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1 Introduction

Fluid-structure-acoustic interaction (FSAI) is a coupled problem, where three different physical
fields – the deformation of an elastic body, the complex fluid flow and the acoustics, interact
together. Thus it is important to consider all their mutual couplings. Typical technical problems
involving FSAI are e.g. design of ventilators, air-conditioning vents or engines, [31], [47], where
the FSAI simulation can help already in first stages of design to reduce significantly the sound
emission. The simulation of human phonation is a prominent example of other than purely
technical application, [38], [48].

In this work the FSAI solution is sought with the help of mathematical modelling and numerical
approximation by the finite element method (FEM), particularly, specialized (and therefore
more efficient) solver for solution of each subproblem is used. The aim of the work is to apply all
derived methodology to the simulation of human phonation. Due to the practical inaccessibility
of the human vocal folds (VFs) for experimental investigations, the mathematical modelling
have become to be an important tool used in the research, see e.g. [56].

Human voice creation starts by pressurized air stream exciting vibrations of VFs. If the subglottal
pressure is high enough, the amplitude of vibration steeply rises until the contact of both VFs
is achieved. The complete closure of the glottal channel is one of the major characteristics of
the healthy human voice, [56], [40]. The basic sound is created by modulated glottal jet with
the fundamental frequency given by the VFs vibration. This dominant sound is enriched by
sound sources associated with supraglottal turbulence vortices and sound sources introduced
by the VF vibration and collision, however the frequency characteristic of sound sources is still
substantially different from produced human voice, see [56], [57].

The sound originated at the glottis propagates through vocal tract and then it is articulated
in mouth and this acoustic signal create a human voice as we know it. The basic physical
conception of vocal tract function is, that it acts as an acoustic resonator with associated resonant
frequencies, see source-filter theory in e.g. [56]. It means that it amplifies frequencies in specific
frequency ranges given by acoustic resonances of the vocal tract. By doing so, it effectively
transforms basic sound produced in the glottis into acoustic frequencies typical for each vowel.

State of the art

For overall FSAI simulation accuracy is very important to appropriately approximate fluid flow
part of the problem described by the nonlinear convection-dominated partial differential equa-
tions (PDE) which need to be stabilized. In order to take into account the dynamical effects
caused by the flow domain change commonly used finite volume method (FVM) or FEM are
usually further modified. One of most popular and most straightforward way provides the ar-
bitrary Lagrangian-Eulerian (ALE) method, see [53] or in a conjuction with the FEM see [23],
[24] and with the FVM see [48], [43], although many other approaches like immersed boundary
method - see [47], [58], or others - see e.g. [46], exist. A separate chapter represents the numer-
ical construction of the ALE mapping, i.e. bijective mapping from the reference flow domain
to a deformed one, can be constructed by many strategies, e.g. the algebraic mesh motion, the
elliptic smoothing, see [38], the interpolation by radial basis functions (RBF), see [41], or the
pseudo-elastic approach, see [33].
Further, in the supraglottal fluid field complex flow structures appears and possibly turbulence
effects should be considered. However, most turbulence models are usually well tuned to describe
the fluid flow around an airfoil or plane wall and a choice of turbulence model, which gives also
good results for the case with massive separations, is troublesome see [36]. Thus most promising
approach in this area seems to be the application of LES models, see [50], [36] or [43].

Next step towards human phonation simulation is a reliable numerical simulation of fluid-
structure interaction (FSI) problem. One of the first FSI continuum model of flow-induced

1



VF vibration approximated by the FEM was introduced in [42]. This approach is still used in
many studies, e.g. [54], [23] or [51] as it provides high accuracy, although recently also the dis-
countinous Galerkin (DG) methods can be found, see e.g. [35].
Since the solution of full FSI problem is highly computationally expensive, a simplified approach
is often used. Then a variously complicated motion of fluid domain walls is prescribed in order
to imitate the real VF motion in 2D computations, see [59], [18], or for 3D case see [48], [43].

Definition of boundary conditions (BCs) is a neccessary part of the problem formulation. For
the interface between the fluid and the structure the combination of the Dirichlet and the
Neumann BC is commonly used, [61], albeit a combination of the Robin-Robin BCs can possibly
accelerate the convergence rate, [17]. Next, we focus on the inlet BCs for incompressible Navier-
Stokes equations in the FEM framework as their influence is significant because the neccesity to
model the periodic closure of the glottal channel. There are two frequently used inlet BCs: The
Dirichlet condition prescribing inlet velocity has the drawback of high, unphysical oscillations
of inlet pressure values during the channel closing phase, see [52], and the do-nothing type of
BC with a given pressure drop between the inlet and the outlet usually leads to significant
oscillation of the inlet velocity while keeping the pressure drop constant. Also such a behaviour
is not relevant for the considered problem, i.e. it was not observed experimentally - see [27]. A
remedy for this situation seems to be penalization approach with the idea proposed already in
[16] for a scalar problem. Its potential for this configuration of inner fluid dynamics was newly
discovered in [52]. The penalization approach imposes the inlet boundary conditions inside the
weak formulation with a penalization parameter ε.

Aeroacoustics. The aeroacoustics is a part of acoustics with the aim to desribe the flow-
induced sound, usually produced by flow around obstacles or by a high Reynolds number (turbu-
lent) flow, see e.g. [30]. The first aeroacoustic mathematic model known as Lighthill (LH) acoustic
analogy was introduced in 1952, [37]. Acoustic analogy means some approximative transforma-
tion of Navier-Stokes equations, which compressible variant in general describes propagation of
entropy, vorticity and acoustics, see [22], into PDE similar to wave equation for a representa-
tion of acoustic pressure. Ffowcs-Williams Hawkings (FWH) analogy is a generalization of the
LH analogy for the case of boundaries presence in a acoustic domain, see [34]. Modern compu-
tational aeroacoustics is based on the perturbation equations [34], where the splitting of flow
variables into mean, acoustic and correction term is performed with the aim to describe purely
acoustic wave propagation. There are a lot formulations, see e.g. [22], [18] and [47]. The splitting
approach was later generelized, see [31], leading to approach called the perturbed convective
wave equation (PCWE) and the aeroacoustic wave equation (AWE) with practical formulation
for low Mach numbers flow regimes, see [44].

The theoretical background of sound production during voicing was described in work [59] using
integral FWH analogy and sound sources multipole classification. They found that the most
dominant sound source during phonation is a dipole associated with net forces exerted by the
surface of the VFs onto the airflow. The other source is a quadrupole connected with turbulence
in the supraglottal area and a monopole related to the air column movement induced by VF
vibration, see also [50], [48]. In paper [38] the LH analogy was applied using results of 2D FSI
simulation. The high order IBM solver was used for solving 3D fluid flow in a static supraglottal
region with prescribed time variable flow rate and perturbation equations approach was utilized
in [47]. In article [48] the aeroacoustic 3D problem with vocal tract was successfully solved
using the LH analogy and the PCWE approach based on the FSI solution with the prescribed
movement of VF walls. In the thesis [39] a combination of experimental flow measurements and
numerical acoustic simulations are presented.

Numerical simulation of human phonation. The numerical simulations of human phona-
tion using mathematical model of continuum can be basically split in two groups. The studies
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from the first group are interested in the solution of FSI problem of flow-induced VF vibration
for realistic geometries and they usually do not considered the associated aeroacoustic problem,
see [54], [61], [23], [58]. The second group of results deals dominantly with the aeroacoustic
treatment usually based on the roughly simplified fluid flow simulation in the glottis and in the
larynx. The FSI problem is often reduced by considering a rigid glottal model, [50], typically to-
gether with some given fluctuating inlet flow profile, see [47]. Another frequently used reduction
of the FSI problem can be realized by prescribing highly simplified VF motion, see [59], [18].

There are few research studies trying to join the both aforementioned approaches with all conse-
quences. First, paper [48] calculated the resulting acoustic signal in front of mouth based on the
3D flow results obtained by FVM with sophisticated prescribed periodic VF motion simulating
changing convergent-divergent VF position. They achieved with included model of vocal tract
(VT) a good match of vowel spectra [u:] and [i:] with experimental results. Another studies [38],
[21], considered the full FSAI problem however they did not provide relevant acoustic results as
any VT model was not included.

