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Abstrakt
Vícenozí kráčející roboti mají v porovnání se svými kolovými nebo pásovými protějšky relativně
komplexní morfologii, která jim poskytuje výhodu při překonávání náročného terénu. Nicméně
efektivní lokomoce v náročném terénu vyžaduje spolehlivou detekci došlapů, jedině tak je možné
zajistit, aby robot přizpůsobil své chování okolnímu prostředí. Pro cenově dostupného robota
vybaveného pouze poziční zpětnou vazbou byl v rámci této diplomové práce vyvinut odhadce
kontaktu nohy, který jsa založen na metodách strojového učení jest podroben experimentálnímu
ohodnocení. Tři metody strojového učení jsou použity k předpovědi polohy nohy robotu na
základě posloupnosti posledních nastavených a změřených pozic nohy. Konkrétně byla použita
regrese nejmenších čtverců (Ordinary Least Squares regression), regrese nejmenších čtverců s
druhořádovými polynomiálními příznaky a třívrstvá dopředná neuronová sít’ využívající ReLU
aktivační funkci. Navržené metody jsou experimentálně vyšetřovány s ohledem na přesnost
navržených modelů, robustnost vůči změnám parametrů systému, velikosti souboru nasbíraných
dat použitého k učení, využívaným výpočetním prostředkům a na závěr nasazeny na šestinohou
robotickou platformu SCARAB za účelem detekce kontaktu nohy. Navíc, statistické vlastnosti
souboru nasbíraných dat použitých k učení, citlivost regresorů vůči rychlosti pohybu nohy v
souboru nasbíraných dat, v neposlední řadě vliv změřených a nastavených pozic ve vstupních
datech regresorů na jejich předpovědi je detailně zkoumán za účelem objasnění neúspěšného
nasazení regresorů na robotickou platformu. Na závěr byl uměle vytvořen scénář kontaktu nohy s
cílem prozkoumat jak regresory reagují na nahodilé kolize. Výsledky této práce ukazují, že navz-
dory slibnému výkonu regresorů v prvních ohodnocovacích scénářích, nejsou navržené regre-
sory vhodné k detekci kontaktu, jelikož se bud’ přeučí a nebo neposkytují dostatečně spolehlivé
predikce.

Klíčová slova: dynamika systémů, vícenozí kráčející roboty, řízení pohybu
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Abstract
The enhanced rough terrain traversability of the multilegged robots is directly connected to their
relative complex morphology in comparison to the wheeled or tracked robots. However, the
efficient rough terrain locomotion requires reliable contact sensing necessary to adapt robot be-
haviour and cope with the terrain irregularities. In this thesis, the learnable leg contact estimator
for an affordable hexapod robot with positional feedback-only has been developed and experi-
mentally evaluated. In particular, three light-weight machine learning approaches, namely Ordi-
nary Least Squares regression, Ordinary Least Squares regression with second-order polynomial
features and three-layer feed-forward neural network with the Rectified Linear Unit activation
function, are used to predict leg position based on the sequence of the measured and set positions
of a particular leg. The proposed methods are investigated experimentally w.r.t. the model preci-
sion, robustness to the parameter changes, size of the training set and computational requirements
and experimentally deployed to the SCARAB hexapod platform to detect foot-contact. Addition-
ally, the statistical properties of training datasets, the regressors sensitivity to the leg movement
speed, the effect of the measured and the set positions on the prediction are examined to explain
the unsuccessful deployment. Finally, the artificial foot contact scenarios have been designed to
examine how the regressors react to arbitrary collisions. The collected results show that despite
the promising performance in the initial scenarios, proposed regressors are not suitable for the
contact detections since the regressors either overfit or provide unreliable predictions.

Keywords: system dynamics, multi-legged robots, locomotion control
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Chapter 1

Introduction

Robotics is a rapidly developing engineering branch aiming to substitute human factors with au-
tomation, nowadays further accelerated by the ongoing pandemic. While industry mainly focuses on
stationary manipulators extensively used for automated manufacturing, mobile robots can be deployed
for a broader range of tasks outside of the well-structured factories to the harsh unstructured conditions
addressed by field robotics. A few examples of recent mobile robotics deployments include but are not
limited to, NASA Perseverance rover and Ingenuity drone successfully landed on the Mars surface [1]
depicted in Fig 1a, New York City Police Department deployed Boston Dynamics Spot walking robot
to crime scenes reconnaissance [2], or increasing demand for autonomous food delivery robotic solu-
tion during the pandemic situation [3] depicted in Fig. 1c, are only a few examples of recent mobile
robotics deployments.

(a) NASA Mars roover.1 (b) Hydraulic Qadruped robot.2 (c) Food delivery robot3

Figure 1: Mobile robotic platform examples.

Aside from specialized platforms, such as extraterrestrial rovers, most of the mobile robot types
require infrastructure. For example, roads are necessary for autonomous cars, magnetic lines and
localization markers are used for navigation of logistic robots in storage houses, or runways are re-
quired for takeoff and landing of fixed-wing unmanned aerial vehicles (UAVs) such as autonomous
planes. Even though tracked robots are not as infrastructure-demanding, terrain traversed by them is
usually heavily damaged. On the other hand, multi-legged robots require no specialized infrastructure
to traverse challenging terrain easily as they mimic the natural way of transportation. Their relatively
complex morphology enables their enhanced rough terrain locomotion in comparison to the wheeled
or tracked robots see Fig. 2. Because of their morphology with a high number of degrees of freedom,
specialized and more complex methods are necessary for their control. On the other hand, system re-
dundancy allows controllers to choose particular foothold and leg trajectories, enabling precise terrain
negotiation utilized, for example, in humanitarian demining [5].

In this work, we will focus on developing a learnable leg state estimator for an in-house constructed
hexapedal platform SCARAB (Slow-Crawling Autonomous Reconnaissance All-terrain Bot) depicted
in Fig. 3. The robot represents an affordable research platform built from off-the-shelf components.
It comprises the trunk that hosts the main control computer, batteries and exteroceptive sensors, and

1courtesy of NASA: https://mars.nasa.gov/resources/25790/
2courtesy of Nobili et al. [4]
3courtesy of Starship Technologies: https://www.starship.xyz/follow/
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1. Introduction

Figure 2: Differences between the impact of a legged robot (Lily the hexapod robot by HEBI
Robotics) and tracked robot (MARV by Jettivision) on the sloped muddy terrain.

six legs, each with three joints actuated by the affordable Dynamixel AX-12 servomotors. However,
selected actuators have only the P-type position controller and provide only positional feedback. The
positional feedback only limits the locomotion control of the robot to monitoring virtual elasticity
in joints since this is the only way how to traverse harsh terrain without additional sensors [6] and
without excessive torques in the joints that may damage the actuators. Used locomotion controller [7]
is based on an analytical dynamics model of the robot.

Figure 3: Hexapod walking robot SCARAB (Slow-Crawling Autonomous Reconnaissance All-terrain
Bot) in the underground environment.

2



1. Introduction

Although the process is laborious, one can identify the parameters of the dynamic model, but
the model itself can not take into account all the possible environmental factors and other processes
affecting the robot. Until we participated in DARPA SubTerrenian Challenge [8], our robots rarely left
a controlled habitat of the robotic laboratory. Consequently, we did not expect nor focused our research
on harsh underground conditions. Mud deposits increasing weight of the robot legs, dust or fine mud
increasing servo friction hand in hand with possible leg weight reduction as a result of leg damage are
only a few examples of otherwise hard to predict environment factors we have encountered. These
conditions are expected to significantly change the system dynamics during the deployment; therefore,
we cannot rely on the analytical model previously identified in a controlled laboratory environment.

Further, our SCARAB fleet currently consists of four robots with additional units on the way;
hence the time spent identifying the dynamics model will further lengthen with the size of the robot
fleet. Additionally, fused filament fabrication (FFF) 3D printing technology was used to speed up the
development process and unlock instant platform improvements based on experience from deploy-
ments. Even though all robots in the fleet share similar morphology and leg structure, there are slight
differences in robot parameters caused by constantly improving settings of the fabrication method,
materials used, and robot design itself.

Hardly predictable real environment and variation in robot parameters emphasize the importance
of solution robustness to maintain robot performance during deployment and poses engineering chal-
lenges motivated by real-life scenarios. Therefore we suggest exchanging analytical model by model
based on machine learning that will cope better with changes in robot parameters and can be re-learned
online. This learnable system can be easily deployed on multiple hexapod walking robots without any
modifications other than re-learning. Aside from removing laborious system identification and ac-
celerating the production process, machine learning approaches look for relations between input and
output data; therefore, these approaches model all relations, including those neglected by analytical
models.

Moreover, we aim to obtain additional information from the robot as we have found out that
the state of the robot leg is essential to ensure reliable locomotion over rough terrain [7, 9]. This
information shows to be very important for other legged platforms [10–12] but force-sensing utilized
by others is not suitable for our platform because we lack required sensor inputs [6]. Nevertheless,
we believe that information needed to reveal the leg state is encoded in positional data and the robot’s
attitude. Therefore, we want to create a learnable model that is capable of detecting leg contacts
and estimating leg state, assessing whether the leg is supporting the body or not. Reliable contact
assessment is essential to maintain the attitude of the robot in challenging terrains.

This work presents the learnable state estimator developed using machine learning methods while
focusing on the foot-contact detection capabilities. Three lightweight machine learning methods are
experimentally evaluated and compared to the analytical baseline model [7]. Based on the evalua-
tion results, the most suitable method is deployed on the SCARAB robot. The performance of the
regressors deployed on the robot in the rough-terrain traversal scenario exhibit behaviours that were
not seen during the evaluation of the regressors. Therefore, we have put further effort into explaining
the inferior behaviour of the regressors by thoroughly examining the statistical properties of training
datasets, the regressors sensitivity to the leg movement speed and the effect of the measured and the
set positions on the prediction accuracy.

The rest of this thesis is organized as follows; Chapter 2 surveys the state of the art methods
used for robot dynamics modelling and state estimation, Chapter 3 outlines the necessary background,
including platform and locomotion control description, underlying dynamic model and problem state-
ment, proposed methods are described in Chapter 4, Chapter 5 reports results of numerous experi-
mental evaluation and deployment scenarios, and Chapter 6 conclude this work.
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Chapter 2

State of the Art

This chapter presents the state of the art methods relevant for the state estimation and robot control
of the multi-legged platforms. It is divided into two main parts. The first part introduces methods used
for robot control with emphasis on machine learning-based approaches. The second one overviews
state estimation in mobile robotics with a focus on multi-legged platforms. We chose this division
since, to our best knowledge, there are no approaches including both model learning and state estima-
tion.

2.1 Robot Control and Machine Learning
Nguyen-Tuong and Peters [13] describe the model as a collection of essential information about the
robot system and a description of the agent’s influence on the system, both kinematic and dynamic
level essential for planning, control and many other applications.

Based on the amount of prior information about the system, we can distinguish white-box, grey-
box and black-box control methods. White-box (also referred by some authors as clear-box) controls
methods have complete information about the system and its properties. Conventional control methods
such as differential-algebraic equations [14], state-space models [15] or modular controller design [16]
are a few representative examples of white-box control methods. Black-box control methods have no
prior information about the system at all and deduce relations between system inputs and outputs based
on provided data. Therefore machine learning methods can be deployed to approximate this relation.
To name a few, artificial neural networks (NN) [17], reinforcement learning (RL), gaussian process
regression (GPR) [18], Local Weighted Projection Regression (LWPR) [18] can be used for such tasks.
Gray-box control methods combines white-box and black-box, commonly exploiting knowledge about
systems to design white-box and adding black-box to compensate for unknown non-linearities [19–
25].

The profound difference between the white-box and black-box model is that the white-box ex-
ploits prior information about the system, whereas the black-box model has no assumption about
system structure. To successfully design a white-box model, one must understand the system and its
underlying physics; on the other hand, the black-box design needs almost no information about the
system itself. The White-box model incorporates only relations explicitly defined in the design pro-
cess, whereas the black-box methods attempt to reflect all relations between input and output. These
attempts may fail because of overfitting to data since black-box models can imitate system behaviour
at best [13] and the reason for failure might not be easy to reveal since the explainability of black-
boxes is limited or none, and it is nowadays actively researched topic [26]. Grey-box control methods
combine white-box and black-box models such that the advantages of both approaches are exploited
(prior information about the system in the case of white-box and the ability to compensate for un-
known non-linearities in the case of black-box). In the following subsections, a detailed description
of selected methods is provided.

2.1.1 White-Box Control Methods

White-box control methods are centred around a model based on physical principles. Creating a
precise model requires identifying relationships between relevant variables of the plant. This requires
both understanding underlying physics and advanced knowledge about the system itself [27]. These
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2.1 Black-Box Control Methods

requirements are the main downside of the white-box models; their accuracy is directly connected to
their complexity. Therefore unknown non-linearities are never included in the model.

