Master Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Cybernetics

Adaptation of CNN Classifiers to Prior Shift

[«S])
(7214
X

Tom ipka

Supervisor: Ing. et Ing. Milan Sulc, Ph.D.

Field of study: Open informatics

Subfield: Computer Vision and Image Processing
August 2021

ii

L MASTER'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

l. Personal and study details
e ™
Student's name: Sipka Tomas Personal ID number: 457428

Faculty / Institute: ~ Faculty of Electrical Engineering
Department / Institute: Department of Cybernetics

Study program: Open Informatics

Specialisation: Computer Vision and Image Processing

Il. Master’s thesis details

e ™
Master’s thesis title in English:

Adaptation of CNN Classifiers to Prior Shift

Master’s thesis title in Czech:

Adaptace CNN klasifikatorti na zmény apriornich pravdépodobnosti

Guidelines:

1. Familiarize yourself with Convolutional Neural Network (CNN) classifiers and the standard training procedure of empirical
risk minimization with cross entropy loss [1].

2. Familiarize yourself with common domain adaptation scenarios, with focus on prior shift (also known as label shift or
target shift).

3. Review the state-of-the-art methods for prior shift adaptation of CNN and other probabilistic classifiers.

4. Review the state-of-the-art methods for calibration of CNN (and other probabilistic) classifiers.

5. Propose a new method (or methods) for classifier adaptation to a change in categorical priors (prior shift, label shift)
between training and test data. Explore the problem of inconsistent estimates in the confusion matrix-based methods [7,9]
and the possibility of regularization [3].

6. Experimentally evaluate the existing and proposed methods on different prior-shift scenarios and datasets, with and
without classifier calibration.

Bibliography / sources:

[1] Bengio, Yoshua, lan Goodfellow, and Aaron Courville. Deep learning. Vol. 1. Massachusetts, USA: MIT press, 2017.
[2] Amr Alexandari, Anshul Kundaje, and Avanti Shrikumar. Maximum likelihood with bias-corrected calibration is hard-to-beat
at label shift adaptation. ArXiv, 1901.06852v5, 2019.1

[3] Kamyar Azizzadenesheli, Anqi Liu, Fanny Yang, and Animashree Anandkumar. Regularized learning for domain
adaptation under label shifts. arXiv preprint arXiv:1903.09734,2019. 1, 2

[4] Marthinus Christoffel du Plessis and Masashi Sugiyama. Semi-supervised learning of class balance under class-prior
change by distribution matching. CoRR, abs/1206.4677, 2012.1, 2, 4

[5] Zachary C. Lipton, Yu-Xiang Wang, and Alex Smola. Detecting and correcting for label shift with black box

predictors, 2018. 1, 2, 4

[6] Geoffrey J. McLachlan. Discriminant Analysis and Statistical Pattern Recognition. John Wiley & Sons, Inc, Hoboken,
NJ,USA, 1992-03-27. 2

[7] Marco Saerens, Patrice Latinne, and Christine Decaestecker. Adjusting the outputs of a classifier to new a priori
probabilities: A simple procedure. Neural Comput., 14(1):21-41, Jan.2002. 1, 2, 4

[8] Milan Sulc and Jiri Matas. Improving CNNclassifiers by estimating test-time priors. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV) Workshops, Oct 2019. 1, 2, 4

[9] Slobodan Vucetic and Zoran Obradovic. Classification on data with biased class distribution. In European Conference
on Machine Learning, pages 527-538. Springer, 2001. 1

CVUT-CZ-ZDP-2015.1 Page 1 from 2 © CVUT v Praze, Design: CVUT v Praze, VIC

Name and workplace of master’s thesis supervisor:

Ing. Milan Sulc, Ph.D., Visual Recognition Group, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Date of master’s thesis assignment: 28.01.2021 Deadline for master's thesis submission: 13.08.2021

Assignment valid until: 30.09.2022

Ing. Milan Sulc, Ph.D. prof. Ing. Tomas Svoboda, Ph.D. prof. Mgr. Petr Pata, Ph.D.

\ Supervisor’s signature Head of department’s signature

Dean’s signature

lll. Assignment receipt

The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZDP-2015.1 Page 2 from 2 © CVUT v Praze, Design: CVUT v Praze, VIC

Acknowledgements

I would like to thank my supervisor Ing.
et Ing. Milan Sulc, Ph.D. for his valuable
advice, relentless support and guidance
not only during the time I was working
on this thesis but also during my time
at CMP, where the foundation stones of
this work were laid. I also wish to thank
prof. Ing. Jiti Matas, Ph.D. for the op-
portunity to be part of CMP and for his
helpful advice and constructive criticism.
The discussions with both of them were
very helpful, inspiring and especially great
lessons. Thanks should also go to my fam-
ily for their support during my studies.

Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, 13. August 2021

Abstract

In many classification tasks, the test
set’s relative class frequencies (class pri-
ors probabilities) differ from the relative
class frequencies at training time. Such
a phenomenon, called label shift or prior
shift, can negatively affect the classifier’s
performance. Considering a probabilistic
classifier approximating posterior proba-
bilities, the predictions can be adapted
to the label shift by re-weighting with a
ratio of the test set and training set pri-
ors. Labels in the test set are usually
unknown, therefore the prior ratio has to
be estimated in an unsupervised manner.
This thesis reviews existing methods for
adapting probabilistic classifiers to label
shift and for estimating test priors in an
unlabeled test set. Moreover, we propose
novel algorithms to address the problems
of estimating new priors and prior ratio.
The methods are designed to handle a
known issue in confusion matrix-based
methods, where inconsistent estimates of
decision probabilities and confusion ma-
trices lead to negative values in estimated
priors. Experimental evaluation shows
that our method improves the stability
of prior estimation and the adapted clas-
sifier’s accuracy compared to the base-
line confusion matrix-based methods and
achieves state-of-the-art performance in
prior shift adaptation.

Keywords: Machine Learning,
Computer Vision, Domain Adaptation,
Transfer Learning, Classification, Label
Shift, Prior Shift, Classifier Calibration,
Convolutional Neural Networks,
Confusion Matrix

vi

Supervisor: Ing. et Ing. Milan Sulc,Ph.D.
Visual Recognition Group,

Department of Cybernetics,

FEE CTU in Prague

Abstrakt

V mnoha Kklasifika¢nich tlohach se rela-
tivni ¢etnosti tfid (apriorni pravdépodob-
nosti t¥id) na testovaci sadé lisi od rela-
tivnich ¢etnosti béhem trénovani klasifika-
toru. Tento jev, taktéz nazyvan label shift
nebo prior shift, mize negativné ovlivnit
presnost klasifikace. Budeme-li uvazovat
pravdépodobnostni klasifikdtor aproximu-
jici aposteriorni pravdépodobnosti, mo-
hou byt jeho predikce adaptovany na label
shift prevazenim pomérem testovacich a
trénovacich apriornich pravdépodobnosti.
Jelikoz jsou anotace v testovaci sadé ob-
vykle neznamé, musi byt pomér aprior-
nich pravdépodobnosti odhadnut meto-
dou uceni bez ucitele. Tato prace rekapitu-
luje existujici reseni pro adaptaci pravdé-
podobnostnich klasifikatoria na label shift
a odhad apriornich pravdépodobnosti na
testovaci sadé bez anotaci. Navic, navr-
huje nové algoritmy pro odhad apriornich
pravdépodobnosti na testovaci sadé a pro
odhad pomeéru tesotovacich a trenovacich
apriornich pravdépodobnosti. Tyto me-
tody jsou navrzeny tak, aby fesily znamy
problém v metodach zalozenych na matici
zameén, kde nekonzistentni odhad prav-
dépodobmnosti rozhodnuti klasifikatoru a
jeho chybové matice mtze vést k zapor-
nym hodnotdm v odhadnutych cetnostech.
Experimentalni vyhodnoceni ukazuje, ze
nase metoda zlepsuje stabilitu odhadu
apriornich pravdépodobnosti a presnost
adaptovaného klasifikdtoru v porovnani
s jinymi metodami zalozenymi na matici
zdmeén a soucasné dosahuje nejlepsich vy-
sledkil mezi metodami pro adaptaci klasi-
fikdtord na prior shift.

vii

Klicova slova: Strojové Uceni,
Pocitacové Vidéni, Domain Adaptation,
Transfer Learning, Klasifikace, Label
Shift, Prior Shift, Kalibrace
Klasifikatoru, Konvoluéni Neuronové
Sité, Matice Zamén

Preklad nazvu: Adaptace CNN
klasifikdtorti na zmény apriornich
pravdépodobnosti

Contents

1 Introduction 1l
2 Related Work
2.1 Classification [l

2.1.1 Training Classifier........... (§
2.2 Convolutional Neural Networks .. 8

2.3 Unsupervised Domain Adaptation
2.4 Classifier Adaptation to Label

Shift ...
2.4.1 Confusion Matrix

2.4.2 Adaptation Based on Maximum
Likelihood

2.4.3 Adaptation Based on Maximum

Aposteriorio
244BBSE
245 RLLS 18]

2.5 Classifier Calibration
2.5.1 Evaluating Calibration.
2.5.2 Calibration Methods 24]

3 The Proposed Method 27

3.1 Maximum Likelihood Approach.

3.2 Maximum Aposteriori Approach

3.3 Applying Regularization

3.4 Ratio Estimation

3.4.1 Projection onto the Priors Ratio

Simplex
4 Experiments 35|
4.1 Implementation Details........