2 Objectives of dissertation
The aim of this thesis is to simulate the process of human phonation numerically. The exact
mathematical formulation of all relevant physical processes together with their mutual interac-
tion must be unquestionable part of this work. Further the numerical schemes based on FEM are
adopted, which are capable to simulate all main important involved phenomena. The orientation
only on the 2D coupled FSAI problem is caused by enormous rise of computational demand for
3D version. The first two goals concern a numerical solution of the FSI problem.

The first goal is to investigate the possibilities of new penalization boundary condition and to
compare it with the other commonly used BCs for the FSI problem with the prescribed as well
as unknown VF motion. The sensitivity analysis of the flow and the FSI characteristics on the
value of ε is highly desired.

The second goal is to (numerically) study the stability boundary of the FSI problem. The
knowledge of critical inlet airflow velocity is needed for determination of the start of flow-induced
VF vibrations. Flutter velocity is one of the characteristics of the FSI system.

The second part of the thesis addresses the problem of human phonation simulation. According
to State of the art the extension of the FSI problem to the FSAI problem will be a novel result.

The third goal is to connect the in-house solver FSIFEM of the FSI problem, see [1], and the
academic solver CFS++ of the multiphysics problems from TU Vienna. The connection between
solvers could be realized through a support of the file format called Hierarchical Data Format.

The fourth goal is to perform the aeroacoustic simulation of human phonation based on the
full FSI solution. In order to obtain relevant acoustic results, a vocal tract model needs to be
included in the acoustic domain. Further, a comparison of different aeroacoustic formulations
could bring more light in their applicability.

The fifth goal is to compare sounds of aeroacoustic and vibroacoustic origin.

Structure of the work
The work is organized as follows: The first and the second section was this introduction and
the objectives of the work. The third section contains mathematical description of the FSAI
problem with all considered mutual couplings. In the fourth section the numerical methods for
FSAI problem based on the FEM are explained. The fifth section is devoted to FSI numerical
results with a special attention to the penalization inlet boundary condition. The sixth section
presents the acoustic results of numerical simulations of the human phonation. The last seventh
section concludes the work with discussion of numerical results and achieved goals.
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3 Mathematical model

Here, a simplified two-dimensional model of FSI problem is introduced, see Figure 1, where
the reference and the deformed states are shown. For the description of the elastic structure
deformation the Lagrange coordinates are utilized, i.e. the computational domain Ωs = Ωs

t =
Ωs

ref ⊂ R2 at arbitrary time t is used.

The domain Ωf
ref ⊂ R2 represents the reference fluid domain, e.g. the domain occupied by fluid

at the time instant t = 0 with the common interface ΓWref
= ΓW0 between the fluid and the

structure domain. The deformation of the reference domain Ωf
ref onto the domain Ωf

t ⊂ R2

occupied by fluid at any time instant t ∈ (0,T) is determined by the motion of the elastic
structure and more specifically by the displacement of the reference interface ΓWref

onto ΓWt .
It treated with the aid of the ALE method.

Figure 1: Scheme of FSI configuration in the reference state on the left and in a deformed state
at arbitrary time t on the right. The computational domain is composed of the elastic structure
domain Ωs and the fluid domain Ωf

t together with boundaries: inlet ΓfIn, outlet ΓfOut, symmetric

boundary ΓfSym, walls ΓfDir, ΓsDir and interface ΓW.

3.1 Elastic body

The deformation of the elastic body Ωs described by a displacement u(X, t) = (u1, u2), X ∈ Ωs

is governed by equations

−ρs∂
2ui
∂t2

+
∂τ sij
∂Xj

+ f si = 0, in Ωs, (1)

where ρs denotes the elastic body density, the tensor τij is the Cauchy stress tensor and the
vector f s = (fs1 , f

s
2 ) represents a volume force density. Let us emphasize that in equation (1)

the Einstein summation convection (for j = 1, 2) is used. Using the assumption of the linear
relation between the deformation and the stress tensor given by the generalized Hooke’s law and
assuming the isotropic material leads to

τ sij = λs (div u) δij + 2µsesij , (2)

where λs, µs are Lamé coefficients depending on the Young’s modulus of elasticity Es and the
Poisson’s ratio σs, see e.g. [20]. The tensor I = (δij) denotes the Kronecker’s delta and tensor es =
(esij) is the strain tensor. Using small displacements assumption the strain tensor components
read, see e.g. [20],

esjk =
1

2

(
∂uj
∂Xk

+
∂uk
∂Xj

)
. (3)

System of equations (1) is equipped with zero initial conditions and the following conditions

a) u(X, t) = 0, for X ∈ ΓsDir, (4)

b) τ sij(X, t)n
s
j(X) = qsi (X, t), for X ∈ ΓWref

,

where nsj(X) are the components of the unit outer normal to ΓWref
. The second equation is the

Neumann boundary condition prescribing the action of the aerodynamic forces qs = (qs1, q
s
2).
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ALE method

The ALE method enables to treat the fluid domain changes. The ALE method is based on a
diffeomorphism mapping At of the reference domain Ωf

ref onto the domain Ωf
t at any time instant

t ∈ (0,T), i.e. x = At(X) ∈ Ωf
t for X ∈ Ωf

ref . Assuming that ∂At
∂t ∈ C(Ωf

ref) the ALE domain
velocity wD is defined by

wD(x, t) =
∂

∂t
At(X), t ∈ (0,T), X ∈ Ωf

ref . (5)

Further, the ALE derivative is introduced as the time derivative of an arbitrary continuous
function f(x, t) = f(At(X), t) with respect to a fixed point X ∈ Ωf

ref , i.e.

DA

Dt
f(x, t) =

d

dt
(f(At(X), t)) =

∂f

∂t
(x, t) + wD(x, t) · ∇f(x, t), (6)

where the chain rule was applied. For more details and for the proof see [53] or [23].

3.2 Fluid flow

The incompressible viscous fluid in Ωf
t is modelled by the the Navier-Stokes equations in the

ALE form
DAv

Dt
+ ((v −wD) · ∇)v +∇p = νf∆v + gf , div v = 0, in Ωf

t , (7)

where v(x, t) denotes the fluid velocity, p is the kinematic pressure and νf is the kinematic fluid
viscosity, see e.g. [23].

Equations (7) are supplied by zero initial condition and these boundary conditions
a) v(x, t) = wD(x, t) for x ∈ ΓWt ∪ ΓfDir, (8)

b) c1) v(x, t) · nf = 0, c2)
∂(v · tf )

∂nf
= 0 for x ∈ ΓfSym,

c) (p(x, t)− pref)n
f = νf

∂v

∂nf
− 1

2
v(v · nf )−, for x ∈ ΓfOut,

for any t ∈ (0,T). Vectors nf and tf are the unit outward normal and the unit tangent to

boundary ∂Ωf
t , respectively. Symbol (α)− denotes (α)− = min(α, 0), and pref is a reference

pressure. Condition (8 d) is so called directional do-nothing boundary condition and it increases
the stability of the model by suppressing possible backward flow through the outlet, see [19], [3].

At the inlet part of the boundary several possible forms of boundary conditions are considered.
For this purpose the inlet boundary is formally divided into three disjoint parts: ΓfIn = ΓfIn,dir ∪
ΓfIn,p ∪ ΓfIn,ε. The following boundary conditions are considered for any t ∈ (0,T):

a) v(x, t) = vDir(x, t), for x ∈ ΓfIn,dir, (9)

b) (p(x, t)− pin)nf − νf ∂v

∂nf
(x, t) = −1

2
v(v · nf )−, for x ∈ ΓfIn,p,

c) (p(x, t)− pin)nf − νf ∂v

∂nf
(x, t) = −1

2
v(v · nf )− +

1

ε
(v − vDir), for x ∈ ΓfIn,ε.

The choice of the inlet boundary condition is done e.g. by setting ΓfIn = ΓfIn,dir and ΓfIn,p =

ΓfIn,ε = ∅. This notation facilitates the explanation of the weak formulation in the next chapter.

Condition (9 a) represents the classical Dirichlet boundary condition for velocity. Condition
(9 b) can be understand as prescribing pressure difference ∆p = pin − pref between the inlet

ΓfIn and the outlet ΓfOut. Boundary condition (9 c) prescribes inlet airflow velocity vDir by the
penalization approach with the help of a suitable chosen penalization parameter ε, see [16], [52].
The value of parameter ε controls the switching between the Dirichlet boundary condition (limit
ε→ 0+) and the pressure drop boundary condition (limit ε→ +∞).
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Coupled FSI problem

The FSI problem is a coupled problem where the location of interface ΓWt is unknown and
depends on established force equilibrium between the aerodynamic and the elastic forces.