Eventhough it is possible to use genetic algorithms (GA) described in Section 2.1.3 to identify
model parameters [19, 22], white-box control methods cannot be learnable. However, we will de-
scribe selected methods for the sake of completeness since we believe that they help us broaden our
insight into the control theory. On top of that, white-box are an integral part of the grey-box methods.
White-box can be described by a set of an ordinary differential equation, a set of differential-algebraic
equations [27] or analytically using Euler-Lagrange formulation [28]. The Euler-Lagrange formula-
tion is used by baseline locomotion controller [7] to describe the leg dynamics. Regardless of the used
method, general parameters of these equations must be identified using system identification meth-
ods, some of which can be automated using adaptive control [29], machine learning such as neural
network-based SANARX [30] or previously mentioned genetic algorithms.

In the context of controlling multi-legged robots, Hwangbo et al. [31] mention two common ap-
proaches: modular controller design and trajectory optimization. Modular controller design breaks
control problem into individual modules. These modules are assumed to be independent of each other,
and therefore, each module can be designed and tuned individually. Individual modules are limited
in accuracy since approximation of operational state is valid within a small region; therefore, signifi-
cant compromises have to be made, such as slow acceleration, fixed body pose, or limited velocities
of limbs. On top of that, designing modular controllers is laborious and advanced knowledge of the
robotic system is required to hand-tune each new module, new robot, or even new manoeuvre [31].

Trajectory optimization approaches divide the controlling process into two steps: trajectory plan-
ning and trajectory tracking. Trajectory planning uses rigid body dynamics and numerical optimiza-
tion to compute an optimal path, while trajectory tracking follows the optimal trajectory. While being
more automated, trajectory optimization approaches perform worse than modular controllers. These
methods remain computationally demanding or beyond the capabilities of current optimization tech-
niques due to the complexity of the multi-legged robots domain. Even though it is possible to reduce
their precision or run them on powerful external machines, they still require tuning and can produce
suboptimal solutions [31].

2.1.2 Black-Box Control Methods
Black-box control methods represent a helpful alternative to the conventional white-box approach to
the system control models. The main feature common to these methods is estimating the model di-
rectly from the data using system input and output. This direct approach allows taking into account
all relations between input and output, including unknown non-linearities that are usually omitted
by standard physical-based modelling [13]. However, new challenges arise if one considers using
black-box control methods. Since these methods are data-oriented, the quality of data affects the ac-
curacy of the resulting model. Data used to train black-box models have to cover as many regions
of a model state space as possible, even though covering complete state space is not possible [13].
Though covering a representative portion of the state space is usually sufficient for black-box meth-
ods to generalize from provided data, and keeping the data-rich and balanced decrease the chance of
model overfitting [13,22]. Black-box models tend to have higher model complexity than the white-box
approaches [22]; therefore, the dimensional reduction is applied. The core idea about dimensional re-
duction is based on the assumption that helpful information often lies in the low-dimensional manifold
of the original input space. Using dimensional reduction decreases both the complexity of the model
and, more importantly, a chance of overfitting [13] because it removes dimensions that are potentially
correlated with output but not causally connected. Black-box learnable models are used in a variety
of robotic engineering tasks such as inverse dynamic control [18], inverse kinematics of redundant
manipulator [32], robot manipulation of 7-DoF redundant manipulator [33], slippage prediction and
control of multi-legged robot [34] or legged robot locomotion over rough terrain [35].
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2.1 Black-Box Control Methods

Based on inner structure and the way how black-boxes are fitted to the data, we can further distin-
guish the following: off-line and online methods, parametric and non-parametric methods, global and
local methods.

In off-line learning, data are collected on the platform, trained and then deployed on the system.
Any training occurs separately from deployment. On the other hand, in online learning scenario, either
the black-box model is trained during deployment on the system, or the model is pre-trained off-line
and then improved during the deployment. Online learning generalizes better and adapts the model
to time-dependent changes since these approaches explore a more significant part of the state-space
during the deployment that is otherwise not covered in the training data [17]. Still, it may experience
the overfitting, concept drift [36], or catastrophic forgetting [37] that renders the model unusable.

Parametric methods such as neural networks have a fixed number of parameters set before training,
usually based on insight into the particular method and domain. On the contrary, non-parametric
methods, e.g., gaussian process regression and locally weighted regression have no parameters, and
the model structure adapts to the data complexity. Non-parametric methods can be deployed to robot
control [38].

Global methods (also global regression techniques), such as linear and polynomial models, or
neural networks, use all available training data to construct a single global prediction model [39].
Even though conventionally, neural networks have fixed structures, there are Neural Networks that
can change their structures dynamically, such as reservoir computating [40] or echo state neural net-
works [41]. Local methods (also local regression techniques) such as locally weighted projection
regression [42] use multiple models to estimate the underlying behaviour of the system in the local
neighbourhood around a query input point [13]. Different structures can be assumed for individ-
ual local models based on the problem complexity. Local regression techniques are widely used
in robotics [42, 43] for model learning thanks to their simplicity and computational efficiency [13].
Additionally, local regression techniques can cope better with less smooth functions than the global
methods because of their local-based structure.

Two examples of non-parametric methods are used for black-box model learning; Gaussian pro-
cess regression and locally weighted projection regression. The former is global, and the latter is a
local method. Gaussian process regression (GPR) [44] is a non-parametric probabilistic global method
that uses the sample data to construct a kernel-based interpolation basis utilizing user-provided kernel
functions to model system behaviour. While being the cutting edge of the global regression method,
GPR suffers from poor scalability since the memory and computational complexity scale cubically
with the size of the training data [13]. Locally weighted projection regression [42] combines local
methods with dimensional reduction. Firstly, input data are projected to space with a lower dimension
and then local methods are applied [13]. Local and global methods can be combined to exploit the
strength of probabilistic methods as done with GPR in [18].

Nguyen Tuong and Peters [13] present three types of models; forward, inverse, and mixed models
and additional multi-step prediction models. Similarly to the forward dynamics and kinematics, for-
ward models predict the next state of the robot dynamics system given the current state and current
action such as model reference adaptive control (MRAC) [45].

Inverse models, on the other hand, predict the action required to transit the model from the current
state to the desired future state. A common example is the inverse dynamics model used by computed
torque robot control [46] and inverse dynamics control [47]. Inverse model training is straightforward
if the relationship between the input and the output of the system is well defined [13]. In that case, stan-
dard regression techniques can be applied, e.g., the least square methods [27], neural networks [48], or
statistical approximation techniques [44]. Otherwise, indirect modelling where particular error mea-
surements drive model learning is deployed, or distal teaching where the forward model guides inverse
model learning can be deployed [13]. As emphasized by Nguyen-Tuong and Peters [13], obtaining
data is challenging as a dataset have to be sufficiently rich and persistent excitation causes issues in
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online setups. Some approaches, such as linear regression [49], cope badly with non-linearities of real
inverse dynamics of complex systems because of their fixed parametric structure. Therefore neural
networks, static non-parametric model learning, or local methods are used.

Mixed models combine both forward and inverse models to cope with nonuniqueness (ill-posedness)
of the inverse model. Even though mixed models are widespread in the neuroscience community, they
are not yet deployed in robot control [13].

Multi-step prediction models produce time-sequence of future system outputs without available
future measured system states. Deploying is especially challenging since the error made in the past can
propagate to future predictions. Multi-step prediction model approaches known as model predictive
control (MPC) [50] are widely used in industry. White-box takes on MPC such as ARX or ARNAX
are too limited for complex robot system [13]; hence, NN and probabilistic methods are used for such
tasks.

In their survey, Jin et al. [17] compile numerous neural network approaches used to control robot
manipulators, both fixed-base (redundant, parallel, cable-driven) and floating-base (mobile). Feed-
forward neural networks [51] are widely used to solving both dynamics and kinematics problems of
controlling robot manipulators. Authors distinguish two types of feed-forward NNs: feed-forward NN
based on backpropagation (BP) and feed-forward NN with radial basis functions. Feed-forward NNs
using back propagation are neural networks using sigmoid as activation function without any cycle in
their structure. Even though three layers are sufficient to approximate any function, multiple layers can
be used to create deep neural networks. Backpropagation adjusts neural network parameters (weight of
connections between neurons) based on loss function using the difference between desired NN output
and actual output. It is possible to use feed-forward NN to control flexible-joint manipulator [52] or
to set-point control 2-DoF planar manipulator [53].

Feed-forward NN using radial basis function (RBF) consists of three layers. The main idea behind
this NN is to use radial basis functions to map linearly inseparable samples to higher dimensions
through a non-linear transformation to become separable by linear function in higher dimensions.
Feed-forward NN using RBF are being used to solve the dynamic and kinematic problem of robot
manipulator [54], compensation for non-linear dynamics in contouring control [55], or cancelling out
adverse effects of friction of two-joint manipulator [56].

Recurrent neural network (RNN) adds a new separated recurrent hidden layer connected to the
regular hidden layer. Bi-directional information flows simultaneously from the hidden layer to the
recurrent hidden layer and vice versa. Tian et al. [57] used RNN to control contact forces and position
between the end effector and surface for the flexible manipulator.

Long Jin et al. [17] accent need for online learning since implementing this feature cause manipu-
lator to deal with unexpected factors encountered during operation. Therefore, authors consider RNNs
since they have a feedback mechanism since they can adapt over time while they do not need off-line
learning [55]. However, RNN fails to reveal long-term dependency in the input data; therefore, Jin et
al. see potential benefit in using long-short-term memory NN [58] that are capable of learning to clas-
sify, process, and predict time series even if considerably long time lags of unknown size are present
between events.

Neurons in Hopfield neural network (HNN) are not organized in a layer but compose a fully con-
nected graph where every neuron is connected to all others, excluding itself. Each neuron has two-state
(either activated or not), and Hebbian learning [59] is used to train them. Although HNN may reach
only local optimum [17], Ding and Chan [60] successfully used them to solve kinematics of redundant
manipulators for obstacle avoidance.

Spiking neural networks (SNN) are more associated with a real neuro-system than previously men-
tioned types. SNN show their capabilities for solving time-dependent patterns to control a 4-DoF ma-
nipulator [61] or to be deployed as part of target tracking controller for autonomous mobile robots [62].

Central pattern generator (CPG) neural network produces rhythmic patterns without needing sen-

7



2.1 Grey-Box Control Methods

sory feedback used for locomotion control [63]. The main problem of CPGs in locomotion control of
multi-legged robots is in a limited range of possible motions given by the rhythmic patterns, although
they cope well with disturbances. Their parameters are also hard to tune to produce a viable rhythmic
pattern, and therefore CPGs are often hand-tuned or entrained in simulation using the reinforcement
learning [63].

Echo state network (ESN) exploit randomly generated reservoir replacing hidden layer in a three-
layer neural network. The number of neurons in the reservoir is related to the complexity of the
problem, and different reservoir states are being recorded over time as input changes. ESN was used
to perform precise position control of robot manipulators by authors of [64].

2.1.3 Grey-Box Control Methods

Grey-box methods combines white-box and black-box into single model to control plants in various
areas ranging from robotic manipulators [19–21], coupled water tanks [22, 23], fermentation cham-
bers [25] to satellite attitude control systems [24], neutron beam [23]. Using the white-box model,
one can exploit knowledge about the system while black-box handles unmodeled non-linearities of
the system. This is especially useful if underlying dynamics is unknown as presented in [25] where
the black-box component was designed to model bacteria growth in the Acetone-Butanol-Ethanol fer-
mentation chamber. As pointed out in a review by Ljung [27], grey-box control methods have a rather
broad range of touching white-box on one end of its spectrum and black-box approaches on the other.

Genetic algorithms (GA) were built upon Darwin survival-of-the-fittest principle. The user pro-
vides a fitness function that associates numbers to each possible solution represented as a set of pa-
rameters (chromosome). Optimization occurs iteratively in steps referred to as generations. Each
generation, part of the current population, is selected based on selection rule to produce new solutions
(offsprings) combining their chromosomes based on crossover rules, optionally local search methods
(mutation) can occur. Based on the fitness of the last generation and offspring, solutions are selected
for the next step. Using genetic algorithms is not unusual since evolution-based algorithms have been
proven useful for multi-criteria optimization as mentioned by Nemes et al. [19] and since candidate
solutions provided by GA are Pareto’s optimal, engineers can examine different trade-offs as pointed
out by Tan et al. [23]. Nemes et al. [19] used GA to optimize both white-box model parameters and
complexity of the black-box model implemented by fuzzy logic systems to model the dynamics of the
robot manipulator. Tan et al. [23], on the other hand, demonstrates that GA can overcome the local
search method (Quasi-Newton’s algorithm) for both coupled liquid level system dynamic model and
the neutron beam-based thin-film reflectivity detecting system.

Genetic algorithms are not only options how to identify white-box parameters; Wernholt and Gun-
narsson [21] used conventional techniques to identify initial values for rigid body dynamics, fric-
tion, and joint flexibilities of their manipulator to ensure convergence to global optima and Oaki and
Adachi [20] used a decoupling identification procedure to identify parameters on their horizontal two-
link robot with elastic harmonic drive gears. Rogers et al. [22] combines models in a novel way
by connecting both the output of the white-box and grey-box model input to the Gaussian process
regression [44] used as black-box part of theirs model.

A rather unusual grey-box design was presented in [24] for diagnosis fault estimation of reaction
wheel in satellite attitude control system. Authors propose a novel approach called Grey-Box Neu-
ral Network Models (GBNNM), combining multi-layer perceptron neural network and integrators to
approximate both non-linearities and dynamics of the plant.

