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ABSTRACT

Hybrid electric vehicles are currently used as a way of improving fuel
consumption and consequent carbon dioxide emissions of conventional
vehicles powered by an internal combustion engine and as means for
paving the way for fully electric vehicles. To exploit their potential to
the biggest extent by using energy more efficiently, energy management
strategies are employed to control whether a torque request will be met
by the internal combustion engine, the electric motor, or their combin-
ation. Numerous smart strategies have been proposed in literature to
improve on strategies based on heuristics used in passenger vehicles
today. Strategies based on optimisation taking into account character-
istics of the current trip tend to perform better than others. According to
this, a strategy taking into account predicted or past information about
planned trip has been designed. The strategy is composed of two levels,
where the higher level generates reference battery-state-of-charge tra-
jectory before a trip, which is subsequently tracked by the lower level in
real-time. The reference is generated from predicted speed and elevation
profile of the planned trip using Pontryagin’s minimum principle op-
timisation on a simplified vehicle model. This optimisation also results
in a reference equivalence factor trajectory, which is then used for real-
time control. The strategy was tested on several routes and vehicles with
three levels of electrification. The results were then compared to a com-
mon heuristic strategy and optimal solution using dynamic program-
ming. Improvements ranging between 1-5 % were achieved in full hy-
brid vehicle application and 3-4 % in plug-in hybrid vehicle application.
Mild hybrid vehicle achieved only negligible improvements around 1 %.

Keywords: Energy Management Strategy, Hybrid Electric Vehicle,
Prediction, Optimisation, Pontryagin’s Minimum Principle
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ANOTACE

Hybridni pohon slouZzi ke sniZeni spotfeby paliva a vyslednych emisf ox-
idu uhli¢itého u konvenc¢nich vozidel pohdnénych spalovacim motorem
a jako cesta k jejich tplné elektrifikaci. Aby byl co nejlépe vyuzit poten-
cil tohoto pohonu co nejefektivnéjsim vyuzitim energie, je nutné imple-
mentovat Fidici strategii, kterd rozhoduje, zda pozadovany tocivy mo-
ment bude vyprodukovan spalovacim motorem, elektromotorem, nebo
jejich kombinaci. V literatufe jsou uvadény nejrtiznéjsi strategie, které
maji dosahovat lepSich vysledki nez heuristické strategie bézné uzivané
v osobnich automobilech, zaloZené na intuitivnich pravidlech. Strategie
zaloZené na optimalizaci, vyuZivajici charakteristické rysy jizdy, obecné
dosahujf lepsich vysledkti neZ ostatni. Na zakladé téchto poznatkti byla
navrZzena fdici strategie vyuZzivajici informace o planované trase. Sklada
se ze dvou trovni, kde vyssi troven pred jizdou vygeneruje referencni
jizdy. Tento prtibéh je vygenerovan z pfedpokladaného rychlostniho pro-
filu a vyskového profilu trasy optimalizaénim algoritmem na zakladé
Pontryaginova principu minima aplikovaného na zjednoduseny model
vozidla. Vysledkem je zaroven pribéh soucinitele ekvivalence, pomoci
kterého je uskutecnéno real-time fizeni pfijizdé. Strategie byla otestovana
na nékolika trasdch a vozidlech se tfemi tirovnémi elektrifikace. Vysledky
byly nasledné porovnany s béznou heuristickou Fidici strategii a op-
timalnim FeSenim dynamického programovani. Implementaci na full hy-
brid vozidle bylo dosazeno zlepseni 1-5 % a na plug-in hybrid vozidle
3-4%. U mild hybrid vozidla pak bylo dosaZeno pouze zanedbatelnych
zlepseni kolem 1 %.

Kli¢ova slova: Ridici strategie, Hybridni vozidlo, Predikce, Optimalizace,
Pontryaginiiv princip minima
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CHAPTER 1

INTRODUCTION

Due to the steep increase of cumulative carbon dioxide (CO;) emissions contributing to
the greenhouse effect in the past decades, extensive changes in human mobility and trans-
portation are underway. Because carbon dioxide emissions are directly dependent on fuel
consumption, one of the main efforts in ground-vehicle development to combat this is in
the form of making the powertrain more efficient. The general trend is using electric ma-
chines (EM) in lieu of internal combustion engines (ICE), allowing higher well-to-wheel
efficiency and usage of other energy sources than fossil fuels. This, however, creates a chal-
lenge with onboard energy storage, as most vehicles cannot be permanently connected to
the grid. Since electricity storage is a costly and resource-demanding matter on its own,
not all applications are a suitable subject to electrification.

Hybrid electric vehicles (HEV)—vehicles combining internal combustion engine system
with electric propulsion system—are supposed to incorporate the best of both worlds to
improve conventional ICE powertrain efficiency while reducing the amount of electric en-
ergy that needs to be stored, most commonly electrochemically in the form of batteries.
One of the main problems of the internal combustion engine is its inability to recuperate
acquired kinetic energy instead of dissipating it when a vehicle needs to be braked. This
makes hybrid vehicles even with small battery capacity effective, as they require minimal
additional cost and weight while attaining noticeable fuel savings thanks to energy recu-
peration. Because the efficiency of an EM does not vary as much over its operating range,
an additional benefit is using it in place of the ICE at operating points where the efficiency
of the ICE would be very low.

Two propulsion systems however result in increased complexity in powertrain control,
adding another degree of freedom in terms of power delivery. Naturally, deciding when
to shift from one energy source to the other cannot be left to the driver, and therefore an
automatic control strategy needs to be implemented to achieve optimal fuel savings while
keeping the battery charge within desired bounds.

As the first mass-produced HEV was released in 1997 [1], these energy management
strategies (EMS) began as a simple control logic based on rules, taking into account only
the instantaneous vehicle state—such as required torque, state of charge (SOC) and vehicle
speed—to decide how to divide the torque request from the driver between EM and ICE
[2]. As technology advanced, EMSs have gradually grown to be more complex, incorpor-
ating not only the current state of the vehicle, but also past, present and predicted future
data about the current trip.

Ideally, to optimally split work between the EM and the ICE over an entire vehicle trip,
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the exact speed and route elevation profile as a function of time would have to be known
in advance. In other words, knowing the exact operating points of the engine along with
route sections, where recuperation is possible, to assess how much electrical energy can
be utilised and when it is the best moment to do so. Naturally, this is not possible to know
exactly, as every driver controls the speed of a vehicle with a certain level of unpredictabil-
ity. This issue can be minimised with autonomous vehicles which track a predefined route
and speed profile. However, a predefined profile is still subject to ad hoc modifications
conforming to real-time road conditions.

Even with potential perfect knowledge of a driving trip in advance, an optimal power
split at every point cannot be computed with currently available technology in a reasonable
time to be used in real driving conditions. Tasks like these are usually calculated when
there are no time constraints, to be used as a benchmark for a real-time control strategy
from past trip data, or as a tool to get insight into how changing certain vehicle parameters
affects its performance.

The thesis aims to explore the potential of efficiently using available information about
the whole trip to attain close-to-optimal results in real-time, attempting to address the
aforementioned challenges. A predefined route with its elevation profile and a predicted
speed profile, which can be obtained from past data, or constraints such as legal speed
limits, traction limits and current traffic conditions, will be used. The generation of this
speed profile prediction is not part of the work presented in this thesis.

The main approach is dividing the control logic into two levels, where the higher level
analyses the whole trip from the prediction to generate reference values of SOC for the
lower level to adhere to and track in real-time. All of the simulations are written using
Python.

The structure of the thesis is as follows; Chapter 2 lays the foundation for the issues
addressed over the entire thesis—Section 2.1 is devoted to a brief introduction to the topic
of hybrid electric vehicles in general. Afterwards, in Section 2.2, HEV energy management
strategies are discussed in more detail to expand on the objective and the contribution of
this thesis, which is then finally formulated in Section 2.3. After that, in Chapter 3, the
main part containing the actual control strategy design is presented, followed by results
in Chapter 4 and conclusions and future work suggestions in Chapter 5.



CHAPTER 2

BACKGROUND

The definition of a hybrid vehicle is a vehicle with multiple sources of energy. Most often
two, in the form of an ICE-propulsion system complemented by an alternative source of
energy. Noteworthy representatives of these are electricity stored in a battery or a super-
capacitor, kinetic energy stored in a flywheel, or potential energy stored in compressed
air.

Even though fossil fuels as the main energy source are most often used, fuel-cell-based
hybrid vehicles with batteries or supercapacitors also exist. For more information about
types of hybrid propulsion systems, the reader is directed to Chapter 4, 5 and 6 of [3].

As this thesis deals with control of hybrid electric vehicles, from now on, only the ICE-
battery combination—which is also the most common—will be discussed. In the following
section, HEV principles will be described along with nomenclature to create a basis for the
rest of the thesis. After that, methods of HEV energy management control and the current
state will be explored in more detail, focusing especially on parallel hybrid vehicles.

2.1 HYBRID ELECTRIC VEHICLES

The main components of a HEV powertrain are the ICE and the EM to deliver power; a
fuel tank for the ICE and a battery for the EM as an energy storage. Then, similarly as a
conventional ICE needs a fuel management system to deliver the correct amount of fuel
according to the required output, an electric powertrain needs a control system in the form
of a power inverter to, simply put, manage current flowing between the battery and electric
motor. Naturally, there are numerous other components to facilitate the proper function of
the powertrain, however, these are out of scope for the purposes of this thesis.

Based on the specifications and configuration of the aforementioned components, there
are several ways to classify hybrid electric vehicles. The classes are however purely con-
ventional, because their boundaries are not clearly distinct or normalized in any way. One
can therefore come across different nomenclature depending on the source.

The two main ways of classifying HEVs are based on:

e how much energy or power is provided by the electric part of the powertrain com-
pared to the ICE, also known as degree of electrification,

e configuration of the powertrain, also known as topology.

Both of these will be discussed more in-depth in the following sections.
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2.1.1 DEGREE OF ELECTRIFICATION

The approximate electrification spectrum is illustrated in Figure 2.1. At the opposite ends
are two extremes — ICE powertrain, using fossil fuel only, and battery electric vehicle (BEV),
using electricity only. Anything inbetween is a hybrid electric vehicle using both energy
sources to a certain extent. Based on the share of electricity usage, HEVs are conventionally
divided into four following groups:

1. Micro hybrid vehicle,

2. Mild hybrid vehicle, usually regarded as MHEV,

3. Full hybrid vehicle, usually regarded as HEV,

4. Plug-in hybrid vehicle, usually regarded as PHEV.

Of these, only a plug-in hybrid vehicle can be charged from the grid. The other types rely
on the ICE or energy recuperation to keep the battery charged. In general, the further a
vehicle is on this spectrum, the larger battery and the more powerful electric motor it has.

Micro HYBRID

Micro hybrid vehicle is a conventional ICE vehicle augmented with a Start & Stop system,
allowing to shut down the ICE automatically when idling at a stop (or at very low speed
before stopping), and rapidly restart it again before accelerating, thereby technically saving
fuel that would otherwise be wasted by engine operating without load. In this case, the
label hybrid might be counterintuitive, as these vehicles are not capable of providing electric
driving torque, but only have an adapted electric system to facilitate frequent engine starts.

There are clear fuel-saving improvements in simulations and dynamometer tests, how-
ever, the effectiveness of this system decreases significantly in real-world driving, espe-
cially with the operation of air-conditioning, reducing the time the engine is actually off
(4, 5].

MiLb HYBRID

Mild hybrid vehicles are also generally not capable of pure electric driving, as the EM
does not have sufficient power. However, it can both provide drive torque to assist the ICE
and recuperate energy. These vehicles usually have a higher voltage 48 V system alongside

IThe abbreviation PHEV is sometimes used to refer to a parallel hybrid electric vehicle (classification based
on topology; further information in Section 2.1.2).

4
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or instead of the regular 12V one. The EM acts as a starter-generator, either belt-driven
(BSG) or crankshaft-mounted (CSG). Since the starter-generator allows switching off the
engine even during higher-speed coasting, essential systems such as power steering, brake
boosting and air-conditioning have to be powered by an electric motor instead of the ICE.

Even with small battery capacity and EMs with limited power, mild hybrid vehicles
can achieve significant fuel consumption reduction, generally in the range of 8-25 % [6]—
depending on the driving conditions—at little additional weight and cost.

FuLL HYBRID

Unlike micro and mild hybrid vehicles, full hybrid vehicles are able to use electric power
for pure electric driving. Their batteries are still relatively small and therefore pure electric
range is only several kilometres. Because of this and the fact that the battery cannot be
charged from the grid, the EM driving is mostly used just to take over operation from the
ICE at lower speeds and loads, where the thermal efficiency is very low.

Depending on the trip type and driving style, fuel savings in the range of 20-50 % [7, 8,
9] can be typically achieved. The higher savings correspond to city driving, where the low-
speed EM operation combined with regenerative braking is particularly effective, while the
additional weight to the conventional vehicle counterpart is only around 100 kg.

PLUG-IN HYBRID

In terms of electric power, plug-in hybrid vehicles are very similar to full hybrid vehicles,
being capable of fully electric driving. However, their battery is several times larger, al-
lowing them to cover a driving range usually around 30 km [10]. This means that plug-in
hybrid vehicles can be operated as a purely-electric vehicle in short-distance driving, such
as around the city. Using a plug-in hybrid solely for this type of driving is not ideal, be-
cause the vehicle has effectively two powertrains, making it rather heavy. This is amplified
by the fact that hybrid vehicles aren’t usually designed and optimised from the ground
up, but as a modification to an existing ICE powertrain.

Whereas previous hybrid vehicle configurations used electric power as a way of making
the conventional powertrain more efficient, because any electric charge consumed must
be either recuperated or created by the ICE, plug-in hybrids can be recharged from the
grid, effectively introducing new energy source into the system. Fuel savings are therefore
greatly dependent on the frequency of recharging.

Non-plug-in hybrid vehicles—which cannot be charged from the grid—are therefore
driven in a charge-sustaining mode (Fig. 2.2a), where the battery SOC is allowed to only
fluctuate around a certain value, usually 70 %, which means that SOC at the end of the
trip should be ideally the same as at the beginning. Whereas plug-in hybrid vehicles may
use up a larger part of the battery — from full charge at around 90 % to 30 %. Typically?, the
vehicle is driven as a BEV until the battery is depleted, known as charge-depleting mode,
after which they are either recharged from the grid, or driven in charge-sustaining mode,
before being charged from the grid again (Fig. 2.2b).

2Because the fuel economy of a plug-in hybrid being driven in CD/CS mode is not ideal in terms of its full
potential, the efforts in PHEV are to avoid battery depletion until the very end of the trip, to take full advantage of
available battery charge, but avoid charge-sustaining mode at a low SOC value. This type of battery discharging
is known as blended mode [11, 12].
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2.1.2 TopoLoGY

Another possible way of classifying HEVs is based on their powertrain configuration. In
other words, how power flows from the energy source to wheels. A conventional ICE
powertrain has mechanical linkages (shafts) from the engine, in the most common form,
through clutch, gearbox and differential, to the wheels.

To take advantage of electric energy for propulsion, EMs have to be coupled to the
powertrain alongside the ICE in a manner that allows simultaneous cooperation between
these two systems. Based on the way this is achieved, the main HEV categories are:

e Series hybrid vehicles,
e Parallel hybrid vehicles,
e Series-parallel or combined hybrid vehicles.

