ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ VPRAZE

FAKULTA BIOMEDICÍNSKÉHO INŽENÝRSTVÍ

BAKALÁŘSKÁ PRÁCE

2021

LENKA MACHATÁ

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

Fakulta biomedicínského inženýrství Katedra přírodovědných oborů

Analýza rohovkového anterior - posterior poměru pomocí optické koherentní tomografie

Analysis of Corneal Anterior - Posterior Ratio Using Optical Coherence Tomography

Bakalářská práce

Studijní program: Biomedicínská a klinická technika Studijní obor: Optika a optometrie

Autor projektu OPT: Lenka Machatá Vedoucí projektu OPT: Ing. Martin Fůs Konzultant projektu OPT: doc. MUDr. Šárka Pitrová, CSc

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

Příjmení:	Machatá	Jméno:	Lenka	Osobní číslo:	482962
Fakulta:	Fakulta biomeo	licínského inžen	ýrství		
Garantující katedra:	Katedra přírod	ovědných oborů			
Studijní program:	Biomedicínská	a klinická techn	ika		
Studijní obor:	Optika a optom	ietrie			

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Analýza rohovkového anterior - posterior poměru pomocí optické koherentní tomografie Název bakalářské práce anglicky:

Analysis of Corneal Anterior - Posterior Ratio Using Optical Coherence Tomography

Pokyny pro vypracování:

Zobrazovací metodou optické koherenční tomografie lze kromě vrstvy nervových vláken a patologie sítnice zobrazit i tomografické řezy rohovky. Díky stanovené hodnotě pachymetrie, radia přední i zadní plochy lze stanovit celkovou mohutnost rohovky (NetPower). Student na relevantním počtu očí provede vyšetření standardní keratometrie i OCT rohovky a to u náhodně vybraných jedinců bez patologie oka ovlivňující výsledek. Dále provede analýzu AP poměru, jeho potenciální korelace s biometrickými parametry oka a teoreticky vyhodnotí případný vliv použití NetPower na kalkulaci sférické nitrooční čočky.

Seznam doporučené literatury:

[1] NĚMEC, P., LÖFFLEROVÁ V., KOUSAL, B. , Optická koherenční tomografie: klinický atlas sítnicových patologií, ed. 2, Praha: Mladá fronta, 2017, ISBN 978-80-204-4414-1

[2] KASCHKE, M., DONNERHACKE, K.-H., RILL, M. S., Optical Devices in Ophthalmology and Optometry: Technology, Design Principles and Clinical Applications, ed. 1, Weinheim: Wiley-VCH Verlag GmbH, 2014, 638 s., ISBN 978-3-527-41068-2

[3] KASCHKE, M., K.-H. DONNERHACKE a M. S. RILL, Optical devices in ophthalmology and optometry: technology, design principles and clinical applications, ed. 1st, Weinheim, Bergstr: Wiley-VCH, 2013, ISBN 978-352-7410-682
 [4] SCHUMAN, J.S., PULIAFITO, C.A., FUJIMOTO, J.G., DUKER, J.S., ed., Everyday OCT: A Handbook for Clinicians and Technicians, ed. Second, USA: SLACK Incorporated, 2017, ISBN 978-1-63091-172-0

Jméno a příjmení vedoucí(ho) bakalářské práce:

Ing. Martin Fůs

Jméno a příjmení konzultanta(ky) bakalářské práce:

doc. MUDr. Šárka Pitrová, CSc.

Datum zadání bakalářské práce: **15.02.2021** Platnost zadání bakalářské práce: **18.09.2022**

prof. RNDr. MUDr. Petr Marsalek, Ph.D. podpis vedouci(ho) katedry

prof. MUDr Jozef Rosina, Ph.D., MBA podpis děkana(ky) Název bakalářské práce: Analýza rohovkového anterior - posterior poměru pomocí optické koherentní tomografie

Abstrakt:

V teoretické části bakalářské práce jsou popsány vlastnosti rohovky, její parametry a AP poměr, kdy a proč neplatí. Dále jsou popsány jednotlivé principy měření parametrů rohovky a kalkulace nitrooční čočky pomocí metod zohledňujících zadní plochu rohovky. V experimentální části je zjišťována platnost konvenčně uznávané hodnoty AP poměru, míra diference s ostatními schematickými modely oka, korelace s biometrickými daty a vliv *Net power* na hypotetickou kalkulaci sférické nitrooční čočky.

Zjištěná průměrná hodnota AP poměru byla 1,17±0,02. Nejmenší míra diference byla s modelem od Navarra s odchylkou 0,021±0,016. Tento poměr slabě koreloval s WTW. Předpoklad rozdílnosti hypotetické kalkulace nitrooční čočky pomocí průměrné keratometrie (vzorec SRK/T2) a *Net power (OCT-based IOL formula)* byl vyvrácen.

Klíčová slova:

OCT předního segmentu, keratometrie, net corneal power, AP poměr

Bachelor's Thesis title: Analysis of Corneal Anterior - Posterior Ratio Using Optical Coherence Tomography

Abstract:

The theoretical part of this bachelor thesis describes properties of the cornea, corneal parameters and AP ratio, when and why it applies. Furthemore, the individual principles of measuring corneal parameters and the calculation of intraocular lenses using the methods which take account of corneal back surface are described. In the experimental part, the validity of the conventionally recognized value of the AP ratio is examined and compared with other schematic eyes. Additionally, the correlation with biometric data and the influence of *Net power* on the hypothetical calculation of the spherical intraocular lens are determined.

The mean AP ratio was 1.17 ± 0.02 . The smallest deviation $(0,021\pm0,016)$ was from Navarro schematic eye. AP ratio weakly correlated with WTW. The presumption of difference between hypothetical calculation of the intraocular lens using average keratometry (SRK/T2 formula) and *Net power* (*OCT-based IOL formula*) was refuted.

Key words:

Anterior segment OCT, keratometry, net corneal power, AP ratio

PODĚKOVÁNÍ

Na tomto místě bych ráda poděkovala svému vedoucímu práce Ing. Martinu Fůsovi, za vedení práce, ochotu, rady a připomínky. Také bych ráda poděkovala konzultantce doc. MUDr. Šárce Pitrové CSc. Dále bych chtěla poděkovat své rodině za podporu při psaní práce a během celého studia.

PROHLÁŠENÍ

Prohlašuji, že jsem bakalářskou práci s názvem "Analýza rohovkového anterior - posterior poměru pomocí optické koherentní tomografie" vypracovala samostatně a použila k tomu úplný výčet citací použitých pramenů, které uvádím v seznamu přiloženém k bakalářské práci.

Nemám závažný důvod proti užití tohoto školního díla ve smyslu §60 Zákona č.121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon), ve znění pozdějších předpisů.

V *Kladně* dne

podpis

Obsah

1	Úv	od		1
2	Rol	hovk	ca	2
	2.1	Sch	nematické modely oka	2
	2.1	.1	AP poměr	3
3	Me	tody	v měření parametrů rohovky	5
	3.1	Ref	flexní metody keratometrie	5
	3.2	Top	pografie	7
	3.2	.1	Slit-scanning	8
	3.2	.2	Scheimpflugova kamera	8
	3.2	.3	Vícebarevná LED topografie	9
	3.3	Pac	hymetrie	9
	3.4	Zrc	adlová spekulární mikroskopie	10
	3.5	OC	T předního segmentu	11
4	Bic	met	rie	16
	4.1	Ult	razvuková biometrie	16
	4.2	Sw	ept-source interferometrie	17
5	Nit	rooč	ní čočka	18
	5.1	Vyl	brané metody zohledňující zadní plochu rohovky v kalkulaci IOL	18
6	Exp	perin	nentální část	20
	6.1	Me	todika	21
	6.1	.1	Analýza AP poměru	21
	6.1	.2	Hypotetická kalkulace optické mohutnosti IOL	24
7	Vý	sledl	ky	28
8	Dis	kuse	e	34
9	Záv	věr		37
Se	eznam	pou	žité literatury	39
Se	eznam	sym	bolů a zkratek	43
Se	eznam	obrá	ázků	44
Se	eznam	tabu	ılek	45
Př	filoha /	A: N	Jaměřená data skupiny A	46
Př	filoha l	B: N	aměřená data skupiny B	55

1 Úvod

Rohovka je transparentní část oka, která je z hlediska optického nejdůležitějším refrakčním prostředím. Je proto podstatné přesné měření jejích parametrů, to je možné prostřednictvím rozdílných principů, jako jsou reflexní metody, slit-scanning, Scheimpflugova kamera, vícebarevná LED topografie, pachymetrie, zrcadlová spekulární mikroskopie, biometrie a nízkokoherenční interferometrie, popsaných v teoretické části této práce.

V minulosti nebylo možné měření poloměru zakřivení zadní plochy rohovky, a proto se celková optická mohutnost rohovky pouze dopočítávala za předpokladu stálého poměru mezi přední a zadní plochou rohovky neboli AP poměru. Ten je konvenčně uznáván z Gullstrandova schematického modelu oka. V případě, že tento poměr není platný může vytvářet chyby ve vzorcích, které s tímto předpokladem počítají a mít za následek chybné výsledky například u optických mohutností implantovaných nitroočních čoček.

Hlavním cílem bakalářské práce je ověření platnosti konvenčně uznávaného předpokladu poměru radiů rohovky, pomocí měření na předně-segmentovém OCT. Dalším cílem je porovnat odlišné teoreticky stanovené hodnoty AP poměru vycházející z různých schematických modelů oka a z nich následně vybrat nejvhodnější model vzhledem k výsledkům měření v experimentální části. Praktická část má také za cíl ověření potenciální korelace tohoto poměru s naměřenými biometrickými daty z Lenstaru LS900. Dalším předmětem studie je porovnání průměrné keratometrie a *Net power* jednotlivých očí a teoretické ověření případného vlivu *Net power* na hypotetickou kalkulaci sférické nitrooční čočky.

2 Rohovka

Rohovka (cornea) je průhledná, bezbarvá a bezcévná tkáň, tvořící přední část (1/6) tunica fibrosa. Z hlediska optického je nejdůležitějším refrakčním prostředím. Z největší části se podílí na celkové optické mohutnosti oka. Přičemž optická mohutnost rohovky je definována pomocí jejího zakřivení, tloušťky a indexu lomu. Údaje pro výpočet celkové mohutnosti rohovky získáme pomocí přístrojů, fungujících na různých principech. Povrch rohovky pokrývá slzný film o tloušťce 7-10 µm mezi jehož funkce patří ochrana epitelu rohovky mechanická i imunologická. Svým složením a vlastnostmi vyrovnává fyziologické nerovnoměrnosti rohovky a vytváří hladký povrch, díky němuž se snižuje rozptyl světla a zlepšují se optické vlastnosti. [1, 2, 3, 4]

Rohovka se skládá z pěti vrstev. První vrstvou je vícevrstevný dlaždicový epitel 50 μm silný. Má vysokou schopnost regenerace, obnovuje se každých 7 dní. Povrch tvoří mikroklky, zajišťující přilnutí vnitřní vrstvy slzného filmu. Nacházejí se zde volná aferentní nervová zakončení, z čehož vyplývá vysoká citlivost rohovky, která je inervována první větví trojklaného nervu. Poté následuje tenká (8-14 μm) Bowmanova membrána, která odděluje epitel od stromatu. Stroma tvoří 90% tloušťky rohovky (500 μm), skládá se z kolagenních fibril uspořádaných do 300-500 rovnoběžných lamel. Regenerační schopnost je v případě této vrstvy velmi malá. Pod stromatem je Descementova membrána (10 μm), na kterou navazuje endotel o tloušť ce 4-7 μm. Tvoří ho hexagonální buňky, které v případě zdravého stavu endotelu mají hustotu 2600-3000 buněk/mm². Aktivně odčerpává vodu z rohovky a udržuje její hydrataci na 76-80 % a tím společně s pravidelně uspořádanými lamelami ve stromatu zajišťuje průhlednost rohovky. [1, 3, 4]

Mezi základní parametry rohovky patří její průměr, který je 11,5 mm vertikálně a 12,6 mm horizontálně, optická mohutnost +43 D, hustota endotelových buněk a tloušťka. Uprostřed je rohovka nejtenčí (560 µm) a směrem k periferii tloušťka narůstá (650-1000 µm). [1]

2.1 Schematické modely oka

Schematické, teoretické modely oka slouží k popisu, výpočtu základních parametrů a modelování optické soustavy oka. Jednotlivé modely se mohou lišit hodnotami poloměrů zakřivení, počtem lomivých ploch, indexy lomů či celkovou složitostí a komplexností. Jedna skupina teoretických modelů oka jsou tzv. paraxiální, ty mají lomivé plochy sférické a optickou osu shodující s osou vidění. Pomocí nich lze popsat pouze paprsky procházející v blízkosti optické osy. Pro popis aberací je potřeba modelů složitějších. [1, 5]

Příkladem paraxiálního modelu oka je Gullstrandův model oka (obr. 2.1). Vycházejí z něj hodnoty, s kterými se pracuje při dopočítávání celkové optické mohutnosti rohovky u metod, které měří poloměr zakřivení pouze přední plochy rohovky. Dalším příkladem schematického modelu oka je model dle Le Granda. Mezi složitější modely patří model dle Lotmara ten má stejné hodnoty jako Le Grandův model, ale navíc počítá s asfericitou povrchu Q a s poloměrem zakřivení sítnice. Stejné platí pro schematické oko dle Kooijmana. Dalšími příklady jsou modely dle Navarra a Liou a Brennana. Jednotlivé hodnoty uvedených schematických modelů oka, vztahující se k rohovce, jsou porovnány v tabulce 2.1. [1, 5]

Obrázek 2.1: Gullstrandův model oka [4]

Schematický model oka	Radius přední plochy (mm)	Radius zadní plochy (mm)	AP poměr	Index lomu rohovky
Gullstrand	7,70	6,80	1,132	1,376
Le Grand, Lotmar, Kooijman	7,80	6,50	1,2	1,3771
Navarro	7,72	6,50	1,187	1,3771
Liou a Brennan	7,77	6,40	1,214	1,376

Tabulka 2.1: Porovnání hodnot jednotlivých schematických modelů oka [1, 5]

2.1.1 AP poměr

AP poměr je poměr zakřivení mezi přední a zadní plochou rohovky (anterior corneal radius/posterior corneal radius). Konvenčně udávaný AP poměr (1,132) vychází z Gullstrandova modelu oka. Jedná se o poměr hodnot 7,70 mm a 6,80 mm (viz. tabulka 2.1).

Jeho hodnota je také udávána v opačném poměru, kdy se jedná o vyjádření z kolika procent je přední radius stejný vůči zadnímu, tato hodnota odpovídá 88,31 %. [1,6,7]

Historicky nebyla možnost měřit zadní radius rohovky, ale pouze její přední plochy, a tak se celková mohutnost rohovky počítala a dodnes počítá (u přístrojů, které neměří zadní plochu rohovky) s tímto poměrem a s keratometrickým indexem lomu, který se u různých keratometrů může lišit podle preference. Jedná se o odlišné hodnoty indexu lomu, 1,332 a 1,336 nebo 1,3375. [6]

V některých případech však tento poměr neplatí. Například u rohovky s ektatickými degeneracemi, jako je keratokonus, keratoglobus a marginální pelucidní degenerace. U těchto stavů dochází k odlišným změnám tvaru povrchu a zakřivení rohovky a tím i ke změně AP poměru. U keratokonu se jedná o charakteristické kónické vyklenování obvykle centrálně nebo paracentrálně, u keratoglobu dochází k protenčení celé rohovky a marginální pelucidní degenerace se projevuje vyklenováním periferní části rohovky. Dalším příkladem, kdy je AP poměr neplatný jsou oči po rohovkových refrakčních zákrocích (LASIK, PRK), což je znázorněno na obrázku 2.2. Ve výpočtech pak neodpovídá 88,3 % zadního povrchu ku přednímu, se kterými se počítá. Tato hodnota se využívá také pro výpočet optické mohutnosti transplantované IOL při operaci katarakty. [1,6,7]

Obrázek 2.2: Schéma AP poměru před a po refrakčním zákroku [7]

3 Metody měření parametrů rohovky

K měření rohovky se využívá několik metod. Řadíme mezi ně metody reflexní, projekční a skenovací. Tyto metody využívají viditelné světlo, infračervené záření anebo ultrazvuk. Při měření rohovky je možno zjistit její keratometrii, topografii, pachymetrii (tloušťku rohovky) a hustotu endotelových buněk. U keratometrů se jedná o různé testové značky, zatímco u topografů jsou na povrch rohovky zobrazovány například tzv. Placidovy kruhy. Zjištěné hodnoty se uplatňují při aplikaci kontaktních čoček, kataraktové chirurgii, rohovkové chirurgii, u refrakčních zákroků na rohovce a pro výpočet nitrooční čočky. [1, 8]

3.1 Reflexní metody keratometrie

Jedná se o metody, kdy je přední plocha rohovky brána jako zrcadlový optický povrch, konvexní zrcadlo s odrazivostí přibližně 2-4 %. Specifické pravidelné testové značky se promítají na přední plochu rohovky, jejich obraz je neskutečný, vzpřímený, vzniká za rohovkou a je popisován jako první Purkyňův obraz. Velikost obrazu závisí na poloměru křivosti a výsledný tvar vypovídá o případných aberacích a tvaru rohovky. [1, 4, 8]

Keratometrie je bezkontaktní metoda, kterou se měří nejstrmější a nejplošší meridián přední plochy rohovky. Užívá se k ní přístroj zvaný keratometr, který měří poloměr zakřivení přední plochy rohovky v její centrální části a je buď manuální nebo automatický. Pro měření periferní části je nutné přidat topogometr. [1, 4, 8]

Obrázek 3.1: Princip keratometru. M₁ a M₂ testové značky, y jejich vzdálenost, M₁' a M₂' jejich obrazy, y vzdálenost obrazů testových značek, s vzdálenost testových značek od rohovky, s vzdálenost obrazů od rohovky, C střed křivosti rohovky, r_c poloměr zakřivení rohovky [4]

Princip všech keratometrů, zobrazený na obrázku 3.1, je založen na projekci alespoň dvou testových značek na povrch rohovky, které jsou vzájemně vertikálně oddělené, mezi sebou vzdálené o určitou hodnotu a jsou umístěny v určité vzdálenosti od vrcholu rohovky. Prostřednictvím pozorovacího nebo detekčního systému je poté změřena velikost obrazu testových značek, která odpovídá poloměru křivosti. Pro výpočet poloměru křivosti se používá keratometrická rovnice, která vychází ze vztahu pro příčné zvětšení a ze zobrazovací rovnice pro tenkou čočku v paraxiálním prostoru,

$$\frac{y'}{y} = \frac{s'}{s} \qquad \qquad r_c = \frac{2sy'}{y}$$

kde y'je vzdálenost obrazů testových značek, y je vzdálenost mezi testovými značkami, s' je vzdálenost obrazů testových značek od rohovky, s je vzdálenost testových značek od rohovky a r_c je poloměr křivosti přední plochy rohovky. [4, 8]

U manuálních keratometrů se používá koincidence zdvojených značek, protože nelze měřit vzdálenost testových značek přímo, kvůli mimovolním pohybům oka. Všechny čtyři typy manuálních keratometrů zajišťují koincidenci dalekohledovým pozorovacím zařízením, avšak odlišnými zdvojovacími soustavami. U Helmholtzova typu je zdvojení testových značek dosahováno pomocí natočených planparalelních destiček. Littmanův typ využívá prizma. Javalův keratometr využívá Wollastonův hranol a Suttcliffův dvojici horizontálního a vertikálního klínu tzv. Scheirenovy destičky. [4, 8]

Promítnuté značky je možné vyrovnat pomocí otočného projekčního systému kolem optické osy oka, což je přímka spojující body maximálního zakřivení rohovky a čočky, souhlasně s prvním meridiánem čímž získáme jeho hodnotu. Pro zjištění hodnoty druhého meridiánu otočíme projekční systém o 90°. Získáme tak hodnotu nejploššího a nejstrmějšího meridiánu. U Suttcliffova typu jsou tyto hodnoty odečteny při jednom měření bez nutnosti otočení o 90°. Pro přepočet poloměru křivosti na celkovou optickou mohutnost rohovky platí následující vztah

$$D = \frac{1,3375 - 1}{r}$$

Kde D [D] je optická mohutnost, r [m] poloměr zakřivení, 1 index lomu vzduchu a 1,3375 keratometrický index lomu, který počítá s konstantním AP poměrem. [8]

Optoelektronické keratometry (obr. 3.2) využívají jako testové značky infračervené LED diody, které jsou rozmístěny do jednoho nebo dvou koncentrických kruhů. Obrazy těchto kruhů jsou poté zobrazovány optickou soustavou na fotodetektor, kde je měřena vzdálenost obrazů y'. Měření je rychlé a tyto keratometry bývají součástí autorefraktometrů a optických biometrů. [4, 8, 9]

Obrázek 3.2: Optoelektronický keratometr [4]