Prada et al. [25] used mixed-integer optimization to identify unknown dynamics of bacteria growth
factors in their Acetone-Butanol-Ethanol fermentation plant. Mixed-integer optimization selected a
combination of user-provided functions providing best-fit and ensuring physical coherence.
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2.2 State Estimation for Legged Robots
Legged robots are typically equipped with proprioceptive sensors such as joint encoders and IMUs,
occasionally with contact sensors, whereas exteroceptive sensors (cameras and LIDARs) are more
common for humanoid robots [11]. Based on sensory equipment, three stages of state estimation are
distinguished by Hartley et al. [11]: kinematic odometry only, kinematic odometry with additional
sensors, and observability-constrained strap-down ErEKF (Error Extended Kalmana Filter). These
approaches are further described in the following paragraphs, followed by other rather unusual ap-
proaches to state estimation.

Kinematic odometry only approaches estimate robot position and orientation relative to the original
pose using joint encoders and contact measurements if available; measurements are then fed into
the kinematic model to produce a relative transformation of robot frame. Kinematic odometry only
approaches assume that the legs supporting the body stays fixed relative to the ground. However, in
practice, this assumption is often violated, e.g., the point-shaped point-shaped foot-tip can rotate on the
ground without joints moving [11], or individual legs can slip on a slippery surfaces [65]. Kinematic
odometry-based approaches are easy to implement but noisy. According to Roston et Krotkov [65],
kinematic odometry drift is caused by kinematic model inaccuracies, joint encoder noise, and foot
slippage; hence, it is impractical for mapping and autonomy tasks.

To increase the accuracy of kinematic odometry, additional sensors such as IMUs, gyroscopes,
cameras or LIDARs can be considered. Lin et al. [66] use kinematic odometry, contact sensors and
multiple IMUs to estimate the state of the RHex hexapedal platform using EKF with a sequence of
continuous-time dynamical models. Chitta et al. [67] utilize proprioceptive sensors and a particle
filter for tactile sensing through kinematics to localize LittleDog quadruped robot in a priori known
map. Cobano et al. [68] fuse measurements from kinematic odometry, global position system (GPS)
and IMU to localize SILO4 quadruped robot in outdoor environment. Khalil et al. [69] deployed
particle swarm optimization to tune EKF used for pose estimation of Corin hexapedal platform. They
demonstrate the robustness of their approach to wall-walking.

Finally, observability-constrained strap-down ErEKF [70] combine inertial and kinematic mea-
surements. This method extends strap-down ErEKF mentioned earlier; therefore, no dynamics model
is needed since the IMU integration model is being used. This method can compensate for slight
random Brownian movement of leg-tips causing drift in the case of simple kinematic odometry-based
approaches., but additional information about leg contacts with terrain is required. If leg contacts are
provided, filter equations are general enough that the method can be deployed on multiple legged plat-
forms. For example, Bloesch et al. [71] used this method to detect foot-slip on StarlETH quadruped
and Lubbe et al. [72] fuse data from onboard IMU and force sensors on the foot-tips to estimate Phan-
tomX hexapedal platform pose. A similar approach was developed by Yang et al. [12] using Square
Root Unscented Kalman Filter. Authors combine low-grade IMU, leg joints encoders and torque
sensors to estimate the state of hexapedal platform HEBI Daisy.

Fallón et al. [73] developed PRONTO [74] modular framework for state estimation. Fallón et
al. [73] used two different inertial measurements units, leg kinematics and LIDAR, to estimate the
state of the humanoid bipedal Boston Dynamics Atlas robot. Position, orientation, linear and angular
velocities were estimated and using Gaussian Particle Filter, drift-free localization was achieved within
a priori known map. Camurri et al. [10] deployed the PRONTO framework on HyQ quadrupedal plat-
form. A logistic regression classifier was used to estimate necessary information about foot contacts
from force sensors. Nobili et al. [4] developed a method to estimate position and velocity of torque
controlled HyQ quadruped platform while using the approach by Cumarri et al. [10] to estimate foot-
contacts. The proposed method used inertial measurements, leg kinematics, stereo vision and LIDAR
data with different latencies and frequencies to localize the robot under different light conditions and
while traversing varying terrains.

Chilian et al. [75] used an indirect feedback information filter to estimate pose, velocity and sensor
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biases of the DLR Crawler hexapedal robot. Their method combines previous and current robot states
while fusing measurements from leg odometry, IMU and stereo camera. Hwangbo et al. [76] deployed
a probabilistic model (Hidden Markov Model) for foot-contact estimation using only leg odometry of
StarlETH quadruped robot. Several insight notes were mentioned by the authors. A leg that has high
acceleration and velocity is likely not colliding with terrain. A leg that is high off the ground is likely
not colliding with terrain. This insight was used to create a transition model: high speed in the air
means no contact, and high speed on the ground means slippage. Bloesch et al. [77] propose a two-
state implicit filter to estimate pose based on the previous and current state. Their method that does not
require an explicit dynamics model was deployed on the planar robot, manned aerial vehicle and blind
quadruped. Wisth et al. [78] used the factor graph method combining joint sensing (position, velocity,
torque), IMU readings and camera images to estimate ANYmal quadruped robot pose, linear velocity
and sensor biases while the robot was walking, trotting, crossing obstacles and ascending staircase.

2.3 Foot Contact Detection for Legged Robots
A straightforward method of foot contact detection is using contact sensors such as micro-switches or
direct force measurements using force-sensitive resistors (FSR) and multi-dimensional force sensors.
However, micro-switches and FSR are fragile and have limited area and direction of sense, and reliable
multi-dimensional force sensors are expensive, heavy and rarely used on walking robots. Therefore the
contact force is indirectly estimated using force/torque sensors inside robot joints [10,12,79,80]. Bledt
et al. [79] extend momentum-based disturbance observer to discrete-time and fuse force estimates with
servomotor encoders and leg dynamics model using Kalman Filtering and Probabilistic models to
estimate the probability of the foot contact. Camurri et al. [10] use joint position, velocity and torque
to estimate ground reaction forces (GRF) of the HyQ robot legs. The probability of the foot contact
is obtained from GRF using logistic regression. Hwangbo et al. [80] use probabilistic methods to
estimate foot contact (including maintaining the contact) using the inertial measurement unit (IMU),
joint encoders and modelled generalized coordinates and velocities. Yang et al. [12] utilize torque
sensors of the Daisy hexapod robot to estimate foot force and express the probability of foot contact
relative to the minimal and maximal force estimated during the trial run.

However, force/torque measurement is not always available since there is a significant price and
size gap between servomotors capable of torque measurements and those unable to do that. Therefore,
Adachi et Nagasaka [81] measure base-frame angular velocities and current in each servomotor of
the hexapod robot. A three-layer neural network with ten neurons in the hidden layer is trained to
detect obstacles while the robot leg was descending. However, single obstacle height is considered by
authors, and the data input size and region were hand-picked regarding the particular obstacle instance,
which is very limiting, especially when walking in rough terrains where contact may appear anywhere
along with the leg morphology and path. Xu et al. [82] use servomotor current and the Jacobian
matrix to estimate foot-tip force to develop adaptive gait for Octopus III parallel-actuated hexapod.
The proposed gait uses force estimation and reflexes to detect ground and avoid obstacles. Yang et
al. [83] combines spring-loaded inverted pendulum (SLIM) model of a miniature quadruped robot
with IMU measurements and actuator data under the Kalman Filter (KF) framework. The contact is
detected whenever the difference between the optimal solution produced by KF and measured data
exceed the threshold.

Nevertheless, adding sensors increase the complexity, price and failure rate of the robot unneces-
sarily. Therefore Faigl et Čížek [7] propose a minimalistic approach for adaptive locomotion using
servo position encoders only. Assuming proportional relation between joint torque and position er-
ror, authors adaptively set the position error threshold based on the position predicted by the inverse
dynamics model for the collision-free motion of the leg. The force threshold-based approach is the
most straightforward method of detecting foot contacts suitable for an affordable platform such as
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SCARAB with positional feedback and no additional sensors. Additionally, Haddadin et al. [6] sup-
port this method as the only sound approach for available data. The baseline approach [7] uses a
white-box model, which parameter identification is challenging and does not generalize well for situ-
ations mentioned above of extensive changes in the leg or joint parameters. This baseline approach is
further described in following section and extended as described in Section 4.
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Chapter 3

Background

In this chapter, we present the necessary background. Firstly, platform specifics are explained,
including platform main design goal, actuator limitations and manufacturing description. Secondly,
the robot controller is outlined with a particular focus on the baseline controller description. The next
part describes the dynamic model used by the baseline controller. Lastly, the problem statement and
the required properties of the machine learning-based model are described.

3.1 SCARAB Platform Description

(a) SCARAB with the dual-camera rig. (b) SCARAB with the dual-camera rig and the bumper.

Figure 4: Hexapod walking robot SCARAB (Slow-Crawling Autonomous Reconnaissance All-terrain
Bot) with the different payload suited for the particular deployment scenario.

The SCARAB (Slow-Crawling Autonomous Reconnaissance All-terrain Bot depicted in Fig. 4) is
a hexapod robotic platform developed at the Computational robotics laboratory. The robot is based on
PhantomX AX Mk II 4 by Trossen robotics, but over time all of the original mechanical parts were
replaced, and the morphology of the robot has been altered as well; hence, a new name was chosen to
differentiate the new robot. Currently, only a single steel reverse-engineered base-plate piece is used
from the original PhantomX MK II platform, while all other structural pieces are 3D printed. The
SCARAB platform was designed to be modular in payload because sensory equipment varies based
on particular deployment goals. Payload mounted on the tactical Picatinny rail range from a camera rig
with Intel Realsense D435 depth camera and Intel Realsense T265 tracking camera [8] to 3D printed
force sensor (bumper) with double D435 and single T265 [84]. Nevertheless, the SCARAB robot is
capable of blind locomotion over irregular terrain using solely using its actuators.

The robot morphology, number of servo motors and leg position relative to the base-frame remains
the same for Phantom AX Mk II and SCARAB . However, robot legs have been modified significantly,
even though the three-links structure was kept, including the link’s nomenclature that reads coxa,

4https://www.trossenrobotics.com/hex-mk2
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femur and tibia in the direction from the body to the foot-tip. The leg structure was altered to decrease
energy consumption when the robot stands still; the coxa link was redesigned, the femur link was
significantly shortened, and the tibia link was heavily modified to be 3D printable using fused filament
fabrication (FFF). The FFF parameters such as material proportion used to fill a printed partially, layer
height, or a number of solid layers were changed during the robot production process, affecting the
final pieces’ physical properties. Additionally, the tibia link cause issues with the repeatability of the
manufacturing process since the printed part was heat-bended as part of post-processing.

The robot is actuated by 18 Dynamixel AX-12 servos, three per leg. Utilized servomotors with
internal P-type controller operating at 1 kHz frequency are connected to the daisy chain and provide
positional measurements at the maximal frequency of 100 Hz. The availability of only positional
measurements limits the possible control approaches. An absence of force-torque sensors and current
measurements in used servomotors prohibits using traditional methods such as impedance (compli-
ance) control [85] or force-torque control [12]. Fortunately, a method utilizing only the position
feedback of the servomotors for blind locomotion over irregular terrain has been developed by Mrva
et Faigl [9] and later extended by Faigl et Čížek [7]. The locomotion control method [7] forms the
baseline controller described in the following section.

3.2 Locomotion Control
Controlling actuators of multiple legs is not straightforward regardless of sensory equipment. There-
fore, individual leg movement is commonly coordinated in a motion gait [86]. Gait splits control into
a periodically repeated gait cycle. Within each gait cycle, legs alternate between stance phase and
swing phase; the leg supports the body in the stance phase while the leg is moving to a new foothold
in the swing phase.

Various locomotion gaits differ in several aspects, such as the number of legs supporting the body,
order of leg movement, coordination of body movement, adaptability, et cetera. At any given moment,
at least three legs must support the hexapod to ensure a statically stable gait for the platform. Therefore
it is possible to move either one, two, or three legs simultaneously, while five, four, or three legs
support the body, respectively. The number of legs transitioning to the new foothold distinguishes
pentapod, wave, and tripod gaits. Order of leg movement can be predefined, or the most suitable leg is
chosen to be moved in free gait. Leg and body levelling can be separated or occur in parallel. Finally,
we distinguish a regular gait with prescribed leg trajectory executed in open-loop fashion and adaptive
gait, which reacts to terrain irregularities based on the servomotors feedback.

The gait cycle can be divided into shorter segments, further referred gait frames. Within each gait
frame, particular legs (called active legs) simultaneously move to a new foothold. As the number of
legs supporting the body varies between gaits, so does the number of gait frames; two gait frames
for the tripod gait, three gait frames for the quadrupod gait, and six gait frames for the pentapod
gait. Intuitively, a gait with a lower number of gait frames is faster than a gait with more gait frames.
However, a gait with more simultaneously moving legs is more prone to lose stability since there might
not be enough legs in contact with terrain to ensure stability if some of the legs fail to maintain contact
with the terrain.

