
Czech Technical University in Prague
Faculty of Mechanical Engineering

Department of Instrumentation and Control
Engineering

Master thesis

Model discovery from data using methods
for sparse identification of nonlinear implicit

dynamics

2020/2021

Kryštof Bystřický

Supervisor: Ing. Jaroslav Bušek, Ph.D.

Abstract

The problemof obtainingmodels describing the dynamics of a certain
system is current across many industries. The traditional approach to
modeling relies on specific knowledge about the physical principles
of the system. This approach requires a developed theory of the
underlying system. An alternative approach is model identification
from data, which is often the only viable approach for complex
systems without a developed theory. In this thesis, I apply a
method called Sparse Identification of Nonlinear Dynamics (SINDy,
SINDy-PI), which utilizes both approaches, identification from data
using at least some limited knowledge of the system. The method
will be used to identify accurate nonlinear models of two canonical
systems, the Lorenz systemand thependulum-cart system. The thesis
also describes methods for filtering and numerical differentiation of
measured signals. During the thesis, some new adjustments are
made to the original sparse regression algorithm. New ways to
approach the creation of the candidate function library are alsomade,
as well as a new way to evaluate models using clustering.

Key-words: Machine learning; system identification; sparse regression; dynamical
systems; numerical differentiation; spectral filtering; spectral differentiation; model
selection

I declare that this thesis hasbeencomposed solely bymyself. All sources, references,
and literature used or excerpted during the elaboration of this work are properly cited
and listed in complete reference to the due source. I agree with further publication of
this thesis or its parts, as long as my work is properly cited. The results of this work can
be further freely used by the thesis’ supervisor.

Date: Signature:

Contents

1 Introduction . 1
1.1 Dynamical systems . 1
1.2 Mathematical models . 1
1.3 Law of parsimony . 2

2 State of the art . 4
2.1 Sparse Identification of Nonlinear Dynamics . 4
2.2 Sparse Identification of Nonlinear Dynamics with control 4
2.3 Implicit Sparse Identification of Nonlinear Dynamics 4
2.4 Parallel Implicit Sparse Identification of Nonlinear Dynamics 5
2.5 SINDy for Model Predictive Control . 5
2.6 Simultaneous dynamics and coordinate system identification 5

3 Identification method formulation . 7
3.1 Dynamical systems in matrix-vector formulation 7

3.1.1 State-space representation of dynamical systems 7
3.1.2 Matrix-vector analytical formulation . 8
3.1.3 Matrix-vector numerical formulation . 8
3.1.4 Matrix-vector formulation for rational dynamics 10
3.1.5 Matrix-vector formulation for rational dynamics with extraction 10

3.2 Sparse regression . 11
3.2.1 General description . 11
3.2.2 Regularization . 12
3.2.3 L1 regularized least squares regression 13
3.2.4 Sequentially thresholded least squares regression 13
3.2.5 Sequentially energy-thresholded least squares regression 14
3.2.6 Ridge regression with sequential thresholding 15

4 Data preprocessing . 16
4.1 Numerical differentiation . 16

4.1.1 Finite differences . 16
4.1.2 Spectral differentiation . 16
4.1.3 Comparison . 17

4.2 Filtering . 19
4.2.1 Time domain representation . 21
4.2.2 Convolution filtering . 22
4.2.3 Frequency domain representation . 23
4.2.4 Spectral filtering . 25
4.2.5 Filter comparison . 26

5 Model validation and selection . 31
5.1 Cross-validation . 31
5.2 Calculating model errors . 31
5.3 Model fit metrics . 32
5.4 Information criteria . 32

6 Implementational aspects of the SINDymethod 33

i

6.1 Brief recap of the SINDy-PI method . 33
6.2 Representing the problem in implicit form . 34
6.3 Representing the implicit models . 34
6.4 Reducing the number of models . 34

7 Model identification of the Lorenz systemwith feed-forward inputs 37
7.1 Definition . 37
7.2 Code implementation . 38
7.3 Simulation . 39
7.4 Creating the function library . 40
7.5 Identification using clean data . 42
7.6 Identification using noisy data . 44
7.7 Validation . 46
7.8 Discussion . 48

8 Model identification of the Lorenz systemwith feedback external inputs 49
8.1 Definition . 49
8.2 Feedback forcing loop . 50
8.3 Simulation and data pre-processing . 50
8.4 Identification . 56
8.5 Validation . 58
8.6 Discussion . 61

9 Model identification of a simulated pendulum-cart system 62
9.1 First-principles model derivation . 62
9.2 State-space representation . 63
9.3 Simulation . 65
9.4 Function library . 67
9.5 Identification using clean data . 71
9.6 Identification using imperfect data . 74
9.7 Parameter tuning . 79
9.8 Validation . 83

10 Model identification of a real pendulum-cart system 86
10.1Real system . 86
10.2Data collection and processing . 86
10.3Identification . 91
10.4Bootstrapping . 91
10.5Validation . 95

11 Conclusion . 97

ii

List of Figures

1 Part of the signal used for demonstrating numerical differentiation
algorithms. Sampling period ∆t = 0.001s . 18

2 Numerical derivative calculated from clean data using both algorithms.
The errors are very small, so the lines are overlapping. 18

3 Numerical derivative calculated from noisy data using both algorithms.
The resulting derivative estimates are very noisy. 19

4 Sum of squared error as a function of sampling period. The error of the
spectral derivative starts lower and increases much slower. 20

5 Sum of squared error as a function of sampling period. Logarithmic error
axis. Surprisingly, the error of the spectral derivative is actually decreasing
with increasing sampling period up until about ∆t = 0.025s for both
signals. I have no good explanation for this. 20

6 Results of numerical differentiation of a downsampled signal. The signal
wasdownsampled from∆t = 0.001s to∆t = 0.080s. The spectral derivative
estimate is nearly identical to the real derivative, while the finite difference
estimate is quite off. 21

7 A randomly generated signal and noise as a function of time. 22

8 Response of a non-causal convolution filter to a step input. 23

9 The amplitude of the randomly generated signal as a function of
frequency. Note the (conjugate) symmetry around 0 frequency, this is
typical for purely real-valued time domain signals. 25

10 The smoothed Welch periodogram, threshold value and chosen cutoff
frequency. TheWelchmethod estimates the power spectrumdensity with
lower frequency resolution, but less noise. 26

11 The full resolution periodogram. The frequency components in the
frequency band defined by the cutoff frequency are kept, components
outside the band are set to 0. 26

12 Results from a Hann 5 convolution filter. Most of the information signal’s
spectra is preserved, however, a significant amount of noise also leaks
through. In the time domain plot, the estimate follows the real derivative
well. Due to the noise leak apparent from the amplitude plot, the estimate
often gets thrown off by noise and produces a displeasingly jagged signal. 27

13 Results from a Hann 9 convolution filter. A significant portion of the
information signal’s spectra is attenuated, which leads into a loss of
information. While the signal in the time domain contains little noise,
it deviates from the real derivative whenever it changes quickly. This
“slowness” is a direct consequence of losing some high frequency
information components of the signal. 28

iii

14 Results from the spectral filter. All the frequency components after the
cutoff frequency got nullified. Because the cutoff frequencywas identified
very accurately and the information signal is stronglyband-limited, almost
none of the information was discarded by the filter. Note that some
information was still lost during noise addition. Reversing this corruption
would require noise subtraction, whichwould require knowing exactly the
phases of the noise frequency components. 29

15 Comparison of all the filters and their absolute error as a function of time. . 30

16 Band-limited noise sent into input u1 for identification purposes. 38

17 Results of a simulation of a Lorenz system with external random process
inputs. The full simulation is visualized as an animation at this link:
https://git.io/JBctw. 40

18 Identification results for the Lorenz system simulated with feed-forward
input signals. The training data contained no noise, and derivatives were
computed exactly from the analytical model. 43

19 Spectral filter settings for the noisy measurements of xi. 44

20 Comparison of clean, noisy and filtered measurements of xi. 45

21 Comparison of clean and estimated values of ẋi. The estimated
values were computed from filtered measurements xi using spectral
differentiation. 45

22 Identification results for the Lorenz system simulated with feed-forward
input signals. The measurements of state variables contained significant
noise, which lead into poor state derivative estimate accuracy. 46

23 Comparison of clean ẋi from the validation set and the ẋi estimated using
the model identified from data. 47

24 Comparison of the trajectories generated by the reference and the
identified model. Both models start at the same initial condition and
receive the same input u. The input signals are random band-limited
processes, but they’re not visualized. Full animation: https://git.io/JBSU3 . 47

25 The input signals as a sum of the control law and random noise process. . 51

26 Comparison of generated state trajectory X with and without noise. A
visualization of the full simulation: https://git.io/JBctq. 51

27 Filter cutoff frequency setting from smoothed periodograms calculated
from X. 52

27 A comparison of clean, noisy and filtered state measurements X. 53

27 A comparison of clean state derivativemeasurements Ẋ and Ẋ computed
from filtered X. 54

28 Cutoff frequencies after being offset to lower frequencies by 3 frequency
bins. 55

29 State derivative measurement estimates Ẋ computed from over-filtered X. 56

28 Identification results for the Lorenz system simulatedwith feedback input
signals. The state trajectories X contained significant noise, derivatives Ẋ
were computed using numerical differentiation from filtered X. 57

iv

29 Comparison of state derivatives Ẋest estimated using the identifiedmodel
and the reference Ẋval validation data. 58

30 State derivative prediction errors ϵi. 59

30 Results of a simulation of both the real and the identified system from the
same initial state. The full visualization including the 3D trajectory is at:
https://git.io/JBPQs . 60

31 The sequence of steps for computing a cart trajectory for data collection. . 66

32 The state trajectories X from the pendulum-cart system simulations. 67

33 Correlation matrix of the function library for identifying the implicit ODE
describing ẋ3, the cart acceleration. 70

34 Visualization of all unique identified implicit models. Each row is an
implicit model and each column is a coefficient ξi of the candidate
function θi. A red square symbolizes a positive coefficient value, a blue
square a negative coefficient value. 71

35 Visualization of all structurally consistent, sparse implicit models
identified from clean data. 72

36 The exact models with 0 training RMSE, identified from clean data. 73

37 Plots showing the used filter settings and a part of the signal. 75

38 Cart’s linear velocity and the pendulum’s angular velocity estimated using
spectral differentiation. 76

39 Cart’s linear acceleration and the pendulum’s angular acceleration
estimated using spectral differentiation. 76

40 Visualization of all structurally consistent implicit models identified using
noisy measurements and estimated derivatives. 77

41 The best identified models for both accelerations. 78

42 Bootstrapping results for cart accelerationmodel parameters. The color of
the distribution depends on the guess function used to generate themodel. 80

43 Bootstrapping results for pendulum angular acceleration model
parameters. 80

44 Combined bootstrapping results for cart acceleration model parameters. . 81

45 Combined bootstrapping results for pendulum angular acceleration
model parameters. 82

46 Validation of the identified cart-pendulum SINDy model’s state derivative
estimation accuracy. The estimations are very close to the test set values. . 83

47 Parallel simulation of the reference model and the SINDy model. Full
animation at: https://git.io/JBPXD . 84

48 Parallel simulation of the reference model and the bootstrapped SINDy
model. The results are indistinguishable from the previous simulation.
Full animation at: https://git.io/JBPXA . 85

49 Parallel simulation of the best SINDy model and the bootstrapped SINDy
model. Despite both models being identical in their structure and very
close parameter-wise, the trajectories still decouple after a few seconds.
Full animation at: https://git.io/JBP1L . 85

v

50 The time difference between samples before and after resampling. 87
51 Filter cutoff frequencies. The filters for the velocity signals x3 and x4 have

much lower cutoff frequencies, since the signalswill be used for numerical
differentiation to estimate accelerations. 88

51 The state and input measurements, before and after filtering. The
measurement data is also visualized at: https://git.io/JBbux 90

52 Accelerations ẋ3 and ẋ4 estimated from velocity measurements. 90
53 Discovered models for the real pendulum-cart system. The y-axis labels

contain themodel’s index, the quess function used to generate themodel,
the training error and the validation error. 92

54 Parameter distributions for both models for different candidate function
guesses. 93

55 Combined parameter distributions for both models. The black vertical
lines show the modes of the distributions. 94

55 The discovered model’s derivative estimates compared to the reference
values estimated from the training data using numerical differentiation.
Due to heavy noise present in the u measurements and its offset from 0,
the derivative estimates are also noisy and offset. 96

56 Simulations of the model identified from real data. The animation is at:
https://git.io/JBbUT . 96

vi

1

1 Introduction

When faced with the task of controlling, predicting or understanding a given system,
one of the first steps is to create a mathematical model describing it. The “traditional”
approach to model creation relies on a prior established theory - a set of first principles
describing the system. In practice, many systems lack such a theory, often due to high
underlying complexity of the system. In these cases, we have to take a step back, and
create the model from the observations, rather than the principles. The task of creating
a model (discovering the principles) from observations, is known generally asmachine
learning. Many machine learning methods for discovering models of dynamical
systems suffer from high model complexity, which leads into poor generalizability
and poor interpretability of the model. There’s an increasing interest in the area of
physically-informed machine learning, which combines some expert system-specific
knowledge with machine learning to constraint the space of possible models to the
models that, for example, comply to some chosen physical laws, or are in a form that’s
simple and interpretable.
The method I work with in this thesis is called Sparse Identification of Nonlinear
Dynamics [1], or SINDy for short. Themethod sets up themodelingphase as a regression
task. A sparse regression algorithm is used to pick a subset of candidate functions from
the expert-created candidate function library, so that the model is consistent with the
data while being as simple (≈ sparse) as possible. This methods is suitable for finding
mathematical models of “theoretically elusive” systems. These systems are difficult
(or impossible) to model using purely the traditional first-principle approach, usually
due to high complexity. Examples of such systems can be found in disciplines like
epidemiology, biology, neurology, finance, fluid turbulence, or climate. Due to time and
resource constraints, I am not able to demonstrate this method on these systems; I will
however show that thismethod is capable of identifying the cart-pendulumsystemwith
external forcing from both simulated and measurement data.

1.1 Dynamical systems

Dynamical systems are systems of equations that describe how a certain process
changes in time. Time plays a central role in the evolution of human civilization,
dynamical systems therefore have applications in most - if not all - disciplines.
Dynamical systems can describe nearly everything, from the movement of stars and
planets, the long and short timescale changes in the Earth’s atmosphere, evolutionary
dynamics, the fluctuations in capital markets to the the inner workings of our brains.
Real-world processes are however all extremely complex and the chain of questions
we have to ask to fully understand and describe them is infinite.

1.2 Mathematical models

Mathematical models of dynamical systems serve as a finite-dimensional idealization
of infinitely complex processes. Imagine, for example, a simple oscillator - mass on

2 1 INTRODUCTION

a spring connected to the ceiling. The well-known mathematical model trying to
describe the dynamics of this system is fairly simple, containing only a few terms
for the spring force, damping and inertial force. That is often enough to accurately
describe the trajectory of the mass, given its initial state; its position and velocity.
The accuracy of any mathematical model generally stands on many assumptions. The
assumption that guarantees the validity of any model is that the system has no other
unmodeled interactions with its environment. For an extreme thought experiment,
imagine a person that’s having a bad day and decides to unleash their frustration on the
suspended mass, kicking into it and therefore changing its trajectory. The state of the
system changed and any mathematical model running in parallel wouldn’t be able to
predict it. A model that would be able to predict thatwould have to contain an accurate
model of the offender’s brain, an accurate model of everything the brain interacts with,
and by extension a model of the entire universe as well as its entire history. Due to
pesky quantum effects, even this might not be enough. While this example is obviously
extreme, themainpoint is that someunmodeleddynamics are, in practice, unavoidable.
Mathematical modelling is therefore a task of describing an isolated subset of the
universe. The isolation is not merely in space and time, as the task generally reduces to
modeling an idea of the process, rather than physical reality directly.
Despite this inherent infinite complexity of real processes, the information required to
describe themost important features of a process is usually finite. Whenmodelling the
oscillatingmass, we can create a very precisemodel using only theNewton’s second law
and the concepts of spring and damping force. This is a case of analytical modeling,
where we make use of a well-developed theory, the first principles, describing the
underlying process. This theory was created by humans who observed the process,
were able to identify important features and patterns and were able to describe them
mathematically.
However, many real-life processes lack a theory that’s as well-developed as the laws of
classical mechanics. In these cases, we must do the observations, feature detection,
pattern recognition and mathematical description ourselves. We have tools that can,
at least to some extent, help us with these tasks. Various sensors can help us with the
observations and diverse mathematical constructs and computational machines with
the rest. Often the hardest task is picking the right tools and using them properly.

1.3 Law of parsimony

The best computational machines available to us today our brains. As is the case with
any tool, they are often used improperly. Philosophy offers a number of heuristics, called
philosophical razors, that can help guide us towards reasonable actions. The most
well-known and useful one is Occam’s razor, also known as the principle of parsimony.
It tells us that when choosing between different hypotheses (models), we should value
both their accuracy and simplicity. This implies that when we have two hypotheses
that are equally good at describing the relevant observations, but one hypothesis is
simpler than the other, the simpler explanation is likely the correct one. The definition of
parsimony, according toMerriam-Webster [2], is “the quality of being careful withmoney

1.3 Law of parsimony 3

or resources”. In the context of mathematical modeling, the resource is the model
complexity. High model complexity often comes with disadvantages, most notably
poormodel interpretability andweak ability to generalize (overfitting). The advantage of
complex models is usually higher accuracy, but this also comes with some limitations.
In summary, the main idea of the principle of parsimony is to ask the question “Is the
extra accuracy worth the extra complexity?”. An optimal model will be just as complex
as is necessary to accurately describe the observations.

4 2 STATE OF THE ART

2 State of the art

2.1 Sparse Identification of Nonlinear Dynamics

Sparse Identification of Nonlinear Dynamics (SINDy) was developed with the goal
of finding simple, interpretable models from measurement data. SINDy was first
introduced in the 2016 paper by S. Brunton, J. Proctor, J. N. Kutz [1]. The main idea of the
method is to create a data matrix, called the function library Θ, which contains various
nonlinear candidate functions of the state x. Sparse regression is then used to find the
vector of parameters ξ that connects the candidate functions with the target variables
- the state derivatives. The method was initially only applicable for identification of
dynamical systems whose underlying ordinary differential equations (ODEs) can be
decomposed as linear combinations of nonlinear functions andwas only able to identify
natural dynamics, not the effects of external forcing. The original formulation of the
SINDymethodwas shown to be able to exactly reconstruct the canonical Lorenz system
from simulated measurement data, or find a simple model for non-stationary fluid
vortex shedding behind a cylinder.

2.2 Sparse Identification of Nonlinear Dynamics with control

An extension called SINDYc [3] was developed by the original authors shortly after,
allowing identification of both natural dynamics and effects of external inputs
simultaneously. The trick that allows this is simple, it relies on treating input variables
similarly as the state variables. In the paper, SINDYc was used to find a model of
the canonical Lotka-Volterra predator-prey system with additional external inputs from
simulated data.

2.3 Implicit Sparse Identification of Nonlinear Dynamics

The original SINDy method had no way to identify models of systems described by
rational ODEs. Such systems are quite frequent in biology, so another extension called
Implicit-SINDy was developed for this purpose by N. M. Mangan et al. in the paper
called “Inferring biological networks by sparse identification of nonlinear dynamics”
[4]. This method, as the name suggests, deals with rational functions by discovering
implicit models rather than explicit ones. Implicit-SINDy was able to infer themodels of
three canonical biological systems: “Michaelis-Menten enzyme kinetics, the regulatory
network for competence in bacteria, and the metabolic network for yeast glycolysis”,
again from simulated data. While this method worked great on clean, simulated data,
it was highly sensitive to noise in the measurements. Such noise is unavoidable in
real conditions, so a more robust method for identifying implicit models must’ve been
developed.