4.1.1 Settings for Classifier Training

4.1.2 Implementation of Label Shift
Adaptation

viii

4.2 Label Shift Adaptation
4.2.1 Re-weight or Retrain?
4.2.2 Improving Estimates from

Confusion Matrix.............. 138
4.2.3 Comparing Regularization ..
4.2.4 Comparing Ratio Estimation
4.2.5 Methods for MLE and MAP

Prior Estimation [41]

4.2.6 Dependence on the Number of

Test Samples..................
4.3 Confusion Matrices Illustrated on
an Artificial Dataset 143
4.4 Convergence Speed
5 Conclusion 49
Bibliography 53
A Code 59
A.1 Sample Code
A2 Full Reproducibility Code
B List of Attachments 61

Chapter 1

Introduction

“It’s going to be interesting to see how society deals with artificial
intelligence, but it will definitely be cool.”

— Colin Angle

Due to its wide area of applications and great potential to reduce costs,
human resources and managing risks, increase growth and productivity as
well as the potential to overcome human limitations, artificial intelligence
(AI) is a recently rapidly growing area of active research. There are two main
approaches to define artificial intelligence [I]. The first one defines AI as the
ability of machines or computers to act like human beings. From this point of
view, the goal of Al is to design a machine simulating human-like behaviour.
Based on this human-centred approach, in 1950 Alan Turing proposed the
so-called Turing Test, designed to determine if machine intelligence is close
to that of a human. The test was composed of several questions asked by the
examiner. A computer passed the test if the examiner could not distinguish
between the computer’s and human’s answers. The second approach to
AT avoids humans in its definition and instead of comparing computers to
humans, it compares their level of rationality. According to this rationalist
approach, Al is the ability of an agent to learn from experience and solve
problems to achieve its goals.

An important sub-field of artificial intelligence is machine learning [2), 3].
Machine learning studies algorithms, which are able to learn and adapt
themselves from experience. The term "experience" is usually represented by
data in electronic form [2], which were either collected in the past (offline
learning) or directly at the training time (online learning). These data sets,

1. Introduction

also called "training data", are being provided to the algorithm. An example
of such data are digital images, time series of stock prices, disease symptoms
etc. The data serves as an input into the algorithm and based on these
inputs, we aim to receive an output corresponding to a solution or prediction
for some task. E.g. for image, the desired output could be a description of
the captured scene, from stock prices in the past we may want to predict
prices in the future, from symptoms we could predict disease etc. If the
training data also contains the desired outputs, then the learning procedure
is called supervised. Otherwise, we talk about unsupervised learning. A
recently popular area of machine learning is deep learning [4]. Deep learning
is specific by making use of artificial neurons, inspired by real neurons in the
biological brain, and combining them into more complex structures, called
artificial neural networks (ANNs). ANNs possess a great ability to extract
complex information from the training data and learn from them. Different
designs of neural networks were proposed for different data structures e.g.
Convolutional Neural Network (CNN) [5] for image processing, Recurrent
Neural Networks (RNN) [6] for time series data or Graph Neural Networks
(GNN) [7] for graph-structured data. Machine learning and deep learning can
find use in recommendation systems, medical diagnosis, speech recognition,
computer vision and many other areas.

One of the fundamental tasks in machine learning is classification. Classifi-
cation aims to assign a label (category, class) to a given observation. Usually,
the number of categories is small, in a range from tens to thousands, but
can also be unbounded [2]. The observation can be anything. For example,
an image of a vehicle can be labelled as a car, truck or bus; animals can be
assigned label corresponding to their species name and text can be labelled
with a sentiment (positive, negative, or neutral). The algorithm assigning
categories to observations is called a classifier. The input of the classifier is
a feature vector, i.e. a vector of values (features) representing a particular
observation. For instance, an animal can be represented by its colour, weight,
height and width, yielding a 4-dimensional feature vector, but can also be
represented by its digital grey-scale image with resolution 1000 x 1000 pixels,
yielding a 1 million-dimensional feature vector. The set of all categories, that
can be assigned to the observations is referred to as label space, denoted
as Y. D-dimensional space of feature vectors is called feature space and is
denoted as X. It is common to train classifiers to output probabilities over
label space, representing the classifier’s confidence that a given datum belongs
to a particular class. In other words, model’s output f(X) is learned to
approximate posterior probabilities p(Y|X), i.e. f(X) =~ p(Y|X), where X

2

1. Introduction

and Y are random variables over feature space and label space respectively.
An example of such a classifier is a Convolutional Neural Network (CNN)
trained with cross-entropy loss.

When deploying a classifier into a real-world application, it may happen
that the real-world data, also referred to as "test data', are different from
those during training. In the most general case, even the label space and
feature space can differ. For example, if we do not have enough data to learn
classifying dog’s breeds, we can first train our classifier on an inter-species
data set with a sufficient amount of samples and then reuse gained knowledge
to classify dogs. The field dealing with knowledge transfer from one task
(source domain) to another (target domain) is called transfer learning [§].
However, even though we have enough data for our specific task defined over
some feature space and label space, there still can be a difference between
training and test data. For instance, when the inputs into the classifier are
images. they can be taken under different lighting conditions or disease
symptoms can be slightly changed over time. In other words, the probability
density generating training data is not equal to the density generating test
data, i.e. pr(Y,X) # pg(Y, X). The sub-field of transfer learning associated
with adapting algorithms to a new data distribution, while feature space and
label space are fixed, is called domain adaptation [9].

It is reasonable to simplify a general difference between the train den-
sity pr(Y, X) and the test density pg(Y, X) by decomposition p(Y, X) =
p(Y|X)p(X) = p(X|Y)p(Y) and then make assumptions about its particu-
lar terms. Transferring knowledge without any assumptions about source
and target domains would not be possible. For example, one could assume
that density over feature space can change, i.e. pr(X) # pg(X), but poste-
rior probability remains the same, i.e. pr(Y|X) = pe(Y|X). This scenario
is called covariate shift |9} 10, 11, 12 13]. As example of covariate shift
consider a diagnosis of breast cancer. Suppose that the data for the train-
ing set were collected from mostly elderly women. Indeed such data set
is not a representative sample of the population with respect to the age,
resulting in a bias within the marginal distribution p(X). Another data
set shift is conditional shift [14] were the relative class frequencies are the
same, but conditional densities p(X|Y) may differ. Last but not least is
a situation where the class appearance over data sets does not change, i.e.
pr(X|Y) = pe(X|Y), and the only difference is in relative class frequencies
(class priors), i.e. pr(Y) # pe(Y). This phenomenon is called prior shift or
label shift 9], 15, [16], 17, 18, 19} 20]. To have a better notion about the label
shift, consider an image-based recognition system for some animal species

3

1. Introduction

in the wild to be applied in a real-world application. It is obvious that the
distribution of species will vary from place to place in the world as well as
from season to season during the year. However, we have to assume that
the appearance of species we want to recognize does not change with place
and season. Indeed, this is one of the drawbacks of this assumption, because
in many cases this is not true (e.g. trees may look different in summer and
winter). As another example consider a diagnosis of a disease. The number
of infected people will depend on the season during the year or even on the
location around the world. Yet another example, consider sentiment analysis,
where emotions are assigned to text messages. The priors over emotions will
differ depending on the environment where the classifier is deployed. For
instance, emotions in messages exchanged between new partners in love versus
messages between partners after a long marriage. In all those situations the
class priors at test time have changed. To maintain close to the optimal
performance we should adapt the classifier’s predictions f(X) =~ pr(Y]X) to
reflect the change in the class priors.

