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ABSTRAKT 

 

Vytvoření nástroje pro přenos expertní analýzy cytometrických dat do open source 

prostředí pro zlepšení lékařské diagnostiky leukemií a jiných onemocnění  

Cílem je analyzovat Workspace soubor softwaru FlowJo (v 10.5.3) v jazyce R a 

extrahovat uložená specifika analýzy dat průtokové cytometrie a následně transformovat 

a zpracovat surová data uložená samostatně v souboru formátu FCS. Pokud je obojí 

provedeno správně, dostaneme jak ekvivaletně transformovaná data, tak indexy datových 

bodů odpovídajících expertně definovaným bodům (populacím buněk) v „gatech“ 

určených uživatelem FlowJo. To je nezbytné pro kombinaci a srovnání odborné manuální 

analýzy a výpočetních přístupů. 

Klíčová slova 

Průtoková cytometrie, transformace, FlowJo 

 

  



 

  

ABSTRACT 
 

Developement of a tool for transfer of expert analysis of cytometric data to an open 

source environment to improve the medical diagnosis of leukemias and other 

diseases 

The aim is to parse FlowJo (v 10.5.3) workspace file in R language to extract stored 

specifics of flow cytometry data analysis and subsequently transform and process the raw 

data stored separately in a file of FCS format. If both done correctly we get both, 

equivalently transformed data and indices of datapoints corresponding to expertly defined 

datapoints (cell populations) as "gated" by FlowJo user. This is necessary for combination 

and comparison of expert manual analysis and computational approaches. 

Keywords 

Flow cytometry, transformation,  FlowJo
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1 Introduction 

With the rapid improvement of technology in the last decades, the progress of various 

biological and biomedical analytical approaches was inevitable.  One of such techniques 

is flow cytometry, which is a great tool widely used for example in the fields of 

immunology, molecular biology, or cancer biology. It offers a multi-parametric analysis 

of single cells in solution, where there is each cell at a time illuminated by a laser, so 

the cell produces characteristic scattered and fluorescent light signals, which are then 

detected, converted to electronic signals, and written in a data file with standardized 

format (.fcs). 

Flow cytometry data are still traditionally analyzed visually (although automatic methods 

have been on the rise lately), which is one of the reasons why the data preprocessing is in 

most cases necessary and includes compensation to overcome fluorescence spillover and 

transformations to transform data from linear to log-like space for easier cell populations 

distinguishment. The main method of flow cytometry analysis is so-called “gating”, 

a  process of identifying cellular populations of interest by manually placing boundaries 

around similarly behaving cytometric events on 2D plots. 

There are multiple flow cytometry software applications currently available. They 

provide useful tools for both preprocessing of the raw data from FCS files and analytical 

methods like gating. One of the major ones is FlowJo [1], which is the main topic of this 

thesis. The analysis environment of FlowJo application is presented as “Workspace”, 

containing details about samples and every analytical step made upon them. All the 

information about the Workspace, needed for reopening the analysis in the FlowJo 

application, is saved in a proprietary XML-based file (.wsp). 

 Here appears the question of interoperability among flow cytometry software or other 

environments, which is important for the evolution and development of new methods or 

applications and combining or comparing expert manual analysis with computational 

approaches.  

In this thesis, we explore one specific case of reproducing FlowJo (v10.5.3) analysis in 

the environment of R language using the FlowJo Workspace file. We map the current 

situation and available R solutions, but since even the best available tools do not match 
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the original FlowJo analysis precisely in all cases, we also provide our own R structures, 

to better examine the issue. To achieve that it is necessary first to understand the structure 

of FlowJo Workspace XML file and determine the importance of the elements and 

attributes and also understand how FlowJo handles transformations and their application.
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2 Overview of the current state of art 

2.1 Flow Cytometry 

Cytometry is a cell analysis technique, and it refers to the measurement of physical and 

chemical characteristics like relative size, relative granularity, internal complexity, and 

relative fluorescence intensity of cells or other biological particles. Simply said, flow 

cytometry has a unique ability to simultaneously analyze mixed populations of cells for 

multiple parameters [2].  

Cells suspended in a fluid flow one at a time through a focus of exciting light (laser), 

which is scattered in patterns characteristic to the cells and their components; cells are 

frequently labeled with fluorescent markers so that light is first absorbed and then emitted 

at altered frequencies [3]. Light collection optics are focused on the intersection point of 

cells with the laser beams to pick up fluorescence and scattered light from the cells [4], 

which is then detected and converted into electronic signals that can be processed by 

the  computer. 

The value of the technique lies in the ability to make measurements on large numbers of 

single cells within a short period of time. The heterogeneity of populations can be 

revealed and different subsets of cells identified and quantified. Selected cell populations 

can also be physically sorted for further study [4]. 

Flow cytometry is used in a variety of fields from molecular biology and virology to 

medical applications e.g. tumor immunology, genetics, or prenatal diagnosis [5] [6]. 

2.2 Flow cytometry data analysis 

The process of analyzing flow cytometry data can be divided into several steps [4]: 

• Signal processing 

• Extracting and converting parameters into a *.fcs file 

• Data pre-processing - compensation, transformation 

• Cell population identification - commonly known as "gating" 

• Further analysis 
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2.2.1 Signal Processing 

Photomultiplier tubes are used as light detectors to convert photons to photoelectrons 

which are then multiplied and subsequently processed by amplifiers and analog-to-digital 

converter. 

In the digital domain, the signals are processed by filters, baseline restorer, pulse height, 

pulse width algorithms, and trigger, mainly to reach an optimal "signal to noise ratio" and 

"dynamic detection range" of the cytometer. The baseline restorer attempts to keep 

the  baseline at zero. In practice, however, baseline restoring is not perfect and can lead 

to negative values on the histogram axis or introduce a slight distortion of low signals [4]. 

Also, Photomultiplier tubes (or sometimes used avalanche diodes) "are unsuitable for 

wavelength detection, hence the fluorescent light needs to be filtered by optical filters and 

mirrors. These filters must be carefully chosen because a multiparameter experiment, i.e. 

an experiment in which multiple parameters (markers) are analyzed, requires that 

multiple fluorophores are used simultaneously; a consequence of this is spectral overlap 

or spillover. Conventional flow cytometers circumvent this problem by compensation in 

order to accurately correlate the physical light properties with the biological properties 

of the cell.", says Cossarizza [4] (See section 2.2.3 Data pre-processing). 

After baseline restoring, the pulse parameters (height, width, and area) are extracted and 

converted into a *.fcs file. 