3.2 Topografie

Topografie je bezkontaktní metoda umožňující zjištění informací o tvaru přední plochy rohovky nejenom v jejím centru, ale i v periferii. Zařízení mají uplatnění ve screeningu progrese ektatických onemocnění rohovky, v měření pravidelného i nepravidelného astigmatismu a podle nabídky softwaru mohou topografy analyzovat kvalitu slzného filmu, výšku slzného menisku, úhel dolního víčka a nabídnout teoretickou kontaktní čočku. [1, 8, 9]

Placidův topograf je založen na principu projekce soustředných kružnic na rohovku (většina topografů využívá 20-30 koncentrických černobílých kruhů, zobrazených na obrázku 3.3), jejichž neskutečný obraz je následně nahrán CCD kamerou, ta je uprostřed kónické hlavy přístroje. Deformace kruhů a jejich odlišnost od referenční plochy je poté vyhodnocena příslušným algoritmem. Výsledkem měření jsou barevné mapy, elevační mapa povrchu rohovky, mapa optické mohutnosti a mapa poloměrů křivosti. [4. 8, 9]

Obrázek 3.3: Placidovy kruhy promítnuté na rohovce [5]

3.2.1 Slit-scanning

Jedná se o princip, u kterého přístroje využívají záznam projekce skenovací štěrbiny, pomocí které získají optické řezy rohovky. Tato bezkontaktní metoda umožňuje zobrazit tvar přední a zadní plochy rohovky, její tloušťku, hloubku přední komory a komorový úhel. [4, 8]

Mezi přístroje používající tuto techniku patří Orbscan. Ten je založen na kombinaci principů skenovací štěrbiny a topografu s Placidovým kotoučem a tím zlepšuje nedostatky původních topografů, umožňuje mapovat kromě přední plochy rohovky i plochu zadní. Dva projektory štěrbinového osvětlení, které jsou umístěny na bočních částech Placidova kotouče, skenují rohovku od limbu k limbu. Z těchto projektorů je promítáno na povrch 20 paprsků, které jsou nahrány kamerou umístěnou ve středu Placidova kotouče. Výsledky jsou zobrazeny opět prostřednictvím barevných map. [8]

3.2.2 Scheimpflugova kamera

Základním principem této kamery je protnutí tří rovin v jediné ose. Protnutí roviny snímání, roviny čočky a roviny zaznamenávaného objektu. Specifické postavení kamery umožňuje zobrazit ostře body v šikmé rovině vůči optické ose. [4, 8]

Příkladem přístroje využívající tento typ kamery je Pentacam. Spolu s ní se na přístroji nachází CCD kamera, která zachycuje obraz a zdroj štěrbinového LED osvětlení o vlnové délce 475 nm. CCD kamera se nachází ve středu přístroje. Umožňuje měření velikosti zornice, snímá mimovolní pohyby oka a kontroluje centraci. Scheimpflugova kamera se nachází na okraji přístroje a při měření rotuje o 360°. Měření se provádí ve 25 000 bodech za necelé 2 sekundy. Probíhá v oblasti předního segmentu oka, poskytuje topografická data a složením obrazů jednotlivých řezů lze prostřednictvím softwaru získat tomografii předního segmentu neboli jeho 3D model. Mezi výhody patří možnost screeningu katarakty, keratokonu a vzhledem k funkci

měření předního i zadního poloměru rohovky i možnost přesnějšího určení parametrů nitrooční čočky. Využívá se k předoperačnímu i pooperačnímu vyšetření u refrakční chirurgie. [8]

Dalším příkladem přístroje je Galilei G2. Na rozdíl od Pentacamu má dvě rotační kamery a Placidův kotouč. Jednotlivé kamery rotují o 180° a tím je čas vyšetření kratší. [8]

3.2.3 Vícebarevná LED topografie

Novější způsob měření topografie je možný pomocí přístroje Cassini (obr. 3.4), neboli pomocí tzv. vícebarevné point-to-point LED topografie. Ta jako zdroj využívá vícebarevný (červený, žlutý a zelený) bodový vzor skládající se ze stovek LED diod (až 700). Ty jsou promítány na rohovku a jejich odrazy jsou poté analyzovány příslušným softwarem. Tento přístroj umožňuje také hodnocení tvaru a zakřivení i zadní plochy rohovky pomocí technologie ray-tracing spojené se sledováním odrazu druhého Purkyňova obrázku od zadní plochy rohovky. Pomocí tohoto přístroje je dosahováno skvělých výsledků měření u topograficky náročně měřitelných rohovek. Příkladem jsou rohovky po LASIKu, s nepravidelným astigmatismem či keratokonem. [10, 11]

Obrázek 3.4: Cassini [12]

3.3 Pachymetrie

Pachymetrie je měření tloušťky rohovky. Toto vyšetření lze využít ve screeningu a diagnostice glaukomu, keratokonu, také v souvislosti s refrakčními výkony na rohovce a ke správné interpretaci naměřeného nitroočního tlaku aplanačním tonometrem. Základní metody, které se využívají pro její měření můžeme rozdělit podle typu užitého signálu na ultrazvukové a optické.

U optické pachymetrie je tímto signálem koherenční polarizované světlo. Tento způsob měření pachymetrie je bezkontaktní a většinou její měření bývá součástí jiných přístrojů. Příkladem jsou Orbscan, OCT a biometry. [8, 13, 14]

Kontaktní metodou je ultrazvuková pachymetrie, která funguje na principu odrazu signálu od přední a zadní plochy rohovky. Signálem je ultrazvukový impulz vysílaný z krystalového měniče snímací sondy. Další částí přístroje je měřící sonda, která je přikládaná na anestezovanou rohovku, přičemž je důležité její správné kolmé přiložení k jejímu povrchu. Výsledná hodnota tloušťky rohovky je vypočtena pomocí časové prodlevy mezi echem odraženým od přední plochy rohovky a echem odraženým od zadní plochy rohovky. [8, 14]

3.4 Zrcadlová spekulární mikroskopie

Bezkontaktní vyšetření endotelu rohovky, které umožňuje sledování morfologie a počtu endoteliálních buněk. Tyto buňky nemají schopnost regenerace a jejich počet se v průběhu života snižuje, jelikož defekty endotelu jsou uzavírány migrací a zvětšováním velikostí stávajících buněk. Při kritickém snížení počtu buněk dochází k edému rohovky a ke snížení její transparentnosti. Metoda umožňuje určení stavu endotelu například při onemocněních rohovky a u rohovky před a po refrakčním zákroku. [1, 8]

Tyto mikroskopy jsou založené na principu zrcadlové reflexe a rozptylu světla na rozhraní endotelu a komorové vody. Specifické pro tento typ mikroskopů je, že pozorujeme odražené světlo, a ne světlo procházející. Světlo je reflektováno od optických rozhraních s odlišnými indexy lomu. Index lomu endotelu je vyšší než index lomu komorové vody a dochází k reflexi 0,022 % promítaného světla. Dráhové rozdíly odražených paprsků vytváří obraz endotelu, jenž je zachycen detektorem. [15]

Je možné snímat pouze část endotelu, a tak jsou hodnoty posuzující celkový stav endotelu dopočítávány podle vzorců a hodnot ze snímané oblasti. Hustota buněk (CD) je určena podle vzorce

$$CD = \frac{10^6}{AVE}$$

kde AVE je průměrný rozměr endoteliálních buněk (μ m²), 10⁶ je hodnota pro převod měrných jednotek, protože CD je udáváno jako počet buněk na 1 mm² (buňky/ mm²). Další hodnotou je koeficient variace (CV) udávaný v %, u kterého platí vzorec

$$CV = \frac{SD}{AVE} \cdot 100$$

kde SD je směrodatná odchylka rozměrů buněk endotelu. Další hodnotou získávanou z endoteliální mikroskopie je hexagonalita (HEX), vyjadřující procentuální poměr buněk hexagonálního tvaru. Dále množství analyzovaných buněk (NUM) a hodnoty pachymetrie. [8, 14, 15]

3.5 OCT předního segmentu

OCT neboli optická koherenční tomografie je bezkontaktní zobrazovací metoda, pomocí které lze zobrazit sítnici zejména v oblasti makuly, papily optického nervu, periferní části sítnice, rohovku a předněkomorový úhel. OCT předního segmentu nám poskytuje informace nejen o tloušťce rohovky, zakřivení její přední a zadní plochy, ale také o hloubce přední komory, velikosti komorového úhlu a možnost následující snadnější diagnostiky glaukomu s uzavřeným úhlem. Využívá se pro vizualizaci a měření výsledků po refrakčních zákrocích, pro měření a posouzení aplikace a usazení předněkomorové nitrooční čočky a celkově pro zobrazení předního segmentu oka. Poskytuje 2D optické řezy a 3D modely v rozlišení mikrometrů. Vzhledem ke kvalitě a přehlednosti snímků je možné také sledovat progresi rohovkových zákalů a onemocněních rohovky, například keratokonu. Poprvé bylo OCT použito v roce 1991 na MIT (Massachusettský technologický institut), nicméně předněsegmentové OCT (AS-OCT) bylo použito až o 3 roky později. [8, 13, 16, 17]

Princip optické koherenční tomografie je analogický k principu ultrazvukového zobrazování. Avšak na rozdíl od ultrazvukového zobrazování dochází k detekci infračerveného záření, které je zpětně odraženo nebo zpětně rozptýleno na rozhraní zobrazovaných objektů (obr. 3.5). Ke zpětnému rozptylu dochází díky nehomogenitě optických vlastností jednotlivých zobrazovaných struktur. U této metody se využívá odrazu dostatečně širokého spektra nízkokoherenčního záření vlnových délek blízkého infračerveného záření. Šířka spektra je přímo úměrná axiálnímu rozlišení přístroje, čím je spektrum širší tím je axiální rozlišení větší. [8, 16, 17]

Obrázek 3.5: Princip OCT (upraveno) [17]

Protože je rychlost světla mnohem vyšší, než rychlost zvuku měření zpoždění odezvy se neprovádí přímo, ale musí být použit interferometr. Nejčastěji se používá Michelsonův interferometr (zobrazený na obrázku 3.6), který využívá princip superpozice referenčních a zpětně odražených paprsků. Výhodou nízkokoherenčního zdroje záření je krátká koherenční délka, což je vzdálenost, na které je světlo schopné interferovat. [17, 18]

Obrázek 3.6: Michelsonův interferometr [4, 19]

K rozdělení světla ze zdroje dochází na polopropustném zrcadle, na které dopadá světlo jako první. Světlo je tak rozděleno na paprsek referenční směřující k referenčnímu zrcadlu a na paprsek měřící (propuštěný) směřující k vyšetřované tkáni. Po odrazu se tyto dva paprsky vracejí zpět k polopropustnému zrcadlu a jsou nasměrovány k detektoru. Na detektoru je změřeno časové zpoždění a velikost signálu, odpovídající různým hloubkám tkáně. K tomuto měření se využívá právě interferenční jev. Ten závisí na dráhovém rozdílu vln a vzájemné časové zpoždění paprsků lze určit na základě rozdílu jejich drah. Maximální rozdíl drah těchto paprsků definuje rozsah hloubky zobrazení. Způsoby zjišťování odrazů jednotlivých paprsků

z různých hloubek vyšetřované tkáně můžeme rozdělit na ty v časové doméně a frekvenční doméně. [17, 18]

OCT s časovou doménou (time domain OCT, TD-OCT) k detekci dráhového rozdílu využívá posun referenčního zrcadla. Což znamená, že mění vzdálenost, kterou urazí referenční paprsek. Zpoždění měřícího paprsku z různých hloubek tkáně se prověřují jednotlivě a postupně rychlostí 400 skenů za vteřinu s axiálním rozlišením 8-10 µm. Výsledkem jsou A-skeny jejichž složením vzniká dvourozměrný obraz. Každý A-sken obsahuje informaci o velikosti odrazu a časovém zpoždění. U frekvenční domény se jedná o OCT se spektrální doménou (spectral domain OCT, SD-OCT) a swept source OCT (SS-OCT). Měření je rychlejší, 20 000-100 000 A-skenů za vteřinu s axiálním rozlišením 5-7 µm. Všechny vrstvy tkáně odrážejí světlo současně a referenční zrcadlo nemusí být pohyblivé. Ke zpracování signálu se ve frekvenční doméně používá Fouierova transformace. SD-OCT využívá nízkokoherenční světlo a spektrometr ke snímání. Zdrojem světla u SS-OCT je záření s vysokým stupněm koherence s úzkým spektrem vlnových délek světla. Snímání probíhá pomocí fotodetektorů, na které dopadá v čase frekvenčně rozdělené záření. [18]

Mezi současné OCT přístroje vyhrazené pouze pro zobrazování předního segmentu patří například Visante systém (Carl Zeiss) a CASIA (Tomey), oba přístroje využívají vlnovou délku 1300 nm. Ta umožňuje lepší hloubku zobrazení. OCT bylo původně využíváno pouze pro zobrazování sítnice, a tak se na současném trhu vyskytují přístroje u kterých je zobrazování předního segmentu přidáno jako doplňkový režim. Příkladem jsou Stratus and Cirrus (Carl Zeiss), RTVue (Optovue), Spectralis (Heidelberg Engineering), 3D OCT-2000 (Topcon). Ukázky rohovkových skenů na obrázku 3.7 a jsou z přístrojů Visante (TD-OCT), CASIA (SS-OCT), sken RTVue je na obrázku 3.8 (SD-OCT). [17]

Obrázek 3.7: Obrázky **a** a **b** rohovkový sken z přístroje CASIA [20], obrázek **c** rohovkový sken z přístroje Visante [21]

Vybraný příklad OCT pro přední segment

Vzhledem k praktické části byl jako příklad OCT vybrán model RTVue. Jedná se o typ optického koherenčního tomografu se spektrální doménou. Umožňuje zobrazování sítnice a předního segmentu oka. Poskytuje informace o pachymetrii rohovky a podrobné informace spojené s jejím zakřivením a optickou mohutností. Měří tedy zakřivení přední i zadní plochy rohovky a ve výpočtu celkové optické mohutnosti rohovky počítá s těmito hodnotami, a ne s hodnotami vycházející z Gullstrandova modelu oka, které počítají se stálou hodnotou poměru zakřivení mezi přední a zadní plochou rohovky. Parametry získávané z vyšetření jsou lomivost rohovky (net power), lomivost přední a zadní plochy rohovky (anterior power, posterior power) v dioptriích a jejich poloměry zakřivení (curvature radius anterior, curvature radius posterior) v milimetrech. Lomivost přední a zadní plochy rohovky se vypočítává podle následujících vzorců s dosazením odpovídajících poloměrů zakřivení. [22]

$$K_a = \frac{n_1 - n_0}{R_a} , \ K_p = \frac{n_2 - n_1}{R_p}$$
(3.1)

Kde je K_a/K_p lomivost přední/zadní plochy, R_a/R_p poloměr zakřivení přední/zadní plochy rohovky, $n_0 = 0$, $n_1 = 1,376$ a $n_2 = 1,336$. Celková optická mohutnost rohovky je vypočtena z Gullstrandovy rovnice.

$$K = K_a + K_p - \frac{D}{n_1} \cdot K_a \cdot K_p \tag{3.2}$$

Kde D je centrální tloušťka rohovky (CCT) v metrech. Poloměry zakřivení dosazované do výpočtu optické mohutnosti jsou prostřednictvím tohoto přístroje měřeny v zóně o průměru 3 mm (obr. 3.8). [22]

Obrázek 3.8: Průměr zóny měření poloměrů zakřivení R_a , R_p na rohovkovém skenu z RTVue [23]

4 Biometrie

Biometrie je vyšetření, které poskytuje nepostradatelné informace pro výpočet dioptrické hodnoty nitrooční čočky. Předchozí uvedené metody nám poskytují informaci hlavně o optické mohutnosti rohovky. K výpočtu intraokulárních čoček jsou však důležité další parametry, které nám poskytuje právě biometrie. Mezi tyto parametry patří axiální délka oka (AL), což je délka souběžná s optickou osou vedoucí od vrcholu rohovky k sítnici, a hloubka přední komory (ACD), která je dána vzdáleností mezi zadní plochou rohovky a přední plochou čočky. Další parametry, které lze z biometrie získat jsou centrální tloušťka rohovky (CCT), tloušťka čočky (LT), tloušťka sítnice (RT), nejstrmější a nejplošší meridián K1 a K2 s příslušnými osami a průměr limbu neboli white-to-white (WTW). Axiální délku oka můžeme změřit ultrazvukem nebo opticky. [1, 8, 9]

Jako průměrné fyziologické hodnoty biometrických hodnot se uvádí pro axiální délku 20-24 mm, hloubku přední komory 2,5-3,5 mm, tloušťku čočky 4 mm, průměr limbu 12 mm a pro centrální tloušťku rohovky 500-650 μm. [1, 13]

4.1 Ultrazvuková biometrie

Princip ultrazvukové/akustické biometrie je založen na měření pulzu, echa odrazu ultrazvukového signálu. Tento signál tvoří mechanické kmity částic s frekvencemi vyššími než 20 kHz. Frekvence společně s vlastnostmi jednotlivých optických prostředí, kterými ultrazvuk prochází ovlivňuje jeho rychlost šíření. U biometrů se využívá ultrazvuk o frekvenci 5-20 MHz. Signál měří axiální délku oka od vrcholu rohovky až po vnitřní limitující membránu sítnice. K přesnému měření délky oka slouží znalost rychlosti ultrazvuku v měřeném prostředí. Výstupem měření je jednorozměrný A-scan, lineární zobrazení echa ve směru šíření ultrazvukových vln. Kde jsou sledovány jednotlivé amplitudy, které závisí na velikosti zpětně přijímaného signálu odraženého od jednotlivých tkáňových rozhraní. Tyto amplitudy jsou sledovány v závislosti na čase. Jejich vzdálenost odpovídá poměru skutečných vzdáleností jednotlivých struktur. Na zmíněném A-scanu je možné pozorovat echo odpovídající přední ploše rohovky, zadní ploše rohovky, přední ploše čočky, zadní ploše čočky, retině a echo od skléry. Měření probíhá buď kontaktně, kdy je ultrazvuková sonda přiložena přímo na anestezovanou rohovku, nebo imerzně, kdy měření probíhá pomocí speciální předsádky, která obsahuje syntetický gel. [1, 9, 8, 14]

4.2 Swept-source interferometrie

Swept-source interferometrie je princip optické biometrie. Jedná se o bezkontaktní metodu, která pracuje na principu parciální koherenční interferometrie. Jako zdroj světla, který je součástí Michelsonova interferometru (zobrazeného na obrázku 3.5) se používá infračervené záření. Avšak v případě optické biometrie musí být oko umístěno mimo vzorkovací rameno interferometru, místo toho se využívá externí interferometr, který generuje dva koaxiální paprsky s časovým zpožděním. Měření probíhá podél zrakové osy neboli podél přímky, která spojuje fixační bod a střed vstupní pupily oka. [1, 17]

Světlo je rozděleno na 2 paprsky pomocí děliče svazků, tyto dva paprsky spolu interferují v případě, že je rozdíl délky jejich optických drah menší než jejich koherenční délka. U optických interferometrů je využívána koherenční délka 100-130 nm. Infračervené záření se odráží od pigmentové vrstvy sítnice, rozdíly drah paprsků jsou poté zachyceny fotodiodou. Vzhledem k faktu, že se biometrie využívá hlavně pro měření nitrooční čočky je nevýhodou této metody nemožnost využití u neprůhledných optických médií, kdy dochází k silnému pohlcení světla. Jedná se hlavně o pokročilé stadium katarakty ale i například o změny transparentnosti rohovky či hemoftalmus. Mezi příklady optických biometrů patří IOLMaster 700 a Lenstar LS 900. [1, 8, 14]

Lenstar LS 900 měří keratometrii prostřednictvím polohy 32 promítaných odrazů světla ve formě dvou kruhů s šestnácti měřícími body pomocí LED světelného zdroje o vlnové délce 950 nm. Výsledkem měření je plochý rádius, strmý rádius a jejich osy. K měření axiální délky využívá superluminiscenční diodu o vlnové délce 820 nm. Jeho výhodou je řešení problémů v měření u pokročilého stádia katarakty, kdy automaticky přechází do DCM módu (Dense Cataract Measurement Mode), který zajišťuje lepší míru průniku do tkáně a přesnost výsledků právě při pokročilém stádiu katarakty. Tento přístroj slouží k výpočtu optické mohutnosti IOL pomocí vzorců, které nabízí. [24]

5 Nitrooční čočka

Umělá nitrooční čočka (IOL) se využívá hlavně po odstranění katarakty, kdy je původní čočka nahrazena čočkou umělou. Používá se také například u korekce presbyopie. [1, 13]

Nitrooční čočky mají část haptickou, která slouží k jejich fixaci a část optickou. Mezi charakterizující hodnoty patří počet ohnisek, zakřivení povrchu a optická mohutnost pro jejíž výpočet je zapotřebí matematických vzorců a biometrických dat. Tyto výpočty bývají nepřesné hlavně po refrakčních zákrocích, kdy se mění fyziologické parametry oka. Na jejich přesnost má vliv změna AP poměru, ze kterého vychází keratometrický index, se kterým většina vzorců počítá a který se změnou tohoto poměru stává neplatným. Této chybě při počítání lze předejít pomocí metod, které využívají k výpočtu naměřené hodnoty poloměrů zakřivení přední i zadní plochy rohovky. [1, 25, 26]

5.1 Vybrané metody zohledňující zadní plochu rohovky v kalkulaci IOL

Příkladem metody, která počítá se vzorcem zohledňující poloměr zakřivení zadní plochy rohovky jsou vergenční vzorce. Ty ke zjištění optické mohutnosti nitrooční čočky využívají Gaussovu optiku. Ta předpokládá, že vergence obrazu je rovna součtu vergence předmětu a vergence čočky. Součástí vergenčního vzorce je celková optická mohutnost rohovky, kterou počítá pomocí zakřivení její přední a zadní plochy a vzdáleností mezi nimi. Většina současných vergenčních vzorců pro výpočet IOL je založena na následující rovnici formulované Fyodorovem. [26, 27]

$$P = (1336/[AL - ELP]) - (1336/[1336/{1000/([1000/DPostRx] - V)} + K) - ELP])$$

Kde P je optická mohutnost implantované čočky, AL je axiální délka oka, ELP je efektivní poloha čočky, DPostRx je požadovaná pooperační refrakce, V je vertikální vzdálenost korekční brýlové čočky od oka a K je celková optická mohutnost rohovky. [26]

Jinými příklady vzorců, které zohledňují zadní plochu rohovky prostřednictvím použití hodnot celkové keratometrie (TK) jsou Haigis-TK a Barrett True-K. K výpočtům pomocí vzorce Barrett True-K, který byl vyvinut pro oči po předchozí rohovkové refrakční operaci, jsou využity biometrické hodnoty (AL, ACD, LT, WTW) a TK. TK je vypočtena z hodnot poloměru zakřivení přední a zadní plochy rohovky a její tloušťky. [28, 29]

Další metodou je ray-tracing, ten pracuje na principu výpočtu přesné dráhy paprsku pří průchodu optickým systémem. K popisu polohy IOL se v této metodě používají poloměry zakřivení přední i zadní plochy rohovky, jejich asféricita a centrální tloušťka IOL. Konečná poloha IOL je skutečná geometrická poloha popsaná vzdáleností mezi vrcholem zadní plochy rohovky a vrcholem přední plochy IOL. Vzorce využívající tuto metodu jsou Okulix, Olsen a PhacoOptics. [26, 27]

6 Experimentální část

Experimentální část bakalářské práce byla rozdělena na dvě hlavní části, pomocí nichž byly ověřovány a plněny její cíle.