2.4 Parallel Implicit Sparse Identification of Nonlinear Dynamics 5

2.4 Parallel Implicit Sparse Identification of Nonlinear Dynamics

The extension that solved the high sensitivity to measurement noise for implicit
modeling was developed in 2020 by K. Kaheman et al. [5]. The algorithm, called
SINDy-PI (for parallel implicit), has comparatively high time-complexity, but as the
name suggests, this downside can be compensated by its parallelizability. The method
introduced a trick that allows finding solutions to homogeneous problems Ax = 0
using linear regression. It relies on extracting a column from A and putting it on the
right-hand side of the equation as the target variable. The method was able to infer
accurate models from many simulated systems, such as the double pendulum system
or the PDE-described Belousov Zhabotinsky reaction.

2.5 SINDy for Model Predictive Control

Model Predictive Control (MPC) relies on accurate models of the controlled process.
The structure of these models can be arbitrary, as long as the model is accurate. MPC
is commonly used with autoregressive models, linear state-space models or neural
network (NN) models. The structure of these models however doesn’t necessarily
incorporate any prior knowledge about the system, so the models are hard to interpret,
prone to overfitting and they require a lot of training data. SINDy modeling offers an
alternative that doesn’t suffer as much from these issues. The combination of MPC with
SINDy models was first formally suggested in the paper [6] by E. Kaiser. The paper
compares many different model structures and evaluates each structure’s strengths
and weaknesses. Compared to NN models, SINDy models are far easier (quicker) to
train, require less training data, they’re easier to evaluate andmore robust to noise. This
makes them better suited for online identification, where the model of the process is
continuously re-identified during the control system’s operation to deal with changing
process parameters.

2.6 Simultaneous dynamics and coordinate system identification

The SINDy method works with the assumption that the system dynamics are sparse
(“simple”) in some inherent coordinate system. For some processes, the inherent
coordinate systems are apparent. A good example of such a process is the dynamics
of a simple pendulum. A bad coordinate system would be the Cartesian coordinate
system. Let’s say that we track the x-y coordinate of each “particle” of the pendulum,
for example using a video camera. In this coordinate system, it’d be impossible to
find a simple model. A Cartesian coordinate system is not inherent to the process
dynamics. If every particle was considered separately, the model would also have to be
very high-dimensional. The pendulumdynamics can be expressed simply, if we assume
that the pendulum is a rigid body, and if we use a polar coordinate system.
In many cases where data-driven identification is needed, the inherent coordinate
system is not apparent. The measurement data are often high-dimensional.
High-dimensional phenomena can be often be expressed simply if we choose a good
coordinate system. The task of finding these reduced coordinate systems is known

6 2 STATE OF THE ART

generally as reduced order modeling. One approach to model order reduction would
be computing the principal components (modes) using singular value decomposition
and keeping only the most prominent modes. However, this offline approachmight not
yield coordinate systems that are good for expressing the dynamics.
A better way to find coordinate systems suitable for SINDy models was developed
by K. Champion in the paper [7]. The method combines auto-encoders (a neural
network architecture for dimensionality reduction) and the SINDy method for finding
good coordinate systems and identifying the dynamics simultaneously. It does this by
combining the cost function of the auto-encoder and the cost function of the SINDy
method into one big cost function and then optimizing both auto-encoder and SINDy
parameters simultaneously. The method was able to accurately identify the dynamics
from a simulated Lorenz system projected into high-dimensional space, a simulated
reaction-diffusion partial differential equation (PDE) model, and from a simulated video
footage of a simple pendulum.

7

3 Identification method formulation

3.1 Dynamical systems in matrix-vector formulation

3.1.1 State-space representation of dynamical systems

Dynamical systems are described by a system of ordinary differential equations (ODEs).
Systems of ODEs are most generally described by

ẋ(t) = f(x(t), t) + g(x(t), u(t), t). (1)

The vector x(t) ∈ Rn, where n is the dimension of the state space, defines the state of
the system at time t. The vector function f : Rn −→ Rn describes the effect of natural
dynamics at time t. The u(t) ∈ Rb is the external input vector, where b is the number
of external inputs, and g : Rn+b −→ Rn is the vector function describing the effect of
external forcing on the system. Note that g is a function of both state and input, as an
input might have different effect based on the state x. The state variables x are in some
sense the inner variables, meaning they describe the full inner state of the system and
not merely the desired outputs [8]. To simplify notation, I’ll embed the input function g
in the function f , which thus becomes a function of both the state x and the input u.
We express each state variable xi(t) by a separate ODE. Each state derivative variable ẋi

is described by a first order ODE as

ẋi(t) = fi(t, x(t), u(t)). (2)

If fi is a function of time t, the dynamics themselves change with time. In some sense,
the time t would in this case behave like a state variable. For most systems, we can
assume that fi isn’t a function of time, and the dynamics are thus time-independent.
The state vector derivative ẋ(t) is defined by

ẋ(t) =


ẋ1(t)
ẋ2(t)
...

ẋn(t)

 =


f1(x(t), u(t)
f2(x(t), u(t))

...
fn(x(t), u(t))

 = f(x(t), u(t)). (3)

where f(x(t), u(t)) describes the vector field that defines the system dynamics.
The state-space representation provides generalization, which lets us employ any
control or estimation algorithm on the state-space model without much specific
knowledge about the system itself. By extension, this makes state-spacemodels easier
to work with, because if one knows how to design a control law for one state-space
model, it isn’t hard to apply the same sequence of steps on any other model. If
the system is nonlinear, we can locally approximate the dynamics around equilibrium
points by a linear model using Jacobian linearization (first order truncated Taylor
expansion) [8], obtaining a linear state-space model that can be used for control.
Systems of nonlinear, first order ODEs can be readily solved by numerical integration
techniques such as the Runge-Kutta methods [9].

8 3 IDENTIFICATION METHOD FORMULATION

The state vector x can be interpreted as a point in an n-dimensional space Rn. The
dynamics of the system are governed by a vector field described by the vector function
f(x, u). Each point, given by the state and external input vectors (x, u), in the vector
field is associated with a state derivative vector ẋ. The vector field f(x, u) is therefore a
mapping f : Rn+b −→ Rn, where n is the state-space dimension and b is the number of
external inputs.

3.1.2 Matrix-vector analytical formulation

For the original definition of the SINDy [1] method to be directly applicable, every single
ODE fi ∈ f = [f1, . . . , fn]T must be expressible as a linear combination of some functions
of the state x and inputs u

ẋi(t) = fi(x(t), u(t)) = ξ1θ1(x(t), u(t)) + . . . + ξmθm(x(t), u(t)) (4)

where ξi are scalar parameters and m is the number of candidate functions. Simplifying
the notation so that θi(x(t), u(t)) = θi(t), the equation (4) can be reformulated in
matrix-vector notation as

ẋ(t) =
[
θ1(t) . . . θm(t)

] 
ξ1
...

ξm

 = Θ(x(t), u(t))ξ (5)

where the object Θ(x(t), u(t)) is the set of candidate functions θi and the vector ξ is the
vector of candidate function coefficients. The modeling task is to find a sparse vector
of coefficients ξ that represents ẋi using functions from the function library Θ. The
sparsity conditionmeans that we want as few elements of ξ to be non-zero. For system
identification, the candidate functions θ must be pickedmanually. There’s no prescribed
way of doing this, instead it relies on somedomain-specific knowledge or heuristics. For
this reason, the specific choice of candidate functions θ is discussed later in this thesis
in the practical sections.

3.1.3 Matrix-vector numerical formulation

Because the continuous functions θ(x(t), u(t)) are only an abstraction that cannot be
worked with numerically, we must approximate them with function measurements
θi[k](X, U), where k is the time-sample index. The matrix X is the matrix of state
measurements

X =


x1[0] x2[0] . . . xn−1[0] xn[0]
x1[1] x2[1] . . . xn−1[1] xn[1]
...

... . . .
...

...
x1[N − 1] x2[N − 1] . . . xn−1[N − 1] xn[N − 1]

 , (6)

3.1 Dynamical systems in matrix-vector formulation 9

the matrix U is the matrix of input measurements

U =


u1[0] u2[0] . . . ub−1[0] ub[0]
u1[1] u2[1] . . . ub−1[1] ub[1]
...

... . . .
...

...
u1[N − 1] u2[N − 1] . . . ub−1[N − 1] ub[N − 1]

 (7)

and N is the number of measurement time-samples. Since θi[k] are vectors of
function measurements, they’re not a perfect substitute for the actual functions θi(t).
Whether the function measurements θi[k] represent the underlying function θi(t) well
doesn’t depend only on the sampling frequency or the number of samples, but also on
the way they’ve been generated. If, for example, we had a function θj(t) = x1 sin(x2) + 1,
but the state variable x2 was kept constant at x2[k] = 0 during the experiment, then the
set ofmeasurements θj [k]wouldbea terrible representative of θj(t), because itwouldn’t
describe the effects of any of its variables x1 and x2 and it would effectively look like a
simple constant.
When collecting the function measurements, it is generally a good idea to sweep as
much of the state space as possible. Particularly important regions in the state space
are the neighborhoods of equilibrium points (points x where f(x) = ẋ = 0). The vector
fields are often very variable around these equilibria, so data from these regions is likely
very informative.
The discrete numerical measurement approximation of (5) has the form

ẋi[k] =


| . . . |

θ1[k] . . . θm[k]
| . . . |




ξ1
...

ξm

 = Θ(X, U) ξ. (8)

Θ(X, U) ∈ RN×m is the function library matrix, it has m columns representing the
candidate functions, and N rows representing the time samples. The columns θi[k]
representing the candidate functions are computed from state measurements X and
input measurements U. The state derivative measurements ẋi[k] must be computed
from the state measurements X numerically, using for example spectral differentiation
described later in Section 4 that deals with data pre-processing.
The solution vector ξ is assumed to be sparse, so that only a few candidate functions
have non-zero coefficients. Sparse solutions can be found using sparsity-promoting
optimization methods, some of which will be described later in this thesis.
Theoriginal SINDypaper [1] didn’tmention identificationof systemswith external inputs
u as in the case above. The candidate functions θi were purely functions of the state
x. Another paper was released shortly after, where an extension named SINDYc [3]
suggested including candidate functions θi that are functions of the control input u.
Including these functions enables the identification of actively controlled systems. This
is advantageous for two main reasons. First, it lets us identify the effects of the control
inputs on the system. Second, actively forcing the system lets us sweep the state-space
and generate information-rich data (state trajectories) for identification.

10 3 IDENTIFICATION METHOD FORMULATION

3.1.4 Matrix-vector formulation for rational dynamics

In the equation (4), we assumed that the state variable ẋi(t) could be expressed as a
linear combinationof functions θi(x, u). This assumption isn’t true for systemsdescribed
by rational ordinary differential equations, which have the form

ẋi(t) = fi(x, u) = fa(x, u)
fb(x, u)

(9)

where the functions fa(x, u) and fb(x, u) are again expressible as linear combinations of
other functions. The equation (9) can be reordered into an implicit form by multiplying
both sides by fb(x, u) and then subtracting the left-hand side of the equation as follows

ẋi(t) fb(x, u) = fa(x, u) (10a)

ẋi(t) fb(x, u) − fa(x, u) = 0. (10b)

The equation (10b) is, again, expressible as a linear combination of some candidate
functions θi. These candidate functions are now slightly different, they’re now also
functions of ẋi, since the denominator functions fb(x, u) are multiplied by the state
variable derivative ẋi(t). The implicit ODE for ẋi(t) is described by

m∑
i=1

θi(ẋi, x, u)ξi = 0 (11)

which can be reformulated in matrix-vector discrete numerical measurement form as

Θ(ẋi[k], X, U) ξ =


| . . . |

θ1[k] . . . θm[k]
| . . . |




ξ1
...

ξm

 = 0. (12)

This formulation was introduced in [4], in an extension called implicit-SINDy. The
solution vector ξ is found as the sparsest symbol in the null-space of the function
library matrix Θ. The limiting factor of this method is its high sensitivity to noise. If the
measurements contain even a miniscule amount of noise, it will cause strict positivity
of all singular values of the function library matrix Θ. Consequently, the dimension of
the null-space increases dramatically, making the search for an appropriate solution ξ

difficult.

3.1.5 Matrix-vector formulation for rational dynamics with extraction

A recently developed extension, called SINDy-PI (Parallel Implicit) [5], reformulates the
problem into a more robust form. This method relies on guessing that some candidate
function represented by θi[k] is active in the dynamics. This function θi is then extracted
from the function library Θ and moved to the other side of the equation, becoming the
new target variable and transforming the equation (12) into

3.2 Sparse regression 11

Θi(ẋi[k], X, U) ξi =


| . . . | | . . . |

θ1[k] . . . θi−1[k] θi+1[k] . . . θm[k]
| . . . | | . . . |





ξ1
...

ξi−1

ξi+1
...

ξm


= θi[k] (13)

where Θi is the function library without the column θi[k] and ξi is the vector of
function coefficients without the i-th element.
Using this formulation, the solution ξ can be obtained using sparse regression, which
is more robust to noise. An apparent downside of this approach is that any single
guess θi[k] is most likely going to be incorrect - the candidate function won’t be present
in the real dynamics. The regression problem thus has to be solved many times
using different guess candidate functions θi. While this method is significantly more
computationally demanding, the model fitting can be done in parallel for different
guesses of θi, effectively reducing the real calculation time.

The necessity of making many guesses means that this method generates a large
number of models, and finding the best ones isn’t always trivial. The sheer number
of models necessitates automated model selection, using various criteria. Model
goodness criteria will be described later. The number of models can be reduced
by exploiting the fact that the “true” model structure is likely to appear whenever
the guessed function is present in the real dynamics. An often-appearing model is
therefore a good candidate.

The last problem is reconstructing the model from the coefficients. The model
is defined by the state variable derivative function. In explicit SINDy, this function is
directly the target variable. This makes model reconstruction easy, all that’s necessary
is to multiply the found coefficients with the candidate functions and sum them. In
implicit methods, the state derivative function is embedded in the function library Θ,
and reconstruction must be done by doing the steps (10b), (10a) and (9) in this reverse
order. This is not as trivial, as it requires the use of symbolic solvers for automating
the modelling process. I automated the model reconstruction using the Python library
called SymPy [10].

3.2 Sparse regression

3.2.1 General description

The equation (14) represents the general regression problem

Ax = b. (14)

12 3 IDENTIFICATION METHOD FORMULATION

The objective is to find a solution vector x (not to be confused with the state vector x).
Using explicit SINDy formulation and notation, the regression problem can be rewritten
as

ΘΞ = ẋ (15)

where Θ ∈ RN×m is the function library, Ξ ∈ Rm×d are the model parameters and ẋ ∈
RN×d is the matrix of state derivatives. The number of measurement samples is given
by N , the number of candidate functions by m and the number of state variables by d.
The solution matrix x can be solved for directly, identifying all state derivatives in one
function call.
In the implicit SINDy formulation, the problem is solved for each state variable derivative
separately

Θiξi = θi (16)

where ξi ∈ Rd×1 is the vector of parameters ξ without the i-th element, and θi ∈ RN×1

is the candidate function guess. The function library matrix Θi contains all candidate
functions except the target function θi. The notation from (14), (15) and (16) will be used
interchangeably in this subsection. In the next three sub-subsections, the notationswill
beused in the sameorder as theywere introduced in here. This is not an arbitrary choice,
the notation reflects the intended application.

3.2.2 Regularization

There are many algorithms for solving the regression problem. Many of them put soft
constraints on the solution x by incorporating the solution vector itself in the criterion
function. This is known as regularization. Following the law of parsimony, we want to
find a solution ξ that is sparse, meaning it has as few non-zero elements as possible.
The soft constraint is usually obtained by incorporating the norm of the solution to the
cost function. The most well-known norm is the Euclidean norm

L2(x) =

√√√√m−1∑
i=0

x2
i =

(
m−1∑
i=0

x2
i

) 1
2

= ∥x∥2 (17)

The concept of a norm is generalized by the Lp norm, defined as

Lp(x) =
(

m−1∑
i=0

|xi|p
) 1

p

= ∥x∥p (18)

Note that the L0 norm, according to the definition in (18), is simply the number of
non-zero elements of x. Another similarly bizarre norm is the L∞ norm, which is the
limit of Lp as p −→ ∞. The L∞ norm of x then reduces as the maximum value of x.
While norms are used for regularization, different norms are not equally difficult to
implement. The L2 norm is the most convenient and most popular, with methods like
least-squares regression being built on minimizing the L2 norm of the residuals. Some
norms, such as theL0 (sparsity) norm, are difficult to implement directlywith acceptable
time-complexity of the algorithm.

3.2 Sparse regression 13

3.2.3 L1 regularized least squares regression

Among thefirst sparsity-promotingmethods is the LASSO (Least Absolute Shrinkageand
Selection Operator) method introduced in [11]. It utilizes the fact that regularization by
the L1 norm happens to also minimize the L0 norm. It’s essentially an L1-regularized
least-squares method, minimizing the criterion:

∥Ax − b∥2
2 + λ1 ∥x∥1 (19)

The first term in the cost function is the sum of squares of residuals, or the L2 norm of
the residuals squared. Minimizing this term penalizes large deviations more than the
small deviations. Minimizing the sum of squares of residuals promotes accuracy.
The second term is the regularizer, which sets a soft constraint on the solution by
penalizing the L1 norm of the solution. The L1 norm penalizes all increases in the
coefficients equally. It tends to set small coefficients of the solution x to zero, thus
promoting sparsity. The hyperparameter λ1 sets the weight of the L1 penalization. It is
common to do the regression multiple times with different hyperparameter values λ

and then pick the best model according to some criteria.
While LASSO regression is significantly faster than combinatorial approaches, the L1

regularization still carries a time-complexity penalty that makes the algorithm quite
slow compared to the standard least-squares algorithm .

3.2.4 Sequentially thresholded least squares regression

The sequentially thresholded least squares (STLS) algorithm used in the original SINDy
[1] paper uses standard least-squares regression

arg min
ξi

∥Θiξi − θi∥2 (20)

and then sets all elements xi ∈ x that are belowadefined hyperparameter threshold
λ to 0. These two steps are then repeated multiple times until the solution x no longer
changes between iterations. In the ODE formulation (15), the algorithm sequentially
reduces the number of considered candidate functions θi. On the first iteration, it works
with the full function library Θ ∈ RN×m and produces a non-sparse solution ξ, whose
elements ξi which are below the threshold λ are set to 0. When an element ξi is set
to 0, its respective candidate function θi must also be dropped from Θ, so that it’s no
longer considered in the next iterations. The number of candidate functions usually
drops significantly after the first iteration. The condition number κ [12], representing
the well-posedness of the regression problem, is defined as a ratio of the biggest and
the smallest singular value

κ = max σ(Θ)
min σ(Θ)

(21)

14 3 IDENTIFICATION METHOD FORMULATION

The condition number κ is usually very high at the first iteration, indicating the
problem is ill-posed and the solution isn’t reliable. In the later iterations, as columns
of Θ are dropped, κ also usually decreases to acceptable values.
The STLS method produces sparse solutions ξ while preserving the numerical
robustness and low time complexity of least-squares algorithms. The runtime of the
algorithm is orders of magnitude lower compared to LASSO, while the results are
comparable. When I tested both algorithms for system identification, the STLS algorithm
actually produced better results.

