

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

FAKULTA BIOMEDICÍNSKÉHO INŽENÝRSTVÍ

Katedra biomedicínské informatiky

Kladno 2021

Vytvoření nástroje pro přenos expertní analýzy

cytometrických dat do open source prostředí pro

zlepšení lékařské diagnostiky leukemií a jiných

onemocnění

Developement of a tool for transfer of expert analysis

of cytometric data to an open source environment to

improve the medical diagnosis of leukemias and other

diseases

Bakalářská práce

Studijní program: Biomedicínská a klinická technika

Studijní obor: Biomedicínská informatika

Autor bakalářské práce: Michaela Součková

Vedoucí bakalářské práce: Ing. Bohuslav Dvorský

Externí konzultant: Mgr. Karel Fišer Ph.D.

PROHLÁŠENÍ

Prohlašuji, že jsem bakalářskou práci s názvem „Vytvoření nástroje pro přenos expertní

analýzy cytometrických dat do open source prostředí pro zlepšení lékařské diagnostiky

leukemií a jiných onemocnění“ vypracovala samostatně a použila k tomu úplný výčet

citací použitých pramenů, které uvádím v seznamu přiloženém k diplomové práci.

Nemám závažný důvod proti užití tohoto školního díla ve smyslu § 60 Zákona

č. 121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a

o změně některých zákonů (autorský zákon), ve znění pozdějších předpisů.

V Kladně 12.5.2021 Michaela Součková

PODĚKOVÁNÍ

Ráda bych poděkovala Ing. Bohuslavu Dvorskému za vstřícnost a pomoc při vedení

bakalářské práce. Mé poděkování patří též Mgr. Karlu Fišerovi Ph.D. za cenné rady,

věcné připomínky, trpělivost a čas, který mi věnoval při řešení této práce.

ABSTRAKT

Vytvoření nástroje pro přenos expertní analýzy cytometrických dat do open source

prostředí pro zlepšení lékařské diagnostiky leukemií a jiných onemocnění

Cílem je analyzovat Workspace soubor softwaru FlowJo (v 10.5.3) v jazyce R a

extrahovat uložená specifika analýzy dat průtokové cytometrie a následně transformovat

a zpracovat surová data uložená samostatně v souboru formátu FCS. Pokud je obojí

provedeno správně, dostaneme jak ekvivaletně transformovaná data, tak indexy datových

bodů odpovídajících expertně definovaným bodům (populacím buněk) v „gatech“

určených uživatelem FlowJo. To je nezbytné pro kombinaci a srovnání odborné manuální

analýzy a výpočetních přístupů.

Klíčová slova

Průtoková cytometrie, transformace, FlowJo

ABSTRACT

Developement of a tool for transfer of expert analysis of cytometric data to an open

source environment to improve the medical diagnosis of leukemias and other

diseases

The aim is to parse FlowJo (v 10.5.3) workspace file in R language to extract stored

specifics of flow cytometry data analysis and subsequently transform and process the raw

data stored separately in a file of FCS format. If both done correctly we get both,

equivalently transformed data and indices of datapoints corresponding to expertly defined

datapoints (cell populations) as "gated" by FlowJo user. This is necessary for combination

and comparison of expert manual analysis and computational approaches.

Keywords

Flow cytometry, transformation, FlowJo

3

Table of Contents

Vytvoření nástroje pro přenos expertní analýzy cytometrických dat do open source

prostředí pro zlepšení lékařské diagnostiky leukemií a jiných onemocnění 1

1 Introduction.. 5

2 Overview of the current state of art ... 7

2.1 Flow Cytometry .. 7

2.2 Flow cytometry data analysis ... 7

2.2.1 Signal Processing.. 8

2.2.2 FCS file ... 8

2.2.3 Data pre-processing .. 9

2.2.4 Gating ... 12

2.2.5 Further analysis .. 13

2.3 Transformations ... 15

2.3.1 Biexponential .. 16

2.3.2 ArcSinh ... 16

2.3.3 Hyperlog ... 17

2.3.4 Logicle .. 18

2.4 FlowJo .. 18

2.4.1 FlowJo Workspace ... 19

2.5 Currently available tools parsing FlowJo Workspace file in R 20

2.5.1 CytoML .. 20

2.5.2 FlowWorkspace .. 20

3 Aims .. 22

4 Methods .. 23

4.1 R ... 23

4.2 R packages .. 23

4.3 Testing files .. 24

4.4 Parsing Workspace ... 24

4.5 Applying compensation and transformations ... 26

4.6 Applying gating .. 27

5 Implementation .. 28

4

5.1 SamplePopulations class .. 28

5.2 Parsing Workspace file ... 29

5.3 Transformation ... 30

5.4 Population classes .. 30

6 User documentation ... 32

7 Results ... 34

7.1 Common populations ... 34

7.2 Populations gated on the graph edge .. 35

7.3 Events under gate boundaries .. 36

8 Discussion ... 38

9 Conclusion .. 40

References .. 41

Attachment A: Content of the enclosed CD ... 44

5

1 Introduction

With the rapid improvement of technology in the last decades, the progress of various

biological and biomedical analytical approaches was inevitable. One of such techniques

is flow cytometry, which is a great tool widely used for example in the fields of

immunology, molecular biology, or cancer biology. It offers a multi-parametric analysis

of single cells in solution, where there is each cell at a time illuminated by a laser, so

the cell produces characteristic scattered and fluorescent light signals, which are then

detected, converted to electronic signals, and written in a data file with standardized

format (.fcs).

Flow cytometry data are still traditionally analyzed visually (although automatic methods

have been on the rise lately), which is one of the reasons why the data preprocessing is in

most cases necessary and includes compensation to overcome fluorescence spillover and

transformations to transform data from linear to log-like space for easier cell populations

distinguishment. The main method of flow cytometry analysis is so-called “gating”,

a process of identifying cellular populations of interest by manually placing boundaries

around similarly behaving cytometric events on 2D plots.

There are multiple flow cytometry software applications currently available. They

provide useful tools for both preprocessing of the raw data from FCS files and analytical

methods like gating. One of the major ones is FlowJo [1], which is the main topic of this

thesis. The analysis environment of FlowJo application is presented as “Workspace”,

containing details about samples and every analytical step made upon them. All the

information about the Workspace, needed for reopening the analysis in the FlowJo

application, is saved in a proprietary XML-based file (.wsp).

 Here appears the question of interoperability among flow cytometry software or other

environments, which is important for the evolution and development of new methods or

applications and combining or comparing expert manual analysis with computational

approaches.

In this thesis, we explore one specific case of reproducing FlowJo (v10.5.3) analysis in

the environment of R language using the FlowJo Workspace file. We map the current

situation and available R solutions, but since even the best available tools do not match

6

the original FlowJo analysis precisely in all cases, we also provide our own R structures,

to better examine the issue. To achieve that it is necessary first to understand the structure

of FlowJo Workspace XML file and determine the importance of the elements and

attributes and also understand how FlowJo handles transformations and their application.

7

2 Overview of the current state of art

2.1 Flow Cytometry

Cytometry is a cell analysis technique, and it refers to the measurement of physical and

chemical characteristics like relative size, relative granularity, internal complexity, and

relative fluorescence intensity of cells or other biological particles. Simply said, flow

cytometry has a unique ability to simultaneously analyze mixed populations of cells for

multiple parameters [2].

