the associated rewriting system ρA.
Formally for every w ∈ A∗

ν(w) = ρ∗A(w).

Recall now Example 2.17.

0332333 −→
ρA

1000333

ρA

y ρA

y
0333001 −→

ρA
1001001

We can say that the three words 0332333, 0333001, and 1000333 normalise to 1001001.
The interesting property of con�uent numeration systems is that in order to perform norm-

alisation, it su�ces to use only rules from ρA. In other numeration systems, sometimes we have
to go backwards, i.e. use a rule from ρ−1A . Take the representation 033011 from Example 2.18.
Then 033011 normalises by the use of one backward rule and one forward rule:

033011←−
ρA

032332 −→
ρA

100232.

Another interesting property of con�uent systems is that the rewriting system consisting of
rules applied in reverse is also con�uent. We will call this system the inverse (reverse) rewriting

system ρ−1. Hence, for a given B-system with coe�cients t1, t2, . . . , tm and canonical alphabet
A = {0, 1, . . . , a}, the associated inverse rewriting system ρ−1A is de�ned as

ρ−1A = {xmxm−1 · · ·x0 → (xm−1) (xm−1+t1) · · · (x0+tm)|
1 ≤ xm < a and 0 ≤ xm−i ≤ a− ti for all i ≥ 1} .

For completeness, we shall establish the concept of the lazy representation of an integer.

De�nition 2.24. Suppose a B-system with canonical alphabet A. Then for every n ∈ N0 we
de�ne the lazy representation of n as the word 〉n〈B ∈ A∗ that is radix smallest among all the
representations of x over the alphabet A.
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The lazy representation is well-de�ned, since the set of representations of a number n ∈ N0

is �nite and two di�erent words w 6= v cannot have the same radix value (because that occurs
only when w and v are identical). Clearly, if a given number n has only one representation, its
lazy and greedy representation coincide.

Example 2.25. Take the (2, 1)-system. Then the canonical alphabet is A = {0, 1, 2}, the
basis is equal to Bn = {1, 3, 7, 17, 41, 99, . . . } and the associated rewriting system consists of the
rules ρA = {021→ 100, 121→ 200, 022→ 101, 122→ 201}. The greedy representation of 49 is
10101B, whereas its lazy representation is 02122B.

Unfortunately, no direct algorithm for constructing lazy representations is known. The only
way they can be obtained is by constructing the greedy representation and reducing it using the
associated reverse rewriting system until the lazy representation is reached.

We will now move on to introduce another practical concept for dealing with B-systems,
which we will utilise in proofs. It is the concept of the so-called factors of value zero, a subset of
the B-representations of zero. For a given B-system, they are easy to determine.

De�nition 2.26. Consider a B-system of order m with coe�cients t1, t2, . . . , tm ∈ N0 and
canonical alphabet A. Denote by the overline a minus sign, i.e. t1 = −t1. Then the factors of

value zero are the words
1t1t2 · · · tm−1tm, 1t1t2 · · · tm−1tm.

Furthermore, the m − 1 initial representations of zero (initial factors of value zero) are the
B-representations

1 t1 t2 · · · tm−2 tm−1+1,
1 t1 · · · tm−3 tm−2+1,

. . . . . . . . .
...

1 t1 t2+1,
1 t1+1,

1 t1 t2 · · · tm−2 tm−1+1,
1 t1 · · · tm−3 tm−2+1,

. . . . . . . . .
...

1 t1 t2+1,
1 t1+1.

If we denote the canonical alphabet A = {0, 1, . . . , a}, then the factors of value zero are the
only words z over {−a, . . . , 0, . . . , a} such that π(z) = 0 and |z| = m + 1. We call them factors
of value zero because they satisfy this property regardless of how many zeros we write to their
right.

On the other hand, the initial representations of zero in general need not have digits contained
in {−a, . . . , 0, . . . , a}. This will in occur systems with the (F) property whenever a recurrence
coe�cient tr, r ≥ 2 exists such that tr = t1. Also, all the con�uent systems have this property.
Moreover, they satisfy π(z) = 0 only if their least signi�cant digit is in the place of B0. That is
why we will refer to them as initial representations of zero. Note that they are needed because
of the initial conditions that we adopted in De�nition 2.1.

In further sections, we will use these representations in proofs when we will need to rewrite
a word to another one representing the same value and to ensure that the resulting word has
its digits contained in the canonical alphabet A. In e�ect, adding the factor 1t1t2 · · · tm−1tm
digit by digit to some B-representation w over an alphabet C containing A corresponds to using
one of the rules from the rewriting system ρC generated by the rule 0t1t2 · · · tm → 10m. On
the other hand, the initial representations of value zero will serve their purpose at the end of
representations, where the standard factor of value zero does not �t.
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2.1.2 Recognising Greedy Representations

De�nition 2.27. Let (Bn)∞n=0 be an (F) basis with coe�cients t1, t2, . . . , tm. Then the maximal

factor is the word
t1t2 · · · tm−1(tm−1).

This factor will be pivotal to recognising greedy representations in B-systems with the (F)
property. Namely, we will prove that a word over the canonical alphabet is a greedy repres-
entation if and only if it avoids factors which are lexicographically greater than the maximal
factor and whose length is smaller than or equal m. To ensure that the B-system posesses this
behaviour is the reason why in De�nition 2.1 the basis initial conditions are chosen in the form
(2.2). In a way, the initial conditions (2.2) are optimal, which we show in the following example.

Example 2.28. Consider the basis Bn = 3Bn−1 + 2Bn−2 + Bn−3. Then A = {0, 1, 2, 3} is the
canonical alphabet and the maximal factor is equal to t2t1(t0−1) = 320. Suppose three sets of
initial conditions:

(A)


B0 = 1,

B1 = 3B0 = 3,

B2 = 3B1 + 2B0 = 11.

(B)


B0 = 1,

B1 = 3B0 + 1 = 4,

B2 = 3B1 + 2B0 + 1 = 15.

(C)


B0 = 1,

B1 = 3B0 + 2 = 5,

B2 = 3B1 + 2B0 + 2 = 19.

Then in case (A) there are words that are not a greedy representation, but do not contain
a factor lexicographically greater than the maximal factor. It is for example π(3B) = 3DEC =
π(10B) but 3 6� lex 320.

On the other hand, in case (C) there exist values which cannot be represented by a word
above the canonical alphabet � for example there is no word w ∈ A∗ such that π(w) = 4.
In case (B) none of these occur. Once a word contains a factor greater than the maximal factor,
the word is not a greedy representation. Compare:

π(32B) = 14DEC, 32 ≺lex 320.

π(100B) = π(33B) = 15DEC, 33 �lex 320.

With initial conditions in the form (2.2), we will now proceed with proving that greedy
representations avoid factors greater than the maximal factor. For that we will require the
following technical lemma.

Lemma 2.29. Let (Bn)∞n=0 be an (F) basis of order m with canonical alphabet A. Then every

word w ∈ A∗ that has length |w| ≤ N and value π(w) ≥ BN where N ∈ N, contains a factor of

length less than or equal to m that is lexicographically greater than the maximal factor.

Proof. We will prove the claim by induction on the length of the word w.
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1. N ∈ {1, 2, . . . ,m− 1}:
Suppose that w = wMwM−1 . . . w0, where |w| = M+1 ≤ N and π(w) ≥ BN . IfM+1 < N ,
extend w to length N by adding zeroes to the left.
Then

π(w) =
N∑
i=1

wN−iBN−i ≥ BN =
N∑
i=1

tiBN−i + 1.

The equality on the right hand side follows from the recurrence relation and initial condi-
tions for Bn. Together this implies

N∑
i=1

(wN−i − ti)BN−i − 1 ≥ 0. (2.12)

Suppose now that

wN−1wN−2 · · ·w1w0 �lex t1t2 · · · tN−1tN ≺lex t1t2 · · · tm−1(tm−1),

i.e. that there exists an 1 ≤ r ≤ N such that wN−r < tr and wN−j = tj for all 1 ≤ j < r.
Then, we can rewrite inequality (2.12) as

N∑
i=r+1

(wN−i − ti)BN−i − 1 ≥ −(wN−r − tr)BN−r. (2.13)

Because tq ≥ 1 for all q ∈ {1, 2, . . . ,m} and 0 ≤ wN−i ≤ t1 for all 1 ≤ i ≤ N , the
coe�cients (wN−i − ti) in the sum on the left hand side of (2.12) (and (2.13)) are at most
equal to t1 − 1 for all r < i ≤ N . We can therefore bound the left hand side of (2.13) by

N∑
i=r+1

(wN−i − ti)BN−i − 1 <
N∑

i=r+1

(t1 − 1)BN−i,

which after reindexing is equivalent to

N−r∑
i=1

(wN−r−i − tr+i)BN−r−i − 1 <
N−r∑
i=1

(t1 − 1)BN−r−i. (2.14)

On the other hand, (wN−r− tr) is smaller than or equal to −1, so we bound the right hand
side of (2.13) followingly:

−(wN−r − tr)BN−r ≥ BN−r =
N−r∑
i=1

tiBN−r−i + 1. (2.15)

Lastly, we will verify that

N−r∑
i=1

tiBN−r−i + 1 ≥
N−r∑
i=1

(t1 − 1)BN−r−i. (2.16)

We can rewrite this inequality as

N−r∑
i=1

tiBN−r−i −
N−r∑
i=1

(t1 − 1)BN−r−i + 1 ≥ 0,
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and write it as the digit by digit sum

t1 t2 · · · tN−r−1 tN−r+1
t1−1 t1−1 · · · t1−1 t1−1

∗ ∗ · · · ∗ ∗.

We want to prove that all digits marked ∗ will be non-negative. If N − r ≤ 1, the proof is
completed. Hence suppose now that N − r > 1.
Then using the initial conditions of the basis we may add the �rst N − r − 1 initial
representations of zero, resulting in

t1 t2 t3 · · · tN−r−1 tN−r+1
1 t1 t2 · · · tN−r−2 tN−r−1+1

1 t1 · · · tN−r−3 tN−r−2+1
1 · · · tN−r−4 tN−r−3+1

. . .
...

...
1 t1+1

t1−1 t1−1 t1−1 · · · t1−1 t1−1

∗ ∗ ∗ · · · ∗ ∗

Due to the (F) property, all digits marked ∗ will be non-negative, thus proving inequality
(2.16). Together with the previous inequalities (2.13), (2.14), and (2.15) we have derived
the contradiction

N−r∑
i=1

(t1 − 1)BN−r−i
(2.14)
>

N∑
i=r+1

(wN−i − ti)BN−i − 1

(2.13)

≥ −(wN−r − tr)BN−r
(2.15)

≥
N−r∑
i=1

tiBN−r−i + 1
(2.16)

≥
N−r∑
i=1

(t1 − 1)BN−r−i.

In other words, if there is some digit wr < tr and wm−j = tj for all 1 ≤ j < r, then
regardless of how large the digits wr−1, wr−2, . . . , w0 ∈ A are, they will not be su�cient to
satisfy the inequality (2.12) and ensure that the expression on the left hand side is non-
negative, which is a contradiction.
Finally, if wN−j = tj for all 1 ≤ j ≤ N , then the sum

∑N
i=1wN−iBN−i is equal to∑N

i=1 tiBN−i, which is again in contradiction with (2.12).
Therefore, there must exist a 1 ≤ r ≤ N such that wN−r > tr and wN−j = tj for all
1 ≤ j < r, from which by de�nition

wN−1wN−2 · · ·w1w0 �lex t1t2 · · · tm−1(tm−1).

2. {1, 2, . . . , N} −→ N + 1, where N ≥ m :
Consider a word z = zMzM−1 · · · z1z0 ∈ A∗ such that |z| = M+1 ≤ N+1 and π(z) ≥ BN+1,
where N ≥ m. If M + 1 < N + 1, extend z to length N + 1 by adding zeroes to the left.
Then clearly

N∑
j=0

zjBj = π(z) ≥ BN+1 =

m∑
i=1

tiBN+1−i.
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Subtracting zNBN yields

N−1∑
j=0

zjBj ≥ (t1 − zN )BN +
m∑
i=2

tiBN+1−i.

If zN < t1, then the word zN−1 · · · z1z0 of length N represents a value larger than BN . By
induction it contains a factor larger than the maximal factor and since zN−1 · · · z1z0 is a
su�x of z, z also contains this factor.
Suppose now that zN = t1. We know that

N−1∑
j=0

zjBj ≥
m∑
i=2

tiBN+1−i (2.17)

and one of the following three cases occurs:

(a) zN+1−r > tr holds for some r ∈ {2, . . . ,m} and zN+1−l = tl for all 2 ≤ l < r. Then
evidently the pre�x zNzN−1 · · · zN+1−r of the word z is lexicographically greater than
the maximal factor.

(b) zN+1−l = tl for all 2 ≤ l ≤ m. Then clearly

zNzN−1 · · · zN+2−mzN+1−m = t1t2 · · · tm−1tm �lex t1t2 · · · tm−1(tm−1).

(c) zN+1−r < tr for some r ∈ {2, . . . ,m} and zN+1−l = tl for all 2 ≤ l ≤ r. The word
z and maximal factor have the common pre�x t1t2 · · · tr−1. Consider the word z(1)

obtained by removing this pre�x from z and the word y(1) formed from the coe�cients
of the sum on the right hand side of (2.17) also with the same pre�x removed:

z(1) := zN+1−r zN−r · · · zN+1−m zN−m · · · z1 z0,

y(1) := tr tr+1 · · · tm 0 · · · 0 0.

Surely π(z(1)) ≥ π(y(1)), as the inequality (2.17) cannot change by removing the same
pre�x (which corresponds to subtracting the same value from both sides). Then the
inequality π(z(1)) ≥ π(y(1)) is equivalent to

zN+1−rBN+1−r +

N−r∑
j=0

zjBj ≥ trBN+1−r +

m∑
i=2

tiBN+1−r−i.

After subtracting zN+1−rBN+1−r we obtain

N−r∑
j=0

zjBj ≥ (tr − zN+1−r)︸ ︷︷ ︸
≥1

BN+1−r.

Hence the word z(2) = zN−rzN−r−1 · · · z1z0 has length N+1−r, but represents a value
greater than BN+1−r. By induction z(2) contains a factor greater than the maximal
factor and so does the word z.
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We will now use the above lemma to prove the fundamental theorem about the language of
greedy representations.

Theorem 2.30 (Language of Greedy Representations). Let (Bn)∞n=0 be an (F) basis of order m
with canonical alphabet A. Then L(B) is equal to

L(B) = {w ∈ A∗ | no factor u of w of length |u| = d ≤ m (2.18)

is lexicographically greater than the maximal factor.}.

Proof. We will prove two inclusions. Denote X the set on the right hand side of (2.18).
L(B) ⊆ X :
Consider some x ∈ L(B) and suppose that x contains a factor u of length 2 ≤ d ≤ m such

that
u = xi−1xi−2 · · ·xi−d+1xi−d �lex t1t2 · · · tm−1(tm−1),

where i ≥ m. Let i be the maximal index with this property. From the de�nition of the
lexicographic order this means that an r ∈ {1, 2, . . . , d} exists such that xi−r > tr and xi−s = ts
for all 1 ≤ s < r, or that d = m, and xi−q = tq for all 1 ≤ q ≤ m. In the latter case, we can
surely rewrite x by adding a factor of value zero starting at the digit xi.

· · · xi xi−1 xi−2 · · · xi−m+1 xi−m · · ·
1 t1 t2 · · · tm−1 tm

· · · xi+1 xi−1−t1 xi−2−t2 · · · xi−m+1−tm−1 xi−m−tm · · ·
(2.19)

In the former case, we have to proceed more carefully. There can be a digit xi−p < tp for some
s < p ≤ m, thus we have to add another factor of value zero (but with the opposite sign) in
place of xi−r. We can do this because we know that xi−r > tr:

· · · xi xi−1 · · · xi−r xi−r−1 · · · xi−p xi−p xi−p · · · xi−m xi−m−1 · · ·
1 t1 · · · tr tr+1 · · · tp−1 tp tp+1 · · · tm

1 t1 · · · tp−r−1 tp−r tp−r+1 · · · tm−r tm−r+1 · · ·
· · · xi+1 ∗ · · · ∗ ? · · · ? ∗ ? · · · ? ? · · ·

(2.20)
Since the basis has the (F) property, all the resulting digits marked with an asterisk ∗ are
non-negative and contained in the alphabet A. Digits marked ? will be also non-negative, but
not necessarily contained in A. There can be an index q ∈ {r + 1, . . . ,m}, q 6= p such that
xi−q − tq + tq−r > t1 or an index s ∈ {m− r+ 1, . . . ,m} such that xi−s+r + ts > t1. In that case
we can again add another factor of value zero and reduce the value of the digit concerned whilst
keeping the value of the whole representation unchanged. This may again introduce digits that
are not contained in A, but since the representation is �nite, this rewriting process will always
end and yield a representation with digits contained in A. It is because we will never create
digits strictly larger than t1 to the left of the digit xi−r and because the index r will be strictly
smaller in each subsequent addition. If we encounter digits not contained in A close to x0 (the
digit at B0), we proceed as in the following paragraph.

Suppose now that i < m. We will use the same approach as above, the only di�erence is that
we will use the initial representations of zero instead of the factors of value zero. Analogically to
(2.19), if xi−j ≥ tj for all 1 ≤ j < i and x0 > ti, we add a representation of zero:

· · · xi xi−1 · · · x1 x0
1 t1 · · · ti−1 ti + 1

· · · xi+1 xi−1−t1 · · · x1−ti−1 x0−ti−1.

(2.21)
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On the other hand, if xi−r > tr and xi−j = tj for all 1 ≤ j ≤ r − 1 and there exists a
r + 1 ≤ p ≤ i such that xi−p < tp, we add two initial representations of zero, analogically to
what was done in (2.20):

· · · xi xi−1 · · · xi−r xi−r−1 · · · xi−p xi−p xi−p · · · x1 x0
1 t1 · · · tr tr+1 · · · tp−1 tp tp+1 · · · ti−1 ti + 1

1 t1 · · · tp−r−1 tp−r tp−r+1 · · · ti−s−1 ti−s + 1

· · · xi+1 ∗ · · · ∗ ? · · · ? ∗ ? · · · ? ?
(2.22)

Again, due to the (F) property, all digits marked ∗ will be non-negative and contained in A.
Digits marked ? are also non-negative, but not necessarily contained in A. If there is a digit
among them that is not contained in A (i.e. there exists an index s+ 1 ≤ q < i, q 6= p such that
xi−q − tq + tq−s > t1), we repeat adding initial representations of zero as in (2.21) and (2.22)
until all the resulting digits are contained in A. This process must end because of three reasons:
we will never create digits strictly larger than t1 to the left of the digit xi−r, r will be smaller in
each subsequent addition, and the representation is �nite.

Lastly, notice that xi + 1 ≤ t1, because if xi + 1 > t1, then xi = t1 and we would have

xixi−1xi−2 · · ·xi−d+2xi−d+1xi−d �lex t1t1t2 · · · tm−2tm−1(tm−1). (2.23)

From the (F) property we can see that

t1t1t2 · · · tm−2tm−1(tm−1) �lex t1t2t3 · · · tm−1(tm−1)(tm−1),

using this with (2.23) and removing the last digit (tm−1) from both strings (which does not
change the inequality) yields

xixi−1 · · ·xi−d+2xi−d+1 �lex t1t2t3 · · · tm−1(tm−1),

which is a contradiction with our de�nition of i.
In all four cases (2.19), (2.20), (2.21), (2.22) we have constructed a representation x̂ ∈ A∗

which satis�es π(x̂) = π(x) and x̂ � x , which is a contradiction with property 2 of greedy
representations � if x is greedy, then it must be the greatest among all representations of π(x)
in the radix order. Therefore L(B) ⊆ X.