3.2.5 Sequentially energy-thresholded least squares regression

The STLS algorithm sequentially drops candidate functions based on parameter values
ξi under the assumption that low values of ξi indicate that the respective candidate
function θi has a small effect on the target variable and it’s not relevant in the real system
dynamics. However, when working with unnormalized measurements θ[k], this isn’t
necessarily true. Interpreting the measurements θ[k] as signals, a high-energy signal
θi[k] with a low coefficient ξi might have a stronger effect than another signal θj [k] with
a relatively higher coefficient ξj . To deal with this issue, I modified the STLS algorithm
so that the thresholding is done based on the signal’s total implied energy, defined for
every signal-generating pair (θi, ξi) as

E(ξi, θi) =
N−1∑
k=0

(ξi θi[k])2. (22)

where θi is the i-th candidate function measurement vector and ξi is its respective
coefficient.
This energy E is calculated for every candidate function θ present in the function library,
the highest energy

Emax = max{E(ξi, θi[k])} (23)

then becomes a baseline from which the threshold λ is calculated as

λ = EmaxλR (24)

where λR is a hyperparameter setting the relative energy ratio between the lowest
acceptable energy of a signal and the maximum energy. The candidate functions θ

whose implied energies are lower than λ are then dropped from Θ and their respective
coefficients ξ set to 0.
Instead of calculating the candidate function energies in every iteration of the algorithm,
the function libraryΘ could also be normalized during data preprocessing, so that every
candidate function has the same total energy. Using the definition (22), let’s define a

3.2 Sparse regression 15

discrete signal ȳ so that E(ȳ) = 1, we can then say

E(ȳ) = 1 = E(y)
E(y)

=
∑N−1

k=0 y2
k

E(y)
=

N−1∑
k=0

y2
k

E(y)
=

=
N−1∑
k=0

√
y2

k√
E(y)

=
N−1∑
k=0

yk√
E(y)

=
N−1∑
k=0

ȳk

(25)

The equation
N−1∑
k=0

yk√
E(y)

=
N−1∑
k=0

ȳk (26)

is satisfied if
ȳk = yk√

E(y)
=⇒ ȳ = y · (E(y))

−1
2 (27)

The signal ȳ is an energy-normalized representation of the signal y so that E(ȳ) = 1.
Normalizing every candidate function θi into its energy-normalized representation θ̄i

would generate the energy-normalized function library Θ̄. The coefficients xi would
then be directly proportional to the respective candidate function’s energy, so we could
use coefficient thresholding to get the same results as we would get with direct energy
thresholding.

3.2.6 Ridge regression with sequential thresholding

Instead of using the standard least-squares algorithm with the thresholding methods,
it can beneficial to incorporate Tikhonov-regularization into the algorithm, for example
using the Ridge regression method first introduced in [13]

arg min
x

∥Ax − b∥2
2 + α ∥x∥2 (28)

where α defines the regularization weight. Tikhonov regularization decreases the
condition number κ, which is beneficial when dealing with poorly posed problems,
which in this case occur because of sometimes highly correlated candidate functions
θ. Tikhonov regularization slightly increases model bias. Since the regression problem
becomes better posed (κ decreases) after the first iteration when most candidate
functions are thresholded out, it’s possible to use Ridge regression only on the first
iteration and then use the standard unregularized least squares algorithm.

16 4 DATA PREPROCESSING

4 Data preprocessing

When identifying models of dynamical systems, we need measurements of the
system’s state variables and their first, or sometimes even second, derivatives.
Derivatives however cannot be measured directly, so they’re often calculated from
the measurements using numerical differentiation methods. Numerical differentiation
is, due to reasons explained later, very sensitive to noise. This necessitates another
preprocessing procedure - filtering. Numerical differentiation and filtering techniques
used in the practical part of the thesis will be introduced in this section.

4.1 Numerical differentiation

4.1.1 Finite differences

There are many methods for numerical differentiation. The simplest one is the method
of finite differences. Thismethod uses local information about the curvature to estimate
the derivative. The simplest case would be the two-point forward step differentiation,
defined for continuous functions as

d
dt

f(x) ≈ f(x + ∆x) − f(x)
∆x

(29)

and for discrete functions as

d
dt

f [k] ≈ f [k + 1] − f [k]
∆x

. (30)

The accuracy of finite difference methods depends greatly on the step size ∆x,
which in the case of temporal functions corresponds to the sampling period. Lower
sampling periods increase accuracy, although they also increase sensitivity to noise.
Numerical differentiation algorithms in general are very sensitive to high frequency
noise. Multiple-step finite differentiation increases robustness and accuracy, but at the
cost of higher algorithm complexity.

4.1.2 Spectral differentiation

While finite differentiation uses the signal’s time domain interpretation, spectral
differentiation [14] uses the frequency domain signal interpretation. It leverages a very
important property of Fourier transforms. Applying the Fourier transformon the function
y(t) yields its Fourier image

F{y(t)} = ŷ(ω) (31)

The signal y(t) is said to be the time-domain representation of the signal y, while the
signal ŷ(ω) is the signal’s representation in the frequency (or Fourier) domain.
An important property of the Fourier transform is that

iωŷ(ω) = F{ẏ(t)}. (32)

4.1 Numerical differentiation 17

In words, this means that the Fourier image of the derivative of a function is equal to
the function’s Fourier image multiplied by iω, where i is the imaginary unit and ω is the
angular frequency. Using the inverse Fourier transform on the equation (32), we can
obtain the time derivative ẏ

F−1{F{ẏ(t)}} = F−1{iωy(ω)} = ẏ(t) (33)

Spectral differentiation uses global information about curvature, its accuracy is
generally better than the accuracy of finite differences method. The accuracy of
the calculated derivative improves with smaller sampling period. One issue with
this method is the presence of Gibbs phenomena (oscillations) in places where the
differentiated function is discontinuous, or, in the case of discrete functions, where the
function changes rapidly. This is only a major problem at the ends of our time series,
since from the transformation’s perspective, the derivative jumps from ẏ[N − 1] (where
N is the number of samples) back to ẏ[0] during one step. When experimenting with
the method, I found a way to deal with this problem by appending a mirror image
of the signal to itself, so that ym = [y[0], y[1], . . . , y[N − 1], y[N − 1], y[N − 2], . . . , y[0]].
Then I proceed as usual, calculating the FFT on the extended signal ym, doing whatever
frequency domain operations are necessary, transforming the signal back into time
domain and keeping only the first half of the signal. This deals with most of the Gibbs
“ringing” phenomena induced by first order discontinuities at the ends of the signal.
From the equation (32), we can see that the time-derivative of y(t) is the function itself
in the frequency domain multiplied by i ω. An important point is that the object i ω is
actually a high-pass filter. Numerical differentiation thus acts as a high-pass filter.
When working with sampled data - measurements - we don’t use Fourier transforms
directly. Instead of the function y(t), we have y[k], the vector of measurements.
When working with discrete data, we use Discrete Fourier Transforms (DFTs). The
DFT is a general label used for all algorithms that calculate Fourier transforms, one
such algorithm is the famous Fast Fourier Transform (FFT). FFT is implemented in
most mathematical software modules, for example in MATLAB or in Python’s numpy
[15] module. When our signals are measurements of some physical process, the
signal itself has most of its energy in the lower frequencies, while (white) noise
has the same energy at all frequencies. That means that numerical differentiation
decreases the signal-to-noise ratio, which raises requirements on low sensor noise
and filtering methods. This is especially problematic when the signal needs to be
differentiated twice, for example whenwe need to estimate accelerations from position
measurements.

4.1.3 Comparison

To compare the two differentiation methods, I’ll use measurement data from a
simulation of the pendulum-cart system. The first signal x1 is the linear position of
the cart and x2 is the angle of the pendulum. To demonstrate the high sensitivity of

18 4 DATA PREPROCESSING

numerical differentiation to high-frequency noise, a comparatively weak white noise
signal with a standard deviation of 0.001 is added to the signals.

Fig. 1: Part of the signal used for demonstrating numerical differentiation algorithms. Sampling period ∆t = 0.001s

Fig. 2: Numerical derivative calculated from clean data using both algorithms. The errors are very small, so the
lines are overlapping.

4.2 Filtering 19

Fig. 3: Numerical derivative calculated from noisy data using both algorithms. The resulting derivative estimates
are very noisy.

The simulation data used for this demonstration contains 100000 time samples with
a sampling period of ∆t = 0.001 s. Spectral differentiation has practically always smaller
error than 2-step finite difference differentiation.
The error of the derivative estimate riseswith the step size, which in the temporal case is
the sampling period. The error of spectral derivative increases much slower with rising
sampling period. To demonstrate this, let’s down-sample the simulation data, calculate
the derivatives and calculate the residual sum of squares (RSS) as an accuracy metric.
RSS is defined as

RSS =
N−1∑
k=0

(yreal[k] − yestimate[k])2 (34)

where N is the number of samples, yreal[k] is the real derivative at time sample k and
yestimate[k] is the calculated derivative estimate. Repeat this sequence of steps 80 times
for different down-sampling periods, from the original ∆t = 0.001 s up to ∆t = 0.080 s.
The results of differentiation for ∆t = 0.080 s and the RSS as a function of the sampling
period are shown in the next figures.

4.2 Filtering

As shown in the previous subsection, numerical differentiation behaves like a high-pass
filter. This, in the presence ofwhite noise, significantly decreases the signal to noise ratio
of the resulting derivative signals. The noise in a measurement signal can be reduced
either by using more advanced sensors, or by filtering the signal using either analog or
digital filters.

20 4 DATA PREPROCESSING

Fig. 4: Sum of squared error as a function of sampling period. The error of the spectral derivative starts lower and
increases much slower.

Fig. 5: Sum of squared error as a function of sampling period. Logarithmic error axis. Surprisingly, the error of
the spectral derivative is actually decreasing with increasing sampling period up until about ∆t = 0.025s for both
signals. I have no good explanation for this.

A filter is an object that accepts a signal as an input, separates this input based on its
frequency content and outputs the desired frequency content. To properly understand
filtering, one must first understand the representation of signal in time and frequency
domains.

4.2 Filtering 21

Fig. 6: Results of numerical differentiation of a downsampled signal. The signal was downsampled from ∆t = 0.001s
to ∆t = 0.080s. The spectral derivative estimate is nearly identical to the real derivative, while the finite difference
estimate is quite off.

4.2.1 Time domain representation

Any signal can be interpreted as a sum of information and noise. Information is the part
of the signal that is generated by the process we intend to actually measure. Noise is
the part of the signal that’s generated by other processes.
There are two ways to look at signals. We can look at them in the time-domain
representation. This is the natural way for normal people to interpret signals - as a
simple function of time. For a practical demonstration, I generated a random discrete
information signal (signal) and a noise signal (noise). The signals are shown in Figure 7.

From now on, I’ll refer to the signal+noise object as measurement. The
measurement is simply defined as a sum of the signal and the noise. Themeasurement
m at time sample k is

m[k] = s[k] + n[k] (35)

where s is the signal and n is the noise. At each time sample k, there’s only one value
which stores the information. Thiswill be abit different in the frequencydomain,making
addition less trivial.

22 4 DATA PREPROCESSING

Fig. 7: A randomly generated signal and noise as a function of time.

4.2.2 Convolution filtering

An example of filtering using the time domain signal representation is convolution
filtering. When we have the full input signal (typical scenario in pre-processing), we
can afford to use a non-causal filter; a filter that determines the output value y at time
step k by looking at input values x at time steps l < k (in the past) and values at time
steps l > k (in the future). The value y[k] is determined as a weighted sum of the values
of x around time step k.

y[k] =
(N−1)/2∑

l=−(N−1)/2
w[l] x[k + l] (36)

where w is the weighting function, also known as kernel, and N is the size of the kernel.
The length of the kernel is assumed to be odd, this way the central value is strictly
defined as w[0]. Weights w[l < 0] define the weighting of input values in the past, while
weights w[l > 0] define the weighting of future inputs. There’s uncertainty about the
value of the output y[k] at times k < N or k > (L − N) where L is the length of the time
series. For these samples, the kernel is not fully overlapping with the input function.
There are different ways to circumvent this problem, for example by extending the first
and the last value of x[k] into k < 0 and k > L respectively.
The shape and size of the kernel defines the response of the convolution filter. Typically,
the bigger the kernel, the more it suppresses higher frequencies. The values of kernel
functions for de-noising typically add up to 1.
There are other approaches to computing the convolution of two signals. Utilizing
the fact that convolution in the time domain is equivalent to multiplication in the
frequency domain, both signals can be transformed into the frequency domain via

4.2 Filtering 23

the Fast Fourier Transform, multiplied and transformed back into time domain. This
approach is computationally efficient for longer signals and is implemented in many
computational software packages, for example in Python in the scipy.signals.convolve
[16] function.

Fig. 8: Response of a non-causal convolution filter to a step input.

4.2.3 Frequency domain representation

In the frequency domain, discrete signals are defined as sums of sines and cosines
with different frequencies ω, amplitudes A and phase shifts ϕ. The frequency domain’s
analogue to time in the time domain is, unsurprisingly, the frequency. However, while
in the time domain, each time sample k was associated with only one value, in the
frequency domain, each frequency ω is associated with two values - the amplitude and
the phase shift. This makes signal addition more complicated. The frequency domain
representation of the measurement signal is m̂. The measurement m̂ at frequency ω is
defined by its amplitude Am(ω) and phase shift ϕm(ω) as a complex number

m̂(ω) = Am(ω)eiϕm(ω). (37)

According to the Euler’s formula

eiϕ = cos(ϕ) + i sin(ϕ), (38)

the equation 37 can be rewritten as

m̂(ω) = Am(cos(ϕm(ω)) + i sin(ϕm(ω)). (39)

24 4 DATA PREPROCESSING

The point of this demonstration is that m̂(ω) is a complex number, so summing two
complex numbers ŝ(ω) and n̂(ω) means summing their real and imaginary parts:

m̂(ω) = ŝ(ω) + n̂(ω)

= As(ω)eiϕs(ω) + An(ω)eiϕn(ω)

= As(ω)(cos(ϕs(ω) + i sin(ϕs(ω)) + An(ω)(cos(ϕn(ω) + i sin(ϕn(ω))

= [As cos(ϕs(ω) + An cos(ϕn(ω)] + i[As sin(ϕs(ω) + An sin(ϕn(ω)]

= [Re(ŝ(ω)) + Re(n̂(ω))] + i[Im(ŝ(ω)) + Im(n̂(ω))]

= Re(m̂(ω)) + i Im(m̂(ω))

(40)

The amplitude of m̂(ω) is the sum of amplitudes As(ω) and An(ω) if and only if the
phases ϕs(ω) and ϕn(ω) are equal or different by an integer multiple of 2π. That would
be a case of fully constructive addition. If the phases are in antiphase - different by
(π + n2π), the amplitudes subtract and the phase is equal to the phase of the stronger
complex number. The addition is in this case fully destructive. If the phase difference
is anywhere between these two, both the amplitude and the phase changes.
Assume we know the noise amplitude at all frequencies. Even with this information, we
wouldn’t be able to reconstruct the original signal’s amplitude or phase information,
because the noise’s phase information dictates whether the addition is constructive or
destructive and how the phase changes after addition.

Many processses of interest generate information signals that are mostly dispersed
in the lower frequencies, or in other words, have a relatively small bandwidth. The
noise, on the other hand, typically has a far bigger bandwidth. Noise is often modeled
as a white noise. White noise, by definition, has infinite bandwidth and a constant
power (amplitude squared) at all frequencies. Such a signal is physically not realizable.
According to Parseval’s theorem, such a signal would have infinite energy. In reality, the
amplitude power of noise is constant up to a certain frequency, where it starts to drop
off. This drop-off frequency is however typically above the sampling frequency, so it’s
not apparent in the measurements.

The signal shown in Figure 7 was generated as a frequency domain signal. The
amplitude was defined as constant within a range of frequencies, then decreasing to
0 afterwards. The respective phases for each frequency were generated randomly.
The noise signal was generated as a white noise signal, defined as having constant
amplitude across all frequencies and random phase.

Note that when the (blue) signal’s amplitude reaches 0, the measurement consists
purely of noise. While real information signals aren’t as clearly band-limited, there’s
always a frequency at which the noise overpowers the information. The goal of filtering
is to find this (cutoff) frequency, and to preserve all frequency contents before it and
discard all frequency contents after it. That way, we get rid of most of the noise while
keeping most of the information.

4.2 Filtering 25

Fig. 9: The amplitude of the randomly generated signal as a function of frequency. Note the (conjugate) symmetry
around 0 frequency, this is typical for purely real-valued time domain signals.

4.2.4 Spectral filtering

An ideal filter has a gain of 1 in the specified frequency range and a gain of 0 outside the
range. Traditional filters cannot meet these demands. Spectral filtering techniques use
the FFT to calculate the signal’s representation in the frequency domain. When we have
this representation, we can simply set all the high-frequency coefficients to 0 and then
use inverse-FFT to reconstruct the signal in the time domain.
When designing filters, the most important design choice is the cutoff frequency. If it’s
set too low, then we filter out useful information from the signal, but if it’s set too high,
we don’t get rid of the noise. In this thesis, I developed a method that chooses the
cutoff frequency based on the signal’s periodogram, which is an estimate of the power
spectrum density (PSD).
The method works on the assumption that the signal’s power spectrum density is
shaped similarly as in the Figure 9, meaning the information is dispersed in the lower
frequencies and then eventually drops off to 0, where the measurements contain
purely noise. I choose the cutoff frequency from the periodogram, assuming the noise
component of the signal is distributed evenly in the power spectrum.
I calculate the periodogram using Welch’s method [17], which computes a less noisy
periodogram at the cost of lower frequency resolution. The resulting periodogram is
then further de-noised using amoving average filter of size 5. Moving average filters are
convolution filters with a constant-valued kernel. Then I separate the higher frequency
half of the signal and calculate its mean power m and the standard deviation σ. A
threshold value is calculated as m + kσ, where k is a parameter defined by default
as k = 2. The cutoff frequency is then chosen as the lowest frequency at which the

26 4 DATA PREPROCESSING

smoothed periodogram gets below this threshold value. The smoothed periodogram,
threshold and chosen cutoff frequency for the generated signal are shown in Figure 10.

Fig. 10: The smoothed Welch periodogram, threshold value and chosen cutoff frequency. The Welch method
estimates the power spectrum density with lower frequency resolution, but less noise.

Fig. 11: The full resolution periodogram. The frequency components in the frequency band defined by the cutoff
frequency are kept, components outside the band are set to 0.

4.2.5 Filter comparison

Let’s use the generated noisy signal to compare different filters. Two convolution filters
will be shown, both using a Hann kernel, one with a size 5 and the other with a size
9. These filters will be compared to the spectral filter, defined by its cutoff frequency
chosen in Figure 10.

4.2 Filtering 27

(a) The amplitude plot

(b) The time plot

Fig. 12: Results from a Hann 5 convolution filter. Most of the information signal’s spectra is preserved, however,
a significant amount of noise also leaks through. In the time domain plot, the estimate follows the real derivative
well. Due to the noise leak apparent from the amplitude plot, the estimate often gets thrown off by noise and
produces a displeasingly jagged signal.

28 4 DATA PREPROCESSING

(a) The amplitude plot

(b) The time plot

Fig. 13: Results from a Hann 9 convolution filter. A significant portion of the information signal’s spectra is
attenuated, which leads into a loss of information. While the signal in the time domain contains little noise, it
deviates from the real derivative whenever it changes quickly. This “slowness” is a direct consequence of losing
some high frequency information components of the signal.