Regardless of gait type, the foot-tip must precisely reach a new foothold. For flat terrain, this task
is trivial as the relative distance between terrain and the robot’s body remains unchanged; therefore,
leg trajectory remains the same across gait cycles, and regular gait is sufficient for traversing such
terrain. On the other hand, the distance between the terrain and the robot’s body potentially varies
significantly in irregular terrain. Consequently, open-loop-based regular gait struggles to traverse this
type of terrain. Therefore, closing the feedback loop is required to detect the exact moment of foot-tip
touching the ground (foot-strike) to ensure reliable locomotion.

Two possible faults of foot-strike detection can occur in adaptive gait; either premature or late
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foot-strike detection. In the case of premature foot-strike detection, the leg does not reach the ground,
and it remains mid-air even though the robot assumes the leg is already supporting the body. Contrary,
for late foot-strike detection, the exact moment of the foot touching the terrain is not detected, and the
foot-tip continues to move into a new position trying to penetrate the terrain. This cause servomotors
over-loading as most of the robot mass is being pushed up by a single leg. Increased load causes
servomotors to overheat, and it adds to gearbox wear resulting in decreasing both the operation time
and the service life of the robot. On top of that, late detection can cause loss of robot stability as the
centre of gravity is affected, potentially resulting in loss of stability, fall, and robot damage. Detecting
late detections is a relatively easy task as late detections start affecting the robot instantly within the
same gait frame.

On the other hand, premature foot-strike detection is more challenging since the effect of legs not
supporting the robot body is pronounced in later gait frames. The consequences of premature detection
are at least as severe as those of late detection. Again the main issues are loss of stability and possible
damaging of the actuators. Moreover, from our experience, the shock induced by the robot falling on
a prematurely stopped leg strains the actuator’s gearbox and significantly decreases its lifetime. This
is more common for gaits with fewer legs simultaneously supporting the robot, such as the fast tripod
gait. Therefore, it is of the utmost importance for the legged robot to correctly identify the moment
of leg contact with the terrain or obstacles to avoid the problems arising from premature and delayed
contact detection. The used approach for the detection of the obstacles is described in the following
section.

3.3 Locomotion Control With Positional Feedback Only
Numerous control methods such as the force-torque control and compliance control are unavailable
to our platform given the limitations of utilized servos, and other control methods require additional
sensors unavailable as well. For example, foot contact estimation using foot-tip velocities [10], using
leg acceleration and velocity [76], using contact sensors [87] or using force sensors on the foot-tip [72].
However, it was shown by Mrva et Faigl [9] and further extended by Faigl et Čížek [7] that it is possible
to detect foot-strikes measuring position using positional feedback only.

The baseline controller proposed by Faigl et Čížek [7] we extend in this theses operates as follows.
In the gait cycle, legs alternate between the swing phase when they are reaching a new foothold and
the stance phase when they are supporting the body. During the swing phase, the leg transitions from
the initial foothold to the new foothold while detecting the foot contact with the environment. When
all legs are on the ground during the stance phase, a body levelling phase is introduced that adapts the
robot’s attitude to cope with the terrain irregularities and moves the body along the desired locomotion
direction. Leg movement is stopped if the ground is detected by holding the current joint position.
Once all active legs detect the ground, active legs transit to the stance phase and the body attitude
is adjusted based on the new leg positions. The overall gait cycle controlling scheme is depicted in
Fig. 5.

The swing phase for a single servomotor consists of two steps; trajectory interpolation and tra-
jectory step-by-step execution with foot-strike detection. Firstly, the servomotor increment ∆θ is
computed:

∆θ =
θfin − θinit

tdes/tcon
(1)

where θinit is the initial servomotor position, θfin is the final servomotor position, tdes is the desired
time it takes servomotor to reach final position, and tcon is the control cycle period. Both initial and
final servomotor positions are obtained using leg inverse kinematics. In each step of the control loop,
desired servomotor position θdes(k) is updated and its value is sent to the servomotor:

θdes(k) = θinit + k ·∆θ (2)
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Figure 5: The overall view of a gait cycle for baseline controller [7]. The body levelling phase
is presented to the stance phase, and the foot-contact is checked when a leg is descending in Swing
phase. The implementation of ground detection is different for our and baseline particular approach.
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Figure 6: The ground detection overview of the TFP-based controller by Mrva et Faigl [9]. The main
differences in comparison to the baseline approach are highlighted in red.

followed by measuring real servomotor position θreal(k).
The main difference between the original method proposal by Mrva et Faigl [9] and the latter

extension by Faigl et Čížek [7] lies in the way how ground detection is handled using measured
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servomotor position θreal(k). Original approach by Mrva et Faigl [9] computes difference between the
commanded (desired) position θdes(k) and the measured (real) servomotor position θreal(k):

err(k) = θdes(k)− θreal(k) (3)

Foot-strike is detected when err(k) exceed fixed threshold τ = cthld:

err(k) > cthld (4)

as shown in Fig. 6.
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Figure 7: Measured and estimated position error of the femur actuator by the baseline approach [7].
The initial error is caused by significant static friction of the servomotor. Note that static threshold
manually tuned value by original controller [9] is most of the time unnecessarily high.

This straightforward approach suffers from three main drawbacks, later removed by Faigl et Čížek
[7]. Firstly, a fixed threshold cthld used for deciding whether a leg already reached the stance phase has
to be selected appropriately via manual tuning for Mrva’s approach. Second, there is noticeable static
friction and related dead-zone when the servomotor starts moving, which causes significant position
error whenever servomotor starts moving (see Fig. 7). Consequently, a fixed threshold has to be high
enough to prevent premature foot-strike detection. Lastly, setting a threshold this high influences robot
performance; a higher threshold means higher torque upon leg impact, which affects robot attitude and
increases energy dissipation causing servomotor overheating.

To overcome these drawbacks, Faigl et Čížek [7] incorporate the leg inverse dynamics model
into adaptive locomotion control. The core idea is to use leg dynamics model to adaptively estimate
expected leg error ethld(k) overtime. The expected leg error ethld(k) is computed as:

ethld(k) = θdes(k)− θest(k) + ε (5)

where θdes(k) is desired servomotor position, θest(k) is servomotor position estimated using leg dy-
namics model and ε is experimentally found safety margin to compensate the joint discretization and
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Figure 8: The ground detection overview of the baseline TFP-based controller by Faigl et Čížek [7].
The main differences in comparison to the controller predecestor are highlighted in red.

mechanical inaccuracies of the particular leg. Leg is assumed to strike the ground when:

err(k) > ethld(k) (6)

as depicted in Fig. 8.
Both approaches stop the leg if a foot-strike is detected or if the final servomotor position θfin is

reached. The value of θfin is set such that the leg foot-tip attempts to reach a position significantly
lower than the current position and consequently attempts to penetrate the terrain. Commanding leg to
try to penetrate the terrain is necessary to achieve ground reaction force, inducing the position’s error
that can be detected.

3.4 Dynamic Model
Leg inverse dynamics model is deployed by Faigl et Čížek [7] to estimate the collision-free motion of
the leg while assuming the negligible coupling of the legs. Euler-Lagrange formulation [28] is utilized
to analytically model leg inverse dynamics:

D(q)q̈ + C(q, q̇)q̇ + G(q) = τ, (7)

where q = {θ1, θ2, · · · , θn} is the vector of generalized n-dimensional coordinates coresponding to
the leg joints angles, D(q) is the symmetric, positive definite inertia matrix of the chain of the rigid
bodies, C(q, q̇) is a tensor representing the centrifugal and Coriolis effects induced on the joints,
G(q) is the vector of moments generated at the joints by the gravitational acceleration, and τ is the
vector of actuation torques at the respective joints.

Utilized Dynamixel AX-12 servomotors provide neither torque neither electric current measure-
ments that can be used to estimate torque directly. Therefore it is necessary to introduce an additional
model for actuator using available positional data only. The dynamic model of the servomotor is given
by:

Jq̈M +Bq̇M + F (q̇M ) +Rτ = K V, (8)
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3.5 Problem Statement

where qM is the rotor position angle before gear reduction, J is the rotor inertia, B is the rotor
damping, F is the sum of the static, dynamic, and viscous frictions depending on the rotor speed, R
is the gearbox reduction, τ is the servomotor torque, K is the back electromotive force, and V is the
motor voltage. The proper values of J,B, F,R and K have been identified using a real servomotor
and the values specified in the manufacturer datasheet.

Dynamixel AX-12 servomotor is internally controlled by P-type position controller which sets
voltage value V based on the positional error:

V = kp · err, (9)

where kp is proportional gain of the controller, and err is difference between set position and current
position of the actuator. The controller operates with 1 kHz frequency.

The complete model of leg inverse dynamics is obtained by substituting eq. 9 and eq. 8 into
eq. 7. The inverse model precision is affected the most by leg links inertia matrices and friction
estimated in the leg joints. Additionally, simplified models of robot legs such as point mass and rigid-
rod were used to decrease the complexity of the calculation and measurement. These simplifications
and non-stationarities that may occur during the deployment introduce additional errors to the leg
inverse dynamics model. Moreover, numerous joint-related and link-related parameters have to be
identified before using this analytical inverse dynamics model as described. Process of identification
and parametrization of the baseline model is described in Section 5.2.

3.5 Problem Statement
As outlined in Section 3.3, the inverse dynamics model is used to estimate the position of the leg
because the direct torque estimation would lead to double differentiation that leads to the inclusion
of non-negligible noise in the estimation process. Therefore, the only viable method for a position-
controlled system is to monitor the torques using the inverse dynamics as noted in [6]. However, with
our actuators, direct information about the joint torque is not available and therefore, only the position
estimate is used in the virtual elasticity monitoring according to [7]. Therefore, we formulate the
problem as a time-series prediction of the joint position q(t+m):

f (u(t− n), . . . ,u(t),q(t− n), . . . ,q(t)) = q(t+m) (10)

where f is a function approximating inverse leg dynamics, i.e. function implemented by ML black-
box, u(T ) is the vector of reference positions being sent to the servo-motors at time T , q(T ) is the
vector of measured servo-motor positions at time T , m is prediction horizon, i.e. how many samples
ahead the model predicts the position, and the metaparameter n− 1 is the number of recent measured
and reference positions used in predictions, further referred history size. In the most general case, the
sizes of q and u are the same as the total number of servomotors. However, if the coupling between
individual legs is negligible, it is possible to construct individual prediction models, one for each leg,
similarly to the baseline approach. In that case, the dimensions of q and u are reduced to the number
of joints per leg, i.e. three. There are multiple requirements on the learned model outlined in the next
section, together with the evaluation metrics used for benchmarking the learned model performance.

3.6 Evaluation Metrics
In this section, we specify the wanted quantities and qualities of the model, namely its inputs and out-
puts and properties of a suitable model, non-stationaries to overcome and the metrics used to evaluate
proposed model performance. As described in previous sections, the only available data are servomo-
tor positions, both measured and desired. Hence inputs of the model can only consist of these two
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3.6 Evaluation Metrics

quantities. The only varying parameter regarding input is the number of recent joint positions used by
the model. The output of the model is the vector of joint angles q.

Regarding properties of the model, we want our model to be at least as accurate as adaptive gait
controller [7] since groundwork already provide a prediction about foot-strikes. Achieving this alone
will be beneficial since the learnable state estimator does not require laborious parameter identifica-
tion as the current controller does. Additionally, robustness and good generalization properties are
required because of hardly predictable terrain. These hostile conditions even further increase non-
stationaries in the system; for example, the dust or fine mud increase servo friction, consequently
heating up the servomotor resulting in non-stationary behaviour, mud deposits hand in hand with the
possible link damage change weight of the robot legs resulting in non-stationary inertial properties
of the system. Furthermore, the proposed model should take an adequate amount of time and data to
train and required computational resources should be within the limitations of the SCARAB onboard
computer. Online learning is advantageous but not a necessary property. We can achieve this either
using an incrementally learnable algorithm or an algorithm with learning time negligible to the mis-
sion’s duration. Lastly, a model should be capable of providing reliable data to enable rough terrain
locomotion.

The Root Mean Squared Error (RMSE) metric has been selected to quantify the model accuracy
throughout the experimental evaluation:

RMSE(x,y) =

√√√√ 1

n

n∑
i=1

(x(i)− y(i))2, (11)

where x and y are vectors (signals) of the same length n and the x(i) and y(i) are their respective
elements at the i-th position. Hence, accuracy of single servomotor prediction is computed as:

RMSE(θest, θreal) =

√√√√ 1

n

n∑
i=1

(θest(i)− θreal(i))2 (12)

where θest(i) is joint position estimated by the models for the i-th step, and θreal(i) is the real joint
position measured in step i. Errors in RMSE are squared before they are averaged, it consequently
makes more significant errors more pronounced. This is important because large errors prematurely
stop leg movement in the locomotion controller. For that reason we are using the RMSE metric to
compare models in following Sections 5.4.2, 5.5, 5.6 and 5.7. To compare accuracy of multiple
servomotors or the regressors, the cumulative RMSE is computed as the sum of the individal RMSEs:

cRMSE(X,Y) =

m∑
i=1

RMSE(xi,yi), (13)

where X and Y are matrices of the same dimensions and xi and yi are respective columns of the
matrices.
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Chapter 4

Proposed Method

This thesis aims to create a learnable model to estimate the robot state defined in the previous
chapter. The main motivation for developing a learnable system is to overcome inconveniences of the
baseline analytical model [7]. Firstly, the baseline model requires cumbersome leg parameters identi-
fication as 18 sets of joint parameters and 18 sets of link parameters have to be identified. Secondly,
the analytical model omits leg non-stationarities such as mechanical and electrical characteristics of
servos that changes due to actuator heat up, gear-box and joint wear, links shape, mass, and inertial
properties differences between legs caused by 3D printing imperfections and the environmental fac-
tors. A Robust robotic system should be able to overcome these conditions and parameter variations.