This thesis aims to evaluate and extend the methodology for adapting
classifier to prior shift and compare it to the existing methods. The algorithm
proposed in this thesis is estimating test set priors, allowing to adapt classi-
fier’s predictions to label shift by re-weighting them in post-processing step.
The test set prior estimation is based on classifier’s confusion matrix and
constrained likelihood maximization of probability of classifier’s decision. By
constraining the optimization, we handle the known problem [21] [16 [18], 20]
of negative values in the test set prior estimated by confusion matrix. The
evaluation is primarily performed in the domain of computer vision with

CNN classifiers.

The thesis has the following structure: Chapter 2 gives a brief description
of classification task and general approaches to domain adaptation. The main
focus of Chapter 2 is on unsupervised methods for classifier adaptation to
label shift and on classifier calibration. Chapter 3 proposes new algorithms
based on confusion matrix to approach the label shift adaptation. Chapter
4 contains an evaluation of algorithms proposed in Chapter 3 and their
comparison to the existing methods on standard long-tailed data sets. The
final conclusion can be found in Chapter 5.

Chapter 2
Related Work

“So many books, so little time.”
— Frank Zappa

. 2.1 Classification

Let X be a feature space and Y a finite set of K classes. The goal of
classification task is to learn mapping (classifier) h : X — Y such that
for every sample x € X with a ground truth label y € Y the assignment
h(x) is equal to y. It is common practice to mark the labels (in general
label can be anything e.g. dog, cat,...) with integer values 1,..., K and
encode them as K-dimensional one-hot vectors. Meaning that for some label
y € {1,..., K}, the vector will have 1 at y-th position and 0 at all other
positions. For example, set of four classes {1,2,3,4} can be encoded as
{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}. Such encoding allows us to train
the classifier to output probability distribution over label space Y, representing
classifier’s confidence that sample x belongs to the particular class. From
this point of view, the (probabilistic) classifier f is a mapping from feature
space X to the probability simplex Ag_1, ie. f: X — Ag_1. Based on this
probabilistic output, the input sample x is assigned label d € Y, by taking
class with the highest probability

d = h(x) = argmax f(x) = argmax (f, f@ ... r5)(x), (2.1)
ke{1,...,.K} ke{l,..,.K}

5

2. Related Work

where Zfil f@ =1 and f@ > 0. It is often assumed that the classifier f
approximates posterior probability

f(x) = p(Y|X). (2.2)
B 2.1.1 Training Classifier

To train a classifier, we need data from which our model will be able to extract
some useful information to solve the classification task. In supervised learning
the training data T = {x;,3;}}4, are a set of features x; and corresponding
labels y; (see Figure 2.1 for example). Once the model is trained, it is useful
to know how well the classifier performs. For this purpose, we need to define
some performance measure. The simplest choice is 0-1 loss, which is 1 for
h(x) # y and 0 for h(x) = y. The expected value of 0-1 loss is called error
rate. The opposite value to error rate is accuracy. The relation between
accuracy (acc) and error rate (err) is as follow

acc =1—err. (2.3)

Usually, we do not have access to all examples from feature space and therefore
the error rate and accuracy have to be estimated from a finite number of
samples. One could estimate the performance on the training set, but due
to over-fitting, the estimated values do not reflect how well the classifier
generalizes to new samples. Consequently, it is a common practice to estimate
the values on a set of samples V = {x;, yi}ij\ill, called validation set, unseen
during the training stage. The accuracy and error rate can be estimated as

1
acc =+ Z [h(xi) = wil,
(x4,y5) €V

err = % > [h(x) # wil.

(wi,yi)€V

(2.4)

Minimizing the error rate directly is typically intractable, because it is a
discontinuous and non-convex function, but can be minimized indirectly using
some smooth, more tractable function under the Empirical Risk Minimization
(ERM) [2] framework.

In general we would like to minimize true error
R(h) = E(x y)~pr[l(y, h(2))], (2.5)

6

2.1. Classification

Truck Deer Truck Truck

EEYEsLE

Figure 2.1: An example of training data from CIFAR10 dataset. The dataset
contains RGB images of size 32 x 32 pixels. Each image is assigned one of ten
classes.

where [E denotes expected value and [: Y x Y — R is a loss function. Since
we do not have an access to P(X,Y), the problem is approached within the
ERM framework by minimizing the empirical risk on a training set

R = 3 I hixi). (26)

(wi,y:)€T

For a probabilistic classifier f, one of the most common choices for [is the
cross-entropy loss

K
Uys, £(x:) Zf log @) (2.7)

where y(j) denotes the j-th position of one-hot encoded ground truth label

)

7

2. Related Work

and f) is the j-th output of probabilistic classifier. It can be observed
that unlike error rate in Equation (2.4)), the cross-entropy loss is smooth and
convex and we can easily use this function to train our classifier with gradient
descent.

. 2.2 Convolutional Neural Networks

Recently, Convolutional Neural Networks [4] are very popular and widely
used in many computer vision tasks like classification, image segmentation,
image completion etc.

The main building unit of CNN is the convolution operator. Depending
on the form of data, the convolution can be defined over any number of
dimensions. In the case of image data, CNNs are based on two-dimensional
convolution

(I« F)(i,7) :ZZI(m,n)F(i—m,j—n), (2.8)

where I is an input image, F' is a filter applied to the image and values F'(k,1)
are learnable parameters. Convolution is very similar to cross-correlation and
in some literature, the operator in CNNs is called cross-correlation instead
of convolution. The difference between them in a two-dimensional case is
that convolution rotates the filter by 180 degrees. Since in deep learning
the parameters in the filter are learnable, both operations will lead to the
same result. In fact, in many frameworks cross-correlation is used for CNN
implementation.

Neural networks are composed from several layers. A single CNN layer is
made out of many filters, followed by a non-linear function. Their arrangement
in the layer affects, together with the layer stacking, the network architecture.
One of the first architectures was LeNet [5] (schema of LeNet-5 architecture
is shown on image (2.2)), designed to recognize handwritten digits. Since
then, many new architectures have been proposed: VGG [22], GoogLeNet
[23], ResNet [24], ResNeXt [25], ResNeSt [26] and Efficientnet [27] to name a
few.

B 23 Unsupervised Domain Adaptation

At test time it is often assumed that the training set is a good reflection of
test distribution pg(X,Y). When this assumption is not met, the classifier

8

2.3. Unsupervised Domain Adaptation

C1: feature maps S2: feature maps C3: feature maps S4: feature maps
6@28x28 6@14x14 16@10x10 16@5x5

05,'] I;]yer F6: layer
INPUT - 84 OUTPT; layer

32x32 N

/ Gaussian

EE————
k / connections
——— / Full connection

Full connection

Convolutions Subsampling Convolutions Subsampling

Figure 2.2: Schema of a LeNet-5 CNN architecture. Six 5 x 5 convolutional
filters are applied on input, 32 x 32 grayscale image, resulting in 6 x 28 x 28
feature map. Dimension of this feature map is reduced by subsampling layer and
then another six convolutional filters are applied, again followed by subsampling.
At the end, there are 3 fully connected layers. Image taken from [28].

fails to generalize to samples drawn from pg(X,Y’) and the performance is
deteriorated. The aim of the domain adaptation is to train a model on the
training distribution p7(X,Y’) capable to generalize well to a new samples
from distribution pg(X,Y’), when p7(X,Y) # pe(X,Y). Domain adaptation
is unsupervised when we have access to labeled source data T = {x;,y; }M,,
but unlabeled target data & = {x;} ;.