První část se zabývala analýzou AP poměru a plněním hlavního cíle, kterým bylo ověření platnosti konvenčně uznávaného předpokladu poměru radiů rohovky. Z hodnot zakřivení mezi přední a zadní plochou rohovky (r₁, r₂) změřených na OCT RTVue XR byl získán individuální AP poměr a byla ověřena jeho platnost vzhledem ke konvenčnímu poměru, jehož hodnota 1,132 vychází z Gullstrandova modelu oka. Dalším záměrem byla komparace získané hodnoty s hodnotami AP poměru alternativních schematických modelů oka a v návaznosti na míru diference vybrat nejvhodnější teoretický model. Následně byl vyhodnocen vzájemný vztah mezi biometrickými parametry oka a samotným AP poměrem.

Druhá část práce byla zaměřena na hypotetickou kalkulaci IOL u pacientů po refrakční chirurgii. Konkrétně na určení rozdílu hodnot průměrné keratometrie a net power a na hypotetickou kalkulaci výsledné optické mohutnosti sférické nitrooční čočky. Diference byla hodnocena mezi vzorcem *SRK/T2* a *OCT-based IOL formula*.

Stěžejním úkolem experimentální části bylo ověření následujících hypotéz:

- a) Hypotéza 1: hodnota AP poměru radiů rohovky získaného pomocí předněsegmentových snímků na OCT bude v rámci měřeného souboru odpovídat standardně uznávanému poměru Gullstrandova modelu oka (1,132),
- b) Hypotéza 2: u skupiny pacientů po rohovkové refrakční chirurgii bude AP poměr odlišných hodnot a hypotetická kalkulace optické mohutnosti nitrooční čočky za použití konvenční metodiky a metodiky využívající celkové optické mohutnosti rohovky rozdílná.

6.1 Metodika

Studie zahrnuje dvě skupiny pacientů. Do skupiny A byly zařazeny pouze oči s fyziologickým očním nálezem bez patologií a relativních kontraindikací ovlivňujících anatomické poměry oka. U skupiny B se jednalo o pacienty po rohovkových refrakčních zákrocích korigujících myopii, u kterých byla předpokládána extrémní hodnota AP poměru. Demografická data jednotlivých skupin jsou uvedena v tabulce 6.1. Ve skupině A bylo nejmladšímu probandovi v moment vyšetření 15 let a nejstaršímu 80 let. Ve skupině B se jednalo o věkové rozmezí od 31 let do 69 let.

	Skupina A	Skupina B
Počet očí	406	20
Počet mužů	72	4
Počet žen	133	6
Průměrný věk	44,76±16,48	51,1±10,81

Tabulka 6.1: Demografická data

Všechna oční vyšetření probíhala v Privátní oční klinice JL v Praze, v období od listopadu 2020 do dubna 2021. Každé vyšetření bylo provedeno autorkou bakalářské práce Lenkou Machatou a vedoucím Ing. Martinem Fůsem za konstantních podmínek na stejných přístrojích.

6.1.1 Analýza AP poměru

Vyšetření na OCT probíhalo pomocí TCP módu OCT RTVue XR. Jednalo se o jedno měření pro každé oko s odpovídající kvalitou obrázku, které bylo vždy uvedeno na snímku z vyšetření (obr. 6.1). Parametr kvality nebyl nižší než 7, a pokud ano, bylo měření zopakováno. Výstupem byly hodnoty poloměru zakřivení přední plochy r₁ (mm), poloměru zakřivení zadní plochy r₂ (mm), anterior power (D), posterior power (D), net power (D) a centrální tloušťky rohovky CCT (µm), jejíž hodnota odpovídá měřené oblasti v centru rohovky o průměru 2 mm.

Obrázek 6.1: Výstupní protokol vyšetření na OCT RTVue XR.

Net corneal power je vypočtena podle vzorce 3.2. Na rozdíl od standardní keratometrie (např. z Lenstaru LS 900) se jedná o hodnoty celkové mohutnosti rohovky vypočtené z naměřených hodnot pachymetrie a poloměrů zakřivení přední a zadní plochy. Hodnoty radiů jsou na optickou mohutnost přepočteny pomocí daných indexů lomu podle vzorce 3.1. Jednotlivé hodnoty jsou na OCT RTVue XR měřené v zóně o průměru 3 mm v apexu rohovky (obr. 6.2).

Obrázek 6.2: Rohovkový sken z OCT.

Měření biometrických dat probíhalo pomocí přístroje Lenstar LS 900. Výsledkem byl interferogram zobrazený na obrázku 6.3. Pomocí něho jsme u každého oka získali informace o axiální délce (AL), centrální tloušťce rohovky (CCT), hloubce přední komory (ACD) a tloušťce čočky (LT).

Obrázek 6.3: Interferogram – Lenstar LS 900.

Dále byly zjištěny hodnoty keratometrie, neboli nejploššího a nejstrmějšího meridiánu, s odpovídajícími osami (K1 a K2). Ta se prostřednictvím tohoto přístroje počítá pomocí polohy 32 reflektovaných bodů světla, které jsou promítány na rohovku. Jsou uspořádány do dvou kruhů s odlišnými průměry. Vnější body měření mají průměr 2,3 mm a vnitřní 1,6 mm [24]. Ukázkový snímek z jednoho měření keratometrie je zobrazen na obrázku 6.4. Další hodnotou, která byla získávána, byla white to white (WTW), což je vzdálenost od limbu k limbu přes rohovku, vedoucí ke zjištění jejího průměru.

Obrázek 6.4: Snímek z jednoho měření keratometrie – Lenstar LS 900.

Pro každé oko v souboru byla realizována minimálně dvě měření (respektive analýza minimálně 8 snímků) s maximální odchylkou 0,125 D. V případě, že odchylka byla větší, bylo měření opakováno. Ukázkový výsledný protokol vyšetření je na obrázku 6.5.

Clicking on measured value opens the o	detail view	OD		os	
		Right Eye		Left Eye	
Measuring mode	Mode	Phakic		Phakic	
Axial length	AL	22,91 mm	±0,009 mm	23,04 mm	±0,016 mm
Cornea thickness	CCT	488 µm	±1,1 μm	490 µm	±1,3 μm
Aqueous depth	AD	3,19 mm	±0,013 mm	3,22 mm	±0,021 mm
Anterior chamber depth including cornea	ACD	3,68 mm	±0,013 mm	3,71 mm	±0,020 mm
Lens thickness	LT	3,61 mm	±0,027 mm	3,59 mm	±0,023 mm
Retina thickness	RT	200** µm	±0,0 μm	200** µm	±0,0 μm
Flat meridian	K1	43,69 D @ 7 °	±0,068 D	43,72 D @ 179 °	±0,029 D
Steep meridian	K2	44,18 D@ 97 °	±0,078 D	44,23 D @ 89 °	±0,024 D
Astigmatism	AST	-0,49 D @ 7 °	±6,0°	-0,51 D @ 179 °	±4,3 °
Keratometric index	n	1,3375		1,3375	
White to White	WTW	12,22 mm	±0,025 mm	12,30 mm	±0,010 mm

Obrázek 6.5: Tabulka výsledných hodnot biometrického vyšetření z Lenstaru LS 900.

6.1.2 Hypotetická kalkulace optické mohutnosti IOL

Pro porovnání hypotetických kalkulací byly využity vzorce *SRK/T2* a *OCT-based formula*. [23, 30, 31] zvolená hodnota A-konstanty byla pro oba vzorce rovna 118,7.

OCT-based IOL formula

Uvedený vztah *OCT-based IOL formula* je určen pro oči po laserových rohovkových refrakčních zákrocích korigujících myopii. Rohovka i IOL jsou v tomto vzorci modelovány jako tenké čočky. Tento vzorec využívá vstupní hodnoty z biometrie (konkrétně *AL* a *ACD*) i z OCT (*NCP*, P_p a *CCT*).

Popsány jsou jednotlivé vzorce pro výpočty neznámých, které jsou součástí finálního vzorce uvedeného s ukázkovým výpočtem. Konkrétně pACD, IOL depth a eff C_p . Vzorec pro konstantu pACD je

$$pACD = \frac{A - konstanta \cdot 0,5663 \cdot 65,6 + 3,595}{0,9704}$$

kde A-konstanta je rovna 118,7. U *IOL depth* záleží na axiální délce. V případě, že je menší nebo rovna 24,4 mm, počítá se odlišně, než když je její hodnota větší. [7,23]

 $AL \le 24.4 \text{ mm}$

IOL depth =
$$\left[0,711 \cdot \left(ACD - \frac{CCT}{1000}\right) + 0,623 \cdot \sqrt{AL} - 0,25 \cdot P_p\right] + (pACD - 8,11)$$

AL > 24.4 mm

IOL depth =
$$0.711 \cdot \left(ACD - \frac{CCT}{1000}\right) + 0.623 \cdot \sqrt{[AL + 0.8 \cdot (AL - 24.4)]} - 0.25 \cdot P_p + (pACD - 8.11)$$

Kde *ACD* je hloubka přední komory, *AL* axiální délka oka, P_p optická mohutnost zadní plochy rohovky, *pACD* konstanta pro tento vzorec rovna 5,37. Pro efektivní optickou mohutnost rohovky platí vztah:

$$eff C_p = net \ power + 0,0302 \cdot AL - 1,739$$

Kde $eff C_p$ je effective corneal power (efektivní optická mohutnost rohovky) a *net power* je hodnota simulované keratometrie z OCT. Tyto mezivýpočty jsou využity pro zjištění výsledné optické mohutnosti sférické nitrooční čočky prostřednictvím následujícího vzorce:

$$IOL \ power = \frac{n}{AL - IOL \ depth - \frac{CCT}{1000}} \cdot 1000 - \frac{n}{\left(\frac{n}{eff \ C_p} - \frac{IOL \ depth + \frac{CCT}{1000}}{1000}\right)}$$
(7.1)

n – index lomu komorové vody 1,336, *eff* C_p – effective corneal power, *CCT* – centrální tloušťka rohovky. Pro názornost je ke vzorovému výpočtu přiložena tabulka 6.2 dosazovaných hodnot vycházejících z měření pacienta č.1 ze skupiny B a z početních výsledků předchozích rovnic.

OCT-based IOL formula							SRK/T2				
AL (mm)	ACD (mm)	Net power (D)	CCT (µm)	eff Cp (D)	IOL depth (mm)	pACD (-)	K (D)	r (mm)	LOPT (mm)	ACD _{est} (mm)	C _w (mm)
22,21	2,65	44,17	509	43,10	3,36	5,37	44,97	7,51	22,42	5,04	11,97

Tabulka 6.2: Vstupní hodnoty pro ukázkové výpočty hypotetických kalkulací pacienta č.1 skupiny B

Ukázkový výpočet:

$$IOL \ power = \frac{1,336}{22,21 - 3,36 - \frac{509}{1000}} \cdot 1000 - \frac{1,336}{\left(\frac{1,336}{43,10} - \frac{3,36 + \frac{509}{1000}}{1000}\right)}$$

IOL power = 23,59 Dpt

SRK/T2

Pro porovnání výsledků *OCT-based IOL* byl použit vzorec *SRK/T2*, který využívá hodnoty průměrné keratometrie přední plochy rohovky. Jeho součástí jsou konstanty *V*, n_a , n_c , n_cm1 a *A-konstanta*. Pro upravovanou axiální délku *LCOR* platí, že pokud je $AL \le 24,2$ je *LCOR* rovna hodnotě *AL*. [30, 31]

Pro AL > 24,2 platí vztah:

$$LCOR = -3,446 + 1,716 \cdot AL - 0,0237AL^2$$

LCOR – korigovaná axiální délka, AL – axiální délka.Optická AL (LOPT) se počítá:

$$LOPT = AL + 0,65696 - 0,02029 \cdot AL$$

Odhadovanou pooperační hloubku přední komory pro dané oko ACDest vypočítáme:

$$ACD_{est} = r - \sqrt{r^2 - \left(\frac{C_w^2}{4}\right)} + 0,62467 \cdot A - konstanta - 68,747 - 3,336$$

Kde je A-konstanta rovna 118,7 a pro poloměr zakřivení r platí následující vzorec.

$$r = \frac{337,5}{K}$$

K je průměrná keratometrie. Cw (corneal width) šířku rohovky spočítáme:

$$C_w = -5,40948 + 0,58412 \cdot LCOR + 0,098 \cdot K$$

Uvedené vypočítané a naměřené hodnoty dosadíme do finálního vzorce:

$$P = \frac{1000 * n_a * (n_a * r - n_c m1 * LOPT - 0,001 * tg * (V * (n_a * r - n_c m1 * LOPT) + LOPT \cdot r))}{(LOPT - ACDest) * (n_a * r - n_c m1 * ACDest - 0,001 * tg * (V * (n_c * r - n_c m1 * ACDest) + ACDest \cdot r))}$$
(7.2)

Kde *P* je optická mohutnost nitrooční čočky, *V*=12, n_a = 1,336, n_c =1,333, n_c m1=0,333, *tg*=0. Vstupní data pro ukázkový výpočet jsou uvedena v tabulce 6.2. [30, 31]

Ukázkový výpočet:

$$P = \frac{1000*1,336*(1,336*7,51-0,333*22,21-0,001*0*(12*(1,336*7,51-0,333*22,21)+22,21\cdot7,51))}{(22,21-5,04)*(1,336*7,51-0,333*5,04-0,001*0*(12*(1,333*7,51-0,333*5,04)+5,04\cdot7,51))}$$

$$P = 23,61 \text{ Dpt}$$

7 Výsledky

Všechna vstupní data jsou uvedena v příloze A a B. Jejich průměrné hodnoty pro obě skupiny jsou v tabulce 7.1. Z výsledků bylo zjištěno, že průměrná hodnota AP poměru pro skupinu A je rovna 1,17±0,02. Naměřené hodnoty tohoto poměru se pohybují v rozmezí od 1,085 do 1,273. Na grafu (viz obrázek 7.1) je zobrazena četnost AP poměru skupiny A pro dílčí intervaly.

			2	
	Skup	ina A	Skup	ina B
	Průměr ± Směr. odchylka	Medián	Průměr ± Směr. odchylka	Medián
r ₁ (mm)	7,73±0,27	7,73	8,42±0,66	8,44
r ₂ (mm)	6,59±0,27	6,58	6,59±0,37	6,47
$\mathbf{r}_1/\mathbf{r}_2$	1,17±0,02	1,17	1,28±0,06	1,26
Anterior power (D)	48,68±1,69	48,66	44,90±3,53	44,53
Posterior power (D)	-6,09±0,25	-6,08	-6,09±0,34	-6,18
Net power (D)	42,72±1,49	42,70	38,92±3,28	38,61
K _{ave} (D)	43,48±1,47	43,51	40,11±2,80	39,69
AL (mm)	23,75±1,05	23,62	25,92±1,89	26,08
CCT (µm)	552,99±35,23	554	507,78±35,36	520,5
ACD (mm)	3,35±0,39	3,33	3,33±0,42	3,35
LT (mm)	4,08±0,51	4,06	3,78±1,15	3,98
WTW (mm)	12,18±0,46	12,21	12,16±0,51	12,4

Tabulka 7.1: Průměr a medián naměřených dat

Obrázek 7.1: Graf četnosti AP poměru.

Z grafu lze vyčíst, že nejvyšší četnost AP poměru byla v intervalu 1,156–1,179 a tvořila 41 % z 406 očí. Druhým nejpočetnějším intervalem, který se týkal 26 %, byl 1,179–1,203. Třetí rozmezí 1,132–1,156 se týkalo 16 %. Do intervalu 1,107–1,132 obsahujícího konvenčně uznávaný poměr spadalo 2,9 % očí.

Na obrázku 7.2 jsou graficky zobrazeny všechny naměřené poměry r_1/r_2 skupiny A společně s mediánem a zároveň vynesené přímky, které odpovídají jednotlivým AP poměrům alternativních modelů oka. Jsou z něj patrné oblasti mezi jednotlivými teoretickými hodnotami, ve kterých se nejvíce naměřené hodnoty vyskytovaly.

Obrázek 7.2: Bodový graf naměřených dat AP poměru společně s teoretickými hodnotami schematických modelů oka

Z grafu plyne, že nejvíce pacientů spadalo do oblasti mezi modelem oka od Gullstranda (1,132) a modelem od Navarra (1,187), čemuž odpovídá i hodnota mediánu r_1/r_2 1,174.

Pro názornost je na následujícím grafu (obrázek 7.3) zobrazeno společně procentuální rozdělení v jednotlivých intervalech obou měřených skupin, potvrzující předpokládané vyšší hodnoty r_1/r_2 u pacientů po refrakčním zákroku (skupiny B).

Obrázek 7.3: Graf porovnávající procentuální četnost jednotlivých AP poměrů skupiny A a skupiny B

Další analýza spočívala v porovnání hodnot naměřeného AP poměru s teoretickými modely oka. Konkrétně pomocí průměrné odchylky v absolutní hodnotě a statistického oboustranného z-testu (viz. tabulka 7.2).

Model oka (Hodnota AP poměru)	Gullstrand (1,132)	Navarro (1,187)	Le grand, Lotmar, Kooijman (1,2)	Liou a Brennan (1,214)
Průměrný rozdíl ± Směr. odchylka (-)	0,051±0,023	0,021±0,016	0,026±0,019	0,036±0,021
p (-)	<0,001	<0,001	<0,001	<0,001

Tabulka 7.2: Rozdíl r_1/r_2 od jednotlivých teoretických modelů oka

Z *p-hodnoty* plyne, že na 5% hladině významnosti se naměřená data r_1/r_2 statisticky významně liší od všech teoretických modelů oka.

U porovnání diference průměrné keratometrie K_{ave} z biometru a *Net power* z OCT byl zjištěn průměrný rozdíl hodnot 0,844±0,403 D. Grafické znázornění vzájemného vztahu mezi nimi je zobrazeno na obrázku 7.4.

Obrázek 7.4: Graf závislosti Net power a Kave

Pro určení signifikace rozdílů mezi hodnotami průměrné keratometrie a *Net power* byl aplikován dvouvýběrový t-test s rovností rozptylů. Výsledná hodnota (*p-value*) na 5% hladině významnosti byla P<0,001. Z uvedené hodnoty plyne, že K_{ave} a *Net power* se statisticky významně liší.