Each of these is schematically illustrated in Figure 2.3.

) o

Series Parallel

EM2

Series-parallel

Ficure 2.3 HEV topologies; thick lines: mechanical connection, thin lines: electrical connection,
B: battery, T: traction. Fuel tank, inverters, clutches and gearboxes are not displayed for clarity.
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SERIES

A series hybrid vehicle does not have a mechanical linkage between the ICE and the wheels,
which means that traction power is facilitated by the EMs only. The ICE is connected to a
generator, recharging the battery or directly providing energy for the traction motor. The
traction motor can also recharge the battery during regenerative braking. Decoupling the
ICE from the wheels is advantageous, as it can operate at a high-efficiency point, regardless
of wheel speed and demanded power. This is to a certain extent negated by the efficiency of
mechanical-electrical and subsequent electrical-mechanical energy conversion. This extent
is determined by the operating point the ICE would be operating at during regular driving.
In low-speed and low-sload driving—such as city driving—the efficiency would be low,
and therefore even with double energy conversion, the efficiency of the series hybrid would
still be higher than of the conventional powertrain. On the other hand, in other types of
driving, the efficiency of the HEV becomes similar or even smaller than the one with a
conventional powertrain, negating the benefits by having added cost and weight compared
to an ICE-only powertrain.

Series hybrid vehicles are therefore mostly in the form of a plug-in hybrid vehicle with a
small internal combustion engine acting as a range-extender, providing additional electricity
if battery capacity isn’t sufficient for a longer trip.

PARALLEL

In parallel hybrid vehicles, the EM or set of EMs is mechanically coupled to the ICE power-
train, thereby providing traction torque (power) in parallel with the ICE. The EM gener-
ally works both as a motor and a generator. Since both the ICE and the EM are linked
to the speed of the wheels, neither can always operate at a point with their optimal effi-
ciency. However, the drivetrain® efficiency is much higher than the series configuration
counterpart, as there are fewer energy conversions — the coupling of EM and ICE is purely
mechanical.

Depending on the position of the EM-coupling in the powertrain, there are several cat-
egories of parallel HEVs. These are illustrated in Figure 2.4. Longitudinal engine config-
uration in the schematic is used just for clarity — both longitudinal and transverse hybrid
versions exist.

P0 hybrid, generally used only as a mild hybrid, uses a belt drive to connect the EM
to the ICE. It is a cost-effective solution for hybridisation of an existing ICE-only power-
train, replacing the classic alternator. However, the belt drive has limited torque capacity
and rotation of the EM cannot be decoupled from the ICE, reducing the efficiency of EM
operation.

P1 hybrid has an EM directly mounted to the crankshaft. This configuration is also
aimed at the lower end of the electrification spectrum (MHEV) as the power of the motor
is limited by the installation dimensions, although it eliminates the belt drive torque issue.
Similarly to PO, EM rotation cannot be decoupled from the ICE rotation. This configuration
is rarely used, because the architecture changes needed are substantial, with little fuel
efficiency improvement in return.

P2 hybrid has an EM connected between the ICE and transmission and, unlike in the
previous two topologies, can be decoupled from the ICE using the clutch, thereby signi-
ficantly improving purely-electric operation efficiency. Sometimes it is used before a dual-

3not including the engine combustion process
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FIGURE 2.4 Parallel hybrid configurations; showing ICE, clutch, gearbox, differential and loca-
tion of EM (in blue).

clutch transmission, making the EM decoupled from the gearbox as well. If that is not the
case, the P2 (and subsequent P3 and P4) layout cannot provide the start-stop function of
the engine, since it is coupled to the rotation of wheels, and another electric machine is
required.

P3 hybrid has an EM connected to the output shaft of the gearbox or the differential.
This means that the EM needs to cover a wide range of speed and torque and therefore
is usually coupled through a single or planetary gear set. While this topology provides
slightly better electric driveline efficiency than P2, generally, a more powerful EM is re-
quired to cover high torque requests.

P4 hybrid uses EMs mounted either on the axles or directly in wheels, meaning the
electric driveline efficiency is the highest of all topologies. The in-wheel version especially
also has a very large bandwidth in terms of torque-distribution control due to the min-
imum number of elastic members in the torque path, making it effective for performance
and safety improvements using torque vectoring. This advantage is to some extent neg-
ated by the additional unsprung mass, which increases vertical load fluctuations, reducing
road contact [13]. Similarly to the P3 configuration, the EMs need to cover wide speed and
torque ranges. While versions with EMs coupled with ICE drivetrain are possible, this con-
figuration is usually used as a separate unit, driving the other axle that is not connected to
the ICE powertrain, also known as through-the-road (TTR) hybrid.

TTR (Through-the-road) hybrid is a configuration, in which one axle is powered by
the ICE and the other by EM(s). In other words, this configuration decouples the two
powertrains and uses the road as a torque coupler. Variations with ICE-driven front or rear
axle exist. Motors can be in P3 or P4 configuration. The decoupling of powertrains makes it
particularly effective for hybridisation of an existing conventional ICE-only vehicle. Result-
ing all-wheel-drive (AWD) capability can also improve safety and performance. However,
the lack of mechanical connection between the ICE and EM reduces the operating mode
possibilities, especially in terms of battery charging with the ICE [14].

SERIES-PARALLEL

Also known as combined or power-split hybrid vehicles, these combine characteristics of
both series and parallel hybrid configurations. Naturally, the intent is to preserve the ad-
vantageous characteristics (such as operating the engine at an arbitrary point irrespective
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of instantaneous wheel speed and torque requirement) and suppress the disadvantage-
ous (such as not having a direct mechanical link between ICE and the wheels when the
operation efficiency is high).

This layout has two EMs, both able to act as a motor or a generator, however, one is
primarily used as a motor-generator as in the parallel configuration and the other as a gen-
erator in the series configuration. The simultaneous connection of the ICE and these two
EM:s is in practice most often achieved with a planetary gear set, splitting torque between
them according to the type of driving. Even though this configuration is a combination of
the previous two, thanks to the planetary gearset, the powertrain can be made very simple,
in its basic form without the need for clutches* or a gearbox. There are however some lim-
its to the possibilities of power flow and not all characteristics of series and parallel HEVs
can be achieved.

2.2 ENERGY MANAGEMENT STRATEGIES

In terms of finding the most fuel-efficient way of getting from a starting location to an
end location with a HEV, there are technically three stages. The first is choosing the most
energy-efficient route, also known as eco-routing. The second is finding the most energy
efficient driving strategy (speed profile) along the route, also known as eco-driving. The
required power at each instant is then defined by the vehicle speed and driving resist-
ances. The last stage is splitting this power between the EM and the ICE to achieve optimal
fuel consumption over the entire trip while keeping the battery SOC within predefined
admissible bounds, also known as an energy management strategy (EMS).

While in the most ideal scenario, these three tasks would be coupled to obtain the ab-
solute optimum, due to the complexity of such optimization®, they are almost always—at
least to some extent—decoupled. The focus of the following sections and this entire thesis
is the last stage — energy management strategy.

Each of the topologies mentioned in Section 2.1.2 has slightly different possibilities and
problems in terms of driving modes and splitting power, therefore their control strategies
are different. In parallel hybrid vehicles, the only degree of freedom in terms of power
delivery is torque-split between the ICE and the EM, as their angular speed is determined
by the vehicle speed and cannot be controlled separately. Since this thesis deals with the
parallel configuration, strategies in the following sections will be discussed mainly in terms
of parallel HEVs. Nevertheless, a lot of principles and findings are universal.

An energy management controller in a HEV refers to a high-level supervisory power-
train controller determining operation of its individual components. In a conventional ICE
vehicle, the torque requested by the driver (through the accelerator pedal) is provided by
the ICE. In a HEV, this request can be met by either the EM, the ICE, or their combina-
tion. The aim of the controller is to determine, which power to use at each instant using
an EMS. A block diagram of an energy management control loop in its most basic form is
illustrated in Figure 2.5. It takes an input from the driver (or another higher-level control-
ler) in the form of demanded torque T, and based on available information such as the
state of the vehicle = (battery SOC, vehicle speed, coolant temperature) outputs control
signals u for lower-level controllers. These signals can be a combination of ICE torque, EM

4However, adding clutches can enable more driving modes. [15]
50r due to the existence of constraints imposed by other factors than fuel consumption (predefined route,
legal speed limits, traffic, driveability, comfort).
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FIGURE 2.5 HEV supervisory controller block diagram

The arbitrary torque request is however decoupled from the EMS, making this basic
form of HEV control causal, reacting only to past and current inputs. The problem is that
there is no information about the total length of the trip or about future driving conditions
(such as recuperation possibilities) to take into account, making the control suboptimal.
Such control is referred to as online — implemented in real-time.

Noncausal control, on the other side of the spectrum, deals with actual optimisation
based on the information of the entire trip (speed and elevation profiles). However, be-
cause it is too computationally demanding to be implemented in real-time and a speed
profile is never perfectly known in advance, this type of optimisation is done offline, as a
benchmark for online control strategies or another type of analysis®.

Another possible criterion for EMS classification, loosely linked to the previous, is op-
timality. The simplest and most easy to implement (and therefore good candidates to be
used online) strategies are based on predefined rules, derived from human intuition, ex-
perience or analyses results. The rules are generally formulated as which power is pre-
ferred for instantaneous propulsion based on the requested torque and current state of
battery charge. These strategies are categorized as heuristic. While they are robust and easy
to implement online, they are not optimisation techniques and therefore do not exploit the
full potential of the system configuration.

The other category is optimisation-based strategies, where the control law is based on
a mathematical model of the system, minimising defined performance measure (usually
fuel consumption) subject to constraints (such as battery SOC) over a certain time inter-
val. Therefore, to be used online, these strategies need more information about the trip
than just instantaneous state of the vehicle - to find optimal control policy over a known
or predicted time period. When the optimisation interval assumed is the whole trip, the
control is noncausal and the optimisation typically takes place offline.

A tree structure of EMS classification is depicted in Figure 2.6. The two main classi-
fications are loosely connected, because heuristic control is used only in causal cases and
optimal solution can be obtained only in noncausal cases. However, using simplifications
and predictions makes optimisation-based strategies applicable for causal online control
as well, albeit with suboptimal results. The following sections will go over heuristic and
optimization method principles and review the current state of research.

2.2.1 HEeurisTic METHODS

This type of EMS is based on rules, hence also known as rule-based. The rules generally
follow intuition, such as that the engine should be operated only when its efficiency is
relatively high. Therefore during low speed and torque operation, electric-only propulsion

6Some online control strategies use patterns obtained from offline optimisation results as their basis.
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FIGURE 2.6 Tree structure showing EMS categorisation

is favoured, or the engine provides excess torque than it is demanded, with the rest of the
generated power going into charging the battery. These strategies are either, in the most
basic form, deterministic rule-based or, in the slightly more sophisticated form, fuzzy logic
(FL) rule-based.

Deterministic methods are only composed of boolean expressions (true-false state-
ments), whether variables such as demanded torque, battery SOC or vehicle speed are
higher/lower than a certain threshold to determine which type of driving mode should be
selected. The rules are in the IF-THEN form:

If z1 is A1 and x5 is As, then u is B. (2.1)

where z; are the input variables, A; are their values and u are the output control signals
and B their values. The first part before ‘then’ is called the antecedent and the second part
the consequent. An example rule can be: ”If SOC is higher than 60 % and demanded torque lower
than 50 N'm, then electric-only propulsion is selected.” No vehicle model or complex compu-
tations are therefore required. This makes the control fast and robust, which is the reason
why such EMSs have been used since the beginning of HEVs for online control.

The aim is to attain desired vehicle behaviour (minimse fuel consumption, prevent ex-
cessive battery-ageing or ensure vehicle driveability) using an intuitive set of rules (hence
heuristic methods), rather than explicit optimisation performance measure applied to a
mathematical model. These rules are derived from acquired knowledge, experiments or
results from optimisation analyses. Even though the resulting rules can be simple and easy
to implement, their derivation and calibration procedure is usually a complex task.

However, the lack of optimisation character means that such methods cannot achieve
optimal results, even with perfect knowledge of a trip, as the rules are predetermined.
While a set of rules can be optimised to perform the best at specific driving conditions, it
usually results in poor performance in other cases.

Fuzzy Locic

Rule-based control strategies can be made more flexible by using fuzzy logic in lieu of
boolean logic, where instead of true (1) or false (0) values, a statement can have a truth
value anywhere between 0 and 1 (hence the name fuzzy), which is more consistent with
human reasoning and allows more flexibility in both control inputs and outputs.
Similarly as deterministic strategies, variables like battery SOC and demanded torque
are taken as an input to a rule in the same form as in 2.1, however—in simple terms—
instead of true-false only, each of the statements can have a value between 0 and 1 and the
consequent is applied in an amount according to how true the statements are.

11
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As an example: “If a battery is high and the demanded torque is medium-high, torque supplied
by the ICE is medium”. This linguistic classification of the magnitude of input variables,
referred to as fuzzification process, is achieved using membership functions distributed along
the admissible range of the variable. Each value of the variable then belongs to some extent
(called degree of membership and ranging from 0 to 1) to each function. These functions are
depicted in Figure 2.7 and are usually in the form of trapezoidal or triangular function.

There are two main fuzzy logic methods for how an output control signal is obtained
from fuzzified inputs, also known as defuzzification — the Mamdani method [16] and the
Takagi-Sugeno method [17]. Mamdani method uses membership functions for the output
variable to get to a crisp number value, whereas Takagi-Sugeno directly calculates a crisp
output number as a function of the degree of membership of the inputs. Both methods
have been previously used for HEV EMS design. As an example, [18] uses Mamdani and
[19] uses Takagi-Sugeno.

As a result, compared to deterministic rule-based control’s binary character, fuzzy lo-
gic rule-based control can be more continuous. As an example, instead of switching to
engine-only driving at a predefined SOC level, the ICE can gradually provide more torque
(compared to the EM) as the SOC decreases. While using fuzzy logic this way can make
the EMS more flexible and perform better, the rules are still based on intuition and do not
follow optimal behaviour.

2.2.2 OPTIMISATION METHODS

As opposed to heuristic rule-based methods, optimisation methods are based on optimal
control theory, minimising a predefined performance measure, with respect to the control
variable u, according to a mathematical model of the system described by state variables x
and its constraints. The aim is to obtain optimal control u* that minimises the performance
measure, achieving optimal performance over a certain period. This is known as an optimal
control problem.

The performance measure J, is in the general form

J(u) = / " o(x(t), u(t), 1) dt (2.2)

to

where g is a general penalty function up to the designer of the controller to define. In HEV

12
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control, this can be simply the fuel-mass flow 7, minimising fuel consumption over a
specified time interval. However, additional emissions [20], drivability (such as reducing
frequent gear shifting or engine startups) [21] or battery-aging [22] behaviour can be im-
plemented as well. The control variable u can be a combination of signals such as torque
split between ICE and EM, gear shift signal or engine start/stop.

Because optimal behaviour does not equal minimising a performance measure at each
instant, but over a predefined time interval, trip information has to be known to some ex-
tent for the strategy to perform well. In offline energy management control, the time ¢,
in (2.2) is the initial time and ¢; is the duration of the entire trip, minimising the per-
formance globally. In online control strategies, ty is the current time and ¢; the value of
prediction horizon, optimising performance locally.