Cells suspended in a fluid flow one at a time through a focus of exciting light (laser),

which is scattered in patterns characteristic to the cells and their components; cells are

frequently labeled with fluorescent markers so that light is first absorbed and then emitted

at altered frequencies [3]. Light collection optics are focused on the intersection point of

cells with the laser beams to pick up fluorescence and scattered light from the cells [4],

which is then detected and converted into electronic signals that can be processed by

the computer.

The value of the technique lies in the ability to make measurements on large numbers of

single cells within a short period of time. The heterogeneity of populations can be

revealed and different subsets of cells identified and quantified. Selected cell populations

can also be physically sorted for further study [4].

Flow cytometry is used in a variety of fields from molecular biology and virology to

medical applications e.g. tumor immunology, genetics, or prenatal diagnosis [5] [6].

2.2 Flow cytometry data analysis

The process of analyzing flow cytometry data can be divided into several steps [4]:

• Signal processing

• Extracting and converting parameters into a *.fcs file

• Data pre-processing - compensation, transformation

• Cell population identification - commonly known as "gating"

• Further analysis

8

2.2.1 Signal Processing

Photomultiplier tubes are used as light detectors to convert photons to photoelectrons

which are then multiplied and subsequently processed by amplifiers and analog-to-digital

converter.

In the digital domain, the signals are processed by filters, baseline restorer, pulse height,

pulse width algorithms, and trigger, mainly to reach an optimal "signal to noise ratio" and

"dynamic detection range" of the cytometer. The baseline restorer attempts to keep

the baseline at zero. In practice, however, baseline restoring is not perfect and can lead

to negative values on the histogram axis or introduce a slight distortion of low signals [4].

Also, Photomultiplier tubes (or sometimes used avalanche diodes) "are unsuitable for

wavelength detection, hence the fluorescent light needs to be filtered by optical filters and

mirrors. These filters must be carefully chosen because a multiparameter experiment, i.e.

an experiment in which multiple parameters (markers) are analyzed, requires that

multiple fluorophores are used simultaneously; a consequence of this is spectral overlap

or spillover. Conventional flow cytometers circumvent this problem by compensation in

order to accurately correlate the physical light properties with the biological properties

of the cell.", says Cossarizza [4] (See section 2.2.3 Data pre-processing).

After baseline restoring, the pulse parameters (height, width, and area) are extracted and

converted into a *.fcs file.

2.2.2 FCS file

Flow Cytometry Standard (FCS) is a file standard that provides the specifications needed

to completely describe flow cytometry data sets including the instrument used to obtain

the data, the sample measured, the data obtained, and the results of analysis of the data

[7]. FCS was developed (the first version was published in 1984) and is maintained by

the International Society for Advancement of Cytometry (ISAC). The main goal is to

create a standardized way of passing experiment data between instruments and computers

and thus facilitate the development of software and analytics tools [8].

9

FCS file, written as a continuous byte stream, can contain one or more data sets, where

each data set consists of at least four required segments: HEADER, TEXT, DATA, and

ANALYSIS.

• HEADER segment contains information about the version of FCS and pointers

specifying where the other three parts begin.

• TEXT segment carries series of key-value pairs. There are no default values for

keywords, but some are required for a valid FCS file. These mandatory keywords

describe the DATA segment format and encoding, containing all the information

necessary to read the data part of the data set and should not be redefined by

the user. Users may define other keywords for their own use.

• The format of data in DATA segment can be either ASCII, binary integer, or

floating point, as defined in keywords by the user. Data are structured in a matrix

with "columns" corresponding to parameters and "rows" corresponding to

electronic events [9].

• ANALYSIS segment contains information added to the file after it was collected

and stored. Its key-value structure is the same as in the TEXT part. [7]

2.2.3 Data pre-processing

The FCS files, containing all important information about the conducted experiment, can

be then easily exported into other data analysis software for flow cytometry. There are

several software packages available, e.g. Cytobank, BD FACSDivaTM, or FlowJoTM,

offering various tools for flow cytometry data processing and analysis.

Before we proceed to the data analysis and population identification itself, there are

several steps required to eliminate artifacts and optimize scaling for easier visual analysis.

Two main operations, which are important for the scope of our work, are mentioned

below.

Compensation

Compensation is a mathematical method that overcomes fluorescence spillover, which is

described by Cossarizza [4] as "the amount of signal, measured in median fluorescence

intensity (MdFI), that a fluorochrome emits in a secondary detector specific for a different

fluorochrome". The degree of spectral overlap between fluorochromes and detectors can

10

be recorded and used to create a compensation matrix containing the spillover values

which provide effective correction [10].

It is important to mention, that the process of compensation can, and commonly does,

result in negative values, which can seem counterintuitive, but negative fluorescence can

be caused by e.g. autofluorescence, which occurs to some extent in all cell types.

This issue is described in detail by Anja B. Bohn, Bjarne K. Moller, and Mikkel S.

Petersen in their article Flow cytometry and compensation of highly autofluorescent cells:

the example of mesenchymal stem cells [10].

Transformations

Traditional flow cytometry data analysis is based on visual analysis, therefore the data

should be well-arranged. However, the distribution of cytometry data is mostly log-

normal, as is common to biological systems.

The log-normal distribution is a continuous probability distribution of a random variable

whose logarithm is normally distributed [11]. Therefore, if the data were presented on

a linear scale, it would be difficult, if not impossible, to conduct visual analysis, as we

can see in Figure 2.1 A and Figure 2.1 B. To visualize the data, flow cytometry data

analysis includes the use of one‐ or two‐parameter histograms, that have traditionally

been plotted with either a linear or logarithmic scale. The logarithmic transformation has

been found to be useful because it allows for the visualization of at least four decades of

dynamic range on a single graph, and it makes log‐normal distributions appear more

symmetrical [12].

However, the logarithmic transformation has few known disadvantages. Zero and

negative valued data are undefined and must be truncated to zero, leading to compression

of data against the axes and poor visual representation of low intensity or unstained

populations. That makes it difficult to appreciate them as a separate population [13]. This

11

effect has been a source of considerable confusion and has been commonly referred to as

the "log artifact" [14].

In the field of cytometry, this issue is important because the process of compensation,

that commonly precedes the process of transformation and involves subtraction or

translocation, resulting in the negative, zero, and positive values, as we mentioned

previously. The other characteristic of compensated data is a translocation of a population

by subtraction along one or more of its parameters to or near the origin of an axis without

significantly changing its variance and logarithmic transform is particularly unsuited for

this type of data. An optimal transform for compensated data must be able to handle both

characteristics [13].

To deal with the issue of negative and zero values, other transformations have been

suggested, including the biexponential, logicle, arcsinh or hyperlog, with their formulas

in Table 1.1. These all improve upon the log by allowing one to view a large dynamic

range of data on a single plot and also allowing negative values, demonstrated in Figure

 Figure 2.1: A: Density plot of compensated data before applying scale transformation, B:

Density plot of compensated and transformed data, C: Two-parameter dot plot of compensated

data before transformation, D: Two-parameter dot plot of compensated and transformed data;

created by the author

12

2.1 B and Figure 2.1 D. They provide a linear representation of data around zero and

a logarithmic representation of the data at higher intensity values, with a smooth

transition between the two extremes [15]. The linear scaling of the lower values serves to

limit the effective resolution of the histogram, thus minimizing the valley and picket

fencing artifacts [12]. The mentioned transformations are described more in detail in

section 2.3.