2.2.2 FCS file 

Flow Cytometry Standard (FCS) is a file standard that provides the specifications needed 

to completely describe flow cytometry data sets including the instrument used to obtain 

the data, the sample measured, the data obtained, and the results of analysis of the data 

[7]. FCS was developed (the first version was published in 1984) and is maintained by 

the International Society for Advancement of Cytometry (ISAC). The main goal is to 

create a standardized way of passing experiment data between instruments and computers 

and thus facilitate the development of software and analytics tools [8]. 
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FCS file, written as a continuous byte stream, can contain one or more data sets, where 

each data set consists of at least four required segments: HEADER, TEXT, DATA, and 

ANALYSIS. 

• HEADER segment contains information about the version of FCS and pointers 

specifying where the other three parts begin. 

• TEXT segment carries series of key-value pairs. There are no default values for 

keywords, but some are required for a valid FCS file. These mandatory keywords 

describe the DATA segment format and encoding, containing all the information 

necessary to read the data part of the data set and should not be redefined by 

the  user. Users may define other keywords for their own use. 

• The format of data in DATA segment can be either ASCII, binary integer, or 

floating point, as defined in keywords by the user. Data are structured in a matrix 

with "columns" corresponding to parameters and "rows" corresponding to 

electronic events [9]. 

• ANALYSIS segment contains information added to the file after it was collected 

and stored. Its key-value structure is the same as in the TEXT part. [7] 

2.2.3 Data pre-processing 

The FCS files, containing all important information about the conducted experiment, can 

be then easily exported into other data analysis software for flow cytometry. There are 

several software packages available, e.g. Cytobank, BD FACSDivaTM, or FlowJoTM, 

offering various tools for flow cytometry data processing and analysis. 

Before we proceed to the data analysis and population identification itself, there are 

several steps required to eliminate artifacts and optimize scaling for easier visual analysis. 

Two main operations, which are important for the scope of our work, are mentioned 

below. 

Compensation 

Compensation is a mathematical method that overcomes fluorescence spillover, which is 

described by Cossarizza [4] as "the amount of signal, measured in median fluorescence 

intensity (MdFI), that a fluorochrome emits in a secondary detector specific for a different 

fluorochrome". The degree of spectral overlap between fluorochromes and detectors can 
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be recorded and used to create a compensation matrix containing the spillover values 

which provide effective correction [10]. 

It is important to mention, that the process of compensation can, and commonly does, 

result in negative values, which can seem counterintuitive, but negative fluorescence can 

be caused by e.g. autofluorescence, which occurs to some extent in all cell types. 

This  issue is described in detail by Anja B. Bohn, Bjarne K. Moller, and Mikkel S. 

Petersen in their article Flow cytometry and compensation of highly autofluorescent cells: 

the example of mesenchymal stem cells [10]. 

Transformations 

Traditional flow cytometry data analysis is based on visual analysis, therefore the data 

should be well-arranged. However, the distribution of cytometry data is mostly log-

normal, as is common to biological systems.  

The log-normal distribution is a continuous probability distribution of a random variable 

whose logarithm is normally distributed [11]. Therefore, if the data were presented on 

a  linear scale, it would be difficult, if not impossible, to conduct visual analysis, as we 

can see in Figure 2.1 A and Figure 2.1 B. To visualize the data, flow cytometry data 

analysis includes the use of one‐ or two‐parameter histograms, that have traditionally 

been plotted with either a linear or logarithmic scale. The logarithmic transformation has 

been found to be useful because it allows for the visualization of at least four decades of 

dynamic range on a single graph, and it makes log‐normal distributions appear more 

symmetrical [12].  

However, the logarithmic transformation has few known disadvantages. Zero and 

negative valued data are undefined and must be truncated to zero, leading to compression 

of data against the axes and poor visual representation of low intensity or unstained 

populations. That makes it difficult to appreciate them as a separate population [13]. This 
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effect has been a source of considerable confusion and has been commonly referred to as 

the "log artifact" [14].  

In the field of cytometry, this issue is important because the process of compensation, 

that commonly precedes the process of transformation and involves subtraction or 

translocation, resulting in the negative, zero, and positive values, as we mentioned 

previously. The other characteristic of compensated data is a translocation of a population 

by subtraction along one or more of its parameters to or near the origin of an axis without 

significantly changing its variance and logarithmic transform is particularly unsuited for 

this type of data. An optimal transform for compensated data must be able to handle both 

characteristics [13].  

To deal with the issue of negative and zero values, other transformations have been 

suggested, including the biexponential, logicle, arcsinh or hyperlog, with their formulas 

in Table 1.1. These all improve upon the log by allowing one to view a large dynamic 

range of data on a single plot and also allowing negative values, demonstrated in Figure 

 Figure 2.1: A: Density plot of compensated data before applying scale transformation, B: 

Density plot of compensated and transformed data, C: Two-parameter dot plot of compensated 

data before transformation, D: Two-parameter dot plot of compensated and transformed data; 

created by the author 
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2.1 B and Figure 2.1 D. They provide a linear representation of data around zero and 

a  logarithmic representation of the data at higher intensity values, with a smooth 

transition between the two extremes [15]. The linear scaling of the lower values serves to 

limit the effective resolution of the histogram, thus minimizing the valley and picket 

fencing artifacts [12]. The mentioned transformations are described more in detail in 

section 2.3. 

Table 2.1: Mathematical formulas of scale transformations supported by FlowJo [13] [14] 

 

2.2.4 Gating 

Flow cytometry data analysis is built upon identifying populations of cells, i.e. cells with 

similar characteristics such as forward scatter, side scatter and marker expression. 

This  process is called "gating" and consists of placing boundaries around the cells of 

interest. Manual gating is the traditional and wildly used approach, which identifies cell 

types by user‐defined regions on user‐defined 2D plots, see Figure 2.2 for an example. 

Gating can be hierarchical, meaning the gate can be based on another one and become its 

child. 

The main drawback of the manual approach mentioned by Peng Qiu is that it "relies on 

prior knowledge of the protein markers and visual inspection of the data, which is 

subjective, labor‐intensive, and difficult to reproduce" [16]. Also, with the recent 

advancement of flow cytometry also grew the amount and complexity of produced data 

and measured parameters, which makes the analysis much more time-consuming and 

difficult, when only two parameters can be displayed at a time [17]. These disadvantages 

motivated the development of automated clustering algorithms for objective and 

reproducible analysis. 