One of the approaches to domain adaptation is the importance re-weighting
[14, [12), 13, 1T}, 29], commonly used in the label and covariate shift scenarios.
This technique is based on minimization of an expected loss on the target
domain by re-weighting the loss function on samples from the source domain:

Ps(X,Y)l

Re(h) = Eqxy)pe o 10 h(@))] = [pr(X.y) P2

(y, h(x))dzdy =

= Exy)mpr(x,y) [pT(X’y))l(y’ h(x»] '
(2.9)

By factorizing the joint distribution p(X,Y") to p(X)p(Y|X) or p(Y)p(X|Y),
we get following ratios pg(X)/p7(X), pe(Y[X)/p7(Y]X) and pe(Y)/pr(Y),
pe(X|Y)/pr(X]Y), respectively, in the Equation (2.9). Estimating one of the
two ratio pairs allows us to re-weight a loss function at the training stage and
therefore to adapt the classifier to the target domain. Note, that estimating
ratios containing conditional densities p(X|Y") and p(Y'|X) is very difficult,
as they are hard to model, unless we have some prior information about how
the densities change. Consequently, the importance re-weighting is common

9

2. Related Work

oL
oL y
87; 00, @
3
g |:> |:> |:> class label y
= Ik IEA NEE
BN ~ J
\ 9Ly == label predictor Gy (-;0,)
Jéo —N90 £ © g domain classifier Gy(-;604)
G\ e —A—
Y L,
feature extractor G¢(0f) 4, %, <
& Y |:> @ domain label d

5
:
da

forwardprop backprop (and produced derivatives)

Figure 2.3: Schema of an adversarial neural network for domain adaptation.
Feature extractor (green) and label predictor (blue) together form a standard
neural network for classification. Domain-invariant mapping is learnt in an
adversarial manner with domain classifier (red) by applying reversed gradient in
feature extractor with respect to the domain loss Ly. The image is taken from

[35].

to use with the assumption that one of the conditional densities does not
change.

Another technique is based on the assumption that some learn-able transfor-
mation [9, 30} B} 32] exists between the domains. Unfortunately, this method
tends to overfit when working with high-dimensional data and complicated
domain transformation. This is common for example in computer vision,
where feature space can have thousands or even millions of dimensions.

Instead of transforming one domain into another, an alternative approach
attempts to find domain-invariant representation [9, 33), 34]. This technique
learns a transformation from the feature space X into a possibly lower-
dimensional feature space Z, which is invariant to the source and target
domain. Attempting to reach this goal, promising results were recently
achieved by methods [35] 36, 37, B8, [39] leveraging adversarial learning (AL)
[40]. Domain adaptation based on AL is using a feature extractor that maps
original features to domain-invariant space. Two classifiers are learned on
top of this inter-mediate feature space. The first classifier is predicting class
labels, while the second one predicts domain in an adversarial manner (see

Figure .

10

2.4. Classifier Adaptation to Label Shift

B 2.4 Classifier Adaptation to Label Shift

Recall that label shift makes the following assumptions about the data
generating distributions:

L pr(Y) #pe(Y)
2. pr(X[Y) =pe(X]Y)

Let us assume probabilistic classifier fr(x) ~ pr(Y|x) trained on the training
set T with relative class frequencies p7(Y’). The formula for adapting the
classifier’s predictions to the new priors pg(Y) in a test set & = {x;} | can be
simply derived by applying Bayes theorem to the assumption about equality
of class-conditional distributions

pr(Y|x)p7(x) _ pe(Y[x)pe(x)

pr(x[Y) = pe(x|Y) =)) (2.10)

By expressing adapted posteriors, we get

pe(Y)pr(x)

pe(Y|x) = pr(Y]x) - (2.11)

S
=
S
™
x

Note that the sum over posteriors is equal to one

»

S pe(vx) = S pr (v PEPT) (2.12)
i=1 ¢ i—1 4 pT(Y)pS() .

and the ratio py(x)/ps(x) can be factored out before the sum, thus

—1
pr(x

.
pe(x

)) = (2.13)

k pe(Y)
;PT(Y|X)pT(Y

~—

is normalization constant and Equation (2.11) can be expressed as

pe(Y)
T(Y) [

pe(Y]x) oc pr(Y]x) (2.14)

3

which gives us the recipe for adaption of classifier’s predictions under the
label shift.

The remaining question is how to estimate test and training priors, which
are used to re-weight the predictions. If we have access to the training set

11

2. Related Work

T, we can estimate training priors p7r(Y) by simply counting ground-truth
labels in the data set (although other options are possible, see experiments in
the Section 4.2.1). Estimating test set priors pg(Y) is typically more difficult
because usually, we do not have access to the ground truth labels. This
thesis is focused on answering the question "how to estimate test priors". An
alternative approach is to estimate the priors ratio w(Y) = pe(Y)/pr(Y)
directly. Note that once we have estimated priors p7(Y) and pg(Y'), instead
of re-weighting the predictions on test set according to the Equation (2.14)),
we can use the ratio to train a new classifier, adapted to the target domain,
by minimizing the expected loss in the Equation (2.9)). This can be done by
directly re-weighting the loss function during training or by sampling training
examples according to the estimated importance weights.

B 2.4.1 Confusion Matrix

One of the first procedures [41], [16] for prior estimation is based on a K x K
left stochastic matrix Cgj, called confusion matrix (CM). The value in the
k-th column and i-th row is interpreted as probability p(D = i|Y = k) of
the classifier h deciding for class ¢ when the true class is k. Both D and Y
are random variables over the label space, but D represents the classifier’s
decision, while Y represents the ground-truth label.

Useful property of confusion matrix is that it does not change with prior
shift [20]:
Lemma 2.1. Let Y be a random variable representing the ground truth label
of a sample x and D a random variable representing classifier’s decision h(x).
If assumption pr(x]Y") = pe(x|Y) holds, then

p(D|Y) = pr(D]Y) = pe(D|Y),

—cT _ ¢

Proof. From the law of total probability

pr(DIY) =) pr(D.x[Y) =) pr(Dlx,Y)pr(x|Y).
xeX xeX

Note that the classifier’s decision depends only on x. From the property of
conditional independence, equality pr(D|x,Y) = p7(D]|x) holds. And since
p7(D]|x) depends only on a fixed classifier h, it is equal to pg(D|x). Following

12

2.4. Classifier Adaptation to Label Shift

this observation and applying the label shift assumption, the equation above
can be rewritten as

> pe(DIx,YV)pe(x]Y) = > pe(D,x]Y) = pe(D[Y).

xeX xeX
O
Marginalizing over the joint density p(D,Y)
K
pD=i)= Y pD =Y =Wp(¥ =b), 215

p(D) = Cgyp(Y).

McLachnan [41] and Saerens et al. [16] simply compute the new priors pg(Y)
from the Equation (2.15):

A

pe(Y) = Cgppe(D), (2.16)

using an estimate of Cgy), computed on a validation set V

[{(xj,95) € Vi d(wj) =i A y; = F}| (2.17)

D =iy =k) = {(xj,y;) €V :y; = k}| ’

where |-| is the set cardinality, and an estimate of p(D) computed by counting
the classifier’s decisions on the test set &€

Let us also consider a soft confusion matria'| (SCM) Cfi“);;t estimated from
the classifier’s soft predictions f as

ASO 1
& = N, > f(xi), (2.19)

xi:yi:k

where 6:S|‘}€ft denotes the k-th column of the SCM. The probability psg"ft(D) can
be estimated by averaging predictions f(x) over the test set. The new priors
are then computed similarly to the Equation (2.16).

!Following the terminology of Lipton et al. [20].

13

2. Related Work

B 2.4.2 Adaptation Based on Maximum Likelihood

Saerens et al. [I6] suggested to estimate the test time priors pg(Y) by
maximizing the likelihood

M M K M K
&) =1Irexi) =] D pe(x, Y = k) = [[D pe(xlY = k)pe(Y = k).
i=1 i=1k=1 i=1k=1
(2.20)
The proposed EM algorithm is working iteratively in two steps:
. 5 (v =k
Pr(Y = kix)) =)

(s = pr (V=
p(g)(Y = klx;) = N . pT(ﬁ(s)(;:j)) (2.21)
Y= b (Y = jlxi) =y

~(s 1 < als
PV =) = g A =). (222)
=1

In the first step, it recomputes the posterior predictions (Equation (2.21))).
The classifier outputs are denoted as pr(Y = k|x;). In the second step,
it estimates the test priors by averaging all updated predictions (Equation
(2.22))). The algorithm requires initialization of test priors ﬁg])(Y = k). This
can be done for example by the relative class frequencies in the training set,
ie. pr(Y =j)=M;/M.