Průměrný rozdíl mezi hypotetickou kalkulací optické mohutnosti nitrooční čočky vzorcem *SRK/T2* a *OCT-based IOL formula* počítán v absolutní hodnotě byl roven 1,54±1,71 D. Minimální rozdíl byl 0,016 D a maximální 6,525 D, s tím že procentuální četnost rozdílu nad 1 D byla u 50 % očí. Přestože byla odchylka rozdílů velmi vysoká, statistická významnost diference nebyla potvrzena použitím Wilcoxonova dvouvýběrového testu (znám také jako Mannův-Whitneyův test, viz tabulka 7.3).

	SRK/T2	OCT-based IOL formula	∆±Směr. odchylka
Průměr (D)	20,484	19,212	1,54±1,71
p (-)		0,25	

Tabulka 7.3: Zjištěné hodnoty vztahující se k hypotetické kalkulaci IOL

Data popsaná pomocí "Δ" znamenají rozdíl mezi SRK/T2 a OCT-based IOL formula.

Hodnota *p* (*p*=0,25) nepotvrdila statisticky významný rozdíl mezi hypotetickými kalkulacemi pomocí uvedených vzorců.

Pro zhodnocení vzájemného vztahu r_1/r_2 , rozdílu hodnot průměrné keratometrie a *Net power* a diference výsledků hypotetické kalkulace s biometrickými daty byl využit Pearsonův korelační koeficient, jehož hodnoty jsou uvedeny v tabulce 7.4.

	K	AL	CCT	ACD	LT	WTW
	(D)	(mm)	(µm)	(mm)	(mm)	(mm)
$\mathbf{r}_1/\mathbf{r}_2$	0,043	-0,030	0,168	-0,051	-0,023	-0,257
ΔK_{ave} a Net power (D)	0,088	-0,087	0,059	-0,054	0,074	-0,045
Δ SRK/T2 a OCT-based IOL formula (D)	0,150	-0,186	-0,325	-0,018	-0,085	-0,054

Tabulka 7.4: Pearsonův korelační koeficient

Delta "Δ" znamená rozdíl mezi zmíněnými hodnotami

Nejvýraznější korelace r_1/r_2 s biometrickými daty byla s WTW, i tak se ale jednalo o slabou, negativní korelaci, což potvrzuje i znázornění pomocí grafu na obrázku 7.5.

Obrázek 7.5: Graf korelace r_1/r_2 a WTW

8 Diskuse

Hlavním cílem bakalářské práce bylo porovnat naměřené hodnoty AP poměru s jeho hodnotou z Gullstrandova modelu oka. Na 406 očích skupiny A byla zjištěna průměrná hodnota 1,17 \pm 0,02, která se od konvenčně uznávané hodnoty 1,132 lišila průměrně o 0,051 \pm 0,023. Zmíněnou mírou rozdílu a signifikantní odlišností na 5% hladině významnosti (*p*<0,001) byla vyvrácena hypotéza I, že hodnota AP poměru radiů rohovky získaného pomocí předně-segmentových snímků na OCT bude v rámci měřeného souboru odpovídat standardně uznávanému poměru Gullstrandova modelu oka.

Výsledek potvrzuje studie zabývající se podobnou problematikou z roku 2018, kterou publikoval Asato Hasegawa s kolegy. Na 501 očích bez patologie rohovky zjistili pomocí předně-segmentového OCT (SS-1000 Casia™; Tomey) průměrnou hodnotu AP poměru 1,19±0,02 a stejně jako naše studie potvrdili odlišnost od Gullstrandova AP poměru [6]. Mezi další studie potvrzující tuto odlišnou hodnotu patří studie z roku 2006 od M. Dubbelmana, V. A. D. P. Sicama, G. L. Van der Heijdee. V té byl zkoumán tvar zadní plochy rohovky pomocí Scheimpflugovy kamery na 114 očích, hodnota pro AP poměr byla 1,19±0,01 [32]. Dále v roce 2007 Han-Bor Fam a Kooi-Ling Lim zjišťovali platnost keratometrického indexu 1,3315 vycházejícího z Gullstrandova modelu oka při predikci optické mohutnosti zadní plochy rohovky. Pomocí Orbscanu II byl u 2429 očí AP poměr 1.22±0.03 [33]. Článek z roku 2008 (autoři Jau-Der Ho, Ching-Yao Tsai, Ray Jui-Fang Tsai Li-Lin Kuo, I-Lun Tsai, Shiow-Wen Liou) obsahuje výsledky z měření 221 pravých očí na Pentacamu a hodnotu AP poměru 1.223±0.034 [34]. Článek z roku 2010 (autoři Maolong Tang; Alex Chen; Yan Li; David Huang) obsahuje hodnoty z OCT RTVue stejně jako tato studie, avšak hodnoty v něm uvedené se vztahují k poměru zakřivení zadní plochy ku přední s výsledkem 0.836±0.016 (pro porovnání s naší studií přepočteno na opačný poměr 1,20) [35]. Do studie z roku 2012 (autoři Raúl Montalbán; David P. Piñero; Jaime Javaloy; Jorge L. Alió) bylo zařazeno 117 očí. Průměrný AP poměr měřený principem Scheimpflugovy kamery pomocí systému Sirius byl 1,19±0,02 [36]. Všechny uvedené studie potvrzují rozdílnost hodnoty AP poměru od konvenčně udávané (porovnané v tabulce 8.1), avšak oproti naší studii se jedná o hodnoty vyšší, to může být způsobeno jinou velikostí měřeného souboru očí. Dále také odlišným způsobem měření, kdy jsou výsledné hodnoty ovlivněny například rozdílnými principy měření jednotlivých přístrojů, jejich kalibrací, průměrem oblasti měření či kvalitou jednotlivých snímků.

Jeden z autorů studie (rok vydání)	AP poměr
M. Dubbelman (2006)	1,19±0,01
Han-Bor Fam (2007)	1,22±0,03
Jau-Der Ho (2008)	1,223±0,34
Maolong Tang (2010)	1,20
Raúl Montalbán (2012)	1,19±0,02
Asato Hasegawa (2018)	1,19±0,02

Tabulka 8.1: Porovnání AP poměru z jednotlivých studií [6,32,33,34,35,36]

Porovnání AP poměru proběhlo i s ostatními schematickými modely oka. Na základě míry diference byl vybrán nejvhodnější teoretický model podle hodnoty r_1/r_2 . Z tohoto porovnání vyšel nejlépe, s nejmenší odchylkou 0,021±0,016 (p<0,001), teoretický model od Navarra. Jako druhý nejlepší model vyšel od Le Granda, Lotmara a Koojimana s odchylkou 0,026±0,019 (p<0,001). U skupiny B byl graficky potvrzen předpoklad (obrázek 7.3) odlišné, vyšší hodnoty AP poměru, ačkoliv vzhledem k významně odlišnému počtu očí nelze relevantně srovnávat.

Při zjišťování korelace AP poměru s biometrickými daty pomocí Pearsonova korelačního koeficientu byla zjištěna slabá, negativní korelace s WTW. U zbylých biometrických dat (K, AL, CCT, ACD, LT) se jednalo o korelaci velmi slabou. To je srovnatelné s hodnotami z již zmíněného článku z roku 2018, kdy zkoumaná korelace s biometrickými daty byla taktéž slabá s WTW. V tomto článku je navíc zmíněna slabá korelace s CCT, ta nám ale vyšla velmi slabá. [6]

I přes rozdílný počet očí byl zajímavý rozdíl a směrodatná odchylka anterior power skupiny A 48,68±1,69 D a skupiny B 44,90±3,53 D, zatímco u hodnot posterior power se jednalo o podobné hodnoty (-6,09±0,25 D a -6,09±0,34 D). Diference prokazuje změnu radiu přední plochy rohovky indukovanou myopickými laserovými refrakčními operacemi.

Rozdíl mezi hodnotami průměrné keratometrie a *Net power* (skupiny A) byl 0,844±0,403 D a pomocí t-testu byla zjištěna statisticky významná odlišnost těchto dvou měřených hodnot. U hypotetické kalkulace sférické nitrooční čočky pro skupinu B nebyla potvrzena hypotéza 2, neboť je průměrný rozdíl mezi hodnotami *SRK/T2* (využívající K_{ave}) a *OCT-based IOL formula* (využívající *Net power*) sice 1,54±1,71 D, avšak zřejmě kvůli nízkému počtu očí nebyla na 5% hladině významnosti potvrzena jejich statistická rozdílnost. Tvrzení o nerozdílnosti podporuje článek z roku 2018, kde byl sledován vliv AP poměru na chyby ve výpočtech optických

mohutností nitroočních čoček prostřednictvím odlišných vzorců, než byly využity v této práci (SRK/T, Haigis, Holladay 1 a Hoffer Q), přičemž korelace AP poměru s chybami ve výpočtech IOL porovnávané pro 4 vzorce nebyla statisticky významná. [6] Je ale potřeba věnovat pozornost vysokému rozptylu mezi rozdíly výsledných hodnot kalkulací, kdy se v jednom případě jednalo i o diferenci 6,525 D mezi vzorci. Z hodnot rozptylu lze tvrdit, že použití *Net power* bude v individuálních případech hrát roli, díky tomu je vhodné použití právě *OCT-based IOL formula*.

9 Závěr

V úvodních teoretických kapitolách byly popsány vlastnosti rohovky, její parametry a principy, pomocí nichž je lze měřit. V experimentální části bylo pomocí vyšetření na biometru a předněsegmentovém OCT dosaženo vysokého počtu hodnot k analýze r₁/r₂, potřebných k porovnání s konvenčně uznávanou hodnotou 1,132 z Gullstrandova modelu oka. Navíc byl naměřený AP poměr porovnán s dalšími schematickými modely oka. Dále byla zjišťována potenciální korelace s biometrickými daty oka a byl teoreticky vyhodnocen vliv užití *Net Power* na hypotetickou kalkulaci sférické nitrooční čočky.

Analýzou AP poměru byl na 406 očí zjištěn signifikantní rozdíl oproti jeho konvenční hodnotě. Jednalo se o rozdíl 0,051±0,023 a průměrnou hodnotu 1,17±0,02. Z porovnání s ostatními schematickými modely na základě míry diference nejlépe vyšel teoretický model od Navarra s odchylkou 0,021±0,016. Korelace AP poměru s biometrickými daty byla zjištěna pouze slabá s WTW. Hodnota statisticky významného rozdílu mezi hodnotami průměrné keratometrie a *Net power* byla 0,844±0,403 D. Na 20 očích po rohovkové refrakční chirurgii byly graficky potvrzeny odlišné, vyšší hodnoty AP poměru. Na tomto vzorku byl u použití *Net power* na kalkulaci IOL prostřednictvím *OCT-based IOL formula* vyvrácen předpoklad rozdílnosti oproti vzorci využívajícímu průměrnou keratometrii (SRK/T2) a tudíž nebyl potvrzen statisticky významný vliv na hypotetickou kalkulaci sférické nitrooční čočky. Avšak zjištěná hodnota rozptylu rozdílů mezi vzorci ukazuje vliv *Net power* na výslednou hodnotu optické mohutnosti nitrooční čočky u individuálních případů.

Hlavním cílem bakalářské práce bylo ověření platnosti konvenčně uznávaného předpokladu poměru radiů rohovky, pomocí měření na předně-segmentovém OCT a porovnat odlišné teoreticky stanovené hodnoty AP poměru vycházející z různých schematických modelů oka.

Pomocí analýzy získaných dat a jejich statistickým zpracováním byly ověřovány dvě hypotézy:

Hypotéza 1: hodnota AP poměru radiů rohovky získaného pomocí předně-segmentových snímků na OCT bude v rámci měřeného souboru odpovídat standardně uznávanému poměru Gullstrandova modelu oka.

Hypotéza 2: u skupiny pacientů po rohovkové refrakční chirurgii bude AP poměr odlišných hodnot a hypotetická kalkulace optické mohutnosti nitrooční čočky za použití konvenční metodiky a metodiky využívající celkové optické mohutnosti rohovky rozdílná.

Na základě zpracovaných výsledků experimentální studie byla Hypotéza H1 vyvrácena. U Hypotézy H2 byly graficky potvrzeny odlišné hodnoty AP poměru, ale nebyla potvrzena rozdílnost hypotetických kalkulací. Pomocí zjištěných a uvedených hodnot byly cíle práce úspěšně splněny.

Seznam použité literatury

[1] KUCHYNKA, Pavel. *Oční lékařství*. 2., přepracované a doplněné vydání. Praha: Grada Publishing, 2016. ISBN 9788024750798.

[2] ČIHÁK, Radomír. *Anatomie*. Třetí, upravené a doplněné vydání. Ilustroval Ivan HELEKAL, ilustroval Jan KACVINSKÝ, ilustroval Stanislav MACHÁČEK. Praha: Grada, 2016. ISBN 978-80-247-5636-3.

[3] SYNEK, Svatopluk a Šárka SKORKOVSKÁ. *Fyziologie oka a vidění*. 2., dopl. a přeprac. vyd. Praha: Grada, 2014. ISBN 978-80-247-3992-2.

[4] KASCHKE, Michael, Karl-Heinz DONNERHACKE a Michael Stefan RILL. *Optical devices in ophthalmology and optometry: technology, design principles and clinical applications*. Weinheim, Bergstr: Wiley-VCH, 2013. ISBN 978-352-7410-682.

[5] ARTAL, Pablo. *Handbook of visual optics*. Boca Raton: CRC Press, Taylor & Francis Group, [2017]. ISBN 978-1-4822-3785-6.

[6] HASEGAWA, Asato, Takashi KOJIMA, Mana YAMAMOTO, Yukihito KATO, Akeno TAMAOKI a Kazuo ICHIKAWA. Impact of the anterior-posterior corneal radius ratio on intraocular lens power calculation errors. *Clinical Ophthalmology* [online]. 2018, **12**, 1549-1558 [cit. 2020-11-06]. ISSN 1177-5483. Dostupné z: doi:10.2147/OPTH.S161464

[7] *Brochure-Optovue-Total-Corneal-Power-TCP-EN* [online]. [cit. 2020-12-06]. Dostupné z: https://simovision.com/assets/Uploads/Brochure-Optovue-Total-Corneal-Power-TCP-EN.pdf

[8] BENEŠ, Pavel. *Přístroje pro optometrii a oftalmologii*. Brno: Národní centrum ošetřovatelství a nelékařských zdravotnických oborů, 2015. ISBN 978-80-7013-577-8.

[9] VESELÝ, Petr a Pavel BENEŠ. *Vyšetřovací metody v optometrii: a interpretace jejich výsledků v praxi*. Praha: Grada Publishing, 2019. ISBN 978-80-271-2071-0.

[10] KANELLOPOULOS, John a George ASIMELLIS. Color light-emitting diode reflection topography: validation of keratometric repeatability in a large sample of wide cylindrical-range corneas. *Clinical Ophthalmology* [online]. [cit. 2020-12-31]. ISSN 1177-5483. Dostupné z: doi:10.2147/OPTH.S68371

[11] CUI, Xian-Hua, Young-Sik YOO, Youngju AN a Choun-Ki JOO. Comparison of keratometric measurements between color light-emitting diode topography and Scheimpflug

camera. *BMC Ophthalmology* [online]. 2019, **19**(1) [cit. 2020-12-31]. ISSN 1471-2415. Dostupné z: doi:10.1186/s12886-019-1106-1

[12] Cassini [online]. In: . [cit. 2021-04-03]. Dostupné z: https://www.oftis-opta.cz/wp-content/uploads/2014/02/cassini.jpg

[13] HEISSIGEROVÁ, Jarmila. *Oftalmologie: pro pregraduální i postgraduální přípravu*.Praha: Maxdorf, [2018]. Jessenius. ISBN 9788073455804.

[14] KOLARČÍK, Lukáš, Václav DEDEK a Michal PTÁČEK. *Příručka pro sestry v oftalmologii*. Praha: Grada Publishing, 2016. Sestra (Grada). ISBN 978-80-247-5458-1.

[15] MCCAREY, Bernard E, Henry F EDELHAUSER a Michael J LYNN. Review of Corneal Endothelial Specular Microscopy for FDA Clinical Trials of Refractive Procedures, Surgical Devices, and New Intraocular Drugs and Solutions. *Cornea* [online]. 2008, **27**(1), 1-16 [cit. 2020-11-21]. ISSN 0277-3740. Dostupné z: doi:10.1097/ICO.0b013e31815892da

[16] SCHUMAN, Joel S., Carmen A. PULIAFITO, James G. FUJIMOTO a Jay S. DUKER, ed. *Everyday OCT: A Handbook for Clinicians and Technicians*. Second edition. USA: SLACK Incorporated, 2017. ISBN 978-1-63091-172-0.

[17] ARTAL, Pablo, ed. *Handbook of Visual Optics: Instrumentation and Vision Correction, Volume Two.* Boca Raton: CRC Press, Taylor & Francis Group, 2017. ISBN 9781482237863.

[18] NĚMEC, Pavel, Veronika LÖFFLEROVÁ a Bohdan KOUSAL. *Optická koherenční tomografie: klinický atlas sítnicových patologií*. 2., přepracované a doplněné vydání. Praha: Mladá fronta, 2017. ISBN 978-80-204-4414-1.

[19] HLINOMAZ, Ivo. Přístroje pro měření rohovkových parametrů. Brno, 2015. Bakalářská práce. Masarykova univerzita, Lékařská fakulta, Katedra optometrie a ortoptiky. Vedoucí práce Mgr. Pavel Beneš Ph.D.

[20] LEUNG, C K-S a R N WEINREB. Anterior chamber angle imaging with optical coherence tomography. *Eye* [online]. 2011, 25(3), 261-267 [cit. 2021-01-01]. ISSN 0950-222X. Dostupné z: doi:10.1038/eye.2010.201

[21] IRIBARREN, Rafael, Fernando Fuentes BONTHOUX, Tomas PFORTNER, Pablo CHIARADIA a William K. STELL. Corneal Power Is Correlated with Anterior Chamber Diameter. *Investigative Opthalmology & Visual Science* [online]. 2012, 53(7) [cit. 2021-01-01]. ISSN 1552-5783. Dostupné z: doi:10.1167/iovs.11-8949

[22] RTVue XR 100 Avanti Edition [online]. [cit. 2020-12-07]. Dostupné z: https://www.optovue.com/

[23] Huang, David & Tang, Maolong & Wang, Li & Zhang, Xinbo & Armour, Rebecca & Gattey, Devin & Lombardi, Lorinna & Koch, Douglas. (2013). Optical Coherence Tomography–Based Corneal Power Measurement and Intraocular Lens Power Calculation Following Laser Vision Correction (An American Ophthalmological Society Thesis). Transactions of the American Ophthalmological Society. 111. 34-45.