4.2 Filtering 29

(a) The amplitude plot

(b) The time plot

Fig. 14: Results from the spectral filter. All the frequency components after the cutoff frequency got nullified.
Because the cutoff frequency was identified very accurately and the information signal is strongly band-limited,
almost none of the information was discarded by the filter. Note that some information was still lost during noise
addition. Reversing this corruption would require noise subtraction, which would require knowing exactly the phases
of the noise frequency components.

30 4 DATA PREPROCESSING

Fig. 15: Comparison of all the filters and their absolute error as a function of time.

31

5 Model validation and selection

5.1 Cross-validation

Because the SINDy-PI method generates a lot of models, we need a way to automate
the model evaluation and selection process. To quantitatively evaluate models, we
need to introduce model fit statistics. The objective of modeling is to find a model
that’s able to generalize to data that wasn’t seen during the training (regression)
phase. When creating the models, the data sets of measurements are used to create
a function library Θ, which is then used during regression to find the solution ξ to
the implicit matrix-vector equation Θξ = 0. This estimate solution ξ is supposed
to minimize the least-squares error ∥Θξ − 0∥2 while also minimizing the number of
non-zero parameters ξi, or in otherwords, theL0 normof ξ. Because this function library
is used to train the model, it will be referred to as the training set. We’re interested in
models that are able to generalize, so we need to evaluate the models on a different
data set, called the test set.
The test set is a set of state and input measurements that wasn’t used for training the
model. Whenwe’re simulating the system, it can be generated by a different simulation.
The simpler way is to split the original measurements into a training set and a test set
before constructing the candidate function library. Note that when the function library
is generated, its samples (rows) can be arbitrarily shuffled - they don’t have to be in
chronological order, as with filtering and differentiation.

5.2 Calculating model errors

All model goodness metrics require first calculating the model errors. Errors are the
difference between the real values and the values estimated by the model. While
the training errors are calculated during the training phase, the validation errors are
calculated after training, in the model selection phase. Practically, there are two ways
to calculate them. The errors (residuals) can be calculated from Θ and the solution ξ

directly, assuming an implicit model, as

ϵ = Θξ (41)

Note that this only holdswhen the “target variable” is thenull vector0. I use the equation
above to calculate the training errors for each model. The result is an N × 1 vector, one
element for each row of the Θ matrix. Calculating the error like that requires the data
to have the structure of the candidate function library Θ. Because I generate an ODE
function for eachmodel automatically, the errors can also be calculated using themodel
itself. This is done by passing the state and input values from the test set into themodel
ODE function and subtracting the test set’s “real” derivative from the result:

ϵ = ẋmodel(xtest, utest) − ẋtest (42)

32 5 MODEL VALIDATION AND SELECTION

I use this approach to calculate the validation errors, as the validation data doesn’t have
to be in the form of a function library.

5.3 Model fit metrics

The model goodness metrics in this thesis are all calculated from the error vectors ϵ.
For each model, we can calculate a single scalar metric indicating how well it fits the
reference dataset. Whether the reference dataset is the testing or training one depends
on how the error vector ϵ was calculated. A simple statistic evaluating the accuracy of
the model is the mean-squared-error (MSE), which is calculated generally as

MSE(Θ, ξ) = 1
N

N−1∑
k=0

ϵ2
k (43)

The physical units of MSE are the original unit squared. By taking the square root of the
MSE, we get the root-mean-squared-error metric, RMSE. The unit of RMSE is identical to
the target variable’s unit.

5.4 Information criteria

According to the law of parsimony, we should also take into account the model’s
complexity. A particularly important metric, which balances a model’s accuracy and
its complexity, is the Akaike Information Criterion [18], or AIC for short. AIC is generally
calculated as

AIC = 2K − 2 log L(ξ|Θ) (44)

where log L(ξ|Θ) is the log-likelihood of parameters ξ given data Θ and K is the
number of terms, which in our case is the number of non-zero elements of ξ. In the case
of least-squares regression and the assumption that errors are normally distributed [19],
AIC can be reduced to

AIC = 2K + N log MSE (45)

The AIC is then calculated for every identified model. The AIC scores for each model are
then compared, and the models with lowest AIC are considered for further selection.
The Akaike Information Criterion builds on previous concepts in information theory,
particularly the Kullback-Leibler divergence [20].
In this thesis, I didn’t find this criterion particularly useful. Since the models are sparse,
the 2K term is relatively tiny compared to the N log MSE term. The criterion thus
effectively reduces to being a MSE metric. The criterion would be more useful if there
were bigger differences in the numbers of parameters between candidate models.

33

6 Implementational aspects of the SINDy method

6.1 Brief recap of the SINDy-PI method

Before the practical part of the thesis, let’s do a quick recap of the SINDy-PI method and
describe some steps I made when implementing the identification method. The goal
of SINDy is to find a sparse, nonlinear model describing the dynamics of the studied
system. Sparsity in this context means that the resulting equations contain as few
terms as possible. The SINDy-PI [5] extension used in the practical part of the thesis
allows the identification of dynamics described by rational functions by changing the
structure of the function library and tweaking the regression step of the identification.
The method tries to identify implicit ordinary differential equations describing the
dynamics. Naturally, SINDy-PI can also be used to identify non-rational dynamics. For
this reason, I’ll always use the SINDy-PI algorithm for identification, so that I save on
implementation time. The SINDy-PI regression task is, for each separate ODE in the
system, in the form

Θi(X, Ẋ, U) ξi = θi (46)

where Θi ∈ RN×(m−1) is the candidate function library with the function θi ∈ RN×1

extracted out. The ξi is the vector of parameters of the candidate functions from Θi.
To enable implicit model identification, the function library Θ(X, Ẋ, U) is built not only
from state measurements X and input measurements U, but also from state derivative
measurements Ẋ. This is the main difference between implicit and explicit SINDy
methods. In explicit methods, the state derivative measurements Ẋ wouldn’t at all be
embedded in the function library Θ; instead they’d be on the other side of the equation
acting as the target variables.
As the system identification engineers, we have full freedom to choose the specific
candidate functions in Θ. This gives us the ability to impute system-specific knowledge
into the identification process. Let’s quickly demonstrate this concept on the example of
data-driven model identification of a simple pendulum. Anybody who has ever derived
the system’s dynamics from first principles surely remembers that the equations of
motion contained trigonometric terms - particularly sines and cosines. This is a piece
of knowledge that’s not enough to derive the model analytically, but it can be imputed
into the data-driven identification process by, for example, including trigonometric
functions of the pendulum’s angle in the function library. The identification engineer
can, to a limited extend, make mistakes when choosing these candidate functions by
including functions that aren’t at all present in the dynamics. The identificationmethod
rectifies these mistakes through sparse regression, where the parameters of these
“wrong” candidate functions are simply set to 0 and discarded.
A more interesting example would be including friction models. The pendulum surely
loses some energy during its movement to some kind of resistance. By including
various friction models into the function library, the method could, in theory, identify
even which friction models are active and their parameters. These friction models
could be highly nonlinear, even discontinuous, as long as they can be expressed in
the implicit ODEs linearly with respect to their parameters. For example, if ξi is the

34 6 IMPLEMENTATIONAL ASPECTS OF THE SINDY METHOD

function’s parameter and x1 is a state variable, the candidate function θi could be ξix
2
1,

ξisgn(x1) or ξiReLU(xi), but not ξ2
i x1 or x1 sin(ξ1).

6.2 Representing the problem in implicit form

After finding the solution ξi using sparse regression, the extracted function θi can be
imputed back into the i-th columnofΘi and−1 can be imputed back into the respective
row of ξi. This way, the (46) problem is rewritten back into the implicit form

Θ ξ = 0. (47)

For implementational purposes, this form is very convenient, because the structure ofΘ
and ξ stays constant - each unique candidate function corresponds to a unique column
of Θ and a row of ξ. The parameter vectors ξ of the identified implicit models can thus
be compared directly, even if they used different guess candidate functions θi.

6.3 Representing the implicit models

For each model, I generate a characteristic string describing the identified implicit
equation. This string is constructed using the column identifiers of Θ (the candidate
function names) and their respective parameters from the parameter vector ξ.
Remember that in the implicit form, even rational ODEs can be expressed as a linear
combination of candidate functions. The characteristic string represents this linear
combination. For example, if Θ had 5 candidate functions with the string identifiers
[x_1, dx_1, dx_1*x_1, x_2, u] and the regression found ξ to be [1, 0, 2, 3, 2]T, the
characteristic string would be 1*x_1 + 2*dx_1*x_1 + 3*x_2 + 2*u.

This characteristic string serves many purposes. Other than being a characteristic
identifier for each model, it’s also passed into SymPy’s1 [10] parser to produce SymPy’s
representation of a symbolic function. SymPy’s algebraic solver can then reorder
the implicit function into its explicit ODE form. The explicit ODE symbolic equation
can then be used to automatically generate an ODE function using either SymPy’s
codegen function to generate MATLAB function files, or its lambdify function to generate
Python’s anonymous functions. Automatic code generation is a massive advantage, as
even relatively simple models are tedious to manually code into an ODE function for
simulation purposes. SymPy enables quick and painless transition from identification
to simulation, speeds up the engineer’s workflow and preserves their nerves.

6.4 Reducing the number of models

The SINDy-PI method generates a very large number of models. There are m candidate
functions θ in the function library Θ, if each one of them is used as a guess, each
generates at least one implicit model. Each guess function generates a number of

1An open-source symbolic math module for Python. Stands for “Symbolic Python”.

6.4 Reducing the number of models 35

models that depends on the cardinality of the set of regression hyperparameters
we specified before starting the identification. For example, if we defined the
hyperparameter set as Λ = {λ1, λ2, λ3} = {0.1, 0.01, 0.001}, then for each guess function,
the regression will be performed 3 times, each time with a different hyperparameter
value, and each regression will yield a model. Given that the number of candidate
functions m can be in the hundreds, we need a quick way to sift through the massive
number of models.
Different hyperparameter values λ can sometimes yield exactly the same models. The
first (and easiest) way to reduce the number of models is therefore to only keep unique
models. I create an unique fingerprint for each model by sending the model’s guess
function string and its parameter vector ξ into a hash function. If there are two or more
modelswith the same hash, only the first one is preserved and the others are discarded.
The otherway to reduce the number ofmodels used in this thesis leverages the fact that
the correct model should be identified for many different guess candidate functions θi.
Therefore, models that appear consistently in the generated set of models are good
candidatemodels. To understand consistency, let’s first define the dissimilarity between
two models. One way to define the dissimilarity between two models is though their
parameter vectors ξ. We can calculate the parametric distance between two models
defined by the parameter vectors ξi and ξj respectively. Both vectors exist in Rm, where
m is the number of candidate functions θ. The difference between model j and model i

can be defined as the difference between their parameter vectors ξ

∆(ξi, ξj) = ξi − ξj . (48)

Taking, for example, the L2 (Euclidean) norm of this difference vector gives us a single
number describing the dissimilarity between two models. If two models are close
together in the parametric space, they’re “similar” and the dissimilarity metric will be
small.
For the purposes of sparse identification, I found a better definition of model
consistency. The dissimilarity metric I use to find consistent models relies on
transforming the parameter vectors ξ, so that non-zero elements are set to 1 and
the 0 elements stay 0. More formally, I calculate the activation vector a(ξ) by the
element-wise operation

ai = ξ0
i (ξi to the 0−th power) (49)

The activation vector a ∈ {0, 1}m then replaces the parameter vector ξ for calculating
model similarity. If two models have the same active (non-zero) terms, the difference
vector between their activation vectors is the null vector 0. For a scalar dissimilarity
metric, I use the L1 norm of the activation difference vector ∆(ai, aj). This literally
corresponds to the number of different active terms.
To then find groups of consistent models, I use hierarchical clustering. Hierarchical
clustering is computationally intensive for even moderately sized datasets, but our
number of elements (models) is very small in the context of automated data analysis.

36 6 IMPLEMENTATIONAL ASPECTS OF THE SINDY METHOD

It has the advantage of being relatively simple and being able to find even “weirdly
shaped” clusters. I define the cutoff activation distance as 2, meaning that if two
models have a bigger activation distance bigger than 2, they’ll be assigned into different
clusters. The end result of clustering is a cluster label for each model. The models that
are in a non-singular cluster (there’s at least one other model with similar structure) are
kept for further validation and the other models are discarded.

37

7 Model identification of the Lorenz system with feed-forward
inputs

To demonstrate the method, I’ll identify the model of the canonical Lorenz system. The
system equations will be expanded by three external inputs to show the method’s
ability to identify the effects of forcing as well. The natural dynamics are fairly simple,
consisting only of terms created from x1, x2, x3. To show that the effect of external
variables is also identifiable, I’ll also add separate forcing terms u1, u2, u3 to each of the
differential equations.

7.1 Definition

Let’s define the Lorenz system with external input as

ẋ1 = γ(x2 − x1) + 40sgn(u1) (50a)

ẋ2 = x1(ρ − x3) − x2 + 10 sin(u1)u2 (50b)

ẋ3 = x1x2 − βx3 + u3x1 (50c)

where ẋ = [ẋ1, ẋ2, ẋ3]T is the state derivative, x = [x1, x2, x3]T the state and u =
[u1, u2, u3]T the vector of external inputs. Note that the external inputs also enter the
ODEs non-linearly. The sgn(u1) function is the sign function

sgn(u1) =

1, if u1 ≥ 0.

−1, if u1 < 0.
(51)

The other parameters are chosen as σ = 10, β = 8
3 and ρ = 28. By substituting the

parameter values for the parameters in (50), the true system’s dynamics are

ẋ1 = 10x2 − 10x1 + 40sgn(u1) (52a)

ẋ2 = 28x1 − x1x3 − x2 + 10 sin(u1)u2 (52b)

ẋ3 = x1x2 − 8
3

x3 + u3x1. (52c)

To identify how the inputs u affect the state derivatives, the inputs must be doing
something during simulation. Therefore, I’ll set the inputs u as functions of time t. More
specifically, I’ll define them as a band-limited noise process. For each input, I’ll generate
a white noise signal with some defined power. These white noise signals will then be
low-pass filtered using a spectral filter to get rid of higher frequencies. For practical
purposes, it’s necessary to get rid of the higher frequencies in the input signal. The
measurements will also be low-pass filtered to allow for numerical differentiation, so
the effects of higher frequency input signalswould also get filteredout. Also if the inputs
were physical actuators, sending high frequency and relatively high power signals into
them might damage them or the system itself. The signal sent into the input u1 during
simulation is shown in Figure 16.

38 7 MODEL IDENTIFICATION OF THE LORENZ SYSTEM WITH FEED-FORWARD INPUTS

Fig. 16: Band-limited noise sent into input u1 for identification purposes.

Three different band-limited noise signals ni, i = (0, 1, 2) are generated, one for each
input. The input vector u is thus defined as

u(t) =


u1

u2

u3

 =


n1(t)
n2(t)
n3(t)

 . (53)

7.2 Code implementation

In this subsection, I’ll describe the part of the simulation implementation code that
wasn’t trivial, isn’t in the documentation (yet) and that’s specific to simulating dynamical
systems in MATLAB. Before the simulation can start, we must set up the ODE function
for the solver. MATLAB’s ODE solver expects on its input an ODE function with
an input in the form (t, x). The noise process used for inputs must be defined
as a continuous function of time t and embedded into the ODE function used for
simulation. The band-limited noise was generated as a discrete time signal, so it must
be transformed into a continuous function. This can be done for example using simple
linear interpolation. The input can also be a function of the state x, if we wished to
simulate a system with feedback control - this will be useful later. While these last
few steps might look difficult, they’re easy to implement using MATLAB’s anonymous
functions:

control_law = @(x) [0, 0, 0];
random_process = @(t) interp1(time, noise_bandlimited, t);
u_fun = @(t, x) (control_law(x) + random_process(t));

The time variable is an N × 1 vector of timestamps and noise_bandlimited is an N × 3
matrix, where each column represents the value of a noise process in time. The
control_law anonymous functionwill be useful for implementing feedback, but for now
it’s kept “disconnected”. The interp1 function is a 1D row-wise interpolation function;

7.3 Simulation 39

since noise_bandlimited has 3 columns, it will return 3 values. By adding up both
anonymous functions into u_fun, we get a function that determines the values of all
3 ui input variables based on the time t and state x.
The ODE function for the Lorenz system:

function dxdt = lorenz(t, x, u_fun, params)

u = u_fun(t, x);

dxdt = [params.sigma*(x(2)-x(1)) + 40*sign(u(1)),...
x(1)*(params.rho - x(3)) - x(2) + 10*sin(u(1))*u(2),...
x(1)*x(2) - params.beta*x(3) + u(3)*x(1)]';

Note that this lorenz function still isn’t a function of only the time t and x as the
solver requires. It has two additional inputs, the function u_fun(t, x) and a struct with
system parameters. Both these additional inputs are constant once defined. To embed
the inputs into the ODE function, define another anonymous function as:

params.sigma = 10;
params.beta = 8/3;
params.rho = 28;
odefun = @(t, x)lorenz(t, x, u_fun, params);

This odefun function is now in the correct form for the ode45 solver.

7.3 Simulation

The simulation is now simple:

x0 = [1, 2, 3]'; % initial conditions
tspan = [0, t_end]; % time span
sol = ode45(odefun, tspan, x0); % Solve the system of ODEs

t = (0:dt:t_end)'; % define a time vector with constant time steps
x = deval(sol, t)'; % use the sol object to get the states at the particular times

The outputs of the simulation are the datawith time and state trajectorymeasurements
X. The total number of time samples N is 216, and the sampling period dt is 0.001 s,
putting the total simulation time at tend = 216 ∗ ∆t ≈ 65 s.
Thedata is then sent back into the odefun function and the u_fun function toget the state
derivative measurements Ẋ and the input variable measurements U respectively. All
the data is then saved in .csv format for the identification phase, which is implemented
in another language, Python.

40 7 MODEL IDENTIFICATION OF THE LORENZ SYSTEM WITH FEED-FORWARD INPUTS

Fig. 17: Results of a simulation of a Lorenz system with external random process inputs. The full simulation is
visualized as an animation at this link: https://git.io/JBctw.

7.4 Creating the function library

The library of candidate functionsΘ is then computed from the x andU simulation data.
The first set candidate functions was chosen as all possible products of the state and
input variables up to the 2nd order. The list of candidate function identifiers (column
names) for this set:

https://git.io/JBctw

7.4 Creating the function library 41

Theta1.columns = [
'u_1', 'u_2', 'u_3', 'x_1', 'x_2', 'x_3', 'u_1*u_1', 'u_1*u_2',
'u_1*u_3', 'u_1*x_1', 'u_1*x_2', 'u_1*x_3', 'u_2*u_2', 'u_2*u_3',
'u_2*x_1', 'u_2*x_2', 'u_2*x_3', 'u_3*u_3', 'u_3*x_1', 'u_3*x_2',
'u_3*x_3', 'x_1*x_1', 'x_1*x_2', 'x_1*x_3', 'x_2*x_2', 'x_2*x_3',
'x_3*x_3']

The second set of candidate functions was chosen as the Cartesian product of the
set of all sine and cosine functions of inputs ui and the set of all inputs u1 and state
variables x. The column names of this data matrix are:

Theta2.columns = [
'sin(u_1)*u_1', 'sin(u_1)*u_2', 'sin(u_1)*u_3', 'sin(u_1)*x_1',
'sin(u_1)*x_2', 'sin(u_1)*x_3', 'sin(u_2)*u_1', 'sin(u_2)*u_2',
'sin(u_2)*u_3', 'sin(u_2)*x_1', 'sin(u_2)*x_2', 'sin(u_2)*x_3',
'sin(u_3)*u_1', 'sin(u_3)*u_2', 'sin(u_3)*u_3', 'sin(u_3)*x_1',
'sin(u_3)*x_2', 'sin(u_3)*x_3', 'cos(u_1)*u_1', 'cos(u_1)*u_2',
'cos(u_1)*u_3', 'cos(u_1)*x_1', 'cos(u_1)*x_2', 'cos(u_1)*x_3',
'cos(u_2)*u_1', 'cos(u_2)*u_2', 'cos(u_2)*u_3', 'cos(u_2)*x_1',
'cos(u_2)*x_2', 'cos(u_2)*x_3', 'cos(u_3)*u_1', 'cos(u_3)*u_2',
'cos(u_3)*u_3', 'cos(u_3)*x_1', 'cos(u_3)*x_2', 'cos(u_3)*x_3']

These two function libraries Theta1 and Theta2 were concatenated into one large
candidate function library Theta. One extra function was generated for the candidate
function sgn(u1) and also added into Theta. This would’ve been enough, but since I only
implemented the implicit form of the method, the identification object expects the
state derivative measurements X to be present in the library, so they were also put in.