L(B) ⊇ X :
Let w = wMwM−1 · · ·w1w0 ∈ A∗ and suppose that w /∈ L(B). We will show that w contains

a factor greater than the maximal factor.
Take the greedy representation of the value π(w) and denote its digits 〈π(w)〉B = xN · · ·x0.

From property 2 of greedy representations we have 〈π(w)〉B � w. By de�nition of the radix
order, precisely one of the following occurs:

a) |〈π(w)〉B| > |w|.

b) |〈π(w)〉B| = |w| = N + 1 and an index r, N + 1 ≥ r ≥ 0 exists such that xr > wr and
xl = wl for all N + 1 ≥ l > r.

Case a): From the greedy algorithm we know that π(w) ≥ BN . At the same time |w| ≤ N .
Hence, by Lemma 2.29 the word w contains a factor greater than the maximal factor.
Case b): Let |〈π(w)〉B| = |w| = N + 1 and xr > wr for some N + 1 ≥ r ≥ 0 and N + 1 ≥ l > i
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for all xl = wl. We will modify the words w and 〈π(w)〉B and then apply the Lemma 2.29. By
removing the common pre�x w1w2 · · ·wr−1 we obtain the words

x(1) = xN−rxN−r−1 · · ·x1x0,
w(1) = wN−rwN−r−1 · · ·w1w0.

Evidently π(x(1)) = π(w(1)), therefore

xN+1−rBN+1−r +
N−r∑
j=0

xjBj = wN+1−rBN+1−r +
N−r∑
j=0

wjBj ,

subtracting wN+1−rBN+1−r yields

N−r∑
j=0

wjBj ≥ (xN+1−r − wN+1−r)︸ ︷︷ ︸
≥1

BN+1−r.

The word w(2) = wN−rwN−r−1 · · ·w1w0 has length N + 1 − r, but represents a value greater
than BN+1−r. Thus by Lemma 2.29 w(2) contains a factor greater than the maximal factor, and
since it is a su�x of w, w contains this factor too.



Chapter 3

Ambiguity of Linear Numeration

Systems

As has been noted in the previous chapter, B-systems are redundant. In a given B-system,
most natural numbers have more than one representation over the canonical alphabet. For the
Fibonacci and m-bonacci systems, much has been done to describe and quantify the ambiguity
of such systems [1, 2, 11, 12]. Our main contribution consists in generalising these results to all
con�uent B-systems.

In this and next chapter we study the redundancy of con�uent B-systems in terms of the
redundancy function R(n).

De�nition 3.1. Consider a B-system. Then the redundancy function R(n) is de�ned as the
number of all B-representations of the natural number n over the canonical alphabet A. Formally,

R(n) := # {v ∈ A∗ |π(v) = n} .

Similarly, for a greedy representation w = 〈n〉B, denote by R(w) the number of possible B-
representations of the number n.

In this chapter we will mostly use the function R in the latter notation. In Section 3.1 we
will introduce the algorithm for calculating R(n) and lay out its technical requirements. A more
detailed description of the C++ program can be found in the Appendix along with instructions
on its usage. We will follow this in Section 3.2 with computational results of our algorithm and
statement of claims that can be inferred from the data, which will be later veri�ed and proved
in Chapter 4. We start with a motivational example.

Example 3.2. Consider the B-system with basis Bn = 2Bn−1 +Bn−1. Then the �rst elements
of the basis are (Bn)∞n=0 = {1, 3, 7, 17, 41, 99, 239, . . . }, and the associated rewriting system ρA
conists of four rules: 100 → 021, 101 → 022, 200 → 121, and 201 → 122. Let w = 1020100.
Then R(w) = 6, since all the possible B-representations representing the value π(w) = 1 · 239 +
2 · 41 + 1 · 7 = 328 are 1020100, 1020021, 1012200, 1012121, 0222200, and 0222121, and the
representations are related to each other by the following rewritings:

1020100 ←−
ρA

1012200 ←−
ρA

0222200

ρA

x ρA

x ρA

x
1020021 ←−

ρA
1012121 ←−

ρA
0222121

33
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On the other hand, let u = 1020202. Then R(u) = 1, since there is no way any factor of u can
be rewritten using the four rules from the associated rewriting system ρA. Another possible view
can be that the addition of the factor of value zero 121 to some factor of u would result in a
string that has digits not contained in the canonical alphabet {0, 1, 2}.

3.1 Calculating R(n)

This section lays out the technical requirements for the practical calculation of R(n).
To be able to calculate the R(n) function and to study its properties in all (F) systems, we

have to bound the interval on which it will be calculated. Suppose we have chosen some bounds
nmin, nmax. Then the calculation of R(n) for all nmin ≤ n ≤ nmax is done by a simple algorithm:

Algorithm :

Denote by R(n) the intermediate values of R(n). Initialise R(n) to zero for all nmin ≤ n ≤ nmax.
Then, for all words w ∈ A∗ that satisfy 〈nmin〉B � w � 〈nmax〉B do:

1. Set R(π(w)) := R(π(w)) + 1.

2. Increment w by one in the radix order, i.e. increment it as if it was a standard b-ary
representation.

After the algorithm terminates, R(n) will equal R(n) for all nmin ≤ n ≤ nmax. However, this
simple algorithm can fail to compute correct values of R(n) for n that are close to the bound
nmin. Since we are counting all representations and not just the greedy representations, there
can surely be a representation u such that u ≺ 〈nmin〉B but π(u) > nmin, as in the following
example:

Example 3.3. Consider the (2, 1)-B-system. Then Bn = (1, 3, 7, 17, . . . ). Let 〈nmin〉B = 100B
and u = 022B. Then u ≺ 〈nmin〉B but π(w) = 8 > 7 = nmin.

Therefore, if we set nmin := 7 and proceeded with counting R(n) as in the above algorithm,
we would come to the false result that R(8) = 1, because we would have omitted the non-greedy
representation 022B.

The converse case, i.e. a representation v such that v � 〈nmax〉B but π(v) < nmax cannot
occur due to property 3 of greedy representations (see Theorem 2.14). We thus have to replace
the bound 〈nmin〉B with 〉nmin〈B, counting all the words 〉nmin〈B � w � 〈nmax〉B.

Unfortunately, in general there is no way to obtain 〉nmin〈B other than determining all the
possible B-representations of nmin and selecting the radix smallest one. To rectify this, we have
to select the bound nmin such that every representation u ≺ 〈nmin〉B has a value π(u) strictly
smaller than nmin. Thankfully, such bounds are easy to �nd, which we do in the following
technical lemma.

Lemma 3.4. Consider an (F) basis (Bn)∞n=0. Then for every k ∈ N0 the following holds:

1. R(Bk − 1) = 1.

2. For every word w ∈ A∗, where A is the canonical alphabet, w ≺ 〈Bk−1〉B i� π(w) < Bk−1.

3. Likewise, for every word w ∈ A∗, w � 〈Bk − 1〉B i� π(w) > Bk − 1.
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Proof. Let (Bn)∞n=0 be an (F) basis of order m, denote its coe�cients t1, t2, . . . , tm. Let k ∈ N0.
Then the greedy representation of Bk − 1 will have the form

〈Bk − 1〉B = (t1t2 · · · tm−1(tm−1))b
k
mct1t2 · · · tq−1tq, (3.1)

where q is the remainder of the division of k by m, formally q = k −
⌊
k
m

⌋
m. 〈Bk − 1〉B will be

equal to (3.1) because of two reasons.
Firstly, 〈Bk − 1〉B must be the largest greedy representation of length k, since the greedy

representation of Bk is 〈Bk〉B = 10kB, which has length k + 1 (and it is the radix smallest
representation of length k + 1).

Secondly, due to Theorem 2.30, a greedy representation in a B-system with the (F) property
avoids any factor larger than the maximal factor. The representation on the right hand side of
(3.1) is precisely the (radix) largest possible B-representation of length k that does not contain
a maximal factor, so it must be equal to 〈Bk − 1〉B.

Let us now prove statement 1 of the lemma. The case k = 0 is trivial, since B0−1 = 0, which
has only one representation over the canonical alphabet A. Hence, let k > 0 and suppose now
that Bk − 1 has another B-representation w. Surely w can be reached by one or more additions
of the factor of value zero to 〈Bk − 1〉B. However, we will show that any word created this way
will have digits that are not contained in A. Because the B-system has the (F) property, the
canonical alphabet is equal to A = {0, 1, . . . , t1}. As the greedy representation 〈Bk−1〉B is equal
to (3.1), there is no valid location to add the factor of value zero, because at least one resulting
digit will be strictly greater than t1. Furthermore, if we try to subsequently shrink this digit by
adding tr+1 factors of zero, we will again introduce at least one digit that is greater than t1, as
seen below in (3.2).

〈Bk − 1〉B = t1 · · · tr tr+1 tr+2 tr+3 · · ·
1 t1 t2 t3 · · ·

tr−1 tr+1+t1 tr+2+t2 tr+3+t3 · · ·
1 t1 t2 · · ·
1 t1 t2 · · ·
...

...
... · · ·

1 t1 t2 · · ·
w = wk−1 · · · tr−1 t1 tr+2+t2+tr+1·t1 tr+3+t3+tr+1·t2 · · ·

(3.2)

This applies also if we add the factor of value zero in the place of tm−1 (thus adding t1 in the
place of tm − 1). If tm − 1 = 0, then tm − 1 + t1 ∈ A, but we will again introduce digits that are
not contained in A in other locations, as seen below in (3.3).

〈Bk − 1〉B = t1 t2 · · · tm−1 tm−1 t1 t2 · · ·
1 t1 t2 t3 · · ·

t1 t2 · · · tm−1−1 t1 t1+t2 t2+t3 · · ·
1 t1 t2 · · ·

w = t1 t2 · · · tm−1−1 t1+1 t2 t3 · · ·

(3.3)

The same argument holds also at the end of the representation (i.e. close to the digit at B0).
Therefore, w cannot have its digits contained in A, which is a contradiction.

Statement 2; (⇒) : Take a word w ∈ A∗ such that w ≺ 〈Bk − 1〉B. Then by de�nition of the
radix order, it is either a) shorter than 〈Bk−1〉B, denote |w| = l < k, or b) it has the same length
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as 〈Bk−1〉B and there exists an index s ∈ {0, 1, . . . , k−1} such that wk−s < (〈Bk − 1〉B)k−s and
w and 〈Bk − 1〉B share a common pre�x of length s. We will treat both cases simultaneously.

In case b) �rst remove the common pre�x from both words. This yields the words

w∗ = wk−s−1wk−s−2 · · ·w1w0,

〈Bk − 1〉∗B = tptp+1 · · · tm−1(tm−1)(t1t2 · · · tm−1(tm−1))qt1t2 · · · tr−1tr, (3.4)

where 1 ≤ p ≤ m− 1, and 0 ≤ q ≤
⌊
k
m

⌋
.

Case a) can be converted to case b) by setting s = 0 and wk−1 = wk−2 = · · · = wl = 0, which
yields w∗ = 0 · · · 0w. Lastly, set 〈Bk − 1〉∗B = 〈Bk − 1〉B.

To prove Bk − 1 > π(w) we will evaluate the sign of π(〈Bk − 1〉∗B) − π(w∗), because clearly
π(〈Bk − 1〉∗B)− π(w∗) > 0 implies Bk − 1 > π(w). Evidently, we can bound π(w∗) followingly:

π(w∗) ≤ wk−s−1Bk−s−1 +
k−s−2∑
i=0

t1Bi.

That is, we replace every digit of w∗ other than the most signi�cant one with t1.
Using (3.4), we can write the expression

π(〈Bk − 1〉∗B)− wk−s−1Bk−s−1 −
k−s−2∑
i=0

t1Bi

digit by digit as

tp tp+1 · · · tm−1 tm−1 t1 t2 · · · · · · · · · tm−1 tm−1 t1 · · · tr−1 tr
wk−s−1 t1 · · · t1 t1 t1 t1 · · · · · · · · · t1 t1 t1 · · · t1 t1

,

where by vertical lines we delimit each repetition of the factor t1t2 · · · tm−1(tm−1) in 〈Bk − 1〉∗B.
We know that tp > wk−s−1, and since the basis has the (F) property, ti ≥ 1 holds for all
i = 1, 2, . . . ,m. We can thus add the factor 1t1t2 · · · tm−2tm−1tm (that has numeric value zero)
at every digit. This results in adding t1 to the next digit to the right, which cancels out with
t1 and together this always yields a digit that is non-negative. The only location in which we
cannot subtract 1 is in the location of the digit tm−1, because if tm = 1, then tm − 1 = 0.
However, as can be seen from (3.5) and due to the fact that m is at least 2 and ti ≥ 1, we will
still obtain a non-negative digit at that location. Also, this results in an addition of at least 1
to the digit to the right of tm − 1, allowing us to subtract 1 again and cancel out t1 in every
location in the following appearance of the t1t2t3 · · · tm−1tm−1 factor.
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tp tp+1 · · · tm−1 tm−1 t1 t2 · · · tp tp+1 · · · tm−1 tm−1 t1 · · ·
1 t1 · · · tm−p−2 tm−p−1 tm−p tm−p+1 · · · tm

1 · · · tm−p−3 tm−p−2 tm−p−1 tm−p · · · tm−1 tm
. . . . . . . . . . . . . . . . . . . . . . . . . . .

1 t1 t2 t3 · · · tp+1 tp+2 · · · tm
1 t1 · · · tp−1 tp−2 · · · tm−2 tm−1 tm

1 · · · tp−2 tp−3 · · · tm−3 tm−2 tm−1 · · ·
. . . . . . . . . . . . . . . . . . . . . . . .

1 t1 · · · tm−p−2 tm−p−1 tm−p · · ·
1 · · · tm−p−3 tm−p−2 tm−p−1 · · ·

. . . . . . . . . . . . . . .
1 t1 t2 · · ·

1 · · ·
. . .

wk−s−1 t1 · · · t1 t1 t1 t1 · · · t1 t1 · · · t1 t1 t1 · · ·
∗ ∗ · · · ∗ ∗ ∗ ∗ · · · ∗ ∗ · · · ∗ ∗ ∗ · · ·

(3.5)

At the start and in the middle of the representation, the subtraction will proceed as shown above in (3.5). In the middle, 1t1t2 · · · tm−2tm−1tm
is repeatedly shifted and added at every digit except for the digit that has value tm−1.
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At the end of the representation, if r ≥ 1, the subtraction is as in (3.6). In total, all digits
marked with an asterisk (∗) will be non-negative, and the digit at B0 (marked with a plus sign
+) will be always positive:

· · · tm−1 tm−1 t1 t2 · · · tr−1 tr
...

...
...

...
...

...
...

...
1 t1 t2 t3 · · · tm−1 tm

1 t1 · · · tm−2 tm−1+1

1 · · ·
...

...
· · · t1 t2+1

1 t1+1
· · · t1 t1 t1 t1 · · · t1 t1

· · · ∗ ∗ ∗ ∗ ∗ ∗ +

(3.6)

Otherwise, if r = 0, then the addition is as follows:

· · · tm−1 tm−1 t1 t2 · · · tm−1 tm−1
...

...
...

...
...

...
...

...
1 t1 t2 t3 · · · tm−1 tm

1 t1 · · · tm−2 tm−1+1

1 · · ·
...

...
· · · t1 t2+1

1 t1+1
· · · t1 t1 t1 t1 · · · t1 t1

· · · ∗ ∗ ∗ ∗ ∗ ∗ +

and again the digit at B0 is positive.
Together, this yields the desired inequality π (〈Bk − 1〉∗B)−π (w∗) > 0 and so Bk−1 > π(w).
Part 2; (⇐) : Let π(w) < Bk − 1. Then w ≺ 〈Bk − 1〉B follows from properties 2 and 3

of the greedy representation, i.e. every representation w such that π(w) < Bk − 1 must satisfy
w � 〈π(w)〉B ≺ 〈Bk − 1〉B.

Part 3; (⇒) : Let w � 〈Bk − 1〉B. Then either w is longer than 〈Bk − 1〉B and so π(w) ≥
Bk, from which π(w) > Bk − 1 clearly follows, or |w| = |〈Bk − 1〉B| and there exists an s ∈
{0, 1, . . . , k − 1} such that w and 〈Bk − 1〉B share a common pre�x of length s and wk−s−1 >
(〈Bk − 1〉B)k−s−1. In this case, remove the common pre�x, which yields the representations

w̃ = wk−s−1wk−s−2 · · ·w1w0,

˜〈Bk − 1〉B = tptp+1 · · · tm−1(tm−1)(t1t2 · · · tm−1(tm−1))qt1t2 · · · tr−1tr, (3.7)

where again 1 ≤ p ≤ m − 1, and 0 ≤ q ≤
⌊
k
m

⌋
. The number π (w̃) can clearly be bounded

followingly:
π (w̃) ≥ wk−s−1Bk−s−1,

and so we can write

π (w̃)− π
(

˜〈Bk − 1〉B
)
≥ wk−s−1Bk−s−1 − π

(
˜〈Bk − 1〉B

)
. (3.8)
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The expression on the right of (3.8) can be written digit by digit as

wk−s−1 0 · · · 0 0 0 0 · · · · · · 0 0 0 · · · 0 0
tp tp+1 · · · tm−1 tm−1 t1 t2 · · · · · · tm−1 tm−1 t1 · · · tr−1 tr.

We will now proceed as in part 2. Clearly the digit wk−s−1 satis�es wk−s−1 > tp, so we can add
the factor 1t1t2 · · · tm−2tm−1tm. Then, since the basis has the (F) property, t1 ≥ t2 ≥ · · · ≥ tm
and so we will obtain a non-negative digit (marked ∗) in every column:

wk−s−1 0 · · · 0 0 · · · 0 0 · · · 0 0 0 · · ·
1 t1 · · · tm−p−2 tm−p−1 · · · tm

1 t1 · · · tp+1 tp+2 · · · tm−1 tm
1 t1 · · ·

...
tp tp+1 · · · tm−1 t1 · · · tp tp+1 · · · tm−1 tm−1 t1 · · ·
∗ ∗ · · · ∗ ∗ ∗ · · · ∗ ∗ ∗ ∗ ∗ · · ·

(3.9)

The subtraction is much simpler than in part 2, and like in part 2 we are left with a positive
digit at B0:

· · · 0 0 0 0 · · · 0 0
...

...
...

...
...

...
...

...
· · · tm−1 tm

1 t1 t2 · · · tr−1 tr + 1
· · · tm−1 tm−1 t1 t2 · · · tr−1 tr.

· · · ∗ ∗ ∗ ∗ ∗ ∗ +

Together this yields

wk−s−1Bk−s−1 − π
(

˜〈Bk − 1〉B
)
> 0

and so the desired inequality π(w) > Bk − 1.
Part 3; (⇐) : Let π(w) > Bk − 1. In case when w is longer than 〈Bk − 1〉B, the inequality

w � 〈Bk − 1〉B is evident from de�nition, so let w be such that |w| = |〈Bk − 1〉B|. Then since
〈Bk−1〉B is the radix largest greedy representation of this length, w is not a greedy representation.
Therefore, w contains a factor that is larger than the maximal factor and so w � 〈Bk − 1〉B.

With Lemma 3.4 in hand, we can proceed to calculate R(n). In e�ect, part 2 of Lemma 3.4
would be su�cient for our needs. In counting R(n) for all n ∈ {nmin, nmin + 1, . . . , nmax} we
will traverse all the words〈nmin〉B � w � 〈nmax〉B, and since the greedy representation is the
radix greatest among all representations of a given number, we will not omit any representation
of nmax. If we encounter a w such that π(w) > nmax, we can ignore it.

Thus, if we want to determine R(n) on the interval n ∈ {nmin, nmin+1, . . . , nmax} for arbitrary
nmin and nmax, we have to �nd the largest basis element BN such that BN − 1 ≤ nmin, traverse
all the words 〈BN − 1〉B � w � 〈nmax〉B and then discard the values of R(n) for all n in the
interval {BN − 1, BN , . . . , nmin − 1}.