Further, the structure and the fluid subproblems are coupled by the boundary conditions at
interface ΓWt . The BC for the fluid flow has the form of Dirichlet boundary condition (8 b). The
BC for the elastic body is given by condition (4 b), where the vector qs = (qsi ) reads

qsi (X, t) = −
2∑
j=1

σfij(x, t)n
f
j (x), x = X + u(X, t), X ∈ ΓWref

, (10)

where σfij = −ρfp δij + ρfνf ( ∂vi∂xj
+

∂vj
∂xi

) are the components of fluid stress tensor.

3.3 Aeroacoustics

The acoustic domain Ωa is shown in Figure 2. It is composed of two subdomains Ωa
prop,Ω

a
pml. The

domain of acoustic propagation Ωa
prop consists of three parts Ωa

src,Ω
a
tract and Ωa

free. Domain Ωa
src

is the domain, where the acoustic sources are evaluated from the flow simulation. Domain Ωa
tract

represents the vocal tract and domain Ωa
free models outer space (free field region). Finally, the

perfectly matched layer (PML) domain Ωa
pml encloses domain Ωa

free in order to absorb outgoing
sound waves.

Figure 2: Scheme of acoustic domain. Propagation domain consists of the sound source region,
the vocal tract and the free field. The propagation region is enclosed by the PML region.

Aeroacoustics is interested in aerodynamically produced sound in air, typically sound generated
by a (turbulent) flow around obstacles, see e.g. [34], [30]. The flow-induced sound propagation
can be described by the compressible Navier–Stokes equations (NSE). However, the acoustic
part is only a very tiny component of the overall NSE solution, see e.g. [30], and thus it is very
difficult to approximate it numerically. Thus the hybrid approach separating the description of
the fluid flow and the acoustic problem is chosen here. It allows to use problem-specific numerical
schemes on the other hand the hybrid approach neglects the acoustic influence on the flow field.
In next paragraphs three different aeroacoustic approaches are presented.

Lighthill analogy

The Lighthill approach, see [37], reformulates the compressible NSE into an inhomogeneous wave
equation (

1

c2
0

∂2

∂t2
−∆

)
p′ =

∂2Tij
∂xi∂xj

, (11)

with notation of the pressure fluctuation p′ and the speed of sound c0. The sound sources are
given by the divergence of the divergence of the Lighthill tensor T = (Tij) with components

Tij = ρvivj +
(
p′ − c2

0ρ
′) δij − τ fij , (12)

see e.g. [37], [30]. Let us emphasize that equation (11) is nonlinear as Lighthill tensor T depends
on the pressure p′. For low Mach number flows usually the approximation, see [37],

Tij ≈ ρ0vivj (13)

is used. Then the formulation of Lighthill analogy (11) with (13) is already linear problem.
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In this approach pressure fluctuation p′ is not equal to acoustic pressure pa but it must be
regarded as a superposition of the acoustic and the hydrodynamic pressure, see [30].

Hybrid methods based on perturbation equations

Here, the perturbed convective wave equation (PCWE) and the aeroacoustic wave equation
(AWE) approaches are presented, which are based on the acoustic/hydrodynamic splitting of
the flow variables as introduced in work of [31]. The splitting is motivated by three properties
of the acoustic field: a) it is fluctuating, b) it is irrotational and c) the acoustic pressure pa does
not coincide in general with pressure fluctuations p′, see [48]. This splitting reads

v = v + vv(t) + va(t), p = p+ pv(t) + pa(t), ρ = ρ+ ρ1(t) + ρa(t), (14)

where vv, pv denote vortical fluctuating components and va, pa, ρa are compressible (acoustic)
fluctuations, see [44].

The perturbation equations for acoustic velocity va and acoustic pressure pa for low Mach
number regime is given by following set of equations, see [31],

∂va

∂t
+∇(v · va) +

1

ρ
∇pa = 0,

∂pa

∂t
+ c2

0ρ0(∇ · va) + v · ∇pa = −∂p
ic

∂t
− v · ∇pic, (15)

where the notation for incompressible quantities is introduced as vic = v + vv, pic = p+ pv.

PCWE. The formulation given by equations (15) can be rewritten with the help of the sub-
stantial derivative D

Dt = ∂
∂t +v ·∇ and the introduction of the acoustic potential ψa. The PCWE

approach reads, see [44],
1

c2
0

D2ψa

Dt2
−∆ψa = − 1

ρ0c2
0

Dpic

Dt
. (16)

In numerical simulations we further simplify PCWE equation by disregarding the convection

effects on the left-hand side of equation (16), i.e. D2ψa

Dt2
is replaced by ∂2ψa

∂t2
, while keeping the

full version of the right hand side in order to capture all sound sources, see [2].

AWE. AWE formulation is another simplification of (15) neglecting small convection effects.
It reads, see [44],

1

c2
0

∂2pa

∂t2
−∆pa = − 1

c2
0

∂2pic

∂t2
. (17)

The (aero-)acoustic problems are equipped by the sound hard boundary condition at ∂Ωa.
The simulation of an open-boundary around free field domain is practically realized by the PML
technique. The PML consists of a few additional layers of elements with artificial damping of
the sound waves. The most important property is that there is no reflection at the interface
between the propagation domain and the PML domain, see e.g. [34].

Coupled FSAI problems

In the FSAI problem the acoustic field is coupled with the FSI problem by the structure-acoustic
and by the flow-acoustic couplings.

Structure-acoustic coupling. The vibroacoustic problem is given by coupling of elastic-
ity equations (1) and the homogenous wave equation through boundary conditions. The BC
prescribed to the acoustic problem is, see [34],

∂pva

∂na
(x, t) = −ρf ∂

2u

∂t2
· na, x ∈ ΓWref

, t ∈ (0,T). (18)

For the elastic problem the coupling condition is neglected due to very tiny magnitude of pva.

Flow-acoustic coupling If the aeroacoustic problem is modelled by hybrid methods, acous-
tics and the fluid flow problem are solved separately. Sound sources from fluid flow are computed
and used in acoustics (as a volume coupling) whereas acoustic influence on fluid flow is omitted.
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4 Numerical model

This section contains a detailed description of numerical schemes based on the finite element
method applied for approximation of all three FSAI subproblems. For the purpose of time
discretization the equidistant division of the time interval is used with the same time step
∆t, i.e. the time interval [0,T] is divided into intervals given by the partition tn = n∆t for
n = 0, 1, . . . , N .

4.1 Elastic body

To achieve weak formulation, equation (1) is multiplied by a test function ψ = (ψ1, ψ2) from
space V = {f ∈ H1(Ωs)|f = 0 on ΓsDir} ⊂ H1(Ωs) and integrated over Ωs. The application of
the Green theorem and Hooke law (2) leads to the form(

ρs
∂2ui
∂t2

, ψi
)

Ωs
+
((
λsδij (div u) + 2µsesij(u)

)
, esij(ψ)

)
Ωs

=
(
fsi , ψ

i
)

Ωs
+
(
qsi , ψ

i
)

ΓWref

, (19)

where by symbol (·, ·)D the scalar product in space L2(D) is denoted.

The approximate solution uh is sought in a finite dimensional finite element space Vh ⊂ V with
2Nh basis functions ψj . Then the approximate solution uh at time t ∈ (0,T) can be written as

uh(X, t) =
∑2Nh

j=1 αj(t)ψj(X), where we further assume that unknown coefficients of the linear

combination are αj(t) ∈ C2([0,T]).

This expression for uh leads to the system of 2Nh ordinary differential equations of the second
order for the unknown vector of coefficients α(t) = (αj(t))

2Nh
j=1

Mα̈+ Dα̇+ Kα = b(t), (20)

where the term Dα̇ was added with the matrix D = εs1M + εs2K representing the proportional
damping model with suitably chosen parameters εs1, ε

s
2, see e.g. [23]. The vector b = b(t) has

the components bi = (f s,ψi)Ωs + (qs,ψi)ΓWref
.

The time discretization of semi-discrete problem (20) is realized by the Newmark method, see
e.g. [34]. The Lagrange finite elements of the first order are utilized.