Du Plessis and Sugiyama [15] showed that the EM algorithm, proposed
by Saerens et al. [16], can be derived from minimization of KL divergence
between pg(x) and its approximation pj(x) modeled as

Pe(x) =D Pupr(x|Y = k), (2.23)
k=1

where Py == pg (Y = k). The KL divergence is expressed as

L(pellpe) = /pg gdxz

K
= /ps) log pe (x)dx — /pg(x) log Y Pepr(x|Y = k)dx.
s
(2.24)

The first integral depends only on x. Consequently it is a constant for a
fixed input and it can be ignored during minimization. The second integral

14

2.4. Classifier Adaptation to Label Shift

can be viewed as an expectation over log pi-(x) and can be approximated by
empirical average

N K

N 1 A
[pet1o5 Y- Bapr(xly = Rdx ~ < 3"log > Puprlxily =). (2:25)
yey =1 k=1

These observations give the following optimization problem:

P = argmax— Zlogz Pupr(x|Y = k) =

=1 k=1
pr(Y = k[x;)pr(x:)
= argmax— log P _
N ; kZl T (Y = k)
3 x = kfx;)
:argmax—Zlong (xi) Z —kz):

’ ZNl =y (2.26)
:argmaX*ZIngTx lz ogpr:
P =1 Nz TiE o eV =k

pr(Y = k|x;)
=ar max— log p. A
b Z Z o =)

s.t.ZPk:L Vk: P >0

Indeed, this is equivalent to maximizing the logarithm of likelihood function
from Equation (2.20). In other words, it is maximization of log-likelihood
(&) =log L(E).

Sulc and Matas [I7] experimented with maximizing the log-likelihood
function by projected gradient ascent

. [
Pl =q | P+ oUE) , (2.27)
P,
where 7(-) denotes projection onto the probability simplex and
M pr (Y =k|x:)
8l(5) _ pT(Y:k) (2 28)
D, K p pr(Y=jlx))’ '
OF 5 T Py

The experimental results showed that the EM algorithm converged faster
than the gradient ascent, while achieving similar results.

15

2. Related Work

B 2.4.3 Adaptation Based on Maximum Aposteriori

As an extension to the projected gradient ascent algorithm given in the
Equation (2.27)), Sulc and Matas [17] proposed maximum aposteriori estimate

P* = arg maxp(f’\é') = arg maxp(la)p(é'\f’) =
P P

= arg max log p(P) + log p(€|P), (2.29)
A —_————

P I€)

adding a hyper-prior p(f’) to the log-likelihood function [(£). The hyper-prior
represents a prior knowledge about the categorical distribution pg(Y') and
was modeled by symmetric Dirichlet distribution

. 1 B
p(P) = Dir(a) = —— ol (2.30)
B(a)kl;[1 K
where a = (a1,...,ak), a1 = ... = axg = « and B(-) is the multivariate

beta function. The intuition behind the Dirichlet distribution is that for
« > 1 the probability vector P is forced to be a dense distribution, while for
0 < a <1 being a sparse one. See Figure 2.4 for visualization.

The solution to the maximum a-posteriori can be found by projected
gradient ascent, adding the derivative of log Dir(a) into the 7(-) function in
the Equation (2.27)

Odlogp(P) OlogDir(er) a—1
= = . 2.31
0Py 0Py Py (2:31)

B 244 BBSE

So far, all of the mentioned algorithms were approaching the problem of
prior shift adaptation through estimating the test time prior pg(Y) and the
training prior p7(Y’) separately. But, as proposed by Lipton et al. [20], it is
also possible to estimate directly the prior ratio w(Y) = pg(Y)/pr(Y) using
the confusion matrix Cq, with joint probability p(D = i,Y = k), unlike the
conditional probability used in the Section [2.4.1|

16

2.4. Classifier Adaptation to Label Shift

a = 0.999 a = 3.000 a = 6.000

A AA

Figure 2.4: Visualization of Dirichlet distribution on 3-dimensional probability
simplex. Red encodes higher probabilities, blue smaller probabilities.

Let us again consider the Equation (2.15) and multiply it by Z ;gzg

K
pe(D=1i) = pr(D=ilY = k)pe(Y = k) =
k=1

& _ pr(Y =k)

5 iy Y =F) 9.32

Ero-reopizye em
w(Y=k)

pe(D) = Cgyw(Y).

The result is similar to the Equation (2.15), therefore it is not surprising that
the ratio w(Y") is computed in the very same way

(Y) = Cy pe(D). (2.33)

The only difference is in the normalization of the confusion matrix: while in

the conditional confusion matrix Cgj,, columns sum up to one, in the joint
confusion matrix Cg, all elements sum up to one. The CM Cg,, with the

joint probability is estimated as

(2.34)

17

2. Related Work

soft

dy computed from the

It is also possible to use the soft confusion matrix C
classifier’s predictions

1
et = ¥ > f(xi), (2.35)
k

XY=

where &5 denotes the k-th column of SCM. The probability pg™(D) can be
estimated by averaging predictions f(x) over the test set. The ratio is then
computed in the same way as in the Equation (2.33).

This estimation is called the Black Box Shift Estimation (BBSE). A variant
using a soft confusion matrix CZ‘?& is denoted BBSE-S.

Note that the validation set used for the estimation of Cg ,, should have the
same label distribution as the training set. Otherwise we have to re-weight
rows of Cg4, by the ratio of training and validation set priors pr(Y)/py(Y).

The fact that Cg, estimated on a validation set with p7(Y) # py(Y)
cannot be simply used for estimation of w(Y) is apparent from the following
inequality:

pv(D,Y) =pu(DY)py(Y) = pr (DY)py(Y) # pr (DY)pr(Y) = pr(D,Y).

(2.36)
In order to use the validation set, we need to multiply py,(D,Y) by p7(Y)/pp(Y),
to make it equal to p7(D,Y). This observation means that the BBSE also
requires access to the training set.

B 245 RLLS

Azizzadenesheli et al. [19] proposed to estimate the prior ratio w(Y’) in two
steps. First, because in case of no label shift prior ratio is equal to the vector
of ones, i.e. w(Y) =1, they define amount of weight shift

0 :=wlY)-1 (2.37)

and propose to find # instead of w(Y'). This way it is possible to use lo-
regularization in the optimization procedure to penalize large shift. Plugging
0 into the Equation (2.32) we get

pe(D) = Cgqy(0+1)
pe(D) — Cqyl = Cyyb (2.38)
b=Cg,b,

18

2.5. Classifier Calibration

where b = pg(D) — Cgy1. Azizzadenesheli et al. choose to find @ in the
Equation (2.38) by minimizing lo-norm with a regularization term to prevent
large shifts

é:argeminHéd,yQ—BHQ%—Ac||9H2, (2.39)

where A¢ is a hyper-parameter, which can be found by cross validation and
Cdy and pg(D) are estimated in the same way as in the Section 2.4.4, The
solution to the problem given by the Equation (2.39) is found by a third
party solver.

In the second step the prior ratio is computed as
B(Y) =14 M, (2.40)

where
1, ifN>_—2%5L
A= Onac(min = 757)? (2.41)
0, otherwise.

M is the number of samples in the training set, NV is the number of samples in
the test set, o, is the smallest singular value corresponding to the confusion
matrix Cg, and 0,4, represents our belief about the size of the shift.

Determination of X in the Equation (2.41) serves as an indicator of how
bad our estimate is. If the estimation of # is based on an insufficient number
of samples or the confusion matrix is close to the singular matrix (its smallest
singular value is close to zero), then it is better to decide for no shift and set
A to zero.

B 2.5 Classifier Calibration

It is important to know how much we can trust the decision of our classi-
fier. Therefore, having a probabilistic classifier f(z) trained to approximate
posterior probabilities p(Y'|X), we would like the outputs to reflect the true
probabilities of correct and incorrect classification. For example, from all
the samples being classified with a confidence of 0.9, ninety percent of them
should be classified correctly and ten percent of them incorrectly. Such
property is desirable also in algorithms for adapting classifiers to the label
shift because most of the methods work with the assumption that the classi-
fiers approximate posterior probability. Unfortunately, common probabilistic
classifiers, such as Convolution Neural Networks, tend to have overconfident
predictions due to over-fitting to the training set.