However, we will still usually set nmin = Bk − 1 , nmax = Bk+1 − 1, because this precisely
delimits all representations of length k + 1. Calculating R(n) on such intervals allows us to
uncover the palindromic structure of R(n), as well as trends in the number of its maxima and
the sequence of numbers that have a unique representation.
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Figure 3.1: R(n) in the (2, 1)-B-system on all n whose greedy representation has length 5.

3.2 Computational Results

In this section we will present computational results of our survey of R(n) in various con�uent
systems. We will begin by presenting results for the (2, 1)-B-system as a model example. In this
system, R(n) was calculated for all representations with lengths up to 23 (i.e. up to B23 − 1 ≈
7,68 · 108). In Figures 3.1, 3.2, 3.3, 3.4 see the graph of R(n) for all n whose representations
have lengths 5-8. We can see that R(n) is symmetric on the interval Bl−1 − 1 to Bl − 1. This
precisely delimits representations of length l (plus the element Bl−1 − 1), the representation
〈n〉B = 1l being the center of symmetry. We will later prove that the R(n) function displays
such a palindromic structure in all B-systems with the (F) property. We will also show this
palindrome is precisely aligned with this interval (i.e. the numbers Bk − 1 ≤ n ≤ Bk+1 − 1) in
all con�uent systems of order 2 with coe�cients a, 1, where a is some natural number.

For further study of the maxima of R(n), we will establish some notation. The value of
R(n) depends on the length of representation, thus it su�ces to restrict our analysis of R(n) to
representations of a given length. Denote

ψ(l) := max
|〈n〉B|=l

R(n) = max {R(n) |Bl−1 − 1 < n ≤ Bl − 1} ,

and

Ψ(l) :=

{
arg max
|〈n〉B|=l

R(n)

}
.

Note: We count 0B, the representation of zero, among the representation of length 1.
In Table 3.1, the maxima of R(n) with respect to the length of the representation are dis-

played, along with the �rst 4 members of the set Ψ(l). We notice that the value of ψ(l) satis�es
the following relation

ψ(l) = 2d
l
2e−1, (3.10)
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Figure 3.2: R(n) in the (2, 1)-B-system on all n whose greedy representation has length 6.
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Figure 3.3: R(n) in the (2, 1)-B-system on all n whose greedy representation has length 7.
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l ψ(l) #Ψ(l) First 4 elements of Ψ(l)

1 1 3 0 1 2

2 1 4 10 11 12 20

3 2 4 100 101 200 201

4 2 16 1000 1001 1002 1010

5 4 4 10100 10101 20100 20101

6 4 32 100100 100101 100200 100201

7 8 4 1010100 1010101 2010100 2010101

8 8 48 10010100 10010101 10020100 10020101

9 16 4 101(01)200 101(01)201 201(01)200 201(01)201

10 16 64 1001(01)200 1001(01)201 1002(01)200 1002(01)201

11 32 4 101(01)300 101(01)301 201(01)300 201(01)301

12 32 80 1001(01)300 1001(01)301 1002(01)300 1002(01)301

13 64 4 101(01)400 101(01)401 201(01)400 201(01)401

14 64 96 1001(01)400 1001(01)401 1002(01)400 1002(01)401

15 128 4 101(01)500 101(01)501 201(01)500 201(01)501

16 128 112 1001(01)500 1001(01)501 1002(01)500 1002(01)501

17 256 4 101(01)600 101(01)601 201(01)600 201(01)601

18 256 128 1001(01)600 1001(01)601 1002(01)600 1002(01)601

19 512 4 101(01)700 101(01)701 201(01)700 201(01)701

20 512 144 1001(01)700 1001(01)701 1002(01)700 1002(01)701

21 1024 4 101(01)800 101(01)801 201(01)800 201(01)801

22 1024 160 1001(01)800 1001(01)801 1002(01)800 1002(01)801

23 2048 4 101(01)900 101(01)901 201(01)900 201(01)901

Table 3.1: Maxima of R(n) in relation to the length of representation in the (2, 1)-system.
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Figure 3.4: R(n) in the (2, 1)-B-system on all n whose greedy representation has length 8.

and that for the size of the set Ψ(l) the following holds � for every l ≥ 3:

#Ψ(l) =

{
4 for l odd,

16
(
l
2 − 1

)
for l even.

We will later prove these two claims using the formula for R(n) that will be introduced in
Chapter 4.

For other con�uent B-systems, closed-form expressions for ψ(l) and #Ψ(l) can be found as
well, which we will show in the following tables. Our survey of con�uent systems revealed that
con�uent numeration systems can be divided into three groups according to the behaviour of
R(n). These groups are distinguished by whether the last coe�cient is equal or strictly less than
the other coe�cients and the order of recurrence. More precisely, the con�uent systems with
a = b and order m = 2 show very similar behaviour to the Fibonacci system, those with and
a = b and order m > 2 behave analogically to the m-bonacci systems, whilst con�uent systems
with a > b can be grouped together as they all satisfy (3.10). We will verify these statements in
Chapter 4.

3.2.1 Con�uent Systems with a = b and order m = 2

Con�uent systems with a = b and order m = 2 show analogous behaviour to the Fibonacci
system. See Table 3.2 where we present the values of ψ(l) and #Ψ(l) as well as the �rst four
elements of Ψ(l) for the (2, 2)-system. In Figures 3.7 and 3.8 see the graph of R(n) for the
systems with coe�cients (2, 2) and (3, 3) on all n whose representation has length 7. Lastly, in
Table 3.3 we have the sizes of the set Ψ(l) for all surveyed systems of this type.

Notice that for the value of ψ(l) the following holds:
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ψ(2l + 1) = Fl for l ≥ 0,

ψ(2l + 2) = 2Fl−1 for l ≥ 1.

Furthermore, except for the initial cases l = 1, 2, 3, 4 and l = 6, 9, 12 we can see from Table 3.3
that the sizes of the set Ψ(l) satisfy

#Ψ(2k + 1) = 2 · a for k ≥ 1, k 6= 4,

#Ψ(2k) = 4 · a2 for k ≥ 4, k 6= 6.

For lengths l = 1 and l = 2 the set Ψ(l) is simply composed of all numbers with greedy repres-
entations over the alphabet A = {0, 1, . . . , a} (where we count 0 among the representations of
length 1), of which there are #Ψ(1) = a + 1 and #Ψ(2) = (a + 1) · a − 1. For example for the
(3, 3)-system we have Ψ(2) = {10, 11, 12, 13, 20, 21, 22, 23, 30, 31, 32}.

For l = 3 the set Ψ(l) consists solely of numbers whose greedy representation has the form
x00, because then we can perform one interchange x00 ↔ (x−1)aa. Hence #Ψ(3) = a because
the most signi�cant digit x can be any nonzero digit from A.

The situation for l = 4 is similar, Ψ(l) will consist of numbers with greedy representations
x00y and xy00. In the �rst case, x ∈ {1, 2, . . . , a} and y ∈ A, so we obtain a · (a + 1) possible
representations. In the latter case, x ∈ {1, 2, . . . , a} again but the situation for y is more
complicated. The digit y cannot be zero, since y = 0 has been counted as part of the �rst string
x00y. Then, if x = a, then y can only be from the set {1, . . . , a− 1} because the representation
xy00 is greedy. Thus xy00 accounts for (a− 1) · a+ (a− 1) = a2− 1 representations. In total we
obtain #Ψ(4) = a · (a+ 1) + a2 − 1 = 2a2 + a− 1 possible representations.

The case l = 6 can be solved by a similar analysis. The value ψ(6) = 4 is reached on rep-
resentations of the form x00y00, where x, y ∈ {1, 2, . . . , a}, because that allows two independent
interchanges x00↔ (x−1)aa and y00↔ (y−1)aa. Hence #Ψ(6) = a2.

The case l = 9 is more complicated. There are three basic forms of words w on which the value
R(w) = 8 = ψ(9) is reached. They are x00010000, x00y00z00, and x01000100, where x, y, z ∈
{1, 2, . . . , a}. The string x00y00z00 allows three independent interchanges ∗00↔ (∗−1)aa, this
corresponds to a3 elements of Ψ(9). The words x01000100, x00010000 contribute another 2a
elements of Ψ(9).

Lastly, all the maximal representations of length l = 12 are precisely the words with one of
the forms

x00y00z00v00, x00y00010000, x00y01000100, x01000100y00, and x00010000y00,

where again x, y, z, v ∈ {1, 2, . . . , a}, thus we obtain #Ψ(12) = a4 + 4 · a2.
We will revisit the cases Ψ(9) and Ψ(12) in Chapter 4 when we have proven the matrix

formula for R(n) and proven the expression for the value of ψ(l).
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Figure 3.5: R(n) in the (2, 2)-B-system for all n whose greedy representation has length 7.
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Figure 3.6: R(n) in the (3, 3)-B-system for all n whose greedy representation has length 7.
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l ψ(l) #Ψ(l) First four elements of Ψ(l)

1 1 3 0 1 2

2 1 6 2 10 11 12

3 2 2 100 200

4 2 9 1000 1001 1002 1100

5 3 4 10000 10100 20000 20100

6 4 4 100100 100200 200100 200200

7 5 4 1000100 1010000 2000100 2010000

8 6 16 10000100 10000200 10010000 10010100

9 8 12 100010000 100100100 100100200 100200100

10 10 16 1000100100 1000100200 1001000100 1001010000

11 13 4 10001000100 10100010000 20001000100 20100010000

12 16 32 100010000100 100010000200 100100010000 100100100100

13 21 4 1000100010000 1010001000100 2000100010000 2010001000100

14 26 16 10001000100100 10001000100200 10010001000100 10010100010000

15 34 4 100010001000100 101000100010000 200010001000100 201000100010000

16 42 16 1000100010000100 1000100010000200 1001000100010000 1001010001000100

17 55 4 10001000100010000 10100010001000100 20001000100010000 20100010001000100

18 68 16 100010001000100000 100010001000100000 100100010001000000 100101000100010000

19 89 4 1000100010001000000 1010001000100010000 2000100010001000000 2010001000100010000

20 110 16 10001000100010000000 10001000100010000000 10010001000100000000 10010100010001000000

21 144 4 100010001000100000000 101000100010001000000 200010001000100000000 201000100010001000000

22 178 16 1000100010001000000000 1000100010001000000000 1001000100010000000000 1001010001000100000000

Table 3.2: Maxima of R(n) in relation to the length of representation in the (2, 2)-system.
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#Ψ(l)

l ψ(l) 1, 1 2, 2 3, 3 4, 4 5, 5 6, 6 7, 7

1 1 2 3 4 5 6 7 8

2 1 1 5 11 19 29 41 55

3 2 1 2 3 4 5 6 7

4 2 2 9 20 35 54 77 104

5 3 2 4 6 8 10 12 14

6 4 1 4 9 16 25 36 49

7 5 2 4 6 8 10 12 14

8 6 4 16 36 64 100 144 196

9 8 3 12 33 72 135 228 357

10 10 4 16 36 64 100 144 196

11 13 2 4 6 8 10 12 14

12 16 5 32 117 320 725 1440 2597

13 21 2 4 6 8 10 12

14 26 4 16 36 64

15 34 2 4 6 8

16 42 4 16 36

17 55 2 4 6

18 68 4 16 36

19 89 2 4

20 110 4 16

21 144 2 4

22 178 4 16

23 233 2 4

24 288 4 16

Table 3.3: Sizes of the set Ψ(l) for all surveyed systems with coe�cients a = b and order m = 2.

3.2.2 Con�uent Systems with a = b and order m > 2

Con�uent systems with a = b and order m > 2 show analogous behaviour to the m-bonacci
systems. See Table 3.4, where we display the values of ψ(l) and the �rst four elements of the
set Ψ(l) for the (2, 2, 2)-system. In Figures 3.7 and 3.8, see R(n) on representations of length
7 in B-systems with coe�cients (2, 2, 2) and (3, 3, 3). Lastly, we present the values of ψ(l) for
surveyed B-systems of order m = 3 and m = 4 in Tables 3.5. 3.6.
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Figure 3.7: R(n) in the (2, 2, 2)-B-system on all n whose greedy representation has length 7.

The expression for ψ(l) is more di�cult to uncover than in the previous case a = b and
m = 2. However, as we will show in Chapter 4.4, the values of ψ(l) in relation to l = p(m+1)+q
satisfy

ψ (p (m+ 1) + q) = 2p for q ∈ {0, 1, . . . ,m− 2},
ψ (p (m+ 1) +m− 1) = 2p + 2p−2 if p ≥ 2,

ψ (p (m+ 1) +m) = 2p + 2p−1.
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Figure 3.8: R(n) in the (3, 3, 3)-B-system on all n whose greedy representation has length 7.

Figure 3.9: R(n) in the (4, 4, 4)-B-system on all n whose greedy representation has length 7.
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l ψ(l) #Ψ(l) First four elements of Ψ(l)

1 1 3 0 1 2

2 1 6 10 11 12 20

3 1 17 100 101 102 110

4 2 2 1000 2000

5 2 10 10000 10001 10002 11000

6 2 41 100000 100001 100002 100010

7 3 4 1000000 1001000 2000000 2001000

8 4 4 10001000 10002000 20001000 20002000

9 4 32 100001000 100002000 100010000 100010001

10 5 4 1000001000 1001000000 2000001000 2001000000

11 6 16 10000001000 10000002000 10001000000 10001001000

12 8 8 100010001000 100010002000 100020001000 100020002000

13 8 92 1000001000000 1000010001000 1000010002000 1000020001000

14 10 16 10000010001000 10000010002000 10001000001000 10001001000000

15 12 48 100000010001000 100000010002000 100000020001000 100000020002000

16 16 16 1000100010001000 1000100010002000 1000100020001000 1000100020002000

17 16 240 10000010000001000 10000010000002000 10000100010001000 10000100010002000

18 20 48 100000100010001000 100000100010002000 100000100020001000 100000100020002000

19 24 128 1000000100010000000 1000000100010000000 1000000100020000000 1000000100020000000

20 32 32 10001000100010000000 10001000100010000000 10001000100020000000 10001000100020000000

Table 3.4: Maxima of R(n) in relation to the length of representation in the (2, 2, 2)-system.
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#Ψ(l)

l ψ(l) 1, 1, 1 2, 2, 2 3, 3, 3 4, 4, 4 5, 5, 5

1 1 2 3 4 5 6

2 1 2 6 12 20 30

3 1 3 17 47 99 179

4 2 1 2 3 4 5

5 2 3 10 21 36 55

6 2 7 41 119 259 479

7 3 2 4 6 8 10

8 4 1 4 9 16 25

9 4 5 32 99 224 425

10 5 2 4 6 8 10

11 6 4 16 36 64 100

12 8 1 8 27 64 125

13 8 9 92 411 1224 2885

14 10 4 16 36 64

15 12 6 48 162 384

16 16 1 16 81

17 16 13 240 1575

18 20 6 48 162

19 24 8 128

20 32 1 32

21 32 17 592

22 40 8 128

Table 3.5: Sizes of the set Ψ(l) for all surveyed systems with coe�cients a = b and order m = 3
.
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#Ψ(l)

l ψ(l) 1, 1, 1, 1 2, 2, 2, 2 3, 3, 3, 3 4, 4, 4, 4

1 1 2 3 4 5

2 1 2 6 12 20

3 1 4 18 48 100

4 1 7 53 191 499

5 2 1 2 3 4

6 2 3 10 21 36

7 2 8 42 120 260

8 2 19 161 623 1699

9 3 2 4 6 8

10 4 1 4 9 16

11 4 5 32 99 224

12 4 18 180 756 2160

13 5 2 4 6 8

14 6 4 16 36 64

15 8 1 8 27 64

16 8 7 88 405

17 8 34 628 3894

18 10 4 16

19 12 6 48

20 16 1 16

21 16 9

22 16 54

Table 3.6: Sizes of the set Ψ(l) for all surveyed systems with coe�cients a = b and order m = 4
.

3.2.3 Con�uent Systems with a > b

Con�uent systems with a > b di�er from the m-bonacci systems. Besides the (2, 1)-system
that served as our introductory example, we also looked at further systems of this kind. The
values of ψ(l) and #Ψ(l) can be seen in Table 3.7 for systems of order m = 2 and in Table 3.8 for
systems of order m = 3 and in Table 3.9 for systems with m = 4. As in the case of the systems
with coe�cients a = b, the maximal value of R(n) is independent of the recurrence coe�cients
and depends solely on the order of recurrence and length of representation. In Chapter 4 we will
prove that for all con�uent systems with a > b it is in fact equal to

ψ(l) = 2d
l
me−1.
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Furthermore, the maxima are always concentrated in a clusters, as could be seen in the (2, 1)-
system and in Figures 3.10, 3.11, and 3.13, where we show R(n) in the systems with coe�cients
(3, 1), (3, 2) and (2, 2, 1) on all representations of length 7. Notice that only in the (3, 1)-system
the graph is symmetric as in the (2, 1)-systems.

Looking at Tables 3.7 & 3.8 further, we may uncover a pattern in the size of the set Ψ(l).
Whenever l ≡ 1 mod m, the size of the set Ψ(l) is equal to

#Ψ(l) = a · (a− b)b
l
mc−1(a− b+ 1).

This is due to the fact that in all con�uent systems with a > b the representations on which the
value ψ(pm+ 1) is reached are of the form

w = wl−1 (0m−1cp) · · · (0m−1c1)︸ ︷︷ ︸
p times

0m−1w0,

where p =
⌊
l
m

⌋
− 1, wl−1 ∈ {1, 2, . . . , a}, w0 ∈ {0, 1, . . . , a− b} and ci ∈ {1, 2, . . . , a− b} for all

i ∈ {1, 2, . . . , p}.
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#Ψ(l)

l ψ(l) 2, 1 3, 1 3, 2 4, 1 4, 2 4, 3 5, 1 5, 2 5, 3 5, 4 6, 1 6, 2 6, 3 6, 4

1 1 3 4 4 5 5 5 6 6 6 6 7 7 7 7

2 1 4 9 10 16 17 18 25 26 27 28 36 37 38 39

3 2 4 9 6 16 12 8 25 20 15 10 36 30 24 18

4 2 16 54 38 128 99 68 250 204 156 106 432 365 296 225

5 4 4 18 6 48 24 8 100 60 30 10 180 120 72 36

6 4 32 189 74 640 342 132 1625 1012 537 206 3456 2360 1464 774

7 8 4 36 6 144 48 8 400 180 60 10 900 480 216 72

8 8 48 540 110 2688 972 196 9000 4236 1524 306 23760 13040 6120 2196

9 16 4 72 6 432 96 8 1600 540 120 10 4500 1920 648 144

10 16 64 1404 146 10368 2520 260 46000 16308 3948 406

11 32 4 144 6 1296 192 8 6400 1620 240 10

12 32 80 3456 182 38016 6192 324

13 64 4 288 6 3888 384

14 64 96 8208 218

15 128 4 576

16 128 112

17 256 4

18 256 128

Table 3.7: Sizes of the set Ψ(l) for all surveyed systems with order m = 2 and coe�cients satisfying a > b.
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Figure 3.10: R(n) in the (3, 1)-B-system on all n whose greedy representation has length 7.
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Figure 3.11: R(n) in the (3, 2)-B-system on all n whose greedy representation has length 7.
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#Ψ(l)

l ψ(l) 2, 2, 1 3, 3, 1 3, 3, 2 4, 4, 1 4, 4, 2 4, 4, 3

1 1 3 4 4 5 5 5

2 1 6 12 12 20 20 20

3 1 16 45 46 96 97 98

4 2 4 9 6 16 12 8

5 2 20 63 42 144 108 72

6 2 80 351 236 1024 771 516

7 4 4 18 6 48 24 8

8 4 36 207 78 688 360 136

9 4 208 1593 632 6656 3558 1412

10 8 4 36 6 144 48 8

11 8 52 576 114 2832 1008 200

12 8 400 5697 1244 34816 12876 2820

13 16 4 72 6 432 96 8

14 16 68 1476 150

15 16 656 17874 2072

16 32 4 144 6

17 32 84 3600 186

18 32 976

19 64 4

20 64 100

Table 3.8: Sizes of the set Ψ(l) for all surveyed systems with a > b and order m = 3.
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#Ψ(l)

l ψ(l) 2, 2, 2, 1 3, 3, 3, 1 3, 3, 3, 2

1 1 3 4 4

2 1 6 12 12

3 1 18 48 48

4 1 52 189 190

5 2 4 9 6

6 2 20 63 42

7 2 84 360 240

8 2 320 1863 1244

9 4 4 18 6

10 4 36 207 78

11 4 212 1611 636

12 4 1040 10530 4268

13 8 4 36 6

14 8 52 576 114

15 8 404 5733 1248

16 8 2464 45603 10532

17 16 4 72 6

18 16 68

19 16 660

20 16 4848

21 32 4

22 32 84

23 32 980

Table 3.9: Sizes of the set Ψ(l) for all surveyed systems with a > b and order m = 4.
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Figure 3.12: R(n) in the (4, 1)-B-system on all n whose greedy representation has length 7.
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Figure 3.13: R(n) in the (2, 2, 1)-B-system on all n whose greedy representation has length 7.