4.2 Fluid flow

The time discretization is for the fluid flow problem applied before the spatial discretization. Let
us denote the approximations at the n-th time level by vn ≈ v(tn), pn ≈ p(tn), etc. The ALE
derivative is approximated with the backward difference formula of second order (BDF2) as

DAv

Dt
(tn+1) ≈ 3vn+1 − 4vn + vn−1

2∆t
, (21)

where for a fixed time instant tn+1 we denote vi(x) = vi(x̃) for x̃ = Ati(A
−1
tn+1

(x)), i ∈ {n−1, n}
and x ∈ Ωf

tn+1
. Further, for the sake of simplicity we focus on the discretization at a fixed time

instant tn+1 and thus in next sections we omit the index n+ 1, i.e. we denote v := vn+1,Ωf :=
Ωf
tn+1

, etc.

In order to obtain the weak formulation of fluid flow problem (7) in space, the first and the
second equation of (7) are multiplied by test functions ϕ ∈ X and q ∈M , respectively. Here the

space X = X1 ×X2 is defined as X1 = {f ∈ H1(Ωf )| f = 0 on ΓfDir ∪ ΓfIn,dir ∪ ΓfWt
} ⊂ H1(Ωf ),

X2 = {f ∈ X1| f = 0 on ΓfSym} and M = L2(Ωf ). Then both equations (7) are integrated over

the fluid domain Ωf , summed up into a single equation and the Green’s theorem is multiple
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times applied. The final weak formulation of problem (7) at time tn+1 can be written as: Find
a such function pair V = (v, p) ∈ H1(Ωf )×M , that

a(V, V,Φ) = f(Φ) (22)

is satisfied for any test function pair Φ = (ϕ, q) from space X ×M and moreover velocity v

satisfies boundary conditions (8 a, b, c1) and (9 a) and DAv
Dt ∈ L

2(Ωf ). The trilinear form a(·, ·, ·)
with arguments V ∗ = (v∗, p∗), V = (v, p) and Φ = (ϕ, q) is given as

a(V ∗, V,Φ) =

(
3v

2∆t
,ϕ

)
Ωf

+
1

2
(((v∗ − 2wD) · ∇)v,ϕ)Ωf −

1

2
((v∗ · ∇)ϕ,v)Ωf+

+
1

2
((v∗ · n)+v,ϕ)

ΓfOut
+ νf (∇v,∇ϕ)Ωf − (p,divϕ)Ωf + (q,div v)Ωf+

+
1

2
((v∗ · n)+v,ϕ)

ΓfIn,p
+

1

2
((v∗ · n)+v,ϕ)

ΓfIn,ε
+

1

ε
(v,ϕ)

ΓfIn,ε
, (23)

where the formulation of convective term is motivated by the directional do-nothing BC (8 d)
and the realization of penalization condition (9 c) leads to the last two terms of (23). The linear
functional f(·) reads

f(Φ) =

(
4vn − vn−1

2∆t
,ϕ

)
Ωf

+ (prefn
f ,ϕ)

ΓfOut
+
(
pin nf ,ϕ

)
ΓfIn,p

+
1

ε
(vDir,ϕ)

ΓfIn,ε
. (24)

Let us recall that in practice only one of the sets ΓfIn,dir,Γ
f
In,p,Γ

f
In,ε is chosen to be nonempty

leading to significant reduction of boundary terms in (23) and (24).

Stabilization During discretization of the problem (22) the velocity and the pressure spaces
are replaced by finite element subspaces Hh ⊂ H1(Ωf ) and Xh = X ∩Hh, Mh ⊂ M . In order
to obtain stable method the finite element spaces Xh,Mh have to fulfill the Babuška–Brezzi
condition inf-sup condition, see e.g. [26]. For practical computation the chosen P1-bubble/P1
finite elements satisfy this condition, see [26].

Nevertheless, the FE solution can be numerically unstable in the case of high Reynolds num-
ber flows, when the convection dominates. This is principally caused by the unresolved velocity
gradients due to too coarse grid. In order to overcome the possible numerical instability a com-
bination of the streamline-upwind/Petrov-Galerkin method (SUPG) and pressure-stabilization
method (PSPG) together with div-div stabilization are applied, see e.g. [25], [23]. The nonlinear
system of equations (22) is linearized with the aid of fixed point iterations.

4.3 FSI coupling

This paragraph presents two ingredients of FSI numerical solution – the construction of ALE
mapping and the way how is the aerodynamic forces computed.

Construction of ALE mapping. The ALE mapping At should provide smooth mapping Ωf
ref

onto Ωf
t for any t ∈ (0,T), which is quite robust, easy to implement and capable to handle very

complex domain deformation. These requirements are fulfilled by the pseudo-elastic approach,
see e.g. [38]. The pseudo-elastic approach seeks the solution of an artificial stationary elasticity

problem on Ωf
ref with known deformation of the boundary ∂Ωf

ref , see [4].

Dynamic coupling condition In order to take into account also the dynamic coupling con-
dition of form (4 b) the aerodynamic forces acting on the structure needs to be evaluated. Here,
three applicable methods of the aerodynamic forces evaluation are considered.

The first approach of the dynamic coupling condition evaluation is the extrapolation of the
aerodynamic quantities from the interior of the fluid domain onto boundary ΓWt and then use
these extrapolated values to approximate aerodynamic forces qs given by (10).
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The second possibility is the application of the local reconstruction technique introduced by
Babuška, see e.g. [15], which can possibly increase the accuracy of aerodynamic forces computa-
tion in comparison with the previous approach. The idea is based on the reconstruction of the
velocity gradient at arbitrary vertex of fluid mesh T fh using the patch of neighbouring triangles
and the least square method.

The third possibility how to calculate the aerodynamic forces is to use their weak reformu-
lation. In this case boundary condition (4 b) is rather evaluated in the weak form (qs,ϕi)ΓW

,
see e.g. [24]. This results in replacement of the surface integral by the volume integrals and the
reaching of the numerical accuracy of primal variables.

Solution of FSI coupled problem. For the solution of the FSI problem the strongly coupled
partitioned algorithm is implemented. It means that the fluid flow and the structure subproblem
is iteratively solved until the convergence test at the end of each cycle is passed, see e.g. [23] or
[33].

4.4 Aeroacoustic problems

The aeroacoustic problem is given either by Lighthill analogy (11) or by simplified PCWE
equation (16) or by AWE equation (17). In all cases the problem is described by the wave
equation where only the sound source terms differ.

Lighthill analogy In order to derive weak formulation equation (11) is multiplied by a test
function η ∈ Y = H1(Ωa

prop) and integrated over the propagation part of the acoustic domain
Ωa

prop. The application of the Green’s theorem results in the following weak formulation for fixed
time instant t ∈ (0,T): Find a function p′ : (0,T) 7→ Y such, that(

1

c2
0

∂2p′

∂t2
, η

)
Ωaprop

+
(
∇p′,∇η

)
Ωaprop

= − (∇ · (ρ0v ⊗ v),∇η)Ωasrc
(25)

is satisfied for any test function η ∈ Y . It is moreover assumed that ∂2p′

∂t2
∈ L2(Ωa).

The solution p′ ∈ Y at time t is then approximated by p′h using the finite element subspace Yh of
Y with the dimension Na

h . It leads to the second order system of ODEs for the unknown vector
γa(t) = (γaj ) in the form

1

c2
0

Maγ̈a + Kaγa = ba(t), (26)

where Ma and Ka are the mass and the stiffness matrices, respectively. The vector ba(t) is for
the Lighthill analogy taken as ba = bLH = (bLHi ), where

bLHi (t) = −
(
ρ0
∂(vjvl)

∂xl
,
∂ηi
∂xj

)
Ωasrc

(27)

and the Einstein summing convection is applied, here specially for indices j and l.

For practical computation the quadratic Lagrange finite elements are chosen and system of
ODEs (26) is numerically discretized in time by the Hilber-Hughes-Taylor-α (HHT-α) method,
[34].

PCWE approach Here, the simplified version of PCWE approach (16) is considered. Using
the same FE discretization procedure as for (25) we arrive to the system of ODEs (26), where the
right hand side vector ba(t) is now equal to bPCWE(t) with the components bPCWE

i computed
according to

bPCWE
i = −

(
1

ρ0c2
0

(
∂pic

∂t
+ v · ∇pic

)
, ηi

)
Ωasrc

. (28)
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AWE approach The discretization of the AWE approach given by (17) is performed similarly
as before, i.e. the FE discretization procedure for (25) results into system (26), where the right
hand side vector ba(t) is now replaced by bAWE(t) with the components bAWE

i given as

bAWE
i = − 1

c2
0

(
∂2pic

∂t2
, ηi

)
Ωasrc

. (29)

Aeroacoustic source evaluation

Three numerical methods are described how the sound sources can be computed.