Transformation  Formula  

Logarithmic  𝑓(𝑥)=𝑙𝑜𝑔𝑏𝑥
𝑟 

𝑑
 

Arcinh  𝑓(𝑥)=𝑎𝑠𝑖𝑛ℎ(𝑎+𝑏𝑥)+𝑐  

Hyperlog  𝑓−1(𝑥)=𝑎𝑒𝑏𝑥+𝑐𝑥−𝑓  

Biexponential  𝑓−1(𝑥)=𝑎𝑒𝑏𝑥−𝑐𝑒𝑑𝑥+𝑓  

Logicle  𝑓−1(𝑥)=𝑎𝑒𝑏𝑥−𝑐𝑒−𝑑𝑥+𝑓  
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2.2.5 Further analysis 

Reproducibility of analytical steps and interoperability among flow cytometry data 

analysis tools is important for the development of advanced methods and collaboration in 

the flow cytometry community. Even though FCS standard supports the description of 

compensation, transformations, and gating, it is insufficient for capturing 

the  post‐ acquisition operations and therefore does not meet the need for standardization. 

One of the solutions came from International Society for Advancement of Cytometry, as 

they developed Gating‐ML [9]. 

Gating-ML 

Gating-ML ("Gating Markup Language") is an XML‐based specification for formal 

description of gates, but also allows encoding of transformations and compensation, 

which are crucial for the reconstruction of the analysis as well. 

There are three XML schemas available to validate Gating-ML XML documents: 

Gating- ML.v2.0.xsd, Transformations.v2.0.xsd and DataTypes.v2.0.xsd [18]. 

Gating-ML supports rectangular gates, quadrant gates, polygon gates, ellipsoid gates, and 

Boolean collections of any of the types of gates. Gates can be uniquely identified or 

ordered into a hierarchical structure, also they can be applied on either raw data or 

transformed events as described by an explicit scale transformation. The supported 

transformations are logarithmic, polynomial of degree one, square root, asinh, split‐scale, 

Figure 2.2: Example of manual gating in FlowJo v 10.5.3, created by the author 
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Hyperlog, Logicle and ratio of two parameters, as well as inverse transformations 

wherever these exist. Firstly Logicle/Biexponential was not included in Gating‐ML "as it 

is covered by a patent and is licensed under restrictive conditions" and such components 

were not supported, according to Josef Spidlen [9], but eventually the Logicle 

transformation was involved as well. 

Gating-ML defines transformations in terms of consistent parametrization to make them 

more comprehensible and more related to user experience. Each transformation is 

described with all or some of the following parameters: 

• T – standing for the top scale value and is always mapped 1 

• M – the number of decades for logarithmic and log-like transforms 

• W – controlling the degree of linearization (for Logicle and Hyperlog) 

• A – specifying an additional range of negative data values 

According to Josef Spidlen “the Logicle, Hyperlog, and parametrized inverse hyperbolic 

sine transforms with A= 0 will all behave like the logarithmic transform with the same 

values of T and M for large data values“. Therefore e.g. the Logicle transform can be 

a  reasonable alternative to Hyperlog with the same parameters and vice versa.  

Rectangular gates can represent range gates (one dimensional), rectangular gates (two 

dimensional), box regions (three dimensional) or hyper-rectengulat regions (more than 

three dimensional). Parameters describing rectangular gates are min and max attributes. 

Events, which are considered to be in the gate, lay between them, with the intervals treated 

as half-open with weak inequality of the lower bound and strict inequality of the upper 

bound. 

Polygon gates are defined by at least three vertices with the boundaries drawn between 

consequent vertices in the same order as the vertex elements carrying their coordinates. 

The polygon is automatically closed, so the last boundary is drawn from the last to 

the  first vertex. Events inside the polygon and on the boundary are considered to be in 

the gate [18]. 



 

15 

 

2.3 Transformations 

All four transformations, biexponential, logicle, arcsinh and hyperlog – follow a similar 

idea, combining linear scaling for values around zero and log-like for higher values, as 

described below, shown in Figure 2.3. The difference is mainly in their ability to smoothly 

transition between the two scalings and the flexibility to adapt the linear section. 

Figure 2.3: Simplified example of biexponential function and the effect of different 

parametrization (before inversion), created by the author 

If the parametrization is picked correctly, each population is represented as one peak, but 

wrong parameters can distort the display or even split the peaks and lead to 

misinterpretation of the data, shown in Figure 2.4. Estimation of parameters is possible 

for some of the  transformations. 

Figure 2.4: On the right is a density plot of correctly transformed data, on the left is a density 

plot of data transformed with incorrect parametrization, splitting one population into two peaks, 

created by the author 
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2.3.1 Biexponential  

Biexponential scaling helps visualize data that is compressed against the low x- and 

y- axes. It provides display settings that are, in effect, a combination of linear and 

logarithmic scaling techniques. For values around zero, the scaling is displayed as if it 

was linear. For large values, the biexponential function displays the data with more log-

like properties. Therefore, distributions with small magnitude values and negative values 

can be shown alongside large magnitude, and large variance distributions [19]. 

The  biexponential transform provides additional flexibility by allowing the linear portion 

of the scale to be asymmetric around zero [15]. 

According to flowCore function biexponentialTransform() documentation, 

the  biexponential is an overparameterized inverse of the hyperbolic sine. The function 

takes the form  

𝑓−1(𝑥) = 𝑎 ∗ 𝑒𝑏∗(𝑥−𝑤) − 𝑐 ∗ 𝑒−𝑑∗(𝑥−𝑤) + 𝑓 

with default parameters selected to correspond to the hyperbolic sine (a = 0.5, b = 1, 

c  =  0.5, d = 1, f = 0, w = 0)  [20]. Parameters a and b affect one side of the curve, while 

c and d the other. If either a, b, c, or d gained negative value, the shape of the function 

would change dramatically, and it would lose its desired effect. Therefore, they should be 

kept positive, or other parameters should be changed accordingly. Selecting the 

parameters too low can lead to artificial population splitting when one population, 

represented with one peak, is graphically split into two. That should be minimized to 

unambiguously appreciate separate clusters. 

In FlowJo documentation we can find that there are three settings that can be set when 

optimizing histogram with biexponential transformation: n stands for negative decades, 

p  stands for positive decades and w for width basis, where w is considered as crucial.  

The value of w determines the number of channels to be compressed into linear space 

around zero. The space of linear does not change, but rather the number of channels or 

bins being compressed into the linear space [19]. But no equation or definition of 

the  biexponential transformation was included. 