Once an optimal control problem is set up, numerous algorithms can be used to obtain
solution. Some of the algorithms that have been used in the past in the field of HEV control
are:

1. Dynamic programming (DP) [23, 24],

2. Pontryagin’s minimum princple (PMP) [25, 24],
3. Convex optimisation (CO) [26, 27]

4. Particle swarm optimisation (PSO) [28],

5. Genetic algorithm (GA) [29].

The first three are used the most frequently, as their advantages (in terms of computa-
tional effort, introducing constraints and ease of modelling) make them suitable for HEV
application and their analytical simplification can be used online with a reasonable amount
of effort and accuracy.

Thanks to the discrete nature of dynamic programming, constraints and nonlinear be-
haviour are easily implemented. However, it requires large computational effort, espe-
cially when increasing the dimensions of the system. The nature of PMP and CO is analyt-
ical, which results in a more computationally-effective solution. However, simplifictions
of the system usually have to be made, for example when introducing discrete behaviour
such as gear shifting or engine on/off. This is especially true for CO, where the model
has to be approximated by convex functions. Equivalent consumption minimisation strategy
(ECMS), which is widely used in HEV control, along with its numerous variations, is also
derived from PMP.

PSO and GA can both be considered evolutionary algorithms, as they use generated
population to find the optimum. These algorithms are derivative-free, hence suitable to
solve highly nonlinear, non-continuously-differentiable problems. While they can be used
for solving the optimal control problem, their application for HEV EMS is limited, as they
are not very suitable for online control, requiring a high number of iterations (and there-
fore longer computation time) for acceptable solution accuracy.

Dynamic programming and Pontryagin’s minimum principle will be described in more
detail in the following sections, as they are used later in this thesis.

DYNAMIC PROGRAMMING

Dynamic programming is an optimisation method for obtaining optimal policy of a multi-
stage decision process. The original derivation from 1954 is based on the intuition that no

13
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FIGURE 2.8 Dynamic programming procedure; bold arrows: optimal control, dashed arrows:
admissible control.

matter what the current stage of the process is, there is an optimal policy (control), to reach
the end stage from the current one. The exact formulation of this principle of optimality by
the inventor, R. E. Bellman is:

An optimal policy has the property that whatever the initial state and initial decisions
are, the remaining decisions must constitute an optimal policy with regard to the state
resulting from the first decisions. [30]

This means, that instead of starting from the beginning and calculating every possible
state trajectory, starting at the end and going backwards, always calculating the optimal
control from the current stage to the end, dramatically reduces the number of calculations.

This can be applied to HEV energy management, where each stage represents an in-
stant of a driving trip where an optimal split is being decided and the goal is to reach a
predefined value of state variable (such as SOC) in the final time. Each decision (control)
at each stage has a certain cost associated with it (value of the performance measure func-
tion) and leads to a change of state in the next stage. The optimal control of this next stage
and its cost have already been calculated in the previous step. This means that the decision
with the lowest sum of the value of the performance measure corresponding to this de-
cision and the value of the optimal performance measure required to reach the end from
the following stage is the optimal control for this stage. The algorithmisation is schemat-
ically shown in Figure 2.8.

The time and state are discretised into a n x m grid where n is the number of stages
(time of a trip) and m are the discretised state levels. Final level of state z(n) that needs
to be reached at the final time is determined and for each point of the grid, starting at the
second to last stage, every admissible control « and its cost is calculated. If the control has
a continuous nature, it needs to be discretised as well. The control « can be the torque of
the EM, which then affects the SOC level at the next stage, as using EM will either charge
or recharge the battery. The optimal decision u* at each point is the control with the lowest
value of the sum of its cost Jj ;+1 to get to the next stage & + 1 and the optimal cost J;;, , ,
associated with getting from the point from the following stage k£ + 1 to reach the end state
x(n). The mathematical formulation of this procedure can be written as

uj (k) = arg Jj,,, = arg (min (Juxs1 (@(k), u(k)) + Ty, (@(k 1)) (23)

and is called the backward recursion (Figure 2.8a). This procedure is gradually done for each
point of the grid, resulting in a n X m matrix containing information about the optimal

14
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control at each point and the cost to get to the final state z(n). The optimal state trajectory
x* is subsequently computed starting at a selected stage k and state level = and following
optimal control which has been calculated during backward recursion at each stage. This
is called the forward recursion (Figure 2.8b).

The example above used only a one-dimensional state representing the battery SOC for
illustration. However, when an additional state quantity, such as gear shifting, is added, the
grid becomes three-dimensional, exponentially increasing the already high computation
effort required. This adverse property of dynamic programming has been named the curse
of dimensionality.

As the optimisation procedure starts at the end of the optimised time interval, it is clear
that the future conditions have to be known beforehand, making it unsuitable for online
control. Its usage is therefore limited for offline benchmark computations for other EMSs,
heuristic strategy design, or training data for machine learning algorithms.

This online implementability issue is however addressed by stochastic dynamic program-
ming, which uses Markov chain process probability distribution to define expected future
cost [31, 32]. The result is however clearly suboptimal.

PONTRYAGIN'S MINIMUM PRINCIPLE

This method of finding an optimum is based on calculus of variations, with the aim to find
the global extremum of a functional, in this case, a minimum of the performance measure
in (2.2), to obtain optimal control.

A functional called the Hamiltonian is derived [33] by analytically searching for neces-
sary conditions for finding an extremal maximising (minimising) the original functional
using the Langrange multiplier method. The Hamiltonian is defined as:

H(x(t),u(t), p(t),t) = g(x(t), u(t),t) + p" (t)[a(x(t), u(t),t)] (24)
where g is the penalty function from (2.2), p are the Lagrange multipliers, also called the

costates and a are the system equality constraints:

X(t) = a(x(t),u(t),t). (2.5)

The Hamiltonian is then minimised at each instant to obtain optimal control according
to the Pontryagin’s minimum principle, which says that an optimal control must minimise the
Hamiltonian:

A (x*(1), w*(), (1), 1) < A (x*(t), u(t), p*(1): 1) (2.6)

for all t € [ty,ts] and for all admissible controls, which is one of the neccessary conditions

(1) = S (0).w(0) PA(0). 1) (272)
pl1) = o e wr ), pre ) (S )
S (2) (1), (). £) < (1), u(0), pH(). ) (270)

for u* to be optimal control, minimising the performance measure. To be exact, in a general
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problem, an additional neccessary condition

T
Tt 0) = 9| 0xs + |t peg)t) + G ()20 oty =0

(2.8)

where h is the cost of the final state (which is in the general form present in the performance
measure), needs to be satisfied. However, in HEV control, final time and final state are
usually specified, as the time is fixed and not part of the optimisation and the aim is to
reach a predefined level of SOC at the end of the trip (or prediction horizon). Therefore
dxs and 0ty are zero and the condition (2.8) is always satisfied.

This method, thanks to its analytical nature, is less computationally demanding than
dynamic programming. Nevertheless, some numerical methods must be employed any-
way, because the problem is almost always nonlinear and the optimal control cannot be
obtained analytically.

The disadvantage is that state or control inequality constraints—such as range of avail-
able torque, or range of admissible SOC—have to be incorporated into the Hamiltonian
by additional Lagrange multipliers, increasing the dimension of the system and computa-
tional effort required to solve the problem.

Equivalent consumption minimisation strategy (ECMS), a widely used control method
with numerous variations [20, 34, 35, 36, 37], is derived from PMP, applying it to a vehicle
model with certain simplifying assumptions’. The resulting Hamiltonian is in the form:

%(:E(t)a u(t),p, t) - mf(“(t)a t) + pé(u(t), t) (29)

where 7 is the fuel mass flow and ¢ is the change of SOC with respect to time. The
Hamiltonian is now effectively the sum of instantaneous fuel power and electric power
converted to an equivalent fuel power by the Lagrange multiplier p acting as a dimension-
less scaling constant, called the equivalence factor. The value of p is unique for a given trip
and depends on recuperation possibilities, efficiency of the ICE, efficiency of the energy
transformation, etc. of such trip. The challenge of implementing ECMS is to accurately pre-
dict this value for the current trip. The Hamiltonian can then be minimised in real-time,
obtaining optimal® control at each instant.

The effect of different equivalence factor values is illustrated in Figure 2.9. Choosing
a higher value p; than a charge-sustaining mode requires will make the theoretical cost
of electric power higher, therefore the control will prioritise the thermal energy of the
ICE more frequently, resulting in unnecessarily higher SOC at the end of the trip. Simil-
arly, choosing a lower value will make the control use electricity more than is available for
charge-sustaining operation, eventually depleting the battery.

2.2.3 STATE OF THE ART

The trend in HEV EMSs has been combining the aforementioned methods — using their
positive aspects and addressing their shortcomings to obtain close-to-optimal results with
online control, where low computational effort is needed and future conditions uncer-

"More detailed derivation will be shown in Chapter 3 to be used for the proposed control strategy.
8The optimal control is naturally optimal only with respect to the simplified model, making the control
strategy itself suboptimal.
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tainty is present. Research can therefore be loosely categorised into two branches:
e making heuristic strategies smarter,
o simplifying the scope of optimisation-based strategies,

both of which can achieve good results.

Variations of heuristic methods have been used in production vehicles for their robust-
ness and simplicity of implementation, however, there is little insight on specific methods
used by car manufacturers. Most of the researched control strategies and algorithms have
not been applied in the industry yet and are limited to simulations. This also makes direct
comparison of reported fuel savings amongst different studies complicated, as different
vehicle models and solving methods used by individual authors yield disparate results.

HeuRrIsTIC METHODS

Rule-based methods have been improved by using optimal methods to derive their rules
or use neural networks to make them adaptive to the current driving cycle. Large scale sim-
ulation was used to select rule-based control parameters in [38] to obtain the best results
in selected driving cycles. Similarly, [39] used GA to optimise rules of FL-based control
that were originally created from expertise.

In [18] and [40], the inflexibility of rule-based methods across different driving cycles
was addressed by using neural networks (NN), making the FL rule-based strategy adapt-
ive online, based on driving cycle recognition. [18], employing the Mamdani FL model,
adapts the output membership functions, while [40], employing the Takagi-Sugeno FL
model, adapts the inference output function parameters. A pure neural-network approach
was chosen in [41], using deep reinforcement learning. The input layer of the network is
just instantaneous SOC and torque demand, which then outputs ICE torque as the action
value. The learning process can be done both offline and online from a heuristically defined
reward function.

OPTIMISATION METHODS

In online control, optimisation methods are usually used in connection with model pre-
dictive control (MPC), to optimise power-split over a predicted horizon. MPC consists of
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predicting a velocity profile at each instant some time into the future using a certain sys-
tem model. Afterwards, optimal control sequence for this time interval is calculated and
the first element of this sequence is applied. The process starts again at the next instant.
The prediction horizon is hence continuously being shifted forward in time and is there-
fore known as receding horizon.

Various methods of predicting velocity are used, usually a combination of probability
and GPS data. Stochastic Markov-chain prediction is used in [42], which is then solved
using DP. In [43], velocity prediction is synthesised from macroscopic traffic data and
microscopic stochastic disturbations. This prediction is then solved using linear program-
ming.

With the advent of connected vehicles, algorithms using GPS data, radars and Vehicle-
to-everything (V2X) communication are used. Prediction based on the information ob-
tained from V2X, including historical driving data, traffic light information and leading
vehicle trajectories is made in [44]. A combination of an optimal and heuristic method is
then used for finding a control policy. Bi-Level MPC is used in [45] to generate an optimal
speed trajectory from GPS data in the outer loop and the inner loop optimises torque split
and gear shift using PMP.

ECMS-based control relies upon correctly selecting the equivalence factor (EF)—which
is dependent on driving conditions—for instantaneous minimisation of the Hamiltonian,
which generally does not need to consider receding horizon for optimisation. Inaccurate
values however result in deviations of SOC at the end of the trip, either failing to be charge-
sustainable or not fully exploiting its electric energy potential.

[46] uses maps to select the equivalence factor online based on current SOC and de-
manded power. The maps are created offline using DP from known driving cycles (NEDC,
UDDS and 10-15). However, usage of the algorithm outside of these cycles will likely yield
poor performance. Similarly, in [35], the EF is estimated from past and predicted driving
conditions. Instead of adaptation based on driving conditions, [37], [47] and [48] update
the EF in real-time for the SOC to follow reference trajectory generated from available trip
information.

Results from recent algorithms and strategies (both heuristic and optimisation) were
compared to classic rule-based methods used in commercial vehicles in [49], showing that
smarter algorithms are indeed much closer to the global optimum. Of these, MPC and
ECMS-based methods having the highest potential, which can be attributed to the fact
that they use future trip information to some extent and do not rely solely on pattern re-
cognition.

2.3 MOTIVATION AND CONTRIBUTIONS

Since an algorithm’s optimality largely relies upon the extent of knowledge of the entire
trip, the clear direction of HEV control strategies is towards incorporating trip information
obtained through various ways, such as using GPS, built-in radar and V2X. Whole-trip
knowledge plays a role especially for PHEVs, which should ideally deplete their battery
just before the end of the trip for optimal fuel efficiency [11, 12]. Therefore, EMS using
information about the whole trip is proposed, studying the effects of global trip data on
fuel consumption of HEVs with different degree of electrification, including PHEVs.

It is assumed that a starting point and an endpoint of a trip will be defined before a
trip, from which a route with an approximate speed profile will be generated. The de-
termination of speed profile is not part of this thesis. Previous route data or eco-driving
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algorithms [50] along with traffic information can be used. An accurate elevation profile
can be obtained from an onboard navigation system.

The proposed EMS is composed of two levels. The high-level calculates a reference SOC
trajectory from elevation and speed profiles. To achieve acceptable computation time with
reasonable accuracy, a simplified optimisation algorithm has to be developed. This will
be done by simplifying both the vehicle model and PMP optimisation algorithm. Apart
from the reference SOC trajectory, the result of global PMP optimisation is the optimal
equivalence factor used for instantaneous Hamiltonian minimisation, which will be done
by the lower-level control loop.

The EF generated from the global optimisation cannot be used solely as a feedforward
control, because it was computed using a simplified model and the real speed profile will
to some extent always deviate from the predicted values, according to real-time driving
events. An inaccurate EF would result either in depleting the battery too early, or not fully
using the available electric energy. The high-level calculation is however too demanding
to update the EF based on the current SOC and rest of the trip in real-time and therefore
the lower-level loop will make feedback corrections to the EF based on the deviations from
reference SOC.

Similar SOC-reference tracking using ECMS was implemented in [37], [47] and [48].
[37] assumes a constant charge-sustaining reference, not taking into account any devi-
ations throughout. While no trip information beforehand is necessary, any longer recu-
peration route segments will lead to reaching upper SOC constraint, resulting in having to
dissipate the rest of the energy via brakes, thereby not exploiting the entire recuperation
potential of the route. This is taken into account in [47], where approximate velocity pro-
file and route topology is obtained from an onboard navigation system, and reference SOC
trajectory is generated with quadratic programming algorithm. Nevertheless, the average-
speed segments are still quite large and several heuristic simplifying assumptions for the
reference computation, are made.

[48] generates a charge-depletion SOC-reference trajectory for a PHEV based on divid-
ing a trip into segments with similar driving style and calculating the needed energy of
each segment. This line then approximately resembles an optimal charge depletion rate to
prevent premature battery depletion before the end of the trip. Offline-precalculated maps
with values for each driving style are needed for both the feedforward equivalence factors
and the energy consumption values for the reference trajectory calculation.