First, the LH sound sources (27) with the assumption of the incompressible flow can be simplified
to

bLHi =

(
ρ0
∂vicl
∂xj

∂vicj
∂xl

, ηi

)
Ωasrc

. (30)

An alternative approach how to evaluate formula (27) is based on FE weak reformulation effec-
tively moving one spatial derivative from the computed airflow velocities to the test functions.

In the end, the local reconstruction can be applied on the velocity gradients e.g. in equation (30)
or on the pressure gradient in (28).

Interpolation of sound sources. The sound sources evaluated on the CFD mesh primarily
resolving thin boundary layers are interpolated on the acoustic mesh which is ideally uniform.
The used interpolation procedure of the program CFS++ preserves the overall acoustic energy,
see [34].

4.5 Vibroacoustics

Let us consider the vibroacoustic problem now. Due to omitted influence of the acoustics on
the structure the coupled vibroacoustic problem simplifies to the acoustic problem with a given
sound source at boundary ΓWref

given by BC (18) with the form of interface normal acceleration.

The weak formulation of the vibroacoustic problem reads: seek a such function pva ∈ Y that(
1

c2
0

∂2pva

∂t2
, η

)
Ωaprop

+ (∇pva,∇η)Ωaprop
=

(
ρf0
∂2(u · ns)

∂t2
, η

)
ΓWref

(31)

is satisfied for any η ∈ Y . The application of the FE method leads to the system of ODEs (26),
where the right hand side vector bva(t) = (bva

i ) is now given by

bva
i =

(
ρf0
∂2(u · ns)

∂t2
, ηi

)
ΓWref

. (32)

4.6 Solution of FSAI coupled problem

The workflow of the FSAI algorithm consists of these steps:
1) Sound sources evaluation.
2) Sound sources interpolation on the (coarser) acoustic grid.
3) Solution of the sound propagation problem.

The vibroacoustic problem is in the FSAI problem omitted, it is analyzed in the separate study.
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5 Numerical results of FSI problem

The numerical results consists of the FSI simulations first with a prescribed VF motion and
second with apriori unknown VF motion. The different inlet boundary conditions are compared.
Third, energy transfer between airflow and structure vibration is studied. The presented results
are detailed version of publications [4, 7, 6, 10, 13].

The considered VF model and materials is taken from [52, 29] with assumed symmetry at axis
y = 0 and the half-gap g0 = 0.4 mm. The constant time step ∆t is chosen as 2.5 · 10−5 s.

Further, the static part of the aerodynamic force loading the elastic structure is eliminated
from the dynamic response of the structure, i.e. the modified aerodynamic force qsmod is pre-
scribed by qsmod(X, t) = qs(X, t)−qsstat(X), where static force qsstat is computed in fixed channel
configuration in the last time step before release of the structure for interaction.

5.1 Prescribed motion of structure

This section presents the results of numerical simulations for a prescribed motion of vocal folds,
see [4]. In all cases the periodical motion of vocal fold is prescribed by

u1(x, y, t) = 0, u2(x, y, t) =
Cdriven

100
· (y + g0 +H2) · sin(2π · 100t), (33)

where H2 is the VF height, Cdriven = 7.2 is free parameter and half-gap g0 = 0.4 mm is fixed.

Effect of the inlet boundary conditions on flow characteristics. The performance of
considered boundary conditions (9) is tested for the case of prescribed VF motion of form (33)
which enables nearly full closing of the channel up to the minimal half-gap g0,min = 0.0114 mm.
Further, three inlet boundary conditions are considered:

1) Dirichlet boundary condition (9 a) with the given inlet velocity referred as “vel”,

2) the case with the prescribed pressure drop by condition (9 b) labeled as “pres”,
3) the case of penalization boundary condition (9 c) denoted as “pen”.

The inlet velocity and the pressure drop are set as vDir = (1.7, 0) m/s and ∆p = 400 Pa, respec-
tively. The penalization parameter is chosen as ε = 5 · 10−4 s/m.

The different behaviour of the inlet flow velocity and the pressure drop in all three studied cases
is shown in Figure 3. The inlet velocity is constant for the case “vel” and oscillating for the
case “pres” around its mean value (approximately the same as for “vel”). In the case “pen” the
inlet velocity for the open channel is the same as for case “vel”, but during the channel closing
drops rapidly near to zero. On the other hand, the pressure drop in the case “pres” is almost
constant, while for the case “vel” the pressure grows fast to unphysically high albeit expected
values during the channel closing. In the case “pen” the pressure drop remains bounded with
reasonable amplitude comparable with experiments, see [27]. The maximal value of the pressure
drop is therein after referenced as the pressure peak.

Parametric study of an optimal value of the penalty parameter. The dependence of
the (maximal) pressure drop on the penalization parameter ε is shown in Figure 4, which presents
also the dependence of the maximal, the average and the minimal flow rate Q on the parameter
ε. The maximal and the minimal flow rate means the maximal and the minimal instant value
over the whole simulation time. The most rapid changes occur for the penalization parameter
in the range 10−7 − 10−4 s/m, where the pressure peaks demonstrate a steep decrease from its
maximum (circa 500 kPa) close to minimal values (< 20 kPa) and the average flow rate is still
close to its maximum.
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Figure 3: Left: The inlet velocity (averaged over ΓfIn) in the dependence on time. Right: The
pressure drop during two periods of the reference prescribed motion. The pressure drop in the
case of “vel” has unrealistic high maximum of circa 472 kPa.

Figure 4: The dependence of the maximal pressure drop and the inlet flow rate on the penaliza-
tion parameter ε is plotted at the top and at the bottom, respectively.

The graphs shown in Figure 4 allow to estimate the suitable value of the penalization parameter
according to measured pressure drop and flow rate values. For the simulation of flow-induced
VF vibrations the typical range of transglottal pressures and flow rates are approximately 0.1−
2.0 kPa and 0.05 − 0.5 l/s, resp., see [56]. For the current setting is reasonable to choose the
penalization parameter in range 2 · 10−4 < ε < 5 · 10−3.

Choice of the parameters according to experimental data. Here we show the depen-
dence of the pressure drop on the gap area during one regular VF oscillation cycle as it was
measured in laboratory experiment, see [28]. This dependence allows to estimate the transferred
energy from airflow to the VF vibration Etransf . Figure 5 (left) shows the accumulated energy
in the case of self-induced vibration of VFs as measured by [28] on the VF model with included
the vocal tract model and driven by constant flow rate Q = 0.2 l/s. The accumulated energy is
in this case positive due to clockwise orientation of the pressure-gap area curve.

Figure 5: Right: Typical behaviour of the transglottal pressure in the dependence on the glottal
gap area (GA) during one oscillation cycle, [28]. Left: Dependence of the transglottal pressure
on the gap for four simulation cases.
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The pressure-gap dependence constructed using the previously presented FSI simulations is
shown in Figure 5 (right). As expected, in the case “vel” the pressure maximum is unrealistically
high. The same behaviour can be observed for the penalization approach with ε = 10−6 s/m. For
the case “pres” the pressure drop remains almost constant. Finally choice of the penalization
approach with ε = 10−3 s/m demonstrates the qualitative agreement with results published in
[28] in terms of maximal pressure. The sum of transferred energy is negative in all cases due to an
anticlockwise curve orientation what is typical for the prescribed motion of VF. The conclusions
of this qualitative comparison have to be done very carefully because the numerical gap-pressure
dependence is obtained in highly different configurations.

5.2 Fluid-structure interaction of the hemi-larynx configuration

This paragraph contains the comparison of the flow inlet BC for full FSI problem and the
sensitivity of the flutter airflow velocity on the penalization parameter ε.

Influence of the inlet boundary conditions on the flow-induced vibrations Similarly
as in the previous section the influence of inlet boundary conditions (9) is here studied on the
examples of four numerical simulations. The inlet velocity vDir,1 = 1.9 m/s is prescribed by
condition (9 a) (case “Vel”) and by (9 c) with two different choices of penalization parameter
ε = 10−5 s/m and ε = 5 · 10−4 s/m. These two cases are denoted as “Pen-S” (strong) and “Pen-
W” (weak) case, respectively. The case of the applied condition (9 b) is labeled as “Pres”with
chosen pressure drop ∆p = pin − 0 = 450 Pa.