The previous sequence of operations gave us just the symbolic representations of
our candidate functions. We have to recreate the numeric, discrete representation for
the purpose of regression. The trigonometric terms, for example the term sin(u1), will
be recreated by taking the time-series of measurements of u1 and applying the sin(u)
function to every element of the vector.

u2 =



u2[0]
u2[1]
...

u2[N − 2]
u2[N − 1]


sin(u2) =



sin(u2[0])
sin(u2[1])

...
sin(u2[N − 2])
sin(u2[N − 1])


(54)

The candidate functions that are a product of other functions are created by taking
the Hadamard (element-wise) product of their respective time series. For example the
time-series vector representing the candidate function cos(u2) ∗ x3 will be calculated as:

42 7 MODEL IDENTIFICATION OF THE LORENZ SYSTEM WITH FEED-FORWARD INPUTS

cos(u2) ∗ x3 =



cos(u2[0])
cos(u2[1])

...
cos(u2[N − 2])
cos(u2[N − 1])


◦



x3[0]
x3[1]
...

x3[N − 2]
x3[N − 1]


=

=



(cos(u2[0])x3[0])
(cos(u2[1])x3[1])

...
(cos(u2[N − 2])x3[N − 2])
(cos(u2[N − 1])x3[N − 1])


=



(cos(u2)x3)[0]
(cos(u2)x3)[1]

...
(cos(u2)x3)[N − 2]
(cos(u2)x3)[N − 1]



(55)

Where ◦ is the Hadamard product operator.
The result is amatrix representing the function library Θ ∈ RN×m, where each column is
a candidate function θi, each row is a measurement at discrete time k, N is the number
of time-samples and m is the number of candidate functions.

Θ =
[
θ0 θ1 . . . θm−2 θm−1

]
=

=



θ0[0] θ1[0] . . . θm−2[0] θm−1[0]
θ0[1] θ1[1] . . . θm−2[1] θm−1[1]
...

... . . .
...

...
θ0[N − 2] θ1[N − 2] . . . θm−2[N − 2] θm−1[N − 2]
θ0[N − 1] θ1[N − 1] . . . θm−2[N − 1] θm−1[N − 1]


(56)

7.5 Identification using clean data

The candidate function matrix Θ contains all the information needed to start the
identification phase itself. The Lorenz system has three state variables x1, x2, x3. To find
the model of the system, we need to find their derivatives ẋ1, ẋ2, ẋ3. These derivatives
are also contained in the Θ library, because my implementation of the identification
method uses the implicit formulation of the identification process.

A separate identification procedure is done for each state derivative. The procedure
starts by removing the candidate functions θ that aren’t relevant for the state derivative
that’s being identified. In this case, it’ll be only the other state derivatives. When
identifying ẋ1, candidate functions ẋ2 and ẋ3 are dropped from the library and the library
is sent to the object that does the identification. The object finds the parameters ξ of
implicit models according to the equation (46). Because we know that the dynamics
can be expressed as a linear combination of candidate functions, we don’t need to
solve the implicit form of the problem. Instead of making the identification object
make a guess for every column θi, we can define the guess to be only the relevant state
derivative column. This way, the identification procedure is identical to the original

7.5 Identification using clean data 43

explicit SINDy formulation (8), where the state derivative is the target variable directly.

The identification object uses sequentially energy-thresholded least squares
algorithm, which I introduced in 3.2.5, to find the solution ξ. The regression algorithm
has one hyperparameter, λR, which controls the sparsity of the solution. The
identification object requires us to define a set of hyperparameter values to use
for regression. A separate model is created for each specified hyperparameter. I
defined 10 hyperparameter values, ranging from 0.001 (least sparse) to 0.01 (most
sparse). Therefore, 10 models will be generated for each state variable.

The unique models for each state variable are shown in the Figures 18. Each row
represents a single implicit model. The row labels contain the model’s index, the
candidate function used as the guess function, and the training error metric (RMSE, root
mean square error). Each column represents a candidate function θi and its respective
parameter ξi. Candidate functions that weren’t active in any of the identified models
aren’t visualized.

(a) Identified implicit models for ẋ1

(b) Identified implicit models for ẋ2

(c) Identified implicit models for ẋ3

Fig. 18: Identification results for the Lorenz system simulated with feed-forward input signals. The training data
contained no noise, and derivatives were computed exactly from the analytical model.

44 7 MODEL IDENTIFICATION OF THE LORENZ SYSTEM WITH FEED-FORWARD INPUTS

7.6 Identification using noisy data

Realmeasurements contain noise. I’ll repeat the identification process, but I’ll addwhite
noise with standard deviation of 0.2 to each measurement vector xi. Measurements
of the derivatives ẋi will also be estimated from measurements of xi using numerical
differentiation. First, it’s necessary to get rid of the high frequency part of the noise
present in the measurements. Otherwise, numerical differentiation would result in an
extremely noisy signal. The filter settings for each state variable are shown in Figure 19.

Fig. 19: Spectral filter settings for the noisy measurements of xi.

The x1 signal and its respective model ẋ1 will be the most difficult to identify
due to the discontinuity caused by the sgn(u1) term. This term causes first order
discontinuities (jumps) in the measurements of the derivative ẋi. The discontinuities in
time-domain lead into infinite bandwidth in frequency domain. This is an issue, because
the high frequency information signal is relatively weak compared to the noise. High
frequencies need to be filtered out for numerical differentiation, otherwise we’d be
mostly differentiating noise. This leads into the estimated measurements of ẋ1 being
quite off from the real values, as shown in Figure 21.

Next, the function libraryΘ is constructed from themeasurements and thederivative
estimates and used as a training dataset for the identification. The identifiedmodels are
shown in Figure 22.

7.6 Identification using noisy data 45

Fig. 20: Comparison of clean, noisy and filtered measurements of xi.

Fig. 21: Comparison of clean and estimated values of ẋi. The estimated values were computed from filtered
measurements xi using spectral differentiation.

46 7 MODEL IDENTIFICATION OF THE LORENZ SYSTEM WITH FEED-FORWARD INPUTS

(a) Identified implicit models for ẋ1

(b) Identified implicit models for ẋ2

(c) Identified implicit models for ẋ3

Fig. 22: Identification results for the Lorenz system simulated with feed-forward input signals. The measurements
of state variables contained significant noise, which lead into poor state derivative estimate accuracy.

7.7 Validation

The simulated dataset was first split into two data sets, one used for training, and the
other for validation. The validation data set was kept clean, with no noise and exact
derivatives. The model derived for earlier is first validated using the validation set. The
derivatives ẋ are first estimated using the state x and u. The results are in Figure 23.

The model’s state derivative estimations are quite accurate, being very close to the
real values. The reference model (used to generate the data) and the model identified
from noise will further be validated by simulation. Both models will be simulated, from
an identical initial state and both receiving the same input signal. The trajectories are
visualized in Figure 24. The trajectories start close together, but later decouple.

7.7 Validation 47

Fig. 23: Comparison of clean ẋi from the validation set and the ẋi estimated using the model identified from data.

Fig. 24: Comparison of the trajectories generated by the reference and the identified model. Both models start at
the same initial condition and receive the same input u. The input signals are random band-limited processes, but
they’re not visualized. Full animation: https://git.io/JBSU3

https://git.io/JBSU3

48 7 MODEL IDENTIFICATION OF THE LORENZ SYSTEM WITH FEED-FORWARD INPUTS

7.8 Discussion

The exact model of the simulated system was fully retrieved from clean simulation
data. The training error for all three system equations was 0. Training error doesn’t
test generalization capability, and models should always be evaluated on a test set
that was withheld from training. The sparsity condition promotes simplicity, which in
turn promotes generalization capability. If sparse models were found and had a good
training error, it’s very likely they’re able to generalize well.
Themodel identified fromclean test datawasn’t validated, since the entire identification
processwas idealizedand servedonly to confirm that themethodworks. The simulation
data was completely clean. It didn’t contain any noise and the state derivatives were
computed from the analytical system equations directly.
Noise was then added to the state measurements and the state derivative
measurements used for training were estimated from the measurements to create the
trainingdata set. Themost accuratemodelswere accurate for all statederivativemodels
except for ẋ1, where the correct model was the secondmost accurate when evaluated
on the training data. The model for ẋ1 was the most difficult to identify because of the
first order discontinuities in the ẋ1 measurements caused by the sgn(u1) function.

49

8 Model identification of the Lorenz system with feedback external
inputs

8.1 Definition

In this section, the system’s natural dynamics are the same as in the previous section,
but the external inputs will enter the state derivative equations directly.

ẋ1 = 10x2 − 10x1 + u1 (57a)

ẋ2 = 28x1 − x1x3 − x2 + u2 (57b)

ẋ3 = x1x2 − 8
3

x3 + u3. (57c)

The purpose of this simplification is to demonstrate the identification of a
feedback-controlled system. If u1 entered the dynamics as an argument of a non-linear
function, for example as sqn(u1), and u1 was defined by the feedback control law
u1 = x1 − 15, then the control term in the dynamics would be sqn(x1 − 15). The
argument of the sqn function would be shifted by 15. This wouldmean that the function
sqn(x1 − 15) would have to be present in the candidate function library Θ. Identifying
terms with shifted arguments is not feasible. To identify the argument-shifted term,
the function library have to contain the function with the exact shift. Without exact
knowledge of the argument shift, it’d have to be guessed by including the function
with many different argument shifts and seeing which one is correct. The library would
grow too large and the identification would become poorly conditioned.

The identification process in this case will be made more difficult by three things:

1. I won’t use the exact state derivatives computed from the system equations.
Instead they’ll have to be calculated using numerical differentiation from the state
measurements X.

2. I’ll add noise to the state measurements X. This will make directly computing
state derivatives Ẋ from X impossible, due to the high-pass nature of numerical
differentiation. The state measurements X will have to be filtered.

3. The input values u during the simulation won’t be defined as pure random
processes, they will contain state feedback. State feedback effectively changes
the system dynamics. If the inputs were defined as pure feedback, it would be
impossible to tell natural dynamics apart from effects of external forcing. This
problem will be discussed further in the next subsection.

50 8 MODEL IDENTIFICATION OF THE LORENZ SYSTEM WITH FEEDBACK EXTERNAL INPUTS

8.2 Feedback forcing loop

In the previous section, the input was defined as a random noise process to identify the
effects of external inputs on the system. In some real world applications, we might not
have the option to send arbitrary signals as inputs. Sometimes, the inputs have to be
also used to control (stabilize) the system continuously, even during the data collection
phase.
In this example, the inputs will contain state feedback terms. State feedback effectively
changes the dynamics of the system. If the inputs u weren’t measured during the
simulation or if the input measurements U weren’t included in the candidate function
library Θ, it would be completely impossible to tell apart the effects of natural dynamics
from external forcing. The regression problemwould become poorly conditioned. If the
control law defined the first input as u1 = x1 − 15, then the measurement of u1 would
simply consist of y-axis shifted measurements of x1. This would make both candidate
functions x1 and u1 perfectly correlated, the condition number κ would explode to ∞.
For this reason, the inputs u cannot be defined purely by the feedback control law for
data collection. Let’s define a general input ui as the sumof the control law uic and some
random process uin as

ui(t, x) = uic(x) + uin(t). (58)

The time dependent uin random noise process helps to de-correlate the input
measurements from the state measurements, allowing combined identification of
both the natural dynamics and the effects of external forcing. The relative power of
both uic and uin signals also plays an important role. If the random process uin(t)
is strong compared to the control law uic(x), the measurement vector of ui will be
strongly de-correlated from the state measurements. But this benefit comes at a cost;
as the control law is relatively weak, the system will be poorly controlled during data
collection, which could have consequences significantly worse than “bad data”.

The inputs will be defined during the simulation as

u =


0.125(x1 − 20) + n1(t))
0.125(x2 − 20) + n2(t))
0.125(x3 − 24) + n3(t))

 (59)

where ni(t) are band-limited noise processes, as in the previous section. The first few
seconds of the input signals during simulation is shown in the Figure 25.

8.3 Simulation and data pre-processing

The dynamical system is simulated with the input signals u defined by both the control
law and the random noise process. The simulation procedure is similar as in the
last section. There’s clean simulation data on the simulation’s output. To make the
identification procedure more realistic, I’ll add white noise with standard deviation

8.3 Simulation and data pre-processing 51

Fig. 25: The input signals as a sum of the control law and random noise process.

σ = 0.25 to all state measurements X. The clean and noisy state trajectories X are
shown in the next figure.

(a) The clean state trajectory X. (b) The noisy state trajectory X.

Fig. 26: Comparison of generated state trajectory X with and without noise. A visualization of the full simulation:
https://git.io/JBctq.

Another problem is getting the state derivative measurements Ẋ. In the previous
section, I used the clean derivative measurements, which were generated using
the real system equations. The point of system identification is discovering exactly
these equations from data, so using them for pre-processing doesn’t make sense

https://git.io/JBctq

52 8 MODEL IDENTIFICATION OF THE LORENZ SYSTEM WITH FEEDBACK EXTERNAL INPUTS

chronologically. Instead, they’ll have to be calculated from the state measurements
X using numerical differentiation. Because numerical differentiation is sensitive to
high-frequency noise, the state measurements X will first need to be low-pass filtered.
I’ll be doing this using the spectral filtering method described earlier in 4.2.4. The filter’s
cutoff frequencies and state measurements are shown in the next figures.

Fig. 27: Filter cutoff frequency setting from smoothed periodograms calculated from X.

8.3 Simulation and data pre-processing 53

(a) The full state measurements.

(b) The full state measurements, zoomed in at a portion of the signal.

Fig. 27: A comparison of clean, noisy and filtered state measurements X.

Note that the filtered statemeasurements are nearly identical to the real, clean state
measurements. The next step is calculating the state derivativemeasurements Ẋ using
spectral differentiation as discussed in 4.1.2. They will be calculated directly from the
filtered X signals shown earlier.

54 8 MODEL IDENTIFICATION OF THE LORENZ SYSTEM WITH FEEDBACK EXTERNAL INPUTS

(a) The full state state derivative measurements.

(b) The full state derivative measurements, zoomed in at a portion of the signal.

Fig. 27: A comparison of clean state derivative measurements Ẋ and Ẋ computed from filtered X.

The estimated state derivatives oscillate quite a lot compared to the clean signals.
The cutoff frequency was picked based on the lowest frequency at which the smoothed
periodogramhits the “noise ceiling”. Spectral differentiation is effectivelymultiplication

8.3 Simulation and data pre-processing 55

by iω in the frequency domain, which corresponds to high-pass filter behaviour.
This means that when estimating spectral derivatives, the highest frequency in the
underlying signal will have a strong effect on the result. By picking the cutoff frequency
as the frequency at which the noise ceiling is hit, the highest frequency in the filtered
signal will have a (spectral) signal-to-noise ratio close above 1; the noise amplitude will
be relatively close to the signal’s amplitude. The high-pass nature of differentiation
means that this signal frequencywill have a strongweight on the results. For this reason,
it’s better to over-filter the signal before differentiation, so that the highest frequency
still has a high signal-to-noise ratio. I offset the original cutoff frequency by 3 frequency
bin ranges to the lower frequencies. Note that the periodogram was computed using
Welch’s method, so the frequency resolution is lower - a bin range is significantly higher
than fsampling

#samples .

Fig. 28: Cutoff frequencies after being offset to lower frequencies by 3 frequency bins.

This filter is then used to again filter the noisy state measurements X. The results
are visually identical. The difference becomes significant when the signals are used to
again compute Ẋ.

The data for regression doesn’t have to be perfect. In fact, the identification was
successful and yielded similar results for both cases. In any case, less noise is always
better.

56 8 MODEL IDENTIFICATION OF THE LORENZ SYSTEM WITH FEEDBACK EXTERNAL INPUTS

Fig. 29: State derivative measurement estimates Ẋ computed from over-filtered X.

8.4 Identification

The candidate functions for the identification were defined as

Theta.columns = [
'1', 'u_1', 'u_2', 'u_3', 'x_1', 'x_2', 'x_3', 'u_1*u_1', 'u_1*u_2',
'u_1*u_3', 'u_1*x_1', 'u_1*x_2', 'u_1*x_3', 'u_2*u_2', 'u_2*u_3',
'u_2*x_1', 'u_2*x_2', 'u_2*x_3', 'u_3*u_3', 'u_3*x_1', 'u_3*x_2',
'u_3*x_3', 'x_1*x_1', 'x_1*x_2', 'x_1*x_3', 'x_2*x_2', 'x_2*x_3',
'x_3*x_3', 'dx_1', 'dx_2', 'dx_3'].

The library is significantly smaller than the last time, where it included trigonometric
and other functions. More candidate functions means more model parameters. When
the regression algorithm has more parameters, it has more degrees of freedom, which
often leads to overfitting; fitting the noise in the data. This means that in the presence
of noise, the number of functions in the candidate function library Θ cannot grow
arbitrarily.
The discovered implicit models are shown in the next figure.

In all cases, the identified models contain exactly the correct terms. Due to noise
present in the training data, the parameters are slightly off.

8.4 Identification 57

(a) Identified implicit models for ẋ1

(b) Identified implicit models for ẋ2

(c) Identified implicit models for ẋ3

Fig. 28: Identification results for the Lorenz system simulated with feedback input signals. The state trajectories
X contained significant noise, derivatives Ẋ were computed using numerical differentiation from filtered X.

Table 1: The system equation of the real model compared to the identified model.

ẋi Reference model Identified model
ẋ1 10x2 − 10x1 + u1 9.99971x2 − 10.00047x1 + 0.99567u1
ẋ2 28x1 − x1x3 − x2 + u2 27.71757x1 − 0.99266x1x3 − 0.91848x2 + 1.00354u2
ẋ3 x1x2 − 8

3x3 + u3 0.99992x1x2 − 2.66735x3 + 0.99746u3

58 8 MODEL IDENTIFICATION OF THE LORENZ SYSTEM WITH FEEDBACK EXTERNAL INPUTS

8.5 Validation

During the identification phase, the models were evaluated on the training data. To test
the models’ generalization capability, they should be evaluated on data that the model
hasn’t seen during the regression.
First, let’s test the model’s ability to estimate the state derivative ẋ given a state x and
input u. This derivative prediction is to a continuous model as one-step prediction is
to a discrete model. I ran the Lorenz simulation again, from a different initial state and
using different randomnoise process on the input. Then I used the statemeasurements
Xval, input measurements Uval to calculate the state derivative estimates Ẋest using
the identified model. These estimates Ẋest are then compared to the state derivative
measurements Ẋval.