Chapter 4

Properties of R(n) in Con�uent

B-systems

4.1 Palindromic Structure of R(n)

As noted before, R(n) displays a piecewise palindromic structure. It is not di�cult to realise
that this is true in all systems with the (F) property. Take an n ∈ N0 with greedy representation
〈n〉B = x = xlxl−1 · · ·x1x0. The word xC = (a−xl)(a−xl−1) · · · (a−x1)(a−x0), where a = t1 is
the largest digit of the canonical alphabet, is called the complement of x. The word xC is a
representation of some value π(xC) = ñ. The value of R(n) depends solely on the number of
possible interchanges generated by the rule 0t1t2 · · · tm−1tm → 10m, which form the rewriting
system consisting of the rules

0t1t2 · · · tm−1tm → 10m,

...

0t1t1 · · · t1t1 → 10(t1−t2) · · · (t1−tm−1)(t1−tm),

1t1t2 · · · tm−1tm → 20m,

...

(t1−1)t1t1 · · · t1t1 → t10(t1−t2) · · · (t1−tm−1)(t1−tm),

along with all the interchanges generated from the initial representations of zero (i.e. the
rules 0t1t2 · · · (tm−1+1) → 10m−1, . . . , 0(t1+1) → 10 that can be used at the end of a B-
representation). Clearly, the complement of every rewritable factor is rewritable, however, not
necessarily by the same rule. Take for example the (3, 2, 2)-system. Then the associated rewrit-
ing system ρA is generated by the rule 0322 → 1000 and consists of a total of 12 rules, written
below:

0322→ 1000, 1322→ 2000, 2322→ 3000,

0323→ 1001, 1323→ 2001, 2323→ 3001,

0332→ 1010, 1332→ 2010, 2332→ 3010,

0333→ 1011, 1333→ 2011, 2333→ 3011.

Notice that the complement of every string on the right hand side of a rule appears on the left
hand side of a rule and vice versa. For example, the complement of the right side string 3010

59
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is 0323, which appears on the left side of the rule 0323 → 1001. It is easy to prove that this
in fact holds in general. Take an arbitrary rewritable string u = umum−1um−2 · · ·u1u0 that is
on the left side of a rule. Then um < t1 and clearly um−i ≥ ti for all i ∈ {1, 2, . . . ,m}. Then
we get uC = (t1−um)0(t1−um−2) · · · (t1−u1)(t1−u0) and uC is a rewritable string on the right
side of a rule, since uCm < t1 and uCm−i ≤ t1 − ti for all i ∈ {1, 2, . . . ,m}. The same statement
can be proved for rewriting rules using the initial representations of zero. However, only if those
initial representations of zero have digits contained in the canonical alphabet A. Omitting those
rewriting rules that have digits not contained in A is not a problem, since we are only interested
in complements of greedy representations.

Let us now return to the number ñ represented by the string xC . Clearly if a factor of x was
rewritable, then the factor of its complement will be also rewritable. Therefore R(n) = R(ñ).
Since

n+ ñ = a ·
l∑

i=0

Bi,

the centre of symmetry will correspond to the value which we denote

C(l + 1) =
a

2
·

l∑
i=0

Bi,

where we use l+ 1 as the argument because that is the length of the word x. Thus, the sequence
(R(n))∞n=0 contains a palindrome ending in the value R(Bl+1 − 1) and beginning in the value
a ·
∑l

i=0Bi − Bl+1 + 1. As we noted before in Chapter 3, in (a, 1)-systems the palindrome
spans precisely the numbers whose representation has length l + 1 (plus the largest number
whose representation has length l, which is Bl − 1). This is a consequence of the fact that in
(a, 1)-systems, the greedy representation of Bl − 1 has the form

〈Bl − 1〉B =

{
(a0)

l
2 for l even,

(a0)b
l
2c a for l odd.

The complement of 〈Bl − 1〉B is thus the word 〈Bl−1 − 1〉B. In all other systems, the complement
of 〈Bl − 1〉B is a word with value strictly smaller than Bl−1−1, thus the palindrome does not align
with representations of a given length. We can say that the palindrome with centre C(l + 1)
overlaps with the palindromes with centres C(l) and C(l + 2), and possibly others in certain
systems.

4.2 Matrix Formula for R(n)

In this section we will formalise our �ndings from the previous chapter and derive a closed-
form formula for the function R(n). Throughout this section, we will use the word gap to refer
to factors consisting of consecutive zeroes.

Analogically to the approach used in [11], we will derive a matrix formula for the function
R(n). The formula for R(n) in the Fibonacci system is originally due to Berstel [1]. Kocábová,
Masáková and Pelantová [11] then derived a matrix formula for R(n) in them-bonacci numeration
systems. We will generalise their results to all con�uent B-systems. During the time of writing,
we did not know that Edson [2] derived the formula as well, as part of her study of con�uent
systems of order two (i.e. the (a, b)-systems, where a ≥ b ≥ 1).
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Firstly, we will explore in detail the proof the matrix formula for R(n) for the B-system with
basis Bn = 2Bn−1 +Bn−1, then generalise our �ndings to all con�uent systems.

In the second half of this chapter, we will use the matrix formula to verify our observations
about the properties of the function R(n) from Chapter 3. We will begin by a trivial observation.

Lemma 4.1. Suppose some representation of the form x10
r1, where x1 is non-zero, i.e. x1 ∈

{1, 2} and r1 ∈ N0. Then

R(x10
r1) = 1 +

⌊r1
2

⌋
.

Proof. The representation x10r1 is certainly greedy. Using the rewriting rules 100→ 021, 200→
121 we can generate new (non-greedy) representations

x10
r1 → (x1−1)210r1−2 → (x1−1)20210r1−4 → · · ·

until the end of the string is reached � i.e. until we cannot apply a rewriting rule any further:

· · · →

{
(x1−1)2020 · · · 20210 if r1 is odd,

(x1−1)2020 · · · 2021 if r1 is even.

Evidently, the string x10r1 can be rewritten only
⌊
r1
2

⌋
times in total, since there are r1 zeroes

available to be rewritten and each rewriting replaces two zeroes in the su�x 0r1 . We can therefore
write

R(x10
r1) = 1 +

⌊r1
2

⌋
,

where we count the original representation x10
r1 plus the

⌊
r1
2

⌋
representations generated by

subsequent rewritings of x10r1 .

Similarly to the terminology established in [11], we will distinguish long and short represent-
ations. This will be a key concept for deriving the matrix formula of R(n).

De�nition 4.2. Let w = x10
r1u be some greedy representation, where x1 is non-zero, r1 ∈ N0

and the su�x u is either empty or has a non-zero initial digit. Then a long representation of w
(with respect to x1) is any B-representation v such that

� π(v) = π(w),

� v ∈ A∗, where A is the canonical alphabet of the B-system,

� w and v share the pre�x x10r1 .

Conversely, a short representation of w (with respect to x1) is any B-representation u such that

� π(u) = π(w),

� u ∈ A∗, where A is the canonical alphabet of the B-system,

� u = (x1−1)uN−2uN−3 · · · . I.e. the digit x1 was rewritten to x1 − 1 using some rewriting
rule generated by the B-system.

The number of long and short representations will be denoted R(x10
r1u) and R(x10

r1u), respect-
ively.
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Note: The naming is based on the m-bonacci B-systems, where indeed, every short repres-
entation of w is shorter than a long representation of w. For example, among the two Fibonacci
representations w = 100 and v = 011 of the number three, v is shorter than w (where the length
is understood as to be counted to the �rst non-zero digit). However, in other B-systems, such
as the (2, 1)-system, this need not be the case, since w = 200 is a long representation, while
u = 121 is called a short representation of the same value, even if it has the same length.

A trivial observation is that every greedy representation is a long representation. Recall the
representations from Example 3.2:

1020100, 1002200, 0212200,

1020021, 1002121, 0212121.

Then representations in the left and centre columns are long representations of w = 1020100
with respect to the initial 1, whereas those in the right column are short representations. We
can therefore write R(1020100) = 4 and R(1020100) = 2.

From the above de�nition and example it is apparent that R(x10
r1u) = R(x10

r1u)+R(x10
r1u)

for every greedy representation x10r1u. In matrix form:

R(x10
r1u) =

(
1 1

)(R(x10
r1u)

R(x10
r1u)

)
.

Let us now consider a more complex example. Suppose that we have a greedy representation
with two non-zero digits, one that can be written as w = x20

r2x10
r1 , where x1, x2 ∈ {1, 2},

r1, r2 ∈ N0. Then the following holds � if x2 = 2, then r2 ≥ 1. This condition is equivalent to the
normality (greediness) of the representation. We will now assess short and long representations
separately before synthesizing our �ndings into the matrix formula for R(w).

Lemma 4.3. Let x20
r2x10

r1, where x1, x2 ∈ {1, 2}, r1, r2 ∈ N0, be a greedy representation in

the B-system satisfying the recurrence Bn = 2Bn−1 + Bn−2, where x1, x2 ∈ {1, 2}, r1, r2 ∈ N0.

Then the number of long representations of x20
r2x10

r1 is equal to

R(x20
r2x10

r1) =
(
1 1

)(R(x10
r1)

R(x10
r1)

)
.

Proof. The number of long representations of x20r2x10r1 is equal to the total number of repres-
entations of x10r1 because the only allowed rewritings can be done on the su�x x10r1 , the pre�x
x20

r2 must be kept unchanged. Then, the total number of representations that can be generated
by rewriting the su�x x10r1 is equal precisely to R(x10

r1) = R(x10
r1) +R(x10

r1).

Lemma 4.4. Let x20
r2x10

r1, where x1, x2 ∈ {1, 2}, r1, r2 ∈ N0, be a greedy representation in the

B-system satisfying the recurrence Bn = 2Bn−1+Bn−2. Then the number of short representations

of x20
r2x10

r1 is equal to

R(x20
r2x10

r1) =



(⌊
r2+1
2

⌋ ⌊
r2+1
2

⌋)(R(x10
r1)

R(x10
r1)

)
if x1 = 1,

(⌊
r2
2

⌋ ⌊
r2+1
2

⌋)(R(x10
r1)

R(x10
r1)

)
if x1 = 2.

(4.1)
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Proof. Suppose initially that r2 = 0. Then evidently x2 = 1, otherwise x20r2x10r1 would not be
greedy. The number of short representations of 1x10

r1 is equal to zero, since even after rewriting
x1 we are left with

1x10
r1 → 1(x1−1)210r1−2,

where the pre�x 1(x1−1)2 cannot be rewritten further, so 1x10
r1 has no short representations.

Accordingly, both expressions on the right-hand side of (4.1) are equal to zero when r2 = 0.
Consider now the case when r2 ≥ 1. Additionally, let r2 be an even integer. Then apparently

we can rewrite the pre�x x20r2 precisely r2/2 times, until we arrive at the string

x20
r2x10

r1 → · · · → (x2−1) 20 · · · 2021︸ ︷︷ ︸
r2

x10
r1 ,

where the pre�x (x2−1)20 · · · 2021 cannot be rewritten further. All of these rewritings have
no e�ect on the su�x x10

r1 , so the number of short representations of x20r2x10r1 is equal
simply to r2

2 multiplied by the total number of representations of x10r1 . Furthermore, since⌊
r2
2

⌋
=
⌊
r2+1
2

⌋
= r2

2 for even r2, the formula (4.1) holds regardless of the value of the digit x1.
Lastly, take an odd r2 ≥ 1. Then suppose the pre�x x20r2 was already rewritten

⌊
r2
2

⌋
times,

yielding the string
(x2−1) 20 · · · 20210︸ ︷︷ ︸

r2

x10
r1 .

Now, if x1 = 1, we can rewrite the string once more using the rule 101 → 022 (whose usage is
highlighted in bold), which yields the representation

(x2−1)20 · · · 2021010r1 → (x2−1)20 · · · 2020220r1 . (4.2)

Alternatively, x1 could have been rewritten earlier to 0, which would then using the rule 100→
021 yield

(x2−1)20 · · · 202021210r1−2. (4.3)

Again, in both cases, all rewritings of the pre�x x20r2 can be done independently of whether the
su�x x10r1 was rewritten. Therefore, the total number of short representations of x20r2x10r1 is
equal to

⌊
r2+1
2

⌋
times the number of long representations of x10r1 (string (4.2)) plus

⌊
r2+1
2

⌋
times

the number of short representations of x10r1 (string (4.3) plus its
⌊
r1−2
2

⌋
subsequent rewritings).

Formally

R(x20
r2x10

r1) =

⌊
r2 + 1

2

⌋
(R(x10

r1) +R(x10
r1)),

which is precisely the �rst row of equation (4.1).
Consider now the case when x1 = 2. Then after

⌊
r2
2

⌋
rewritings of the pre�x x20

r2 the
following string is reached:

(x2−1) 20 · · · 20210︸ ︷︷ ︸
r2

20r1 .

The factor 102 (bold) cannot be rewritten further, so the number of short representations of
x20

r2x10
r1 that are reachable without rewriting the su�x 20r1 is equal to

⌊
r2
2

⌋
R(x10

r1). However,
if the digit x1 = 2 is rewritten using the 200 → 121 rule (which is possible only if r1 ≥ 2), the
factor 102 is replaced by 101, which we can rewrite:

· · · →(x2−1)20 · · · 202102000r1−2 →
→(x2−1)20 · · · 202101210r1−2 →
→(x2−1)20 · · · 202022210r1−2.
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Therefore, the number of short representations of x20r2x10r1 that are obtained if we also re-
write the su�x x10

r1 at least once (making it a short representation of x10r1) is equal to⌊
r2+1
2

⌋
R(x10

r1).
The total number of short representations of x20r2x10r1 is therefore equal to

R(x20
r2x10

r1) =
⌊r2

2

⌋
R(x10

r1) +

⌊
r2 + 1

2

⌋
R(x10

r1),

which is precisely the second row of equation (4.1).

In Lemmas 4.3 and 4.4 we saw that the contribution of the factor x20r2 to the value of R(w)
depends on r2 (the length of the gap) and the digit x1. This is a key di�erence to the m-bonacci
systems, where we have to only consider the digits 0 and 1. The di�erent contribution of 1 and
2 can be expressed in the form of two matrices:

De�nition 4.5. Consider the B-system with basis Bn = 2Bn−1 + Bn−1. Then for all r ∈ N0

the redundancy matrices are de�ned as

M1(r) =

(
1 1⌊
r+1
2

⌋ ⌊
r+1
2

⌋) , M2(r) =

(
1 1⌊
r
2

⌋ ⌊
r+1
2

⌋) .
With this de�nition, we can then synthesise the �ndings from Lemmas 4.1, 4.3, and 4.4 into

the following theorem.

Theorem 4.6. Consider the B-system with basis Bn = 2Bn−1 + Bn−1. Then every greedy

representation can be written in the form

w = xs0
rsxs−10

rs−1 · · ·x10r1 ,

where xi ∈ {1, 2},ri ∈ N0 for all i, and the following holds: If xi = 2 for some index i > 1, then
ri ≥ 1. Consider some greedy representation w thus written. Then R(w) has the closed form

R(xs0
rs · · ·x10r1) =

(
1 1

)
Mxs−1(rs) · · ·Mx1(r2)

(
1⌊
r1
2

⌋) . (4.4)

Proof. By induction on s ∈ N0. Case s = 1 is treated in Remark 4.1, case s = 2 is an immediate
corollary of Lemmas 4.3 and 4.4.

Suppose now that s > 2 and that the formula (4.4) holds for some s. To prove that it holds
for s + 1, recall the proofs of Lemmas 4.3 and 4.4. We never evaluated R(x10

r1) and R(x10
r1),

so the factor x10r1 can be replaced by any xsu, where xs ∈ {1, 2}, u ∈ A∗ and xsu is a greedy
representation. Setting xsu = xs0

rsxs−10
rs−1 · · ·x10r1 and using Lemmas 4.3, 4.4 yields

R(xs+10
rs+1xs0

rs · · ·x10r1) =
(
1 1

)
Mxs(rs+1)Mxs−1(rs) · · ·Mx1(r2)

(
1⌊
r1
2

⌋) ,
which proves the theorem.

The above theorem proven for the (2, 1)-system can be generalised to all con�uent B-systems.
However, another, third case of a digit ending the factor of consecutive zeroes has to be proven
�rst. We will �rst introduce some notation.
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De�nition 4.7. Consider a con�uent B-system of order m with coe�cients a ≥ b ≥ 1. Then
for all r ∈ N0 the three redundancy matrices are de�ned as

Mc(r) =

(
1 1⌊
r+1
m

⌋ ⌊
r+1
m

⌋) , Ma−b+1(r) =

(
1 1⌊
r
m

⌋ ⌊
r+1
m

⌋) , Md(r) =

(
1 1⌊
r
m

⌋ ⌊
r
m

⌋) ,
for all digits 1 ≤ c < a− b+ 1 and a− b+ 1 < d ≤ a.

Evidently, not all three matrices are de�ned for all possible pairs of coe�cients a, b. For
example, in the case when a = b, only the matrices Ma−b+1(r), Md(r), d ∈ {2, . . . a} are de�ned,
since there is no digit c in the canonical alphabet that would satisfy 1 ≤ c < a− b+ 1. On the
other hand, all three matrices are de�ned for example in the (3, 2)-system. Note that Ma−b+1(r)
is the same matrix as in the matrix formula for the m-bonacci systems [11]. We will prove three
propositions establishing the origin of these matrices, from which the matrix formula for R(n)
will follow.

Proposition 4.8. Suppose a con�uent B-system of orderm with coe�cients a ≥ b ≥ 1. Consider
a greedy representation of the form w = x0rcu, where x ∈ {1, . . . , a}, r ∈ N0, c is a digit satisfying
1 ≤ c < a−b+1, and u is either the empty word or a word such that cu is a greedy representation.

Then (
R(x0rcu)
R(x0rcu)

)
=

(
1 1⌊
r+1
m

⌋ ⌊
r+1
m

⌋)(R(cu)
R(cu)

)
.

Proof. A generalisation of Lemmas 4.3 and 4.4. The number of long representations R(x0rcu) is
clearly equal to the total number of representations of cu, hence R(x0rcu) = R(cu) +R(cu).

Let us now determine the number of short representations. Suppose p, q such that r = pm+q
and q ∈ {0, 1, . . .m− 1}. Clearly the gap 0r may be rewritten p =

⌊
r
m

⌋
times, after rewriting we

are left with the string
(x−1) am−1 (b−1) · · · am−1b0qcu. (4.5)

If q = m− 1, then since 1 ≤ c < a− b+ 1 we can rewrite (4.5) once more, which yields the string

(x−1) am−1 (b−1) · · · am−1 (b−1) am−1 (b+c)u.