The computed pressure drop and the half-gap g0(t) are displayed in Figure 6. The pressure drop
in case “Pres” is almost constant while for the prescribed inlet velocity in cases “Vel”, “Pen-
S” and “Pen-W” the pressure drop shows significant oscillating behaviour connected with the
increasing VFs vibration amplitude monitored in Figure 6 right. In the case of penalization
approach the pressure drop oscillation is delayed.

Figure 6: Left: Pressure drop between the inlet and the outlet. Right: Time development of
the half-gap plotted for cases “Vel”, “Pen-S”, “Pen-W” and “Pres”.

Neither boundary condition (9 a) nor boundary condition (9 c) corresponds to reality because
both the inlet flow velocity and the inlet pressure should fluctuate as it was observed e.g. in
the measurements [27]. This behaviour is recovered using the penalization approach. In all four
cases the inlet flow velocity exceeds the critical flutter velocity vflutter ≈ 1.86 m/s, see [7].

Determining the boundary of the flutter instability The dependence of critical velocity
vflutter on the penalization parameter ε is investigated and summarized in Figure 7. The influence
of penalization parameter is proven to be negligible for values ε < 10−4, while for ε > 10−4

the influence is quickly increasing, see [7]. Therefore we recommend to restrict the suitable
range of penalization parameter ε for the simulation of flow-induced VF vibrations to range
2 · 10−4 < ε < 1 · 10−3, i.e. 1

5000 < ε < 1
1000 .
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Figure 7: Dependence of the critical flutter velocity for the hemi-larynx configuration on the
penalization parameter.

5.3 Energetic considerations related to the VF flutter

Flutter phenomenon of the FSI system can in general emerge and can be maintained if the total
energy gained from airflow by structure exceeds the energy loss caused by the structure damping
and the damping due to the fluid viscosity. A positive flow of energy from the airstream to the
structure tissue occurs if the aerodynamic (VF driving) force is in phase with the tissue velocity,
see [55]. Here, the energy exchange between vibrating VF and fluid flow is quantified based on
the previous numerical simulations, see also [10].

The rate of energy transfer (power) Ėtransf at time instant t done by fluid stress on the (struc-
ture) surface is given by, see [54],

Ėtransf =

∫
ΓWt

vi σ
f
ij (−nfj ) dS =

∫
ΓWt

∂ui
∂t

σfij n
s
j dS, (34)

where the equality v = ∂u
∂t and nf = −ns at ΓWt is used. The cumulative transferred energy

(work) during a certain time interval can be calculated as Ecumul(t) =
∫ t

0 Ėtransf (τ) dτ .

The computed functions Ėtransf and Ecumul are shown in Figure 8 for the previously presented
numerical results of full FSI problem and simulation with the prescribed VF motion earlier
labeled “pen” and here referred as “Driven”.

In all full FSI cases the energy transfer function oscillates around zero with growing amplitude,
see Figure 8. The function Ėtransf develops in time the most intensively for case “Vel” followed
by case “Pen-S”, in case “Pres” the oscillation magnitude of function Ėtransf grows slowly. The
function Ecumul practically copies the behaviour of Ėtransf with an exponentially increasing
average value, around which it oscillates. It is expected behaviour, because the prescribed inlet
velocity (or the pressure drop) is higher than the critical flutter velocity, see [51]), and the energy
growth confirms previously observed flutter instability. In case “Driven” the function Ecumul is
linearly decreasing, see Figure 8, as it was already noticed in paragraph 5.1.

Figure 8: Energy transfer function (left) and energy cumulative function (right) for cases “Vel”,
“Pen-S”, “Pres” and “Driven”.
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6 Numerical results of FSAI problem

This section presents the numerical results of aero- and vibro-acoustic problems. These results are
based on the results of FSI simulation. The acoustic computations start with the determination
of the resonant frequencies of the vocal tract models.

FSI numerical results

The used vocal fold model is based on the VF shape and material parameters published in article
[61], see also publication [2]. The initial (full) glottal gap equal to 2.0 mm, the pressure drop
∆p = pin − 0 = 1500 Pa is prescribed and the constant time step ∆t = 2.5 · 10−5 s is chosen.

Figure 9 illustrates a typical behaviour of flow-induced vibration at selected point A from the top
surface of VF. The spectrum of VF displacement shows two dominant frequencies f1 = 121 and
f2 = 211 Hz. The frequencies f1 and f2 agree relatively well with the first two VF eigenfrequencies
what is in good correspondence with the results of [61]. A typical picture of FSI solution is shown
in Figure 10. Similar character of the complex flow field was reported in [33].

Figure 9: Left: Time evolution of the displacement of the chosen point A in y-direction. Right:
Normalized Fourier transform of the time signal from the left.

Figure 10: Typical picture of the airflow velocity distribution (left) and pressure and vocal fold
displacement in mm (right).

6.1 Vocal tract resonances

The VT geometry co-determines the characteristics of propagated sound, where the VT res-
onances have one of the most important influences. That is why the several VT models are
analyzed in order to find their acoustic resonant frequencies, in the human phonation context
usually called formants, see [56]. The results are based on the publication [9].
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The part of acoustic domain Ωa
tract representing a VT model for the vowel [u:] is based on the

data of acquired by MRI measurements [49]. Here due to 2D computations the (1D) diameters
ri of the VT model cross-sections are determined as the radius of published 2D cross-sections.
The VT model of the vowel [u:] described now by 46 cross-section radii has the total length of
L
.
= 17.86 cm.

The modifications of the VT model are performed with the goal to quantify an influence of
additional acoustic volume represented by the domain Ωa

src and the prolongation region, which
are (artificially) included for the reason of inclusion the CFD domain with the sound sources.
Three variants of acoustic domain Ωa geometry are considered, see Figure 11.

Transfer function approach and results The (inhomogeneous) wave equation transformed
into frequency domain is called Helmholtz equation, see [30], and it reads

−
(
ω2

c2
0

+ ∆

)
p̂ = F̂ , (35)

where ω denotes the angular frequency and the variables with caret (p̂) denote the Fourier
transforms of variables without caret (p). Assuming a unit harmonic excitation given by right
hand sources F̂ (ω) at a given frequency ω let us seek for the system answer at the same frequency.
The problem (35) is equipped with the sound hard BC at ∂Ωa and the PML layer is applied
on the boundary of the free field region in order to model the open boundary. The transfer
function H(ω) denotes here the ratio of the amplitude of the (complex) acoustic pressure p̂
monitored at a position xM to the harmonic acoustic forcing F̂ at a chosen excitation location
Γexc. The evaluation of the transfer function H(ω) over a frequency interval provides us the
resonant frequencies.

Problem (35) is numerically solved in the frequency range 50− 3000 Hz with logarithmic sam-
pling, i.e. fi+1 = q · fi, by the solver CFS++ . The transfer functions computed for three vocal
tract models M1, M2 and M4 are shown in Figure 11 (right) and they are compared with the
first three formants of vowel [u:] from paper [49].

The behaviour of transfer functions for both models M1 and M2 is very similar, both show four
formants in the range 50−2500 Hz. A closer match to the measured formants has the VT model
M2 than the model M1. The occurrence of third formant F3 at frequency 1432 Hz contrary to
results of [49] could be probably caused by the longer acoustic domain (M1 is ≈ 23 cm long).
Finally model M4, the 2D version of published 3D VT shape, exhibits an acceptable match of
the first three reference formants. Nevertheless, it should be mentioned that the comparison to
the results of article [49] measured in humans during MRI examination is only indicative due to
multiple reasons.

6.2 Vibroacoustic simulation

In this section the sound propagation is simulated, where the aeroacoustic sources are omitted
and just the sound emitted by the vibrating VF as obtained by the FSI simulation is taken into
account. Although the sound of vibroacoustic origin is usually considered to be small, see [59],
recent thesis [39] showed that the acoustic emission could be significant. The presented results
are an extended version of results published in [14] and [5].

The acoustic problem is solved within the vocal tract model M1. The virtual microphone C is
placed approximately 2 cm in front of the (virtual) mouth. The sound induced by VF vibration
is quite silent with SPL of circa 30 dB, see Figure 12. The first two VF eigenfrequencies are again
the very dominant frequencies, similarly as in [39]. Further the first two formants also strongly
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Figure 11: Left: Vocal tract acoustic models for cases M1, M2 and M4. Right: Graph of the
computed transfer functions for given cases. The formants of the vowel [u:] are highlighted by
black vertical lines located at 389, 987, 2299 Hz (data from [49]).

represented in Figure 12, while the further M1 formants are less significant. The presented results
show that the vibration-borne sound in the considered case without the VFs contact does not
significantly contribute to the overall radiated SPL, see e.g. [60].