19

2. Related Work

When the classifier’s outputs reflect its predictive uncertainty, we call
the classifier calibrated. In the literature there are several definitions for
calibrated classifier [42], 43]:

Definition 2.2. A probabilistic classifier f is multiclass-calibrated, or sim-
ply calibrated, if for set of all samples with prediction vector f(x), the
proportions of classes in this set are equal to f(x):

pY[f(x)) = f(x). (2.42)

Another weaker definition was proposed by [44]. The definition is weaker
in the sense that it does not consider whole prediction vectors, but every
class in the vector separately.

Definition 2.3. A probabilistic classifier f is classwise-calibrated, if for
any class i and any predicted probability q; for this class:

p(Y =ilfD(x) =) = 4. (2.43)

The definition basically says that among all samples predicted to belong
into class ¢ with probability ¢;, the proportion of samples with ground truth
class i is equal to ¢;. Yet, one more even weaker definition exists [45]:

Definition 2.4. A probabilistic classifier f is confidence-calibrated if

p(Y = argmax f(x)| max f(x)) = max f(x). (2.44)

In order to better understand the definitions 2.2}, [2.3| and [2.4] let us demon-
strate them on several examples:

Example 1. Suppose classification task into a three classes Y = {1, 2,3},
with label distribution p(Y') = (0.5,0.1,0.4), and a classifier with a constant
output f(x) = (0.5,0.1,0.4). According to Definition 2.2/ classifier f(x) is
multiclass-calibrated. Note that the classifier is also classwise-calibrated and
confidence-calibrated according to Definition [2.3| and [2.4] respectively.

Example 2. Let us consider classification task into a three classes Y =
{1,2,3}. Classifier f(x) outputs four predictions, displayed in the first column
of Table 2.1l The true proportions of classes among samples having particular
output vector f(x) are in the second column of Table |2.1. The classifier is
classwise-calibrated and confidence calibrated, but not multiclass-calibrated.

20

2.5. Classifier Calibration

fX) | p(Y]f(X))

(0.2, 0.5, 0.3) | (0.3, 0.4, 0.3)
(0.2, 0.3, 0.5) | (0.1, 0.3, 0.6)
(0.3, 0.5, 0.2) | (0.2, 0.6, 0.2)
(0.3,0.2, 0.5) | (0.4, 0.2, 0.4)

Table 2.1: Classifier f(X) is given by its outputs in the first column. The true
distribution of samples having prediction f(X) are in second column.

Example 3. Let us consider classification task into a three classes Y =
{1,2,3}. Table 2.2 gives outputs of classifier f(x) in the first column and
corresponding ground truth relative frequencies of classes in the second column.
The classifier is only confidence-calibrated according to Definition [2.4l.

fX) | p(Yf(X))
(0.2,0.7,0.1) | (0.0, 0.7, 0.3)
(0.2, 0.2, 0.6) | (0.3, 0.1, 0.6)

Table 2.2: Classifier f(X) is given by its outputs in the first column. The true
distribution of samples having prediction f(X) are in second column.

Vaicenavicius et al. [43] formulated an evaluation framework for classifier
calibration, under which all weaker definitions are only special cases of the
Definition 2.2, In the framework, the authors introduced so-called calibration
lenses, which allow us to evaluate calibration on simpler induced problems.
It is particularly useful in multiclass problems, where we usually do not have
enough samples to evaluate general calibration. An example of such induced
problem is transforming the K-classification task into binary classification,
where a subset of K classes is merged into one class and the rest into the
second class. Indeed, evaluating a classifier on an induced problem has one
drawback: Although the calibrated classifier is also calibrated on the induced
problem, it does not apply contrariwise [43].

B 2.5.1 Evaluating Calibration

Let us first define canonical calibration function [43]:

Definition 2.5. Canonical calibration function p: Ax 1 — Ax_1 of
classifier f: X — Ag_1 is

wq) =pY|f(x)=q) Vg€ A 1. (2.45)

21

2. Related Work

Canonical calibration function is a mapping, which transforms the classi-
fier’s outputs into calibrated predictions. Therefore, the classifier is multiclass-
calibrated if its calibration function is identity. Now we can define expected
miscalibration [43]:

Definition 2.6. Expected miscalibration on A C Ak 1 with respect to
some distance d s

na = Eld(u(f (X)), F(X))|f(X) € Al. (2.46)

Here A only denotes a subset of probability simplex on which we want to
evaluate the calibration of our classifier.

Let ® = {®;}X, be a partition of A C Ag_1, then the estimator of
calibration function is defined as

[{i: f(z:) € Plg] ANy = 7}
[{i: f(xi) € ®[q]}]

where ®[gq] denotes the partition for which ¢ € ®; holds. To summarize
it, we split subset A into L partitions (bins) and in every bin we compute
relative frequencies for every class (from samples falling into the bin based
on the classifier’s predictions). These relative frequencies then determine the
estimate of the calibration function in a particular bin. The estimator of the
canonical function is constant on every partition, therefore we can define fi;
as a value of the estimator in the partition ®;.

A9 (q) = for j=1...K, (2.47)

Next, we can define an estimator of expected miscalibration as
L A
A=Y pid(fii, f), (2.48)
i=1

where p; is the proportion of samples from the data set falling into the bin ®;

G) € B
D= 1 Fo) € A (249)

and ﬁ is the average of all predictions in the bin ®;

. i) eds f (X5
j = Zuttsier. S 05). (2.50)
{7 : F(xj) € i}
Note that whenever the denominator in Equations (2.47),(2.49)), (2.50) is zero,
the value of the particular estimator is set to 0. The estimator of expected

22

2.5. Classifier Calibration

1.0
Bl Outputs Bl Outputs :

0.8 ~1 Gap 1 Gap Vi
P
] 0.6
S
)
S 04
<

0.2

Error=44.9 ¢
0.0 “

0.0 02 04 06 08 1.0 00 02 04 0.6 08 1.0
Confidence

Figure 2.5: An example of reliability diagram, taken from [45]. The error
denotes Expected calibration error.

miscalibration is nothing else than weighted distance between the histogram
based estimation of calibration function and the classifier’s predictions.

Vaicenavicius et al. [43] showed that as the number of partitions and
the number of data samples grow to infinity, the estimator of expected
miscalibration 74 is equal to ny. However, if the number of partitions is fixed
and only the number of data samples grow to infinity, then the estimator is
only a lower bound 7j; < 74 and 74 is an inconsistent estimate. The intuition
behind this fact is that when the predictions in the bin are averaged, the
overconfident and underconfident estimates can cancel out.

Guo et al. [45] used expected miscalibration for induced binary classifier
with total variation distance d(z,y) = ||z — yl|,. This special case of expected
miscalibration is called Ezpected calibration error (ECE).

The visualization of model calibration is done with reliability diagrams
[43, 45, [46]. They are mostly used as one-dimensional graphs, plotting
accuracy vs. confidence (see Figure 2.5), but multidimensional diagrams
were proposed as well [43]. Note that the multidimensional diagrams suffer
from a lack of data due to the curse of dimensionality. In general, reliability
diagrams plot information about £ and f for all partitions ®;.

23

2. Related Work

B 2.5.2 Calibration Methods

Guo et al. [45] evaluated several calibration methods in the context of neural
network classifiers and observed that temperature scaling performs best in
most cases.

Temperature scaling (TS) has a single real valued parameter T' > 0, called
temperature. The neural network’s logits are divided by T right before the

softmax layer
exp(z;(x)/T)
K .
=1 exp(z;(x)/T)
TS does not affect the accuracy of the model, because the class with maximum
probability remains the same, only the confidence for the decision changes.