If q < m− 1, this rewriting is not possible, so we obtain

R(x0rcu) =

⌊
r + 1

m

⌋ (
R(cu) +R(cu)

)
,

which proves the second row of the matrix.

Proposition 4.9. Consider a con�uent B-system of order m with coe�cients a ≥ b ≥ 1.
Consider a greedy representation of the form w = x0r(a− b+1)u, where x ∈ {1, . . . , a}, r ∈ N0,

and u is either the empty word or a word such that (a− b+1)u is a greedy representation. Then(
R(x0r(a− b+1)u)
R(x0r(a− b+1)u)

)
=

(
1 1⌊
r
m

⌋ ⌊
r+1
m

⌋)(R((a− b+1)u)
R((a− b+1)u)

)
.

Proof. Suppose p, q such that r = pm + q and q ∈ {0, 1, . . .m − 1}. Again, the gap 0r may be
rewritten p =

⌊
r
m

⌋
times, after which we are left with the string

(x−1) am−1 (b−1) · · · am−1 (b−1) 0q(a− b+1)u. (4.6)
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Let q = m− 1. Then we can rewrite (4.6) once more only if we rewrite the digit (a− b+1) �rst.
This yields the string

(x−1) am−1 (b−1) · · · am−1 (b−1) am−1aũ,

where ũ is the su�x of the result of the rewriting (a− b+1)u → (a−b)ũ. This corresponds to⌊
r+1
m

⌋
R((a−b+1)u) representations. If we do not rewrite the digit (a−b+1), we do not gain this

extra rewriting, thus we count another
⌊
r
m

⌋
R((a−b+1)u) possible representations. If q < m−1,

this rewriting is not possible, so in total we obtain

R(x0r(a− b+1)u) =
⌊ r
m

⌋
R((a− b+1)u) +

⌊
r + 1

m

⌋
R((a− b+1)u),

which proves the claim.

Proposition 4.10. Suppose a con�uent B-system of order m with coe�cients a ≥ b ≥ 1.
Consider a greedy representation of the form w = x0rdu, where x ∈ {1, . . . , a}, r ∈ N0, the digit

d satis�es d > a − b + 1, and u is either the empty word or a word such that du is a greedy

representation. Then (
R(x0rdu)
R(x0rdu)

)
=

(
1 1⌊
r
m

⌋ ⌊
r
m

⌋)(R(du)
R(du)

)
.

Proof. Suppose p, q such that r = pm + q and q ∈ {0, 1, . . .m − 1}. Clearly the gap 0r may be
rewritten p =

⌊
r
m

⌋
times, after which we are left with the string

(x−1) am−1 (b−1) · · · am−1b0qdu. (4.7)

Because d > a− b+ 1, no more rewritings are possible, which leads us to

R(x0rdu) =
⌊ r
m

⌋ (
R(du) +R(du)

)
,

thus proving the claim.

Theorem 4.11. Consider a con�uent B-system of order m with coe�cients a ≥ b ≥ 1. Then

every greedy representation can be written in the form

w = xn0rnxn−10
rn−1 · · ·x10r1 ,

where xi ∈ {1, 2, . . . , a},ri ∈ N0 for all i, and the following holds: If xixi−1 · · ·xi−m+1 = am−1

for some index i > m− 1, then either xi−m < b or rk ≥ 1 for some k ∈ {i, i− 1, . . . , i−m}.
Then R(w) has the closed form

R (xn0rnxn−10
rn−1 · · ·x10r1) =

(
1 1

)
Mxn−1(rn)Mxn−2(rn−1) · · ·Mx1(r2)

(
1⌊
r1
m

⌋) . (4.8)

Proof. Corollary of Propositions 4.8, 4.9, and 4.10.

We will now use Theorem 4.11 to verify our observations from Section 3.2.
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4.3 Maxima of R(n) in General Con�uent Systems

As said before, when discussing the maxima of R(n), con�uent B-systems' behaviour can be
split into three groups based on their recurrence coe�cients and order. For the �rst two groups
consisting of systems with coe�cients satisfying a = b, we will simply generalise �ndings for the
Fibonacci and m-bonacci systems [11, 12]. The third group with coe�cients that satisfy a > b
displays simpler behaviour.

For all three classes of con�uent systems we will use the same approach as in [11, 12]. Firstly,
we shall derive a lower bound for ψ(l) by �nding representations w of a given length on which
the maximal value of R(w) is reached. Secondly, we will derive an upper bound on ψ(l) and
prove that it is indeed equal to the value of R(w) that is reached on the representations derived
in the �rst step. We will do this by showing which factors elements of Ψ(l) must avoid and prove
the expression for ψ(l) by induction on l, the length of representation.

We will need the following terminology (that is again adapted from [11, 12]) that will simplify
our analysis. We shall establish a partial ordering on matrices and prove that this ordering implies
an ordering on the values of R(w).

De�nition 4.12. Let X =
(
a b
c d

)
, X̃ =

(
ã b̃
c̃ d̃

)
be integer matrices with non-negative elements.

Then we say that X majores X̃ (written as X � X̃) if

a ≥ ã, b ≥ b̃, b+ d ≥ b̃+ d̃, and a+ c > ã+ c̃. (4.9)

Furthermore, we say that X weakly majores X̃ (written as X % X̃) if

a ≥ ã, b ≥ b̃, a+ c ≥ ã+ c̃, and b+ d > b̃+ d̃. (4.10)

Lemma 4.13. Let α = ( 1 1 )AXB ( 1
0 ) ,α̃ = ( 1 1 )AX̃B ( 1

0 ), where

A = I2 or A = Mxs−1(rs)Mxs−2(rs−1) · · ·Mx1(r2),

B = I2 or B = Myt−1(pt)Myt−2(pt−1) · · ·My1(p2),

where ri+1, pj+1 ∈ N0, xi, yj ∈ {1, . . . , a} for all i = 1, . . . , s− 1, j = 1, . . . , t− 1, and X, X̃ are

non-negative integer matrices. If X � X̃, then α > α̃. Furthermore, if ( uv ) = B ( 1
0 ), where u ≥ 0

and v ≥ 1, then if X % X̃, then α > α̃.

Proof. Denote
(
f g

)
=
(
1 1

)
A and ( uv ) = B ( 1

0 ). It is easy to see that g ≥ f ≥ 1, u ≥ 1 and

v ≥ 0. Let X =
(
a b
c d

)
, X̃ =

(
ã b̃
c̃ d̃

)
satisfy (4.9). Then

α− α̃ =
(
f g

)(a b
c d

)(
u
v

)
−
(
f g

)(ã b̃

c̃ d̃

)(
u
v

)
=
(
(a− ã)f + (c− c̃)g (b− b̃)f + (d− d̃)g

)(u
v

)
≥
(
(a− ã+ c− c̃)f (b− b̃+ d− d̃)f

)(u
v

)
≥
(
1 0

)(1
0

)
= 1.

Suppose now that u ≥ 0, v ≥ 1 and that X, X̃ satisfy (4.10). Then

α− α̃ =
(
(a− ã)f + (c− c̃)g, (b− b̃)f + (d− d̃)g

)(u
v

)
≥
(
(a− ã+ c− c̃)f, (b− b̃+ d− d̃)f

)(u
v

)
≥
(
0 1

)(0
1

)
= 1.



68 CHAPTER 4. PROPERTIES OF R(N) IN CONFLUENT B-SYSTEMS

With Lemma 4.13 in hand, it is now much easier to �nd representations w on which the
maximal value of R(w) is reached. We will aim to eliminate factors that are suboptimal for
maximising R(w), i.e. they can be replaced by factors of the same length that contribute more
to R(w). Again, adapting the terminology from [11, 12], we will call these the factors forbidden
for maximality:

De�nition 4.14. Suppose a con�uent B-system with canonical alphabet A = {0, 1, . . . , a}.
We say that the string xs0rsxs−10rs−1 · · ·x10r1x0, where xi ∈ {1, 2, . . . , a} for all i ∈ {1, . . . , s}
and x0 ∈ A is forbidden for maximality if there exists a word yt0ptyt−10pt−1 · · · y10p1y0, where
p1, pt ≥ 0, yj ∈ {1, 2, . . . , a} for all j ∈ {1, . . . , t}, and y0 ∈ A such that

rs + rs−1 + · · ·+ r1 + s+ 1 = pt + pt−1 + · · ·+ p1 + t+ 1,

Mxs−1(rs)Mxs−2(rs−1) · · ·Mx0(r1) ≺Myt−1(pt)Myt−2(pt−1) · · ·My0(p1).

We will sometimes say that the word yt0pt · · · y10p1y0 improves the factor xs0
rs · · ·x10r1x0.

We have now everything ready for determining the expressions for ψ(l) in all three groups
of con�uent systems. We will end this section by stating an evident fact about the ordering of
redundancy matrices:

Fact 4.15. Suppose a con�uent B-system with coe�cients a ≥ b ≥ 1. Then for all r ≥ 1 such

that r ≡ m− 1 mod m the redundancy matrices satisfy the inequality

Mc(r) �Ma−b+1(r) %Md(r),

for all digits 1 ≤ c < a− b+ 1 and a− b+ 1 < d ≤ a. For other values of r they satisfy

Mc(r) = Ma−b+1(r) = Md(r).

4.3.1 Con�uent Systems with a = b and order m = 2

As shown in Section 3.2, systems with a = b and order m = 2 display analogous behaviour
to the Fibonacci system. We will show why the values of ψ(l) in such systems equal those in the
Fibonacci system, which has been studied in [12]. We will follow their approach in this section.

In short, the reason why the maxima of R(n) have the same value as in the Fibonacci system
is due to Fact 4.15 and the fact that in con�uent systems with a = b only the redundancy
matrices M1(r) = Ma−b+1(r) and Md(r) are de�ned (where d ∈ {2, . . . , a}). Md(r) does not
increase the value R(n) since it is either weakly majored by or equal to M1(r) � if r > 1 and
r ≡ m− 1 mod m then M1(r) %Mf (r), otherwise M1(r) = Mf (r).

We shall �rst derive a lower bound on the value of ψ(l) by evaluating R(w) on some chosen
representations w. The following lemma is taken from [12] (Lemma 3.1) and adapted to our
notation.

Lemma 4.16. Suppose a con�uent B-system with coe�cients a = b and order m = 2. Let

x ∈ {1, 2, . . . , a} and let either y ∈ {1, 2, . . . , a} or y = ε. Then

R
(
x
(
031
)k−1

04y
)

= R
(
x01

(
031
)k−1

02y
)

= F2k for k ≥ 1. (4.11)

R
(
x
(
031
)k

02y
)

= R
(
x01

(
031
)k−1

04y
)

= F2k+1 for k ≥ 1. (4.12)
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Proof. We have chosen representations of the forms (4.11) and (4.12), because a − b + 1 = 1.
Hence the expression for R(n) from the matrix formula will include prevailingly the matrix
M1(r). Recall the initial conditions for the Fibonacci sequence � we set F0 = 1, F1 = 2, plus we
additionally de�ne F−1 = 1. Then we can prove by induction the following

(M1(3))q =

(
1 1⌊
3
2

⌋ ⌊
3+1
2

⌋)q =

(
1 1
1 2

)q
=

(
F2q−3 F2q−2
F2q−2 F2q−1

)
for all q ∈ N. (4.13)

The case q = 1 is evident, hence suppose the equality holds for some q > 1. Then using the
induction hypothesis and the fact that 2Fp + Fp−1 = Fp+2 for all p ∈ N0 we obtain

(M1(3))q+1 =

(
1 1
1 2

)(
1 1
1 2

)q
=

(
1 1
1 2

)(
F2q−3 F2q−2
F2q−2 F2q−1

)
=

(
F2q−1 F2q

F2q F2q+1

)
.

Let us now consider the contribution of the su�xes 104y and 102y. Suppose �rst that y ∈
{1, 2, 3, . . . , a}. Then evidently(

R(104y)
R(104y)

)
=

(
1 1
2 2

)(
1
0

)
=

(
1
2

)
=

(
R(104)
R(104)

)
,

and (
R(102y)
R(102y)

)
=

(
1 1
1 1

)(
1
0

)
=

(
1
1

)
=

(
R(102)
R(102)

)
,

thus both the cases y ∈ {1, 2, . . . , a} and y = ε are equivalent for determining the values of R(w)
for words w from (4.11) and (4.12). Using (4.13), we determine

R
(
x
(
031
)k−1

04y
)

=
(
1 1

)(F2k−5 F2k−4
F2k−4 F2k−3

)(
1
2

)
=
(
F2k−3 F2k−2

)(1
2

)
= F2k,

R
(
x01

(
031
)k−1

02y
)

=
(
1 1

)(1 1
0 1

)(
F2k−5 F2k−4
F2k−4 F2k−3

)(
1
1

)
=
(
F2k−3 2F2k−2

)(1
1

)
= F2k,

R
(
x
(
031
)k

02y
)

=
(
1 1

)(F2k−3 F2k−2
F2k−2 F2k−1

)(
1
1

)
=
(
F2k−1 F2k

)(1
1

)
= F2k+1,

R
(
x01

(
031
)k−1

04y
)

=
(
1 1

)(1 1
0 1

)(
F2k−5 F2k−4
F2k−4 F2k−3

)(
1
2

)
=
(
F2k−2 F2k−1

)(1
2

)
= F2k+1.
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Thus we can now derive lower bounds on the value of ψ(l).

Corollary 4.17. Suppose a con�uent B-system with coe�cients a = b and order 2. Then for

all l ≥ 1

ψ(2l + 1) ≥ Fl, and ψ(2l + 2) ≥ 2Fl−1.

Proof. The bound on the maxima of R(w) on representations of odd length ψ(2l + 1) ≥ Fl is
evident from Lemma 4.16 if we set y = ε and relate the coe�cent k to l. According to the
factorisation of the representation in (4.11) we obtain

2l + 1 = 1 + 4(k − 1) + 4 = 4k + 1,

hence l = 2k. From the factorisation of representation (4.12) we obtain

2l + 1 = 1 + 4k + 2 = 4k + 3

thus we derive l = 2k + 1. In both cases this implies ψ(2l + 1) ≥ Fl from the proof of Lemma
4.16.

The bound for representations of even length is a consequence of the fact that for all x ∈
{1, 2, . . . , a}, y ∈ {1, 2, . . . , a} and u ∈ A∗ where yu is a greedy representation, the following
holds:

R(x02yu) ≥ 2R(yu).

This is a consequence of the fact that

(
1 1

)
My(2) =

(
1 1

)(1 1
1 1

)
= 2

(
1 1

)
.

Likewise, for r1 > 0 also
R(yu0r1x02) ≥ 2R(yu0r1),

since for all integer matrices with a, b ≥ 1 and c, d ≥ 0 we have

(
1 1

)(a b
c d

)
Mx(r1)

(
1
1

)
≥
(
1 1

)(a b
c d

)(
1 1⌊
r1
2

⌋ ⌊
r1
2

⌋)(1
1

)
=
(
1 1

)(a b
c d

)
2

(
1⌊
r1
2

⌋) .
Thus we have derived the following lower bound on the value of ψ(2l + 2):

ψ(2l + 2) ≥ 2ψ(2l − 1) ≥ 2Fl−1.

With the lower bounds on the value of ψ(l) established, we will now prove that ψ(l) is in fact
equal to these lower bounds. We will �rst establish some factors that are forbidden in maximal
representations. For that purpose we have to include and slightly adapt results of Kocábová,
Masáková, and Pelantová [12] about the factors present in representations on which the maxima
of R(n) are reached.
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Proposition 4.18 (Kocábová, Masáková, Pelantová). Suppose a con�uent B-system with coef-

�cients a = b and order 2. Take the greedy representation of length l on which the value of ψ(l)
is reached, i.e.

ψ(l) = R(xs0
rsxs−10

rs−1 · · ·x10r1),

where ri ∈ N0 and xi ∈ {1, 2, · · · , a} for all i ∈ {1, 2, . . . , s}. Then clearly

l = s+ rs + · · ·+ r2 + r1

and all the following hold for the values of l, s, xs, xs−1, . . . , x1 and rs, rs−1, . . . , r1:

1. If ri is odd for some i ∈ {2, . . . , s}, then xi−1 = 1.

2. s ≥ 2 or l ≤ 5.

3. If l ≥ 6, then r1 is even.

4. ri ≤ 5 for all i ∈ {1, 2, . . . , s}.

5. Suppose that l ≥ 6 and ri are odd for all i ∈ {2, 3, . . . , s}. Then rs ∈ {1, 3}, rs−1 = · · · =
r2 = 3, and r1 ∈ {2, 4}.

Proof. Statement 1 is the only new claim compared to those in the Fibonacci system. Parts
2, 3, 4, and 5 are originally proven in [12] (Propositions 4.1, 4.2, 4.5, and 4.6). The proofs of
Statements 2 and 4 for the Fibonacci case can be applied without modi�cation to all con�uent
systems with a = b and order m = 2. Furthermore, we do not include the proof of Statement
5, because thanks to Statement 1 it would be identical to the proof in the Fibonacci system.
We will include the proofs of Statement 1 as well as an adaptation of the proof of Statement 3,
because that requires slightly di�erent treatment to that in the Fibonacci system.
Statement 1.

Suppose that an i ∈ {2, . . . , s} exists such that ri is odd and xi−1 > 1. Then
⌊
ri+1
2

⌋
is strictly

greater than
⌊
ri
2

⌋
, hence the matrix Mxi−1(ri) is weakly majored by M1(ri):

Mxi−1(ri) =

(
1 1⌊
ri
2

⌋ ⌊
ri
2

⌋) -

(
1 1⌊
ri
2

⌋ ⌊
ri+1
2

⌋) = M1(ri).

Thus, if some ri is odd, the digit xi−1 must be equal to 1.
Statement 3.

Since l > 5, Part 2 implies s ≥ 2, thus it is su�cient to prove that for odd r1 we have

R(xs0
rsxs−10

rs−1 · · ·x10r1) < R(xs0
rs+1xs−10

rs−1 · · ·x10r1−1). (4.14)

Suppose �rst that rs is even. Then
⌊
rs
2

⌋
=
⌊
rs+1
2

⌋
, thus Mxs−1(rs) = M1(rs) for all xs−1 ∈

{1, 2, . . . , a}, and we have

(
1 1

)
Mxs−1(rs) =

(
1 1

)( 1 1⌊
rs
2

⌋ ⌊
rs
2

⌋) =
(rs

2
+ 1
) (

1 1
)
.

Hence we can write

R(xs0
rsxs−10

rs−1 · · ·x10r1) =
(rs

2
+ 1
)
R(xs−10

rs−1 · · ·x10r1).
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However, because rs + 1 is odd, then from Statement 1 the digit xs−1 must be equal to 1 in
order for the value R(xs0

rs+1xs−10
rs−1 · · ·x10r1−1) to be maximal. From the matrix formula we

obtain

R(xs0
rs+110rs−1 · · ·x10r1−1) =

(
1 1

)( 1 1⌊
rs+1
2

⌋ ⌊
rs+2
2

⌋)(R(10rs−1 · · ·x10r1−1)
R(10rs−1 · · ·x10r1−1)

)
=
(rs

2
+ 1
)
R(10rs−1 · · ·x10r1−1) +

(rs
2

+ 2
)
R(10rs−1 · · ·x10r1−1).

To obtain (4.14), we have to show that R(10rs−1 · · ·x10r1−1) > 0. Clearly, R(10rs−1 · · ·x10r1−1) =
0 together with r1 odd implies either

a) that there exists an index s− 1 ≥ q ≥ 2 such that xq−1 > 1 and xs−2 = · · · = xq = 1 and
rs−1 = rs−2 = · · · = rq = 1, or

b) that rs−1 = rs−2 = · · · = r1 = 1.