Figure 12: Sound pressure level in frequency domain computed at point C. The black vertical
lines demonstrate first five formants of vocal tract model M1.

6.3 Aeroacoustic simulation

This section contains the sound sources analysis as they are calculated based on the numerical
results of FSI problem. Then the simulation of the sound propagation through the VT model
for the LH analogy, the (simplified) PCWE and the AWE approach is described. The presented
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results are based on author’s paper [2] and other published results [11, 8, 12].

Sound sources

The different numerical formulation of the LH sound sources is analyzed and the sound sources
structure of three different modelling approaches are compared. Then their frequency content is
investigated.

First, the LH sound sources are obtained by four different techniques, namely formula (30) is
evaluated with and without the gradient reconstruction technique or by using the framework
of radial basis functions (RBF), see [45], as the default option of the program CFSDat. The
fourth possibility presents reformulation by the pressure Laplacian, see [34]. The LH sound
sources obtained with and without the gradient reconstruction technique are very similar. The
RBF approach provides the LH source evaluation with much more numerical noise, the pressure
Laplacian having similar global structure of sources exhibits a high variability of local structures.
Thus the gradient reconstruction technique is further used for LH sound sources computations.

Second, the sound sources computed for three different approaches – the LH analogy, the PCWE
and the AWE approaches, are displayed in Figure 13. In the LH case the sound sources are
primarily associated with the velocity gradients and in the current simulation they are greatly
distributed downstream of glottis and at locations of the glottal jet separation from the VF
surface. The dominant sound sources in the cases of the PCWE and the AWE approach are
connected with pressure time changes, which local extremes are located primarily in the vortex
centers. The PCWE sound sources have a more significant contribution within the glottis. Results
of papers [39] and [31] resemble our findings.

Figure 13: Comparison of instant (normalized) sound densities for different aeroacoustic ap-
proaches at time instant 0.6 s. 0) The magnitude of airflow velocity together with pressure
contours. Below the instant sound densities are shown for: a) the LH analogy, b) the PCWE
and c) the AWE approach.
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Frequency content. The frequency content of the sound sources can be investigated with
the aid of the Fourier transform applied on the time signal at each point of the sound sources.
The dipole sound source structure can be observed for frequencies of the dominant VF vibration
and the quadrupole structure for higher nonharmonic frequencies, see [2].

Sound propagation in the vocal tract model

The sound sources, which were interpolated on the acoustic mesh, are further employed for
the LH, the simplified PCWE (sPCWE) and the AWE aeroacoustic simulations within the VT
model M2. The speed of sound is considered as c0 = 343 m/s and time step ∆t = 0.025 ms is kept
constant. The acoustic pressures are monitored at the same microphone position C as before.

The sound pressure levels computed at point C using all three aeroacoustic approaches are shown
in Figure 14. In the frequency range up to 3 kHz all three approaches detect four frequency peaks
matching very well the first four formants of the VT model M2. However for the LH case the
SPL reaches the highest value of circa 135 dB dominated by frequency peaks at 278 Hz. The
sPCWE and AWE approaches provides almost indistinguishable results. Both these approaches
are able to predict all four formants with more equal distribution of SPL reaching circa 110 dB.
This is in agreement with [39] (see pg. 133), where the SPL of the LH simulation also found
to be clearly dominated by the first frequency peak and for the PCWE and the AWE results a
very tiny SPL difference (< 1 dB) was observed.

A similar SPL difference of approximately by 20 dB higher SPL of LH approach (total SPL
circa 90 dB) than in the PCWE case reaching approx. 70 dB was obtained by the 3D numerical
simulation, see [48]. Further, we regard in agreement with authors of [48] the SPL results of LH
analogy as overestimated due to not performed the acoustic/hydrodynamic splitting resulting
in the superimposition of hydrodynamic quantities in the sound sources represented by Lighthill
tensor. The high values of SPL are probably caused first by a generally different 2D fluid flow
dynamics contrary to more complex 3D fluid flow dynamics. Second there are the fundamental
differences in wave propagation for 2D formulation compared to 3D setup. Similar aeroacoustic
studies of the 2D flow-induced VF vibrations reached comparable high levels of SPL, see [60],
[33]. In the end comparing the presented vibroacoustic and aeroacoustic simulations, where
the aerodynamically generated sound was about 100 dB higher in SPL than the sound of the
vibroacoustic origin (see Fig. 12), it can be concluded that the aerodynamically produced sound
is a major sound source of human phonation mechanism in the case without contact of VFs.

Figure 14: Sound pressure levels of acoustic pressure in frequency domain obtained by the LH
analogy, the sPCWE and the AWE approaches at point C. The black vertical lines mark the
formants of vocal tract model M2.
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7 Conclusion

The first part of the thesis presents the FSI problem in a channel with deformable walls
conveying fluid. The mathematical formulation of FSI problem is based on the linear elasticity
model and the viscous incompressible Navier-Stokes equations written in the ALE formulation in
order to take into account the time-dependence of the flow domain. The numerical approximation
of the FSI problem is performed with the FEM in space and the finite difference method in
time. Particularly, the fluid flow stabilization, the computation of aerodynamic forces and the
construction of ALE mapping is described in detail. The strongly coupled partitioned algorithm
is implemented for the solution of the FSI problem. Further, a special attention is paid to the
penalization inlet boundary condition which allows to relax an exact value of the inlet velocity
at the inlet boundary during channel closing phase. The sensitivity of flow characteristics and
critical flutter velocity in dependence on the change of the penalization parameter is investigated.

The FSI results modelling the human phonation are presented, which were achieved with a 2D
geometry model of VF. This setting of the FSI problem allows to determine the flutter velocity,
to compute flow rate, to evaluate pressure distribution along the whole channel, to investigate
the VF vibration shapes, to analyze the energy transfer between vibrating vocal fold and flow,
etc.

The second part of the thesis is devoted to the mathematical modelling of acoustic problems
connected with the human phonation. Two models of sound production are described, namely
the vibroacoustic problem studies sound produced solely by vibrating boundary of structure
(e.g. VFs), and the aeroacoustic problem deals with generation and propagation of the sound
with aerodynamic origin. The aeroacoustic part is addressed using the hybrid approach. It allows
to predict sound based on the incompressible flow simulation, i.e. to use more appropriate and
computationally less demanding acoustic solver than the solver of compressible flow and to
simulate acoustic problem in larger domains.

The main novelty of the presented aeroacoustic approach is given by the connection between the
FSI simulation with apriori unknown structure motion excited by the airflow and the acoustics
solved in the acoustic propagation domain with included vocal tract model. This setting enables
to obtain relevant aeroacoustic results.

The frequency characteristics of several vocal tract models were investigated in order to identify
first formants. The lowest four formants were obtained by the numerical solution of the Helmholtz
equation in a 2D vocal tract with the considered PML technique modelling the radiation outside
mouth and with the sound hard BC applied at boundaries of given vocal tract model. The
determined formants match the laboratory measured formants in an acceptable way.

The vibroacoustic simulation presents the results of the sound propagation excited by the VF
walls vibration. In the acoustic spectra it is clearly visible the first two eigenfrequencies of
VF model together with formants of chosen vocal tract model. The resulting SPL composed
of relevant acoustic frequency spectrum is considerably low in comparison with the SPL of
aerodynamically produced sound.

Finally, the aeroacoustic simulations comprise the sound sources evaluation, the sound sources
interpolation on the acoustic grid and the sound sources propagation through the vocal tract
model. As the sound sources computation is of key importance a special care is paid to the
sound source numerical computation including a few alternative sound source formulations. The
computed sound sources are qualitatively compared. The sound propagation results compare
three different approaches, namely the LH analogy, the simplified PCWE and the AWE approach.
The sound signals outside the mouth have frequency spectra consisting of all four formants of
the used vocal tract model. The resulting SPL of LH analogy obviously overestimates the lower
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frequencies. The sPCWE and the AWE approaches provide almost the same acoustic results
having more uniform spectral distribution.

Achieved results

The objectives of the dissertation as they were formulated in Introduction are achieved, namely:

• The behaviour of new penalization inlet boundary condition was described for the internal
aerodynamics configurations when the channel is closing. The closing channel up to the
half-gap value of 10µm with reasonable pressure values was demonstrated for the VF
prescribed motion in Chapter 5 indicating a promising way towards the modelling of the
complete channel closure.