The proposed EMS does not require any offline-precalculated maps, as—compared to
the previous implementations—a fairly detailed optimisation problem is solved to obtain
a close-to-optimal equivalence factor. Additionally, in the aforementioned work, only few
test trips are presented. Several routes with different driving types will be recorded for the
purposes of this work and several trips on each of the routes will be used to test the sens-
itivity to incorrectly predicted speed profile. The model of the vehicle used is P2 parallel
configuration. Nevertheless, findings should be applicable to any vehicle topology, assum-
ing a respective model is used. Three degrees of electrification considered are MHEV, HEV
and PHEV. The simulation results of each configuration will be compared to an optimal
DP solution and a simple rule-based strategy.
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CHAPTER 3

CONTROL STRATEGY DESIGN

The idea of the proposed strategy is to first calculate a theoretically’ optimal SOC trajectory
of a planned route as a function of driven distance using a vehicle model and predicted
driving conditions before the start of a trip. Subsequently, this reference would be tracked
during the trip, adjusting real-time control accordingly.

The premise for this is to anticipate recuperation opportunities created by braking from
high speed or descending a hill, and maximise their potential by using up energy stored
in batteries beforehand to avoid having to dissipate the excess through friction brakes if
the SOC reaches the upper limit. Similarly, knowing sections of the trip where the engine
works with lower efficiency would ensure enough battery charge for the electric motor to
be used there. All this should be accomplished while attaining desired SOC level at the end
of the trip without depleting the battery too much, or, on the other side of the spectrum,
not exploit its full potential.

Even though the theoretically optimal predicted SOC trajectory will never be optimal
with respect to real-world driving, the effects of the aforementioned occurrences should
still be retained.

3.1 CHALLENGE

To calculate the optimal SOC trajectory on a trip, speed and elevation profiles are needed.
From these, required power is calculated at each instant using a vehicle model. Based on
the profiles and the vehicle model, the aim is to determine whether this power request
should be met by the ICE, EM, or their combination.

Both the route profiles and vehicle model introduce inaccuracies to the prediction, and
therefore the generated SOC reference is not optimal with respect to the real world. The
route inaccuracies are mainly encompassed in the predicted speed profile due to the in-
herently random nature of traffic, whereas model inaccuracies can be either simplifica-
tions (not taking into account parameter variations with temperature changes, battery
aging, transients, etc.), to achieve acceptable computation time, or parameters such as
wind speed, rolling resistance and other parameters affected by uncertainty.

All of the above will ultimately lead to different power request or charge depletion than
predicted and the algorithm needs to be robust to this behaviour. Hence, the control cal-
culated from the high-level optimisation cannot be used directly as a feedforward function

1Optimal with respect to prediction data and simplified vehicle model.
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FIGURE 3.1 Proposed strategy control loop block diagram

of driven distance and a feedback loop at the lower level needs to be implemented to track
the reference SOC. Block diagram of this entire control loop is shown in Figure 3.1.

The challenge is, therefore, to develop a computationally efficient optimisation algorithm
with a simplified model to calculate reference SOC before the trip in a reasonable? time and
then create a feedback loop logic for the lower level to track it in real-time. Predicted route
profiles are assumed to be already known beforehand and are not part of the algorithm.
Depending on the use case, such profiles can be obtained from a navigation system, eco-
driving algorithms, or previous trip data.

3.2 VEHICLE MODEL

In this thesis, energy efficiency—which ultimately translates into fuel consumption—based
on advantageously splitting power between ICE and EM is observed. Accordingly, a model
that captures the important effects, but is not unnecessarily complex, is created. This means
mathematically describing needed power for vehicle operation during a trip and con-
sequent fuel and battery capacity dynamics reflecting the use of each unit for propulsion.

Numerous simplifying assumptions were made for the purposes of the thesis as the
aim is not to reflect real-life driving in absolute terms and values, but to compare beha-
viour of different energy management strategies applied to the same vehicle. This is mostly
approximating certain parameters as constant (such as gearbox efficiency, rotational-mass
coefficient or rolling resistance coefficient), which vary slightly as a function of a different
parameter.

Thermal behaviour of components (engine, batteries) and battery load from accessor-
ies (such as HVAC) are neglected.?

2As complete trip optimisation algorithms such as DP with various degrees of model complexity can take
several hours to find optimum, a simplified algorithm needs to be developed to obtain a nearly optimal result in
order of seconds.

3In the real world, not considering accessories may however introduce negative effect on the algorithm when
the predicted trip takes a shorter time than the actual trip, leading to additional battery discharge, and thus it is
recommended to implement accessories in future work. As this does not alter the dimension of the optimisation,
computational time should not be notably worsened.
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TasLE 3.1 Tested vehicle parameters

| MHEV HEV PHEV
Mass m 1470 kg 1550 kg 1700 kg
Battery capacity C 8AL 65Ah 37Ah

y capadlty (0.43kWh) (1.56kWh) (13.7kWh)

Battery nominal voltage V/ 54V 240V 370V
Battery pack configuration 14slp 62slp 96s1p
EM nominal power Pp 11 kW 65 kW 65 kW
EM coupling gear ratio i 2.5 1 1
EM coupling mechanical efficiency 7. 0.98 1 1
Engine Naturally aspirated SI 1.3L 96 kW
Rolling resistance coefficient f 0.021
Drag coefficient ¢, 0.31
Frontal area A, 2m?
Rotational-mass coeficient ¢ 1.1
Inverter efficiency 0.95
Gearbox gear ratios ig 3.78,2.05,1.28,0.94,0.78,0.67
Final drive gear ratio isg 3.56
Drivetrain mechanical efficiency 7g 0.97
Tire dynamic rolling radius 74 0.3m
Gravitational acceleration g 9.81ms—2
Air density p, 1.225kgm™3
Initial SOC & 0.7 0.7 0.9
Final SOC &; 0.7 0.7 0.3
Upper SOC limit &nign 0.8 0.8 0.9
Lower SOC limit &joy, 0.6 0.6 0.2

3.2.1 VEHICLE CONFIGURATION

The model represents a parallel hybrid electric vehicle in P2 configuration (Fig. 2.4). Three
vehicles with different degrees of hybridisation (MHEV, HEV and PHEV) are studied and
hence three sets of data listed in Table 3.1 were used to represent each vehicle. The HEV and
PHEV have the same 65 kW EM configuration mounted on the input shaft of the gearbox,
with the PHEV having a significantly larger battery.

The MHEYV has a smaller 11 kW EM coupled to the gearbox input shaft with a gear ratio
of 2.5 to increase torque at the wheels. Contrary to the typical BSG configuration, thanks
to the P2 topology, the MHEYV is also allowed to drive in pure electric mode.

In terms of battery management, both the MHEV and HEV operate in a charge-sustaining
mode at 70 % SOC, whereas the PHEV is allowed to discharge its battery from 90 % to 30 %,
before switching to charge-sustaining mode.

3.2.2 REQUIRED TRACTION FORCE

A longitudinal dynamics model is employed to describe the vehicle’s motion. The vehicle
is considered a point mass, which is being acted upon by forces in the longitudinal dir-
ection as shown in Figure 3.2. The placement of forces in the figure is solely supposed to
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FIGURE 3.2 Longitudinal-dynamics vehicle model; R,: aerodynamic resistance, R : incline res-
istance, F: traction force, Ry: rolling resistance, G: gravitational force, a: slope angle.

illustrate their nature, as they are considered to act in the center of mass. The vehicle’s
speed dynamics are then:

8(0) = < (Fut) ~ Ralt) ~ Bilt)  Ba (0(0)) (31)
where m is the mass of the vehicle, § the rotational-mass coefficient, taking into account
the need to accelerate not only the vehicle but the rotational components of the drivetrain
as well. F, is the traction force, R, resistance from incline (component of gravitational
force ), Ry rolling resistance and R, aerodynamic resistance. Individual resistance forces
are defined as:

R.(t) = %panAm’UQ(t) (3.2a)
R, (t) = mgf sin(a(t)) (3.2b)
Re(t) = mgf cos(a(t)) (3.2¢)

where ¢, is the drag coefficient, A, the vehicle frontal surface area, g gravitational accel-
eration, f the rolling coefficient and « the slope angle. Because the input is speed values
collected with a certain timestep At, (3.1) becomes:

Aﬁ(f) - %(F 2(t) = Ra(t) = By(t) = Ra(v(1))) (33)

from which the required traction force at each instant can be obtained:

Av(t)

F(t) =
(t) =mé At

+ Ro(t) + Re(t) + Ra(v(t)) (34)

3.2.3 DRIVETRAIN

Traction force F, at the wheels is provided by the combination of ICE and EM torque
(Fig. 3.3):

F, (t) = (Te(t) + Tm(t)itcntc) ig(t) 14 Nd Td (3-5)

where ig is the gearbox ratio, igg the final drive ratio, 14 = 74 7¢q the combined mechanical
efficiency of the gearbox and final drive, and rq4 is the dynamic rolling radius of the tire.
Constants it and 7. are the gear ratio and efficiency of the torque coupling of the EM to
the driveline respectively. The torque couple gear ratio also couples angular velocity of the
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if, N

EM and the ICE by:

we(t) = ——= = w(t) (3.6)

where w is the angular velocity of the gearbox input shaft. The effects of tire slip are neg-
lected, therefore w can be obtained directly from the vehicle speed:

ot = 1080 o

Combining (3.4) and (3.5), demanded torque at the gearbox input shaft that needs to
be provided by the combination of the EM and the ICE at each instant can be calculated:

md 28 L R (£) + Re(t) + Ra(v(t))

Taem (t) = Te(t) + T (t)ireNie = — 3.8
de () () ()tnt Zg(t)lfdndrd ( )
3.2.4 BATTERY
The battery charge dynamics are a function of flowing current:

o0 I(t)

where [ is the current flowing from or to the battery (positive when battery is being dis-
charged) and C is the battery charge capacity.
Using internal resistance battery model (Fig. 3.4), the current can be obtained from

R(£)

]
| I |

>

Il
Vo(ﬁ)i

FIGURE 3.4 Internal resistance battery model; V: open-circuit voltage, R: internal resistance,
B,: battery input/output power.
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power P, going to/from the battery by solving the following quadratic equation:

R(EX)I(t)* = Vo(EM)I(t) + Po(t) = 0 (3.10)

where R is the battery internal resistance and V; the open-circuit voltage, both of which
vary with SOC level (Fig. 3.5). Equation (3.10) is essentially power equilibrium with the
term RI? representing heat losses due to internal resistance, which is higher while char-
ging the battery (Fig. 3.5b), resulting in higher losses.

Vo(€(t) £ /VE(E(t) — 4R(E(1)) By (t)

2R(&(1))

Only the root with minus sign is physically feasible. This equation also defines the battery
power limits, because the square root part has to be greater than zero:

I(t) = (3.11)

Bomin(€(t)) < Bo(1) < Bomax(€(1)) (3.12)
‘ :
14l —— Discharge ||
41 . AR - - - Charge
~ g
Z s8] | E
L2 = 12} :
3.6 |
\ \ \ \ \ \ \ \
02 04 06 0.8 02 04 06 038
£(=) £(-)
A Open circuit voltage B Internal resistance

FIGURE 3.5 Battery cell parameters as a fucntion of SOC (prismatic lithium-ion at 25 °C).

Battery-pack open-circuit voltage and internal resistance were obtained by scaling para-
meters of a reference prismatic lithium-ion battery cell (Fig. 3.5) according to the battery
pack configuration using Ohm’s and Kirchoff’s laws:

Vop = 5 Voe (3.13a)
R, = ;RC (3.13b)

where s is the number of cells in the battery pack connected in series and p in parallel.
Index p denotes parameters of the battery pack and index c the parameters of a cell. To
obtain values for different battery capacity, the cell’s internal resistance was scaled using

formula [51]:
Ce
c*

where the index ¢ denotes cell’s parameters and * the required parameters.

R* = R. (3.14)
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3.2.5 ELECTRIC MACHINE

Battery power can be further quantified by power drawn by the EM Pp,:

Pn(t) Ton (t) win (1)
B O (o i (Ton (8 wim ()8 () (3.15)

B(t) =

where 7; is the power inverter efficiency and 7, the EM efficiency depending on its oper-
ating point (Fig. 3.6). Mechanical power is represented by torque provided by the EM Tp,,
and its angular velocity wy, which are subject to constraints:

T min(Wm (1)) < Tin(t) < T max(Wm(t)) (3.16)
0< Wm(t) < Wm,max (317)
200 e 40
20
B B
Z o Z 0
& X
—20 |l
—200 “‘ | | | Bl —40 [ | | | |
0 2,000 4,000 6,000 8,000 0 4,000 8,000 12,000 16,000
RPM (min~') RPM (min~!)
A 65 kW EM for HEV and PHEV B 11 kW EM for MHEV

FiGure 3.6 Efficiency maps and maximum torque curves of the electric machines

3.2.6 ENGINE

The model of the engine takes into account full load curve and brake-specific fuel con-
sumption based on engine torque T; and angular velocity w. (Fig. 3.7), which are subject

to constraints:

0 < Te(t) < Temax(we(t)) (3.18)
We, min < We(t) < We, max (319)

Fuel consumption is then defined as:
m(t) = Te(t) we(t) BSFC (Te(t), we(t)) (3.20)

The engine is considered warmed-up during operation and no additional temperature
behaviour is modeled. As this thesis focuses on energy efficiency only, pollutant emissions
have not been included in the model.
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FiGURE 3.7 BSFC map (in g/kWh) and full load curve of the internal combustion engine

3.2.7 SHIFTING

While in terms of ideal fuel consumption, gear shifting would be included in the optim-
isation, because it affects the EM and ICE efficiency, an independent shifting logic is im-
plemented instead. There are several reasons for this. The obvious one is an additional
significant computational burden, however, mainly, the objective here is to compare ef-
fects of planned-trip information knowledge with a simple rule-based strategy in other-
wise identical conditions, therefore different gear shifting would only add irrelevant in-
consistencies to the results. The predicted route also has different torque requirements at
each instant than in real driving, which would result in the optimised gear being largely
suboptimal or even infeasible with respect to engine limits.

The logic implemented here is therefore based on WLTP shifting strategy [52], which
essentially imposes the highest gear possible based on instantaneous demanded power
and available engine power in each gear, as long as the minimum and maximum engine
RPM limits are not violated. This means that in terms of shifting, the vehicle behaves as
a conventional ICE vehicle without any EM. While skipping gears during acceleration is
not allowed in WLTP and gear can be changed only after 3 seconds, no such rules are
implemented here for simplicity and irrelevancy to the results.

When demanded torque is less than or equal to zero, the engine is considered shut off.