A straightforward solution to adapt the system to non-stationarities would use adaptive con-
trol [28,29,88], but these solutions are usually physically inconsistent. We reject white-box methods as
they are mostly non-learnable. Approaches that identify model parameters use exhaustive evolution-
inspired search methods such as Evolutionary algorithms [19, 22], herd-inspired algorithms [89] or
swarm-inspired algorithms [90, 91] that are not trainable online. However, we see a potential benefit
in splitting the robot dynamics model into individual dynamics models for each robot leg similarly
to the modular controller design [16]. Grey-box models incorporate white-box models that can be
identified automatically using evolution-inspired methods; the remaining black-box part can be, on
the contrary, trained online. Nonetheless, we do not intend to limit learnability only to the part of
the dynamics model; therefore, we aim to explore black-box approaches, where un-informed methods
are deployed to handle the whole model by itself. This would also allow deploying the developed
approach in the future to other legged robots with more advanced leg morphology.

Based on the literature survey in Chapter 2, we focus on lightweight machine learning methods
that do not require extensive computational power so that it is possible to deploy both training and pre-
dictions on the onboard computer; therefore, we discard approaches like deep neural networks, spiking
neural networks, echo state networks because these neural networks require extensive computational
resources and a significant amount of data for training [17]. Ideally, we target online learnable ap-
proaches; hence, gaussian process regression is rejected since its limited online learning capabilities.
On top of that, Gaussian processes are poorly scalable. On the other hand, locally weighted projection
regression is online learnable, but we see no benefit in the dimensional reduction. We expect dynamics
to depend on recent history; thus, we will not benefit from long-short-term memory neural networks
which can learn long-time-dependent patterns. Consequently, we consider feed-forward neural net-
work [51] and two types of least square methods [27], namely: (i) Ordinary Least Squares regression
(OLS) further referred to as the linear regressor; (ii) Ordinary Least Squares regression with second-
order polynomial features denoted the polynomial regressor, and (iii) three-layer feed-forward neural
network with Rectified Linear Unit (ReLU) activation function further referred to as ReLU regressor.

All regressors have been implemented in the Python programming language. The linear and
polynomial regressors utilize Scikit-learn library [92], and the ReLU regressor uses Chainer frame-
work [93]. The size of the hidden layer for the ReLU regressor as well the number of most recent
position sextets are meta-parameters that have to be experimentally found as further described in Sec-
tion 5.4

Similarly to the baseline controller, we expect the leg dynamics to be decoupled, as examined
and verified in Section 5.1; therefore, each leg’s regressor models are constructed individually. Each
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4. Proposed Method

regressor predicts the dynamics of the particular leg actuated by three servos rather than the dynamics
of eighteen servomotors. The joint positions are predicted one step ahead since the predictions into
a more distant future are losing accuracy, i.e. the future horizon m = 1. Therefore, the eq. (10) is
reduced to:

f (u(t− n), . . . ,u(t),q(t− n), . . . ,q(t)) = q(t+ 1) (14)

The input data utilized for training the model are composed of n most recent pairs of desired po-
sitions triplets u(T ) and measured position triplets q(T ), where the most suitable n is to be found
experimentally.
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Figure 9: Overview of proposed machine learning-based method for ground detection.

The gait cycle of the proposed controller is similar to the baseline approach depicted in Fig. 5. The
body levelling phase is presented to the stance phase, but the distinction of swing-up phase, swing-
forward and swing-down phase is omitted since the proposed controller is no longer restricted to the
rectangular trajectory, and the foot-tip can follow any arbitrary trajectory.

However, the contact detection module of the gait cycle depicted in Fig. 9 has been significantly
changed. The foot-tip position is interpolated in the cartesian coordinates rather than the joint coor-
dinates as in the baseline approach to obtain complete control over the trajectory shape, Interpolated
coordinates are then converted to the joint coordinates using the inverse kinematics module ikti of
the particular leg i. The same goes for the final position of the trajectory θfin used in the decision
block. Uniform interpolation in the cartesian space does not ensure a uniform step in the joint space.
Therefore, differences between two consecutive desired positions θdes slightly vary, as discussed later
in the thesis. Additionally, the θest is estimated using the previous step regressor prediction q(k − 1).

The following chapter experimentally validates inverse dynamics learning for small legged robots
and compares the performance of the proposed regressor to the baseline analytical model [7].
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Chapter 5

Results

This chapter compares proposed methods to the baseline model [7] in various aspects with the em-
phasis on the requirements outlined in Section 3.6 and describes the necessary background regarding
these experimental comparisons. Leg dynamics decoupling is examined in the first part of this chapter
since we need to verify our assumption that leg coupling is negligible to design models for a single
leg rather than the whole robot. Section 5.2 lists parameters used by thw baseline model throughout
the experimental evaluation. The behaviour and properties of the learned models have been first in-
vestigated on pre-recorded datasets and later deployed directly on the robot. Section 5.3 describes the
process of datasets collection in different settings and datasets used by other experiments themself.
Section 5.4 focuses on meta parameters search; the number of most recent measurements used for
prediction is experimentally found, then the number of neurons in the hidden layer of the ReLU re-
gressor is determined. Next four parts (5.5-5.8) compare baseline model to the proposed approaches
given the properties listed in Section 3.6. Section 5.5 analyzes precision of the proposed models
and compares it to the baseline model precision, section 5.6 examines generalization properties of
the proposed models and baseline model when leg dynamics is modified, section 5.7 inspects amount
of data needed to train proposed models, and section 5.8 investigates computational requirements of
the proposed models. Lastly, proposed methods are deployed on the SCARAB platform to detect leg
contacts in part 5.9, and finally, the selected proposed method is deployed to SCARAB platform to
verify the approach in rough terrain traversal scenario.

All experiments conducted in this chapter have been performed using the laptop computer with
dual-core Intel Core i5-3320M CPU @ 2.60 GHz, 16 GB RAM without GPU acceleration, running
Ubuntu 18.04 Bionic Beaver operating system with ROS Melodic. However, some datasets have been
collected using Intel NUC i7-10710U with 64 GB RAM mini PC, as noted in the particular cases.
The performance of the used computers does not exceed the performance provided by the onboard
computer of the SCARAB platform.

5.1 Leg Coupling

(a) SCARAB supported by wooden block ensuring the
collision-free movement for any leg.

(b) SCARAB elevated on its legs to ensure collision-free
movement for a selected leg.

Figure 10: Hexapod walking robot SCARAB in the pose used in experimental setups.
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5.1 Leg Coupling

The coupling between legs occurs when the motion of one leg affects the motion of another leg
through coupling over the body of the robot. The coupling depends on multiple factors, but it is mainly
affected by the mutual inertia of the legs and body and the stiffness of the servomotors. If the coupling
effect between individual legs is negligible, it is possible to construct multiple models for individual
legs rather than a single complex model for the whole robot. In this experimental setup depicted in
Fig. 10a, the robot is elevated on its legs in a significantly higher pose than the usual height used
during locomotion. Standing on the legs reflects the real-life situation of traversing the terrain, and
moving the centre of mass up decreases stability, which amplifies the possible coupling. Additionally,
a highly elevated pose provides an obstacle-free area for legs movement. Two datasets were collected;
the first, the base dataset, consists of a single reference leg periodically repeating prescribed gait
pattern mid-air, and the second dataset captures two additional legs moving with the reference leg. In
this experiment, we have decided to use the tripod gait pattern for leg control as it is the least stable
gait. The desired joint angle θdes and real measured joint angle θreal were collected for all three leg
servomotors of the reference leg at the highest possible sampling rate of 100 Hz using the Intel NUC
i7-10710U with 64 GB RAM mini PC.

Leg position difference of particular joint is computed as:

θdiff = θdes − θreal, (15)

where θdes and θreal are the desired joint angle and the measured real joint angle, respectively. The
periodical pattern of the reference leg is selected because it allows averaging the error throughout
multiple gait cycles. Additionally, the reference leg can repeat its trajectory straightforwardly in both
datasets. The front left leg has been selected as the reference leg, and the rear left and middle right
have been selected as additional legs for the second dataset.
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Figure 11: Comparison of the leg possition error between right front leg moving individually and the
right front leg moving together with right rear and left middle legs. The thick lines depict the mean
error value over 150 repetitions, the light-coloured is bordered by lower and upper quantile, and the
thin dashed line represents minimal and maximal errors, respectively.

In total, 150 gait cycles have been collected for each dataset. The foot-tip followed equilateral
triangular trajectory with circumradius rc = 5 cm. Triangular leg trajectory has been selected since the
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5.2 Baseline Model Parameters

sudden foot-tip direction changes in the corners are expected to induce the most significant coupling
effect among the commonly deployed leg trajectories due to the leg inertia. The collected data has been
averaged over multiple gait cycles, and the mean position error θdiff has been calculated according to
equation (15). The results are visualized in Fig. 11 for the coxa, femur, and tibia joints, respectively.

Additionally, the cumulative RMSEs have been used to quantify the difference induced by the
coupling effect. Firstly, the cumulative RMSE has been computed for individual gait cycles using
averaged measured and set values. The averaged measured, and set values have been obtained in the
same manner as the averaged gait pattern. i.e. the corresponding samples within different gait cycles
have been individually averaged for both measured and set values. Secondly, the cumulative RMSE
has been computed for the position error of the averaged gait errors for both datasets. The cumulative
RMSE for a single leg moving cRMSE(θsingle

real , θsingle
des ) = 0.0809 and three legs moving at the same

time cRMSE(θmultiple
real , θmultiple

des ) = 0.0810 are in the orders of magnitude greater then the cumulative
RMSE of the signal difference cRMSE(θsingle

real − θ
multiple
real , θsingle

des − θmultiple
des ) = 0.0024.

The provided results suggest no significant coupling between legs even in the conducted worst-
case scenario. Therefore, the models can be considered for individual legs rather than a whole robot.
Additionally, since legs share similar morphology apart from minor differences in the servomotor
orientation and offset angles, the right front leg has been selected for the experimental benchmarking.

5.2 Baseline Model Parameters
The baseline analytical model [7] requires two sets of parameters to be identified; the first characterize
the mechanical properties of the legs, the second describes the dynamical properties of the utilized
Dynamixel AX-12A servomotors. As the precise identification of leg and actuator parameters is labo-
rious, the original work uses only a single set of hand-tuned parameters for each leg. The values listed
in Table 1 are used to calculate inertia matrix D, centrifugal and Coriolis effects tensor C and vector
of moments generated by gravity G in equation (7).

Table 1: Mechanical properties of SCARAB leg.
Product Variable Value Unit Description
Coxa ac 52 mm Coxa link length
CoM 1 acc 25 mm Coxa link center of mass position
Mass 1 mc 20 gm Coxa link mass

Femur af 66 mm Femur link length
CoM 2 acf 20 mm Femur link center of mass position
Mass 2 mf 115 gm Femur link mass

Tibia at 132 mm Tibia link length
CoM 3 act 50 mm Tibia link center of mass position
Mass 3 mt 62 gm Tibia link mass

The second group of parameters used by the servomotor dynamics model (8) has been identi-
fied experimentally using a setup where the actuator is moving without any load. This setup can
be achieved only prior to the assembly of the robot, and therefore it significantly complicates later
identification of the servomotors parameters. The parameters are identified from the motion of the ser-
vomotor between two reference positions by increasing control voltage. The minimum voltage vmin

when servomotor starts moving was identified as vmin = 0.5 V and utilized to compute maximal static
friction F ' (k/Ra) · vmin, where k = 3.07 · 10−3NmA−1 is the back electromotive force constant,
Ra = 6.5 Ω is the motor resistance. The values of k, Ra and the gearbox ratio R = 1/254 have been
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5.3 Datasets Collection and Description

found in the actuator datasheet5. The values of servomotor dynamics parameters are summarized in
Table 2.

Table 2: Dynamic model parameters of the Dynamixel AX-12A.

Parameter Value Unit
J 1.032 · 10−7 kg m2

B 3.121 · 10−6 N m s

F 2.369 · 10−4 N m

R 3.937 · 10−3 -
K 3.912 · 10−3 N m A−1

5.3 Datasets Collection and Description
The datasets have been collected using SCARAB robot for later offline experimental examination
of the proposed regressors. The front left leg of the hexapod has been selected to be used for data
collection. The selection has no significant impact since all legs are similar with minor differences.

Datasets differ in both leg movement trajectories and non-stationaries. Different leg movement
trajectories were selected to capture a wide range of possible leg movements without any particular
pattern. Additional non-stationaries were introduced to reflect selected environmental effects on the
robot as outlinde in Section 3.6. Namely, the weight of the last leg link was increased and decreased
to simulate mud deposits and partial leg damage. Rubber bands were added to the joint servomotors
increasing the load of the servomotor to simulate increased joint friction. Selected non-stacionarities
are depicted in the Fig. 12.