In both cases there is no way to perform a sequence of rewritings by which we would create a
short representation of xs0rs+110rs−1 · · ·x10r1−1. Let us treat case a) �rst. First note that

(
1 1

)( 1 1⌊
rs+1
2

⌋ ⌊
rs+2
2

⌋) =
(
rs
2 + 1, rs

2 + 2
)
,

and that ( 1 1
0 0 )

p
= ( 1 1

0 0 ) for all p ∈ N. Suppose �rst that rq−1 ≥ 2. Then clearly we have
R(xq−10

rq−1 · · ·x10r1−1) > 0 and from the fact that

Mxq−1(1) =

(
1 1
0 0

)
-

(
1 1
0 1

)
= M1(1)

we derive

R(xs0
rs+110 · · · 10xq−10

rq−1 · · ·x10r1−1) =

=
(
rs
2 + 1, rs

2 + 2
)(1 1

0 0

)s−q (
R(xq−10

rq−1 · · ·x10r1−1)
R(xq−10

rq−1 · · ·x10r1−1)

)
=
(
rs
2 + 1, rs

2 + 2
)(R(xq−10

rq−1 · · ·x10r1−1)
R(xq−10

rq−1 · · ·x10r1−1)

)
,

R(xs0
rs+110 · · · 1010rq−1 · · ·x10r1−1) =

=
(
rs
2 + 1, rs

2 + 2
)(1 1

0 0

)s−q−1(
1 1
0 1

)(
R(10rq−1 · · ·x10r1−1)
R(10rq−1 · · ·x10r1−1)

)
=
(
rs
2 + 1, rs + 3

)(R(10rq−1 · · ·x10r1−1)
R(10rq−1 · · ·x10r1−1)

)
,

hence

R(xs0
rs+110 · · · 10xq−10

rq−1 · · ·x10r1−1) < R(xs0
rs+110 · · · 1010rq−1 · · ·x10r1−1),
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which is a contradiction with the maximality of xs0rs+110 · · · 10xq−10
rq−1 · · ·x10r1−1. Suppose

now that rq−1 = 1. Then the pre�x xs0rs+1(10)s−qxq−1 is forbidden for maximality. Consider
the pre�x xs0rs+1+2(s−q)xq−1 with the same length. Then

M1(rs + 1)

(
1 1
0 0

)s−q
=

(
1 1⌊

rs+1
2

⌋ ⌊
rs+2
2

⌋)(1 1
0 0

)
=

(
1 1⌊

rs+1
2

⌋ ⌊
rs+1
2

⌋) ≺ ( 1 1⌊
rs+1+2(s−q)

2

⌋ ⌊
rs+1+2(s−q)

2

⌋) = Mxq−1(rs + 1 + 2(s− q)).

The inequality
⌊
rs+1+2(s−q)

2

⌋
>
⌊
rs+1
2

⌋
holds because s − q ≥ 1. We have thus derived a

contradiction.
Let us now treat case b). Then, from Statement 2 it follows that s ≥ 2, because by assumption

l ≥ 6. Similarly to the end of case a), consider the string xs0rs+1+2(s−1), which has the same
length as xs0rs+110xs−20 · · ·x10. Again, we obtain the inequality

Mxq−1(rs + 1)

(
1 1
0 0

)s−1
=

(
1 1⌊

rs+1
2

⌋ ⌊
rs+1
2

⌋)
(

1 1⌊
rs+1
2

⌋ ⌊
rs+1
2

⌋) ≺ ( 1 1⌊
rs+1+2(s−1)

2

⌋ ⌊
rs+1+2(s−1)

2

⌋) = Mxq−1(rs + 1 + 2(s− 1)),

and thus a contradiction with the maximality of xs0rs+110xs−20 · · ·x10. In both cases a) and b)
we have shown that R(10rs−1 · · ·x10r1−1) cannot be equal to zero, proving the inequality (4.14)
when rs is even.

Suppose now that rs is odd. Since M1(rs) %Md(rs) for all d > 1, the digit xs−1 must equal
1. Then from the matrix formula we obtain

R(xs0
rs10rs−1 · · ·x10r1) =

(
1 +

⌊rs
2

⌋)
R(10rs−1 · · ·x10r1) +

(
1 +

⌊
rs + 1

2

⌋)
R(10rs−1 · · ·x10r1),

R(xs0
rs+110rs−1 · · ·x10r1−1) = R(10rs+110rs−1 · · ·x10r1)

=

(
1 +

⌊
rs + 1

2

⌋)(
R(10rs−1 · · ·x10r1) +R(10rs−1 · · ·x10r1)

)
.

thus proving (4.14), because
⌊
rs
2

⌋
<
⌊
rs+1
2

⌋
.

Using Proposition 4.18 we can now prove the formula for ψ(l). The proof is almost identical
to that for the Fibonacci system ([12], Theorem 4.7). We include the proof because we will
utilise it for determining the arguments of the maxima of R(n), i.e. in Section 4.4.1, where we
will determine the greedy representations that form the set Ψ(l) in all con�uent systems with
a = b and order m = 2.

Theorem 4.19 (Kocábová, Masáková, Pelantová). Suppose a con�uent B-system with coe�-

cients a = b and order m = 2. Then

ψ(2k + 1) = Fk for k ≥ 0,

ψ(2k + 2) = 2Fk−1 for k ≥ 1.
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Proof. In the proof we shall use the following inequalities for the Fibonacci numbers, which are
simple to demonstrate. Recall that F0 = 1, F1 = 2, and F−1 = 1.Then

FpFq ≤ 2Fp+q−1 for p, q ≥ 0, (4.15)

where the equality holds only if p = 1 or q = 1.

2FpFq ≤ Fp+q+2 for p, q ≥ 0, (4.16)

where the equality holds only if p = q = 1.
We shall prove the statement by induction on k, the length of representation. From Corollary

4.17 we already know that ψ(2k + 1) ≥ Fk and ψ(2k + 2) ≥ 2Fk−1, so it su�ces to show that
these lower bounds are also upper bounds, i.e. we shall prove that

ψ(2k + 1) ≤ Fk and ψ(2k + 2) ≤ 2Fk−1. (4.17)

The initial values of ψ(k) are clearly ψ(1) = 1 and ψ(2) = 1, since no interchange x00↔ (x−1)aa,
where x ∈ {1, 2, . . . , a} and a is the greatest digit of the canonical alphabet, is possible on these
lengths. Continuing further, ψ(3) = 2, since into a greedy representation of length 3 we can �t
precisely one rewriteable factor x00. We conclude ψ(4) = 2 by the same argument.

Furthermore, notice that for ri even we have Mx(ri) = Mx(ri) ( 1
0 ) ( 1 1 ) and Mx(ri) ( 1

0 ) =(
1
b ri2 c

)
for all x ∈ {1, 2, . . . , a}. This means that for ri even we can say

R(xs0
rs · · ·xi0rixi−10ri−1 · · ·x10r1) = R(xs0

rs · · ·xi0ri)R(xi−10
ri−1 · · ·x10r1).

We are now ready to prove (4.17).

1. Let us �rst show that ψ(2k + 2) ≤ 2Fk−1.
Let w = xs0

rsxs−10
rs−1 · · ·x10r1 , where ri ∈ N0, xi ∈ {1, 2, . . . , a}, be a greedy repre-

sentation such that R(w) = ψ(2k + 2), where k ≥ 2. Statement 3 of Proposition 4.18
implies that r1 is even. Because rs + rs−1 + · · · + r1 + s = 2k + 2, there must exist an
s ≥ i > 1 such that ri is even. Let i be the minimal index with this property. The number
ri−1 + · · ·+ r1 + (s− i) is odd, e.g. 2p+ 1. Then rs + · · ·+ ri + i = 2k+ 2− (2p+ 1). Using
the inequality (4.15) and the induction hypothesis we then obtain

ψ(2k + 2) = R(xs0
rsxs−10

rs−1 · · ·x10r1) = R(xs0
rs · · ·xi0ri)R(xi−10

ri−1 · · ·x10r1)

≤ ψ (2k − 2p+ 1)ψ (2p+ 1) = Fk−pFp ≤ 2Fk−1. (4.18)

2. Let us now prove that ψ(2k + 1) ≤ Fk.
Let w = xs0

rsxs−10
rs−1 · · ·x10r1 , where ri ∈ N0, xi ∈ {1, 2, . . . , a}, be a greedy represen-

tation such that R(w) = ψ(2k + 1), where k ≥ 2. Statement 3 of Proposition 4.18 implies
that r1 is even. Suppose that there exists an index s ≥ i > 1 such that ri is even. Let i
be the minimal index with this property. Again, denote ri−1 + · · ·+ r1 + (s− i) = 2p+ 1.
Then rs + · · ·+ ri + i = 2k + 1− (2p+ 1) = 2k − 2p. Using the inequality (4.15) and the
induction hypothesis we then obtain

ψ(2k + 2) = R(xs0
rsxs−10

rs−1 · · ·x10r1) = R(xs0
rs · · ·xi0ri)R(xi−10

ri−1 · · ·x10r1)

≤ ψ (2k − 2p)ψ (2p+ 1) = ψ (2(k − p− 1) + 2)ψ (2p+ 1)

= 2Fk−p−2Fp ≤ 2Fk. (4.19)
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It remains to consider the case when ri is odd for all i ∈ {2, . . . , s}. Then from State-
ment 1 of Proposition 4.18 clearly xi−1 = 1 for all i and according to Statement 5 of
Proposition 4.18, the only allowed s-tuples (rs, rs−1, . . . , r1) are of the form (1, 3, . . . , 3, 4),
(3, . . . , 3, 4), (1, 3, . . . , 3, 2), or (3, . . . , 3, 2). For a given length l only two of these are pos-
sible. Namely, for l ≡ 1 mod 4 we can have either (1, 3, . . . , 3, 2) or (3, . . . , 3, 4), because
s+ 3(s− 2) + 1 + 2 = 4s− 3 and s+ 3(s− 1) + 4 = 4s+ 1, whereas for l ≡ 3 mod 4 we
can have either (1, 3, . . . , 3, 4) or (3, . . . , 3, 2) because s + 3(s − 2) + 1 + 4 = 4s + 3 and
s+3(s−1)+2 = 4s−1. The values of R on representations constructed from such s-tuples
were determined in Lemma 4.16. Thus the theorem is proved.

4.3.2 Con�uent Systems with a = b and order m > 2

For con�uent systems whose coe�cients satisfy a = b and whose order is greater than 2,
�ndings about the maximal values of R(n) for m-bonacci systems [11] largely carry over. As in
the previous group a = b and m = 2, we will �rst determine the value of R(w) on chosen greedy
representations w, thus deriving a lower bound for ψ(l) in such systems. We will then establish
some strings that are forbidden for maximality. Finally, we will use these forbidden strings to
�nd an upper bound on ψ(l) and thus prove that it is equal to the values that we observed in
Chapter 3.

We will �rst estabilish some notation which we will also utilise in Sections 4.3.3 and 4.4.

De�nition 4.20. Let A be some �nite alphabet and let α, β ∈ A∗. Then for every �nite alphabet
X and every p ∈ N we de�ne the wildcard concatenation symbol [αx∗β]pX which we set equal to

[αx∗β]pX := (αxpβ) (αxp−1β) · · · (αx1β) ,

where xp, xp−1, . . . , x1 ∈ X. For completeness and consistency, we set [αx∗β]0X := ε.

In essence, the notation [αx∗β]pX could be read as �repeat the word αβ precisely p times and

insert between every α and β a digit from X�. The wildcard concatenation symbol will allow us
to be e�cient when talking about repeating a given factor and inserting a di�erent digit into each
repetition. We will utilise this most when analysing the maxima of R(w) in con�uent systems,
since for many di�erent representations w the value R(w) is identical. Similarly to what we saw
in the case a = b, m = 2, in all con�uent systems the value R(w) depends largely on the lengths
of factors of consecutive zeros and not so much on the values of non-zero digits. The wildcard
concatenation symbol will allow us to talk more e�ciently in general about a set of factors that
include the same number of consecutive zeros but di�er in the values of the nonzero digits.

With this notation, we can now determine lower bounds on ψ(l). However, �rst, let us
determine the value of ψ(l) for initial values of l. Clearly ψ(1) = ψ(2) = · · · = ψ(m) = 1, since
no rewritable factor x0m, where x ∈ {1, 2, . . . , a−1}, �ts into a word of this length. All numbers
n smaller than Bm thus have a unique representation.

The next case to consider is ψ(m+ 1) = ψ(m+ 2) = · · · = ψ(2m) = 2, which holds because
only one rewritable factor x0m �ts into a representation of length m+ 1 ≤ l ≤ 2m.

The next case is l = 2m + 1. We have ψ(2m + 1) = 3 because the maximal representations
w will be of the form x0m−110m. After rewriting the su�x 10m to 0am we gain one more zero
for the rewriting x0m → (x−1)am. Together this can be written as

x0m−110m → x0m−10am → (x−1)am−1aam.
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Lemma 4.21. Suppose a con�uent B-system with coe�cients a = b and order m > 2. Then the

maxima of the function R de�ned for this system satisfy:

ψ (p (m+ 1) + q) ≥ 2p for q ∈ {0, 1, . . . ,m− 2},
ψ (p (m+ 1) +m− 1) ≥ 2p + 2p−2 if p ≥ 2,

ψ (p (m+ 1) +m) ≥ 2p + 2p−1.

Proof. Denote by A the canonical alphabet of the B-system. Then denote C = {1, 2, . . . , a}.
For the �rst case we determine the value R(w) on greedy representations of the form w ∈{

[x∗0
m]pC , y [x∗0

m]pC , y0 [x∗0
m]pC , . . . , y0m−2 [x∗0

m]pC
}
, where y ∈ C. Clearly, such representa-

tions have lengths l = p(m+ 1), p(m+ 1) + 1, . . . , p(m+ 1) + q. Then, because Mx(m) = ( 1 1
1 1 )

for all x ∈ C and ( 1 1
1 1 ) ( 1

0 ) = ( 1
1 ), we obtain from the matrix formula

ψ (p(m+ 1) + q) ≥ R(w) =
(
1 1

)(1 1
1 1

)p(
1
0

)
= 2p for all q ∈ {0, 1, . . . ,m− 2}.

For l = p(m+1)+m−1 we evaluateR(w) on the greedy representation w = y02m−110m [x∗0
m]p−2C ,

where again y ∈ C:

ψ (p(m+ 1) +m− 1) ≥ R(w) =
(
1 1

)(1 1
1 2

)(
1 1
1 1

)p−1(
1
0

)
= 2p + 2p−2.

Lastly, for l = p(m + 1) + m consider the value of R(w) on the greedy representation w =
y0m−110m [x∗0

m]p−1C , where again y ∈ C:

ψ (p(m+ 1) +m) ≥ R(w) =
(
1 1

)(1 1
0 1

)(
1 1
1 1

)p(
1
0

)
= 2p + 2p−1.

We will now show some factors forbidden for maximality and restrict the set of possible
representations w on which R(w) = ψ(l) is reached. Again, most results carry over (with a slight
modi�cation) from the m-bonacci case [11], so we will prove the following claims only if there is
a substantial di�erence.

Proposition 4.22. Suppose a B-system with coe�cients a = b and order m > 2. Suppose a

greedy representation w = xs0
rs · · ·x10r1 of length l such that it is maximal, i.e. R(w) = ψ(l).

Then for every i = 1, 2, . . . , s it holds that ri ≤ 2m or that ri = 3m− 1 and xi−1 = 1.

Proof. Analogous to the m-bonacci case ([11], Claim 5.4). Suppose for some i that ri > 2m and
ri 6= 3m − 1. Then the string xi0rixi−1 is forbidden for maximality for all xi−1 ∈ {1, 2, . . . , a}.
First, note that if xi−1 > 1, then either Mxi−1(ri) -M1(ri) or Mxi−1(ri) = M1(ri), so it su�ces
to treat the case xi−1 = 1 only. Consider now the string xi0ri−m−110mxi−1 that has the same
length as xi0rixi−1. In order to verify

M1(ri) =

(
1 1⌊
ri
m

⌋ ⌊
ri+1
m

⌋) ≺ ( 2 2⌊
ri
m

⌋
+
⌊
ri−1
m

⌋
− 2

⌊
ri
m

⌋
+
⌊
ri−1
m

⌋
− 2

)
=

(
1 1⌊

ri−m−1
m

⌋ ⌊
ri−m
m

⌋)(1 1
1 1

)
= M1(ri −m− 1)Mxi−1(m).
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we use the fact that ⌊
ri + 1

m

⌋
≤
⌊ ri
m

⌋
+

⌊
ri − 1

m

⌋
− 2

holds for all ri > 2m and r 6= 3m− 1.

Proposition 4.23 (Kocábová, Masáková, Pelantová). Suppose a B-system with coe�cients a = b
and order m > 2. Then the following factors are forbidden for maximality for all x, y, z, v ∈
{1, 2, . . . , a}:

1. x0m−1y03m−1z,

2. x0m−1y0m−1z,

3. x0m−1y02m−1z0m−1v,

4. x0m−1y02m−1z02m−1v, whenever m ≥ 4.

5. x0m−1y02m−1z03m−1v.

Proof. Since M1(r) % Mx(r) for all x > 1 whenever r ≡ m − 1 mod m, it su�ces to consider
the above factors with y = z = v = 1. Furthermore, since the contributions of any of the factors
(i.e. the matrices My(m − 1), Mz(3m − 1), etc.) do not depend on the initial digit x, we can
consider only factors with x = 1, fully reducing this statement to the m-bonacci case. Refer thus
to Claims 5.5�5.9 in [11] for the full proofs that these factors are forbidden. For completeness,
we will include the factors which improve upon the factors 1.�5.

1. x0my0mz02m−3v improves x0m−1y03m−1z because

My(m)Mz(m)Mv(2m− 3) =

(
4 4
4 4

)
�
(

3 4
2 3

)
= M1(m− 1)Mz(3m− 1).

2. x02m−11 improves x0m−1y0m−1z because

M1(2m− 1) =

(
1 1
1 2

)
�
(

1 2
0 1

)
= M1(m− 1)M1(m− 1).

3. x0my0mz02m−3v improves x0m−1y02m−1z0m−1v because

My(m)Mz(m)Mv(2m− 3) =

(
4 4
4 4

)
�
(

1 3
5 2

)
= M1(m− 1)M1(2m− 1)M1(m− 1).

4. Letm ≥ 4. Then [x∗0
m]3C y02m−4z, where C = {1, 2, . . . , a}, improves x0m−1y02m−1z02m−1v,

because Mx(m) = ( 1 1
1 1 ) for all x ∈ C and thus

(My(m))3Mv(2m− 3) =

(
8 8
8 8

)
�
(

5 3
8 5

)
= M1(m− 1)M1(2m− 1)M1(2m− 1).

for all x ∈ C.
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5. x02my02mz02m−3v improves x0m−1y02m−1z03m−1v because

My(2m)Mz(2m)Mv(2m−3) =

(
6 6
12 12

)
�
(

8 11
5 7

)
= M1(m−1)M1(2m−1)M1(3m−1).

With these forbidden factors ready, we can state the central theorem for the value of ψ(l).
The proof is identical to that in the m-bonacci system (see [11], Theorem 5.11), thus we will not
include it in this work. The only di�erence is that the greedy representations w that form the
set Ψ(l) may have the most signi�cant digit larger than 1. Also, because M1(r) %Mx(r) for all
x > 1 only if r ≡ m− 1 mod m, any factors of even length may end with a digit larger than 1.
Otherwise every step of the proof of Theorem 4.24 is identical to the m-bonacci case.

Theorem 4.24 (Kocábová, Masáková, Pelantová). Consider a con�uent B-system with coe�-

cients a = b and order m > 2. Then for every p ≥ 1 the maxima of the function R in this system

satisfy

ψ (p (m+ 1) + q) = 2p for q ∈ {0, 1, . . . ,m− 2},
ψ (p (m+ 1) +m− 1) = 2p + 2p−2 if p ≥ 2,

ψ (p (m+ 1) +m) = 2p + 2p−1.