Fig. 29: Comparison of state derivatives Ẋest estimated using the identified model and the reference Ẋval validation
data.

The estimates are nearly identical to the real values, since the model parameters
are very accurate. For each state derivative ẋi, I calculated the error as the difference
between real values and the values estimated by the model.

From the error signals above, I calculated the root-mean-square-error metric, RMSE:

Table 2: Validation RMSE for each identified state derivative ẋi.

RMSE(ẋ1|ξ) 2.33E-2
RMSE(ẋ2|ξ) 1.59E-1
RMSE(ẋ3|ξ) 2.34E-2

Curiously, the RMSE values are in each case significantly lower than the samemetrics
calculated from the training data as shown in the results visualization in Figure 28.

8.5 Validation 59

Fig. 30: State derivative prediction errors ϵi.

It is expected that error metrics calculated using test data should always be worse
than the same metrics calculated using testing data. In this case, the reason they’re
lower is because the testing metrics were calculated from a clean validation dataset,
while the trainingmetrics were calculated from the dataset with filteredmeasurements
and estimated derivatives. Most of the training RMSE comes from the inaccuracies in
derivative estimations; the data was wrong, not the model derived from them.
Another way to test the model is using a full simulation. First, I use the discovered
models to generate a MATLAB function using SymPy’s code generator. The generated
function has to be slightly edited for compatibility with MATLAB’s ode45 solver. Then I
generate a new random noise process for the input, set an initial state and simulate
both the real and the identified system.

60 8 MODEL IDENTIFICATION OF THE LORENZ SYSTEM WITH FEEDBACK EXTERNAL INPUTS

(a) The first 4 seconds of the state trajectories.

(b) The full state and state derivative trajectories

Fig. 30: Results of a simulation of both the real and the identified system from the same initial state. The full
visualization including the 3D trajectory is at: https://git.io/JBPQs

https://git.io/JBPQs

8.6 Discussion 61

Both trajectories are close to each other at the start. Then, as the small errors in
derivative predictions accumulate, the trajectories eventually decouple. Lorenz system
is the most known example of a chaotic system - a system where small differences,
either in the initial condition or in the parameters, lead to vastly different results.
Chaotic systems are in reality quite common, as will be apparent in the next section.
The consequence of chaos is that even if we have a very accurate model, we cannot use
it to predict the real state arbitrarily far into the future. The further in time the prediction,
the less certain it is.

8.6 Discussion

The method successfully discovered an accurate model even from data corrupted by
noise. The identified model’s ability to estimate the state derivatives ẋi(x, u) given x
and u was validated using a validation data set generated by a separate simulation. The
validation error was lower than the training error, becausemost of the training error was
caused by inaccuracies in the training data itself. The identified model was then also
validated by a simulation. The identified model’s state trajectory was close to the real
trajectory, but as a consequenceof the chaotic natureof the Lorentz system, it eventually
decoupled. Qualitatively, the identified model’s trajectory was indistinguishable from
the real trajectory. The Lorenz system was great for demonstrating many concepts that
will be important in the next sections.

62 9 MODEL IDENTIFICATION OF A SIMULATED PENDULUM-CART SYSTEM

9 Model identification of a simulated pendulum-cart system

9.1 First-principles model derivation

For the purposes of generating training data and informing ourselves about the
structure of the true dynamics of the system, let’s start by deriving the analytical,
first-principle model of the system using Euler-Lagrangian mechanics, following the
procedure detailed in [21]. A pendulum-cart system has two degrees of freedom, the
linear displacement of the cart s and the angle of themountedpendulumφ. This implies
that the true system consists of two second order differential equations describing the
linear acceleration of the cart s̈ and the angular acceleration of the pendulum φ̈. The
pendulum’s 0 angle is at the stable equilibrium, where the pendulum is down. The angle
coordinates use the right-hand rule, where the angle grows in the counter-clockwise
direction.
First, let’s define the Lagrangian as:

L = T − V (60)

where T and V stand for the kinetic and the potential energy respectively. The kinetic
energy T is then defined as:

T = 1
2

mpṖT
p Ṗp + 1

2
Ipφ̇2 + 1

2
mcṡ

2 (61)

wheremp,mc are themasses of the pendulumand the cart, Ip is themoment of inertia of
the pendulumwith respect to its center of mass, and Pp is the vector of x-y coordinates
of the pendulum’s center of mass.
The potential energy of the system V , assuming zero potential at the y coordinate of the
cart, is simply the potential energy of the pendulum:

V = gmpPp,y (62)

where Pp,y is the y coordinate of the pendulum’s center of mass.
To incorporate velocity-proportional friction forces into themodel, let’s define a Rayleigh
dissipation function.

R = 1
2

bpφ̇2 + 1
2

bcṡ
2 (63)

where bp and bc are the damping coefficients of the pendulum joint and of the linear
drive respectively. The friction forces are proportional to the first power of the respective
velocity.

For generality, let’s define the vector of generalized coordinates q as:

q =
[
q1

q2

]
=
[

s

φ

]
(64)

9.2 State-space representation 63

The vector of generalized forces is fortunately quite simple:

Q =
[
Q1

Q2

]
=
[
u

0

]
(65)

Where u is the force acting on the cart in the direction of q1. The force u is generated
by the linear drive, whose internal dynamics are omitted, because the circuit dynamics
are much faster than the dynamics of the mechanical system and the simplification
therefore doesn’t significantly decrease themodel’s accuracy. The vector of generalized
forces should contain all non-conservative forces, including the velocity-dependent
friction forces like those defined by the Rayleigh dissipation function. However, in this
thesis, I’ll move the Rayleigh dissipation term to the left-hand side of the equation.

Finally, let’s use the Euler-Lagrange equations to derive the equations of motion of
the system.

d

dt

dL

dq̇k
− dL

dqk
+ dR

dq̇k
= Qk k = 1, 2 (66)

This procedure returns two implicit equations of motion, from which we can derive
the explicit formulations for s̈ and φ̈. The equations of motion from (66) contain second
order derivatives, each equation contains both second order terms. Such equations
are difficult to re-order algebraically by hand, especially given their size, but symbolic
math software packages, such as MATLAB’s symbolic math toolbox, can greatly simplify
the process. It is convenient to transform a system of two second order ODEs into a
system of four first order ODEs. This procedure is closely connected with the concept of
a state-space.

9.2 State-space representation

The system of two second order ODEs describing the cart-pendulum dynamics can be
decomposed into a system of four first order ODEs in the following way:

x =


x1(t)
x2(t)
x3(t)
x4(t)

 =


s(t)
ϕ(t)
ṡ(t)
ϕ̇(t)

 =⇒ d
dt

x = ẋ =


ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)

 =


ṡ(t)
ϕ̇(t)
s̈(t)
ϕ̈(t)

 (67)

The full state vector x consists of the generalized coordinates (x1 and x2) and
generalized velocities (x3 and x4). Notice that the state variables x3 and x4 are
equal to the state derivative variables ẋ1 and ẋ2, and that only the state derivative
variables ẋ3 and ẋ4, or the accelerations, are unknown.

Doing this decomposition by hand can often be very time-consuming and
algebraically non-trivial, especially as the dimension of the state space increases.
Fortunately, there are symbolic solvers which can do this automatically. I do the entire
sequence of analytical model derivation steps using MATLAB and its symbolic math

64 9 MODEL IDENTIFICATION OF A SIMULATED PENDULUM-CART SYSTEM

toolbox. I will describe only the most important and non-trivial parts of the code in this
thesis. The full code is available in the attachments.

The differential order reduction step is done using the
reduceDifferentialOrder(eqs, vars) function, which takes in the vector of higher
order symbolic ODEs eqs and a vector of symbolic variables (in this case, generalized
coordinates) vars. It returns a vector of first order symbolic ODEs VF (Vector Field) and a
vector of state variables state_vars. These can be reordered into themass-matrix form
Mẋ = F using the function massMatrixForm(VF, state_vars). Since the state-space
model is described only by the state derivative vector ẋ, we must solve for it as:

ẋ = M−1F

which can be done using MATLAB’s backslash operator:

ẋ = M\F

Then, after some relatively trivial substitutions, we get the full nonlinear state-space
model of the system. The first two state derivative variables, ẋ1 = x3 and ẋ2 = x4

stand for the cart’s linear velocity and the pendulum’s angular velocity respectively.
The other two state derivative variables, ẋ3 and ẋ4, stand for the cart’s acceleration and
the pendulum’s angular acceleration. The system dynamics are fully described by the
accelerations as:

ẋ3 = A(x, u)
B(x, u)

(68a)

A(x, u) = I1 u(t) + a1
2 m1 u(t) − I1 bc x3(t) + +a1

3 m1
2 sin(x2(t)) x2

4(t)+

−a1
2 bc m1 x3(t) + +a1 b1 m1 cos(x2(t)) x4(t) + +a1

2 g m1
2 cos(x2(t)) sin(x2(t))+

+ I1 a1 m1 sin(x2(t)) x2
4(t)

(68b)

B(x, u) = −a1
2 m1

2 cos2(x2(t)) + +a1
2 m1

2 + mc a1
2 m1 + I1 m1 + I1 mc (68c)

ẋ4 = C(x, u)
D(x, u)

(69a)

C(x, u) = b1 m1 x4(t) + b1 mc x4(t) + +a1 g m1
2 sin(x2(t)) + a1 m1 cos(x2(t)) u(t)+

+ a1 g m1 mc sin(x2(t)) + +a1
2 m1

2 cos(x2(t)) sin(x2(t)) x2
4(t)+

− a1 bc m1 cos(x2(t)) x3(t)

(69b)

9.3 Simulation 65

D(x, u) = −a1
2 m1

2 cos2(x2(t)) + +a1
2 m1

2 + mc a1
2 m1 + I1 m1 + I1 mc (69c)

Notice that the acceleration equations are rational.

9.3 Simulation

Now that we have the full nonlinear state-space model

ẋ(x, u) =


ẋ1(x, u)
ẋ2(x, u)
ẋ3(x, u)
ẋ4(x, u)


we can generate a MATLAB ODE function from the symbolic equations and simulate the
system using the ode45 solver as before. First, we must define the physical parameters
of the system.

Table 3: The physical parameters of the simulated pendulum-cart system in base units.

Physical parameter Meaning Value

I1 Pendulum’s moment of inertia around its center of mass 0.0227 kg m2

a1 Distance from the pendulum joint to its center of mass 0.18 m

bc Linear cart friction coefficient 10 N s
m

b1 Pendulum joint friction coefficient 0.15 N s
m

mc Mass of the cart 0.8 kg

m1 Mass of the pendulum 1 kg

g Gravitational field intensity 9.81 N
kg

By defining an initial state, we can simulate the system’s dynamics andmeasure the
systems response. For data collection, this however isn’t ideal, as the system would
eventually converge to some stable state and stop. To collect better measurements,
the system input u will have to continually add energy to the system. Possible functions
for u(t) could be for example trigonometric functions, such as sin(t). The problem
with defining u(t) as a simple trigonometric function of time is that the signal is very
sparse in the frequency domain and doesn’t reveal that much information about the
system, because the generated state trajectory will likely be stuck in some cyclical
state trajectory. Naturally, the best choice for the forcing signal is some band-limited
random process. Earlier, the random noise process’s purpose was to de-correlate the
feedback-looped inputs from the states. In this case, the random noise process will
have an additional use. It will be used to generate a reference trajectory for the cart’s
position x1.
First, I generate a band-limited noise process, just as before. Then I generate a
shifted square wave function, with maximal value 1 and minimal 0, and multiply
the band-limited noise signal by the square wave. This way, the cart trajectory will
periodically return to 0. Because the signal becomesdiscontinuous, andwe can’t expect
the cart tomove instantaneously, the signal is filtered again. Then I normalize the signal

66 9 MODEL IDENTIFICATION OF A SIMULATED PENDULUM-CART SYSTEM

by multiplying it with its maximal absolute value. This way, the maximal deviation from
the origin will be 1 in either direction. Then I multiply the signal by themaximal allowed
deviation from the origin - in this case 0.5 meters. The entire sequence of trajectory
generation is shown in the Figure 31

Fig. 31: The sequence of steps for computing a cart trajectory for data collection.

The cart trajectory, let’s call it w1(t), prescribes the desired trajectory of the x1 state
variable during the simulation. Our only input to the system is the force u(t) acting on
the cart. Assuming that the force u(t) is directly proportional to the cart’s acceleration,
we can get the shape of the signal u(t) by double-differentiating the cart trajectory
w1(t). The amplitudes of the u(t) signal are uncertain, calculating the signal exactly
would require already knowing the system parameters. But we can keep multiplying
the u(t) trajectory and observing the simulation results; if the cart moves too much,
make the signal weaker; if it doesn’t move enough, make it stronger. Alternatively,
the linear drive could have a control system with a reference acceleration as an input
directly.
Because the signal u(t)wasgenerated as adiscrete function, itmust be transformed into
a continuous function for the purpose of simulation using a variable step solver. This
is done, as before, by linear interpolation. The result is a continuous time-dependent
function u(t) that can be embedded into the system of equations ẋ for simulation.
I use the adaptive Runge-Kutta 45 time-stepping scheme for numerical simulation of

9.4 Function library 67

Fig. 32: The state trajectories X from the pendulum-cart system simulations.

the system, which is implemented in MATLAB as ode45(odefun, tspan, x0), where
odefun is the system of ODEs ẋ, tspan is the time span of the simulation, and x0 is
the initial state. The function can return either pairs [t,x] (time and state vector), or
a solution object sol, which is more convenient, because it can be used to return the
state vector values at a constant sampling period.

The output of the simulation is a state trajectory x(t). Realistically, we’d only be
measuring two state variables, namely the cart position x1(t) and the pendulum angle
x2(t). The other two state variables are velocities and can be obtained from x1(t)
and x2(t) by numerical differentiation. The state derivative trajectory ẋ(t) is again
four-dimensional, where the first two variables are the previously computed velocities
and the second two are accelerations, which are computed by again numerically
differentiating the velocity variables.

9.4 Function library

After obtaining the full state trajectory x(t) and the state derivative trajectory ẋ(t), the
next step is creating the function library. This is a critical part of the identification
procedure, because to create an accurate model, the function library must contain all
the terms in the actual implicit dynamics. To make an educated guess about the active
terms, some expert knowledge about the modeled system is necessary. The library can
contain terms that are inactive in the real model, because their respective parameters
will be set to zero by the sparse regression algorithm. However, the number of terms
in the library cannot be increased arbitrarily, mostly because large function libraries

68 9 MODEL IDENTIFICATION OF A SIMULATED PENDULUM-CART SYSTEM

increase the regression’s sensitivity to noise.
Since we’ve derived the analytical model (68, 69) before, we can see which terms in the
implicit dynamics are truly active. We could create the function library only from the
terms in the analytical solution, this would however make sparse regression pointless,
as there wouldn’t be any parameters to zero out. It’d also mean that we already know
the complete real model structure, and the regression task would become a relatively
simple parameter estimation by least-squares regression.
It’s reasonable tomake aguess that the cart’s linear velocity and thependulum’s angular
velocity will be present in the dynamics. The force on the cart u is also obviously
affecting the dynamics. Due to the rotational nature of the pendulum, we can also
assume that trigonometric functions of the pendulum’s angle will play an important
role. Rotating masses imply centripetal accelerations, which are a function of the
second power of angular velocity. Joint frictions are typically a function of the difference
in rotation velocity, but in this case, we only have one rotating part, so the difference is
simply the pendulum’s rotational velocity.
This narrows down the space of candidate terms to different combinations of the terms
x3(t), x4(t), sin(x2(t)), cos(x2(t)), u(t), the constant term 1, and our target variables, which
are the accelerations ẋ3 and ẋ4. I think of these as the basis terms. All library terms are
created as a combination of the basis terms. To make the notation more concise and
to stress the mutual independence of the basis terms, let’s collect and rename them as
follows:

{x3, x4, sin(x2), cos(x2), u, 1, ẋ3, ẋ4} = {y1, y2, y3, y4, y5, y6, y7, y8} = Y (70)

We can now create the function library as an informed combination of the basis terms
yi. From the analytically derivedmodel ((68, 69)), we can see that the highest order term
is cos(x2) sin(x2)x2

4, or, using our new notation, y4y3y2
2 . Let’s use this information to create

all possible 4th-order terms from the set of basis terms yi. Note that not all candidate
functions will actually be of 4th-order, because the term y6 is an identity. A 4th-order
monomial y1y3

6 is actually just the 1-st order monomial x3. The resulting function library
is nearly identical 2 as if we excluded the identity term y6 from the function space and
simply created the function library as a union of all sets of monomials of yi up to the 4th
order.
The set of monomials is created as a set of all possible multi-combinations
(combinations with replacement) of size 4 from the set Y, which has 8 elements. The
number of terms is given by the formula:

dCn = (d + n − 1)!
n!(d − 1)!

(71)

Where d is the number of elements in Y and n is the monomial order. We have 8
basis terms and 4th monomial order, therefore we have 330 candidate functions in the
function library. This is a lot of candidate functions, but some of them can be dropped
according to some problem-specific knowledge.

2It’d just be missing the constant function 1(t)

9.4 Function library 69

Alternatively, instead of creating a huge set of candidate functions and then reducing
it, the candidate functions could all be picked manually. The issue with this approach
is that if even just one important candidate function is missing from the set during
regression, the correct model won’t be found. On the other hand, if the function
library contains functions that are irrelevant, they’ll simply be discarded by the
sparsity-promoting regression algorithm. Missing an important candidate function is
much more expensive than including irrelevant ones, therefore it’s safer to create too
many candidate functions and then manually discard those that go against the expert
opinion.
I removed all candidate functions that met at least one of these conditions:

• The candidate function contains a basis term with a power higher than 2. The
highest expected single basis term order is 2, for example, the square of the
angular velocity, x2

4 is allowed (implies centripetal acceleration), but the cube of
angular velocity, x3

4 isn’t.

• The candidate function contains more than 3 unique terms. Candidate functions
with a rich mix of basis terms, for example x3x4 sin(x2)u, are not expected. This
implies that a 4th-order candidate function must contain at least one squared
basis term.

• The candidate function contains a combination of the terms x3, x4, u, ẋ3 or ẋ4.
For example, a function such as x3uẋ3ẋ4 contains both accelerations, which isn’t
acceptable in our state-space formulation. This means that those terms can only
appear with one or more of the trigonometric basis terms.

• The candidate function contains sin(x2)2. This is because of the identity sin(x2)2 +
cos(x2)2 = 1, and because both cos(x2)2 and 1 are already in the function library.
Including functions with sin(x2) would create ambiguity andwould result in poorly
conditioned regression.

This reduces the number of viable candidate functions to 94. For comparison, the
analytically derived model (68, 69) contains only 13 terms in total.
This function library contains candidate functions for identifying both ẋ3 and ẋ4. For
each of these target variables, the function library is further reduced so that it doesn’t
contain the other target variable(s). For example, when identifying the model for ẋ3, all
the candidate functions containing ẋ4 will be dropped from the library, further reducing
its total number of candidate functions to 35.

The correlation matrix of the function library for identifying the implicit ODE for ẋ3

is shown in Figure 33. When reducing the set of candidate functions, it’s a good idea
to check for highly correlated functions. Ideally, we want the correlation matrix to be
as diagonally dominant as possible, because correlated functions make the regression
problem ill-posed. If two functions are strongly correlated, we can investigate them
further. One such correlation appears for example when sin x1

2 and cos x1
2 both appear

in the library; in this case, they form a duality due to the equality sin(x)2 + cos(x)2 = 1
and one of them can be discarded.