2.3.2 ArcSinh 

ArcSinh transformation serves a similar purpose as biexponential, in fact, it is its 

generalized version. The adjustable argument for this transformation is called the “scale 
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argument.” For data values on either side of zero to the magnitude of the scale argument, 

data are displayed in a linear-like fashion tracking with the raw data values. For values 

beyond the scale argument, data are displayed in a log-like fashion. Arcsinh values are 

calculated by applying the arcsinh equation divided by the scale argument to the measured 

intensity value. The scale argument defines the size of the linear region around 0 [21]. 

Inverse hyperbolic sine transform class arcsinhTransform in flowCore represents 

a  transformation defined by the function 

 

𝑓(𝑥, 𝑎, 𝑏, 𝑐) = asinh(𝑎 + 𝑏 ∗ 𝑥) + 𝑐 

 

where all parameters a, b and c should be selected positive. Parameter a corresponds to 

a  shift about 0, parameter b corresponds to a scale factor. The transformation would 

normally be used to convert a linear valued parameter to the natural logarithm scale. 

By  default, a and b are both equal to 1 and c to 0 [20]. Selecting the parameters too low 

can also lead to artificial population splitting into two peaks, similarly to biexponential 

transform. 

2.3.3 Hyperlog 

Hyperlog is a log-like function developed by Bruce Bagwell that approximates 

the  log  transform with a function that matches the log transform above zero but has an 

inverse that can be used for ranges below zero [19]. In 2003 the HyperLog was released 

in software and later presented as a log-like transform, that admits negative, zero, and 

positive values, optimized for compensated data. The HyperLog transform was 

engineered as a hybrid function. One component of the function is ideally suited to 

the  multiplicative nature of compensated data, and the other to its translocated nature. 

Its  ability to smoothly transition between exponential and linear scales gives it desirable 

features, depending on the analysis or graphics needs. 

Bagwell’s Hyperlog is defined [13]:  

 

𝐻𝐿(𝑥, 𝑏) = 𝑟𝑜𝑜𝑡(𝐸𝐻(𝑦, 𝑏) − 𝑥) 

 

Where the EH is the inverse of hyperlog transform and is given by: 
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𝐸𝐻(𝑦, 𝑏) = 10
𝑑
𝑟

∗𝑦 + 𝑏 ∗
𝑑

𝑟
− 1, 𝑓𝑜𝑟 𝑦 ≥ 0 

𝐸𝐻(𝑦, 𝑏) = −10
−𝑑
𝑟

∗𝑦 + 𝑏 ∗
𝑑

𝑟
+ 1, 𝑓𝑜𝑟 𝑦 < 0 

A parameter in flowCore definition corresponds to the r parameter in 

Bruce  Bagwell’s  definition, which stands for the analog-to-digital resolution. 

Coefficient b affects the  transform through the origin and both a and b should be selected 

positive. Setting b  = 0 often splits negative populations into two peaks and increasing the 

coefficient can eliminate that. An appropriate b coefficient can be either set manually or 

calculated. 

2.3.4 Logicle 

In 2006 David R. Parks, Mario Roederer and Wayne A. Moore reacted to the need of 

a  better approach to scaling and displaying flow cytometry data than the traditional 

logarithmic or linear scaling could produce. They developed criteria for defining a new 

scaling function and concluded that particular generalizations of the hyperbolic sine 

function (sinh), which they called Logicle functions, can best meet those criteria [14]. 

Therefore, with correct parameters, Arcsinh is completely equivalent to Logicle 

transformation and it is not strictly necessary to implement them as separate classes  [20]. 

Logicle is defined by the function 

 

𝑓(𝑥, 𝑇, 𝑊, 𝑀, 𝐴) = 𝑟𝑜𝑜𝑡(𝐵(𝑦, 𝑇, 𝑊, 𝑀, 𝐴) − 𝑥) 

 

Where B is a modified biexponential function [18] 

 

𝐵(𝑦, 𝑇, 𝑊, 𝑀, 𝐴) = 𝑎𝑒𝑏𝑦 − 𝑐𝑒−𝑑𝑦 − 𝑓 

2.4 FlowJo 

FlowJo™ is a flow cytometry software application currently maintained by FlowJo LLC, 

a subsidiary of Becton Dickinson. The application provides an integrated environment 

for management, display, manipulation, analysis and publication of the large data stream, 

accepting data from various flow cytometers or single-cell sequencing technology 

(supporting not only .fcs files but also e.g. .acs, .csv or .zip). FlowJo provides useful tools 
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for creating and applying compensation matrices, transforming data, visualizing results 

and also manual identification of cell populations (gating). 

Supported transformations are biexponential, logical, arcsinh, hyperlog and miltenyi, 

with biexponential being defaulty applied on data which require transforming, offering 

the user an option to change it. 

Provided gating options include: 

• Rectangle, 

• Quad (dividing data into four rectangular gates sharing a common center point, 

used to divide non-overlapping populations), 

• Ellipse (for round populations), 

• Polygon, 

• Drawing with a pencil, 

• Curly Quad (with an exponential curve in each dimension), 

• Spider Gates (abutting polygons sharing common vertices), 

• Auto Gate (creates a polygon matching the distribution of the events in these two 

dimensions). 

2.4.1 FlowJo Workspace 

The FlowJo environment is presented as Workspace, which contains a list of all samples, 

including their analysis (e.i. gates and statistics) and also graphic and tabular layouts. 

The  Workspace is described in a single XML-based document with .wsp or .jo file 

extensions, and its main purpose is to save everything needed for reopening the 

environment in FlowJo application window. However, there have been attempts to use 

the Workspace for reproducing the analysis in other platforms. 

Unfortunately, this Workspace document does not entirely follow the Gating-ML 

specification, even though the structure is very similar. One of the reasons can be the fact, 

that Gating-ML does not include biexponential or Logicle transformations [9] or other 

operations, which are often used in FlowJo. 

We did not manage to find any official documentation or description of the Workspace 

file, which makes reproducing the FlowJo analysis in another platform more difficult. 
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Therefore, in this work the meaning assigned to each element or attribute in the file is 

partly based on our assumptions and partly on Gating-ML documentation. 

2.5 Currently available tools parsing FlowJo Workspace file 
in R 

There are numerous tools in environments of several programming languages for 

importing the FlowJo Workspace file and reproducing the analytical steps that it 

describes. Here we focus on packages working in R. 