Table 2.1: Mathematical formulas of scale transformations supported by FlowJo [13] [14]

2.2.4 Gating

Flow cytometry data analysis is built upon identifying populations of cells, i.e. cells with

similar characteristics such as forward scatter, side scatter and marker expression.

This process is called "gating" and consists of placing boundaries around the cells of

interest. Manual gating is the traditional and wildly used approach, which identifies cell

types by user‐defined regions on user‐defined 2D plots, see Figure 2.2 for an example.

Gating can be hierarchical, meaning the gate can be based on another one and become its

child.

The main drawback of the manual approach mentioned by Peng Qiu is that it "relies on

prior knowledge of the protein markers and visual inspection of the data, which is

subjective, labor‐intensive, and difficult to reproduce" [16]. Also, with the recent

advancement of flow cytometry also grew the amount and complexity of produced data

and measured parameters, which makes the analysis much more time-consuming and

difficult, when only two parameters can be displayed at a time [17]. These disadvantages

motivated the development of automated clustering algorithms for objective and

reproducible analysis.

Transformation Formula

Logarithmic 𝑓(𝑥)=𝑙𝑜𝑔𝑏𝑥
𝑟

𝑑

Arcinh 𝑓(𝑥)=𝑎𝑠𝑖𝑛ℎ(𝑎+𝑏𝑥)+𝑐

Hyperlog 𝑓−1(𝑥)=𝑎𝑒𝑏𝑥+𝑐𝑥−𝑓

Biexponential 𝑓−1(𝑥)=𝑎𝑒𝑏𝑥−𝑐𝑒𝑑𝑥+𝑓

Logicle 𝑓−1(𝑥)=𝑎𝑒𝑏𝑥−𝑐𝑒−𝑑𝑥+𝑓

13

2.2.5 Further analysis

Reproducibility of analytical steps and interoperability among flow cytometry data

analysis tools is important for the development of advanced methods and collaboration in

the flow cytometry community. Even though FCS standard supports the description of

compensation, transformations, and gating, it is insufficient for capturing

the post‐ acquisition operations and therefore does not meet the need for standardization.

One of the solutions came from International Society for Advancement of Cytometry, as

they developed Gating‐ML [9].

Gating-ML

Gating-ML ("Gating Markup Language") is an XML‐based specification for formal

description of gates, but also allows encoding of transformations and compensation,

which are crucial for the reconstruction of the analysis as well.

There are three XML schemas available to validate Gating-ML XML documents:

Gating- ML.v2.0.xsd, Transformations.v2.0.xsd and DataTypes.v2.0.xsd [18].

Gating-ML supports rectangular gates, quadrant gates, polygon gates, ellipsoid gates, and

Boolean collections of any of the types of gates. Gates can be uniquely identified or

ordered into a hierarchical structure, also they can be applied on either raw data or

transformed events as described by an explicit scale transformation. The supported

transformations are logarithmic, polynomial of degree one, square root, asinh, split‐scale,

Figure 2.2: Example of manual gating in FlowJo v 10.5.3, created by the author

14

Hyperlog, Logicle and ratio of two parameters, as well as inverse transformations

wherever these exist. Firstly Logicle/Biexponential was not included in Gating‐ML "as it

is covered by a patent and is licensed under restrictive conditions" and such components

were not supported, according to Josef Spidlen [9], but eventually the Logicle

transformation was involved as well.

Gating-ML defines transformations in terms of consistent parametrization to make them

more comprehensible and more related to user experience. Each transformation is

described with all or some of the following parameters:

• T – standing for the top scale value and is always mapped 1

• M – the number of decades for logarithmic and log-like transforms

• W – controlling the degree of linearization (for Logicle and Hyperlog)

• A – specifying an additional range of negative data values

According to Josef Spidlen “the Logicle, Hyperlog, and parametrized inverse hyperbolic

sine transforms with A= 0 will all behave like the logarithmic transform with the same

values of T and M for large data values“. Therefore e.g. the Logicle transform can be

a reasonable alternative to Hyperlog with the same parameters and vice versa.

Rectangular gates can represent range gates (one dimensional), rectangular gates (two

dimensional), box regions (three dimensional) or hyper-rectengulat regions (more than

three dimensional). Parameters describing rectangular gates are min and max attributes.

Events, which are considered to be in the gate, lay between them, with the intervals treated

as half-open with weak inequality of the lower bound and strict inequality of the upper

bound.

Polygon gates are defined by at least three vertices with the boundaries drawn between

consequent vertices in the same order as the vertex elements carrying their coordinates.

The polygon is automatically closed, so the last boundary is drawn from the last to

the first vertex. Events inside the polygon and on the boundary are considered to be in

the gate [18].

15

2.3 Transformations

All four transformations, biexponential, logicle, arcsinh and hyperlog – follow a similar

idea, combining linear scaling for values around zero and log-like for higher values, as

described below, shown in Figure 2.3. The difference is mainly in their ability to smoothly

transition between the two scalings and the flexibility to adapt the linear section.

Figure 2.3: Simplified example of biexponential function and the effect of different

parametrization (before inversion), created by the author

If the parametrization is picked correctly, each population is represented as one peak, but

wrong parameters can distort the display or even split the peaks and lead to

misinterpretation of the data, shown in Figure 2.4. Estimation of parameters is possible

for some of the transformations.

Figure 2.4: On the right is a density plot of correctly transformed data, on the left is a density

plot of data transformed with incorrect parametrization, splitting one population into two peaks,

created by the author

16

2.3.1 Biexponential

Biexponential scaling helps visualize data that is compressed against the low x- and

y- axes. It provides display settings that are, in effect, a combination of linear and

logarithmic scaling techniques. For values around zero, the scaling is displayed as if it

was linear. For large values, the biexponential function displays the data with more log-

like properties. Therefore, distributions with small magnitude values and negative values

can be shown alongside large magnitude, and large variance distributions [19].

The biexponential transform provides additional flexibility by allowing the linear portion

of the scale to be asymmetric around zero [15].

According to flowCore function biexponentialTransform() documentation,

the biexponential is an overparameterized inverse of the hyperbolic sine. The function

takes the form

𝑓−1(𝑥) = 𝑎 ∗ 𝑒𝑏∗(𝑥−𝑤) − 𝑐 ∗ 𝑒−𝑑∗(𝑥−𝑤) + 𝑓

with default parameters selected to correspond to the hyperbolic sine (a = 0.5, b = 1,

c = 0.5, d = 1, f = 0, w = 0) [20]. Parameters a and b affect one side of the curve, while

c and d the other. If either a, b, c, or d gained negative value, the shape of the function

would change dramatically, and it would lose its desired effect. Therefore, they should be

kept positive, or other parameters should be changed accordingly. Selecting the

parameters too low can lead to artificial population splitting when one population,

represented with one peak, is graphically split into two. That should be minimized to

unambiguously appreciate separate clusters.

In FlowJo documentation we can find that there are three settings that can be set when

optimizing histogram with biexponential transformation: n stands for negative decades,

p stands for positive decades and w for width basis, where w is considered as crucial.

The value of w determines the number of channels to be compressed into linear space

around zero. The space of linear does not change, but rather the number of channels or

bins being compressed into the linear space [19]. But no equation or definition of

the biexponential transformation was included.