3.3 OPTIMAL CONTROL PROBLEM

Since the observed behaviour is fuel consumption, the aim is to find an optimal control u*
at each instant to minimise the performance measure

T(w) = /t Y a6 dt (3.21)

0
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representing fuel consumption over the entire trip, subject to constraints specified in Sec-
tion 3.2:

Slow < &(t) < Ehigh (3.22a)
Pomin(€(t)) < Po(t) < Bomax(&(1)) (3.22b)
Tinmin(Wm(t)) < T (t) < Tinmax(wm(?)) (3.22¢)
0 < wm(t) < Wm max (3.22d)
0 < Tu(t) < Temax(welt)) (3.22¢)
Wemin < We(t) < We max (3.22f)
with fixed state and time boundary conditions:
to=0, ty=T (3.23)
£(to) = o, &(ty) =¢&5 (3.24)

where T is the duration of the trip. Vehicle speed is given by the input speed profile and
therefore the only controlled state variable as part of the optimisation is £:

x(t) = [£(t)] (3.25)

which is ultimately affected by the power of the EM, which determines the current flow in
and out of the battery. Because independent shifting strategy based on vehicle speed and
total demanded torque is implemented, the only control variable is the torque provided
by the EM:

u(t) = [Tm(t)] (3.26)

which also determines the torque that has to be provided by the ICE:

Te(t) = Taem(t) — T (t) ite e (3.27)

making the performance measure

J(T) = /O ' To(Tin(t), t) w(t) BSFC (To(Tin(t), t), w(t)) dt (3.28)

A term taking into account the energy and time required to turn the engine on could
be included in the performance measure to prevent the vehicle from switching modes too
often and ensure drivability and comfort. While this factor should be considered in real-
life implementation, it is neglected for the purposes of this thesis, as none of the compared
methods penalise such behaviour, and therefore it should not affect the results in relative
terms.

3.3.1 CONSTRAINTS

The shifting logic already ensures that the engine speed constraint (3.22f) is satisfied. Be-
cause EM speed is linked to engine speed and has wider RPM range, (3.22d) is automat-
ically satisfied as well.

The remaining constraints that need to be taken into account during optimisation are
the state inequality constraint (3.22a), control variable inequality constraints (3.22b, 3.22¢)
and the engine torque constraint (3.22e), which through (3.27) indirectly imposes a limit
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on the control variable Ti,,. The EM torque Th,is therefore bounded at each instant by the
EM’s maximum torque curve, maximum (minimum) battery power and full load curve of
the ICE. The state inequality constraints will be addressed more in-depth in Section 3.4.3.

3.3.2 SOLUTION

Some methods that can be used to solve the set up optimal control problem are briefly in-
troduced in Section 2.2.2. DP will ultimately be used for all tested routes as a benchmark,
however, finding solution this way requires a lot of time and cannot be implemented in
the control algorithm for real-world driving. Therefore, for the high-level reference SOC
trajectory generation, a simplified PMP algorithm will be used, due to its computational
efficiency. Additionally, the result of PMP optimisation is not only the reference SOC tra-
jectory but also the reference costate (equivalence factor), which can be subsequently used
for the lower-level instantaneous control logic to track the SOC reference.

3.4 HIGH-LEVEL TRAJECTORY GENERATION

The PMP used to solve the optmial control problem from Section 3.3 is formulated based
on variational approach for finding extrema of a functional

J(u) = /f Y (). u(t), 1) dt (3.29)

subject to state differential equation constraints
x(t) = a(x(t),u(t),t) (3.30)
using the Lagrange multiplier method. In a control problem where admissible controls

are bounded and final state and time are fixed, the PMP states necessary conditions for
optimal control u* and optimal state trajectory x*:

(1) = (), w0, 97(0). (3312)
p(t) = 27 ety weieyprn, ) (SN @)
(1) (1), p(0). 1) < A (x(0), u(t), (). ) (3310

where 7 is the Hamiltonian, which is the penalty function augmented by Lagrange mul-
tipliers p and state constraints a:

A (x(t),u(t), p(t),t) £ g(x(t),u(t),t) + p" (t)[a(x(t), u(t), )] (3.32)

In other words, the Hamilatonian is minimised (3.31c) at each instant forall ¢ € [to,¢s] and

for all admissible controls u while satisfying the state (3.31a) and costate (3.31b) equations.
Applying the previously set up control problem with one state and one control variable,

the vectors become one-dimensional. The system is described by differential equation

x(t) = £(t) = SR (3.33)
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controlled by control variable

u(t) = Tn(t) (3.34)
with performance measure
J(Tr) = ttf i (Tim(t), £) dt (3.35)
making the Hamiltonian
A(E(), T (1), (1), 1) = 1125 (Tin (), 1) + (D) [E(E(1), Tin(2), 1)) (3.36)

where p is a Lagrange multiplier known as the costate whose dynamics are described by

0

_Tg(g(t)v Tm(t)vp(t)’ t) (337)

) =
and whose boundary conditions are unknown, because the final state is not included in
the penalty function [33]. The initial value of p has to be known to obtain optimal control
at each instant using (3.31c), and therefore the goal of the optimisation is to obtain this
value.

Because this is a highly nonlinear two-point boundary problem, it cannot be solved
analytically and numerical methods have to be employed to some extent.

3.4.1 PROBLEM SIMPLIFICATION
After plugging in the equations from the vehicle model—(3.11) for the battery dynamics
and (3.20) for the fuel consumption—the Hamiltonian becomes

H(E(t), Tm(t), p(t), 1) = Te(Tm(t), 1) w(t) BSFC (Te(Tm(t), 1), w(t)) —

—p(t) Vo(&(t)) — /VE(E(t)) — AR(E(t)) By (T (t)) (3.38)
’ 2R(E())C

Because internal resistance and open-circuit voltage depend on SOC, the battery drop does
not only depend on the control variable but the state variable as well. Therefore, the partial
derivative (3.37) is non-zero and the differential equation for the costate p needs to be
solved at every time step. However, as can be seen in Figure 3.8, the battery parameters’
dependency on SOC is not very steep in the operating range (especially for HEVs and
MHEVs) and can be considered constant without obtaining a significant error.

This simplifies the Hamiltonian to

(T (t),p(t),1) = Te(Tin(t), 1) w(t) BSFC (Te(Tm(t), 1), w(t))—

T (3.39)
 piy Y=V AT (0)

and because it is now not dependent on the vehicle state, the costate becomes constant:

0

—TS(Tm(t),p(t),t) =0 (3.40)

p(t) =
however, its value is still unknown and has to be iterated from an initial guess.
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FIGURE 3.8 Battery parameter variation in the operating SOC range

3.4.2 PROBLEM SOLUTION

From (3.39), it can be seen that the Hamiltonian is essentially a sum of power in fuel and
power in electric charge with p being a (negative) constant comparing the cost of fuel
to the cost of electricity, known as the equivalence factor. For this reason, minimisation of
Hamiltonian in this form is referred to as the Equivalent Consumption Minimisation Strategy
(ECMS). The problem is finding the value of p, which encapsulates the trip characteristics
determined by the speed and the elevation profile such as engine operating point efficiency,
driving aggressiveness, and energy recuperation potential along a route.

If the absolute value of p is too low, the theoretical cost of electric energy is considered
low, leading to overuse of energy from the batteries and not achieving charge-sustaining
operation. Similarly, if the absolute value is too high, fuel energy is preferred, not exploiting
available electric energy and ending with SOC that is too high. This behaviour is shown in
Figure 2.9. Even small changes in p lead to large deviations from the required SOC at the
end of the trip, and therefore it is unlikely this value will be correctly guessed without the
knowledge of the trip.

However, a reasonable initial guess for the optimisation can be made by exploiting the
nature of the Hamiltonian. Using the lower heating value of fuel and the battery para-
meters along with approximate* average efficiencies of each power delivery system, both
summed expressions can be equalised to the same unit and theoretical energy cost.

Hfjerng = CV i i im § (3.41)
Rearranging then yields:
CV i m - .
= = € = € (342)

Where the value of py can be used as the initial guess. This however does not take into
account specific trip characteristics, and therefore is unlikely to yield optimal result by
itself.

The trip is then discretised with a predefined time step and the value of control Ti,
(from of an admissible range) that minimises Hamiltonian at each step is applied. The

4True average efficiencies are naturally unknown as they are function of load, therefore approximate values
are used.
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admissible range of 71, is based on demanded torque, EM’s maximum torque curve, max-
imum (minimum) battery power and full load curve.

Figure 3.9 illustrates the effect of the equivalence factor p on the minimum of Hamilto-
nian for two different demanded torque values. When the demanded torque is high, and
therefore ICE efficiency reasonably high, increasing the cost of electric energy (higher
absolute p-value), the location of the minimum makes the vehicle switch from EM-only
propulsion to ICE-only propulsion. Whereas when the demanded torque is low, which
would result in low ICE efficiency, increasing the cost of electric energy results in the
vehicle shifting from EM-only propulsion to ICE propulsion while simultaneously char-
ging the battery, obtaining an ICE operation point with higher efficiency.

107" 107*

I 7\ I I =
---p=-03 8 . ---p=-03
——p=-035 : ' —p=-0.35

811 p=—-04 | IR p=-04
. | L 7
7 - |
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FIGURE 3.9 Hamiltonian for two demanded torque values as a function of p. Discontinuities
at zero are due to the effect of losses and battery internal resistance based on the direction of
power from/to the battery. Dots denote minimum of Hamiltonian. Example from a trip with
optimal (charge-sustaining) p* = —0.35.

Minimising the Hamiltonian at each time step results in a SOC trajectory along the
entire trip. Based on the difference between the resulting SOC value at the end of the trip
&(ty) and the required final SOC value &y, p is updated for the next iteration until the
trajectory reaches required £(t ) °. The iteration process to achieve charge-sustaining (£, =
&#) operation is illustrated in Figure 3.10.

3.4.3 STATE INEQUALITY CONSTRAINTS

From Figure 3.10, it is clear that in the optimal control problem described by (3.39) and
(3.40), there is nothing preventing the violation of inequality constraints (3.22a) of the
vehicle state — battery SOC bounds o and &nigh which the vehicle should stay in (typic-
ally 10 % from required value for charge-sustaining HEVs). The final ¢ trajectory in Fig-
ure 3.10 did not violate these constraints, however, the issue becomes more prominent on
routes with long descends or with vehicles with small battery capacity (such as MHEVs),
whose boundaries are easily exceeded. This is illustrated in Figure 3.11, where the same
route from Figure 3.10 is optimised for HEV and MHEV without active state constraints.
Numerous approaches for solving PMP problems with inequality constraints are given
in [53]. The indirect adjoining method was used here for the HEV optimal control problem.

5Small deviation A&y = 0.003 is allowed to ensure mathematical feasibility.
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FIGURE 3.10 Iteration process of equivalence factor p for charge-sustaining operation
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FiGurE 3.11 SOC trajectory for HEV and MHEV

The inequality (3.22a) can be represented in the form h(¢) > 0:

(3.43a)
(3.43b)

h1(t) = &high — £(t) =0
ha(t) = £(t) — §low = 0

In the indirect adjoining method, pure state constraints (that don't explicitly depend
on the control variable) are differentiated as many times before the control variable T,
appears explicitly and then are adjoined with multiplier v to the original Hamiltonian .7
forming Lagrangian .Z.

In the case of (3.44), only one differentiation is necessary, resulting in:

(3.44a)
(3.44b)

hi(t)

_é(Tm (t))
hy(t) = ¢

(T (1))

where the superscript 1 denotes first derivative. Augmenting the Hamiltonian results in
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Lagrangian

L(T(t), p(t), v(t),t) = H(Tn(t), p(t), t) + v(t)h! (Tn(t))
= 1g(Tin (1), 1) + (p(t) — v1.(t) + v2(t)) €(Tm(t)

(3.45)

The constraints h reduce the admissible control variable region on the boundary as h' > 0
has to hold true for (3.44) to hold true. Applied to the HEV model, this translates to that the
battery can only be discharged (¢ < 0) while on the upper boundary and vice versa. The
optimal control is control from the new admissible region that minimises the Hamiltonian.

The costate
0%

~ 5 (
remains constant as . is still not dependent on the state variable ¢, and therefore obtaining

the trajectory of v is not needed. However, the jump condition states that the costate may
have a discontinuity at each time 7 the state reaches or exits the boundary:

p(t) = Tm(t)7p(t)7 V(t)7 t) =0 (3.46)

p(r+) = p(r™) - n(r%m (3.47)

where the 77 and 7~ denote the left-hand side and the right-hand side limits, respectively,
and 7 is the jump parameter — a vector for each point 7; of discontinuity of the costate p.
After plugging the differentiation of h into (3.47), the discontinuity condition becomes

p(r) =p(r7) £ n(r) (3.48)

where the sign depends on whether the upper or the lower boundary of £ is reached.

All this means that every time the SOC reaches either o, or &high, the constant costate
is increased/decreased by an unknown value n(7;) (different for each contact time 7;). At
the contact time, h' > 0 has to hold true not to violate constraints.

Based on these conditions, the original problem of finding p over time interval [0, T']
is broken down into finding optimal p; at each interval between time points 7;, where the
constraints are violated, which results in a p trajectory with discontinuous jumps.

The procedure is as follows. Firstly, the unconstrained problem is solved. If it does not
violate SOC constraints, the solution is considered optimal. If the state constraints are vi-
olated, time 7;, where the constraint is violated ‘the most’ (furthest from the boundary) is
considered a contact time and therefore a point of p-discontinuity. Because it is a maximum
(minimum), it is clear that the condition h! > 0 will hold true. At this time 7;, the value
of SOC £(t;) is set to a value of the boundary it violates as a boundary condition for two
subproblems, breaking down the time interval into two ([0, 7;] and [r;, T]). The optimal
problem is then solved for each of the two subintervals with boundary conditions:

tio =0, tiy = 75, &(ti0) = o, &(t1r) = Enigh/tow

(3.49)
tog = T, toy = T, f(tQO) = ghigh/lowv f(tlf) = ff

obtaining unique p; for each one. If after this the constraints are still violated at a certain
point, the procedure is repeated, subdividing the intervals further with previously set SOC
boundary conditions (3.49) as fixed.

Iterated ¢ trajectories in this fashion are shown in Figure 3.12, where 3 iterations were
required before the constraints were not violated at any point. Naturally, multiple iter-
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ations increase the computation time of the algorithm, however, in a lot of cases, the
state constraints are not violated (hence no additional iterations are needed). Addition-
ally, computation time decreases roughly linearly when decreasing the time steps inside
an interval, making optimisation on subdivided intervals faster.

0.9

0.8

0.6

0.5

2 —0.05
-0.1

Unconstrained
-----Iteration 1
- - - Iteration 2
—— Iteration 3 (Final)

Unconstrained
—— Iteration 3 (Final)

FiIGURE 3.12 Costate (equivalence factor) p iteration to satisfy state £ inequality constraints; ver-
tical lines repesent divison into subintervals after each iteration.

The resulting trajectory from Figure 3.12 is compared in Figure 3.13 with trajectory op-
timised with dynamic programming, where inequality constraints can be handled simply
by not including values exceeding the boundaries in the state vector, or by setting the cost
to reach final state from forbidden states to a high value. It can be seen that apart from
small allowed deviations, the PMP approach yields optimal results in accordance with
DP, and therefore can be used for reference trajectory generation.

0.8

L oo
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—DP
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200 400

FiGure 3.13 Comparison of DP and PMP generated state trajectory with active inequality con-

straints
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3.4.4 EFFICIENCY MAPS APPROXIMATION

One of the main execution-speed bottlenecks is the lookup table form of efficiency maps
of the the ICE and the EM (Figs. 3.6 and 3.7), as both values need to be calculated for every
value of the control variable T1, at each time step. Performing bilinear interpolation every
time these efficiency values are needed is not very computationally effective, and therefore
the lookup tables were approximated by polynomial surfaces as a function of 7, or T}, and
w. Three degrees for each dimension was deemed sufficient for the EMs, resulting in a
function in the form:

f(@,y) = ago + a107 + ao1y + a20r” + a112y + ap2y>+

(3.50)
+ az0r® + a217%y + arzy® + aosy®

where x represents RPM, y represents torque and «;; are coefficients unique for each map.