70 9 MODEL IDENTIFICATION OF A SIMULATED PENDULUM-CART SYSTEM

Fig. 33: Correlation matrix of the function library for identifying the implicit ODE describing ẋ3, the cart
acceleration.

9.5 Identification using clean data 71

9.5 Identification using clean data

First, let’s do the identification with clean data, to check if the function library Θ contains
all needed terms. The dynamics we wish to identify are now rational. The method relies
on linear regression, so the dynamics must be expressible as a linear combination of
the candidate functions. A rational model can be rewritten into a linear combination
by multiplying the equations by their denominators and moving all terms to one side
of the equation. The ODEs then become implicit. The SINDy-PI method described in
3.1.5 looks for implicit models by guessing that one of the candidate functions is in the
implicit dynamics. If the guess is correct, then the correctmodel is likely to be identified.
In the following examples, I ran the identification procedure by running the regression
multiple times, using each candidate function θi from Θ as the guess. For each
candidate function θi, I generated 5 models, by varying the regression hyperparameters.
With 35 candidate functions, thatmeans a total of 175 implicit models was generated for
both the cart acceleration ẋ3 and the pendulum angular acceleration ẋ4.

(a) All unique
implicit models for

ẋ3. trajectories.

(b) All unique
implicit models for

ẋ4.

Fig. 34: Visualization of all unique identified implicit models. Each row is an implicit model and each column is
a coefficient ξi of the candidate function θi. A red square symbolizes a positive coefficient value, a blue square a
negative coefficient value.

To help us sift through the vast number of models, we can use the fact that if our
function libraryΘ contains all the functions needed to describe the realmodel equation,
this model will be identified for many different right-hand side guesses of θi. Whenever
the guess is correct, the correct model should be found. If we look for models that
appear consistently in the full set of identified models, these consistent models are
good candidates for further evaluation.

72 9 MODEL IDENTIFICATION OF A SIMULATED PENDULUM-CART SYSTEM

(a) Structurally consistent models for ẋ3. trajectories.

(b) Structurally consistent models for ẋ4.

Fig. 35: Visualization of all structurally consistent, sparse implicit models identified from clean data.

The exact models with 0 training error were correctly identified from the data. In the
next subsection, I’ll repeat the identification using a more realistic dataset.

9.5 Identification using clean data 73

(a) Exact models for ẋ3. trajectories.

(b) Exact models for ẋ4.

Fig. 36: The exact models with 0 training RMSE, identified from clean data.

74 9 MODEL IDENTIFICATION OF A SIMULATED PENDULUM-CART SYSTEM

9.6 Identification using imperfect data

To simulate real-world conditions, I’ll only use the measurements of the cart position
x1 and the pendulum angle x2. White noise was added to both position and angular
measurements, with a standard deviation of 0.0005m and 0.0025rad respectively. The
measurements are filtered using a spectral filter. The cutoff frequencies are manually
offset towards lower frequencies, so that the strong frequencies of the information
signal are dominant in the estimated derivative signal. If the cutoff frequency was
chosen as the frequency at which noise becomes stronger than signal, the noise
frequencies close to the cutoff frequency would have a disproportionate effect on the
derivative estimate.

Next, the filtered measurements are used to estimate the cart velocity ẋ1 = x3

and the pendulum’s angular velocity ẋ2 = x4. The derivative estimates are calculated
using spectral differentiation. With these measurements and estimates, the state
measurement matrix X is complete.

We want a model of the cart’s acceleration ẋ3 and the pendulum’s angular
acceleration ẋ4. The respective acceleration measurement vectors are estimated from
the (also estimated) velocities, again using spectral differentiation.

Nowwe have all the data we need to construct the candidate function library Θ with
the same structure as in the identification before. Again, the library is used to generate
a set of models. The discovered unique and consistent models are shown in the next
figure.

9.6 Identification using imperfect data 75

(a) Spectral filter cutoff frequencies for both measurement signals.

(b) Comparison of the clear, noisy and filtered signals.

Fig. 37: Plots showing the used filter settings and a part of the signal.

76 9 MODEL IDENTIFICATION OF A SIMULATED PENDULUM-CART SYSTEM

Fig. 38: Cart’s linear velocity and the pendulum’s angular velocity estimated using spectral differentiation.

Fig. 39: Cart’s linear acceleration and the pendulum’s angular acceleration estimated using spectral differentiation.

9.6 Identification using imperfect data 77

(a) Consistent models for ẋ3. trajectories.

(b) Consistent models for ẋ4.

Fig. 40: Visualization of all structurally consistent implicit models identified using noisy measurements and
estimated derivatives.

78 9 MODEL IDENTIFICATION OF A SIMULATED PENDULUM-CART SYSTEM

(a) Best models for ẋ3. trajectories.

(b) Best models for ẋ4.

Fig. 41: The best identified models for both accelerations.

9.7 Parameter tuning 79

The accurate models were identified many times using different guesses θi. The
identified angular acceleration model has low error, but it’s missing the term x4, which
represents the pendulum joint friction. I set the joint friction coefficient at a very low
value, so its effects were negligible and apparently got lost in the noise. The model for
cart acceleration is missing the x4 cos(x2) term, whose parameter is very low 0.02 in the
exact model. This term represents the change in cart acceleration caused by pendulum
joint friction.

9.7 Parameter tuning

The models identified in Figure 41 all have the same structure, but there’s some
variance in their parametrization. It appears that the parameters change depending
on the guess function θi used to generate the model. Now that we used SINDy to
identify which functions are active in the dynamics, we can use other, more common
non-sparse regression methods to fine-tune the function parameters. The regression
task is redefined so that the function library Θ only contains the functions we’ve already
identified. The required solution ξ no longer needs to be sparse, and the solution vector
will also be shorter. Because the identifiedmodels are both rational, we still have to use
the SINDy-PI regression formulation - extracting a column θi from the function library Θ,
setting it as the target variable and calculating the solution ξi.
The solution ξ will slightly change with different measurement data used to construct
the function library Θ and with the regularization hyperparameter λ. I’ll generate 25000
different models for each of the acceleration models and then plot histograms of the
respective function parameters to see how consistent they are. If the regression was
poorly conditioned, thena small change in trainingdatawould result in a large change in
the parameters. I’ll generate the different models by changing (resampling) the training
data sets.
First, I’ll generate the function library Θ ∈ RN×m, but only with the candidate functions
that were already picked. Then I’ll re-sample the library by picking N random samples
(rows) from the library and creating a new, resampled version of Θ. Then, to be
consistent with the SINDy-PI formulation, I pick a random column θi from Θ, extract it,
set it as a target variable and find the solution ξi using Ridge regression. The random
resampling and regression step is then repeated 25000 times, saving the results after
every iteration.
Thismethodof randomlydrawing samples fromonedata set to generate a largenumber
of models is called bootstrapping [22]. It is commonly used to generate confidence
intervals for the parameters of linear models.
All the model parameters are normalized so the acceleration function parameter is
always 1. This doesn’t change the model, because the explicit model is rational. The
histograms for model parameters of both acceleration models are shown in Figures 42
and43. Eachplot corresponds to a single parameter, the colors of the histograms specify
which guess function θi was used to generate the solution.

80 9 MODEL IDENTIFICATION OF A SIMULATED PENDULUM-CART SYSTEM

Fig. 42: Bootstrapping results for cart acceleration model parameters. The color of the distribution depends on
the guess function used to generate the model.

Fig. 43: Bootstrapping results for pendulum angular acceleration model parameters.

9.7 Parameter tuning 81

From Figures 42 and 43, it’s apparent that the parameters sometimes change
significantly based on the used guess function θi. The parameter distributions are very
different when the functions cos2(x2)ẋ3 or cos2(x2)ẋ4 are used as guess functions for
their respective models. These functions have two things in common - both contain
cos2(x2) and both contain the respective acceleration ẋi. It’s not clear to me whether
the parameter distribution shift is caused by one of these things or whether it’s a
coincidence.

The specific model parameters will be chosen from the histograms in Figures 44 and
45 which don’t differentiate the models based on the guess functions.

Fig. 44: Combined bootstrapping results for cart acceleration model parameters.

Now that we have the parameter distributions, we can generate a new model by
picking the parameters. How to pick the parameters is not clear. If the distributions
were unimodal, then I’d definitely pick the parameters as the medians of the respective
distributions. In this highly polymodal case, the mode seems as the optimal statistic.
The modes are visualized in the Figures 44 and 45 by the red vertical lines.

82 9 MODEL IDENTIFICATION OF A SIMULATED PENDULUM-CART SYSTEM

Fig. 45: Combined bootstrapping results for pendulum angular acceleration model parameters.

9.8 Validation 83

9.8 Validation

The reference analytical model and both identified models are shown in the Table 4.

Table 4: Comparison of the reference and the identified models.

Cart acceleration model ẋ1 [m
s2]

Reference −0.66407u+6.64064x3−0.11953x2
4 sin (x2)−0.02169x4 cos (x2)−1.91599 sin (2.0x2)

0.19531 cos (2.0x2)−1.0

SINDy −0.55672u+5.61287x3−0.10007x2
4 sin (x2)−1.61162 sin (2.0x2)

0.32312 cos2 (x2)−1.0

Bootstrapped −0.55871u+5.62374x3−0.10038x2
4 sin (x2)−1.6134 sin (2.0x2)

0.31937 cos2 (x2)−1.0

Pendulum angular acceleration model ẋ2 [rad
s2]

Reference 1.81554u cos (x2)−18.15533x3 cos (x2)+0.1634x2
4 sin (2.0x2)+0.18156x4+32.05886 sin (x2)

0.3268 cos2 (x2)−1.0

SINDy 2.16696u cos (x2)−22.63092x3 cos (x2)+0.19338x2
4 sin (2.0x2)+38.39076 sin (x2)

0.19753 cos (2.0x2)−1.0

Bootstrapped 2.21986u cos (x2)−22.3136x3 cos (x2)+0.19665x2
4 sin (2.0x2)+37.93954 sin (x2)

0.17497 cos (2.0x2)−1.0

The discovered models will now be validated using a validation data set generated
by a separate simulation. First, let’s test the model’s derivative estimation accuracy.

Fig. 46: Validation of the identified cart-pendulum SINDy model’s state derivative estimation accuracy. The
estimations are very close to the test set values.

84 9 MODEL IDENTIFICATION OF A SIMULATED PENDULUM-CART SYSTEM

The RMSE metrics values for all acceleration models:

Table 5: Validation RMSE for each identified acceleration model ẋi.

Model SINDy model Bootstrapped SINDy model
RMSE(ẋ1|ξ) 1.46E0 2.03E0
RMSE(ẋ2|ξ) 2.57E0 2.61E0

All validation RMSE metrics are lower than the training RMSEs. The explanation for
this is the same as in the example with the Lorenz system - the validation data is clean,
but the training data isn’t. A big portion of the training error was caused by inaccuracies
in the acceleration signal’s estimation.

The models will be further evaluated by simulating two models and comparing
the results. The reference model is the one that was used to generate the training
and validation data. Both models in the simulations will start from the same initial
state and will receive the same input signal. Despite the derivative estimation errors
being very small for both identified models, small estimation inaccuracies accumulate
(exponentially) and the trajectories decouple. This is a direct consequence of the
chaotic nature of the pendulum-cart system.

Fig. 47: Parallel simulation of the reference model and the SINDy model. Full animation at: https://git.io/JBPXD

https://git.io/JBPXD

9.8 Validation 85

Fig. 48: Parallel simulation of the reference model and the bootstrapped SINDy model. The results are
indistinguishable from the previous simulation. Full animation at: https://git.io/JBPXA

Fig. 49: Parallel simulation of the best SINDy model and the bootstrapped SINDy model. Despite both models
being identical in their structure and very close parameter-wise, the trajectories still decouple after a few seconds.
Full animation at: https://git.io/JBP1L

https://git.io/JBPXA
https://git.io/JBP1L

86 10 MODEL IDENTIFICATION OF A REAL PENDULUM-CART SYSTEM

10 Model identification of a real pendulum-cart system

10.1 Real system

In this section, the method will be used for identifying a model from measurements of
a real cart-pendulum system. The physical system was provided by REX Controls [23].
The system has three pendulums mounted on a cart; for my purposes, the pendulums
were tied up, so there was only one free angular degree of freedom. The physical
system is also provided with control HW and SW. By default, the SW contains control
algorithms for a triple pendulum swing-upmaneuver. The algorithms are implemented
in REXYGEN Studio, the company’s own development environment. The swing-up
maneuver algorithm works by sending a pre-computed acceleration trajectory to the
linear drive’s control system. I also needed to send a pre-computed trajectory to the
system, except in my case, the trajectory is a random band-limited process. Instead of
lengthy implementation of a separatate functionality for sending arbitrary trajectories,
I forked the existing SW and changed the swing-up control block to contain my own
trajectory instead of the swing-up one. That way, I could also use the existing front-end
when running the experiments. The experiment could be started by simply clicking on
the “Start swingup” button in the user interface.

10.2 Data collection and processing

When creating the trajectories to be used for the experiments, I had to make sure
the physical constraints are met. Those included, most notably, the limited length of
the track (±0.5m) and linear acceleration. I already developed a method to compute
trajectories that had limited deviance from the origin in the earlier sections. I only
had to make sure that the resulting acceleration signal never exceed 4G, or around
40 m

s2 . The maximum acceleration can be implicitly controlled by the band-width of the
generated position trajectory signal. For safety purposes, my pre-computed trajectory
never exceeded 2.5G.
The system’s control system has a sampling frequency of about 1kHz, so the
state measurements were of pretty good quality. Any noise present in the state
measurements could relatively easily be filtered out. One small problem was that the
measurements weren’t taken exactly every 0.001s, the sampling periods sometimes
varied by 2ms. For FFT, the sampling period should be constant, so I cleaned up the
data by simply re-sampling it using linear interpolation. The time difference between
samples before and after the resampling is shown in Figures 50

Themeasured signalswere the cart position and velocity x1, x3, pendulumangle and
angular velocity x2, x4 and the input u. While the state measurements were clean, the
input u was extremely noisy and had a shifted 0. At the start of the experiment, when
the reference trajectory wasn’t even sent in and the system wasn’t moving at all, the
input u was non-zero. To make matters worse, at the end of the experiment, where the
cart was no longer moving, the input u was still non-zero and had a different value than
at the start of the experiment. Therefore, I couldn’t remove the offset by subtracting it.

10.2 Data collection and processing 87

(a) Before resampling

(b) After resampling

Fig. 50: The time difference between samples before and after resampling.

I at least subtracted the mean value, so the input’s mean value was 0.
Allmeasured signals, including the input u, were filteredusing a spectral filterwith cutoff
frequencies defined in Figure 51. The x5 signal is the input u.

88 10 MODEL IDENTIFICATION OF A REAL PENDULUM-CART SYSTEM

Fig. 51: Filter cutoff frequencies. The filters for the velocity signals x3 and x4 have much lower cutoff frequencies,
since the signals will be used for numerical differentiation to estimate accelerations.

10.2 Data collection and processing 89

(a) The first few seconds of the experiment. Note the shift in the input u when

(b) Part of the measurement signals.

90 10 MODEL IDENTIFICATION OF A REAL PENDULUM-CART SYSTEM

(c) The full measurements

Fig. 51: The state and input measurements, before and after filtering. The measurement data is also visualized
at: https://git.io/JBbux

Fig. 52: Accelerations ẋ3 and ẋ4 estimated from velocity measurements.

https://git.io/JBbux

10.3 Identification 91

10.3 Identification

The function library Θ was then constructed the statemeasurements X, state derivative
estimates Ẋ and input measurements U. The candidate function library contained the
following functions:

Theta.columns = [
'1', 'x_3', 'x_4', 'sin(x_2)', 'cos(x_2)', 'u', 'dx_3', 'dx_4',
'x_3*x_3', 'x_3*sin(x_2)', 'x_3*cos(x_2)', 'x_4*x_4', 'x_4*sin(x_2)',
'x_4*cos(x_2)', 'sin(x_2)*cos(x_2)', 'sin(x_2)*u', 'sin(x_2)*dx_3',
'sin(x_2)*dx_4', 'cos(x_2)*cos(x_2)', 'cos(x_2)*u', 'cos(x_2)*dx_3',
'cos(x_2)*dx_4', 'x_3*x_3*sin(x_2)', 'x_3*x_3*cos(x_2)',
'x_3*sin(x_2)*cos(x_2)', 'x_3*cos(x_2)*cos(x_2)', 'x_4*x_4*sin(x_2)',
'x_4*x_4*cos(x_2)', 'x_4*sin(x_2)*cos(x_2)', 'x_4*cos(x_2)*cos(x_2)',
'sin(x_2)*cos(x_2)*u', 'sin(x_2)*cos(x_2)*dx_3',
'sin(x_2)*cos(x_2)*dx_4', 'cos(x_2)*cos(x_2)*u',
'cos(x_2)*cos(x_2)*dx_3', 'cos(x_2)*cos(x_2)*dx_4',
'x_4*x_4*sin(x_2)*cos(x_2)']

By varying the sparsity hyperparameter λR andby choosing different guess functions
θi, a total of 960modelswas generated for each of the accelerations. Many of themodels
were exactly identical (in active functions andparameters), so only theuniqueoneswere
kept. Non-sparsemodels andmodelswith a very high trainingerrorwerediscarded. The
best discoveredmodels for the cart’s linear acceleration ẋ3 and the pendulum’s angular
acceleration ẋ4 are shown in Figures 53.

10.4 Bootstrapping

Using only the active terms, I constructed a new function library Θ and trained 10000
models for each acceleration model using the bootstrapping method described earlier
in (9.7). The guess function θi is also chosen randomly for each model. That way, the
parameter estimates between regression results using different guess functions can be
compared.

From the Figures (54), it’s apparent that some parameters for ẋ3 change drastically
with different candidate function guesses. This is indicative of the terms not being
picked accurately by the sparse regression.

92 10 MODEL IDENTIFICATION OF A REAL PENDULUM-CART SYSTEM

(a) The best discovered models for the linear cart acceleration
ẋ3.

(b) The best discovored models for the pendulum’s angular acceleration ẋ4.

Fig. 53: Discovered models for the real pendulum-cart system. The y-axis labels contain the model’s index, the
quess function used to generate the model, the training error and the validation error.

10.4 Bootstrapping 93

(a) Parameters for ẋ3 for different candidate function guesses.

(b) Parameters for ẋ4 for different candidate function guesses.

Fig. 54: Parameter distributions for both models for different candidate function guesses.

94 10 MODEL IDENTIFICATION OF A REAL PENDULUM-CART SYSTEM

(a) Combined distributions for ẋ3.

(b) Combined distributions for ẋ3.

Fig. 55: Combined parameter distributions for both models. The black vertical lines show the modes of the
distributions.

10.5 Validation 95

10.5 Validation

From the SINDy models in the previous Figure 53, I chose the models with the lowest
validation RMSE. The validation RMSE is the last value on the y-axis labels. The plots with
derivative estimates are in Figure 55.

(a) Derivative estimates for the start of the experiment

The accuracy of the derivative estimate is highly dependent on the state and input.
When the state is at rest, the estimates are very bad. This is caused by the bad quality
of input measurements, which were non-zero at rest. Another problem is that the
input measurements weren’t measuring the action variable directly, instead they were
the inputs (references) into the cart’s control system. Ideally, the input measurements
would be the outputs of the control system. Identifying the controlled system’s
dynamics accurately using only set-point (inputs to the control system) measurements
might be possible by including additional candidate functions θ. The candidate function
library Θ was designed assuming that the system is a pendulum-cart systemwith force
u as an input, but that assumption doesn’t fully hold in this case.