2.3.2 ArcSinh

ArcSinh transformation serves a similar purpose as biexponential, in fact, it is its

generalized version. The adjustable argument for this transformation is called the “scale

17

argument.” For data values on either side of zero to the magnitude of the scale argument,

data are displayed in a linear-like fashion tracking with the raw data values. For values

beyond the scale argument, data are displayed in a log-like fashion. Arcsinh values are

calculated by applying the arcsinh equation divided by the scale argument to the measured

intensity value. The scale argument defines the size of the linear region around 0 [21].

Inverse hyperbolic sine transform class arcsinhTransform in flowCore represents

a transformation defined by the function

𝑓(𝑥, 𝑎, 𝑏, 𝑐) = asinh(𝑎 + 𝑏 ∗ 𝑥) + 𝑐

where all parameters a, b and c should be selected positive. Parameter a corresponds to

a shift about 0, parameter b corresponds to a scale factor. The transformation would

normally be used to convert a linear valued parameter to the natural logarithm scale.

By default, a and b are both equal to 1 and c to 0 [20]. Selecting the parameters too low

can also lead to artificial population splitting into two peaks, similarly to biexponential

transform.

2.3.3 Hyperlog

Hyperlog is a log-like function developed by Bruce Bagwell that approximates

the log transform with a function that matches the log transform above zero but has an

inverse that can be used for ranges below zero [19]. In 2003 the HyperLog was released

in software and later presented as a log-like transform, that admits negative, zero, and

positive values, optimized for compensated data. The HyperLog transform was

engineered as a hybrid function. One component of the function is ideally suited to

the multiplicative nature of compensated data, and the other to its translocated nature.

Its ability to smoothly transition between exponential and linear scales gives it desirable

features, depending on the analysis or graphics needs.

Bagwell’s Hyperlog is defined [13]:

𝐻𝐿(𝑥, 𝑏) = 𝑟𝑜𝑜𝑡(𝐸𝐻(𝑦, 𝑏) − 𝑥)

Where the EH is the inverse of hyperlog transform and is given by:

18

𝐸𝐻(𝑦, 𝑏) = 10
𝑑
𝑟

∗𝑦 + 𝑏 ∗
𝑑

𝑟
− 1, 𝑓𝑜𝑟 𝑦 ≥ 0

𝐸𝐻(𝑦, 𝑏) = −10
−𝑑
𝑟

∗𝑦 + 𝑏 ∗
𝑑

𝑟
+ 1, 𝑓𝑜𝑟 𝑦 < 0

A parameter in flowCore definition corresponds to the r parameter in

Bruce Bagwell’s definition, which stands for the analog-to-digital resolution.

Coefficient b affects the transform through the origin and both a and b should be selected

positive. Setting b = 0 often splits negative populations into two peaks and increasing the

coefficient can eliminate that. An appropriate b coefficient can be either set manually or

calculated.

2.3.4 Logicle

In 2006 David R. Parks, Mario Roederer and Wayne A. Moore reacted to the need of

a better approach to scaling and displaying flow cytometry data than the traditional

logarithmic or linear scaling could produce. They developed criteria for defining a new

scaling function and concluded that particular generalizations of the hyperbolic sine

function (sinh), which they called Logicle functions, can best meet those criteria [14].

Therefore, with correct parameters, Arcsinh is completely equivalent to Logicle

transformation and it is not strictly necessary to implement them as separate classes [20].

Logicle is defined by the function

𝑓(𝑥, 𝑇, 𝑊, 𝑀, 𝐴) = 𝑟𝑜𝑜𝑡(𝐵(𝑦, 𝑇, 𝑊, 𝑀, 𝐴) − 𝑥)

Where B is a modified biexponential function [18]

𝐵(𝑦, 𝑇, 𝑊, 𝑀, 𝐴) = 𝑎𝑒𝑏𝑦 − 𝑐𝑒−𝑑𝑦 − 𝑓

2.4 FlowJo

FlowJo™ is a flow cytometry software application currently maintained by FlowJo LLC,

a subsidiary of Becton Dickinson. The application provides an integrated environment

for management, display, manipulation, analysis and publication of the large data stream,

accepting data from various flow cytometers or single-cell sequencing technology

(supporting not only .fcs files but also e.g. .acs, .csv or .zip). FlowJo provides useful tools

19

for creating and applying compensation matrices, transforming data, visualizing results

and also manual identification of cell populations (gating).

Supported transformations are biexponential, logical, arcsinh, hyperlog and miltenyi,

with biexponential being defaulty applied on data which require transforming, offering

the user an option to change it.

Provided gating options include:

• Rectangle,

• Quad (dividing data into four rectangular gates sharing a common center point,

used to divide non-overlapping populations),

• Ellipse (for round populations),

• Polygon,

• Drawing with a pencil,

• Curly Quad (with an exponential curve in each dimension),

• Spider Gates (abutting polygons sharing common vertices),

• Auto Gate (creates a polygon matching the distribution of the events in these two

dimensions).

2.4.1 FlowJo Workspace

The FlowJo environment is presented as Workspace, which contains a list of all samples,

including their analysis (e.i. gates and statistics) and also graphic and tabular layouts.

The Workspace is described in a single XML-based document with .wsp or .jo file

extensions, and its main purpose is to save everything needed for reopening the

environment in FlowJo application window. However, there have been attempts to use

the Workspace for reproducing the analysis in other platforms.

Unfortunately, this Workspace document does not entirely follow the Gating-ML

specification, even though the structure is very similar. One of the reasons can be the fact,

that Gating-ML does not include biexponential or Logicle transformations [9] or other

operations, which are often used in FlowJo.

We did not manage to find any official documentation or description of the Workspace

file, which makes reproducing the FlowJo analysis in another platform more difficult.

20

Therefore, in this work the meaning assigned to each element or attribute in the file is

partly based on our assumptions and partly on Gating-ML documentation.

2.5 Currently available tools parsing FlowJo Workspace file
in R

There are numerous tools in environments of several programming languages for

importing the FlowJo Workspace file and reproducing the analytical steps that it

describes. Here we focus on packages working in R.

A wildly used group of R packages focusing on flow cytometry data analysis in R was

developed and is maintained by Raphael Gottardo's Research Lab (RGLab). These

packages offer many useful tools for analysis and overall management of flow cytometry

data (e.g. packages flowCore, OpenCyto and more), also including the ability to import

and parse FlowJo Workspace (packages flowWorkspace, CytoML and cytolib which

backs the R packages flowCore, flowWorkspace, CytoML, and others). Most other

available tools import these packages and use them for the parsing itself, or do not

guarantee compatibility with new versions of FlowJo (in our case v 10.5.3).

2.5.1 CytoML

CytoML is a R/Bioconductor package created by RGLab for the import and export of

gated cytometry data, supporting not only files (.xml or .wsp) from FlowJo, but also from

Diva or Cytobank, therefore allowing sharing data across different platforms. With usage

of other packages Cyto-ML maps the different analytic objects, including compensation

matrices and transformations, from Workspace files to the core cytometry data structures

(which are defined in flowWorkspace package) in R and provides options for

visualization (ggcyto package) and modification (openCyto package) of the imported data

[22].

2.5.2 FlowWorkspace

FlowWorkspace is another RGLab R package, which is described as a tool which "is

designed to store, query and visualize the hierarchical gated flow data. […] Gating

hierarchies, groups of samples, compensation, and transformation are performed so that

the output matches the flowJo analysis." FlowWorkspace uses CytoML package for

21

the process of parsing the FlowJo workspace and serves explicitly for interacting with

the imported data.