A wildly used group of R packages focusing on flow cytometry data analysis in R was 

developed and is maintained by Raphael Gottardo's Research Lab (RGLab). These 

packages offer many useful tools for analysis and overall management of flow cytometry 

data (e.g. packages flowCore, OpenCyto and more), also including the ability to import 

and parse FlowJo Workspace (packages flowWorkspace, CytoML and cytolib which 

backs the R packages flowCore, flowWorkspace, CytoML, and others). Most other 

available tools import these packages and use them for the parsing itself, or do not 

guarantee compatibility with new versions of FlowJo (in our case v 10.5.3). 

2.5.1 CytoML 

CytoML is a R/Bioconductor package created by RGLab for the import and export of 

gated cytometry data, supporting not only files (.xml or .wsp) from FlowJo, but also from 

Diva or Cytobank, therefore allowing sharing data across different platforms. With usage 

of other packages Cyto-ML maps the different analytic objects, including compensation 

matrices and transformations, from Workspace files to the core cytometry data structures 

(which are defined in flowWorkspace package) in R and provides options for 

visualization (ggcyto package) and modification (openCyto package) of the imported data 

[22]. 

2.5.2 FlowWorkspace 

FlowWorkspace is another RGLab R package, which is described as a tool which "is 

designed to store, query and visualize the hierarchical gated flow data. […] Gating 

hierarchies, groups of samples, compensation, and transformation are performed so that 

the output matches the flowJo analysis." FlowWorkspace uses CytoML package for 
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the  process of parsing the FlowJo workspace and serves explicitly for interacting with 

the imported data. 

However, the output is not always equivalent to the original analysis, meaning that 

the  number of events (e.g. cells) belonging to a particular gate described in Workspace 

differs from the number of events for the same gate in the output. The developers 

mentioned the possibility of slight differences due to numeric flaws, which should not be 

significant. Nevertheless, these little deflections might, in some cases, be crucial, since 

the count of the cells of interest in the sample can be very low. 

Furthermore, in some cases, the difference can be significantly higher, with the output 

count being even double the value of the FlowJo count. This issue was the main reason, 

why FlowWorkspace was not considered as fully sufficient tool for parsing 

the  Workspace. As we will discuss later, this problem was solved in the process. 
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3 Aims 

FlowJo software plays a major role in the field of flow cytometry and reconstructing 

the  FlowJo analysis, recorded in a proprietary xml-based file, in R environment would 

be very useful for the advancement of flow cytometry analysis, facilitating the 

development of new approaches. Many attempts appeared during last years, with 

FlowWorkspace R package as the currently best tool available, but their results always 

matched the FlowJo analysis with smaller or larger deviations, thus the need of a reliable 

solution still remains.  

The aims of this work are: 

1. Map the current situation of reconstructing the FlowJo analysis in R and 

currently available solutions. 

2. Understand the structure of FlowJo Workspace file and determine 

the  importance of XML elements and attributes. 

3. Transfer the relevant structures of Workspace in R objects. 

4. Examine how FlowJo handles transformations and their application. 

5. Develop R tool with foundational structures and functionality for 

reproducing described analysis. 
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4 Methods 

The process which starts with importing FCS and Workspace files and ends with correctly 

compensated, transformed and gated data stored in R structure can be described in three 

main steps, all in R: 

1. Parsing Workspace file containing the description of conducted analytical 

operations and extract important information (see section 4.4) 

2. Apply compensation and transformations on raw data from FCS file (see 

section  4.5) 

3. Apply gating and defining which data points (cells) were gated (see section 4.6) 

The only criterium, which we can use to evaluate the accuracy of the result, is the count 

of events inside the gates. That information can be found in Workspace file and is used 

for comparison with the count we reach in our solution. 

4.1 R 

R is a system created for statistical computation and graphics consisting of a programming 

language and an environment with graphics, debugger and the ability to run R scripts. R 

is suitable for processing large data sets, complex statistical procedures and offers many 

tools for various kinds of data presentations. Also, it does not only support functions 

written in R but it is possible for the user to interface to procedures written in the C, C++, 

or FORTRAN languages for efficiency [23]. 

4.2 R packages 

CRAN (The Comprehensive R Archive Network) is a network of ftp and web servers 

around the world providing up-to-date packages and code with documentation for R. 

Currently, the CRAN package repository features 17401 available packages [23]. CRAN 

packages used for our work (except the base packages) are XML and xml2, offering tools 

for parsing and exploring XML documents. 
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Bioconductor provides tools for the analysis and comprehension of high-throughput 

genomic data, using R language. Contained bioinformatics packages are open-source and 

development-free and in our work we use flowWorkspace, CytoML and flowCore, mainly 

for compensation and transformations. 

4.3 Testing files 

FlowJo Workspace files used for testing and examples in this thesis were created in 

FlowJo v10.5.3. All transformations or gates applied on raw data are not correct in terms 

of flow cytometry analysis, since the accuracy of the analytical steps is not necessary here 

and beyond the scope of this thesis.  

FCS files, containing measured patient data, used for testing and the examples in this 

thesis can not be published, but in the enclosed script we included example FCS file from 

FlowWorkspaceData package.  

4.4 Parsing Workspace 

As mentioned earlier, FlowJo Workspace file is XML-based and its structure is inspired 

by Gating-ML standard, yet does not follow it entirely, without providing any official 

documentation. 

The Workspace file contains information about everything needed to reconstruct 

the  analysis in FlowJo software, including graphics or layouts. In our case we only need 

parameters of transformations and gating. Compensation is done using CytoML 

functionality, so extracting its parameters is not necessary. All the needed data can be 

found in elements named Population, which are children of element SampleList and then 

transforms element, which is a child of element Transformations. Population element 

contain details about gated population, an example is shown in Code 4.1. The attributes 

carry its name and the count of events inside the certain gate. Children element Gate then 

describes the gate itself – its type (e.g. rectangle or polygon),  ID, FCS dimensions, on 

which the gate is applied, and parameters needed for reconstruction of the gate depending 

on its type. FlowJo offers a little bit different set of gate types then Gating-ML, but 

the  description of those, which are common to both are very similar. In case of 

hierarchical gating, the subpopulations are placed inside their parent population. 
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Code 4.1: Simplified example of Population element 

Each transforms element represents one transformation applied on one FCS dimension, 

holding transformation type, its parameters and name of the dimension (as an attribute of 

data-type:parameter element). An example of transforms element is shown in Code 4.2. 