Because the accuracy of the BSFC map plays an important role in the Hamiltonian,
especially the variation of torque with constant RPM, second degree polynomial in a-
direction and fifth degree polynomial in the y-direction was selected instead. This im-
proves the accuracy for different torque values, although simultaneously increases the
computation time. The resulting form of the surface formula is:

f(z,y) = aoo + a0z + ao1y + a202” + a117y + aey® + ao1 %y + arory® + apzy>+

(3.51)
+ a227?y? + ar132y® + agay® + a23z’y® + arsxy® + agsy®

Original and approximated maps are shown in Figures 3.14, 3.15 and 3.16, along with
respective coefficients of determination describing the quality of the approximation.

Tested on a loop of one million value calculations, plugging into (3.50) is roughly
17 times faster than using a lookup table. While the increased degree of polynomials in
(3.51) makes it roughly 1.7 times slower than (3.50), it still constitutes a significant im-
provement over a lookup table. Maximum torque curve values are calculated only once
every time step and therefore have been kept in a lookup-table form.

200 200

B B

Z o Z 0

& &

—200 ‘ ‘ ‘ —200 ‘ ‘ ‘ -

0 2,000 4,000 6,000 8,000 0 2,000 4,000 6,000 8,000

RPM (min~!) RPM (min~")
A Original B Approximation

FIGURE 3.14 Approximation of 65 kW EM efficiency map
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FIGURE 3.15 Approximation of 11 kW EM efficiency map
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FiGURE 3.16 Approximation of ICE BSFC map

3.4.5 COMPUTATIONAL SPEED

In the current state, the reference trajectory generation takes around 2 — 4ms for every
second of the trip in real-time, depending on the number of required iterations. In the
cases where the state constraints are violated, the algorithm takes at least twice as much
up to depending on the number of violations. This was measured using Python 3.7 on
an Intel 8th Generation CPU running approximately at 3.5 GHz. Because Python is an in-
terpreted language, its execution speed is quite low, and therefore the algorithm can be
made significantly faster by implementing it in C language. Even at lower clock speed, the
algorithm should be reasonably fast for reference trajectory generation before a trip.
Different processing units and languages make it difficult to assess the execution speed
of the algorithm in absolute terms, however, in relative comparison to DP, the PMP al-
gorithm is significantly faster®. DP using the simplified model and approximate maps
takes around 250 ms per second of trip real-time, making PMP 60 times faster. DP us-

The execution speed of DP naturally depends on the step size of state (SOC) discretisation. Based on the
comparison with PMP results, A{ = 0.001 was deemed sufficient for the purposes of the thesis
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ing non-simplified model and look-up table maps takes around 700 ms, making the PMP
algorithm around 200 times faster than the original optimal control problem solved by DP.
These numbers are even higher when a SOC trajectory for PHEV is optimised, as the state
vector is several times larger. In that case, DP computation for PHEV takes 6 times longer
than DP for charge sustaining HEV and MHEV, whereas PMP is unaffected by the SOC
range. Figure 3.17 illustrates the computation speed differences between these methods.

PMP - 4
DP’ HEV 250
DP HEV 700
DP’ PHEV 1,600

DP PHEV 3,700

FiGURE 3.177 Computation speed comparison of different algorithms (in ms/s). DP’ represents
DP with the same simplified model used for PMP. DP state step size: A = 0.001.

Because the simplified model uses functions for efficiency maps, which makes the
Hamiltonian a continuous function with an only discontinuity at 7., = 0 where the ef-
ficiency sign changes, further potential speed improvements can be made by minimising
it analytically instead of finding minimum by plugging in values of discretised control
variable Tp,.

3.5 LOW-LEVEL TRACKING LOGIC

In an ideal world, the equivalence factor p that results in the generated reference SOC
trajectory would simply be used to minimise the Hamiltonian in real-time driving to obtain
optimal control at each instant and the reference SOC would be automatically tracked.
However, because the vehicle model is simplified and some parameters are uncertain, the
change in SOC due to the work done by the EM (and therefore the whole SOC trajectory)
will deviate from the reference (Fig. 3.18) and would not be charge-sustaining even if the
speed profile was predicted with perfect accuracy. In other words, the reference value of p
is optimal only with respect to the simplified model, but true optimal value is different to
an extent dependent on the accuracy of the model.

In addition, the trip speed profile can never be perfectly predicted due to the random-
ness of driver behaviour, traffic or road obstacles.

The idea is, therefore, to assume that the equivalence factor that generates the refer-
ence SOC trajectory is close to the optimal value, and to use it for minimisation of the
Hamiltonian in real-time, however, as the SOC trajectory deviates from the reference one,
its value will be corrected in feedback to track the reference trajectory. This should result
in both obtaining close-to-optimal control with respect to fuel consumption and achieving
charge-sustaining operation. A block diagram of the control loop in its final form is shown
in Figure 3.19.

3.5.1 EQUIVALENCE FACTOR FEEDBACK

SOC deviations can be corrected by increasing the absolute value of the equivalence factor
whenever SOC is being depleted more than reference, and decreasing the value whenever
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FiGURE 3.18 Deviation of SOC using reference p due to an inaccurate model
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FIGURE 3.19 Energy management control loop

electric energy is not used enough, resulting in higher SOC than reference. Therefore, a
logic similar to PID controller is implemented to correct p at each instant:

P(t) = pres(t) + Kp(&ret(t) — £(1)) + Ki /(&ef(t) —&(t)dt (3.52)

Only the proportional and integral terms are used, as the £ values in a real-life scenario
will be affected by an error, making their derivative very inaccurate. For this reason, the
proportional term is also calculated from a mean of several past £ values. A block diagram
of the resulting SOC-tracking control loop is shown in Figure 3.20.

Because the assumption is that the reference equivalence factor is nearly optimal, rel-
atively small values for the control coefficients can be chosen. While higher values would
track the reference SOC trajectory better, it would result in big jumps in p, leading to the
vehicle overcompensating by constantly charging and draining the battery, and hence poor
performance over the entire trip. Perfectly tracking the reference is also undesirable, as it
is optimal only with respect to the simplified prediction and true optimal trajectory will
be different.
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FIGURE 3.20 Real-time-tracking control loop; thick lines denote inputs.

The values of K}, and K; will naturally differ for each of the vehicle configurations, be-
cause different capacities (and other parameters) of their battery packs result in different
relative SOC depletion based on work done by the EM. By trial and error, values for HEV
were obtained. Subsequently, by loosely scaling based on battery capacities, values listed
in Table 3.2 were chosen for all configurations. To prevent integral windup, the integral
value is zeroed every time the error crosses zero.

TaBLE 3.2 Control term coefficients for each vehicle configuration.

K, K

MHEV | -0.1 -0.0012
HEV -03  -0.003
PHEV -2 -0.03

Figure 3.21 shows the same route from Figure 3.18 but now with p corrections. While
there is still a small deviation from the final SOC value, it is much smaller than in the
previous case, where the deviation would additionally grow with the length of the trip. In
this example, both the predicted and actual speed profiles were the same, however, when
this is not the case, the deviation at the end may become larger even with the implemented
corrections. To prevent such effect, the PI control coefficients are set to a several times larger
value shortly before the end of the trip, forcing the vehicle to recharge or charge the battery
to finish with the required SOC level ¢;.7

The violation of SOC constraints in the prediction is prevented by the optimal-control
algorithm, however, since the optimised equivalence factor is only approximate with re-
spect to real driving and the reference-SOC is not tracked precisely, the constraints could
end up being violated. Therefore, a rule preventing the use of electric energy when the
lower battery limit is reached, and a rule preventing battery charging when the upper
battery limit is reached, is implemented.

In the current state of the algorithm, reference SOC is calculated as a function of dis-
tance, which assumes the real trip to be the same length as the prediction. This can however
be easily violated due to unexpected obstacles, detours or simply by driving in a different
lane. In the future, it would be therefore beneficial to track the reference based on the
nearest GPS location to accommodate these deviations.

"This forced charge-sustaining behaviour is implemented only for fair comparison purposes. In a real scen-
ario, it could be more beneficial starting the next trip with higher/lower SOC and discharge/recharge the battery
more efficiently.
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FIGURE 3.21 Reference and corrected equivalence factor trajectory with resulting SOC trajectory

3.5.2 ERRORS IN PREDICTION
Ultimately, the prediction inflicts three types of errors:

1. the Hamiltonian is minimised using inaccurate model/maps, therefore the vehicle
‘does not know’ true optimal operating points, resulting in applying suboptimal con-
trol Trn, leading to higher fuel consumption;

2. SOC change as a function of applied optimal control is different than the predicted,
leading to over-charging or depleting the battery;

3. demanded torque at each instant is different than the prediction, because of different
speed or different vehicle parameters, resulting in incorrect p-value, leading again to
over-charging or depleting the battery.

Each of these affects the performance of the proposed EMS in some way. While the model
can be to some extent tuned to minimise the first two effects and uncertain vehicle para-
meters, the options to make an accurate speed profile prediction are limited, and therefore
robustness to this error is crucial and will be studied in Chapter 4, where the strategy is
tested on several routes.

The effect of uncertain parameters was already shown in previous Figures 3.18 and 3.21.
To take this into account in the simulations, the trip prediction will assume—apart from
simplified efficiency and battery maps—slightly different values than in Table 3.1. More
about this and the entire simulation setup will be discussed in the following Section 3.6.

The value of Hamiltonian has a significant effect on performance, as it is used both in
the prediction and the real-time control. This means that the engine efficiency and electric
path efficiency® (battery, inverter, motor) for different operating points should be finely
tuned to obtain the best results. This is especially true for the engine BSFC map, as fuel
consumption is the target of the optimisation and if the vehicle tries to keep the engine in

8The equivalence factor does not play a role in this, as it only linearly scales the relative efficiency of the EM
with respect to the ICE without changing the optimal operating point of the EM.
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FIGURE 3.22 Resulting engine operating points and fuel consumption using different BSFC map
surface approximations, overlaid on a true BSFC map; ICE: vehicle with conventional power-
train for absolute comparison, HEV: optimised hybrid vehicle.

the most efficient operating points of an approximation, which are not the most efficient
in reality, the performance quickly decreases.

Using approximations in the Hamiltonian for the trip prediction does not result in a sig-
nificant difference in performance, because the change in SOC trajectory and equivalence
factor is quite small to affect the tracking of the PID. However, the real-time Hamiltonian
minimisation at the low level then tries to keep the engine operating at points that are not
optimal in reality, and therefore, even though the result will be charge-sustaining beha-
viour, it will not be reached in the most efficient manner. An example of this is shown in
Figure 3.22, where a trip was optimised using different levels of approximation for a BSFC
map. The inaccuracy of the only third-degree approximation causes the algorithm to keep
the engine operating at points which are less efficient in reality, resulting in increased fuel
consumption.

Because the surface interpolation approximation was introduced for computational ef-
ficiency of the prediction, more accurate lookup tables can be used in real-time, where
the Hamiltonian is only minimised once instead of several thousand times, and therefore
the computational burden is not as high. Nevertheless, some error will always be present.
This will be simulated by using surface interpolations and constant battery parameters
instead of real lookup table maps for both the prediction and the low level, because the
‘real’ vehicle here is already simplified by lookup tables, which do not take into account
thermal behaviour or transients.

3.6 SIMULATION SETUP

The EMS is tested on several routes to test its overall performance and robustness to errors
and uncertainties from the previous section. Each configuration (HEV, MHEV and PHEV)
is tested separately and every result is compared to:
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1. optimal solution using dynamic programming
2. rule-based strategy without knowledge of the trip
3. conventional (non-hybrid) vehicle

With respect to the relatively slow vehicle speed dynamics and frequency of collected
route data, the simulation is discretised with a step size of 1s. The control variable Ty, is
discretised in both DP and PMP with step size of 2N m for HEV and PHEV, and 1 N m for
MHEV.

For DP, the state variable ¢ was discretised with a step size of 0.00025 for the HEV
and 0.0005 for the MHEV, as smaller battery capacity leads to higher battery percentage
depletion per work done by the EM, which means that the step does not need to be as
small. Contrary to this logic, step size of 0.001 was selected for the PHEV. This is due to
the fact that the PHEV has a wider SOC range of operation, which would lead to a very long
solution computation. A larger step size, combined with the numerical nature of DP, means
that the DP results presented in the following section may not be perfectly accurate due to
numerical errors and is solely indicative of the fuel consumption improvement limits for
the proposed strategy, which may in some cases outperform the DP ‘optimum’.

3.6.1 VEHICLE PARAMETERS

To test the robustness of the strategy to the disturbance caused by simplified and uncertain
model, two sets of parameters are used for each of the hybrid vehicle configurations — one
for the simplified predicted model and one for the real vehicle.

Simply put, the prediction makes several simplifying assumptions to increase compu-
tation speed, and some of the vehicle parameters might be slightly different in real life than
the algorithm assumes. This means that the prediction is made using one set of paramet-
ers, but the behaviour of the real vehicle is then governed by the actual parameters. The
reference SOC and equivalence factor trajectory are therefore generated assuming the sim-
plified model. The reference SOC is then tracked on the actual trip by the vehicle with real
parameters, however, using the simplified model and uncertain parameters for the real-
time Hamiltonian minimisation. Both dynamic programming and the rule-based strategy
naturally use the parameters of the real vehicle for comparison.

The parameters of the real vehicle are the ones listed in Table 3.1, whereas the simpli-
fied, uncertain vehicle uses slightly modified values of some of these. The differences are
summed up in Table 3.3. The parameters that are not common for all HEV configurations
are naturally approximated by different values/functions.

TABLE 3.3 Real vehicle and simplified vehicle parameters

‘ Real Simplified
Engine BSFC lookup table (RPM,T") f(RPM,T)
EM efficiency lookup table (RPM,T) f(RPM,T)
Battery internal resistance R lookup table () const.
Battery open-circuit voltage Vo lookup table (&) const.
Rolling resistance coefficient f 0.021 0.019
Tire dynamic rolling radius 74 0.3 0.31
Drag coefficient ¢, 0.31 0.29
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3.6.2 ROUTES

Data from several routes was collected to represent multiple trip types (city, highway,
extra-urban) as well as different elevation characteristics. This was done by recording
speed and elevation data with a frequency of 1Hz using GPS Tracks mobile application
while driving along predefined routes, and afterwards manually filtering the collected
data in Microsoft Excel to eliminate unrealistic acceleration and road slope peaks.

While the accuracy of mobile phone GPS placed inside a car is not ideal to perfectly
reflect the real motion of the vehicle, as long as the collected data is physically feasible and
realistic in terms of road infrastructure, it should be sufficient for EMS comparison.

To test the robustness of the proposed EMS with respect to variation of the real speed
profile to a predicted one, each route was recorded multiple times, where the first of the
speed profiles takes the role of the prediction and the rest as actual speed. Shorter routes
were recorded four times, resulting in one prediction profile and three test runs, while
the longer routes only three times, resulting in one prediction profile and two test runs.
In other words, the predicted speed profile for every tested trip on the same route stays
the same while the other speed profiles are used as the actual speed. A test trip where
the actual speed profile is the same as the predicted profile is done for each of the routes
as well, showing the robustness of the EMS only with respect to the simplified vehicle
model and parameter uncertainty. Because the reference SOC trajectory is tracked based
on driven distance, it was necessary that each trip on the same route was the same length.