The results of the model’s simulation are in the Figure 56.
Qualitatively, themodel simulations look realistic. The real systemhad 3 pendulums,

which were folded and tied up to create a single pendulum system. Because of this, the
pendulum has a relatively high moment of inertia, as is apparent from the simulation
results.
The model parametrized by the parameter distribution modes from the bootstrapping
suffered from the same errors. Its validation RMSEwas comparable to the SINDymodel’s
RMSE.

96 10 MODEL IDENTIFICATION OF A REAL PENDULUM-CART SYSTEM

(b) Derivative estimates later in the experiment

Fig. 55: The discovered model’s derivative estimates compared to the reference values estimated from the training
data using numerical differentiation. Due to heavy noise present in the u measurements and its offset from 0, the
derivative estimates are also noisy and offset.

Fig. 56: Simulations of the model identified from real data. The animation is at: https://git.io/JBbUT

https://git.io/JBbUT

97

11 Conclusion

In this thesis, the SINDy-PI method was used to discover rational, nonlinear and sparse
models from state and input measurement data.
Before applying the method itself, I introduced a small change to the regression
method. The previous method, called sequentially thresholded least squares (STLS),
finds sparse solutions to the given regression problem by first computing the least
squares solution and then setting parameter values below the defined threshold to
0. I changed this algorithm by thresholding out the parameter values based on the
relevant signal’s energy, rather than the parameter value itself. The energy is given by
both the magnitude of the respective data column vector and the parameter value.
Alternatively, the original STLS method can be applied directly, if the data columns are
energy normalized. As I’ve shown, multiplying the column vector by the inverse square
root of the vector’s energy normalizes the vector’s total energy to 1.
The SINDymethodwas first testedon two simulated Lorenz systems. In the first case, the
Lorenz system had additional external inputs, which entered the dynamics nonlinearly,
for example through the sign function sgn(u). To simulate real measurements, white
noise was added to the state measurements after simulation. These measurements
were then filtered using spectral filtering, and state derivatives were estimated from the
filtered state measurements using spectral differentiation. The discovered model was
fairly close to the referencemodel used to generate the data, despite the imperfections
in the training data. The other Lorenz system had inputs entering the dynamics linearly,
but the inputs were defined by state feedback during the simulation. This causes
perfect correlations between the state and input signals. These correlations have to
be broken by adding a random signal to the input definition. Even when the system
was feedback-controlled, the method successfully distinguished between the effects
of natural dynamics and external forcing and found the correct model from data.
The next experiments consisted of identifying the model of a simulated pendulum-cart
system from data using the SINDy-PI method. The analytical model was first derived
using Euler-Lagrangian mechanics, and then used to generate the simulation data. The
cart position and pendulum angle measurements were then differentiated to estimate
the respective velocities, and then differentiated again to estimate the accelerations.
Numerical differentiation is very sensitive to noise, which is a big problem when it’s
performed twice in a row. To remedy this problem, I found it’s a good idea to over-filter
the signal - instead of picking the filter cutoff frequency as the frequency at which the
signal becomes weaker than the noise, it’s picked as roughly the frequency at which the
spectral signal-to-noise ratio starts dropping. This filtering step significantly improves
the derivative estimation accuracy.
The most difficult part of the identification process is correctly defining the candidate
function library. I found a somewhat systematic way to approach this problem. First,
define a set of simple basis functions. In the pendulum-cart system’s case, these were
picked as the velocities, sine and cosine of the pendulum angle and the accelerations.
The complete function library is then constructed as all possible combinations of those
basis terms up to a given order. The resulting candidate functions are then evaluated

98 11 CONCLUSION

using a set ofmanually created rules to discard the candidate functions that don’t make
physical sense. I also found that using the correlation matrix of the function library is
a good way to quickly visually evaluate the library and identify potentially problematic
candidate functions.
Because the SINDy-PI generates a large number of sparse models, I had to create a
systematic way of picking the viable ones. The first, more obvious, step is discarding all
duplicate models. Implementationally, this was done by calculating the hash function
for each model, sweeping through all the models and keeping only models that have a
hash which hasn’t already been seen during the sweep. The next step is less obvious,
and uses the fact that models with the correct structure should appear more frequency
in the set of identified models. First, the model parameter vectors are transformed into
the so called activation vectors. Then, a clustering algorithm is used to find clusters
of models in the activation space. The idea is that models close to each other in the
activation space have the same active parameters, so large clusters likely consist of
good models.
The SINDy-PI method accurately identified the rational ODEs defining the system’s
cart and pendulum’s accelerations. To validate the parameters, I used the technique
known as bootstrapping to again generate 25000 models for each of the accelerations,
using a function library containing only the active terms. The SINDy-PI definition of the
regression task looks for implicit solutions; one of the columns of the function library is
extracted and acts as the target variable (guess function) during regression. By picking
this guess function randomly for each one of the models, I generate the parameter
distributions for the model. These parameter distributions were sometimes highly
polymodal, which is indicative of imperfect structure of the identified model.
As the last experiment, I tried identifying the model of a real physical system from its
measurements. Unfortunately, due to very noisy and 0-shifted input measurements U,
the discovered model’s derivative estimations were noisy. Despite this, the identified
active terms were fairly accurate and at least partially resembled the analytically
derived model. When evaluating the model “visually” using a numerical simulation, the
qualitative behaviour of the model was believeable.

99

Acknowledgement

Thisworkwas supportedby theGrant Agency of the Czech Technical University in Prague,
grant No. SGS19/158/OHK2/3T/12.

Nomenclature
x1 Cart position m
x2 Pendulum angle rad
x3 Cart velocity m s−1

x4 Pendulum angular velocity rad s−1

ẍ1 ẋ3 Cart acceleration m s−2

ẍ2 ẋ4 Pendulum angular acceleration rad s−2

x State vector
ẋ State derivative vector
Θ Candidate function library
θ Candidate function
θ Candidate function measurement vector
ξ Vector of model parameters
a Activation vector
X Matrix of state measurements
Ẋ Matrix of state derivative measurements
U Matrix of input measurements

ODE Ordinary Differential Equation
SINDy Sparse Identification of Nonlinear Dynamics
SINDy-PI SINDy - Parallel Implicit

Github link

All the code used in this thesis is available on my Github page:
https://github.com/BystrickyK/SINDy/

https://github.com/BystrickyK/SINDy/

100 REFERENCES

References

[1] S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing equations from
data by sparse identification of nonlinear dynamical systems”, Proceedings of
the National Academy of Sciences, vol. 113, no. 15, pp. 3932–3937, Apr. 12,
2016, Publisher: National Academy of Sciences Section: Physical Sciences, ISSN:
0027-8424, 1091-6490. DOI: 10.1073/pnas.1517384113. [Online]. Available: https:
//www.pnas.org/content/113/15/3932 (visited on 03/31/2021).

[2] (). “Definition of PARSIMONY”, [Online]. Available: https://www.merriam-webster.
com/dictionary/parsimony (visited on 05/10/2021).

[3] ——, “Sparse identification of nonlinear dynamics with control (SINDYc)”,
arXiv:1605.06682 [math], May 21, 2016. arXiv: 1605.06682. [Online]. Available: http:
//arxiv.org/abs/1605.06682 (visited on 03/31/2021).

[4] N. M. Mangan, S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Inferring biological networks
by sparse identification of nonlinear dynamics”, arXiv:1605.08368 [math], May 26,
2016. arXiv: 1605.08368. [Online]. Available: http://arxiv.org/abs/1605.08368
(visited on 04/15/2021).

[5] K. Kaheman, J. N. Kutz, and S. L. Brunton, “SINDy-PI: A robust algorithm for parallel
implicit sparse identification of nonlinear dynamics”, arXiv:2004.02322 [physics,
stat], Sep. 29, 2020. arXiv: 2004.02322. [Online]. Available: http://arxiv.org/abs/
2004.02322 (visited on 03/31/2021).

[6] E. Kaiser, J. N. Kutz, and S. L. Brunton, “Sparse identification of nonlinear dynamics
for model predictive control in the low-data limit”, Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences, vol. 474, no. 2219,
p. 20 180335, Nov. 30, 2018, Publisher: Royal Society. DOI: 10.1098/rspa.2018.0335.
[Online]. Available: https://royalsocietypublishing.org/doi/10.1098/rspa.
2018.0335 (visited on 05/17/2021).

[7] K. Champion, B. Lusch, J. N. Kutz, and S. L. Brunton, “Data-driven discovery of
coordinates and governing equations”, Proceedings of the National Academy of
Sciences, vol. 116, no. 45, pp. 22 445–22451, Nov. 5, 2019, Publisher: National
Academy of Sciences Section: Physical Sciences, ISSN: 0027-8424, 1091-6490. DOI:
10.1073/pnas.1906995116. [Online]. Available: https://www.pnas.org/content/
116/45/22445 (visited on 05/21/2021).

[8] G. C. Goodwin, S. F. Graebe, andM. E. Salgado, Control SystemDesign. Upper Saddle
River, NJ: Pearson, Oct. 6, 2000, 944 pp., ISBN: 978-0-13-958653-8.

[9] J. Dormand and P. Prince, “A family of embedded runge-kutta formulae”, Journal
of Computational and Applied Mathematics, vol. 6, no. 1, pp. 19–26, Mar. 1980,
ISSN: 03770427. DOI: 10.1016/0771-050X(80)90013-3. [Online]. Available: https:
/ / linkinghub . elsevier . com / retrieve / pii / 0771050X80900133 (visited on
10/23/2020).

https://doi.org/10.1073/pnas.1517384113
https://www.pnas.org/content/113/15/3932
https://www.pnas.org/content/113/15/3932
https://www.merriam-webster.com/dictionary/parsimony
https://www.merriam-webster.com/dictionary/parsimony
https://arxiv.org/abs/1605.06682
http://arxiv.org/abs/1605.06682
http://arxiv.org/abs/1605.06682
https://arxiv.org/abs/1605.08368
http://arxiv.org/abs/1605.08368
https://arxiv.org/abs/2004.02322
http://arxiv.org/abs/2004.02322
http://arxiv.org/abs/2004.02322
https://doi.org/10.1098/rspa.2018.0335
https://royalsocietypublishing.org/doi/10.1098/rspa.2018.0335
https://royalsocietypublishing.org/doi/10.1098/rspa.2018.0335
https://doi.org/10.1073/pnas.1906995116
https://www.pnas.org/content/116/45/22445
https://www.pnas.org/content/116/45/22445
https://doi.org/10.1016/0771-050X(80)90013-3
https://linkinghub.elsevier.com/retrieve/pii/0771050X80900133
https://linkinghub.elsevier.com/retrieve/pii/0771050X80900133

REFERENCES 101

[10] A. Meurer, C. P. Smith, M. Paprocki, O. Čertík, S. B. Kirpichev, M. Rocklin, A. Kumar,
S. Ivanov, J. K. Moore, S. Singh, T. Rathnayake, S. Vig, B. E. Granger, R. P. Muller,
F. Bonazzi, H. Gupta, S. Vats, F. Johansson, F. Pedregosa, M. J. Curry, A. R. Terrel,
Š. Roučka, A. Saboo, I. Fernando, S. Kulal, R. Cimrman, and A. Scopatz, “Sympy:
Symbolic computing in python”, PeerJ Computer Science, vol. 3, e103, Jan. 2017,
ISSN: 2376-5992. DOI: 10.7717/peerj-cs.103. [Online]. Available: https://doi.
org/10.7717/peerj-cs.103.

[11] R. Tibshirani, “Regression shrinkage and selection via the lasso”, Journal of the
Royal Statistical Society. Series B (Methodological), vol. 58, no. 1, pp. 267–288, 1996,
ISSN: 00359246. [Online]. Available: http://www.jstor.org/stable/2346178.

[12] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge, UK ; New York:
Cambridge University Press, 2004, 716 pp., ISBN: 978-0-521-83378-3.

[13] A. E. Hoerl and R. W. Kennard, “Ridge regression: Biased estimation for
nonorthogonal problems”, Technometrics, vol. 12, no. 1, pp. 55–67, 1970. DOI: 10.
1080/00401706.1970.10488634. eprint: https://www.tandfonline.com/doi/pdf/
10.1080/00401706.1970.10488634. [Online]. Available: https://www.tandfonline.
com/doi/abs/10.1080/00401706.1970.10488634.

[14] S. L. Brunton and J. N. Kutz, Data-Driven Science and Engineering: Machine
Learning, Dynamical Systems, and Control, 1st ed. Cambridge University Press,
Jan. 31, 2019, ISBN: 978-1-108-38069-0 978-1-108-42209-3. DOI: 10 . 1017 /
9781108380690. [Online]. Available: https://www.cambridge.org/core/product/
identifier/9781108380690/type/book (visited on 03/31/2021).

[15] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau,
E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M.
Brett, A. Haldane, J. F. del Río, M.Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard,
T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming
with NumPy”, Nature, vol. 585, no. 7825, pp. 357–362, Sep. 2020. DOI: 10.1038/
s41586-020-2649-2. [Online]. Available: https://doi.org/10.1038/s41586-020-
2649-2.

[16] (). “Scipy.signal.convolve — SciPy v1.6.0 reference guide”, [Online]. Available:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.
convolve.html (visited on 01/03/2021).

[17] P. Welch, “The use of fast fourier transform for the estimation of power spectra:
A method based on time averaging over short, modified periodograms”, IEEE
Transactions on Audio and Electroacoustics, vol. 15, no. 2, pp. 70–73, 1967. DOI:
10.1109/TAU.1967.1161901.

[18] H. Akaike, “A new look at the statistical model identification”, IEEE Transactions
on Automatic Control, vol. 19, no. 6, pp. 716–723, Dec. 1974, ISSN: 0018-9286. DOI:
10.1109/TAC.1974.1100705. [Online]. Available: http://ieeexplore.ieee.org/
document/1100705/ (visited on 04/20/2021).

https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
http://www.jstor.org/stable/2346178
https://doi.org/10.1080/00401706.1970.10488634
https://doi.org/10.1080/00401706.1970.10488634
https://www.tandfonline.com/doi/pdf/10.1080/00401706.1970.10488634
https://www.tandfonline.com/doi/pdf/10.1080/00401706.1970.10488634
https://www.tandfonline.com/doi/abs/10.1080/00401706.1970.10488634
https://www.tandfonline.com/doi/abs/10.1080/00401706.1970.10488634
https://doi.org/10.1017/9781108380690
https://doi.org/10.1017/9781108380690
https://www.cambridge.org/core/product/identifier/9781108380690/type/book
https://www.cambridge.org/core/product/identifier/9781108380690/type/book
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve.html
https://doi.org/10.1109/TAU.1967.1161901
https://doi.org/10.1109/TAC.1974.1100705
http://ieeexplore.ieee.org/document/1100705/
http://ieeexplore.ieee.org/document/1100705/

102 REFERENCES

[19] K. P. Burnham, D. R. Anderson, and K. P. Burnham, Model selection and multimodel
inference: a practical information-theoretic approach, 2nd ed. New York: Springer,
2002, 488 pp., OCLC: ocm48557578, ISBN: 978-0-387-95364-9.

[20] S. Kullback and R. A. Leibler, “On information and sufficiency”, The Annals of
Mathematical Statistics, vol. 22, no. 1, pp. 79–86, Mar. 1951, Publisher: Institute
of Mathematical Statistics, ISSN: 0003-4851, 2168-8990. DOI: 10 . 1214 / aoms /
1177729694. [Online]. Available: https://projecteuclid.org/journals/annals-
of - mathematical - statistics / volume - 22 / issue - 1 / On - Information - and -
Sufficiency/10.1214/aoms/1177729694.full (visited on 08/02/2021).

[21] T. Glück, A. Eder, and A. Kugi, “Swing-up control of a triple pendulum on a cart
with experimental validation”, Automatica, vol. 49, no. 3, pp. 801–808, Mar. 2013,
ISSN: 00051098. DOI: 10.1016/j.automatica.2012.12.006. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S000510981200605X (visited
on 04/11/2021).

[22] B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap. Boston, MA: Springer
US, 1993, ISBN: 978-0-412-04231-7 978-1-4899-4541-9. DOI: 10.1007/978-1-4899-
4541-9. [Online]. Available: http://link.springer.com/10.1007/978-1-4899-
4541-9 (visited on 07/31/2021).

[23] (). “Triple inverted pendulum IPM-310”, REX Controls, [Online]. Available: https :
/ / www . rexcontrols . com / triple - inverted - pendulum - ipm - 310/ (visited on
08/01/2021).

https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/issue-1/On-Information-and-Sufficiency/10.1214/aoms/1177729694.full
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/issue-1/On-Information-and-Sufficiency/10.1214/aoms/1177729694.full
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/issue-1/On-Information-and-Sufficiency/10.1214/aoms/1177729694.full
https://doi.org/10.1016/j.automatica.2012.12.006
https://linkinghub.elsevier.com/retrieve/pii/S000510981200605X
https://doi.org/10.1007/978-1-4899-4541-9
https://doi.org/10.1007/978-1-4899-4541-9
http://link.springer.com/10.1007/978-1-4899-4541-9
http://link.springer.com/10.1007/978-1-4899-4541-9
https://www.rexcontrols.com/triple-inverted-pendulum-ipm-310/
https://www.rexcontrols.com/triple-inverted-pendulum-ipm-310/

	Introduction
	Dynamical systems
	Mathematical models
	Law of parsimony

	State of the art
	Sparse Identification of Nonlinear Dynamics
	Sparse Identification of Nonlinear Dynamics with control
	Implicit Sparse Identification of Nonlinear Dynamics
	Parallel Implicit Sparse Identification of Nonlinear Dynamics
	SINDy for Model Predictive Control
	Simultaneous dynamics and coordinate system identification

	Identification method formulation
	Dynamical systems in matrix-vector formulation
	State-space representation of dynamical systems
	Matrix-vector analytical formulation
	Matrix-vector numerical formulation
	Matrix-vector formulation for rational dynamics
	Matrix-vector formulation for rational dynamics with extraction

	Sparse regression
	General description
	Regularization
	L1 regularized least squares regression
	Sequentially thresholded least squares regression
	Sequentially energy-thresholded least squares regression
	Ridge regression with sequential thresholding

	Data preprocessing
	Numerical differentiation
	Finite differences
	Spectral differentiation
	Comparison

	Filtering
	Time domain representation
	Convolution filtering
	Frequency domain representation
	Spectral filtering
	Filter comparison

	Model validation and selection
	Cross-validation
	Calculating model errors
	Model fit metrics
	Information criteria

	Implementational aspects of the SINDy method
	Brief recap of the SINDy-PI method
	Representing the problem in implicit form
	Representing the implicit models
	Reducing the number of models

	Model identification of the Lorenz system with feed-forward inputs
	Definition
	Code implementation
	Simulation
	Creating the function library
	Identification using clean data
	Identification using noisy data
	Validation
	Discussion

	Model identification of the Lorenz system with feedback external inputs
	Definition
	Feedback forcing loop
	Simulation and data pre-processing
	Identification
	Validation
	Discussion

	Model identification of a simulated pendulum-cart system
	First-principles model derivation
	State-space representation
	Simulation
	Function library
	Identification using clean data
	Identification using imperfect data
	Parameter tuning
	Validation

	Model identification of a real pendulum-cart system
	Real system
	Data collection and processing
	Identification
	Bootstrapping
	Validation

	Conclusion