However, the output is not always equivalent to the original analysis, meaning that

the number of events (e.g. cells) belonging to a particular gate described in Workspace

differs from the number of events for the same gate in the output. The developers

mentioned the possibility of slight differences due to numeric flaws, which should not be

significant. Nevertheless, these little deflections might, in some cases, be crucial, since

the count of the cells of interest in the sample can be very low.

Furthermore, in some cases, the difference can be significantly higher, with the output

count being even double the value of the FlowJo count. This issue was the main reason,

why FlowWorkspace was not considered as fully sufficient tool for parsing

the Workspace. As we will discuss later, this problem was solved in the process.

22

3 Aims

FlowJo software plays a major role in the field of flow cytometry and reconstructing

the FlowJo analysis, recorded in a proprietary xml-based file, in R environment would

be very useful for the advancement of flow cytometry analysis, facilitating the

development of new approaches. Many attempts appeared during last years, with

FlowWorkspace R package as the currently best tool available, but their results always

matched the FlowJo analysis with smaller or larger deviations, thus the need of a reliable

solution still remains.

The aims of this work are:

1. Map the current situation of reconstructing the FlowJo analysis in R and

currently available solutions.

2. Understand the structure of FlowJo Workspace file and determine

the importance of XML elements and attributes.

3. Transfer the relevant structures of Workspace in R objects.

4. Examine how FlowJo handles transformations and their application.

5. Develop R tool with foundational structures and functionality for

reproducing described analysis.

23

4 Methods

The process which starts with importing FCS and Workspace files and ends with correctly

compensated, transformed and gated data stored in R structure can be described in three

main steps, all in R:

1. Parsing Workspace file containing the description of conducted analytical

operations and extract important information (see section 4.4)

2. Apply compensation and transformations on raw data from FCS file (see

section 4.5)

3. Apply gating and defining which data points (cells) were gated (see section 4.6)

The only criterium, which we can use to evaluate the accuracy of the result, is the count

of events inside the gates. That information can be found in Workspace file and is used

for comparison with the count we reach in our solution.

4.1 R

R is a system created for statistical computation and graphics consisting of a programming

language and an environment with graphics, debugger and the ability to run R scripts. R

is suitable for processing large data sets, complex statistical procedures and offers many

tools for various kinds of data presentations. Also, it does not only support functions

written in R but it is possible for the user to interface to procedures written in the C, C++,

or FORTRAN languages for efficiency [23].

4.2 R packages

CRAN (The Comprehensive R Archive Network) is a network of ftp and web servers

around the world providing up-to-date packages and code with documentation for R.

Currently, the CRAN package repository features 17401 available packages [23]. CRAN

packages used for our work (except the base packages) are XML and xml2, offering tools

for parsing and exploring XML documents.

24

Bioconductor provides tools for the analysis and comprehension of high-throughput

genomic data, using R language. Contained bioinformatics packages are open-source and

development-free and in our work we use flowWorkspace, CytoML and flowCore, mainly

for compensation and transformations.

4.3 Testing files

FlowJo Workspace files used for testing and examples in this thesis were created in

FlowJo v10.5.3. All transformations or gates applied on raw data are not correct in terms

of flow cytometry analysis, since the accuracy of the analytical steps is not necessary here

and beyond the scope of this thesis.

FCS files, containing measured patient data, used for testing and the examples in this

thesis can not be published, but in the enclosed script we included example FCS file from

FlowWorkspaceData package.

4.4 Parsing Workspace

As mentioned earlier, FlowJo Workspace file is XML-based and its structure is inspired

by Gating-ML standard, yet does not follow it entirely, without providing any official

documentation.

The Workspace file contains information about everything needed to reconstruct

the analysis in FlowJo software, including graphics or layouts. In our case we only need

parameters of transformations and gating. Compensation is done using CytoML

functionality, so extracting its parameters is not necessary. All the needed data can be

found in elements named Population, which are children of element SampleList and then

transforms element, which is a child of element Transformations. Population element

contain details about gated population, an example is shown in Code 4.1. The attributes

carry its name and the count of events inside the certain gate. Children element Gate then

describes the gate itself – its type (e.g. rectangle or polygon), ID, FCS dimensions, on

which the gate is applied, and parameters needed for reconstruction of the gate depending

on its type. FlowJo offers a little bit different set of gate types then Gating-ML, but

the description of those, which are common to both are very similar. In case of

hierarchical gating, the subpopulations are placed inside their parent population.

25

Code 4.1: Simplified example of Population element

Each transforms element represents one transformation applied on one FCS dimension,

holding transformation type, its parameters and name of the dimension (as an attribute of

data-type:parameter element). An example of transforms element is shown in Code 4.2.

Code 4.2: Example of transforms element describing biexponential transformation

<transforms:biex transforms:length="256"
transforms:maxRange="262144.0000291775" transforms:neg="0"
transforms:width="-100" transforms:pos="4.418539922" >

<data-type:parameter data-type:name="R-780_60-A" />
</transforms:biex>

<Population name="population1" count="136" >
<Gate gating:id="ID2061669528" >

<gating:RectangleGate>
<gating:dimension gating:min="-
1827.1807162836017" gating:max="-
780.9045038129277" >

<data-type:fcs-dimension data-
type:name="Comp-R-780_60-A" />

</gating:dimension>
<gating:dimension gating:min="-
456.195630362662"
gating:max="818.5352182916166" >

<data-type:fcs-dimension data-
type:name="Comp-B-610_20-A" />

</gating:dimension>
</gating:RectangleGate>

</Gate>
<Subpopulations>
 <Population>
 <Gate gating:parent_id="ID2061669528">
 </Gate>

 </Population>
</Subpopulations>

</Population>

26

4.5 Applying compensation and transformations

With Workspace parameters extracted, we can proceed to compensation and

transformations, which are applied on raw data from FCS file. The best results were

reached, when these steps were applied in the following order: compensation,

transformation, and subsequently gating.

Opening and reading the FCS file is done by FlowCore function read.FCS(), storing FCS

in a flowFrame structure, which allow extracting raw measured data to a matix. For

handling the whole process of compensation, we decided to use CytoML function

compensate(). Both functions are considered flawless. Transformations parameters,

obtained earlier, are then used to transform the raw data and also the parameters

describing gating.

In our work we mainly focus on linear and biexponential transformations, which FlowJo

defaultly uses on displayed data. Gating-ML does not support biexponential

transformation and also the description of majority of the other transformations differ.

Each transformation recorded in XML Workspace file has attributes carrying information

about its kind, numeric parametrization values and name of dimension/parameter on

which it is applied. The main encountered issue was determining the importance of each

FlowJo transformation parameter. Neither linear nor biexponential transformation is

included in Gating-ML description and their parameters do not match the parameters of

their mathematical functions if they are known.

The only source of information is the open source packages solving biexponential

transformation and their solutions, thus we used FlowWorkspace function flowjo_biexp().

Table 4.1: The difference between parameters of scale transformations supported by FlowJo

Transformation Parameters of mathematical formula FlowJo parameters

Linear minRange, MaxRange

Biexponential a, b, c, d, f, w maxRange, neg, width, pos

Arcsinh a, b, c maxRange, T, A, M, W

Hyperlog b maxRange, T, A, M W

Logicle t, a, m, w T, A, M, W

27

4.6 Applying gating

FlowJo supports 6 types of gating, but in our solution there are only two of them included

– the rectangular and polygon. The implementation follows the rules described by Gating-

ML specification.