TABLE 3.4 Route parameters with average speed of each trip; <= denotes a return route. Average
speed does not take into account the time the vehicle is stationary to better represent the driving
style differences.

Length Ascent Descent A Trip avg speed (km/h)
(km) (m) (m) (m) 0 1 2 3
1|City 1 3.85 14 —116 —102 26.8 33.2 30.6 299
2|City1 <« 3.62 117 —15 102  30.3 32.0 29.6 29.9
3| City 2 6.26 121 —67 54 354 33.5 33.8 344
4|City 2+ 6.24 63 —117 54 40.4 36.0 36.7 424
5 | Extra-urban 44.4 600 =777 —177 63.9 60.4 66.9 -
6 | Highway/City 47.1 609 —464 145 69.2 73.7 63.8 -
7 | Highway/City < 55.5 537 —614 =77 742 781 743 -
8 | Highway /Extra-urban 122.4 1486 —1163 323 79.6 80.9 &0.5 -
9 | Highway/Extra-urban < 123.9 1384 —1718 —334 81.1 779 82.7 -

The recorded routes with their parameters and individual trip average speeds are lis-
ted in Table 3.4, where the name represents major driving types. The following figures
(Figs. 3.23-3.31) show speed and elevation profiles of each route with GPS data overlaid
on a map. The predicted speed profile is always denoted with a solid line and subsequent
speed profiles are then considered real driving and are denoted with dashed, dotted and
dash-dotted lines, respectively. HEV and MHEYV are tested on all the listed routes, whereas
PHEV—which can complete most of them in electric mode only—is tested only on routes
8 and 9 and on a combination of 6 and 7.

The driving style or ‘aggressiveness’ remained the same across all trips, so the dif-
ferences on the same routes are due to the inherent randomness of driving behaviour and
traffic. The maximum acceleration values rarely exceed 2 m s~ for accelerating and 3 m s 2
for braking.
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3.6.3 PERFORMANCE COMPARISON

To assess the performance of the proposed strategy, each trip is compared to results from
a rule-based strategy (RB), which is usually in some form used in passenger vehicles and
which does not take into account trip characteristics, and to an optimal result using dy-
namic programming (DP), which assumes full knowledge of the trip and the vehicle para-
meters. Ideally, the resulting fuel consumption from the proposed strategy would lie in
between these two, closer to the optimal result. For reference and absolute savings com-
parison, fuel consumption of a vehicle with conventional ICE-only powertrain (weighing
20kg less than the MHEV) is included as well.

The same shifting strategy from Section 3.2.7 is used for all of the compared strategies,
hence the only control variable is Tp,.

RULE-BASED STRATEGY

For this comparison, a simple rule-based strategy was designed, slightly different for each
of the vehicle configurations (HEV, MHEV and PHEV). The rules are based on intuition
and adjusted using the tested trips to achieve approximately charge-sustaining operation.
Since the RB does not know when the current trip is going to end, the SOC at the end of
the trip will generally not be exactly the required value, but higher than that on some trips
and lower than that on other.

Because in the real world, operation of the vehicle does not end with one trip and any
excess of battery charge can be used in the next one, the fuel consumption calculation
converts this amount of energy to approximate amount of fuel saved in the future based
on powertrain efficiencies:

_ _ i b T e
mi = —(€(ty) &) OV (3:53)
This value is then subtracted from the value of the total fuel consumed. Similarly, reaching
SOC value below the charge-sustaining value £y means that the battery will have to be
charged in the future with a certain efficiency, resulting in additional fuel consumption

1
) O e H (354
While this calculation is approximate and may benefit not achieving charge-sustaining
SOC value in some cases, the longer the trip, the smaller effect it will have on the calculated
average fuel consumption.

An algorithm flowchart of the charge-sustaining rule-based strategy is shown in Fig-
ure 3.32. Simply put, the vehicle uses regenerative braking whenever possible (if the SOC
is not too high) and uses the EM to cover low-torque requests, where the efficiency of
the ICE is very low. Furthermore, depending on whether the SOC is above or under the
charge-sustaining value £y, ICE or EM is used accordingly. Soft SOC constraints &jow, soft
and &high soft were additionally introduced to determine how much electric energy can be
used, or whether the battery should be recharged by the engine.

Strategies for HEV and MHEV differ only in constants used in the EM torque 71, cal-
culations (how small torque request has to be to be covered by the EM only and to which
extent the vehicle uses torque assist). Strategy for PHEV consists of a charge-depleting
mode, where only the EM is used before reaching the charge-sustaining value ¢, after
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Battery recharge
Tm = (g(t) - gf) Tem

Torque assist
Tm = Co T4em

Torque assist
Tn=0C3 Them

ICE only
Tm=0

FIGURE 3.32 Rule-based strategy flowchart; T: True, F: False, constants C, C2 and C- are dif-
ferent for HEV (PHEV) and MHEY,; if calculated Tr, values are too high for the EM, maximum
possible torque is applied.
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FIGURE 3.33 Rule-based strategy test cycle (WLIP), showing SOC trajectory, speed profile and
fuel consumption; ICE: vehicle with ICE-only propulsion, RB: rule-based, DP: dynamic pro-

gramming.

which the same strategy as for the HEV is employed.

To compare EMSs in the same conditions, no control logic or penalty is implemented
to take into account frequent engine starts.

Figure 3.33 shows performance of the rule-based strategy on a HEV and MHEV driv-
ing WLTP cycle. The result is compared with the same trip optimised with DP and fuel
consumption of a vehicle with a conventional ICE powertrain. It is worth noting that the
difference between a rule-based algorithm and optimal solution on trips like these, where
large part of the total energy is used for highway driving (with high ICE efficiency and no
recuperation possibilities), is in absolute terms already quite small, especially fora MHEV,
and therefore there is only a small room for improvement, as the proposed EMS should
lie somewhere in between. PHEV was not tested separately, because it can complete this
cycle in charge-depleting mode using battery energy only and its charge-sustaining control
logic is the same as the HEV.
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CHAPTER 4

RESULTS

Testing each vehicle on all of the routes specified in Section 3.6.2 results in 31 trips for
both the HEV and MHEYV, and 9 trips for the PHEV. An exhaustive list of all the results
without commentary is included in Appendix A. This chapter highlights only some of the
results showing the characteristic behaviour of the EMS and its shortcomings, including
a comparison to the other tested strategies. To save space and avoid repetition, Table 4.1
explains the color codes used in the graphs throughout this chapter.

TaBLE 4.1 Legend for the following graphs

Predicted  2LVL DP RB ‘ Predicted speed  Real Speed ‘ Elevation

Overall, the proposed EMS (further referred to as 2LVL) outperformed the rule-based
strategy in most cases and the results were close to the optimal solution from DP. The
improvement percentages for every trip are listed in Tables 4.2, 4.3 and 4.4 for HEV, MHEV
and PHEYV, respectively. The percentages show the relative improvement over the rule-
based strategy with respect to ICE-only consumption using formula:

FCicg — FCovi,  FCicg —FCrg FCrp — FCorvr,
AF = — = 4.1
Cre FCick FCick FCick (41

where FC is the fuel consumption and AFC, the relative improvement. The numbers in
parentheses denote the upper limit' for improvement using DP. Because trip 0 is a trip
where the real speed was the same as the predicted speed, it in most cases leads to a result
closer to DP than the rest, as there is one fewer source of disturbance. It therefore only
acts as an indication to what extent different speed profiles affect the results and does not
count towards the average improvement.

There are two possible ways of interpreting the results. In absolute terms — how big
the fuel consumption improvement is with respect to the RB strategy (numbers in tables
above), or in relative terms — how close the 2LVL result is to the optimal solution on the
DP-RB scale. To assess the performance of the strategy itself, the relative comparison is
more appropriate. However, in a real application, absolute values are ultimately of bigger
importance, whether the savings outweigh the efforts of implementation.

! As discussed in Section 3.6, the 2LVL strategy in some cases outperforms DP, which is more prone to nu-
merical errors, especially in the case of PHEV where bigger state step size was selected. The upper limit for
improvement is therefore only indicative.
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TABLE 4.2 Relative improvement over the rule-based strategy with respect to ICE-only con-
sumption for HEV (in percent); numbers in parentheses denote DP result.

| Trip0 | Trip1  Trip2 Trip3 | Avg

1| City 1 19.6 (21.3) | 17(17.6) 18.6(21) 19.9(19.8) | 185
2| City 1« 2.1(1.7) | 1.3(17) 03(21) 35067 | 17
3| City 2 44(4.2) | 36(47) 23(49) 1.2(36) | 24
4|City 2 ¢ 73(6.9) | 6.1(6.1) 7(7.2) 53(5.9) | 61
5 | Extra-urban 4.4 (4.2) 4(4.4) 3.9(3.8) - 4

6 | Highway/City 1.6 (1) 1(0.9)  1(L5) - 1

7 | Highway /City < 1.4 (1) 1.3(1)  1.6(1.4) - 15
8 | Highway/Extra-urban 1.7 (1.7) 1.1(1.3) 1.1(1.2) - 1.1
9 | Highway/Extra-urban <= | 1.5 (1.9) 21(1.9) 21(2) - 21

TABLE 4.3 Relative improvement over the rule-based strategy with respect to ICE-only con-
sumption for MHEV (in percent); numbers in parentheses denote DP result.

‘ Trip 0 ‘ Trip 1 Trip 2 Trip 3 ‘ Avg
1| City 1 12.6 (13.7) | 11.2 (12.9) 9.9 (11.3) 12.1 (14.6) | 11.1
2| City 1« 02(04) | —05(0.2) 03(1.3)  09(2) | 17
3| City 2 1.8(23) | 1.2(24) 1(21) 07(1.8) | 1
4| City 2 + 31(3.7) | 1.1(31) 3548  26(34) | 31
5 | Extra-urban 1.7 (2.1) 1.3 (2.1) 1.3 (1.9) - 1.3
6 | Highway /City 0.4(0.6) | 03(0.6)  0.2(0.9) - 0.3
7 | Highway /City < 0.1(0.4) | 0.1(05)  0.1(0.7) - 0.1
8 | Highway/Extra-urban 0.6 (0.8) 0.3 (0.7) 0.1 (0.6) - 0.2
9 | Highway/Extra-urban < 0.7 (1) 0.6 (1) 0.6 (1) - 0.6

TABLE 4.4 Relative improvement over the rule-based strategy with respect to ICE-only con-
sumption for PHEV (in percent); numbers in parentheses denote DP result..

‘ Trip 0 ‘ Trip 1 Trip 2 ‘Avg

6+7 | Highway/City & 41(4) | 3.7(37) 38(38)| 38
8 | Highway/Extra-urban 4.6 (4.6) | 42(3.9) 4.3(4) 43
9 | Highway/Extra-urban < | 3(3.4) | 3.3(3.1) 3.3(3.2) | 3.3
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4.1 HEV & MHEV

The goal of an EMS in a charge-sustaining HEV is, in general, to use the electric energy ob-
tained from recuperated? potential and kinetic energy in the most efficient manner. Hence,
the more energy recuperated on a trip, the bigger the potential improvement in fuel con-
sumption there is for a ‘smarter” strategy such as the proposed 2LVL. Similarly, the less
electric energy available, the smaller the potential for improvement and the smaller the
margin of error there is for when conditions are predicted incorrectly or certain vehicle
aspect is neglected in the model.

Overall, the results support this theory as the amount of possible improvement (DP-RB
scale) with respect to ICE-only vehicle is roughly linearly consistent with the ratio of neg-
ative to positive energy required on each trip. Meaning, that the more energy available for
recuperation (and consequent EM propulsion) there is, the bigger the possible improve-
ment. As it follows, the biggest fuel savings of the 2LVL compared to RB were attained on
such trips.

City driving with stop-and-go traffic or extra-urban driving with braking into curves,
combined with elevation variations are consequently applications, where the results are
more significant. Figure 4.1 shows an example of these types of trips —4.1a shows downhill
city driving and 4.1b extra-urban driving, attaining 17 % and 4 % improvement, respect-
ively. Obviously, 4.1a is an extreme example of a specific (and short) trip, because a vehicle
cannot keep driving only downbhill in its lifetime and every elevation loss needs to be com-
pensated in the future by an elevation gain, where the recuperation potential is smaller,
averaging out the results over the long-term.

Correspondingly, on trips with mostly uphill driving, or where most of the energy
spent is at a constant speed and the elevation does not change much—such as highway
driving—the margin of improvement is small. Examples are shown in Figure 4.2. While
the 2LVL result is close to the one of DP on the relative scale between DP and RB, the
absolute improvement in fuel consumption is very small — 1 % and 1.1 %, respectively.

Similarly, while the behaviour of the EMS applied to HEV and MHEV is similar between
these two configurations, due to less electric energy available (lower EM power and smal-
ler battery), the band for improvement between RB and DP is already quite narrow, mak-
ing the absolute fuel consumption savings very small —around 1 % in most cases (Tab. 4.3).

However, while important to assess the absolute savings on different types of trips,
these findings are not really inherent to the performance of the proposed strategy itself.
The characteristics of the 2LVL will now be expanded on.

4.1.1 GENERAL OBSERVATIONS

Overall, the 2LVL performs quite well, reasonably close to optimal results, even with speed
profile variations to the predicted ones (to some extent) and uncertain vehicle parameters.

However, as it turns out, the idea behind SOC trajectory tracking is only partly respons-
ible for good results, as the true optimal DP trajectory may in some cases significantly de-
viate from the prediction due to the inflicted errors. Hence, only small values for the PID
coefficients were selected — to follow the SOC trajectory on a larger scale (low frequencies
of the SOC trajectory), while not overcompensating for disturbances on a smaller scale
(high frequencies of the SOC trajectory).

2ICE charging is not very frequent in an optimal solution, because of the efficiency of double energy conver-
sion.
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FiGURE 4.1 Trips with large recuperation potential (HEV results)
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The more important role is played by the equivalence factor p, which is generated before
the trip and which is used for the minimisation of the Hamiltonian in real-time. Because the
generated reference equivalence factor is usually close to the real optimal value, when the
speed profile is predicted somewhat correctly, the SOC is automatically tracked. However,
when the speed is predicted incorrectly in a section of the trip, the SOC will start to deviate
from the prediction in this section (leading to some error and p-correction), but the original
reference equivalence factor (and resulting SOC trajectory) might still be close to optimal
with respect to the real trip and too large corrections would only lead to bad performance.

Naturally, there needs to be a compromise in order for the strategy to attain charge-
sustaining behaviour if the speed profile keeps changing from the prediction, but not over-
compensate too much by constantly charging and recharging the battery. Figure 4.3 shows
two different results with the same PID coefficients. In 4.3a, the 2LVL deviates from the
prediction, because of a different speed, but follows the shape of the optimal SOC traject-
ory by DP. The PID coefficients are small enough that the vehicle is not forced to follow
the predicted non-optimal SOC trajectory. On the other hand, in 4.3b, the vehicle follows
the optimal DP trajectory in the beginning by minimising the Hamiltonian with the gener-
ated equivalence factor value, however, as the accumulated error grows, correcting p too
much, the vehicle is forced to adhere to the non-optimal prediction, only having to over-
compensate in the other direction later again. While the result still outperforms the RB
strategy, it is further from the optimal DP result than in 4.3a.