[24] Lenstar LS 900 [online]. [cit. 2020-12-06]. Dostupné z: https://www.haagstreit.com/fileadmin/Haag-

Streit_Diagnostics/biometry/lenstar/Manuals_IFUs/Manual_instructions_for_use_Lenstar_90 0__Czech_.pdf

[25] SAVINI, Giacomo. IOL Power Calculation After Refractive Surgery [online]. [cit. 2020-12-26]. Dostupné z: https://crstoday.com/articles/2015-oct/iol-power-calculation-after-refractive-surgery/

[26] MOHAN, Prashob a Arup CHAKRABARTI. Intraocular lens power calculation in
2019: The cutting edge. *Kerala Journal of Ophthalmology* [online]. 2019, **31**(3) [cit. 2020-1226]. ISSN 0976-6677. Dostupné z: doi:10.4103/kjo.kjo 71 19

[27] SAVINI, Giacomo a Kenneth J. HOFFER. Intraocular lens power calculation in eyes with previous corneal refractive surgery. *Eye and Vision* [online]. 2018, 5(1) [cit. 2020-12-26].
 ISSN 2326-0254. Dostupné z: doi:10.1186/s40662-018-0110-5

[28] WANG, Li, Tatyana SPEKTOR, Rodrigo G. DE SOUZA a Douglas D. KOCH.
Evaluation of total keratometry and its accuracy for intraocular lens power calculation in eyes after corneal refractive surgery. *Journal of Cataract & Refractive Surgery* [online].
2019, 45(10), 1416-1421 [cit. 2021-01-01]. ISSN 0886-3350. Dostupné z: doi:10.1016/j.jcrs.2019.05.020

[29] LAWLESS, Michael, James Y. JIANG, Chris HODGE, Gerard SUTTON, Timothy V. ROBERTS a Graham BARRETT. Total keratometry in intraocular lens power calculations in eyes with previous laser refractive surgery. *Clinical & Experimental Ophthalmology* [online]. 2020, **48**(6), 749-756 [cit. 2021-01-01]. ISSN 1442-6404. Dostupné z: doi:10.1111/ceo.13760

[30] SHEARD, Richard M., Guy T. SMITH a David L. COOKE. Improving the prediction accuracy of the SRK/T formula: The T2 formula. *Journal of Cataract and Refractive*

Surgery [online]. 2010, **36**(11), 1829-1834 [cit. 2021-04-10]. ISSN 0886-3350. Dostupné z: doi:10.1016/j.jcrs.2010.05.031

[31] RETZLAFF, John A., Donald R. SANDERS a Manus C. KRAFF. Development of the SRK/T intraocular lens implant power calculation formula. *Journal of Cataract and Refractive Surgery* [online]. 1990, **16**(3), 333-340 [cit. 2021-04-10]. ISSN 0886-3350. Dostupné z: doi:10.1016/S0886-3350(13)80705-5

[32] DUBBELMAN, M., V.A.D.P. SICAM a G.L. VAN DER HEIJDE. The shape of the anterior and posterior surface of the aging human cornea. *Vision Research* [online]. 2006, 46(6-7), 993-1001 [cit. 2021-04-10]. ISSN 00426989. Dostupné z: doi:10.1016/j.visres.2005.09.021

[33] FAM, Han-Bor a Kooi-Ling LIM. Validity of the keratometric index: Large population-based study. *Journal of Cataract and Refractive Surgery* [online]. 2007, **33**(4), 686-691 [cit. 2021-04-10]. ISSN 0886-3350. Dostupné z: doi:10.1016/j.jcrs.2006.11.023

[34] HO, Jau-Der, Ching-Yao TSAI, Ray Jui-Fang TSAI, Li-Lin KUO, -Lun I. TSAI a Shiow-Wen LIOU. Validity of the keratometric index: Evaluation by the Pentacam rotating Scheimpflug camera. Journal of Cataract and Refractive Surgery [online]. 2008, 34(1), 137-145 [cit. 2021-04-11]. ISSN 0886-3350. Dostupné z: doi:10.1016/j.jcrs.2007.09.033

[35] TANG, Maolong, Alex CHEN, Yan LI a David HUANG. Corneal power measurement with Fourier-domain optical coherence tomography. Journal of Cataract and Refractive Surgery [online]. 2010, 36(12), 2115-2122 [cit. 2021-04-11]. ISSN 0886-3350. Dostupné z: doi:10.1016/j.jcrs.2010.07.018

[36] MONTALBÁN, Raúl, David P. PIÑERO, Jaime JAVALOY a Jorge L. ALIÓ. Scheimpflug photography–based clinical characterization of the correlation of the corneal shape between the anterior and posterior corneal surfaces in the normal human eye. Journal of Cataract and Refractive Surgery [online]. 2012, 38(11), 1925-1933 [cit. 2021-04-11]. ISSN 0886-3350. Dostupné z: doi:10.1016/j.jcrs.2012.06.050

Seznam symbolů a zkratek

Symbol	Jednotka	Význam
D	D	Optická mohutnost
У	mm	Vzdálenost mezi testovými značkami
у'	mm	Vzdálenost obrazů testových značek
r_1	mm	Poloměr zakřivení přední plochy rohovky
r_2	mm	Poloměr zakřivení přední plochy rohovky

Seznam symbolů

Seznam zkratek

Zkratka	Význam
AP ratio	Anterior corneal radius/Posterior corneal radius
LASIK	Laser in-situ keratomileusis
PRK	Fotorefrakční keratektomie
LED	Light-Emitting Diode, elektroluminiscenční dioda
CCD	Charge-coupled device
OCT	Optická koherenční tomografie
CD	Cell density, hustota buněk
CV	Coefficient of variation, koeficient variace
AVE	Average, průměr
SD	Směrodatná odchylka
AS-OCT	Anterior-segment optical coherence tomografy
AL	Axiální délka bulbu
IOL	Inraocular lens
WTW	White-to-white
ТК	Total keratometry
NCP	Net corneal power
Kave	Average keratometry, průměrná keratometrie

Seznam obrázků

Obrázek 2.1: Gullstrandův model oka [4]	3
Obrázek 2.2: Schéma AP poměru před a po refrakčním zákroku [7]	4
Obrázek 3.1: Princip keratometru. M_1 a M_2 testové značky, y jejich vzdálenost, M_1	a M2 ['] jejich
obrazy, y vzdálenost obrazů testových značek, s vzdálenost testových značek od	rohovky, s
vzdálenost obrazů od rohovky, C střed křivosti rohovky, rc poloměr zakřivení rohov	vky [4]5
Obrázek 3.2: Optoelektronický keratometr [4]	7
Obrázek 3.3: Placidovy kruhy promítnuté na rohovce [5]	8
Obrázek 3.4: Cassini [12]	9
Obrázek 3.5: Princip OCT (upraveno) [17]	12
Obrázek 3.6: Michelsonův interferometr [4, 19]	12
Obrázek 3.7: Obrázky a a b rohovkový sken z přístroje CASIA [20], obrázek c	rohovkový
sken z přístroje Visante [21]	14
Obrázek 3.8: Průměr zóny měření poloměrů zakřivení <i>Ra</i> , <i>Rp</i> na rohovkovém sker	าน z RTVue
[23]	15
Obrázek 6.1: Výstupní protokol vyšetření na OCT RTVue XR	22
Obrázek 6.2: Rohovkový sken z OCT.	22
Obrázek 6.3: Interferogram – Lenstar LS 900.	23
Obrázek 6.4: Snímek z jednoho měření keratometrie – Lenstar LS 900	23
Obrázek 6.5: Tabulka výsledných hodnot biometrického vyšetření z Lenstaru LS	90024
Obrázek 7.1: Graf četnosti AP poměru.	29
Obrázek 7.2: Bodový graf naměřených dat AP poměru společně s teoretickými	hodnotami
schematických modelů oka	
Obrázek 7.3: Graf porovnávající procentuální četnost jednotlivých AP poměrů s	kupiny A a
skupiny B	31
Obrázek 7.4 :Graf závislosti <i>Net power</i> a <i>K</i> ave	32
Obrázek 7.5: Graf korelace r ₁ /r ₂ a WTW	

Seznam tabulek

Tabulka 2.1: Porovnání hodnot jednotlivých schematických modelů oka [1, 5]	3
Tabulka 6.1: Demografická data	21
Tabulka 6.2: Vstupní hodnoty pro ukázkové výpočty hypotetických kalkulací	pacienta č.1
skupiny B	25
Tabulka 7.1: Průměr a medián naměřených dat	
Tabulka 7.2: Rozdíl r_1/r_2 od jednotlivých teoretických modelů oka	
Tabulka 7.3: Zjištěné hodnoty vztahující se k hypotetické kalkulaci IOL	
Tabulka 7.4: Pearsonův korelační koeficient	
Tabulka 8.1: Porovnání AP poměru z jednotlivých studií [6,32,33,34,35,36]	

Příloha A: Naměřená data skupiny A

Počet očí: 406					LENST	AR LS90	0					o	CT Opt	oVue RT	'Vue Av	anti XR			
ID	K1 (D)	Ax1 (°)	K2 (D)	Ax2 (°)	K (D)	AL (mm)	CCT (µm)	ACD (mm)	LT (mm)	WTW (mm)	r1 (mm)	r2 (mm)	r1/r2	anterior (D)	poster	ior (D)	net (D)	CCT (µm)	ΔK, net
RZODF	44,37	48	44,86	138	44,62	23,11	524	3,07	4,85	11,99	7,543	6,422	1,175	49,85	-6,23	43,62	43,73	514	0,89
RZOSF2	44,76	179	45,02	89	44,89	22,93	526	3,27	4,56	11,91	7,504	6,354	1,181	50,1	-6,3	43,8	43,93	518	0,96
CODM	38,75	169	40,12	79	39,44	24,68	587	3	4,25	13,3	8,62	7,431	1,160	43,62	-5,38	38,24	38,33	576	1,11
COSM2	38,89	0	39,95	90	39,42	24,2	587	2,98	4,75	13,22	8,568	7,416	1,155	43,88	-5,39	38,49	38,59	572	0,83
HODF	43,54	110	45,93	20	44,74	23,47	575	3,23	4,67	11,65	7,462	6,492	1,149	50,39	-6,16	44,23	44,35	564	0,39
HOSF2	44,67	90	45,32	180	45	23,54	578	3,27	4,85	11,56	7,382	6,436	1,147	50,94	-6,22	44,72	44,85	560	0,15
BODF	43,86	16	44,49	106	44,18	22,8	541	3,25	4,19	12,09	7,612	6,478	1,175	49,4	-6,18	43,22	43,34	529	0,84
BOSF2	43,54	167	44,46	77	44	22,88	549	3,27	4,19	11,96	7,708	6,417	1,201	48,78	-6,23	42,55	42,66	537	1,34
MODF	42,78	5	44,45	95	43,62	23,31	583	3,59	4,1	12,65	7,716	6,605	1,168	48,73	-6,06	42,67	42,79	575	0,83
MOSF2	42,21	178	45,13	88	43,67	23,5	586	3,6	4,27	12,87	7,76	6,727	1,154	48,45	-5,95	42,5	42,62	570	1,05
LODM	41,88	172	42,9	82	42,39	24,18	536	3,05	4,9	12,51	7,972	6,845	1,165	47,17	-5,84	41,33	41,43	526	0,96
LOSM2	42,28	3	42,92	93	42,6	24,02	530	3,06	4,9	12,54	7,98	6,888	1,159	47,12	-5,81	41,31	41,41	521	1,19
HODF	43,28	6	44,44	96	43,86	23,61	552	3,74	3,96	12,84	7,61	6,585	1,156	49,41	-6,07	43,34	43,45	539	0,41
HOSF2	43,36	179	44,16	89	43,76	23,6	556	3,8	3,91	12,76	7,776	6,584	1,181	48,36	-6,08	42,28	42,40	537	1,36
MODM	40,08	172	40,88	82	40,48	27,39	582	4,16	3,47	13,54	8,393	7,041	1,192	44,8	-5,68	39,12	39,22	570	1,26
MOSM2	40,12	12	40,95	102	40,54	27,13	582	4,18	3,46	13,52	8,378	7,024	1,193	44,88	-5,69	39,19	39,29	570	1,25
KODM	41,81	119	42,51	29	42,16	25,49	505	3,45	3,33	12,73	7,931	6,745	1,176	47,41	-5,93	41,48	41,58	493	0,58
KOSM2	42,1	73	42,69	163	42,4	25,42	503	3,63	3,95	12,58	7,9	6,728	1,174	47,6	-5,95	41,65	41,75	492	0,65
HODF	42,43	8	43,37	98	42,9	24,7	582	3,04	3,71	11,33	7,886	6,541	1,206	47,68	-6,12	41,56	41,69	573	1,21
HOSF2	41,77	176	42,52	86	42,15	24,29	586	3,04	3,83	11,56	7,969	6,743	1,182	47,18	-5,93	41,25	41,37	573	0,78
VODF	41,13	16	42,66	106	41,9	23,95	598	3,25	4,39	12,29	8,013	6,671	1,201	46,92	-6	40,92	41,05	585	0,85
VOSF2	41,45	178	42,26	88	41,86	23,8	602	3,24	4,39	12,45	8,011	6,655	1,204	46,94	-6,01	40,93	41,05	587	0,81
SODM	44,02	163	44,81	73	44,42	22,94	519	3,31	3,5	12,1	7,568	6,345	1,193	49,68	-6,3	43,38	43,49	508	0,93
SOSM2	43,79	12	44,75	102	44,27	22,85	512	3,26	3,53	12,21	7,566	6,436	1,176	49,69	-6,22	43,47	43,59	501	0,68
KODM	42,79	2	43,58	92	43,19	23,15	517	2,56	4,7	11,85	7,756	6,679	1,161	48,48	-5,99	42,49	42,60	511	0,59
KOSM2	42,76	177	43,84	87	43,3	22,98	522	2,62	4,78	11,87	7,718	6,696	1,153	48,72	-5,97	42,75	42,85	513	0,45
RODM	43,74	175	45,6	85	44,67	24,83	503	3,56	4,63	12,41	7,564	6,555	1,154	49,71	-6,1	43,61	43,72	499	0,95
PODF	47,49	38	47,64	128	47,57	23	559	3,51	3,42	11,4	7,135	5,762	1,238	52,7	-6,94	45,76	45,90	548	1,67
POSF2	47,25	130	47,41	40	47,33	22,68	551	3,49	3,49	11,39	7,119	5,763	1,235	52,82	-6,94	45,88	46,02	545	1,31
VODF	44,4	40	44,74	130	44,57	22,4	601	2,87	4,78	11,65	7,535	6,23	1,209	49,9	-6,42	43,48	43,62	594	0,95
VOSF2	44,13	124	44,41	34	44,27	22,4	606	2,81	4,74	11,58	7,615	6,329	1,203	49,38	-6,32	43,06	43,19	594	1,08
CODM	41,37	28	41,87	118	41,62	24	568	2,86	4,37	12,34	7,966	6,672	1,194	47,2	-6	41,2	41,32	559	0,30
COSM2	41,2	143	41,96	53	41,58	23,93	575	2,83	4,51	11,88	8,036	6,836	1,176	46,79	-5,85	40,94	41,05	558	0,53
MODF	42,12	138	43,28	48	42,7	23,12	605	3,51	4,02	12,2	7,896	6,621	1,193	47,62	-6,04	41,58	41,70	588	1,00
MOSF2	42,8	93	43,1	3	42,95	25,02	602	3,71	3,98	12,6	7,834	6,617	1,184	48	-6,05	41,95	42,08	593	0,87
VODF	43,78	10	44,27	100	44,03	23,19	503	3,42	4,08	12,35	7,67	6,616	1,159	49,02	-6,05	42,97	43,08	492	0,95
VOSF2	43,74	176	44,73	86	44,24	23,07	497	3,34	4,11	12,3	7,684	6,52	1,179	48,94	-6,14	42,8	42,91	492	1,33
HODF	45,3	14	46,28	104	45,79	23,33	518	2,78	4,83	11,46	7,35	5,942	1,237	51,16	-6,73	44,43	44,55	507	1,24
HOSF2	44,98	172	45,79	82	45,39	23,4	522	2,87	4,77	12,14	7,426	6,166	1,204	50,63	-6,49	44,14	44,27	507	1,12
CODM	42,24	155	42,54	65	42,39	23,68	590	2,98	4,31	11,6	8,05	6,753	1,192	46,71	-5,92	40,79	40,90	571	1,49
COSM2	42,3	16	42,8	106	42,55	23,71	587	2,98	4,3	11,56	7,921	6,811	1,163	47,47	-5,87	41,6	41,72	574	0,83
KODM	43,88	136	44,83	46	44,36	23,5	506	3,33	3,63	11,49	7,56	6,169	1,225	49,73	-6,48	43,25	43,37	501	0,99
KOSM2	44,59	37	46,03	127	45,31	23,18	506	3,47	3,67	11,41	7,247	6,042	1,199	51,89	-6,62	45,27	45,39	499	-0,08

VODF	44,7	5	46,19	95	45,45	24,08	534	3	3,87	11,3	7,303	6,201	1,178	51,48	-6,45	45,03	45,16	521	0,29
VOSF2	44,41	1	45,96	91	45,19	23,48	527	3,02	3,88	11,36	7,354	6,352	1,158	51,13	-6,3	44,83	44,95	517	0,24
LODM	43,04	65	44,49	155	43,77	23,17	536	3,53	3,48	11,8	7,655	6,477	1,182	49,12	-6,18	42,94	43,06	510	0,71
LOSM2	44,14	103	44,99	13	44,57	23,2	518	2,68	4,88	11,7	7,556	6,459	1,170	49,76	-6,19	43,57	43,69	509	0,88
PODM	43,57	8	44,79	98	44,18	23,33	609	3,04	4,25	12,23	7,577	6,198	1,222	49,63	-6,45	43,18	43,31	600	0,87
POSM2	42,84	174	43,81	84	43,33	23,58	609	3,02	4,28	12,23	7,656	6,291	1,217	49,11	-6,36	42,75	42,89	595	0,44
VODF	44,44	163	44,59	73	44,52	23,23	549	2,99	5,03	11,96	7,522	6,444	1,167	49,99	-6,21	43,78	43,90	537	0,62
VOSF2	43,74	176	44,75	86	44,25	23,24	548	2,98	5,1	11,99	7,495	6,45	1,162	50,17	-6,2	43,97	44,09	535	0,16
HODF	42,35	1	42,7	91	42,53	23,17	584	3,11	4,16	12,37	7,98	7,017	1,137	47,12	-5,7	41,42	41,53	570	1,00
HOSF2	42,24	1	42,69	91	42,47	23,04	585	3,14	4,43	12,44	7,878	6,868	1,147	47,73	-5,82	41,91	42,02	572	0,45
JODF	43,92	53	44,11	143	44,02	22,71	519	3,27	3,54	11,98	7,704	6,497	1,186	48,8	-6,16	42,64	42,76	506	1,26
JOSF2	44,08	98	44,29	8	44,19	22,67	519	3,22	4,05	11,99	7,612	6,466	1,177	49,39	-6,19	43,2	43,32	507	0,87
BODF	42,84	179	44,95	89	43,9	23,03	563	3,1	4,11	12,2	7,72	6,556	1,178	48,7	-6,1	42,6	42,72	549	1,18
BOSF2	42,83	2	43,96	92	43,4	23,2	571	3,1	4,09	12,15	7,784	6,552	1,188	48,3	-6,11	42,19	42,32	556	1,08
BODF	43,69	179	44,42	89	44,06	23,65	491	3,01	3,69	11,89	7,538	6,571	1,147	49,88	-6,09	43,79	43,90	484	0,16
BOSF2	44,25	20	45,05	110	44,65	23,48	496	3,07	3,89	11,98	7,525	6,429	1,170	49,97	-6,22	43,75	43,86	486	0,79
SRODM	42,17	6	46,06	96	44,12	24,09	556	3,27	4,84	12	7,57	6,208	1,219	49,67	-6,44	43,23	43,35	542	0,77
SROSM2	43,93	134	44,35	44	44,14	23,35	541	3,16	4,9	11,97	7,592	6,221	1,220	49,52	-6,43	43,09	43,22	530	0,92
KODF	42,32	39	43,36	129	42,84	23,73	558	2,81	5,05	11,66	7,948	6,678	1,190	47,31	-5,99	41,32	41,43	544	1,41
KOSF2	42,09	175	44,11	85	43,1	25,64	549	2,94	5,06	11,79	7,923	6,669	1,188	47,46	-6	41,46	41,57	536	1,53
KODM	42,52	120	43,36	30	42,94	23,65	640	3,26	4,92	11,87	7,839	6,552	1,196	47,96	-6,11	41,85	41,99	623	0,95
KOSM2	42,95	31	43,54	121	43,25	23,62	628	3,26	4,87	11,96	7,733	6,485	1,192	48,62	-6,17	42,45	42,59	613	0,66
PODM	40,63	63	41,25	153	40,94	26,29	484	2,98	4,51	12,14	8,172	7,124	1,147	46,01	-5,61	40,4	40,49	476	0,45
POSM2	40,92	91	41,35	1	41,14	26,3	484	3,1	4,55	12,41	8,151	7,237	1,126	46,13	-5,53	40,6	40,69	472	0,45
TODM	44,92	14	45,32	104	45,12	23,39	553	3,43	4,08	11,61	7,39	6,222	1,188	50,88	-6,43	44,45	44,58	539	0,54
TOSM2	45,22	0	45,22	90	45,22	23,77	542	3,51	4,07	11,67	7,439	6,265	1,187	50,54	-6,38	44,16	44,28	529	0,94
CODF	41,86	0	42,65	90	42,26	23,48	550	2,99	4,19	12,26	7,901	6,701	1,179	47,59	-5,97	41,62	41,73	536	0,53
COSF2	41,6	177	42,89	87	42,25	23,86	551	3,02	4,11	12,26	7,843	6,766	1,159	47,94	-5,91	42,03	42,14	542	0,11
FODM	39,14	15	39,26	105	39,2	25,43	530	3,95	3,95	12,84	8,596	6,753	1,273	43,74	-5,92	37,82	37,92	521	1,28
FOSM2	38,94	27	39,12	117	39,03	25,5	514	3,89	3,96	12,78	8,723	6,995	1,247	43,1	-5,72	37,38	37,48	512	1,55
ŠODF	45,37	0	45,37	90	45,37	21,82	538	2,83	4,63	11,3	7,331	6,215	1,180	51,29	-6,44	44,85	44,98	527	0,39
ŠOSF2	45,51	8	45,64	98	45,58	21,77	541	2,83	4,62	11,34	7,381	6,199	1,191	50,94	-6,45	44,49	44,61	526	0,97
HODF	45,3	14	46,28	104	45,79	23,33	518	2,78	4,83	11,46	7,35	5,942	1,237	51,16	-6,73	44,43	44,55	507	1,24
HOSF2	44,98	172	45,79	82	45,39	23,4	522	2,87	4,77	12,14	7,426	6,166	1,204	50,63	-6,49	44,14	44,27	507	1,12
RODM	41,96	13	44,31	103	43,14	23,3	504	3,7	3,69	12,03	7,776	6,69	1,162	48,35	-5,98	42,37	42,48	496	0,66
ROSM2	41,99	171	44,79	81	43,39	23,12	506	3,63	3,92	12,12	7,854	6,655	1,180	47,88	-6,01	41,87	41,97	492	1,42
MODM	45,7	1	46,53	91	46,12	22,36	553	3,38	4,21	12,11	7,288	6,162	1,183	51,59	-6,49	45,1	45,23	541	0,89
MOSM2	45,7	0	46,54	90	46,12	22,42	552	3,42	4,33	12,11	7,347	6,317	1,163	51,17	-6,33	44,84	44,97	540	1,15
VODM	41,68	4	41,94	94	41,81	23,3	573	3,02	4,46	12,36	8,074	6,6	1,223	46,57	-6,06	40,51	40,62	561	1,19
VOSM2	41,62	176	42,57	86	42,1	23,28	587	3,11	4,28	12,13	8,061	6,818	1,182	46,65	-5,87	40,78	40,89	576	1,21
BODF	44,09	147	44,56	57	44,33	23,68	593	3,22	4,01	11,46	7,623	6,307	1,209	49,32	-6,34	42,98	43,11	575	1,22
BOSF2	44,62	44	45,11	134	44,87	23,42	588	3,25	4	11,36	7,418	6,184	1,200	50,69	-6,47	44,22	44,36	582	0,51
TODM	41,91	76	42,68	166	42,3	23,31	572	3,1	3,86	12,1	7,84	6,786	1,155	47,96	-5,89	42,07	42,18	558	0,12
TOSM2	42,94	0	43,52	90	43,23	23,01	565	3,13	3,99	12	7,856	6,918	1,136	47,86	-5,78	42,08	42,19	552	1,04
RODF	43,34	116	43,45	26	43,4	23,76	510	2,91	4,3	11,76	7,777	6,534	1,190	48,35	-6,12	42,23	42,33	495	1,07
ROSF2	43,83	164	44,19	74	44,01	23,77	501	2,96	4,84	11,87	7,724	6,558	1,178	48,68	-6,1	42,58	42,69	490	1,32
KODF	43,41	160	43,59	70	43,5	24,4	623	3,54	4,53	12,54	7,637	6,41	1,191	49,23	-6,24	42,99	43,13	608	0,37
KOSF2	43,74	19	43,9	109	43,82	24,21	622	3,54	4,6	12,5	7,665	6,584	1,164	49,05	-6,07	42,98	43,11	626	0,71
ZODF	45,83	179	48,04	89	46,94	23,66	534	3,24	3,86	11,76	7,175	5,969	1,202	52,4	-6,7	45,7	45,84	523	1,10