For T' > 1 the resulting prediction is closer to the uniform distribution
(confidence is decreasing)

L ep(Ee)/T) 1

7) T exp(z,CI/T)
—oo I exp(z(x)/T) —oo R | (7T

1 1

Fik(x) = (2.51)

TS g 2 T S T o~ 252
_ 1
ol K

while for T' < 1 the prediction for the most likely class is getting closer to
one and the prediction for the rest of the classes are getting closer to zero
(the confidence is increasing). This can be seen by computing the limit

- exp(z(x)/T) - !
P K exp(z(x)/T) 0 SK 0T
7=1 J Jj=1 W
B 1 _ 1 = (2.53)
Z]Kzl hmTHO"" % ZJKZI hmT—)O"" el71 () ==())/T ‘
1

N 1+ Ej:j?fi limp_o+ ez (x)=z(x))/T"

If the output for class ¢ is not the maximum, then there is at least one j
for which z; > z;, therefore making limit limp_ o+ ez ()2 (x)/T — 55 and
thus the limit in the Equation (2.53) is equal to 0. If the output for class i is
the maximum, then z; < z; Vj € {1... K} and limg_,q+ e(%®)=2)/T =
0 Vj:j # i Therefore the limit in Equation (2.53) is equal to 1.

24

2.5. Classifier Calibration

Besides temperature scaling Guo et al. [45] experimented also with matriz
scaling (MS) and wvector scaling (VS). Matrix scaling transforms the logit
vector z(x) by linear transformation and then applies the softmax

frs(x) = o(Wa(x) + b). (2.54)

where o denotes softmax function. In case of vector scaling, the matrix W
is restricted to be diagonal matrix. It can be rewritten in the form, where
every logit is multiplied by a different scalar weight

exp(W;z(x) + b;)
> iy exp(Wizj (%) + by)

(2.55)

While TS does not change the argument of maxima, in the case of MS and
VS, there is no such guarantee.

Alexandari et al. [47] proposed the Bias-Corrected Temperature Scaling
(BCTS) as an intermediary between vector scaling and temperature scaling

Flrs(o) = o2)/ T2)
BCTS > exp(2;(x)/T + bj) '

They showed that although the TS can effectively reduce the ECE error, it is
not suitable in combination with prior shift adaptation, because of systematic
bias and that BCTS in combination with EM algorithm [I6] from the Section
2.4.2, outperforms both BBSL [20] ad RLLS [19].

(2.56)

The parameters in all of the aforementioned methods are learned via
negative log-likelihood (NLL), also called cross-entropy (given by Equation
(2.7), on the validation set. The parameters are learned separately from
the training procedure, otherwise, they would be learned along with other
classifier’s parameters to output overconfident predictions.

25

26

Chapter 3
The Proposed Method

“When I find myself in the company of scientists, I feel like a shabby
curate who has strayed by mistake into a room full of dukes.”

— W. H. Auden

As observed in the literature [21], 41} [18], in some cases the Equation (2.16)
can result in a vector outside of the Ax_1 simplex, i.e. the estimate can
contain negative values.

Following the Equation , the probability of the classifier’s decisions
p(D) is a convex combination of columns in Cy, as p(Y') € Ax_1. Since the
columns of the confusion matrix are probability vectors, they define a convex
set @ of feasible values p(D) within the probability simplex Ax 1. In other
words, a classifier with the confusion matrix C will result in decisions from
p(D) € ®¢. The class distribution p(Y) determines the value of p(D) within
®c. See Figure for illustration. For the true distribution of decisions
p(D) and confusion matrix Cgy,, the Equation holds. The problem
occurs when we work with estimates of the distribution p(D) and confusion
matrix Cd|y. If the estimates computed from a limited set of samples are not
consistent, meaning that the classifier with confusion matrix Cd‘y, on data
set with priors p(Y'), would never produce decisions with distribution p(D),
there may be no prior probability p(Y') satisfying the Equation . For
example, having

the unique solution to the Equation (2.15)) is p(Y) = [

Ol
ol
1

27

3. The Proposed Method

Figure 3.1: The convex set ®c C Ak _1 of all possible values of p(D) for a
classifier with confusion matrix C.

The prior ratio estimation also suffers from the problem of inconsistent
estimates. Let us consider the following example, resulting in a negative value
in the estimated prior ratio, which — as a ratio of two probabilities — should
be non-negative:

Cay = lgﬁl 8:‘11] , (D) = H —w(Y) = [] : (3.1)

B 3.1 Maximum Likelihood Approach

This thesis proposes a novel procedure for the prior estimation based on
maximizing the likelihood of pg(D), which handles inconsistent estimates of

p(D) and the confusion matrix Cgj,, and can even work with singular matrices

Cg)y, as it does not use matrix inversion.

Let n = (n1,...,nk) be the numbers of the classifier’s decisions for class
1,..., K on test set £ and let us denote Q = (q1,...,qx) = pe(D) the
probabilities of the classifier decisions on the test distribution pg(X,Y).
Assuming the independence of classifier decisions on the test set £, the

28

3.1. Maximum Likelihood Approach

likelihood of Q follows by the multinomial distribution

|
(n1+"'+nK)'-q?l-...-q%’{. (3.2)

L(Q) =p(n|Q) =

nl'nK'

Substituting the Equation (2.15) into the likelihood function L(Q), we can
express the likelihood function of class priors P

K
0(P) = plafp) = P o py @)

where cy. is the k-th row of Cgj,.
The log-likelihood is

K
L(P) =logp(n|P) = Z n log(cy. - P) + On, (3.4)
k=1

where 0, is constant for a fixed n.

We estimate the new class priors by maximizing the log-likelihood from
Equation (3.4):

K
P = arg max ¢(P) = arg max Z ny log ¢, P (3.5a)
P P
K
s.t.: Z P,=1;, Vk:P,>0. (3.5b)
k=1

By this formulation we are avoiding estimation of pg(D) as a potential source
of inconsistency. Note that pg(D) is estimated implicitly with P. The convex
objective can be iteratively maximized using projected gradient ascent

Pt = x (P4 VU(PY)), (3.6)

where 7(+) denotes projection onto the probability simplex and the gradient
is computed as

n

cp. P s

5

VI(P) = fj (3.7)
k=1

We denote this method using Cg,, as CM?’ and the one using soft confusion

matrix CZTyft as SCMZL.

29

3. The Proposed Method

B 32 Maximum Aposteriori Approach

Additional knowledge about the distribution P can be formulated as a hyper-
prior p(P). We can then extend the proposed procedure from Section to
formulate maximum a-posteriori (MAP) estimation:

f’MAp = argmax p(P|n) = arg max p(P)p(n|P)
P P

= arg max log p(P) + arg max log p(n|P)
P P
K
st VE: P, >0 Y Pp=1,
k=1

where p(P) denotes a hyper-prior on P and log p(n|P) is log-likelihood given
by Equation (3.4)).

Following [I7] we use a symmetric Dirichlet hyper-prior Dir(«), given by
Equation (2.30), favoring dense distributions P with o > 1, and a sparse
distribution for 0 < a < 1.

The solution to maximum a-posteriori can be found by projected gradient
ascent, adding the hyper-prior derivative from Equation (2.31) into the 7(-)
function in Equation (3.6).

We denote this method using Cyg, as CMM and the one using a soft

. . t
confusion matrix CZTJ as SCMM.

B 33 Applying Regularization

As extension to the method described in the Section we propose to add a
regularization term in the Equation (3.5):

P= arglgnax oP) —)\HP—pT(Y)H% =

K (3.9a)
= arg max > nrlogey P — AP — pr(Y)][3
k=1
K
st: Y Pe=1; Vk:P, >0, (3.9b)
k=1

30

3.4. Ratio Estimation

where) is a hyperparameter. The intuition behind the regularization term is
to penalize too large shifts from the training priors p7(Y). Note the minus
sign before regularization term to ensure minimization of the ls-norm.

The task given by Equation (3.9)) can be solved by projected gradient ascent

Pl = (P* 4+ VU(P*) - AV||P* — pr(V)|B), (3.10)
where V/(P) is given by Equation (3.7) and
VI[P —pr(Y)[5 = 2(P — pr(Y)). (3.11)

We denote this method using Cgj, as CMX and the one using a soft confusion

matrix Cfﬂt as SCMLE,

. 3.4 Ratio Estimation

Following the derivation of CMY and SCM” methods in Section 3.1, we can
also estimate priors ratio w(Y) = peg(Y)/pr(Y), by using joint confusion
matrix Cgy instead of conditional one Cy,

K
w* = argmax [(w) = arg max Z ny log ¢, .w (3.12a)
w w 1
st w; >0 Vie{l,...,K}; wipr(Y)=1 (3.12b)

The solution to the problem given by Equation (3.12) can be found by
projected gradient ascent

D5 = K (0 + V(DY) (3.13)
where k(-) is projection onto the priors ratio simplex (see Section 3.4.1) and

K

Vi(w) = Z

k=1

ng

Ch.:. (3.14)

Cg. w

We denote this method using Cg, as CM" and the one using a soft
confusion matrix Cfloyf " as SCMW.