In total, nine datasets summarized in Table 3 have been collected. During dataset collection,
the robot was elevated with the robot body laying on the wooden support such that robot legs can
move freely in mid-air without colliding with the environment, as depicted in Fig. 10b. The 2000
and 1000 random target points of the foot-tip were chosen within the operational space of the leg for
datasets one and datasets 2-8, respectively. The leg trajectory was produced by interpolating between
target points with the maximum allowed step size of 0.4 mm. The produced trajectory of the foot-
tip was then transformed to the joint coordinates using inverse kinematics. The final trajectory in
joint space was executed using the open-loop controller that commands the leg with the desired joint
angles. The desired joint angle θdes and real measured joint angle θreal were collected for all three leg
servomotors similarly to the leg coupling experiment. The highest possible sampling rate (100 Hz) of
the servomotor was used for all datasets.

5.4 Meta Parameters Search
Two meta-parameters have to be found before training the proposed regressors; a number of most
recent measurements n used for prediction and size of the hidden layer for ReLU regressor l. Firstly,
the number of recent measurements is examined with the ReLU hidden layer size of 100 neurons
determined by the rule of thumb. After defining input size, the number of neurons in the hidden
layer is investigated. Additionally, k-steps-ahead prediction can be considered to enable model-based
predictive control, but one-step-ahead is used throughout this thesis.

5https://www.trossenrobotics.com/dynamixel-ax-12-robot-actuator.aspx
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5.4 History Size

(a) halved (t) (b) weight (t) (c) weight (f)

(d) rubber (t) (e) rubber (f) (f) rubber (f,t)

Figure 12: Leg modifications to introduce additional non-stationarities and alter leg parameters.

Table 3: List of collected datasets.

#
Dataset Dataset

Induced modifications
name size [n]

1 vanilla 55 333 No modifications

2 halved(t) 27 859 Weight of tibia link reduced by 12 g (see Fig. 12a)

3 weight(t) 27 033 Weight of tibia link increased by 31 g (see Fig. 12b)

4 weight(f) 27 603 Weight of femur link increased by 31 g (see Fig. 12c)

5 loosen(t) 26 994 Tibia link freely moving regardless of tibia servo position

6 rubber(t) 27 277 Tibia joint load increased with rubber band (see Fig. 12d)

7 rubber(f) 27 273 Femur joint load increased with rubber band (see Fig. 12e)

8 rubber(f,t) 27 493 Merge of rubber(t) and rubber(f) setups (see Fig. 12f)

5.4.1 History Size

Collected datasets consist of timestamped sextets of the desired joint angles θdes and real measured
joint angles θreal collected from coxa, femur and tibia servomotors at 100 Hz. We refer to the number
of sextets used as input to the regressors as history size. More information is fed to the models with
increasing history size, but prediction and training time also increase. Data contained in the last three
recent measurements (history size of three) should be sufficient to estimate the leg dynamics since
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baseline model [7] is a second-order system, but lengthy history is expected to increase prediction
accuracy.

This experiment uses the vanilla dataset to produce a composed dataset with n = N most recent
consecutive measurements. The composed vanilla dateset is split in ratio 0.5:0.5 between the training
and testing data. The training data are utilized for training regressors using the cross-validation with
ratio of 0.9:0.1. The trained regressors are fed test data, and the predicted servomotor positions are
compared to the measured one. This process is repeated for N ∈ {1, 2, . . . , 9} as it is assumed that
greater history size does not increase accuracy of the predictions.

Cumulative RMSEs for proposed regressors in relation to the history size are depicted in Fig. 13.
Since the ReLU regressor is initialized at random, the training was repeated ten times in the case of the
ReLU regressor, and the five-number summary is visualized using the box-plot. The most promising
history size n = 5 was selected because the error of the linear and polynomial regressors is the lowest,
and the ReLU regressor median cumulative RMSE value and the maximum cumulative RMSE are the
lowest as well.
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Figure 13: Relation between history size and the accuracy of the proposed regressors measured in the
cumulative RMSE. The ReLU regressor is initialized at random; therefore, the training was repeated
ten times for each history size, and the five-number summary was compiled. Linear and Polyno-
mial regressors are trained using a deterministic training algorithm without requiring repetition of the
training process.

5.4.2 Hidden Layer Size

Similarly to the previous experiment, the hidden layer’s size for the ReLU regressor is tuned using a
vanilla dataset. The hidden layer size of ReLU regressor l was iteratively set to experiment increasing
sequence from 10 to 200 to cover reasonable hidden layer size values. The vanilla dataset is modified
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such that n = 5 most recent sextets of the desired joint angles θdes and real measured joint angles θreal

collected from coxa, femur and tibia servomotors are sequenced. Like in the case of the history size
experiment, the modified dataset is split in ratio 0.5:0.5 on data used for training and data used for
validation and the training data are utilized for training ReLU with a cross-validation ratio of 0.9:0.1.
This training process is repeated ten times for each hidden layer size l, and the results are summarized
in Fig. 14 using cumulative RMSE metrics and a five-number summary. Based on this, the cumulative
RMSE, hidden layer size of the ReLU regressor l = 100 was selected since the variance of the results
is the lowest as well as the median cumulative RMSE.
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Figure 14: Five number summary of ReLU regressor cumulative RMSE for selected hidden layer
sizes.

5.5 Model Precision

In this first benchmarking experiment, the prediction error of the proposed models is compared to the
error of the analytical baseline model. Regressors are trained using the vanilla dataset modified to the
history size n = 5; the dataset is divided in ratio 0.5:0.5 to data used for training and testing data, the
cross-validation training ratio is 0.9:0.1. The cumulative RMSE is used to quantify the accuracy of the
models as depicted in Table 4.

An example of the predicted position and the prediction RMSE error θerr for each leg servomotor
is depicted in Fig. 15. The results indicate that the proposed models estimate the leg position better
than the baseline analytical model [7].
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5.6 Model Generalization

Table 4: Comparison of the cumulative root mean squared prediction errors.
Method Cumulative Prediction RMSE [rad]

Baseline dynamic model [7] 0.0633

Linear regressor 0.0167

Polynomial regressor 0.0166

ReLU regressor 0.0172
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Figure 15: Example of predicted leg trajectory in joint coordinates (left column)and the corresponding
prediction error calculated as θerr = θest − θreal (right column) for considered models. Leg follows a
random location from the vanilla dataset.

5.6 Model Generalization
The second benchmarking experiment examined the generalization properties of the regressors that
have been trained using the vanilla dataset in the same manner as described in the previous section.
Trained models have been then validated on datasets 2-8 collected on modified leg mimicking pa-
rameter changes. The cumulative RMSE is utilized for each modification scenario to compare how
regressors generalize leg dynamics and handle changes in its parameters. The results summarized in
Fig. 16 suggest that the proposed regressors overall generalize leg dynamics better than the baseline
analytical model [7] with the only exception of the halved (t) scenario, where polynomial regressor
achieved significantly lower accuracy of its precision. The colour shade in the figure indicates how
much each servomotor RMSE contributes to the cumulative RMSE; coxa servomotor has the darkest
shade and tibia the lightest. Therefore, the considerable amount of the polynomial regressor cumula-
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tive RMSE in halved (t) originates from the tibia RMSE. In other scenarios, proposed methods cope
with the parameter changes similarly.
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Figure 16: Comparison of model cumulative RMSE for scenarios where leg dynamics is modified.
The darkest shade of a particular method is the coxa RMSE, the medium shade belong to the femur
RMSE, and the lightest is the tibia RMSE. Cumulative RMSE is the sum of the joint RMSEs.

5.7 Size of Training Set
The third benchmarking experiment examines the relationship between the prediction quality and the
amount of data used for training regressors. Aside from collecting new datasets during the robot
deployment, it is possible to retrain the regressor in an online fashion. Mid-mission changes in the
leg dynamics are potentially so significant that even generalizing models do not cope with them.
Therefore, it is desirable to enable relearning from a relatively small batch of data collected ad hoc in
the field. The following experiment has been conducted to investigate which regressors are capable of
online learning.

Since servomotors are periodically read at the rate ∆t = 10 ms, we can compute how long it takes
to collect a particular sequence of a given length; therefore, we conveniently denote the size of the
datasets in seconds to capture how long is robot immobilize to collect new data. The vanilla dataset has
been used in this experiment to create a sequence of exponentially increasing time intervals of training
data of the period from 0.1 s to 30 s. For each such time interval of length m samples, random starting
point p has been selected within the interval [0, L−m], where L is the length of the half vanilla dataset
dedicated to training. From chosen starting point p,m consecutive samples are selected, and input data
of appropriate history size are produced to train regressors. Random selection of the particular length
has been repeated ten times, and cumulative RMSE per trial has been computed using prediction error
θerr. The five-number summary for each time interval and each regressor is visualized in Fig. 17.

The results indicate that linear regressor overcome baseline model accuracy within a few seconds
worth of data where it peaks its performance and polynomial regressor achieves similar performance
a few seconds later and peak its performance within few tens of seconds. On the other hand, the ReLU
regressor struggles to exceed the baseline model even with half a minute worth of data. These results
indicate that linear and polynomial regressors are suitable for online learning, whereas ReLU is not
suited for this type of deployment.
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Figure 17: Cumulative root mean squared prediction error for training datasets of different size. The
shown five-number summary is computed from ten independent trials. Note both axis are in the
logarithmic scale.

5.8 Computational Requirements
The last benchmarking experiment focuses on the computational requirements of the proposed regres-
sors. Computational requirements are essential when deployed on SCARAB onboard-computer; the
computationally demanding method increases power consumption and consequently decrease oper-
ational time, the time required for relearning the changed-parameter leg dynamics increase the time
spent training instead of continuing the mission, effectively slowing down average robot speed. More-
over, time spent producing predictions might increase the gait control period and thus decrease average
robot speed. Therefore, the relation between the time spent training and the size of the training dataset
and the time spent producing prediction have been examined.

Similarly to the previous experiment, the vanilla dataset has been used, exponentially increasing
time intervals of training data starting at 0.1 s to 30 s are chosen at random, and each time interval
is repeated ten times. The five-number summary of time required to train a particular regressor is
computed for each time interval as depicted in Fig. 18.

The results show that the training time of the linear and polynomial regressors are negligible in
comparison to the dataset sizes. Contrary, the time spent training is in order of magnitudes larger than
the dataset sizes for the ReLU regressor. Based on the results of the last two experiments, the linear
and polynomial regressors seems to be suitable for the online learning deployment scenario.

The mean time required to produce a prediction for learned regressors and baseline model [7]
is summarized in Table 5. The total time spent predicting the servomotor positions was divided by
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Figure 18: The computational time required to train proposed regressors using dataset of different
sizes. The results show ten individual trial per size compiled into the five-number sumarry. Note both
axes are in the logarithmic scale.

the total length of the dataset to obtain the mean prediction time. Provided results suggest that all
the regressors are capable of producing prediction during the fraction of 10 ms control loop period;
therefore, they can be deployed as part of the controller with ease.

Table 5: Mean computational time required for a single prediction.
Method Prediction time [µs]

Baseline dynamic model [7] 6.7

Linear regressor 0.3

Polynomial regressor 18.1

ReLU regressor 8.3

5.9 Contact Detection
The contact detection represents the practical usage of the position prediction. Successful contact
detection enables the legged robot to negotiate terrain in a real-life scenario. In this experiment,
the robot body was elevated, and the leg moved freely, as in the case of collecting the evaluation
datasets. The front left leg follows circular trajectory with the diameter d = 10 cm, regularly sampled
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at maximum rate of ∆t = 10 ms within 1 s resulting in the dataset of 100 points. This trajectory
has been performed in six individual trials Ti summarized in Table 6. In the first trial, T1 leg follows
trajectory freely without any obstruction. During the trials T2, T3 and T4, foot-tip collide with the
obstacles of different heights at the different trajectory parts, and for trials T5 and T6 collision occurs
on the femur link in the second half of the trajectory while the leg was ascending.

Table 6: List of the collision datasets.
Trial Dataset size [n] Description
T1 100 Collision free path.
T2 100 Foot-tip collides 7.5 cm from the lowest trajectory point.
T3 100 Foot-tip collides 4.5 cm from the lowest trajectory point.
T4 100 Foot-tip collides 1.5 cm from the lowest trajectory point.
T5 100 Femur link collides in the middle of the ascenting.
T6 100 Femur link near the end of the leg movent.

The collected data have been used for offline detection of leg contact with the obstacle. The
contact has been detected when sum of the errors from the leg joints exceed handtuned threshold value
ethld = 0.044 rad. Since collision might occur anywhere on the robot leg, no particular servomotor is
affected significantly more than others. Therefore, the sum of the error was used to decide whether a
collision occurred rather than the error threshold for the individual servomotor. The prediction error
is visualized in Fig. 19; the cross indicates detected collisions.

The presented results indicate that linear and polynomial regressors provide similar performance
to the baseline dynamic model. In all trials, linear and polynomial regressors detect collision with the
object at most a few samples later than the baseline model. ReLU regressor failed within few samples
from the trajectory starts.