4.3.3 Con�uent Systems with a > b

To explain the behaviour of con�uent systems with coe�cients a > b, we can use what we
found for the (2, 1)-system as a model. Let us start by noting that in representations that have
length l smaller than or equal to m, no rewriting rule from the associated rewriting system ρA
can be applied, therefore ψ(l) = 1 for all l = 1, 2, . . . ,m. For representations of length l > m we
will follow the approach used for the other two groups of numeration systems. Firstly, we will
determine the value of R(w) on some chosen B-representations w and use these for deriving a
lower bound for ψ(l). Secondly, we will show that the value ψ(l) is indeed equal to R(w).

Lemma 4.25. Suppose a con�uent B-system with coe�cients a > b and order m. Denote its

canonical alphabet A. Then

R
(
z
[
0m−1c∗

]p
C

0m−1x1
)

= 2p+1,

R
(
z
[
0m−1c∗

]p
C

0m−1x1x2
)

= 2p+1,

...

R
(
z
[
0m−1c∗

]p
C

0m−1x1x2 · · ·xm
)

= 2p+1,

where p ∈ N0 and z ∈ {1, 2, . . . a}, C = {1, 2, . . . , a − b}, x1 ∈ {0, 1, . . . , a − b} and xj ∈ A for

all j = 2, 3, . . . ,m− 1.

Proof. Let us �rst realise that for all q ∈ {1, 2, . . . ,m − 1} the su�x x1 · · ·xq contributes the
same value to R(w). Since no rewriting rule from ρA can be used in x1 · · ·xq, we obtain(

R(c0m−1x1 · · ·xq)
R(c0m−1x1 · · ·xq)

)
= Mx1(m− 1)

(
1
0

)
=

(
1
1

)
for every c ∈ {1, 2, . . . , a}. If q ≥ 1 and x1 · · ·xq has a proper pre�x consisting of zeroes, i.e. if
there exists an r < q such that x1 = x2 = · · · = xr = 0 then the equality holds as well because
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Mx1+r(m−1+r) = Mc(m−1) for all xr ∈ A and c ≤ a−b. Lastly, in the case when x1 · · ·xq = 0q

we obtain the equivalent result (
R(c0m−1+q)
R(c0m−1+q)

)
=

(
1
1

)
.

We can now evaluate R(w) on the whole representation:

R
(
wN−1

[
0m−1c∗

]p
C

0m−1x1 · · ·xq
)

=
(
1 1

)
(Mc(m− 1))p

(
1
1

)
.

Finally, because

(Mc(m− 1))p =

(
1 1
1 1

)p
=

(
2p−1 2p−1

2p−1 2p−1

)
for all p ∈ N,

this results in
R
(
wN−1

[
0m−1c∗

]p
C

0m−1x1 · · ·xq
)

= 2p+1.

Now let us show that the values from Lemma 4.25 are in fact a lower bound on ψ(l).

Corollary 4.26. Suppose a con�uent B-system with coe�cients a > b and order m. Then for

all l ≥ 1

ψ(l) ≥ 2d
l
me−1.

Proof. Clearly for every l ≥ 1 there exist p ∈ N0 and q ∈ {1, 2, . . . ,m−1,m} such that l = pm+q.
Denote C = {1, 2, . . . , a− b}. Then clearly

ψ(l) = ψ(pm+ q) ≥ R(wN−1
[
0m−1c∗

]p−1
C

0m−1x1 · · ·xq) = 2p = 2d
l
me−1,

because
⌈
l
m

⌉
− 1 =

⌈pm+q
m

⌉
− 1 = p.

We will now establish some strings forbidden for maximality before proving that ψ(l) =

2d
l
me−1.

Proposition 4.27. Let r ≥ 2m − 1. Then the string y0rx is forbidden for maximality for all

x, y ∈ {1, 2, . . . , a}.

Proof. Take any digit c ∈ {1, 2, . . . , a−b}. Then matrixMx(ri) is majored by or equal toMc(ri),
which is majored by Mc(m− 1)Mc(ri −m):

Mc(m− 1)Mc(ri −m) =

(
1 1
1 1

)(
1 1⌊

ri−m+1
m

⌋ ⌊
ri−m+1

m

⌋)
=

(⌊
ri+1
m

⌋ ⌊
ri+1
m

⌋⌊
ri+1
m

⌋ ⌊
ri+1
m

⌋) � ( 1 1⌊
ri+1
m

⌋ ⌊
ri+1
m

⌋) = Mc(ri).
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Proposition 4.28. Take the greedy representation of length l on which the value of ψ(l) is

reached, i.e. the word w = xs0
rsxs−10

rs−1 · · ·x10r1 such that xi ∈ {1, 2, . . . , a}, ri ∈ N0 for all

i = 1, 2, . . . , s, and
ψ(l) = R(xs0

rsxs−10
rs−1 · · ·x10r1).

Then r1 < 2m.

Proof. Suppose that w is maximal (i.e. that ψ(l) = R(w)) and that r1 ≥ 2m. Let c be a digit
c ∈ {1, . . . , a− b}. Then

Mc(m− 1)

(
1⌊

r1−m
m

⌋) =

(
1 1
1 1

)(
1⌊

r1−m
m

⌋) =

(⌊
r1
m

⌋⌊
r1
m

⌋) .
hence for the value of R(w) we obtain

R(xs0
rs · · ·x10m−1c0r1−m) =

(
u v

)(⌊ r1m⌋⌊
ri
m

⌋) >
(
u v

)( 1⌊
r1
m

⌋) = R(xs0
rs · · ·x10r1),

where u, v ∈ N, which is a contradiction with the maximality of w.

Proposition 4.29. If rα, rβ < m−1 and rα+rβ ≥ m−2, then the string z0rαx0rβy is forbidden

for maximality for all nonzero digits z, x, y from the canonical alphabet A.

Proof. This is a consequence of the fact that Mx(rα)My(rβ) is majored by the matrix ( 1 1
1 1 ):

Mx(rα)My(rβ) =

(
1 1
0 0

)2

≺
(

1 1
1 1

)
.

If rα + rβ = m − 2, then Mc(rα + rβ + 1), where c ∈ {1, 2, . . . , a − b} is equal to ( 1 1
1 1 ). Thus

in this case the factor z0rαx0rβy is improved by the factor z0rα+rβ+1c. On the other hand, if
rα+rβ > m−2 then using the assumption rα, rβ < m−1 we derive m−1 < rα+rβ+1 < 2m−1,
hence Mf (rα + rβ + 1) = ( 1 1

1 1 ), where f is any nonzero digit from A. Hence in this case the
factor z0rαx0rβy is improved by the factor z0rα+rβ+1f .

Theorem 4.30. Consider a con�uent B-system with coe�cients a > b and order m. Then for

the maxima of the function R(w) de�ned in this B-system the following holds:

ψ(l) = 2d
l
me−1.

Proof. We prove the theorem by induction on the length l of the greedy representation. First
write l = pm + q, where p ∈ N0 and q ∈ {1, 2, . . . ,m − 1,m}. For initial values of l, i.e. for
l = 1, 2, . . . ,m we have since shown that ψ(l) = 1. We have also shown in Corollary 4.26 that
2d

l
me−1 is a lower bound on the value of ψ(l), so it su�ces to show that it is also an upper bound.
Take the greedy representation of length l on which the value of ψ(l) is reached, i.e. the word

w = xs0
rsxs−10

rs−1 · · ·x10r1 such that s ∈ N and xi ∈ {1, 2, . . . , a}, ri ∈ N0 for all i = 1, 2, . . . , s,
and

ψ(l) = R(xs0
rsxs−10

rs−1 · · ·x10r1).

Suppose �rst that R (w) = 0. Then clearly

ψ(l) = R(xs0
rsxs−10

rs−1 · · ·x10r1) = R(xs−10
rs−1 · · ·x10r1) ≤ ψ(l − rs − 1)
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and the statement follows from the induction hypothesis. Consider now the case R (w) ≥ 1.
Then either rs = m− 1 and xs−1 ≤ a− b or rs ≥ m, otherwise we would not be able to rewrite
the pre�x xs0rsxs−1 to obtain a short representation of w with respect to the digit xs. Let us
show that the coe�cients ri and digits xi can only take certain values. Suppose that there is an
index 2 ≤ i ≤ s− 1 such that 0 ≤ ri ≤ m− 2. Then since Mxi−1(ri) = ( 1 1

0 0 ), we have

Mxi(ri+1)Mxi−1(ri) =



(
1 1⌊

ri+1+1
m

⌋ ⌊
ri+1+1
m

⌋) if xi ≤ a− b,(
1 1⌊ ri+1

m

⌋ ⌊ ri+1

m

⌋) if xi = a− b+ 1,(
1 1⌊ ri+1

m

⌋ ⌊ ri+1

m

⌋) if xi ≥ a− b+ 2.

In all three cases this implies

ψ(l) = R(xs0
rs · · ·x10r1) ≤ R(xs0

rs · · ·xi+10
ri+1xi0

ri−1 · · ·x10r1) ≤ ψ(l − ri − 1),

and the statement follows from the induction hypothesis. Similarly, if there exists an 2 ≤ i ≤ s
such that m+ 1 ≤ ri ≤ 2m− 2, then Mxi−1(ri) = Mxi−1(m), and thus ψ(l) ≤ ψ(l− ri +m) and
again the statement follows from the induction hypothesis. Lastly, if an index 2 ≤ i ≤ s exists
such that ri = m and xi ≥ a− b+1, then for all 1 ≤ c ≤ a− b we obtainMxi−1(ri) = Mc(m−1),
which implies ψ(l) ≤ ψ(l − 1) and again the statement follows from the induction hypothesis.
Therefore, using Propositions 4.27, 4.28 and 4.29 it is su�cient to consider only coe�cients
rs = rs−1 = · · · = r2 = m − 1 and r1 ∈ {0, 1, . . . , 2m − 1} and digits xs−1, xs−2, . . . , x1 ∈
{1, 2, . . . , a− b}. We will now determine R(w) for this combination of coe�cients. Since

(
1 1

)
Mxs−1(m− 1) =

(
1 1

)(1 1
1 1

)
= 2

(
1 1

)
,

then using the induction hypothesis we obtain

ψ(l) = R(xs0
rsxs−10

rs−1 · · ·x10r1) = 2R(xs−10
rs−1 · · ·x10r1)

≤ 2ψ(l −m) ≤ 2 · 2d
l−m
m e−1 = 2d

l
me−1,

which proves the theorem.

4.4 Arguments of the Maxima of R(n) in Con�uent Systems

In this section we will verify our observations from Chapter 3 about the sizes of the set Ψ(l)
in the surveyed B-systems.

4.4.1 Con�uent Systems with a = b and order m = 2

In Chapter 3 we found that except for the initial cases l = 1, 2, 3, 4 and l = 6, 9, 12, the
following relationship for the size of the set Ψ(l) holds:

#Ψ(2k + 1) = 2 · a for k ≥ 1, k 6= 4,

#Ψ(2k) = 4 · a2 for k ≥ 4, k 6= 6.
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We shall prove these relations (as well as derive the ones for l = 6, 9, 12) by determining the
greedy representations w of length l on which the maximal values of ψ(l) = R(w) are reached.
The proof of Theorem 4.19 will serve for this purpose. We will again closely follow the approach
taken in [12].

Denote by w = xs0
rsxs−10

rs−1 · · ·x10r1 , where xi ∈ {1, 2, . . . , a} and ri ∈ N0 for all i =
1, 2, . . . , s, a greedy representation of length l = s+ rs + rs−1 + · · ·+ r1 such that ψ(l) = R(w).

Let us �rst suppose that l is odd and that equality is reached in (4.19). Recall that the
relation (4.16) implies that for the equality to be reached, i.e. that

ψ(2k + 1) = ψ(2(k − p− 1) + 2)ψ(2p+ 1) = 2Fk−p−2Fp = Fk,

it is required that p = 1 and k = 4. Then Fk−p−2 = Fp = F1 = 2 and Fk = F4 = 8. From (4.19)
we then obtain

ψ(2(k − p− 1) + 2) = ψ(6) = R(xs0
rs · · ·xi0ri),

and
ψ(2p+ 1) = ψ(3) = R(xi−10

ri−1 · · ·x10r1).

Hence we have determined one of the forms of the maximal representations for length l = 9.
They will have r3 = r2 = r1 = 2, thus they will be of the form w = x300x200x100, where
x3, x2, x1 ∈ {1, 2, . . . , a}. In total, this yields a3 representations.

Let us now suppose that l is odd and that equality is not reached in (4.19). The proof of
Theorem 4.19 suggests in this case that unless equality holds in (4.19), all the coe�cients ri are
odd and thus as a consequence of Proposition 4.18, they will have a very speci�c form, which we
show below.

Corollary 4.31. Suppose a con�uent B-system with a = b and order m = 2. Then

1. #Ψ(4k + 3) is equal to a for k = 0 and to 2 · a for k ≥ 1. We have ψ(3) = R(x00), where
x ∈ {1, . . . , a}, thus a di�erent possible greedy representations, and for k ≥ 1 we have

ψ(4k + 3) = R
(
x0
(
103
)k−1

104
)

= R
(
x03

(
103
)k−1

102
)
.

Again, x ∈ {1, . . . , a}, thus we obtain a+ a possible representations on which ψ(4k + 3) is

reached.

2. #Ψ(4k + 1) is equal to a + 1 for k = 0, since ψ(1) is reached on all representations of

length 1. Then #Ψ(4k + 1) is equal to a3 + 2a for k = 2, since

ψ(9) = R (x300x200x100) = R (x301000100) = R (x200010000) ,

where x3, x2, x1 ∈ {1, 2, . . . , a}. Lastly, #Ψ(4k+ 1) = 2 ·a for k ≥ 3 or k = 1, because then

ψ(4k + 1) = R
(
x0
(
103
)k−1

102
)

= R
(
x03

(
103
)k−1

104
)
.

The digit x belongs to the set {1, 2, . . . , a}, thus there are a+ a possible representations on

which ψ(4k + 1) is reached.

Consider now the case when the length l is even. Take the greedy representation w =
xs0

rsxs−10
rs−1 · · ·x10r1 of length l = 2k + 2 such that the maximum ψ(2k + 2) is reached on w.

Then the proof of Theorem 4.19 requires that equality is reached in (4.18), i.e. that

ψ(2k + 2) = ψ(2k − 2p+ 1)ψ(2p+ 1) = Fk−pFp = 2Fk−1.
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Relation (4.15) for the Fibonacci numbers then implies that either k − p = 1 or that p = 1.
This further implies that the maximal representation xs0

rsxs−10
rs−1 · · ·x10r1 of length 2k + 2

is split at i = 1 or i = s − 1, namely that either rs = 2 and rs−1, . . . , r1 are odd, and that
xs−10

rs−1 · · ·x10r1 is maximal, i.e. R(xs−10
rs−1 · · ·x10r1) = ψ(2k − 1), or that r1 = 2 and that

xs0
rs · · ·x20r2 is maximal.

Corollary 4.32. Let k ≥ 3 and let rs, . . . , r1 satisfy
∑s

i=1 ri + s = 2k + 2. Then

R(xs0
rsxs−10

rs−1 · · ·x10r1) = ψ(2k + 2)

if and only if

rs = 2 and R(xs−10
rs−1 · · ·x10r1) = ψ(2k − 1), (4.20)

or

r1 = 2 and R(xs0
rs · · ·x20r2) = ψ(2k − 1). (4.21)

From Corollary 4.32 we thus obtain all the possible greedy representations of even length.

Proposition 4.33. Let k ≥ 3. Then

#Ψ(2k + 2) = 4 · a2 for k 6= 5,

and

#Ψ(2k + 2) = a4 + 2a2 for k = 5.

Proof. Let k 6= 5. Then we construct elements of Ψ(2k + 2) using the recipe from Corollary
4.32. Denote by u an element of Ψ(2k − 1) and let x be a nonzero digit from the canonical
alphabet. Then Ψ(2k + 2) will consist of strings of the forms x00u and ux00 corresponding to
(4.20) and (4.21), respectively. Both x00u and ux00 can have 2 · a2 di�erent instances, since
x ∈ {1, 2, . . . , a} and in Corollary 4.31 we counted that Ψ(2k− 1) = Ψ(2p+ 1) has 2 · a elements
for p 6= 4. In total we obtain Ψ(2k + 2) = 4 · a2.

Suppose now that k = 5. Then representations from the set Ψ(2k + 2) = Ψ(12) will be
constructed by concatenating elements of Ψ(3) with those from Ψ(9). Again, denote u an element
of Ψ(9). The set Ψ(2k + 2) will again consist of strings of the forms x00u and ux00. However,
in this case, there are a3 + 2a possible instances of u. Therefore in total we obtain #Ψ(12) =
a4 + 2a2.

4.4.2 Con�uent Systems with a > b

In Chapter 3, we found that the number of maxima at representation of odd length is constant
and equal to 4 in the (2, 1)-system. In this section we will use the matrix formula to explain
the number of arguments of the maxima of R(n), or in other words, the size of the set Ψ(l) for
all studied con�uent systems with a > b. We will determine Ψ(l) based on the residue class of l
modulom, wherem is the basis order. First let us state some general observations. An immediate
corollary of Theorem 4.30 is that the maxima of R(w) are reached on greedy representations

w = xn0rnxn−10
rn−1 · · ·x10r1

where as many rj are equal to m− 1 as possible. Furthermore, when rj = m− 1, the digit xj−1
is forced to be from the set {1, 2, . . . , a− b}. Then Mxj−1(rj) = ( 1 1

1 1 ) , which majores My(rj) for
any y ≥ a− b+ 1.

We will start with the simplest case, when l ≡ 1 mod m, i.e. l = km+ 1 for some k ∈ N0.
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Theorem 4.34. Consider a con�uent B-system with coe�cients a > b and order m. Then the

number of arguments of the maximum of R(n) on all n whose greedy representation has length

l = km+ 1 is equal to

#Ψ(km+ 1) = a · (a− b)k−1 · (a− b+ 1) for all k ≥ 1.

Proof. From Theorem 4.30 we know that the value R(w) = ψ(km+ 1) is reached on representa-
tions w of the form

w = wkm−1
[
0m−1c∗

]k−1
C

0m−1w0,

where wkm−1 ∈ {1, 2, . . . , a}, C = {1, 2, . . . , a−b} for all j = 1, 2, . . . , k−1, and w0 ∈ {0, 1, . . . , a−
b}. We can see that truly |w| = km + 1 and that w includes as many factors 0m−1 as possible
on this length. Let us now count the number of possible instances of w. We have a choices for
wkm−1, then a− b choices for c∗ for every j = 1, 2, . . . , k− 1, and �nally a− b+ 1 choices for w0.
Thus we obtain the result #Ψ(km+ 1) = a · (a− b)k−1 · (a− b+ 1).

Let us now move on to the case l = km+2. This residue class requires a much more technical
proof, hence for simplicity we will start by determining the elements of the set Ψ(km+ 2) in the
(2, 1)-system.

Since l is even, the number of repetitions of the factor 01 will be
⌊
l
2

⌋
− 1 because the most

signi�cant digit wl−1 cannot be equal to zero. Thus we can construct maximal representations
of length km+ 2 by taking the maximal representations for km+ 1, which will have the form

w = wl−10101 · · · 01010w0, (4.22)

and extend them by one more digit to length km + 2. We will denote this extra digit x. We
can place x to the left of every 01 factor, to the left of 0w0 and to the right of w0. All possible
locations are shown below.

wl−1x01x01 · · ·x01x01x0w0x. (4.23)

Other locations of x are either equivalent or would lead to a decrease of R(w), as we would break
apart one of the 01 factors. Let us now evaluate R(w) depending on the value of x and verify
that we will not change it by introducing the new digit x.

If x = 0 and we place x in front of a zero, then since M1(1) = M1(2), the value of R(w) does
not change. Note that because M1(2) = M2(2) this further allows us to change the digit that
ends this gap to 2, i.e. we obtain the two possible factors x01 ∈ {001, 002}.