ZOSF2	45,76	172	47,46	82	46,61	23,88	539	3,27	3,81	11,78	7,237	6,018	1,203	51,96	-6,65	45,31	45,44	531	1,17
ČODF	45,61	0	45,61	90	45,61	24,42	541	3,69	3,86	11,8	7,351	6,379	1,152	51,15	-6,27	44,88	45,00	533	0,61
ČOSF2	45,84	0	45,84	90	45,84	24,36	543	3,69	3,86	11,74	7,266	6,272	1,158	51,75	-6,38	45,37	45,50	534	0,34
TODM	41,55	157	42,11	67	41,83	24,3	559	3,47	4,43	12,92	8,006	6,944	1,153	46,96	-5,76	41,2	41,31	548	0,52
TOSM2	42,59	0	42,59	90	42,59	24,63	551	3,51	4,49	13	7,858	6,86	1,145	47,85	-5,83	42,02	42,13	536	0,46
CODM	42,63	25	43,39	115	43,01	23,53	552	2,73	4,24	13,26	7,839	6,596	1,188	47,96	-6,06	41,9	42,01	541	1,00
COSM2	42,92	9	43,43	99	43,18	23,46	562	2,68	4,51	12,41	7,831	6,542	1,197	48,01	-6,11	41,9	42,01	544	1,17
KODF	41,83	1	42,31	91	42,07	23,68	603	3,32	4,16	12,35	7,879	6,846	1,151	47,72	-5,84	41,88	42,00	591	0,07
KOSF2	42,08	0	42,08	90	42,08	23,81	603	3,3	4,26	12,36	7,79	6,918	1,126	48,26	-5,78	42,48	42,60	586	-0,52
BODF	42,3	11	43,14	101	42,72	22,78	557	2,52	4,44	11,68	7,919	6,557	1,208	47,48	-6,1	41,38	41,50	548	1,22
BOSF2	42,04	174	43,45	84	42,75	22,98	565	2,64	4,58	11,81	7,903	6,776	1,166	47,57	-5,9	41,67	41,78	553	0,97
RODF	47,73	0	47,73	90	47,73	22,21	476	3,14	4,66	11,57	7,098	6,088	1,166	52,97	-6,57	46,4	46,52	476	1,21
ROSF2	46,59	165	47,36	75	46,98	22,14	484	3,18	4,73	11,59	7,143	6,095	1,172	52,64	-6,56	46,08	46,20	475	0,78
BODF	45,78	11	47,02	101	46,4	25,25	501	3,88	4,17	11,98	7,193	6,116	1,176	52,27	-6,54	45,73	45,85	498	0,55
BOSF2	45,83	172	47,24	82	46,54	24,53	509	3,85	4,25	12	7,186	6,193	1,160	52,33	-6,46	45,87	45,99	500	0,55
PODF	41,32	0	41,32	90	41,32	24,7	600	3,49	4,24	12,53	8,134	6,988	1,164	46,23	-5,72	40,51	40,61	586	0,71
POSF2	40,94	167	41,75	77	41,35	24,57	595	3,54	4,21	12,61	8,125	7,136	1,139	46,28	-5,61	40,67	40,78	587	0,57
TODF	43,63	178	46,34	88	44,99	20,08	572	2,67	4,12	11,91	7,544	6,146	1,227	49,84	-6,51	43,33	43,47	561	1,52
TOSF2	44,13	173	45,85	83	44,99	21,44	578	2,75	4,1	11,99	7,489	6,115	1,225	50,21	-6,54	43,67	43,80	568	1,19
HODM	41,43	93	42,32	3	41,88	23,76	515	3,03	4,27	12,22	8,083	6,883	1,174	46,51	-5,81	40,7	40,80	507	1,08
HOSM2	41,12	75	42,87	165	42	23,73	523	3,03	4,64	12,04	8,089	6,925	1,168	46,49	-5,78	40,71	40,81	517	1,19
NODF	42,11	163	42,62	73	42,37	23,72	605	2,95	5,13	12,07	7,863	6,744	1,166	47,82	-5,93	41,89	42,01	588	0,36
NOSF2	42,23	2	43,23	92	42,73	23,75	607	3,25	4,67	12,33	7,819	6,888	1,135	48,09	-5,81	42,28	42,40	592	0,33
SODM	42,35	4	45,88	94	44,12	23,94	541	2,97	4,41	12,27	7,647	6,593	1,160	49,17	-6,07	43,1	43,22	529	0,90
SOSM2	43,28	168	44,85	78	44,07	23,98	543	2,99	4,58	12,16	7,59	6,561	1,157	49,54	-6,1	43,44	43,56	531	0,51
KODF	41,83	178	42,82	88	42,33	25,26	623	3,6	3,67	12,33	7,966	6,737	1,182	47,2	-5,94	41,26	41,38	609	0,95
KOSF2	42	4	42,53	94	42,27	25,51	634	3,58	3,68	12,43	7,983	6,733	1,186	47,1	-5,94	41,16	41,28	615	0,99
PODF	42,36	171	43,2	81	42,78	22,19	590	2,49	4,26	12,04	7,852	6,748	1,164	47,89	-5,93	41,96	42,08	576	0,70
POSF2	41,99	12	42,94	102	42,47	22,28	592	2,56	4,45	12,18	7,987	6,793	1,176	47,08	-5,89	41,19	41,31	577	1,16
NODF	44,7	78	45,27	168	44,99	22,87	540	3,12	4,74	12,21	7,561	6,528	1,158	49,73	-6,13	43,6	43,72	525	1,27
NOSF2	45,1	68	45,47	158	45,29	22,94	538	3,22	4,73	12,29	7,502	6,581	1,140	50,12	-6,08	44,04	44,15	528	1,14
JODF	42,56	2	43,8	92	43,18	22,8	486	3,2	3,7	12,45	7,815	6,673	1,171	48,11	-5,99	42,12	42,22	477	0,96
JOSF2	42,41	177	43,63	87	43,02	22,83	480	3,24	3,69	13,35	7,775	6,776	1,147	48,36	-5,9	42,46	42,56	471	0,46
CODM	42,15	103	42,29	13	42,22	24,67	578	3,86	4,06	12,85	7,913	7,069	1,119	47,52	-5,66	41,86	41,97	564	0,25
COSM2	42,11	91	42,58	1	42,35	24,78	576	3,92	4,03	12,92	7,892	6,898	1,144	47,64	-5,8	41,84	41,96	567	0,39
SODF	41,76	15	43,59	105	42,68	25,01	562	3,41	4	12,27	7,835	6,512	1,203	47,99	-6,14	41,85	41,96	546	0,72
SOSF2	41,61	160	43,72	70	42,67	25,49	563	3,4	3,98	12,2	7,831	6,666	1,175	48,02	-6	42,02	42,13	545	0,54
JODM	44,87	42	45,4	132	45,14	23,32	567	3,17	4,42	11,42	7,444	6,212	1,198	50,51	-6,44	44,07	44,20	554	0,94
JOSM2	43,84	65	45,62	155	44,73	23,42	569	3,19	4,19	11,45	7,479	6,316	1,184	50,27	-6,33	43,94	44,07	558	0,66
LODM	42,92	149	43,52	59	43,22	24,48	532	3,75	3,6	12,42	7,769	6,641	1,170	48,4	-6,02	42,38	42,49	526	0,73
BODM	43,39	176	44,75	86	44,07	24,07	479	3,45	3,98	12,14	7,668	6,621	1,158	49,03	-6,04	42,99	43,09	471	0,98
BOSM2	43,65	174	45,14	84	44,4	23,86	477	3,44	4,01	12,04	7,588	6,604	1,149	49,55	-6,06	43,49	43,59	464	0,81
ŠODF	43,39	169	44,21	79	43,8	23,34	516	3,33	4,28	12,52	7,76	6,667	1,164	48,45	-6	42,45	42,56	504	1,24
ŠOSF2	43,58	32	44,62	122	44,1	23,34	512	3,3	4,29	12,46	7,711	6,615	1,166	48,76	-6,05	42,71	42,82	508	1,28
VODF	44,5	111	46,1	21	45,3	23,15	548	3,62	3,87	11,84	7,341	6,312	1,163	51,22	-6,34	44,88	45,01	534	0,29
VOSF2	44,78	58	45,98	148	45,38	22,88	547	3,62	3,83	12,04	7,425	6,46	1,149	50,64	-6,19	44,45	44,57	534	0,81
SODM	41,81	51	42,41	141	42,11	23,75	530	2,66	5,36	12,09	8,02	6,734	1,191	46,88	-5,94	40,94	41,04	516	1,07
SOSM2	41,35	167	42,3	77	41,83	23,87	537	2,75	5,32	12,23	8,14	6,904	1,179	46,19	-5,79	40,4	40,50	524	1,33
MODF	43,69	7	44,18	97	43,94	22,91	488	3,68	3,61	12,22	7,651	6,596	1,160	49,15	-6,06	43,09	43,18	472	0,76

MOSF2	43,72	179	44,23	89	43,98	23,04	490	3,71	3,59	12,3	7,637	6,635	1,151	49,23	-6,03	43,2	43,31	475	0,67
SODF	44,22	0	45,37	90	44,8	22,82	528	3,33	3,81	11,7	7,498	6,307	1,189	50,15	-6,34	43,81	43,92	518	0,88
SOSF2	44,73	6	45,2	96	44,97	22,92	525	3,32	3,86	11,78	7,483	6,303	1,187	50,25	-6,35	43,9	44,02	515	0,95
TODF	45,27	173	46,52	83	45,9	21,97	540	3,43	3,5	12,09	7,291	6,24	1,168	51,57	-6,41	45,16	45,29	528	0,61
TOSF2	44,85	3	45,7	93	45,28	22	543	3,45	3,42	11,78	7,327	6,218	1,178	51,31	-6,43	44,88	45,01	534	0,27
DODM	46,02	26	46,41	116	46,22	22,66	539	2,98	4,62	11,79	7,248	6,366	1,139	51,88	-6,28	45,6	45,72	527	0,50
DOSM2	45,56	2	46,23	92	45,9	22,65	536	2,98	4,59	12,28	7,291	6,464	1,128	51,57	-6,19	45,38	45,50	525	0,40
FODM	42,62	169	43,16	79	42,89	25,85	547	4,12	3,68	12,81	7,812	6,833	1,143	48,13	-5,85	42,28	42,38	527	0,51
FOSM2	42,2	2	42,79	92	42,5	25,88	542	4,18	3,72	12,89	7,913	6,838	1,157	47,52	-5,85	41,67	41,77	524	0,73
omODM	42,66	3	43,25	93	42,96	23,53	520	2,94	3,98	11,66	7,74	6,694	1,156	48,58	-5,97	42,61	42,71	516	0,25
omOSM2	43,07	163	44,29	73	43,68	23,35	536	2,92	4,14	11,71	7,7	6,686	1,152	48,83	-5,98	42,85	42,96	527	0,72
mODM	43,73	27	44,44	117	44,09	24,71	580	3,41	3,94	11,75	7,645	6,335	1,207	49,19	-6,31	42,88	43,00	564	1,09
mOSM2	44,3	0	44,7	90	44,5	24,63	571	3,43	3,89	11,82	7,556	6,274	1,204	49,76	-6,38	43,38	43,52	561	0,98
bODM	40,22	22	40,88	112	40,55	24,62	566	3,29	4,18	12,95	8,254	7,125	1,158	45,55	-5,61	39,94	40,04	560	0,51
bOSM2	40,26	134	40,92	44	40,59	24,36	572	3,18	3,99	12,95	8,203	7,089	1,157	45,83	-5,64	40,19	40,30	557	0,29
gODF	42,01	8	42,57	98	42,29	24,77	523	3,51	3,78	12,5	7,919	6,803	1,164	47,48	-5,88	41,6	41,71	514	0,58
gOSF2	42,12	176	42,79	86	42,46	24,72	531	3,5	3,79	12,5	7,962	6,878	1,158	47,23	-5,82	41,41	41,51	520	0,95
kODF	40,21	81	40,64	171	40,43	22,49	576	2,61	4,31	11,89	8,291	7,076	1,172	45,35	-5,65	39,7	39,80	564	0,63
kOSF2	40,68	139	40,99	49	40,84	22,57	578	2,65	4,29	11,84	8,249	7,067	1,167	45,58	-5,66	39,92	40,03	562	0,81
IODF	42,31	145	42,6	55	42,46	23,95	577	3,16	4,53	12,69	7,814	6,591	1,186	48,12	-6,07	42,05	42,17	563	0,29
IOSF2	42,28	158	42,98	68	42,63	23,82	573	3,13	4,62	12,69	7,986	6,57	1,216	47,08	-6,09	40,99	41,11	561	1,52
pODF	43,62	5	44,92	95	44,27	24,45	524	3,3	3,84	11,91	7,631	6,231	1,225	49,27	-6,42	42,85	42,97	514	1,30
pOSF2	43,41	165	44,46	75	43,94	23,79	515	3,25	3,86	11,88	7,672	6,307	1,216	49,01	-6,34	42,67	42,78	511	1,16
VODF	42,03	179	42,59	89	42,31	26,26	499	3,68	3,65	12,65	7,812	6,695	1,167	48,13	-5,97	42,16	42,26	487	0,05
vOSF2	41,89	15	42,64	105	42,27	24,74	499	3,5	3,71	12,65	7,867	6,776	1,161	47,8	-5,9	41,9	41,99	486	0,28
pODF	41,34	177	41,73	87	41,54	24,26	566	3,36	4,06	12,67	8,161	7,036	1,160	46,07	-5,68	40,39	40,49	554	1,05
pOSF2	41,11	4	41,7	94	41,41	24,3	564	3,31	4,06	12,74	8,104	7,092	1,143	46,4	-5,64	40,76	40,86	550	0,55
rODM	43,67	74	44,55	164	44,11	24,33	569	3,63	4,23	12,03	7,498	6,547	1,145	50,15	-6,11	44,04	44,16	557	-0,05
rOSM2	44,55	130	44,69	40	44,62	24,28	566	3,67	4,28	12,41	7,501	6,455	1,162	50,13	-6,2	43,93	44,06	555	0,56
SODIVI	42,8	2	44,15	92	43,47	25,05	557	3,87	4,26	12,2	7,741	6,495	1,192	48,57	-6,16	42,41	42,53	552	0,94
SUSIVIZ	42,64	22	44,00	112	43,35	24,89	545	3,9	4,23	11,/1	7,718	6,521	1,184	48,71	-6,13	42,58	42,70	551	0,65
KUUF	44,22	2	45,02	92	44,62	22,14	560	2,77	4,45	11,39	7,438	6,132	1,213	50,55	-6,52	44,03	44,10	556	0,40
KUSF2	44,23	8	45,45	98	44,84	22,10	561	2,84	4,45	11,41	7,327	6,039	1,213	51,32	-6,62	44,7	44,85	554	0,01
KUUF	41,9	19	42,04	109	42,27	24,83	550	3,83	3,53	12,01	7,971	6,845	1,104	47,17	-5,84	41,35	41,45	539	0,84
KUSFZ	42,21	164	42,95	74	42,58	25,09	545	3,85	3,40	12,77	7,897	6,721	1,175	47,01	-5,95	41,00	41,77	552	0,81
FBODE	44,27	107	45,54	100	44,91	22,54	507	2,74	4,47	11,82	7,420	6,233	1,191	50,03	-6,42	44,21	44,33	499	0,50
FBUSFZ	44,51	19	45,40	109	44,9	22,33	500	2,75	4,4	11,82	7,421	6,210	1,193	50,07	-6,45	44,24	44,35	494	1.05
	44,55	177	45,50	90	45,47	22,45	500	3,14	3,93	12,17	7,413	6,233	1,190	50,71	-0,42	44,23	44,42	505	1,05
	44,01	19	45,05	δ/ 109	45,22	22,40	505	3,10	4,37	12,13	7,200	0,274	1,130	51,75	-0,30	45,57	45,51	501	-0,29
JUDE	42,85	10	43,54	76	43,2	22,07	5/0	2,95	3,97	11,72	7,740	6,530	1,165	48,54	-0,12	42,42	42,54	505	0,00
10252	42,12	100	43,15	107	42,90	22,05	5/0	2,50	3,30	12.20	7.594	6,002 6 499	1,100	48,73	-0,00	42,05	42,01	505	0,15
	43,7	1/	44,44	70	44,07	21,01	557	2,80	3,97	12,25	7,584	0,400	1,109	49,58	-0,10	43,42	43,55	540	0,54
	44,05	0	45,45	19	44,74	22,12	554	3,11	4,13	12,54	7,450	0,434	1,130	50,42	-0,2	44,22	44,54	541	1.26
KUUF	42,01	154	42,01	90	42,01	23,32	5/5	3,∠ 2.21	4,04	11,54	1,911	0,005	1,190	47,15	-0	41,13	41,23	501	1,30
KUSF2	42,03	174	42,07	04	42,50	23,00	5/5	3,21	4,01	11,01	0 7 25	6,077	1,190	47	-0,33	40,01	41,13	500	1,25
SJUDIVI	45,00	1/1	45,00	δ1 105	45,47	21,5	500	2,71	4,ō1 4 g	11,00	7 253	0,200 6 157	1,105	51,15	-0,39	44,70	44,92	552	0,55
SODE	44,77	176	40,21	103	43,45	21,21	105	2,04	4,0 2.76	12 37	7,555	6 503	1,194	19 97	-0,5	44,03	44,77	J42	1.06
SOLL	43,20	1/0	44,40	100	43,00	25,52	405	3,00	3,70	12,57	7,095	0,505	1,105	40,07	-0,15	42,72	42,02	475	1,00
303FZ	43,08	10	44,08	100	43,58	24,9	495	3,04	3,8	12,41	7,05	0,00	1,149	49,15	-0,01	45,14	43,25	484	0,33