Further examination of the cumulative RMSE for the T1 reveals that the cumulative RMSE of the
ReLU regressor (cRMSEReLU = 0.026 rad) is more then three times greater than the RMSE of the
linear ( cRMSElin = 0.006 rad) and polynomial (cRMSEpoly = 0.008 rad) regressors. Therefore, a
prediction error histogram for the trial T1 was constructed to reveal prediction error distribution. As
seen in Fig. 20, handtuned threshold ethld = 0.044 rad is not large enough to cover ReLU prediction
inaccuracies. A straightforward approach of increasing threshold to cover ReLU inaccuracies causes
linear regressor and polynomial regressor to ignore collision. Therefore, separated significantly larger
threshold e′thld = 0.166 rad has been specified for the ReLU regressor and collision detection has
been repeated as seen in Fig. 21. Using separated thresholds improves the overall performance of the
detection system, even though some detections are missed.

This behaviour of the ReLU regressor is surprising since it performed similarly to the other pro-
posed regressors and overcome the baseline model in all accuracy-focused experimental evaluations.
We hypothesized that the RMSE used for accuracy-focused experiments is not a suitable metric. Even
though the RMSE penalizes the error quadratically, it might not be sufficient since even a single mal-
predicted position can cause a leg to stop prematurely. The histogram of cumulative prediction errors
has been constructed for the second half of the vanilla dataset used for training regressors as depicted
in Fig. 22 where for each sample, the prediction error is obtained as the sum of the joint prediction
errors. However, we rejected this explanation since the results in Fig. 22 coincide with the RMSE
metrics summarized in Table 4 in previous section.
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(a) Collision-free run T1.
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(b) Run T2 with foot-tip collision.
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(c) Run T3 with foot-tip collision.
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(d) Run T4 with foot-tip collision.
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(e) Run T5 with femur link collision.
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(f) Run T6 with femur link collision.

Figure 19: Plots of collision prediction error θerr = θreal−θest and single threshold ethld = 0.044 rad.
The first trial T1 is collision-free. An obstacle has been placed at a different part of trajectory in
the remaining five runs T2, . . . , T6. The annotated vertical lines represent detected collisions of the
corresponding regressor and trial with the respective color-coding.
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Figure 20: Histogram of the prediction errors across the T1 run for each consider regressor.
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(a) Collision-free run T1.
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(b) Run T2 with foot-tip collision.
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(c) Run T3 with foot-tip collision.
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(d) Run T4 with foot-tip collision.
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(e) Run T5 with femur link collision.
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(f) Run T6 with femur link collision.

Figure 21: Plots of collision prediction error θerr = θreal − θest, threshold ethld = 0.044 rad has
been used for linear and polynomial regressor and threshold e′thld = 0.166 rad has been used for
ReLU regressor. The first trial T1 is collision-free. An obstacle has been placed at a different part
of trajectory in the remaining five runs T2, . . . , T6. The annotated vertical lines represent detected
collisions of the corresponding regressor and trial with the respective color-coding.
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Figure 22: The histogram of the cumulative prediction error of proposed regressors for the vanilla
datasets. All three regresors achieve similar performance. Note the logarithmic y-axis.

37



5.10 Deployment

5.10 Deployment
Based on the previous experimental results, the most suitable regressor is about to be chosen for
deployment in this section. The model generalization properties examined in the Section 5.6 are un-
decisive aside from an unusual behaviour of the polynomial regressor for the halved dataset. The size
of the training set examined in Section 5.7 as well as computational requirement studied in Section 5.8
are in favour of linear and polynomial regressors because of the ReLU regressor computational and
training data demands. The results from the previous Section 5.9 support these two regressors as well.
Therefore, the linear regressor was selected to be deployed for contact detection.

Additional datasets have been collected for every leg. Similarly to the experimental examination
of the leg coupling, the robot was elevated on the legs as depicted in Fig. 10b, and the current active
leg foot-tip followed a randomized collision-free trajectory. The particular trajectory was created from
1000 randomly selected points within the operational space of the foot-tip, and every two points were
interpolated in the cartesian space with the interpolation step ∆r = 0.4 mm. In total, six datasets
have been collected, one for each leg, in the same way as for the coupling experiment, i.e. the desired
joint angle θdes and real measured joint angle θreal were collected for all three leg servomotors of the
current reference leg at the highest possible sampling rate of 100 Hz using the Intel NUC i7-10710U
with 64 GB RAM mini PC. Then linear regressors were trained using the collected data.

The triangular trajectory with the circumradius rc = 5 cm was selected for the locomotion con-
troller. However, contradicting the results gathered up to this point, the robot could not detect colli-
sions reliably. At least one leg stopped prematurely once in a few gait cycles, and more importantly,
up to a half of the collisions was not registered by the locomotion controller across all leg. Missed
detections were distributed evenly across all legs. Therefore, we hypothesized that the problem is
rather systematic than caused by an inappropriately selected threshold.

Since regressors performed comparably well in the previous evaluation scenario, we expected a
similar performance to occur in case of any considered regressor. Therefore, we decided to examine
the prediction process in detail as described in the following section instead of deploying the “backup
regressor.”

5.11 Deployment Analysis
While searching for an explanation of why the deployment failed, we focused on the differences
between the circular trajectory used in the contact detection scenario and the triangular trajectory in
the deployment scenario. The initial explanation blaming the shape of the trajectory was rejected since
the training data consisting of the straight trajectory segments were more similar to the triangular
trajectory than the circular shape. Therefore, opposite results are expected to be observed if this
hypothesis is true.

Secondly, the statistical quantities of the training vanilla dataset and both circular and triangular
trajectories were examined. Namely, we focused on the size of the interpolations steps in the joint
space. As described in Section 4, the trajectory is interpolated in the world coordinates with the
fixed step size of ∆r = 0.4 mm and then transformed to the joint space using inverse kinematics.
Therefore, the difference between two consecutive joint positions is not fixed but varies even for the
same interpolation step. The relative histogram of the joint difference (velocity profile) in the vanilla
dataset and both considered trajectories is depicted in Fig. 23.

The relative histogram shows that the vanilla dataset and circular trajectory joint differences (ve-
locities) are distributed similarly. However, the triangular trajectory contains specific velocity patterns
that are best visible for the coxa and femur joints. These velocities make only a tiny proportion of
the training data. We hypothesized that the difference between the distribution of the joint velocity
within the training and testing data significantly affects the contact detection accuracy. Additionally,
we expect the regressors to predict the leg dynamics accurately for the trajectories with similar ve-
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Figure 23: Relative histogram of the velocities (differences between two consecutive joint positions)
in the randomized trajectory in the vanilla dataset, circular trajectory used for the contact detection
and the triangular trajectory used in the deployment. The triangular trajectory has specific velocity
spikes mostly visible for the coxa and femur joint.

locity profiles. On the other hand, trajectories with significantly different velocity profiles and those
containing the joint velocities not covered by the training data are expected to be predicted with low
accuracy since the comparison in Fig. 23, and deployment failure signifies poor generalization of the
trajectories with the different velocity profile.

5.11.1 Effect of Interpolation Step on Prediction Accuracy

Additional datasets have been collected to examine the relationship between the joint velocity profiles
within the training and testing data. Each newly collected dataset consists of 1000 randomly selected
points within the operational space of the front left leg. The trajectory was constructed by interpolation
between the pairs of consecutive points. A different number of samples per cm was selected during
the interpolation to affect the velocity distribution for each dataset.

In total eleven datasets have been collected labelled 1, 2, . . . , 10 ppcm and 1− 10 ppcm. Dataset
n ppcm uses n samples per centimetre during the trajectory interpolation, and 1−10 ppcm uses a ran-
dom number of steps per centimetre for each pair of interpolated points. During the data acquisition,
the robot body was elevated such that the left front leg can move freely, and the desired joint angle θdes

and real measured joint angle θreal were collected for all three leg servomotors at the highest possible
sampling rate of 100 Hz using the Intel NUC i7-10710U with 64 GB RAM mini PC.

The distribution of the joint differences is depicted in relative histogram Fig. 24. The range of
velocities contained in the dataset increases with decreasing number of interpolation points per cen-
timetre (and increasing the maximal joint velocity). Therefore, a wider range of the joint velocities is
contained.

In the next step, the new batch of regressors is trained. A regressor instance of each considered
type (linear, polynomial and ReLu) is created for each new dataset, and the same dataset is used for
training. Datasets other than the training one are used to produce a prediction, and the cumulative
RMSE of prediction is computed.

The result summarized in Fig. 25 indicates 1) the linear regressor and the ReLU regressors achieve
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Figure 24: Relative histogram of the velocities (differences between two consecutive joint positions) in
the randomized trajectory interpolated with the varying number of interpolation steps per centimetre.
With decreasing number of samples per centimetre, the range of velocities contained in the datasets
increases.

comparable performance, their behaviour and generalization properties across different velocity pro-
files are comparable, 2) the polynomial regressor extrapolates poorly outside of the provided velocity
profile. The wild performance of the polynomial regressor outside the training data is expected since
the value of second-degree features grows significantly; therefore, error reaches significantly greater
values than the error of other regressors. Due to high values of cumulative RMSE, the base-ten loga-
rithm of cumulative RMSE is also provided.

Regressors trained using dataset 1− 10 ppcm performed better than those trained using any other
datasets 1, 2, . . . , 10 ppcm. In cases of the polynomial and the linear regressor, the regressor instances
trained using a dataset with few samples per cm performed similarly to those trained using enhanced
1 − 10 ppcm dataset, the performance of the ReLU regressor trained using 1 − 10 ppcm was con-
siderably better than the one trained using 1 ppcm. Hence, the linear regressor trained using the
1 − 10 ppcm dataset is selected to be deployed in the locomotion controller for the second deploy-
ment attempt. However, retrained regressors failed to detect foot contacts at a similar rate to those
trained using the vanilla dataset. Therefore, we decided to examine the regressors even further by
examining the decision process in detail.

5.11.2 Regressor Structure Analysis

To analyze the decision process of the regressors, we focused on regressor structure to examine how
the predictions are produced. Since all proposed regressors combined inputs to produce output, we
investigated how input features affect the outputs. This information is encoded inside the regressor
structure, in the case of linear and polynomial regressors in the coefficient matrix and the interception
vector and the case of ReLU regressors in the weights of the neurons.

The examination of the linear and polynomial regressors is straightforward since both are repre-
sented by a single coefficient matrix and a single vector of interceptions varying in the dimensions
only. For linear regressors, the absolute values of coefficient matrix and interception vector are con-
catenated and visualized in Fig. 26, where the last column represents the static bias, and the other
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(a) Linear regressor.
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(b) ReLU regressor.
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(c) Polynomial regressor.

1 2 3 4 5 6 7 8 9 10    1-10
Prediction data [points/cm]

1
2
3
4
5
6
7
8
9

10
1-10Tr

ai
ni

ng
 d

at
a 

[p
oi

nt
s/

cm
]

2

1

0

1

2

log10(cRMSE)

(d) Polynomial regressor in logarithmic scale.

Figure 25: Comparison of the prediction accuracy relation between the interpolation step size in the
training and prediction data. The results suggest that regressors tend to overfit the particular interpo-
lation step. Consequently, using the range of the interpolation rather than a single one increases the
regressor accuracy. The accuracy of the linear and ReLU regressors is comparable across all cases;
nevertheless, the polynomial regressor accuracy decreases significantly for unknown velocity profiles.
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Figure 26: The absolute weights of the linear regressor coefficient matrix and the interception vector
are concatenated to the single matrix, where the columns represent the features, the rows are leg joint
position predictions, and the colour of a particular cell indicates how much the feature contributes to
the prediction of the joint position. The features are labelled such that the first character is the first
letter for the servomotor; the second character signifies whether the value is set to a servomotor (s) or
measured in the servomotor (m), the last digit is how many time steps have passed since the position
was set or measured. The interception vector is labelled 1. Based on this figure, we assume that the
currently measured servo position plays a crucial role in predicting the position supported by the past
measured positions and the set positions are omitted entirely.
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Figure 27: The ReLU regressor absolute product of weight matrices representing each layer, where
the columns represent the features, the rows are leg joint position predictions, and the colour of a
particular cell indicates how much the feature contributes to the prediction of the joint position. The
features are labelled such that the first character is the first letter for the servomotor, e.g. c for coxa, the
second character signifies whether the value is set to a servomotor (s) or measured in the servomotor
(m), the last digit is how many time steps have passed since the position was set or measured.

columns show the coefficients. The columns are labelled in format {c, f, t}-{m, s}-{0, . . . , 4}, where
first distinguishes the joints (c for coxa, f for femur and t for tibia), second signifies whether the value
is measured in the joint (m) or set to the servo (s) and the last digit signifies how old the data are (mea-
sured in the time steps), e.g. 0 means current measured and set values and 1 means that the values are
one time-step old. Similarly, the absolute values of polynomial regressor coefficients are sumarized
in Fig. 28 and Fig. 29. Note that the labels used for polynomial regressor are products of the linear
regressor labels and that the interception vector is in the first column since it is implicitly part of the
polynomial features. For convenience, the matrix is split every 31 columns.