The key to obtain close-to-optimal control is therefore to use accurate maps and para-
meters for the Hamiltonian and the approximate equivalence factor generated by the pre-
diction for its minimisation, which results in keeping the engine operating with good ef-
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Route 4 (City 2 Return), trip 3. Route 2 (City 1 Return), trip 3.

FIGURE 4.3 Desired and undesired p-correction behaviour (HEV results)
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ficiency. Charge-sustaining operation is then achieved through small equivalence factor
corrections based on the error from reference SOC.

4.1.2 PERFORMANCE

As already discussed in the previous sections, overall, the 2LVL strategy achieves res-
ults close to the optimal solution, in spite of speed profile and parameter disturbances of
the tested magnitude. It is able to select nearly optimal control based on generated refer-
ence equivalence factor, resulting in following the ‘high-frequency’ optimal SOC trajectory
shape, which turns out to be the key to good performance. On routes that have a specific
characteristic such as differences between driving types or significant elevation profile, it
results in using the whole admissible range of the battery accordingly to maximise recu-
peration possibilities, or to recharge the battery for EM propulsion.

Two examples are presented in Figure 4.4. In 4.4a, it can be seen that 2LVL anticipates
the downhill secion and uses electric energy beforehand, as the battery will be recharged
later, whereas the RB does not take advantage of this and has to dissipate the excess poten-
tial energy by friction brakes, because the SOC constraint was reached. Similarly, in 4.4b,
the 2LVL uses the whole admissible range of the battery and charges it at the end before
exiting the highway to use EM propulsion in city driving where it is more efficient.

However, the strategy starts to 'slip up” when the error in the predicted speed profile is
of significant magnitude in terms of battery usage over the entire trip. This means that on
trips where there is already not much space for battery use and the predicted speed profile
makes the predicted SOC trajectory deviate from the real optimal one, the EMS forces the
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FIGURE 4.4 EMS effectively using admissible range of the battery (HEV results)

58



42. PHEV |

0.8
L oo7
W
0.6
—~ 80 n —
< 60| 4 S 100p l
£ 4of h E sl .
< 2| 1 <
= % 0
360 |- ] L N
— 340 | 1o ™
E 320 1 2 300r il
= 300 [ N = 250 - N
280 & \ | o 4 \ \ \
0 2 4 6 0 15 30 45
s (km) s (km)
ICE 6.5 ICE 5.37
RB 5.19 RB 5.04
2LVL 5.11 2LVL 4.99
Dp 4.95 DpP 4.96
Fuel consumption (1/100 km) Fuel consumption (1/100 km)
A Route 3 (City 2), trip 3. B Route 6 (Highway/City), trip 2.

FiGURE 4.5 Effect of inaccurate prediction on 2LVL performance (HEV results)

battery to discharge and subsequently charge (or vice versa) instead of not using the bat-
tery as much, leading to sub-optimal fuel consumption due to double energy conversion.
This overcompensation effect was already partly discussed in the previous section.

Figure 4.5 shows examples of this. In 4.5a, the trip is quite short, hence even though
the ’high-frequency”’ shape is the same as DP, the forced low-frequency’ charging and
discharging of the battery over the length of the trip (because of inaccurate prediction)
noticeably worsens the performance. A similar behaviour can be seen in already discussed
Figure 4.3b. In 4.5b, an unpredicted congestion occurred during highway driving, before
which the battery would have been ideally fully charged (as per DP solution) to use the
EM for the low-speed and low-torque driving. However, only half of the battery capacity
was available in reality and the subsequent SOC drop also caused the algorithm to over-
compensate and charge the battery with the ICE to follow the predicted SOC instead of
continuing to use the EM and charge the battery with higher efficiency later.

While the 2LVL strategy in these cases still performs better than the RB, the improve-
ments are negligible.

4.2 PHEV

Because the PHEV is able to complete shorter city and extra-urban routes using electric
energy only, the only tested routes were the longer 8 and 9, and a combination of 6 and
7. Technically, the shorter routes could be tested on a loop to simulate the operation of
PHEV on multiple short trips around the city without charging in-between, however, it
is unlikely that driving information of such trip could be predicted in real scenario with
reasonable accuracy.
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While in the case of the HEV, the application of the 2LVL strategy on longer trips res-
ulted in negligible savings, the PHEV achieved consistent 3-4 % improvements (Tab. 4.4).
This consistency is attributed to the fact that all of the trips are similar in length and type,
and the deviations in speed profile are not as significant in terms of the length of the trip,
leading to small differences in the equivalence factor between the prediction and reality.

As discussed in Chapter 2, the normal operation of PHEV consists of charge-depleting
mode, where the vehicle runs on electricity only, and subsequent charge-sustaining mode,
where the vehicle acts as a regular HEV vehicle after the battery has been discharged to
a certain point. This naturally works for shorter trips, because EM-only propulsion is pre-
ferred over ICE propulsion for various reasons. However, for longer trips, where the bat-
tery capacity is not sufficient, it is beneficial to use the battery charge gradually over the
length of the trip, depending on where it is the most efficient.

This is essentially an equivalent to the discussion in the previous section about us-
ing obtained electric energy efficiently. However, whereas charge-sustaining HEVs and
MHEVs have to obtain electric energy for EM propulsion by recuperation, PHEVs have ad-
ditional energy introduced from the grid, and therefore more potential for a smart strategy
to use it more efficiently. Obviously, unlike the recuperated energy, this energy has to ob-
tained somewhere at a certain cost, nevertheless, that is out of the scope of this thesis.

An example of a result from each of the routes is shown in Figure 4.6, where the dis-
charge trajectory roughly resembles a straight line spanning the length of the trip. How-
ever, based on the types of driving along a trip, the trajectory may deviate significantly
more. The actual behaviour of the EMS is similar to the application on HEV and MHEYV,
hence the conditions for good results pertain to the PHEV as well.
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CHAPTER 5

CONCLUSIONS

A research was conducted to examine the current state of hybrid vehicle control. Strategies
with an optimal-control character using some sort of trip information have the potential
to achieve better results than heuristic strategies used in passenger vehicles today, which
are mostly based on intuitive rules.

According to this, an EMS using information of a planned route was designed. The
strategy generates reference SOC and equivalence factor trajectories before a trip and sub-
sequently uses these to obtain close-to-optimal control. The input is a predicted speed
profile and elevation profile of a planned route, from which the reference trajectories are
generated using an optimisation algorithm based on Pontryagin’s minimum principle and
a simplified vehicle model. The equivalence factor is then used for instantaneous Hamilto-
nian minimisation in real-time to obtain close-to-optimal torque-split between the ICE and
the EM. The reference SOC trajectory is tracked by correcting the value of the equivalence
factor in feedback with a PI regulator to compensate for errors made in the prediction to
achieve charge-sustaining operation.

The strategy was tested on vehicles with three levels of electrification - HEV, MHEV
and PHEV. Several routes to include the majority driving types were selected for the testing
to gain insight into where the implementation makes sense and where it performs the best
(or at all). The results were compared to optimal solutions from dynamic programming
and results from a heuristic rule-based strategy that selects the propulsion mode based on
SOC level and demanded torque only.

The proposed strategy seems to be robust enough to the speed profile disturbances on
the tested trips and the equivalence factor correction compensates well for the uncertain
parameters and simplified vehicle model to the tested extent. The RB strategy was therefore
outperformed in most cases and the results were fairly close to the optimal solution. The
determining factor for good results turned out to be the usage of accurate engine maps
for the Hamiltonian in the real-time control and using relatively small PI coefficients not
to overcompensate for prediction errors, but large enough to achieve charge-sustaining
operation.

Despite the good results relative to DP, in MHEV application in general and HEV ap-
plication on routes with low recuperation possibilities such as constant-speed driving on
a highway, the potential improvement between RB and DP is already quite small and only
small fuel savings (around 1 %) were accomplished. Higher fuel savings (1-5 %) were ac-
complished in city and extra-urban driving where the vehicle brakes more often and the
elevation profile is more significant.
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The PHEV was tested only on the longer routes which exceeded its electric-only range.
The result was a consistent 3-4 % improvement over the traditional charge-depleting/charge-
sustaining RB strategy, as it is more efficient to gradually deplete the battery over the entire
trip, which the proposed strategy accomplishes.

These improvements stem from the fact, that a 'smart’ strategy such as the proposed
one is able to exploit the available electric energy obtained by recuperation or from the grid
in a more efficient manner than a heuristic RB strategy would, leading to an improvement
approximately linearly dependent on the amount of electric energy available compared to
the expended energy needed for propulsion.

Ultimately, the proposed strategy amplifies the benefits of the nature of a hybrid electric
vehicle, hence in applications where a HEV does not generally bring significant savings,
the absolute benefit of a 'smart’ EMS decreases with respect to a simpler, less-complex-to-
implement one.

5.1 FUTURE WORK

Because the results presented are based on a simulation taking into account only energy
required for vehicle propulsion and neglecting some potentially important effects, the im-
provement in real scenario will likely be to some extent smaller. Further testing on a higher-
fidelity model is therefore the logical next step.

For example, incorporating energy required to power electric auxiliaries such as HVAC,
pumps or lighting, which would result in electric load even when the vehicle is stationary,
introducing another source of disturbance dependent on the difference in duration of the
predicted and actual trip. Thermal behaviour of mainly the engine and the batteries should
be also modelled in the simulation, as the parameters of these components vary with tem-
perature, which may affect the performance as well.

So far, no penalty or energy consideration for frequent engine starts was implemented,
which would have to be taken into account for real application. While this may not affect
the performance of the proposed strategy relative to the RB, the improvement with respect
to ICE only propulsion will be smaller.

The proposed strategy achieved good results with the speed disturbances tested in
this thesis, however, it would be interesting to examine how much the real speed profile
can deviate from the predicted one in terms of driving styles (higher accelerations, not
exploiting vehicle inertia by coasting as much) to still obtain worthwhile savings, or how
averaging some of the speed sections to facilitate faster calculation affects the predicted
equivalence factor and subsequent results.

Lastly, at this point, the SOC tracking was realised by feedback based on driven dis-
tance, which requires the predicted and actual trip to be the same length. Implementing
tracking based on GPS location would make the strategy more robust towards small dis-
tance deviations originating from detours, driving in different lanes or avoiding obstacles.
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SYMBOLS AND ACRONYMS

BSFC
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RIS

Rq
RPM

<< = 8§+

0

Vehicle frontal area
Brake-specific fuel consumption
Battery capacity

Vehicle drag coefficient
Rolling resistance coefficient
Traction force

Fuel consumption
Gravitational acceleration
State constraints, elevation
Lower heating value
Hamiltonian

Gear ratio

Current

Performance measure
Integral PID coefficient
Proportional PID coefficient
Lagrangian

Vehicle mass

Fuel mass

Lagrange multiplier (EF)
Power

Tire dynamic rolling radius
Battery internal resistance
Aerodynamic resistance
Rolling resistance

Incline resistance
Revolutions per minute
Distance

Time

Torque

Control variable

Vehicle speed

Nominal voltage
Open-circuit voltage

State variable

x

o Slope angle

0  Rotational-mass coefficient

n  Efficiency

v State constraint lagrange multiplier

¢  Battery state of charge

pa  Air density

T  State boundary time
Angular velocity

INDICES

0 Initial

b Battery

d Drivetrain

dem Demanded

e Engine

f Final

fd Final drive

g Gearbox

i Inverter

m Electric machine

ref  Reference

tc Torque coupling

Optimal



ACRONYMS

2LVL Proposed two-level strategy

BEV Battery electric vehicle

DpP Dynamic programming

ECMS  Equivalent consumption minimisation strategy
EF Equivalence factor

EM Electric machine

EMS Energy management strategy

FL Fuzzy logic

GPS Global positioning system

HEV Hybrid electric vehicle

HVAC  Heating, ventilation, and air conditioning
ICE Internal combustion engine

MHEV  Mild hybrid electric vehicle

MPC Model predictive control

PHEV  Plug-in hybrid electric vehicle

PID Proportional-integral-derivative controller
PMP Pontryagin’s minimum principle

RB Rule-based

SOC State of charge

V2X Vehicle-to-everything communication
WLTP  Worldwide harmonised light-duty vehicles test procedure

AcCRONYMS |
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APPENDIX A

FULL ROUTE RESULTS

The results from every trip of each route and all vehicle configurations are included on
the following pages. Each result is comprised of a comparison of the SOC trajectory and
corresponding fuel consumption of the proposed strategy (2LVL) to the RB strategy and
optimal result obtained from dynamic programming. Fuel consumption of a conventional
ICE-only powertrain is included as well.

First trip (trip 0) of each route is always a trip that assumes that the real speed matches
the predicted speed, and therefore generally achieves the best result with respect to the
optimal DP solution. In some cases, especially for the PHEV, the 2LVL strategy outperforms
the DP solution due to reasons discussed in Section 3.6.

The colors and lines used in the following graphs are listed in Table A.1 to act as a
legend.

TaBLE A.1 Legend for the following graphs

Predicted  2LVL DP RB ‘ Predicted speed  Real Speed ‘ Elevation
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I AprpenDIX A. FuLL RouTte ResuLts

RouTE 4 (CITY 2 RETURN)

0.8

Loor
up

0.6

60
40
20

0

v (km/h)

(m)

=

3.57

2LVL 3.52
3.43

Fuel consumption (1/100 km)

Fuel consumption (1/100 km)
B Trip 1

A Trip 0; prediction speed = actual speed

ICE 4.61 ICE 4.27
RB 3.67 RB 3.47
2LVL 3.51 2LVL 3.36
DpP 3.45 DpP 3.33
Fuel consumption (1/100 km)

Fuel consumption (1/100 km)
D Trip 3

¢ Trip2
Ficure A.13 MHEV Route 4 (City 2 Return) results
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RouTE 5 (EXTRA-URBAN)
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RouTEe 7 (HIGHWAY/CITY RETURN)
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I AprpenDIX A. FuLL RouTte ResuLts

RouTE 8 (HIGHWAY/EXTRA-URBAN)
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Ficure A.18 MHEV Route 9 (Highway/Extra-urban Return) results
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I AprpenDIX A. FuLL RouTte ResuLts
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FiGure A.19 PHEV Route 6+7 (Highway/City & Return) results
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Ficure A.20 PHEV Route 8 (Highway/Extra-urban) results
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RouTE 9 (HIGHWAY/EXTRA-URBAN RETURN)
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Ficure A.21 PHEV Route 9 (Highway/Extra-urban Return) results
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APPENDIX B

PYTHON SIMULATION FILES

In a .zip file in the electronic version and on a CD in the physical version, simulation files
written in Python are attached. This includes

e simulation.py, which is a simulation containing the algorithm for the proposed
strategy, optimal solution using dynamic programming and for the rule-based strategy;,

e analysis.py, which loads and plots results from the simulation,
e hev_data.py, which contains parameters of the hybrid vehicle configurations,
e BSFC.py, which contains the BSFC map for the ICE used in all tested vehicles.

All of the above was created and run by Python v3.7.9.
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| AprpPeENDIX B. PyTHON SimuLATION FILES
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APPENDIX C

ROUTE AND TRIP DATA

All of the route and trip data is included in .csv files, as well as discretised .p files contain-
ing one-dimensional speed, time, distance and elevation arrays, that are the input to the
simulation files from Appendix B.

Each route is characterised by elevation & dependent on distance s and each trip (drive)
on a route by speed v dependent on time ¢.
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