28

5 Implementation

The main goal of our solution is to create a tool, which imports the FCS and Workspace

files as an input and creates a suitable representation of the data and conducted analysis

as an output. That requires parsing the Workspace file, importing FCS data and applying

compensation, transformation and gating, as discussed above.

Our solution combines object oriented and procedural programming, where the main

classes are SamplePopulations, RectPopulation and PolygonPopulation.

5.1 SamplePopulations class

The SamplePopulations class is a R6 class that serves to store data both from FCS and

Workspace file, initialize the process of reconstructing the analytical steps described in

Workspace and present the outcome.

The object of SamplePopulations class requires two arguments when constructing a new

instance:

• The first argument is fcsfile – full path to the XML FlowJo workspace file

• The second is wsfile – full path to the FCS file

It has 6 public methods accessible for user after initialization:

• getPopulations() – returns a list of Population instances containing all

popaulations described in Workspace

• getAllPopsLogical() – returns a matrix where each column represents one

population’s gatedLogical vector, thus it contains information about which events

belong to the gates

• compareAllCounts() – returns a data frame with the counts of events that should

belong to the gates according to Workspace XML and the counts of events we

reached

• printHierarchy() – returns a list of strings, where each describes a path to

the population in the gating hierarchy

• getFcsDims() – returns a matrix containing data from FCS file after compensation

and transformation

29

During the initialization of a SamplePopulations instance the FCS file is opened and

the raw measured data compensated and transformed. The Workspace file and modified

data are then passed to a function getGateClasses(), which returns a list of Population

instances. Both steps – transformation and creating RectPopulation or

PolygonPopulation instances, require parsing the Workspace file first and then using

the extracted parameters.

5.2 Parsing Workspace file

Using packages XML and xml2 functionality we parse the document in three separate

functions:

• xmlToPopsList() returns a list containing each single population described in

Population elements as a nested list carrying all the information stored in XML.

• Similarly getTransforms() returns list of transformations.

• getPopPath() provides a list of strings, where each string describes a path to

the certain population in the gating hierarchy.

Packages XML and xml2 offer an easy way of parsing XML into R list, however FlowJo

Workspace has all its data stored in attributes, for which the packages are not suitable.

Therefore, some adjustments are done by few helper functions.

For an easier manipulation with the date later on, the structure is not kept strictly as it is

in the XML file. The main changes in populations compared to the original structure

(among others) are:

• Each element in the returned list describes one population in Workspace file. In

the original file, subpopulations in the gating hierarchy are child elements of other

population. In the list, the children are moved as separate populations with an

information about their ancestors.

• As said earlier, attributes containing all the data are moved to a separate list

element called attrs for an easier access.

• Elements names are parsed without their name spaces.

• Each population stored in the list is named after its attribute name.

30

5.3 Transformation

Both raw measured data and gating parameters need to be transformed before they are

used. The measured data is passed to transformDims() and parameters to

transformParams(). The transform() function then uses the parsed information about

transformations from the Workspace, so that the data is transformed according to

the description in one of functions linearTrans(), biexTrans(), logTrans(), fasinhTrans(),

hyperlogTrans(), logicleTrans() or miltenyiTrans().

We fully implemented only linear and biexponential transformations, the rest is prepared

for additional implementation. All the mentioned functions take as arguments the data,

which need to be transformed, and numeric parameters from Workspace.

• LinearTrans(), taking arguments minRange and maxRange, moves all the data

points, which value is under minRange, to the value of minRange, and data points

above maxRange to the value of maxRange.

• BiexTrans() with arguments length, maxRange, neg, pos, width apply

flowjo_biexp() from FlowWorkspace package.

5.4 Population classes

RectPopulation or PolygonPopulation represent one population (one Population XML

element in Workspace) as one R6 object, both offering same methods, but their initial

arguments and properties differ depending on their gating type (rectangle gate or polygon

gate) – similar to concept of abstract classes and inheriting in other object-oriented

languages.

There are more gate types supported by FlowJo, but in our solution we only included

rectangular and polygon types, leaving an option to additionally implement the rest.

Methods and fields which are all common to both classes are:

• xmlCount – numeric value describing the count of events in the population taken

from Workspace file,

• populationName – string value describing the name of population taken from

Workspace file,

• gateID – string value describing the ID of gate taken from Workspace file,

31

• gatedLogical – vector of logical values, where each value represents one

measured event from FCS file, 1 indicating, that the event belongs to the gate and

0 otherwise,

• compareCounts – dataframe containing the count of events insinde the gate taken

from XML and the count reached in out solution ,

• plotGate() – plots the data with gate boundaries.

The arguments common to both classes are:

• xmlCount – numeric value describing the count of events in the population taken

from Workspace file,

• populationName – string value describing the name of population taken from

Workspace file,

• gateID – string value describing the ID of gate taken from Workspace file,

• dims – matrix with FCS data used for gating,

• parent – gatedLogical of the parent population.

RectPopulation class has additional arguments:

• min – numeric array of min values described in attribute gaitng:min,

• max – numeric array of max values described in attribute gaitng:max.

PolygonPopulation then:

• vertices.x - numeric array of vertices x coordinates,

• vertices.y - numeric array of vertices y coordinates.

The private method processGate(), used during initialization of an instance, applies

the actual gating and selects the data points, which belong to the gate. Both rectangular

and polygon gates follow the rules of Gating-ML, where the points on verteces or under

lines belong to the gate. The method also includes checking the parent population, if

exists, and modifying the child population accordingly in function

checkGatingHierachy(), which is a simple intersection of both populations.

32

6 User documentation

Creating a new instance of SamplePopulations class is the only step, which user needs

to make, as shown in Code 6.1. After that, they can access and work with all the data and

information extracted from FlowJo Workspace and FCS file.

Code 6.1: Creating a new instance of SamplePopulations class

With the SamplePopulations instance saved in a variable, it is very easy to get

the comparisone of how many events belong to the gates (Code 6.2), to get a matrix

indicating which data points belong to the gates (Code 6.3), to print the hierarchy of

the papulations (Code 6.4) or to get a list of RectPopulation and PolygonPopulation

instances, carrying the information about populations (Code 6.5).

Code 6.2: compareAllCounts() displaying the resulting counts of events inside gates compared

to the count described in Workspace file

> wsfile <- “exampleWorkspace.wsp"
> fcsfile <- "exampleFCS.fcs"

> pops <- SamplePopulations$new(fcsfile = fcsfile, wsfile =
wsfile)

> pops$compareAllCounts()
 Population_Name Gate_ID Count_in_XML Processed_Count
1 population1 ID1748209691 414 414
2 population2 ID1439605380 6123 6123
3 population3 ID1421260072 4404 4404
4 population4 ID573931730 10446 10432
5 population5 ID116683766 9002 8992
6 population6 ID202101879 5664 5649
7 population7 ID2018262693 4731 4722
8 population8 ID1987121774 483 486
9 population9 ID1405072533 60772 60772
10 population10 ID29715193 1706 1706
11 population11 ID409322866 9684 9658
12 population12 ID1719223922 2726 2718

33

Code 6.3: getAllPopsLogical() containing the matrix showing which events belong to the gates

Code 6.4: Displaying of populations hierarchy

Each population from the list of populations can be accessed with double brackets, as

shown in Code 6.5.