 

Code 4.2: Example of transforms element describing biexponential transformation 

 

 

<transforms:biex transforms:length="256"  
transforms:maxRange="262144.0000291775"  transforms:neg="0"  
transforms:width="-100"  transforms:pos="4.418539922" > 

<data-type:parameter data-type:name="R-780_60-A" /> 
</transforms:biex> 

<Population name="population1"  count="136" > 
<Gate gating:id="ID2061669528" > 

<gating:RectangleGate> 
<gating:dimension gating:min="-
1827.1807162836017"  gating:max="-
780.9045038129277" > 

<data-type:fcs-dimension data-
type:name="Comp-R-780_60-A" /> 

</gating:dimension> 
<gating:dimension gating:min="-
456.195630362662"  
gating:max="818.5352182916166" > 

<data-type:fcs-dimension data-
type:name="Comp-B-610_20-A" /> 

</gating:dimension> 
</gating:RectangleGate> 

</Gate> 
<Subpopulations> 
 <Population> 
  <Gate gating:parent_id="ID2061669528"> 
  </Gate> 

  </Population> 
</Subpopulations> 

</Population> 
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4.5 Applying compensation and transformations 

With Workspace parameters extracted, we can proceed to compensation and 

transformations, which are applied on raw data from FCS file. The best results were 

reached, when these steps were applied in the following order: compensation, 

transformation, and subsequently gating. 

Opening and reading the FCS file is done by FlowCore function read.FCS(), storing FCS 

in a flowFrame structure, which allow extracting raw measured data to a matix. For 

handling the whole process of compensation, we decided to use CytoML function 

compensate(). Both functions are considered flawless. Transformations parameters, 

obtained earlier, are then used to transform the raw data and also the parameters 

describing gating. 

In our work we mainly focus on linear and biexponential transformations, which FlowJo 

defaultly uses on displayed data. Gating-ML does not support biexponential 

transformation and also the description of majority of the other transformations differ. 

Each transformation recorded in XML Workspace file has attributes carrying information 

about its kind, numeric parametrization values and name of dimension/parameter on 

which it is applied. The main encountered issue was determining the importance of each 

FlowJo transformation parameter. Neither linear nor biexponential transformation is 

included in Gating-ML description and their parameters do not match the parameters of 

their mathematical functions if they are known. 

The only source of information is the open source packages solving biexponential 

transformation and their solutions, thus we used FlowWorkspace function flowjo_biexp(). 

Table 4.1: The difference between parameters of scale transformations supported by FlowJo 

Transformation Parameters of mathematical formula FlowJo parameters 

Linear  minRange, MaxRange 

Biexponential a, b, c, d, f, w maxRange, neg, width, pos 

Arcsinh a, b, c maxRange, T, A, M, W 

Hyperlog b maxRange, T, A, M W 

Logicle t, a, m, w T, A, M, W 
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4.6 Applying gating 

FlowJo supports 6 types of gating, but in our solution there are only two of them included 

– the rectangular and polygon. The implementation follows the rules described by Gating-

ML specification.
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5 Implementation 

The main goal of our solution is to create a tool, which imports the FCS and Workspace 

files as an input and creates a suitable representation of the data and conducted analysis 

as an output. That requires parsing the Workspace file, importing FCS data and applying 

compensation, transformation and gating, as discussed above. 

Our solution combines object oriented and procedural programming, where the main 

classes are SamplePopulations, RectPopulation and PolygonPopulation. 

5.1 SamplePopulations class 

The SamplePopulations class is a R6 class that serves to store data both from FCS and 

Workspace file, initialize the process of reconstructing the analytical steps described in 

Workspace and present the outcome.  

The object of SamplePopulations class requires two arguments when constructing a new 

instance: 

• The first argument is fcsfile – full path to the XML FlowJo workspace file 

• The second is wsfile – full path to the FCS file 

It has 6 public methods accessible for user after initialization: 

• getPopulations() – returns a list of Population instances containing all 

popaulations described in Workspace 

• getAllPopsLogical() – returns a matrix where each column represents one 

population’s gatedLogical vector, thus it contains information about which events 

belong to the gates 

• compareAllCounts() – returns a data frame with the counts of events that should 

belong to the gates according to Workspace XML and the counts of events we 

reached   

• printHierarchy() – returns a list of strings, where each describes a path to 

the  population in the gating hierarchy 

• getFcsDims() – returns a matrix containing data from FCS file after compensation 

and transformation 
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During the initialization of a SamplePopulations instance the FCS file is opened and 

the  raw measured data compensated and transformed. The Workspace file and modified  

data are then passed to a function getGateClasses(), which returns a list of Population 

instances. Both steps – transformation and creating RectPopulation or 

PolygonPopulation instances, require parsing the Workspace file first and then using 

the  extracted parameters. 

5.2 Parsing Workspace file 

Using packages XML and xml2 functionality we parse the document in three separate 

functions: 

• xmlToPopsList() returns a list containing each single population described in 

Population elements as a nested list carrying all the information stored in XML. 

• Similarly getTransforms() returns list of transformations. 

• getPopPath() provides a list of strings, where each string describes a path to 

the  certain population in the gating hierarchy. 

Packages XML and xml2 offer an easy way of parsing XML into R list, however FlowJo 

Workspace has all its data stored in attributes, for which the packages are not suitable. 

Therefore, some adjustments are done by few helper functions. 

For an easier manipulation with the date later on, the structure is not kept strictly as it is 

in the XML file. The main changes in populations compared to the original structure 

(among others) are: 

• Each element in the returned list describes one population in Workspace file. In 

the original file, subpopulations in the gating hierarchy are child elements of other 

population. In the list, the children are moved as separate populations with an 

information about their ancestors. 

• As said earlier, attributes containing all the data are moved to a separate list 

element called attrs for an easier access. 

• Elements names are parsed without their name spaces. 

• Each population stored in the list is named after its attribute name. 
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5.3 Transformation 

Both raw measured data and gating parameters need to be transformed before they are 

used. The measured data is passed to transformDims() and parameters to 

transformParams(). The transform() function then uses the parsed information about 

transformations from the Workspace, so that the data is transformed according to 

the  description in one of functions linearTrans(), biexTrans(), logTrans(), fasinhTrans(), 

hyperlogTrans(), logicleTrans() or miltenyiTrans(). 

We fully implemented only linear and biexponential transformations, the rest is prepared 

for additional implementation. All the mentioned functions take as arguments the data, 

which need to be transformed, and numeric parameters from Workspace.  