Suppose the other case, i.e. that we place x at the end of the representation. This yields the
su�x 10w00, which can either contribute to R(w) as 1000 or 1010. Both cases are equivalent,
since (

R(1010)
R(1010)

)
= M1(1)

(
1⌊
1
2

⌋) =

(
1 1
1 1

)(
1
0

)
=

(
1
1

)
=

(
1⌊
3
2

⌋) =

(
R(1000)
R(1000)

)
.

If x is a non-zero digit, then its placement anywhere except the end of the representation
introduces the matrix

Mx(0) =

(
1 1
0 0

)
into the product for R(w), because that is the contribution of the factors wl−1x and 1x. In other
words, we introduced a gap of zero length into the representation w. Since the equality(

1 1
)(1 1

1 1

)p(
1 1
0 0

)(
1 1
1 1

)q
=
(
1 1

)(1 1
1 1

)r (
1 1
0 0

)(
1 1
1 1

)s
(4.24)
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holds for all p + q = r + s, p, q, r, s ∈ N0, the value of R(w) does not depend on the placement
of x and we can write(

1 1
)(1 1

1 1

)p(
1 1
0 0

)(
1 1
1 1

)q
=
(
1 1

)(1 1
0 0

)(
1 1
1 1

)p+q
=
(
1 1

)(1 1
1 1

)p+q
. (4.25)

Placing x at the end of the representation yields the su�x 10w0x, which is realised as 100x or
101x. Since M1(2) = M2(2), the contribution of both su�xes to R(w) is identical:(

R(100x)
R(100x)

)
= Mx(2)

(
1⌊
0
2

⌋) =

(
1 1
1 1

)(
1
0

)
=

(
1
1

)
,(

R(101x)
R(101x)

)
= M1(1)Mx(0)

(
1⌊
0
2

⌋) =

(
1 1
1 1

)(
1 1
0 0

)(
1
0

)
=

(
1
1

)
.

Hence (
R(101x)
R(101x)

)
=

(
R(100x)
R(100x)

)
=

(
R(10w0)
R(10w0)

)
=

(
1
1

)
.

Using the results for the case when l is odd and setting p+ q =
⌊
l
2

⌋
− 2 in (4.25) we obtain

R(w) =
(
1 1

)(1 1
1 1

)b l2c−2(1
1

)
= 2d

l
2e−1,

which proves that the value of R(w) does not change by introducing x.
We can now prove why

#Ψ(l) = 16

(
l

2
− 1

)
(4.26)

when l is even and greater than or equal to 3. Suppose that l = 4. Then ψ(l) = 2, using the
factorisation introduced above we observe that there are two possible placements of x:

w3x0w0x,

hence elements of Ψ(4) must have one of the following forms:

1. w = w30w0x, of which there are 2 · 2 · 3 = 12 variants, since w3 ∈ {1, 2}, w0 ∈ {0, 1} and
x ∈ {0, 1, 2}.

2. w = w3x0w0, of which there are 1 · 2 · 2 = 4 variants, since w3 = 1 because w is a greedy
representation, x ∈ {1, 2} and w0 ∈ {0, 1}, because x = 0 is included in case 1.

Together, we have #Ψ(4) = 16, which agrees with formula (4.26) and results in Table 3.1.
Let us now consider l = 6. There are three possible placements of x:

w5x01x0w0x,

hence elements of Ψ(6) must one of the following forms:

1. w = w5010w0x, of which there are again 2 ·2 ·3 = 12 variants, since w5 ∈ {1, 2}, w0 ∈ {0, 1}
and x ∈ {0, 1, 2}.

2. w = w501x0w0, of which there are again 2·2·2 = 8 instances, because w5 ∈ {1, 2} x ∈ {1, 2}
and w0 ∈ {0, 1}, x = 0 is included in case 1.
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3. w = w5x010w0, amounts to 12 representations in total. If x ∈ {1, 2}, then we gain 1·2·2 = 4
representations, since w5 = 1 (due to w being a greedy representation) and w0 ∈ {0, 1}.
However, if x = 0, we obtain another 2 · 1 · 2 · 2 = 8 representations, due to the fact we
can exchange w2 = 1 for w2 = 2, because the rewriting of w5x0 = w500 → (w5−1)21 is
independent of the digit w2.

In total, we obtain #Ψ(6) = 32 as expected.
Finally, let us treat Ψ(8) separately. There are now four possible placements of x:

w7x01x01x0w0x,

1. w = w701010w0x, of which there are 2 · 2 · 3 = 12 possible variants as in Ψ(6).

2. w = w70101x0w0, of which there are again 2 · 2 · 2 = 8 possible instances as in Ψ(6).

3. w = w701x010w0 amounts to 16 representations. If x ∈ {1, 2}, w7 ∈ {1, 2} and w0 ∈ {0, 1}
together yield 2 · 2 · 2 = 8 representations. If x = 0, we can exchange the following 1 for
a 2, i.e. we write w as w70100y0w0, where y ∈ {1, 2} and this yields another 2 · 2 · 2 = 8
representations.

4. w = w7x01010w0 contributes 12 representations, as in Ψ(6).

Together this yields #Ψ(8) = 48.
Now let us explore the general case Ψ(2k + 2), where k ≥ 3: There are k + 1 possible

placements of x:

w2k−1x01(x01)k−2x0w0x,

where by (x01)k−2 we denote the placement of x in front of precisely one of the k− 3 repetitions
of the 01 factor. As shown in the previous cases,

1. w2k−101(01)k−20w0x contributes 12 di�erent representations,

2. w2k−101(01)k−2x0w0 contributes 8 di�erent representations,

3. w2k−101(01)k−2−ix(01)i0w0 contributes 16 di�erent representations for each i ∈ {1, 2, . . . , k−
2}, in total (k − 2) · 16 representations.

4. w2k−1x01(01)k−20w0 contributes 12 di�erent representations.

In total, we obtain
#Ψ2,1(2k + 2) = 12 + 8 + 16(k − 2) + 12 = 16k

di�erent representations, which corresponds with (4.26). We will now determine Ψ(2k+ 2) in all
con�uent B-systems with a > b.

Theorem 4.35. Consider a con�uent B-system with coe�cients a > b and order m. Then the

number of arguments of the maximum of R(n) on all n whose greedy representation has length

l = km+ 2 is for all k ≥ 1 equal to

#Ψ(km+ 2) =

{
(a− b)k−2(a− b+ 1)

(
(k − 1)a2 + (a− b)

(
(k + 1)a2 + b− 1

))
if m = 2,

(a− b)k−2(a− b+ 1)
(
(k − 1)a2 + (a− b)

(
(k + 1)a2 + a

))
if m > 2.
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Proof. In order to determine #Ψ(km + 2) we will follow the same approach as in the above
analysis for the (2, 1)-system. Take a greedy representation w from the set Ψ(km+ 1). Clearly
w will have the form

w = wmk−1
[
0m−1c∗

]k−1
C

0m−1w0,

where wmk−1 ∈ {1, 2, . . . , a}, C = {1, 2, . . . , a − b} and w0 ∈ {0, 1, . . . , a − b}. We shall now
insert a new digit x into w, denote w̃ this new representation of length km+ 2. There are k+ 1
possible locations for x.

wmk−1x
[
0m−1c∗x

]k−1
C

0m−1w0x.

Other locations are again equivalent or would reduce the value of R(w̃). We shall now determine
how many representations correspond to each placement of x.

1. w̃ = wmk−1
[
0m−1c∗

]k−1
C

0m−1w0x:
In this case, there are evidently a possible values for wmk−1 and a−b possible values for each
c∗ in each of the k− 1 repetitions of 0m−1c∗. The digit w0 is from the set {0, 1, . . . , a− b},
thus a − b + 1 possible values and �nally, since there are no restrictions on x, the digit x
can be any digit from the alphabet A, thus a + 1 possible values of x. In total we obtain
a · (a− b)k−1 · (a− b+ 1) · (a+ 1) representations.

2. w̃ = wmk−1
[
0m−1c∗

]k−2−i
C

0m−1ci+1x
[
0m−1c∗

]i
C

0m−1w0 for all 0 ≤ i ≤ k − 2:
We again count a possible values for wmk−1. Then, we have to place x into precisely
one of the repetitions of the factor 0m−1c∗, thus we multiply by the coe�cient k − 1.
The factor 0m−1ci+1x has (a − b + 1) · a possible realisations, since ci+1 can now also
be zero whenever x is nonzero. This follows from the fact that Mci+1(m − 1) = Mx(m)
for all ci+1 ∈ {1, 2, . . . , a − b} and x ∈ {1, 2, . . . , a}, thus the contribution of the factor
0mx towards R(w̃) is identical to 0m−1ci+1 . Evidently, both ci+1 and x cannot be zero
simultaneously, but even if ci+1 6= 0, then x cannot be zero. This is because we would
count the same word w̃ twice. Compare the two placements of x into two consecutive
factors 0m−1ci+1 and 0m−1ci:

(a) · · · 0m−1 ci+1 x 0m−2 0 ci · · ·
(b) · · · 0m−1 ci+1 0 0m−2 ci x · · ·

Setting x = 0 in case (a) yields the same string as setting ci = 0 in case (b). We have already
counted the case ci = 0, thus we forbid the case x = 0. There remain k−2 factors 0m−1ci+1

where we have not placed x, and in these, again, ci+1 can have the values {1, 2, . . . , a− b},
thus we multiply by (a−b)k−2. Lastly, the digit w0 can again have a−b+1 possible values.
In total we count a·(k−1)·(a−b+1)·a·(a−b)k−2·(a−b+1) =a2·(k−1)·(a−b+1)2·(a−b)k−2
possible representations.

3. w̃ = wmk−1x
[
0m−1c∗

]k−1
C

0m−1w0:
In the third possible placement of x we have to split our analysis according to the order of
the basis. We again forbid x = 0 because that is included above in case 2. If m > 2, then
the pre�x wmk−1x has a2 possible values. On the other hand, if m = 2, then the pre�x
wmk−1x has 1 ·(b−1)+(a−1) ·a possible realisations, because w̃ is a greedy representation.
In other words, whenever wmk−1 = a, the digit x must be smaller than b. Lastly, we again
count (a− b)k−1 as the contribution of the k − 1 factors 0m−1c∗ and (a− b+ 1) as all the
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possible values of w0. In total we obtain

(b− 1 + (a− 1) · a) · (a− b)k−1 · (a− b+ 1) if m = 2,

a2 · (a− b)k−1 · (a− b+ 1) if m > 2.

possible representations.

We will now add the above cases 1., 2., and 3. together and simplify. Suppose �rst that m = 2.
Then

#Ψ(km+ 2) =a(a− b)k−1(a− b+ 1)(a+ 1)

+a2(k − 1)(a− b+ 1)2(a− b)k−2

+ (b− 1 + a(a− 1)) (a− b)k−1(a− b+ 1),

factoring out (a− b)k−2(a− b+ 1) yields

#Ψ(km+ 2) = (a− b)k−2(a− b+ 1) ·∆, (4.27)

where we denote

∆ := a(a+ 1)(a− b) + a2(k − 1)(a− b+ 1) + ((a− 1)a+ b− 1) (a− b).

The expression ∆ can be further simpli�ed by factoring out (a− b):

∆ = a(a+ 1)(a− b) + a2(k − 1)(a− b+ 1) + ((a− 1)a+ b− 1) (a− b),
= (a2 + a+ a2 − a+ b− 1)(a− b) + a2(k − 1)(a− b+ 1),

= (2a2 + b− 1)(a− b) + (k − 1)a2(a− b) + (k − 1)a2,

which �nally simpli�es to

∆ = (k − 1)a2 + (a− b)
(
(k + 1)a2 + b− 1

)
.

Returning to (4.27), we obtain the desired result

#Ψ(km+ 2) = (a− b)k−2(a− b+ 1)
(
(k − 1)a2 + (a− b)

(
(k + 1)a2 + b− 1

))
.

The case m > 2 is derived by the same steps.

Let us demonstrate our formula for #Ψ(km+ 2) on an example. In Table (3.7) we may �nd
the value #Ψ(8) = 540 for the (3, 1)-system. Thus we have a = 3, b = 1, and k = 3, since
8 = 2 · 3 + 2. Inputting these values yields

#Ψ3,1(8) = (3− 1)3−2(3− 2 + 1)
(
(3− 1)32 + (3− 1)

(
(3 + 1)32 + 1− 1

))
,

= 2 · 3 · (2 · 9 + 2 · 4 · 9) ,

= 6 · (18 + 72),

= 540.

Expressions could be derived for #Ψ(km+ 3), #Ψ(km+ 4), etc., but they would be even more
technical and complex.



Conclusion

In this work we studied linear numeration systems and focused on their ambiguity. In Chapter
2 we introduced and veri�ed basic properties of linear numeration systems. We then derived and
implemented an algorithm for calculating R(n) in a general B-system, which we used to calculate
R(n) on a chosen subclass ofB-systems, the con�uent systems. Based on our data, we conjectured
that R(n) in con�uent systems with a = b behaves very similarly to R(n) de�ned in the Fibonacci
and m-bonacci systems and gave an expression for the maxima of R(n) in all con�uent systems.
Using the matrix formula derived in Chapter 4 we then veri�ed that this is true. Furthermore
we showed that the con�uent systems can be split into precisely three classes. The function
R(n) in con�uent systems with a = b and order m = 2 displayed analogous behaviour to the
Fibonacci system, those with with a = b and order m > 2 behaved identically to the m-bonacci
systems, and �nally the con�uent systems with a > b behaved entirely di�erently. We have thus
generalised the work of Kocábová, Masáková and Pelantová to all con�uent systems.

What remains is to derive an expression for the arguments of the maxima in the con�uent
systems with order a = b and order m > 2. Unfortunately, in this case the results from the
m-bonacci systems cannot be easily generalised. Furthermore, we did not study the numbers
that have a unique representation in a given con�uent system.

Further work could focus on trying to derive a closed-form formula for R(n) (which will not
be a matrix formula) in general (F) systems and on studying the properties of R(n) in thsese
systems, as they are a close generalisation of con�uent systems.
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Appendix

In the Appendix we will describe in detail our program for calculating the function R(n) in
arbitrary B-systems. The source code may be found in the following GitHub repository:
https://github.com/hypernek/Redundance-Calculator,
while a compiled and runnable version program can be found in the same repository here:
https://github.com/hypernek/Redundance-Calculator/releases/tag/v1.0.

The program runs on Windows. The source code and compiled program as well as sample
data may be also found on the CD attached with the physical copy of this work.

Usage

Two programs are included � the �rst calculates R(n) on bounds nmin and nmax entered by
the user and the other calculates the maxima of R(n) on a range of lengths entered by the user.
The output of both programs is saved as a .csv �le to the directory where the program was run.

Both programs are console applications that on initialisation ask the user to enter coe�cients
of the basis of the B-system. After entering these coe�cients, the basis of the B-system is
initialised. Afterwards, each of the two programs behaves di�erently.

The �rst program (Rn_calculator.exe) asks the user to enter the lower and upper bound
nmin and nmax of the values nmin ≤ n ≤ nmax for which the function R(n) is to be calculated.
Alternatively, the user may enter an asterisk ∗ and then enter the bounds lmin and lmax of the
range of lengths on which they desire R(n) to be calculated. In e�ect, this sets nmin and nmax

equal to Blmin−1 (the smalest n whose representation has length lmin) and Blmax − 1 respectively
(the largest n whose representation has length lmax). Hence, the user does not have to know the
values of the elements of the basis sequence. After the bounds are set, the calculation commences
and the console displays progress information. The values R(nmin), R(nmin + 1), . . . , R(nmax)
are �rst stored into the computer's memory, and after they are all calculated, the program starts
writing them to disc. Each row of the resultant .csv �le is the triplet (n, 〈n〉B , R(n)) � i.e. for
every n = nmin, nmin + 1, . . . , nmax the greedy representation of n is stored along with the value
of R(n). After writing out all the calculated values of R(n), the program writes the time needed
for calculation and writing to disc. A sample output of the program for the (3, 2, 1)-system may
be found in Table 4.1.

The second program (Maxima_of_Rn_calculator.exe) asks the user to input the bounds
lmin and lmax of the range of lengths l = lmin, lmin + 1, . . . , lmax for which the values ψ(l) and
#Ψ(l) are to be determined. Then the program asks the user to enter a number M , which will
be the maximum number of elements of Ψ(l) they desire to save for a given length l. As shown in
Chapters 3 and 4, the size of Ψ(l) can be very large and the user does not necessarily need to save
all members of Ψ(l). For example, the data in Table 3.2 corresponds to entering coe�cients 2, 1,
lengths lmin = 1 and lmax = 22 and setting M equal to 4. For every l = lmin, lmin + 1, . . . , lmax
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n 〈n〉B R(n)

9355 10000000 3
9356 10000001 3
9357 10000002 3
9358 10000003 3
9359 10000010 3
9360 10000011 3
9361 10000012 3
9362 10000013 3
9363 10000020 3
9364 10000021 3
9365 10000022 3
9366 10000023 4
9367 10000030 3
9368 10000031 3
9369 10000032 3
9370 10000100 5

n 〈n〉B R(n)

9371 10000101 3
9372 10000102 3
9373 10000103 3
9374 10000110 3
9375 10000111 3
9376 10000112 3
9377 10000113 3
9378 10000120 3
9379 10000121 3
9380 10000122 3
9381 10000123 3
9382 10000130 2
9383 10000131 2
9384 10000132 2
9385 10000200 4
9386 10000201 2

Table 4.1: Sample output data for R(n) calculated in the (3, 2, 1)-system for n = 9355, . . . , 9386,
i.e. the �rst 32 numbers whose greedy representation has length 8. Note that along with the rule
1000 ↔ 0321 we may also perform interchanges utilising the rule 100 ↔ 033 at the end of the
representation (i.e. only at the su�x x2x1x0), which corresponds to the addition/subtraction of
the initial representation of zero 133.

the program outputs ψ(l), #Ψ(l) and the �rst M elements of Ψ(l). The algorithm by which the
values ψ(l) and #Ψ(l) are determined is as follows.

Algorithm for Determining the Maxima of R(n):

Initialisation: Set number_of_maximal_representations:=0.
Then for every l = lmin, lmin + 1, . . . , lmax do:

1. Calculate R(n) for every n from the range Bl−1 ≤ n ≤ Bl − 1 and store the values into
memory in the array Rn_array.

2. Find the maximal value in Rn_array and for every n such that R(n) is maximal (i.e.
R(n) = ψ(l)), increment by one the counter number_of_maximal_representations and
store its greedy representation 〈n〉B into the list representation_list (but only if it
contains less than M representations).

3. Write the triplet (max(Rn_array), number_of_maximal_representations, representation_list)

into the output .csv �le (I.e. write the triplet ψ(l), #Ψ(l), Ψ(l)).

4. Empty Rn_array, representation_list and set number_of_maximal_representations
equal to zero.

The program also creates a second �le recording the time needed for calculation and memory
usage for each l.
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Lastly, in both programs, whenever the user is asked for input, they can enter a percent sign
(%) to reset the basis and enter new coe�cients, and then running the calculation of R(n) in a
di�erent B-system.

Note on Systems not Possessing the (F) Property:

When entering the basis coe�cients, any sequence of integers separated by commas is a valid
input, thus the program is not limited only to (F) systems. However, the correctness of the
values of R(n) is not guaranteed for non-(F) systems, because we do not a priori know the size
of the canonical alphabet. In the case that a non-(F) system is entered, the program sets the
largest digit of the canonical alphabet to the recurrence coe�cient that is maximal. For example,
in the (1, 5)-system, it would set the canonical alphabet to {0, 1, 2, 3, 4, 5}, which is too large, as
in this system greedy representations contain only digits {0, 1, 2, 3}. Hence the resultant values
of R(n) will be incorrect. For (F) systems however, the correctness of the calculated values of
R(n) is always guaranteed.
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