BsODF	41,88	178	42,55	88	42,22	25,37	552	3,96	3,84	13,14	7,922	6,879	1,152	47,46	-5,82	41,64	41,76	541	0,46
BsOSF2	42,1	86	42,74	176	42,42	25,38	559	3,92	3,82	13,05	7,827	6,853	1,142	48,04	-5,84	42,2	42,31	546	0,11
BaODF	43,66	177	44,39	87	44,03	24,26	550	3,93	3,78	12,15	7,578	6,434	1,178	49,62	-6,22	43,4	43,52	539	0,51
BaOSF2	43,37	147	43,88	57	43,63	24,26	553	3,96	3,76	11,95	7,654	6,574	1,164	49,12	-6,09	43,03	43,16	546	0,47
kODF	44,14	153	45,1	63	44,62	22,66	516	2,84	4,59	12,19	7,516	6,513	1,154	50,03	-6,14	43,89	44,00	507	0,62
kOSF2	44,15	18	44,96	108	44,56	22,52	516	2,79	4,59	12,19	7,498	6,573	1,141	50,15	-6,09	44,06	44,17	508	0,39
kODM	42,81	56	43,7	146	43,26	22,5	608	2,55	4,67	11,39	7,757	6,407	1,211	48,47	-6,24	42,23	42,36	592	0,90
kOSM2	42,75	144	43,52	54	43,14	22,37	605	2,56	4,64	11,49	7,758	6,484	1,196	48,47	-6,17	42,3	42,43	592	0,71
VODF	43,24	17	45,05	107	44,15	24,38	533	3,43	4,28	12,8	7,662	6,499	1,179	49,08	-6,16	42,92	43,03	552	1,12
VOSF2	43,55	153	44,67	63	44,11	24,43	538	3,47	4,66	12,78	7,594	6,447	1,178	49,51	-6,2	43,31	43,43	539	0,68
vODF	41,6	0	41,6	90	41,6	24,43	598	3,31	3,94	11,93	8,097	6,929	1,169	46,44	-5,77	40,67	40,78	590	0,82
vOSF2	41,98	0	41,98	90	41,98	24,31	615	3,28	3,99	11,71	8,047	6,936	1,160	46,72	-5,77	40,95	41,07	595	0,91
zODF	43,07	161	43,97	71	43,52	23,73	545	3,67	4,19	12,71	7,731	6,699	1,154	48,63	-5,97	42,66	42,77	531	0,75
zOSF2	42,76	5	43,99	95	43,38	23,72	547	3,5	4,6	12,76	7,864	6,602	1,191	47,81	-6,06	41,75	41,87	535	1,51
kODF	44,48	163	45,25	73	44,87	22,97	509	3,41	3,9	12,1	7,501	6,393	1,173	50,13	-6,26	43,87	43,98	497	0,89
kOSF2	44,33	167	45,8	77	45,07	23,03	511	3,43	3,91	12,21	7,489	6,305	1,188	50,21	-6,34	43,87	43,98	499	1,09
cMODF	40,55	2	41,7	92	41,13	24,91	523	3,72	3,75	12,75	8,128	6,823	1,191	46,26	-5,86	40,4	40,50	521	0,63
cMOSF2	40,24	177	41,21	87	40,73	24,87	520	3,63	3,77	12,64	8,203	6,968	1,177	45,84	-5,74	40,1	40,20	509	0,53
CODM	43,72	24	43,83	114	43,78	22,75	578	2,56	4,25	12,29	7,723	6,581	1,174	48,69	-6,08	42,61	42,73	563	1,05
COSM2	44,15	34	44,27	124	44,21	22,69	563	3,15	4,27	12,42	7,657	6,533	1,172	49,1	-6,12	42,98	43,11	575	1,10
MODM	43,64	/	44,15	97	43,9	23,88	559	4,15	3,6	12,03	7,573	6,271	1,208	49,65	-6,38	43,27	43,40	546	0,50
MUSM2	43,87	1/1	44,41	81	44,14	23,95	570	4,19	3,63	12,03	7,686	6,274	1,225	48,92	-6,38	42,54	42,67	554	1,47
EUDIN	42,82	0	42,82	90	42,82	25,7	543	3,45	3,80	11,98	7,767	6,553	1,185	48,41	-6,1	42,31	42,42	531	0,40
EUSIVIZ	42,01	1/9	43,13	89 72	42,87	25,57	542	3,39	3,91	11,99	7,738	0,027	1,108	48,39	-0,04	42,55	42,07	528	0,20
KODIVI	42,33	22	43,43	122	42,88	24,05	556	3,87	3,23	12,50	7,925	6,87	1,154	47,44	-5,82	41,02	41,73	548	1,15
hODE	42,02	33 172	43,36	92	43,2	24,94	556	3,92	3,20	12,07	7,702	6 952	1,155	40,51	-5,94	42,57	42,49	546	1.02
hOSE2	42,23	172	42,00	30	42,40	23,25	558	2,92	4,02	12 05	8.09	6 863	1,149	47,08	-5,75	41,55	41,43	540	1,05
sodm	42,00	86	43 29	176	43.03	23,30	494	3 67	4 43	12,05	7 739	6 706	1,175	48 58	-5 97	42 61	42 72	485	0.31
sOSM2	43.1	28	43.67	118	43.39	24.48	500	3.62	4.43	12.53	7.673	6,742	1.138	49	-5.93	43.07	43.17	495	0.22
fODF	41,16	3	42,41	93	41,79	24,62	619	3,29	4,07	12,35	8,024	6,783	1,183	46,86	-5,9	40,96	41,08	600	0,71
fOSF2	40,84	2	, 42,44	92	41,64	24,6	615	3,27	4,07	12,29	8,008	6,865	1,166	46,96	-5,83	41,13	41,25	599	0,39
kODF	43,81	173	44,54	83	44,18	24,46	521	3,41	4,73	12,53	7,56	6,732	, 1,123	49,74	-5,94	43,8	43,90	511	0,28
kOSF2	43,58	21	44,04	111	43,81	25,03	522	3,52	4,66	12,53	7,638	6,647	1,149	49,23	-6,02	43,21	43,32	514	0,49
rODF	42,23	174	43,29	84	42,76	26,02	625	3,78	3,89	12,32	7,892	6,612	1,194	47,64	-6,05	41,59	41,72	608	1,04
rOSF2	42,37	8	43,5	98	42,94	25,97	614	3,79	3,87	12,46	7,861	6,696	1,174	47,83	-5,97	41,86	41,98	597	0,96
kODF	43,11	174	43,98	84	43,55	24,21	507	3,34	3,99	12,25	7,601	6,549	1,161	49,46	-6,11	43,35	43,47	499	0,08
kOSF2	43,49	176	44,23	86	43,86	24,1	510	3,39	3,95	12,25	7,575	6,498	1,166	49,64	-6,16	43,48	43,59	500	0,27
pODF	43,32	112	43,85	22	43,59	24,52	579	3,72	4,36	12,21	7,677	6,543	1,173	48,98	-6,11	42,87	42,99	565	0,60
pOSF2	43,24	68	43,99	158	43,62	24,68	579	3,78	4,36	12,35	7,805	6,572	1,188	48,18	-6,09	42,09	42,21	565	1,41
hODM	43,45	162	44,25	72	43,85	23,2	574	3	4,6	12,43	7,675	6,637	1,156	48,99	-6,03	42,96	43,08	563	0,77
hOSM2	43,66	11	44,66	101	44,16	23,05	586	2,98	4,58	12,31	7,578	6,651	1,139	49,62	-6,01	43,61	43,72	565	0,44
hODM	42,96	70	43,65	160	43,31	24,31	559	3,73	3,66	12,65	7,808	6,591	1,185	48,15	-6,07	42,08	42,20	547	1,11
hOSM2	43,33	88	43,45	178	43,39	24,28	575	3,67	3,87	12,75	7,857	6,703	1,172	47,86	-5,97	41,89	42,00	561	1,39
hODF	41,82	158	42,68	68	42,25	24,25	504	3,1	3,77	12,31	7,831	6,771	1,157	48,01	-5,91	42,1	42,21	491	0,04
hOSF2	42,27	39	42,81	129	42,54	24,16	500	3,11	3,75	12,11	7,816	6,677	1,171	48,11	-5,99	42,12	42,22	491	0,32
tODM	43	168	43,58	78	43,29	23,09	535	3,2	4,58	12,88	7,727	6,727	1,149	48,66	-5,95	42,71	42,82	525	0,47
tOSM2	44,27	135	44,62	45	44,45	23,04	566	3,21	4,62	12,74	7,536	6,946	1,085	49,99	-5,76	44,23	44,35	548	0,10
vOSF	43,23	50	43,48	140	43,36	23,64	587	3,44	4,4	11,99	7,797	6,535	1,193	48,22	-6,12	42,1	42,23	554	1,13

fODF	38,37	18	39,12	108	38,75	26,48	458	2,99	4,4	12,43	8,558	6,806	1,257	43,93	-5,88	38,05	38,14	449	0,61
fOSF2	38,26	175	38,85	85	38,56	26,67	454	3,08	4,35	12,49	8,578	6,945	1,235	43,83	-5,76	38,07	38,15	447	0,41
cODF	43,71	175	44,36	85	44,04	23,12	616	3,79	3,44	11,8	7,667	6,323	1,213	49,04	-6,33	42,71	42,85	604	1,19
cOSF2	44,34	48	44,71	138	44,53	23,3	619	3,8	3,7	11,78	7,529	6,342	1,187	49,94	-6,31	43,63	43,77	602	0,76
kODF	44,1	0	44,1	90	44,1	23,14	504	3,23	4,05	11,76	7,682	6,606	1,163	48,95	-6,05	42,9	43,00	496	1,10
kOSF2	43,91	33	44,05	123	43,98	23,26	508	3,29	3,97	11,77	7,692	6,622	1,162	48,88	-6,04	42,84	42,95	493	1,03
sODM	40,75	77	41,28	167	41,02	24,5	574	3,09	4,82	12,79	8,229	7,117	1,156	45,69	-5,62	40,07	40,17	560	0,85
sOSM2	40,98	101	41,54	11	41,26	24,41	564	3,05	4,81	12,63	8,272	7,1	1,165	45,45	-5,63	39,82	39,92	555	1,34
kvODM	43,82	177	47,49	87	45,66	25,88	539	4,33	3,26	12,86	7,416	6,398	1,159	50,7	-6,25	44,45	44,57	524	1,09
kvOSM2	44,46	1	47,54	91	46	26,1	541	4,33	3,26	12,8	7,282	6,323	1,152	51,63	-6,33	45,3	45,43	532	0,57
smODM	44,4	83	45,36	173	44,88	23,42	527	3,71	4,12	11,47	7,352	6,244	1,177	51,15	-6,41	44,74	44,87	526	0,01
smOSM2	45,29	1	46,35	91	45,82	23,27	540	3,57	4,14	11,3	7,308	6,239	1,171	51,45	-6,41	45,04	45,17	536	0,65
pODF	44,49	9	45,52	99	45,01	23,63	536	3,33	4,8	12,35	7,537	6,516	1,157	49,88	-6,14	43,74	43,86	525	1,15
pOSF2	44,51	176	45,51	86	45,01	23,56	540	3,26	4,84	12,28	7,426	6,464	1,149	50,63	-6,19	44,44	44,56	528	0,45
bODF	44,31	165	44,77	75	44,54	23,36	561	3,59	3,82	11,9	7,585	6,339	1,197	49,57	-6,31	43,26	43,39	547	1,15
bOSF2	44,34	153	44,94	63	44,64	23,33	567	3,63	3,79	11,94	7,588	6,415	1,183	49,55	-6,24	43,31	43,44	547	1,20
sODF	44,16	169	45,28	79	44,72	23,21	568	3,68	3,95	12,44	7,559	6,365	1,188	49,74	-6,28	43,46	43,58	555	1,14
sOSF2	44,13	22	44,83	112	44,48	23,18	561	3,66	3,95	12,41	7,494	6,498	1,153	50,17	-6,16	44,01	44,14	549	0,34
pODF	43,18	111	43,76	21	43,47	23,25	576	2,65	4,49	11,17	7,705	6,691	1,152	48,8	-5,98	42,82	42,93	530	0,54
pOSF2	41,54	3	43,01	93	42,28	23,19	579	2,6	4,59	11,17	7,788	6,852	1,137	48,28	-5,84	42,44	42,55	533	-0,27
bODF	44,45	13	45,41	103	44,93	22,28	465	3,08	4,58	12,2	7,512	6,595	1,139	50,05	-6,07	43,98	44,09	458	0,84
bOSF2	44,64	178	45,43	88	45,04	22,14	463	3,02	4,65	12,26	7,423	6,505	1,141	50,65	-6,15	44,5	44,61	458	0,43
sODF	46,04	0	46,04	90	46,04	22,56	574	3,29	4,44	11,83	7,302	6,143	1,189	51,49	-6,51	44,98	45,12	566	0,92
sOSF2	45,71	155	46,14	65	45,93	22,44	575	3,3	4,45	11,94	7,329	6,17	1,188	51,3	-6,48	44,82	44,96	564	0,97
MODF	41,75	13	42,95	103	42,35	24,02	587	3,15	4,2	12,57	7,993	6,884	1,161	47,04	-5,81	41,23	41,35	577	1,00
MOSF2	41,31	176	42,33	86	41,82	24,04	589	3,12	4,02	12,11	8,042	6,853	1,174	46,75	-5,84	40,91	41,03	571	0,79
PODF	41,79	179	42,53	89	42,16	23,25	576	2,65	4,49	11,17	8,049	6,609	1,218	46,71	-6,05	40,66	40,78	566	1,38
POSF2	41,54	3	43,01	93	42,28	23,19	579	2,6	4,59	11,17	7,941	6,645	1,195	47,35	-6,02	41,33	41,44	569	0,84
VODF	43,28	178	44,71	88	44	23,24	520	3,22	4,35	12,37	7,634	6,512	1,172	49,26	-6,14	43,12	43,22	514	0,78
VOSF2	43,34	174	44,05	84	43,7	23,3	529	3,29	4,44	12,17	7,631	6,527	1,169	49,27	-6,13	43,14	43,26	517	0,44
rODM	41,48	164	42	74	41,74	23,5	544	4,77	0,71	13,03	7,992	6,857	1,166	47,05	-5,83	41,22	41,32	530	0,42
vODF	43,24	13	43,76	103	43,5	24,78	589	3,76	3,31	12,29	7,702	6,451	1,194	48,82	-6,2	42,62	42,74	572	0,76
vOSF2	43,66	31	44,01	121	43,84	24,76	592	3,8	3,34	12,22	7,719	6,381	1,210	48,71	-6,27	42,44	42,57	581	1,27
vODF	41,52	11	44,2	101	42,86	21,67	588	2,96	4,59	12,4	7,891	6,757	1,168	47,65	-5,92	41,73	41,84	570	1,02
vOSF2	42,52	163	43,64	73	43,08	23,18	579	3,18	4,4	12,57	7,779	6,636	1,172	48,34	-6,03	42,31	42,43	568	0,65
wODM	43,7	156	44,26	66	43,98	23,04	551	3,57	3,63	12,09	7,624	6,401	1,191	49,31	-6,25	43,06	43,19	535	0,79
wOSM2	43,61	30	44,01	120	43,81	22,93	560	3,56	3,84	12	7,68	6,513	1,179	48,96	-6,14	42,82	42,93	547	0,88
jODM	43,56	16	44,43	106	44	23,2	580	2,79	4,51	12,41	7,707	6,496	1,186	48,79	-6,16	42,63	42,75	569	1,25
jOSM2	43,9	176	44,67	86	44,29	23,29	592	2,84	4,84	12,24	7,792	6,555	1,189	48,25	-6,1	42,15	42,27	573	2,02
mODF	40,95	21	41,31	111	41,13	24,44	621	3,46	4,19	12,17	8,26	6,804	1,214	45,52	-5,88	39,64	39,76	612	1,37
mOSF2	40,73	145	41,26	55	41	24,37	614	3,5	4,13	12,32	8,14	6,845	1,189	46,19	-5,84	40,35	40,46	598	0,54
rODF	41,69	12	43,13	102	42,41	24,3	590	3,19	3,92	12	7,888	6,706	1,176	47,67	-5,97	41,7	41,82	577	0,59
rOSF2	41,74	161	43,11	71	42,43	24,08	582	3,25	4,01	11,76	7,79	6,635	1,174	48,27	-6,03	42,24	42,36	570	0,07
hODF	43,51	55	44	145	43,76	25,25	554	3,42	3,99	11,6	7,71	6,507	1,185	48,77	-6,15	42,62	42,74	539	1,02
hOSF2	43,4	54	44,38	144	43,89	23,97	553	3,37	4,14	11,55	7,708	6,625	1,163	48,78	-6,04	42,74	42,86	532	1,03
kODM	40,18	179	40,83	89	40,51	24,96	523	3,68	0,59	12,2	8,335	7,197	1,158	45,11	-5,56	39,55	39,65	521	0,86
kOSM2	39,82	1	40,79	91	40,31	25,15	537	3,92	3,07	12,26	8,296	7,331	1,132	45,32	-5,46	39,86	39,96	528	0,35
kODM	42	128	42,52	38	42,26	24,33	553	3,19	4,22	12,08	8,04	6,762	1,189	46,76	-5,91	40,85	40,96	540	1,30
kOSM2	41,87	8	42,22	98	42,05	24,6	557	3,21	4,22	12,09	8,059	6,761	1,192	46,65	-5,92	40,73	40,85	542	1,20

vODM	41,51	51	43,16	141	42,34	24,89	542	3,02	4,17	11,83	7,885	6,86	1,149	47,69	-5,83	41,86	41,96	530	0,38
vOSM2	42,48	170	43,44	80	42,96	24,49	551	3,15	4,16	12,03	7,654	6,766	1,131	49,13	-5,91	43,22	43,33	537	-0,37
bODF	43,82	179	44,81	89	44,32	23,55	571	3,7	3,89	12,28	7,637	6,295	1,213	49,23	-6,35	42,88	43,01	557	1,31
bOSF2	42,94	17	45,35	107	44,15	23,22	565	3,68	4,07	12,19	7,64	6,327	1,208	49,21	-6,32	42,89	43,01	555	1,14
pODF	44,07	155	44,39	65	44,23	23,57	581	3,54	4,24	12,25	7,701	6,428	1,198	48,82	-6,22	42,6	42,72	571	1,51
pOSF2	43,95	18	44,75	108	44,35	23,62	591	3,58	4,26	12,32	7,491	6,413	1,168	50,19	-6,24	43,95	44,09	574	0,26
sODF	44,49	4	45,69	94	45,09	22,64	597	3,54	3,62	12,36	7,442	6,327	1,176	50,52	-6,32	44,2	44,33	585	0,76
sOSF2	44,35	178	45,73	88	45,04	22,77	605	3,58	3,63	12,42	7,45	6,331	1,177	50,47	-6,32	44,15	44,29	590	0,75
fODM	41,54	116	42,01	26	41,78	26,34	501	3,92	3,87	13,52	8,101	6,973	1,162	46,42	-5,74	40,68	40,77	485	1,01
fOSM2	41,63	177	42,33	87	41,98	25,31	500	3,99	3,81	13,66	7,978	7,041	1,133	47,13	-5,68	41,45	41,54	488	0,44
mODF	42,15	150	42,66	60	42,41	23,53	554	3,72	3,97	12,53	7,95	6,868	1,158	47,3	-5,82	41,48	41,58	539	0,83
mOSF2	42,19	38	42,57	128	42,38	23,65	554	3,76	3,93	12,54	7,887	7,063	1,117	47,67	-5,66	42,01	42,12	543	0,26
rODF	44,3	158	45,09	68	44,7	22,8	562	3,43	3,9	12,31	7,541	6,329	1,191	49,86	-6,32	43,54	43,67	548	1,03
rOSF2	44,13	19	45,31	109	44,72	22,86	561	3,52	3,91	12,36	7,501	6,424	1,168	50,13	-6,23	43,9	44,03	549	0,69
nODF	42,58	2	43,85	92	43,22	25,33	638	3,75	3,77	12,44	7,723	6,541	1,181	48,68	-6,11	42,57	42,70	624	0,52
nOSF2	42,33	175	43,47	85	42,9	25,37	628	3,78	3,79	12,43	7,734	6,694	1,155	48,62	-5,98	42,64	42,77	619	0,13
bODF	44,47	3	45,49	93	44,98	23,48	566	3,58	3,7	12,02	7,553	6,349	1,190	49,78	-6,3	43,48	43,61	559	1,37
bOSF2	44,24	179	45,82	89	45,03	23,52	572	3,51	3,68	12,18	7,497	6,44	1,164	50,15	-6,21	43,94	44,07	576	0,96
pODF	45,82	11	46,83	101	46,33	21,65	499	3,12	3,64	11,5	7,251	6,192	1,171	51,85	-6,46	45,39	45,51	492	0,82
pOSF2	45,93	162	47,04	72	46,49	21,55	500	3,12	3,69	11,4	7,19	6,148	1,169	52,29	-6,51	45,78	45,91	492	0,58
sODF	42,47	90	42,47	180	42,47	22,94	611	3,23	3,79	12,06	7,867	6,655	1,182	47,79	-6,01	41,78	41,91	603	0,56
sOSF2	42,91	179	43,28	89	43,1	22,73	607	3,25	3,75	12,09	7,73	6,579	1,175	48,65	-6,08	42,57	42,69	594	0,41
hODM	42,42	88	43,42	178	42,92	24,46	563	4,11	3,49	12,68	7,863	6,697	1,174	47,82	-5,97	41,85	41,96	550	0,96
hOSM2	42,29	84	43,32	174	42,81	24,35	556	4,16	3,55	12,71	7,76	6,589	1,178	48,46	-6,07	42,39	42,51	562	0,30
gODF	42,37	7	42,92	97	42,65	23,4	566	3,5	3,38	12,01	7,849	6,754	1,162	47,91	-5,92	41,99	42,10	553	0,55
gOSF2	42,4	171	43,15	81	42,78	23,42	560	3,59	3,37	12,06	7,844	6,701	1,171	47,93	-5,97	41,96	42,08	551	0,70
hODF	45,28	179	46,66	89	45,97	23,23	555	3,3	3,91	11,41	7,318	6,132	1,193	51,38	-6,52	44,86	44,99	551	0,98
hOSF2	44,12	18	46,52	108	45,32	23,71	563	3,51	3,62	11,52	7,418	6,184	1,200	50,69	-6,47	44,22	44,35	556	0,97
sODM	42,24	162	43,3	72	42,77	25,19	545	3,15	5,11	12,57	7,812	6,764	1,155	48,13	-5,91	42,22	42,33	532	0,44
sOSM2	42,2	1	42,83	91	42,52	24,78	545	3,11	5,17	12,55	7,818	6,753	1,158	48,1	-5,92	42,18	42,28	531	0,24
hODM	45,96	14	46,67	104	46,32	22,37	550	2,95	4,77	11,88	7,336	6,331	1,159	51,25	-6,32	44,93	45,06	538	1,26
hOSM2	45,57	5	46,39	95	45,98	22,33	551	3,01	4,72	11,8	7,353	6,258	1,175	51,13	-6,39	44,74	44,87	539	1,11
PODF	42,63	162	43,33	72	42,98	23,26	525	3,71	3,47	12,52	7,749	6,584	1,177	48,52	-6,07	42,45	42,56	518	0,42
POSF2	42,34	16	43,32	106	42,83	23,3	522	3,67	3,63	12,74	7,764	6,632	1,171	48,43	-6,03	42,4	42,51	508	0,32
nODF	43,24	177	44,1	87	43,67	24,87	554	3,95	3,6	12,28	7,726	6,51	1,187	48,66	-6,14	42,52	42,63	536	1,04
nOSF2	43,52	10	44,21	100	43,87	24,75	552	3,99	3,64	12,3	7,761	6,523	1,190	48,45	-6,13	42,32	42,44	553	1,43
rODF	41,94	178	42,63	88	42,29	24,72	535	3,93	3,58	12,43	8,003	6,638	1,206	46,98	-6,03	40,95	41,06	531	1,23
rOSF2	41,88	24	42,77	114	42,33	24,78	533	3,96	3,61	12,46	8,011	6,683	1,199	46,94	-5,99	40,95	41,06	526	1,27
dODM	43,14	5	43,58	95	43,36	24,94	549	3,49	3,66	12,29	7,733	6,592	1,173	48,63	-6,07	42,56	42,68	551	0,68
dOSM2	42,84	8	43,49	98	43,17	25,09	549	3,49	3,65	12,33	7,744	6,579	1,177	48,55	-6,08	42,47	42,59	539	0,58
kODF	44,37	90	44,37	180	44,37	23,06	566	3,73	3,39	12,41	7,56	6,309	1,198	49,74	-6,34	43,4	43,52	562	0,85
kOSF2	44,15	51	44,51	141	44,33	22,99	567	3,83	3,42	12,47	7,511	6,259	1,200	50,06	-6,39	43,67	43,80	556	0,53
bODM	43,74	1	44,5	91	44,12	24,72	520	4,25	3,39	12,2	7,575	6,398	1,184	49,64	-6,25	43,39	43,50	512	0,62
bOSM2	43,84	179	44,87	89	44,36	24,91	534	4,33	3,37	12,27	7,566	6,373	1,187	49,7	-6,28	43,42	43,54	518	0,82
hODF	41,57	2	42,63	92	42,1	24,08	534	3,54	3,66	12,43	8,057	6,988	1,153	46,67	-5,72	40,95	41,04	519	1,06
hOSF2	42,06	176	43	86	42,53	23,9	536	3,56	3,65	12,48	7,896	6,742	1,171	47,62	-5,93	41,69	41,79	532	0,74
sODF	44,06	5	44,76	95	44,41	23,24	529	3,61	3,53	12,21	7,494	6,643	1,128	50,17	-6,02	44,15	44,26	517	0,15
sOSF2	44,13	26	44,84	116	44,49	23,17	528	3,64	3,49	12,17	7,433	6,397	1,162	50,58	-6,25	44,33	44,46	541	0,03
kODF	42,94	8	44,2	98	43,57	23	545	3,52	3,69	12,36	7,756	6,531	1,188	48,48	-6,12	42,36	42,47	536	1,10