• LinearTrans(), taking arguments minRange and maxRange, moves all the data 

points, which value is under minRange, to the value of minRange, and data points 

above maxRange to the value of maxRange. 

• BiexTrans() with arguments length, maxRange, neg, pos, width apply 

flowjo_biexp() from FlowWorkspace package.  

5.4 Population classes 

RectPopulation or PolygonPopulation represent one population (one Population XML 

element in Workspace) as one R6 object, both offering same methods, but their initial  

arguments and properties differ depending on their gating type (rectangle gate or polygon 

gate) – similar to concept of abstract classes and inheriting in other object-oriented 

languages.  

There are more gate types supported by FlowJo, but in our solution we only included 

rectangular and polygon types, leaving an option to additionally implement the rest. 

Methods and fields which are all common to both classes are: 

• xmlCount – numeric value describing the count of events in the population taken 

from Workspace file, 

• populationName – string value describing the name of population taken from 

Workspace file, 

• gateID – string value describing the ID of gate taken from Workspace file, 
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• gatedLogical – vector of logical values, where each value represents one 

measured event from FCS file, 1 indicating, that the event belongs to the gate and 

0 otherwise, 

• compareCounts – dataframe containing the count of events insinde the gate taken 

from XML and the count reached in out solution , 

• plotGate() – plots the data with gate boundaries. 

The arguments common to both classes are: 

• xmlCount – numeric value describing the count of events in the population taken 

from Workspace file, 

• populationName – string value describing the name of population taken from 

Workspace file, 

• gateID – string value describing the ID of gate taken from Workspace file, 

• dims – matrix with FCS data used for gating, 

• parent – gatedLogical of the parent population. 

RectPopulation class has additional arguments: 

• min – numeric array of min values described in attribute gaitng:min, 

• max – numeric array of max values described in attribute gaitng:max. 

PolygonPopulation then: 

• vertices.x - numeric array of vertices x coordinates, 

• vertices.y - numeric array of vertices y coordinates. 

The private method processGate(), used during initialization of an instance, applies 

the  actual gating and selects the data points, which belong to the gate. Both rectangular 

and polygon gates follow the rules of Gating-ML, where the points on verteces or under 

lines belong to the gate. The method also includes checking the parent population, if 

exists, and modifying the child population accordingly in function 

checkGatingHierachy(), which is a simple intersection of both populations. 
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6 User documentation 

Creating a new instance of  SamplePopulations class is the only step, which user needs 

to make, as shown in Code 6.1. After that, they can access and work with all the data and 

information extracted from FlowJo Workspace and FCS file.  

Code 6.1: Creating a new instance of SamplePopulations class 

With the SamplePopulations instance saved in a variable, it is very easy to get 

the  comparisone of how many events belong to the gates (Code 6.2), to get a matrix 

indicating which data points belong to the gates (Code 6.3), to print the hierarchy of 

the  papulations (Code 6.4) or to get a list of RectPopulation and PolygonPopulation 

instances, carrying the information about populations (Code 6.5).  

 

Code 6.2: compareAllCounts() displaying the resulting counts of events inside gates compared 

to the count described in Workspace file 

  

> wsfile <- “exampleWorkspace.wsp" 
> fcsfile <- "exampleFCS.fcs" 
 
> pops <- SamplePopulations$new(fcsfile = fcsfile, wsfile = 
wsfile) 

> pops$compareAllCounts() 
  Population_Name         Gate_ID Count_in_XML Processed_Count 
1       population1  ID1748209691          414             414 
2       population2  ID1439605380         6123            6123 
3       population3  ID1421260072         4404            4404 
4     population4   ID573931730        10446           10432 
5       population5   ID116683766         9002            8992 
6     population6   ID202101879         5664            5649 
7       population7  ID2018262693         4731            4722 
8       population8  ID1987121774          483             486 
9       population9  ID1405072533        60772           60772 
10     population10    ID29715193         1706            1706 
11     population11   ID409322866         9684            9658 
12     population12  ID1719223922   2726       2718 



 

33 

 

Code 6.3: getAllPopsLogical() containing the matrix showing which events belong to the gates 

Code 6.4: Displaying of populations hierarchy 

Each population from the list of populations can be accessed with double brackets, as 

shown in Code 6.5. 

Code 6.5: Managing single population

> pops$printHierarchy() 
[[1]] 
[1] "/population1" 
[[2]] 
[1] "/population2" 
[[3]] 
[1] "population2/population3" 
[[4]] 
[1] "/population4 " 
[[5]] 
[1] "/population4/population5" 
[[6]] 
[1] "/population6" 
[[7]] 
[1] "/population6/population7" 
[[8]] 
[1] "/population6/population7/population8" 
… 

> populations <- pops$getPopulations() 
> pop <- populations[[2]] 
> pop$plotGate() 
 
> pop$gateID 
[1] "ID468195769" 
 
> pop$populationName 
[1] "population2" 
 
> pop$compareCounts 
   Population_Name     Gate_ID Count_in_XML Processed_Count 

1     Population2 ID468195769         6123            6123 
 
> pop$gatedLogical 
[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
… 

> pops$getAllPopsLogical() 
population1 population2 population3 population4 … 

[1,]            0           0           0           0  
[2,]            0           0           0           0  
[3,]            0           0           0           0  
… 
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7 Results 

We tested our solution on three FlowJo Workspace files, containing analysis on the same 

set of raw data, and compared the count of events inside the gates – first the count from 

FlowJo Workspace file, which represents the correct amount, second the result of our 

implementation and third the count provided by FlowWorkspace package. 

7.1 Common populations 

First testing Workspace file consists of 12 populations with examples of hierarchical 

gating, where population3 is a child of population2, population5 is a child of population4, 

population8 is a child of population7, which is a child of populatuon6, as showed in 

Code 6.4. Table 7.1 represents our results and Figure 7.1 shows graphic gates in FlowJo 

application. 

Table 7.1: Resulting counts of events inside common gates with hierarchical structure 

Population 

name 
Gate features 

XML 

count 

Result 

count 

FlowWorkspace 

count 

Population1 Biex – rectangular 414 414 414 

Population2 Biex – rectangular  6123 6123 6123 

  Population3 Biex – rectangular – child 4404 4404 4404 

Population4 Biex – polygon  10446            10432 10436 

   Population5 Biex – rectangular – child  9002 8992 8996 

Population6 Biex – polygon  5664             5649 5652 

  Population7 Biex – rectangular – child  4731 4722 4724 

    Population8 Biex – rectangular – child  483 486 486 

Population9 Linear – rectangular 60772            60772 60772 

Population10 Linear – rectangular 1706             1706 1706 

Population11 Linear – polygon 9684             9658 9658 

Population12 Linear – polygon  2 726             2718 2718 
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7.2 Populations gated on the graph edge 

The second file shows populations gated on or over the edges of the graph, which FlowJo 

allows, and carries 6 populations. Table 7.2 represents our results and Figure 7.2 shows 

graphic gates in FlowJo application. 