Code 6.5: Managing single population

> pops$printHierarchy()
[[1]]
[1] "/population1"
[[2]]
[1] "/population2"
[[3]]
[1] "population2/population3"
[[4]]
[1] "/population4 "
[[5]]
[1] "/population4/population5"
[[6]]
[1] "/population6"
[[7]]
[1] "/population6/population7"
[[8]]
[1] "/population6/population7/population8"
…

> populations <- pops$getPopulations()
> pop <- populations[[2]]
> pop$plotGate()

> pop$gateID
[1] "ID468195769"

> pop$populationName
[1] "population2"

> pop$compareCounts
 Population_Name Gate_ID Count_in_XML Processed_Count

1 Population2 ID468195769 6123 6123

> pop$gatedLogical
[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
…

> pops$getAllPopsLogical()
population1 population2 population3 population4 …

[1,] 0 0 0 0
[2,] 0 0 0 0
[3,] 0 0 0 0
…

34

7 Results

We tested our solution on three FlowJo Workspace files, containing analysis on the same

set of raw data, and compared the count of events inside the gates – first the count from

FlowJo Workspace file, which represents the correct amount, second the result of our

implementation and third the count provided by FlowWorkspace package.

7.1 Common populations

First testing Workspace file consists of 12 populations with examples of hierarchical

gating, where population3 is a child of population2, population5 is a child of population4,

population8 is a child of population7, which is a child of populatuon6, as showed in

Code 6.4. Table 7.1 represents our results and Figure 7.1 shows graphic gates in FlowJo

application.

Table 7.1: Resulting counts of events inside common gates with hierarchical structure

Population

name
Gate features

XML

count

Result

count

FlowWorkspace

count

Population1 Biex – rectangular 414 414 414

Population2 Biex – rectangular 6123 6123 6123

 Population3 Biex – rectangular – child 4404 4404 4404

Population4 Biex – polygon 10446 10432 10436

 Population5 Biex – rectangular – child 9002 8992 8996

Population6 Biex – polygon 5664 5649 5652

 Population7 Biex – rectangular – child 4731 4722 4724

 Population8 Biex – rectangular – child 483 486 486

Population9 Linear – rectangular 60772 60772 60772

Population10 Linear – rectangular 1706 1706 1706

Population11 Linear – polygon 9684 9658 9658

Population12 Linear – polygon 2 726 2718 2718

35

7.2 Populations gated on the graph edge

The second file shows populations gated on or over the edges of the graph, which FlowJo

allows, and carries 6 populations. Table 7.2 represents our results and Figure 7.2 shows

graphic gates in FlowJo application.

Table 7.2: Resulting counts of events inside gates on the graph edge

Population

name
Gate features

XML

count

Result

count

FlowWorkspace

count

Population1 Biex – rectangular 235 235 235

Population2 Biex – rectangular 8800 5545 8800

Population3 Biex – rectangular 8708 8708 8708

Population4 Biex – polygon 1275 1458 1389

Population5 Linear – rectangular 371 371 371

Population6 Linear – rectangular 13073 13073 13073

Population7 Linear – rectangular 1117 1117 2253

Figure 7.1: Common gates in FlowJo

36

7.3 Events under gate boundaries

The third Workspace file then represents smaller papulations with events well visible on

the boundaries of the gates, to examine their behavior, or with no events on the boundaries

at all. Table 7.3 represents our results and Figure 7.3 shows graphic gates in FlowJo.

Table 7.3: Resulting counts of events inside gates with events on the gate boundaries

Population name Gate features
XML

count

Result

count

FlowWorkspace

count

Population1 Biex – rectangular 6 6 6

Population2 Biex – rectangular 24 24 24

Population3 Biex – polygon 27 28 28

Population4 Biex – polygon 11 9 9

Population5 Biex – polygon 9 11 11

Population6 Linear – rectangular 10 10 10

Population7 Linear – rectangular 27 27 27

Population8 Linear – polygon 36 39 39

Population9 Linear – polygon 52 48 48

Population10 Biex – polygon – non 12 12 12

Population11 Biex – polygon – non 21 21 21

Population12 Biex – polygon – non 22 22 22

Figure 7.2: Gates on the grapth edge in FlowJo

37

Figure 7.3: Gates with visible events on the gate boundaries on the left, Gates with no events on

the gate boundaries on the right

38

8 Discussion

We mapped the currently available R packages solving this issue of reproducing

the FlowJo analysis in R and found the FlowWorkspace package as the best option, since

the great number of other R tools managing cytometric data utilize this package in their

own approaches.

However, even FlowWorkspace does not match the original FlowJo analysis precisely,

where the count of events inside the reproduced gates sometimes differs from the count

in the original gates. The difference is mostly relatively small and in most cases

insignificant, but for example in terms of leukemia diagnosis, where the count of cells we

search for can be very low, the count difference may increase in importance. Less often

but not rarely, the counts differ significantly, with the FlowWorkspace count being even

twice the original FlowJo count.

These inaccuracies were the main motivation for this thesis, thus it is necessary to

mention, that during our analysis of the current situation we contacted the developers of

FlowWorkspace and they responded with an answer referring to an already existing

solution solving the large deviations mentioned above.

In the implementation part of this thesis we designed R structures and functions, which

are able to parse the FlowJo Workspace file and reconstruct the most common analytical

steps made in FlowJo, including biexponential transformation and rectangular or polygon

gating. FlowJo approach to biexponential transformation however differs from

the description from other resources, without any official description, therefore we

decided to use the FlowWorkpsace function flowjo_biexp() in our solution. Our

implementation of gating followed the instructions from Gating-ML specification.

Criterium, evaluating the precision of our solution, was the resulting count of events

inside the gates compared to the count of events taken from the Workspace file. When

testing our result, we also included the counts counted by FlowWorkspace for

comparison.

In the Table 7.1, Table 7.2 and Table 7.3 we can see, that reconstructing the rectangular

gates, both by our solution or by FlowWorkspace, always resulted in the correct count of

events inside the gates, no matter the scaling (linear or biexponential).

39

On the other hand, reproducing polygon gates very often lead to slightly inaccurate

results. That was possibly caused by the events lying under the gate boundary, as we can

see in the Table 7.3, where Population10, Population11 and Population12 are gates

without any events under the boundary line and the rest of populations with at least one

such event. Similarly, to rectangle gates, type of scaling did not affect the result in any

significant way and considering the accuracy of reconstructing the rectangle gates and

inaccuracy of reproducing the polygon gates in both linear and biexponential space, we

assume, that these particular transformations are not the source of the differences between

resulting counts. The problem presumingly lies in reconstructing the polygon gates which

neither we nor FlowWorkspace managed to apply the same way as FlowJo does.

An exception were gates that crossed the graph edge. In these cases, our solution reached

worse outcomes more often, if the gates had been applied on biexponentially scaled data,

as we represent in Table 7.2. FlowWorkspace sometimes also resulted in significantly

different counts, when the gates reached over the graph edge. These cases proved to be

the reason of its larger resulting deviations mentioned earlier, when we contacted

the developers of FlowWorkspace during our analysis of the current situation and they

responded with an answer refering to an already existing solution to this issue. Following

their instructions mostly lead to more accurate results.