The analysis of the neural network structure is not straightforward, and it is a currently researched
field. The ReLU regressors is represented by three matrices, one for each layer: the input matrix Mi×i

i ,
the hidden layer matrix Mi×h

h and output matrix Mh×o
o . Visualization of particular matrices would

bring hardly any insight. Therefore, the matrix visualized in Fig. 27 is obtained by multiplication
of these matrices. For convenience, the shown matrix is transposed. Note that this simple method
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Figure 28: The absolute weights of the polynomial regressor coefficient matrix, where the columns
represent the polynomial features, the rows are joint predictions, and the colour of a cell indicates how
much the feature contributes to the joint position prediction.
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Figure 29: The absolute weights of the polynomial regressor coefficient matrix, where the columns
represent the polynomial features, the rows are joint predictions, and the colour of a cell indicates how
much the feature contributes to the joint position prediction.
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5.11 Influence of Set and Measured Features on Prediction

neglects the effect of the ReLU activation function; however, we assume that the effect of the features
on the output is preserved.

The visualizations show that the predictions of the particular joint are affected most by the last
measured value of such joint in cases of the linear and ReLU regressor. Additionally, expected cou-
pling between femur and tibia joint is visible for these regressors as well. Aside from the current
measured position, the linear regressor prediction is affected by the past measured position, while the
set positions both, current and the past, positions are mostly overlooked. The polynomial regressor
matrix is harder to interpret; however, the last measured joint position dependency is also visible. Ad-
ditionally, the features containing the currently set position have a low impact on the prediction, and
the polynomial feature importance decreases with the increasing age of its components. Surprisingly,
the set position features are mostly omitted by all regressors for the femur and tibia joint and linear
and ReLU regressors for the coxa joint. Note that femur and tibia joints are affected mainly by the
foot strike. For polynomial regressor, features containing at least one set position have significantly
lower coefficients. Therefore, we deduce that set values have a low impact on the resulting prediction.
The experiments conducted to confirm this hypothesis are discussed in the following section.

5.11.3 Influence of Set and Measured Features on Prediction
Three arbitrary dataset categories are artificially created to examine the effect of set and measured joint
positions on the prediction. The first group of datasets aims to examine how regressors react to changes
in the measured data only while the set data remains unchanged. We assume that a correctly trained
regressor should ignore these changes up to some extent since the leg is supposed to stay in place
given the set position and the measured data contradict the set position. The second group of datasets
examines how regressors react to changes in the set data while measured data remains unchanged.
In this case, we expect a correctly trained regressor to evaluate that leg is supposed to follow the set
position. For these groups, we have selected decoupled approach affecting a single servo at the time
rather than an extensive search of all possible joint combinations. The increasing step size of the set
position is used to examine how far the regressors could predict without the confirming information
provided by measured positions. The third dataset examines how regressors react to continuously
increasing servo error in an artificial collision scenario. We believe that the correctly trained regressor
predicts that the leg will follow the set position even though the measured position remains unchanged
caused by the virtual obstacle.

The first group of datasets, further called measured-only, consists of pulses in the θreal for a par-
ticular leg joint, while other joint angles are set 0. The pulses have fixed length l = 20 ∆t = 0.2 s and
duty cycle D = 50 %, but the amplitude increases by one servo tick ∆θ = 0.005 rad each new cycle
until it reaches 20 ticks. The second group of datasets called set-only consists of the pulses in the θdes

for a particular leg joint, while other joint angles are set 0. The parameters of the pulses remain the
same as in the case of the measured-only dataset. The third dataset called artificial-collision consists
of the triangular signal in the θdes joint angles, while other joint angles are set 0. The triangular signal
has fixed length of l = 20 ∆t = 0.2 s and with a settle time of l′ = 30 ∆t = 0.3 s. However, the
triangle signal is fed to different leg joints for every cycle to cover all possible combinations. The
regressors trained in Section 5.11.1 are used to predict leg position for each of the artificial datasets.

The measured-only datasets depicted in Fig. 30 show that predictions of all regressors are heavily
affected by the measured position. For the coxa joint in Fig. 30a and femur joint in Fig. 30b, linear
regressor and the polynomial regressor fit precisely to the measured data just a few samples after
the measured value has changed. The ReLU regressor behaves in a similar manner; however, the
significant static offset is present in all datasets. As shown in Fig. 30c, data in the tibia measured-only
dataset affects the tibia position prediction less than in cases of other joints. This experiment confirms
that regressors predictions are significantly affected by the measured position, as hypothesized in the
previous section.
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5.11 Influence of Set and Measured Features on Prediction
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(a) Coxa joint prediction using artificial measured-only datasetthat contains only measured tibia joints positions.
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(b) Femur joint prediction using artificial measured-only datasetthat contains only measured tibia joints positions.
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(c) Tibia joint prediction using artificial measured-only dataset that contains only measured tibia joints positions.

Figure 30: The regressors prediction is based on the artificial datasets consisting of the measured only
features for a particular joint to demonstrate how much are the predictions affected by the measured
position features. The linear and polynomial regressor predictions heavily depend on the measured
features and fit the measured values. The ReLU regressor is significantly affected; however, the static
offset is present regardless of the measured prediction features.
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(a) Coxa joint prediction using artificial set-only dataset.
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(b) Femur joint prediction using artificial set-only dataset.
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(c) Tibia joint prediction using artificial set-only dataset.

Figure 31: The regressors prediction is based on the artificial datasets consisting of the set only
features for a particular joint to demonstrate how much are the predictions affected by the set position
features. The linear and polynomial regressors ignore the set value, though the polynomial regressor
reacts wildly to the rising and falling edge in the set position. The ReLU regressor, on the other hand,
reacts to the set position in the case of femur joint (b) and tibia joint (c). The coxa joint (a) set features
are ignored by every regressor, probably because of the low difference between set and measured data
within the training dataset.

The set-only datasets depicted in Fig. 31 show that linear and polynomial regressors mostly ig-
nore the set position when producing the position prediction. The provided figures signify that the set
values are neglected by the linear regressor. This statement is supported by the fact that the computed
difference between minimal and maximal position predicted by the linear regressor did not exceed the
resolution of the servomotors (0.0026 rad for coxa joint, 0.0021 rad for femur joint, 0.0008 rad for
tibia joint, and ∆θ = 0.0051 rad for a servomotor resolution). The polynomial regressor turbulently
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5.11 Influence of Set and Measured Features on Prediction

predicts positions around the raising and falling edges. This behaviour is likely caused by absent com-
pensation by other polynomial features containing the zero values measurements. Aside from those
spikes, the set values are not considered by the polynomial regressor. The ReLU regressor has a signif-
icant static offset similar to the previous setup. However, in the case of the femur joint (Fig. 31b) and
tibia joint (Fig. 31c), the ReLU regressor reacts to the set positional values the most, and its predictions
are closest to the expected behaviour of the well-trained regressor. The θdes values have an inferior
impact on coxa joint position prediction for all regressors. We assume that it is caused by the limited
coxa movement and speed in the trained data (see Fig. 23 and Fig. 24). Therefore there is significantly
lower difference between the set and measured position for coxa joint (RMSE(θcoxa

real , θ
coxa
set ) = 0.16)

than for the femur (RMSE(θfemur
real , θfemur

set ) = 0.43) and tibia (RMSE(θtibia
real , θ

tibia
set ) = 0.37). Conse-

quently, the coxa set position is omitted. Based on these results, the ReLU seems to perform well in
the last artificial-collision scenario since it reacts the most adequate to the position error.
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Figure 32: Artificial collision scenario covering arbitrary collisions including every possible joint
combinations. The linear regressor reaction to the set position feature is negligible since it predicted
position did not exceed the resolution of the servomotor. The polynomial regressor prediction is
affected only when the set position changes its difference. The ReLU regresor performs closest to
expected performance of well-trained regressor; however, it fails for coxa joint in (a) and unexpected
coupling between the coxa joint in (a) and tibia joint in (c) is present.

The artificial-collision dataset is constructed to examine different classes of collision scenarios.
Each artificial collision involves different joints, and it is characterized by increasing error between
θdes and θreal positions followed by its continuous decreasing. This simulates the situation when the
robot leg is attempting to push through the obstacle and then slowly eases the tension. Arbitrary joints
combinations are selected to examine different collision types and to involve joint coupling. Note that
the servo error is proportional to the torque.
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Similarly to the previous experiment, the linear regressor responses to all collision instances are
far below the resolution of the servomotors (0.0028 rad for coxa joint, 0.0037 rad for femur joint,
0.0001 rad for tibia joint, and ∆θ = 0.0051 rad for a servomotor resolution) as depicted in Fig. 32.
The polynomial regressor again reacts wildly to the set value changes and mostly ignore the increasing
servo error, except for the femur joint (see Fig. 32), where the leg position slightly follows the set po-
sition. However, the response to the set position is negligible compared to the response to the position
derivation. Finally, the ReLU regressor responses to the collisions involving the tibia and femur joints
look promising, even though in the case of the coxa joint, the ReLU failed miserably. While significant
static offset is present for all joints, the ReLU regressor reacts well to the increasing position error of
the tibia and femur joints involved the most in the foot-tip collision with the terrain. The noticeable
coupling between the tibia and femur joints in collisions between 1.5 to 3.5 s is expected since the
axes of these joints are parallel, in contrast to the coupling between the unrelated tibia and coxa joints.

Based on the behaviour of the regressors in the last experiment, we deduce the following. The
linear and polynomial do not react to the set position, which explains why only some collisions are
detected in the deployment scenario in Section 5.10. Only if the measured position differs significantly
in the first time step of the collision, then these regressors can detect the collision. The increasing
error between the measured and set position present during the persisting collision do not affect these
regressors enough to increase the error between the measured and expected position. Consequently,
the contact is not detected by the locomotion controller and the leg is not stopped.

The circular trajectory has a smoother trajectory in the joint space than the triangular trajectory.
Therefore, the sudden changes in the measured position are easily detected by linear and especially
polynomial regressors. We conclude that this property of circular trajectory and the hand-tuned results
cause the successful deployment of the regressors in the contact detection scenario in Section 5.9.
However, we deduce that a reliable contact detection is not possible for the linear and polynomial
regressors in any scenario since if the threshold is not exceeded at the exact moment the leg contact
begins, it is not detected in the latter time steps.

The static offset of the ReLU regressor present even for no input at all (see artificial-collision
scenario between 3.5 to 4.0 s in Fig. 32) explains why the different thresholds have to be used in the
contact detection scenario. The ReLU regressor reacts promisingly in the artificial collision scenarios
involving the femur and tibia joints; however, it fails to predict reliably for the coxa joints. To use
ReLU regressor for the contact detection, one has to cope with the static offset of the prediction
unrelated to the mean values of the training dataset, and only certain collisions involving the femur
and tibia joints can be detected. These specific properties make the ReLU regressor unsuitable for
reliable contact detection as well.
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Chapter 6

Conclusion

In this thesis, the learnable leg state estimator for SCARAB hexapod robot has been developed and
benchmarked. In particular, three light-weight machine learning approaches, namely linear regressor
(Ordinary Least Squares regression (OLS)), polynomial regressor (OLS regression with second-order
polynomial features) and ReLU regressor (three-layer feed-forward neural network with the Rectified
Linear Unit (ReLU) activation function) have been used to predict leg position based on the sequence
of last six measured and set positions of a particular leg. The leg position predictions are necessary to
detect the leg contacts during the rough terrain locomotion of the hexapod robot since deviation from
the collision-free dynamics is used to detect collisions as described in Section 4.

The proposed regressors have been investigated experimentally. In the first bundle of the exper-
iments, the leg coupling has been examined (Section 5.1), and the meta-parameters of the proposed
regressors have been found (Section 5.4). Thorough examination of the regressors w.r.t. the model
precission (Section 5.5), robustness to the parameter changes (Section 5.6), size of training set (Sec-
tion 5.7) and computational requirements (Section 5.8) have followed. The regressors have been
successfully used to detect contacts in Section 5.9. The performance of the regressors deployed on
the robot in the rough-terrain traversal scenario exhibit behaviours that were not seen during the eval-
uation of the regressors. Therefore we have put further effort into explaining the inferior behaviour
of the regressors by thoroughly examining the statistical properties of training datasets, the regressors
sensitivity to the leg movement speed and the effect of the measured and the set positions on the pre-
diction accuracy (Section 5.11). Finally, the artificial foot contact scenarios have been designed to
examine how the regressors react to arbitrary collisions.

The collected results show that despite the promising performance in the initial scenarios, proposed
regressors are not suitable for the contact detections since the last measured position is overfitted. In
contrast, the set position and the previously measured position is mostly neglected. This results in
unreliable foot contact detections. If the contacts are not detected in the first time step when the
leg collides with an obstacle, then the linear and polynomial regressors cannot detect contact since
they overfit measured positions already affected by the collision. Even though the ReLU regressor
reacts to the set position for particular joints, the overall prediction accuracy is poor and suffers from
the static offset. However, the methods used to examine the performance of the machine learning-
based approaches contributes to our understanding of the prediction process and attributes necessary
to develop the contact detection system. Therefore, the methodology can be used to evaluate different
types of machine learning approaches.
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