Table 7.2: Resulting counts of events inside gates on the graph edge 

Population 

name 
Gate features 

XML 

count 

Result 

count 

FlowWorkspace 

count 

Population1 Biex – rectangular 235              235 235 

Population2 Biex – rectangular 8800             5545 8800 

Population3 Biex – rectangular 8708             8708 8708 

Population4 Biex – polygon 1275             1458 1389 

Population5 Linear – rectangular 371 371 371 

Population6 Linear – rectangular  13073 13073 13073 

Population7 Linear – rectangular  1117 1117 2253 

 

 

Figure 7.1: Common gates in FlowJo 



 

36 

 

7.3  Events under gate boundaries 

The third Workspace file then represents smaller papulations with events well visible on 

the boundaries of the gates, to examine their behavior, or with no events on the boundaries 

at all. Table 7.3 represents our results and Figure 7.3 shows graphic gates in FlowJo. 

Table 7.3: Resulting counts of events inside gates with events on the gate boundaries 

Population name Gate features 
XML 

count 

Result 

count 

FlowWorkspace 

count 

Population1 Biex – rectangular   6 6 6 

Population2 Biex – rectangular  24 24 24 

Population3 Biex – polygon  27             28 28 

Population4 Biex – polygon  11             9 9 

Population5 Biex – polygon  9             11 11 

Population6 Linear – rectangular  10 10 10 

Population7 Linear – rectangular  27 27 27 

Population8 Linear – polygon  36 39 39 

Population9 Linear – polygon  52 48 48 

Population10 Biex – polygon – non  12 12 12 

Population11 Biex – polygon – non  21 21 21 

Population12 Biex – polygon – non  22 22 22 

Figure 7.2: Gates on the grapth edge in FlowJo 
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Figure 7.3: Gates with visible events on the gate boundaries on the left, Gates with no events on 

the gate boundaries on the right 
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8 Discussion 

We mapped the currently available R packages solving this issue of reproducing 

the  FlowJo analysis in R and found the FlowWorkspace package as the best option, since 

the great number of other R tools managing cytometric data utilize this package in their 

own approaches.  

However, even FlowWorkspace does not match the original FlowJo analysis precisely, 

where the count of events inside the reproduced gates sometimes differs from the count 

in the original gates. The difference is mostly relatively small and in most cases 

insignificant, but for example in terms of leukemia diagnosis, where the count of cells we 

search for can be very low, the count difference may increase in importance. Less often 

but not rarely, the counts differ significantly, with the FlowWorkspace count being even 

twice the original FlowJo count.  

These inaccuracies were the main motivation for this thesis, thus it is necessary to 

mention, that during our analysis of the current situation we contacted the developers of 

FlowWorkspace and they responded with an answer referring to an already existing 

solution solving the large deviations mentioned above. 

In the implementation part of this thesis we designed R structures and functions, which 

are able to parse the FlowJo Workspace file and reconstruct the most common analytical 

steps made in FlowJo, including biexponential transformation and rectangular or polygon 

gating. FlowJo approach to biexponential transformation however differs from 

the  description from other resources, without any official description, therefore we 

decided to use the FlowWorkpsace function flowjo_biexp() in our solution. Our 

implementation of gating followed the instructions from Gating-ML specification. 

Criterium, evaluating the precision of our solution, was the resulting count of events 

inside the gates compared to the count of events taken from the Workspace file. When 

testing our result, we also included the counts counted by FlowWorkspace for 

comparison. 

In the Table 7.1, Table 7.2 and Table 7.3 we can see, that reconstructing the rectangular 

gates, both by our solution or by FlowWorkspace, always resulted in the correct count of 

events inside the gates, no matter the scaling (linear or biexponential).  
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On the other hand, reproducing polygon gates very often lead to slightly inaccurate 

results. That was possibly caused by the events lying under the gate boundary, as we can 

see in the Table 7.3, where Population10, Population11 and Population12 are gates 

without any events  under the boundary line and the rest of populations with at least one 

such event. Similarly, to rectangle gates, type of scaling did not affect the result in any 

significant way and considering the accuracy of reconstructing the rectangle gates and 

inaccuracy of reproducing the polygon gates in both linear and biexponential space, we 

assume, that these particular transformations are not the source of the differences between 

resulting counts. The problem presumingly lies in reconstructing the polygon gates which 

neither we nor FlowWorkspace managed to apply the same way as FlowJo does. 

An exception were gates that crossed the graph edge. In these cases, our solution reached 

worse outcomes more often, if the gates had been applied on biexponentially scaled data, 

as we represent in Table 7.2. FlowWorkspace sometimes also resulted in significantly 

different counts, when the gates reached over the graph edge. These cases proved to be 

the reason of its larger resulting deviations mentioned earlier, when we contacted 

the  developers of FlowWorkspace during our analysis of the current situation and they 

responded with an answer refering to an already existing solution to this issue. Following 

their instructions mostly lead to more accurate results. 
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9 Conclusion 

In this thesis we focused on reproducing FlowJo (v 10.5.3) flow cytometry analysis in 

the  environment of R language based on the FlowJo Workspace file and FCS file. The 

aim was to survey currently available solutions and provide our own solution, to better 

understand the issue.  

To reach that, we had to determine the importance of elements in the XML Workspace 

file, parse the file and store the relevant parts in R structures. After pre-processing the  raw 

data we applied “gating”, as described in Gating-ML specification. 

Our solution did not exceed already available tools, but served to indentify the main 

sources of the resulting deviations, when using these packages. This knowledge can be 

applied during the expert manual analysis and help to avoid or reduce the risk of 

significantly incorrect results.
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Attachment A: Content of the enclosed CD 

• Scanned bachelor’s thesis assignment  

• Complete bachalor thesis 

• Directory R 

• exampleUsageScript.R 

• SamplePopulationClass.R 

• GatingClasses.R 

• listToPopulations.R 

• parseXML.R 

• transformations.R 

• dependencies.R 

• exampleWorkspace.wsp 