40

9 Conclusion

In this thesis we focused on reproducing FlowJo (v 10.5.3) flow cytometry analysis in

the environment of R language based on the FlowJo Workspace file and FCS file. The

aim was to survey currently available solutions and provide our own solution, to better

understand the issue.

To reach that, we had to determine the importance of elements in the XML Workspace

file, parse the file and store the relevant parts in R structures. After pre-processing the raw

data we applied “gating”, as described in Gating-ML specification.

Our solution did not exceed already available tools, but served to indentify the main

sources of the resulting deviations, when using these packages. This knowledge can be

applied during the expert manual analysis and help to avoid or reduce the risk of

significantly incorrect results.

41

 References

[1] Ashland, OR: Becton, Dickinson and Company, FlowJo™ Software

Verze 10.5.3 [software]. 2019 [cit. 2012-02-11]. Dostupné z:

https://www.flowjo.com

[2] MCKINNON, Katherine M. Flow Cytometry: An Overview. Current

Protocols in Immunology. 2018, 120(1). ISSN 1934-3671. Dostupné z:

doi:10.1002/cpim.40

[3] MILLER, Benjamin a Marie O'TOOLE. Miller-Keane Encyclopedia and

Dictionary of Medicine, Nursing, and Allied Health. 7th ed. 2003. ISBN

9781455726240.

[4] COSSARIZZA, Andrea, Hyun‐Dong CHANG, Andreas RADBRUCH et

al. European Journal of Immunology. 2017, 47(10). ISSN 0014-2980.

Dostupné z: doi:10.1002/eji.201646632

[5] DAREVSKY, Ilya S., Robert W. MURPHY, Ross D. MACCULLOCH,

Cheryl SMITH, Nikolai ORLOV, Leslie A. LOWCOCK a Darlene E. UPTON.

Flow cytometry in biodiversity surveys: methods, utility, and constraints.

Amphibia-Reptilia. 1997, 18(1), 1-13. ISSN 0173-5373. Dostupné z:

doi:10.1163/156853897X00260

[6] MINARD, Austin, Andrea SAJEWSKI, Justin COOK et al. Identification

of MRSA infection in blood using photoacoustic flow cytometry. Photons Plus

Ultrasound: Imaging and Sensing 2019. SPIE, 2019, , 220-. ISBN

9781510623989. Dostupné z: doi:10.1117/12.2510210

[7] Data file standard for flow cytometry. Cytometry. 1990, 11(3), 323-332.

ISSN 0196-4763. Dostupné z: doi:10.1002/cyto.990110303

[8] SPIDLEN, Josef, Wayne MOORE, David PARKS et al. Data File Standard

for Flow Cytometry, version FCS 3.1. Cytometry Part A. 2009, 9999. ISSN

15524922. Dostupné z: doi:10.1002/cyto.a.20825

[9] SPIDLEN, Josef, Robert C. LEIF, Wayne MOORE, Mario ROEDERER a

Ryan R. BRINKMAN. Gating-ML: XML-based gating descriptions in flow

cytometry. Cytometry Part A. 2008, 73(12), 1151-1157. ISSN 15524922.

Dostupné z: doi:10.1002/cyto.a.20637

[10] BOHN, Anja B, Bjarne K MOLLER a Mikkel S PETERSEN. Flow

cytometry and compensation of highly autofluorescent cells: the example of

42

mesenchymal stem cells. Stem Cell Biology and Research. 2015, 2(1). ISSN

2054-717X. Dostupné z: doi:10.7243/2054-717X-2-4

[11] HOLGATE, P., E. L. CROW a K. SHIMIZU. Lognormal Distributions:

Theory and Applications. Journal of the Royal Statistical Society. Series A

(Statistics in Society). 1989, 152(2). ISSN 09641998. Dostupné z:

doi:10.2307/2982924

[12] NOVO, David a James WOOD. Flow cytometry histograms:

Transformations, resolution, and display. Cytometry Part A. 2008, 73(8), 685-

692. ISSN 15524922. Dostupné z: doi:10.1002/cyto.a.20592

[13] BAGWELL, C. Bruce. Hyperlog?A flexible log-like transform for

negative, zero, and positive valued data. Cytometry Part A. 2005, 64(1), 34-42.

ISSN 1552-4922. Dostupné z: doi:10.1002/cyto.a.20114

[14] PARKS, David R., Mario ROEDERER a Wayne A. MOORE. A new

“Logicle” display method avoids deceptive effects of logarithmic scaling for

low signals and compensated data. Cytometry Part A. 2006, 69(6), 541-551.

ISSN 1552-4922. Dostupné z: doi:10.1002/cyto.a.20258

[15] FINAK, Greg, Juan-Manuel PEREZ, Andrew WENG a Raphael

GOTTARDO. Optimizing transformations for automated, high throughput

analysis of flow cytometry data. BMC Bioinformatics. 2010, 11(1). ISSN 1471-

2105. Dostupné z: doi:10.1186/1471-2105-11-546

[16] QIU, Peng. Computational prediction of manually gated rare cells in flow

cytometry data. Cytometry Part A. 2015, 87(7), 594-602. ISSN 15524922.

Dostupné z: doi:10.1002/cyto.a.22654

[17] LUGLI, Enrico, Mario ROEDERER a Andrea COSSARIZZA. Data

analysis in flow cytometry: The future just started. Cytometry Part A. 2010,

77(7), 705-713. ISSN 15524922. Dostupné z: doi:10.1002/cyto.a.20901

[18] SPIDLEN, Josef a Ryan BRINKMAN. Gating-ML 2.0: International

Society for Advancement of Cytometry (ISAC)standard for representing gating

descriptions in flow cytometry. 2015. Dostupné také z:

http://flowcyt.sourceforge.net/gating/latest.pdf

[19] FlowJo v10 Documentation [online]. Ashland (Oregon): FlowJo, LLC,

2021 [cit. 2021-05-10]. Dostupné z: https://docs.flowjo.com/flowjo/

[20] ELLIS, B, Perry HAALAND, Florian HAHNE et al. FlowCore: Basic

structures for flow cytometry data [online]. [cit. 2021-05-10]. Dostupné z:

https://rdrr.io/bioc/flowCore/

43

[21] About the Arcsinh transform. CytoBank [online]. Cytobank, Inc., 2020 [cit.

2021-05-10]. Dostupné z: https://support.cytobank.org/hc/en-

us/articles/206148057-About-the-Arcsinh-transform

[22] FINAK, Greg, Wenxin JIANG a Raphael GOTTARDO. CytoML for

cross‐platform cytometry data sharing. Cytometry Part A. 2018, 93(12), 1189-

1196. ISSN 1552-4922. Dostupné z: doi:10.1002/cyto.a.23663

[23] HORNIK, Kurt. R FAQ: Frequently Asked Questions on R. The

Comprehensive R Archive Network [online]. Welthandelsplatz (Vienna):

Institute for Statistics and Mathematics [cit. 2021-05-12]. Dostupné z:

https://cran.r-project.org/

44

Attachment A: Content of the enclosed CD

• Scanned bachelor’s thesis assignment

• Complete bachalor thesis

• Directory R

• exampleUsageScript.R

• SamplePopulationClass.R

• GatingClasses.R

• listToPopulations.R

• parseXML.R

• transformations.R

• dependencies.R

• exampleWorkspace.wsp