• The methodology how to find the stability boundary of the modelled aeroelastic system
was developed for the classical Dirichlet BC and also for a wide range of penalization
parameters.

• The connection between the in-house solver FSIFEM and the academic solver CFS++ of
TU Vienna was establishedthrough the file format HDF5.

• A special attention was paid to the sound sources computation. For the LH analogy the
numerical procedure based on the local reconstruction technique was proposed and further
its applicability was shown.

• The aeroacoustic simulations were performed by using the three different aeroacoustic
approaches. The corresponding sound sources were analyzed and the sound spectra in
front of the mouth were compared.

• The simulated sound of the vibroacoustic origin was found quite low suggesting to be
relatively insignificant sound source in human phonation (at least for the presented FSI
simulation without complete closure of the glottis and the VFs collision).

Research outlook. The developed computational model of the FSAI problem has demon-
strated the capability to simulate the complex flow-induced VF vibrations and the produced
vibroacoustic and aeroacoustic sound. In the near future, I would like to extended the work in
several directions:

• Aeroacoustics based on the FSI simulation with penalization BC at the inlet. Some very
preliminary results were already presented at Workshop: Strömungsschall in Luftfahrt,
Fahrzeug- und Anlagentechnik, 2019.

• Implementation/improvement of glottal channel closure based on the presented FSI model
together with the penalty inlet boundary condition.

• Modelling of contact during vocal folds collisions. For a general VF shape it can be quite
difficult task due to need of finding contact points on the interface represented by a general
curve and further to calculate the contact force at each relevant point of the VF tissue.
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Summary

The first part of dissertation thesis deals with the numerical simulation of the fluid-structure
interaction (FSI) in 2D modelling the vocal folds vibration excited by airflow. The vocal fold
(VF) deformation is described by the linear elasticity model and the flow is modelled by the
incompressible Navier-Stokes equations in the arbitrary Lagrangian-Eulerian (ALE) formulation
in order to take into account the time-dependence of the flow domain. The space discretization
of both subproblems is realized by the finite element method (FEM) and the Newmark method
for the structure time discretization is applied while the fluid flow problem is approximated in
time by the BDF2 method. A special attention is paid to the fluid flow stabilization, to the
calculation of aerodynamic forces and to the airflow inlet boundary conditions at the entrance
to the glottal channel. The penalization boundary condition is compared with the Dirichlet
and the do-nothing boundary condition and its advantages are shown for solving of the internal
aerodynamics configurations when the channel is closing. Particularly, the dependence of critical
flutter airflow velocity on the penalization parameter is determined and the energy transfer
between airflow and the vibrating elastic body is analyzed.

The second part of thesis extended FSI problem to the interaction of fluid flow, an elastic
body and acoustics. It addresses the aeroacoustic and the vibroacoustic problems motivated
by human phonation. The presented hybrid aeroacoustic approaches allows to predict sound
based on the incompressible flow simulation, i.e. acoustic computation has the form of the FSI
results postprocessing. Alternative sound source formulations and their numerical implemen-
tations are described and applied in several investigated cases. The frequency characteristics
of considered vocal tract (VT) models with perfectly matched layer technique at the VT end
representing open-boundary condition are determined by solving the Helmholtz equation. The
computed sound of vibroacoustic origin, i.e. excited purely by the VF vibration, reaches signifi-
cantly lower sound pressure levels (SPL) than the sound of aeroacoustic origin. The aeroacoustic
simulations comprise the sound sources evaluation in the computed airflow pattern, the sound
sources interpolation on the acoustic grid and finally modelling of the sound sources transient
propagation in the VT. Three different approaches – namely the Lighthill analogy (LH), the
(simplified) perturbed convective wave equation (sPCWE) and the aeroacoustic wave equation
(AWE), are compared. The SPL show overestimation in the case of LH and almost identical
results of sPCWE and AWE. In all cases the excited spectra of acoustic pressures are dominated
by the acoustic resonances (formants) of the vocal tract model.

Key words:
Fluid-structure interaction, fluid-structure-acoustic interaction, linear elasticity, incompressible
fluid flow, Navier-Stokes equations, Lighthill acoustic analogy, perturbed convective wave equa-
tion, aeroacoustic wave equation, finite element method, ALE method, perfectly-matched layer,
human phonation modelling.



Resumé

Prvńı část dizertačńı práce se zabývá numerickou simulaćı interakce proud́ıćı tekuitny a ela-
stického tělesa (FSI) v 2D modelováńı vibrace lidských hlasivek vybuzených prouděńım vz-
duchu. Deformace lidských hlasivek je popsána pomoćı lineárńıho elastického modelu a prouděńı
tekutiny je modelováno nestlačitelnými Navierovými-Stokesovými rovnicemi v ALE formulaci,
která umožňuje zahrnout efekty časově proměnné oblasti prouděńı. Prostorová diskretizace obou
podúloh je realizována metodou konečných prvk̊u (FEM) a pro časovou diskretizaci elastického
tělesa je použita Newmarkova metoda, zat́ımco problém prouděńı je aproximován v čase po-
moćı metody BDF2. Specialńı pozornost je věnována stabilizaci FEM pro aproximaci prouděńı,
výpočtu aerodynamických sil a okrajovým podmı́nkám předepsaným na vstupu do glotálńıho
kanálu. Je porovnána penalizačńı okrajová podmı́nka s Dirichletovou a do-nothing okrajovou
podmı́nkou, a jsou ukázány jej́ı výhody pro řešeńı konfiguraćı vnitřńı aerodynamiky, kdy docháźı
k uzav́ıráńı kanálu. Zejména je určena závislost kritické flutterové rychlosti prouděńı na penal-
izačńım parametru a dále je analyzován přenos energie mezi prouděńım tekutiny a kmitaj́ıćım
elastickým tělesem.

V druhé části dizertace je FSI problém rozš́ı̌ren na problém na interakce proud́ıćı tekutiny, ela-
stické struktury a akustiky. Tento problém zahrnuje popis aeroakustických a vibroakustických
úloh motivovaných modelováńım lidské fonace. Předsta-vený hybridńı aeroakustický př́ıstup do-
voluje určit zvukovou hladinu na základě simulace nestlačitelného prouděńı, tj. akustický výpočet
má formu postprocesingu výsledk̊u FSI úlohy. Jsou popsány alternativńı formulace zvukových
zdroj̊u a jejich numerická implementace v několika vyšetřovaných př́ıpadech. Frekvenčńı charak-
teristika uvažovaného modelu vokálńıho traktu (VT) s PML metodou použitou na konci VT pro
modelováńı problému s volnou hranićı je určena pomoćı řešeńı Helmholtzovy rovnice. Vypočtený
zvuk vibroakustického p̊uvodu, tj. vybuzený čistě kmitáńım hlasivek, dosahuje výrazně nižš́ı
zvukové hladiny než zvuk aeroakustického p̊uvodu. Aeroakustické simulace se skládaj́ı z výpočtu
zvukových zdroj̊u na základě výsledk̊u prouděńı, z interpolace zvukových zdroj̊u na akustickou
śıt’ a ze záverečného modelováńı postupného š́ı̌reńı těchto zdroj̊u v čase skrz vokálńı trakt.
Jsou srovnány tři r̊uzné př́ıstupy – Lighthillova akustické analogie (LH), (zjednodušená) pertur-
bovaná konvektivńı vlnové rovnice (sPCWE) a aeroakustická vlnová rovnice (AWE). Hladina
zvuku vykazuje nadhodnoceńı v př́ıpadě Lighthillovy analogie a téměř totožné výsledky při
použit́ı př́ıstup̊u sPCWE a AWE. Ve všech př́ıpadech jsou v źıskaných akustických spektrech
dominantńı akustické resonance (formanty) použitého modelu vokálńıho traktu.

Kĺıčová slova:
Interakce prouděńı s elastickým tělesem, interakce prouděńı a elastického tělesa i akustiky,
lineárńı elasticita, nestlačitelné prouděńı tekutiny, Navierovy-Stokesovy rovnice, Lighthillova
akustická analogie, perturbovaná konvektivńı vlnová rovnice, aeroakustická vlnová rovnice, metoda
konečných prvk̊u, ALE metoda, PML vrstva, modelováńı lidské fonace.
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