kOSF2	43,36	174	44,32	84	43,84	23,08	559	3,54	3,66	12,31	7,673	6,518	1,177	49	-6,14	42,86	42,98	544	0,86
mODF	43,85	15	45,02	105	44,44	22,98	560	3,2	4,15	12,17	7,515	6,61	1,137	50,03	-6,05	43,98	44,10	546	0,34
mOSF2	43,77	174	44,84	84	44,31	22,84	564	3,21	4,18	12,24	7,654	6,583	1,163	49,12	-6,08	43,04	43,17	546	1,14
mODM	41,03	18	42,92	108	41,98	24,96	536	3,93	3,76	12,88	7,725	6,583	1,173	48,67	-6,08	42,59	42,71	527	-0,73
mOSM2	41,39	169	43,93	79	42,66	26,76	535	4,04	3,77	12,64	8,004	6,787	1,179	46,97	-5,89	41,08	41,19	528	1,47
sODF	40,05	162	41,04	72	40,55	23,33	544	2,76	4,17	12,07	8,356	7,21	1,159	45	-5,55	39,45	39,55	534	1,00
sOSF2	40,53	6	41,05	96	40,79	23,28	539	2,81	4,27	12,02	8,27	7,039	1,175	45,47	-5,68	39,79	39,88	526	0,91
fODF	41,89	156	42,57	66	42,23	23,48	552	3,38	4	12,73	7,95	6,97	1,141	47,3	-5,74	41,56	41,66	537	0,57
fOSF2	42,4	5	42,7	95	42,55	23,38	560	3,39	4,05	12,23	7,848	6,864	1,143	47,91	-5,83	42,08	42,19	543	0,36
fODM	44,06	178	45,07	88	44,57	23,24	580	3,42	4,53	12,46	7,611	6,535	1,165	49,4	-6,12	43,28	43,40	567	1,17
fOSM2	44,13	173	44,96	83	44,55	23,08	584	3,43	4,55	12,05	7,619	6,57	1,160	49,35	-6,09	43,26	43,39	574	1,16
pODF	42,88	7	44,31	97	43,6	24,42	569	3,72	3,86	12,66	7,757	6,434	1,206	48,47	-6,22	42,25	42,38	555	1,22
pOSF2	43,03	170	43,72	80	43,38	24,58	582	3,74	3,86	12,69	7,795	6,435	1,211	48,24	-6,22	42,02	42,15	568	1,23
gODF	41,49	75	42,31	165	41,9	24,74	556	3,74	3,92	12,9	7,936	6,86	1,157	47,38	-5,83	41,55	41,65	541	0,25
gOSF2	41,96	143	42,31	53	42,14	24,29	549	3,77	3,88	12,82	7,962	6,814	1,168	47,23	-5,87	41,36	41,46	533	0,68
mODF	43,93	23	44,2	113	44,07	24,45	536	3,77	3,41	12,39	7,556	6,421	1,177	49,76	-6,23	43,53	43,65	526	0,42
mOSF2	43,82	23	44,26	113	44,04	24,64	539	3,76	3,47	12,31	7,504	6,412	1,170	50,1	-6,24	43,86	43,99	526	0,05
hODF	42,94	171	43,79	81	43,37	24,23	537	3,22	3,73	12,15	7,736	6,44	1,201	48,6	-6,21	42,39	42,51	523	0,86
hOSF2	42,84	178	43,85	88	43,35	23,89	537	3,17	3,73	12,07	7,716	6,443	1,198	48,73	-6,21	42,52	42,64	533	0,71
uODM	41,09	15	44,53	105	42,81	24,47	573	3,98	3,43	12,76	7,85	6,505	1,207	47,9	-6,15	41,75	41,87	563	0,94
uOSM2	41,34	161	44,64	71	42,99	24,59	576	4,06	3,39	12,61	7,827	6,589	1,188	48,04	-6,07	41,97	42,09	561	0,90
bODF	42,53	179	44,01	89	43,27	23,53	556	3,34	3,53	12,51	7,773	6,424	1,210	48,37	-6,23	42,14	42,26	551	1,01
bOSF2	42,49	5	43,7	95	43,1	23,51	562	3,37	3,54	12,55	7,755	6,539	1,186	48,49	-6,12	42,37	42,49	544	0,61
mODF	43,55	3	45,11	93	44,33	23,7	491	3,75	3,53	12,2	7,56	6,643	1,138	49,74	-6,02	43,72	43,82	481	0,51
mOSF2	43,61	0	44,68	90	44,15	23,6	488	3,79	3,55	12,21	7,478	6,62	1,130	50,28	-6,04	44,24	44,34	478	-0,19
dODF	43,51	172	45,25	82	44,38	22,09	528	3,27	3,85	12,09	7,671	6,553	1,171	49,02	-6,1	42,92	43,02	518	1,36
dOSF2	43,13	173	44,04	83	43,59	22,48	534	3,36	3,79	12,11	7,799	6,591	1,183	48,21	-6,07	42,14	42,25	522	1,34
bODF	43,02	57	44,99	147	44,01	24,37	558	3,13	4,3	11,82	7,531	6,296	1,196	49,92	-6,35	43,57	43,70	547	0,31
bOSF2	43,45	156	43,99	66	43,72	24,31	567	3,02	4,31	11,86	7,637	6,51	1,173	49,24	-6,14	43,1	43,21	554	0,51
kODF	44,06	149	45,24	59	44,65	22,46	604	3,37	4,11	12,02	7,496	6,447	1,163	50,16	-6,2	43,96	44,09	596	0,56
kOSF2	44,45	49	45,05	139	44,75	22,58	609	3,44	4,13	12,14	7,501	6,612	1,134	50,12	-6,05	44,07	44,21	595	0,54
bODM	43,04	175	43,89	85	43,47	23,35	556	3,17	3,7	11,65	7,753	6,606	1,174	48,5	-6,05	42,45	42,56	545	0,91
bOSM2	43,03	177	44,62	87	43,83	23,17	557	3,19	3,93	11,53	7,716	6,637	1,163	48,73	-6,03	42,7	42,82	543	1,01
tODF	44,27	178	45,26	88	44,77	22,48	543	3,65	3,5	12,32	7,571	6,453	1,173	49,67	-6,2	43,47	43,59	530	1,18
tOSF2	44,08	16	45,88	106	44,98	21,45	548	3,64	3,51	12,41	7,558	6,348	1,191	49,75	-6,3	43,45	43,57	538	1,41
sODF	43,09	1	44,3	91	43,7	23,44	533	3,47	3,5	11,73	7,734	6,611	1,170	48,61	-6,05	42,56	42,67	520	1,03
sOSF2	42,67	1	43,61	91	43,14	23,74	537	3,51	3,6	11,84	7,792	6,706	1,162	48,26	-5,97	42,29	42,40	528	0,74
rODF	44,5	9	45,29	99	44,9	22,56	567	3,01	4,43	12,17	7,476	6,482	1,153	50,29	-6,17	44,12	44,25	551	0,65
rOSF2	44,77	6	45,85	96	45,31	22,64	577	3,04	4,79	12,01	7,393	6,525	1,133	50,86	-6,13	44,73	44,86	560	0,45
vODF	41,53	174	42,22	84	41,88	24,61	548	3,63	3,19	12,37	7,978	6,847	1,165	47,13	-5,84	41,29	41,39	539	0,49
vOSF2	41,81	13	42,57	103	42,19	24,61	546	3,64	3,28	12,46	7,971	6,963	1,145	47,17	-5,74	41,43	41,53	533	0,66
bODF	41,16	4	42,37	94	41,77	24,52	466	3,21	4,16	12,37	8,039	6,849	1,174	46,77	-5,84	40,93	41,02	455	0,75
bOSF2	41,19	173	42,24	83	41,72	24,62	472	3,27	4,11	12,39	8,026	7,003	1,146	46,85	-5,71	41,14	41,22	463	0,50
IODF	43,83	0	43,83	90	43,83	25,19	629	3,92	3,49	12,43	7,656	6,397	1,197	49,11	-6,25	42,86	43,00	612	0,83
IOSF2	43,46	163	43,76	73	43,61	25,18	625	3,91	3,48	12,43	7,577	6,426	1,179	49,63	-6,22	43,41	43,54	611	0,07
sODF	41,22	179	41,93	89	41,58	24,33	535	3,43	3,73	12,68	8,084	7,056	1,146	46,51	-5,67	40,84	40,94	528	0,64
sOSF2	41,35	160	41,51	70	41,43	24,31	544	3,5	3,87	12,53	8,026	7,001	1,146	46,85	-5,71	41,14	41,24	526	0,19
hODM	42,09	160	42,57	70	42,33	24,02	597	2,97	4,1	11,43	7,892	6,664	1,184	47,64	-6	41,64	41,76	592	0,57
hOSM2	42,26	47	43	137	42,63	23,87	607	2,96	4,12	11,44	7,792	6,631	1,175	48,26	-6,03	42,23	42,35	594	0,28

sODM	41,71	0	41,71	90	41,71	24,74	559	3,32	4,66	12,48	8,121	6,847	1,186	46,3	-5,84	40,46	40,57	551	1,14
sOSM2	41,33	101	41,8	11	41,57	24,63	564	3,29	4,68	12,36	8,08	6,693	1,207	46,54	-5,98	40,56	40,67	552	0,90
sODM	41,97	150	42,33	60	42,15	23,1	592	3,61	3,8	12,22	7,925	6,551	1,210	47,44	-6,11	41,33	41,46	582	0,69
sOSM2	42,09	24	42,8	114	42,45	23,84	596	3,69	3,75	12,19	7,747	6,52	1,188	48,53	-6,14	42,39	42,52	577	-0,07
bODM	43,19	103	44,05	13	43,62	22,65	563	2,92	4,48	11,48	7,579	6,474	1,171	49,61	-6,18	43,43	43,55	549	0,07
bOSM2	43,43	75	43,95	165	43,69	22,68	555	2,93	4,54	11,33	7,57	6,42	1,179	49,67	-6,23	43,44	43,56	542	0,13
mODM	43,26	3	44,2	93	43,73	23,32	592	3,28	4,01	11,92	7,692	6,513	1,181	48,88	-6,14	42,74	42,87	580	0,86
mOSM2	43,27	29	43,84	119	43,56	23,35	597	3,25	4,04	11,91	7,728	6,503	1,188	48,65	-6,15	42,5	42,63	585	0,93
kODF	41,37	144	41,98	54	41,68	24,64	515	3,61	3,53	13,05	7,994	7,098	1,126	47,03	-5,64	41,39	41,49	501	0,19
kOSF2	41,58	23	42,23	113	41,91	24,62	515	3,65	3,52	12,94	8,003	7,098	1,128	46,98	-5,64	41,34	41,44	500	0,47
hODM	42,53	179	43,66	89	43,1	23,16	580	3,47	3,83	12,05	7,831	6,556	1,194	48,01	-6,1	41,91	42,03	568	1,07
hOSM2	42,54	171	43,63	81	43,09	23,27	577	3,48	3,84	12,06	7,902	6,663	1,186	47,58	-6	41,58	41,70	569	1,39
kODF	43,06	174	43,85	84	43,46	24,31	538	3,61	3,7	12,27	7,73	6,772	1,141	48,65	-5,91	42,74	42,85	526	0,61
kOSF2	43,13	1	44,84	91	43,99	24,28	544	3,69	3,58	12,34	7,614	6,683	1,139	49,38	-5,99	43,39	43,51	529	0,48
rODF	42,74	149	43,47	59	43,11	24,02	531	3,27	4,1	12,41	7,875	6,705	1,174	47,75	-5,97	41,78	41,89	520	1,22
rOSF2	42,96	19	43,45	109	43,21	23,53	526	3,25	4,42	12,46	7,783	6,778	1,148	48,31	-5,9	42,41	42,52	516	0,69
cODF	45,39	46	46,13	136	45,76	21,52	583	2,68	4,62	10,05	7,3	6,194	1,179	51,51	-6,46	45,05	45,18	544	0,58
cOSF2	45,4	165	46,77	75	46,09	21,53	565	2,56	4,96	11,03	7,31	6,256	1,168	51,44	-6,39	45,05	45,17	547	0,92
KODF	42,32	170	43,12	80	42,72	23,58	612	3,68	3,79	12,74	7,836	6,561	1,194	47,98	-6,1	41,88	42,01	602	0,71
kOSF2	42,29	5	43,32	95	42,81	23,58	603	3,7	3,78	12,66	7,751	6,531	1,187	48,51	-6,13	42,38	42,51	598	0,30

Počet očí: 20	LENSTAR LS900											OCT OptoVue Avanti								
ID	K1 (D)	Ax1 (°)	K2 (D)	Ax2 (°)	K (D)	AL (mm)	CCT (µm)	ACD (mm)	LT (mm)	WTW (mm)	SRK/ T2	r1 (mm)	r2 (mm)	r1/r2	ante (D)	posterior (D)		net (D)	CCT (µm	OCT- based IOL
LODF	44,7	174	45,1	84	44,9	22,21	523	2,65	4,2	11,25	23,61	7,431	6,105	1,217	50,6	-6,55	44,0	44,1	509	23,59
LOSF2	43,8	11	45,5	101	44,6	22,25	505	2,65	4,2	11,21	23,77	7,359	6,107	1,205	51,0	-6,55	44,5	44,6	542	22,79
ZODM	39,0	178	40,2	88	39,6	25,73	481	3,62	3,64	12,44	20,70	8,396	6,841	1,227	44,7	-5,85	38,9	39,0	471	19,51
ZOSM2	39,9	17	40,6	107	40,3	25,27	474	3,53	3,81	12,53	20,60	8,357	6,883	1,214	44,9	-5,81	39,1	39,2	467	20,42
HOSF	41,4	6	42,7	96	42,0	24,69	526	3,47	3,78	11,62	19,58	8,022	6,359	1,262	46,8	-6,29	40,5	40,6	518	20,46
HODF2	40,9	170	42,2	80	41,6	24,76	529	3,42	3,8	11,6	19,97	8,082	6,414	1,260	46,5	-6,24	40,2	40,3	520	20,56
nyPODF	42,9	9	44,2	99	43,6	28,55	544	3,88	4,27	12,24	13,12	7,636	6,47	1,180	49,2	-6,18	43,0	43,1	537	6,6
nyOSF2	42,8	162	43,6	72	43,2	28,59	538	3,88	4,26	12,24	13,47	7,734	6,178	1,252	48,6	-6,47	42,1	42,2	525	7,86
rODF	39,1	156	39,8	66	39,5	26,43	535	3,28	3,97	11,5	19,92	8,533	6,209	1,374	44,0	-6,44	37,6	37,7	527	19,16
rOSF2	38,7	12	39,7	102	39,2	27,07	530	3,22	4	11,51	19,51	8,581	6,303	1,361	43,8	-6,35	37,4	37,5	525	17,6
sODM	37,2	66	37,6	156	37,4	26,88		3,18		12,31	21,54	9,119	7,226	1,262	41,2	-5,54	35,6	35,7	479	20,06
sOSM2	37,2	54	37,4	144	37,3	26,94		3,2		12,48	21,64	9,051	7,269	1,245	41,5	-5,5	36,0	36,1	469	19,47
cODF	39,3	175	40,1	85	39,7	24,83	465	2,78	5,2	12,51	21,80	8,492	6,469	1,313	44,2	-6,18	38,1	38,1	462	22,35
cOSF2	38,5	174	39,6	84	39,1	25,19	469	2,85	5,16	12,54	21,4	8,642	6,592	1,311	43,5	-6,07	37,4	37,5	468	22,19
mPODF	36,1	7	36,9	97	36,5	26,64	451	2,94	0,92	12,46	22,77	9,217	6,808	1,354	40,8	-5,88	34,9	35,0	451	21,51
mPOSF2	35,8	158	36,6	68	36,2	27,09	449	2,98	0,79	12,53	22,56	9,367	6,783	1,381	40,1	-5,9	34,2	34,3	449	21,29
kODM	36,2	144	36,3	54	36,2	28,69	555	3,99	3,85	12,75	21,03	9,42	7,004	1,345	39,9	-5,71	34,2	34,2	544	18,48
kOSM2	36,6	88	37,1	178	36,8	27,75	556	3,82	4,32	12,76	21,28	9,214	7,12	1,294	40,8	-5,62	35,1	35,2	544	19,24
bODM	41,5	10	42,9	100	42,2	23,95	518	3,59	3,83	12,42	20,88	7,736	6,37	1,214	48,6	-6,28	42,3	42,4	511	20,7
bOSM2	41,1	18	41,7	108	41,4	24,87	492	3,6	3,99	12,38	19,98	8,062	6,336	1,272	46,6	-6,31	40,3	40,4	483	20,39

Příloha B: Naměřená data skupiny B