31

3. The Proposed Method
B 3.4.1 Projection onto the Priors Ratio Simplex

The projection of vector y to the probability ratio w (in this section bold
w will be used instead of w to emphasize that it is a vector) is a quadratic
problem:

1
w* = argmin - ||w — y|[3 (3.15a)
w2

st: w>0; wiz=1, (3.15Db)

where z; > 0Vi € {1,..., K}. Note that in our task for the ratio estimation
(3.12) the vector z = p7(Y) and thus sums up to 1. However, the algorithm
proposed to solve the task given by the Equation (3.15) only requires the
vector z to have positive values, therefore we do not mention the condition
here as it is only a special case. We denote the set of possible solutions, given
by the constraints in Equation (3.15b), as priors ratio simplex. The solution
to the task can be found by the Algorithm [1, which is a generalization of the
algorithm for projection onto the probability simplex, described in [48]:

Algorithm 1: Projection onto the priors ratio simplex
Input :y,z € RP, where z; >0 Vie {1,...D}
Compute y, = g—z Vi e {1,...D};

Sort ¥, into u : ug > ug > ... > up Find
p=mar{l <j<D:uj+ 1 (1 - Zgzl u1212> > 0};

2
i=1%

Define A = E%lzf (1 =30 wizd);
Output : w, where w; = maz{y; + \z;,0}

We proof correctness of the Algorithm [1] by modifying the derivation of
algorithm for projection onto the probability simplex from [4§]:

Proof. Lagrangian of the problem, given by the Equation 3.15|is
1
L(x,\B) = in —y|Z - Awlz—-1)-pTw, (3.16)

where) is a lagrange multiplier for equality constraint and 3 is a lagrange
multiplier for inequality constraint. Let us write KKT conditions for optimal

32

3.4. Ratio Estimation

solution w*

wi —yi —Azi—B;=0, Vie{l...K} (3.17a)
w; >0, Vie{l...K} (3.17b)
B >0, Vie{l...K} (3.17¢)
Biw; =0, Vie{l...K} (3.17d)
D
Y wizi=1, Vie{l...K}. (3.17e)

Next, let us define w}, = w;/z;, y; = yi/z and B, = B;/z;. Note that z; > 0,
whence w] and y; have the same sign as w; and y; respectively. From condition
(3.17d) we observe that if w; > 0, then £; = 0 and w; = y;+ Az; — w, =y, + .
If w; =0, then 8; > 0 and y; + A\z; = —f5; <O—>y§+)\: —62 < 0. This
observation means that smaller components in w’ correspond to smaller
components in y’ and when w, = 0, then y, + A < 0. Without the loss of
generality we can assume the components in w’ and y’ to be sorted

Here p denotes the last index where w)} is greater than zero, i.e. Vi < p: w} >0
and Vi > p: w, = 0. From the last condition in Equation (3.17¢), we get

D
1= Zwizz Zwéz? Zw;zf =
=1

i=1 7

P
(Y + Az
=1

Now we can express A as

A= —5—5 (1—211) (3.18)
1 17 z

Therefore to obtain final solution w* we need to know only p, which will allow

us to compute A and then the final solution w; = y; + Az;, for Vi : 1,...,p

and w; = 0, for W :p+1,...,D. The p can be found by computing

L+ ﬁ (1 — >yl Z) for every j: 1 < j < D and then selecting the

greatest j for which the quantity is greater than 0. Whence in the last step

of the proof we need to show that y + %22 (1 - 5:1 ygz?) >0,Vi<p
i=1"1%

and y; + 1 = (1 -7, y{zf) <0, Vj>p:

i=1"1

33

3. The Proposed Method

® For j = p:
/ 1 &
Yot sz |1 Sy | =y, +A>0
i=1%i i=1
m For j < p:
/ 1] /.2
RS 11— yiz y]Zz +1—Zy
i=17%i i=1 lez
2 - 2
/ /
:ﬁ yjzz‘i‘zyz +1=) yiz
i=1%i =741 =1
————
Aszlz
P
Zz yj-i-)\ S Wi+Nz | >0
zlz =1 z:j—i—l_;f]-/

Note that for j < pis y;+A > 0, therefore y; + S (1 — g:l y{zf) >
Z.

i=17%1%

0, Vj < p.
® For j > p:
1 i, i,
y]""ﬁ 1_2%/'21' y]Zz +1— Zyézz =
1=1 "1 =1 z 1Zz i=1
J) p)
o %ZZWJZ%H—Z?A Zy’ -
i=1%i i=p+1 i=1 i=pt1
)\Z'L 1 1
1 J) J)
/ / /
=< 2 (yj‘i‘/\)zzi—i—Z(yj—yi)zi <0
=\ T e E T

Note that because of ordering y; < y; — y; —y; < 0 holds, hence
(1= yje?) <0, Vi > p.

y; +

7,11

34

Chapter 4

Experiments

“No amount of experimentation can ever prove me right; a single
experiment can prove me wrong.”

— Albert Finstein

In this section, we compare the existing and proposed methods for prior shift
adaptation on existing long-tailed versions of standard image classification
datasets: the CIFAR100-LT [49], Places365-LT [50] and ImageNet-LT [50]
(see Figure 4.1| for corresponding class distributions on the training sets).
Unlike Cao et al. [49], our experiments require a validation set. Therefore,
our training set, denoted as CIFAR100-LT*, is smaller than the original
CIFAR100-LT, keeping 50 samples from each class for the validation set.
Using the same script'| as Cao et al. [49] to sample the training set, the
resulting imbalance ratio of 112.5 slightly differs from the original ratio of 100.
For Places365-LT and ImageNet-LT, we use the same training and validation
splits as Liu et al. [50]. Networks trained on these long-tailed datasets are
then evaluated on uniformly distributed test sets (UNI). We also provide
experiments in the other direction, denoted as UNI—LT, where the networks
trained on the full CIFAR100 and Places365 datasets are evaluated on test
sets subsampled from the full test sets following the prior distributions of
CIFAR100-LT* and Places365-LT.

The classifiers are evaluated on each dataset twice, without calibration
and with calibration computed on the validation set. We choose BCTS [47]
as the calibration method since it is to the best of our knowledge the best
performing method in combination with label shift adaptation.

1h't'.tps ://github. com/kaidic/LDAM-DRW

35

https://github.com/kaidic/LDAM-DRW

4. Experiments

CIFAR100-LT" Places365-LT ImageNet-LT
400 4 Max=450 Max=4980 Max=1280
4000 1000 4
0
[}
2300 3000
§ 2007 2000 A 500
#
100 1000 4
Min=4 Min=5 Min=5
0+ T T T T Y 0 T T T 0 T T T T T
0 20 40 60 80 100 0 100 200 300 0 200 400 600 800 1000

Class Class Class

Figure 4.1: Long-tailed class distributions used in the CIFAR100-LT* [49],
Places365-LT [50] and ImageNet-LT [50] datasets. Note that our CIFAR-100-
LT* slightly differs from the original CIFAR-100-LT [49], which did not have a
validation set.

B a1 Implementation Details

B 4.1.1 Settings for Classifier Training

In the experiments conducted on ImageNet and Places365, we used the
ResNet-18 [51] classifier architecture. On ImageNet, the networks were
trained from scratch for 90 epochs with the Stochastic Gradient Descent
(SGD), initial learning rate set to 0.1 and decaying every 30 epochs by a
factor of 10. On Places365, the network was finetuned from an ImageNet
pre-trained checkpoint for 30 epochs with the initial learning rate set to
0.01 and decaying by a factor of 10 every 10 epochs. For experiments on
CIFAR100, we trained a ResNet-32 [52] adjusted to image input of 32x32.
The network was trained from scratch for 200 epochs, with a learning rate of
0.1 and decaying every 80 epochs by a factor of 10. In all experiments, the
batch size was set to 256. Momentum and weight decay were set to 0.9 and
0.0001 respectively.

B 4.1.2 Implementation of Label Shift Adaptation

This section describes the setting of the hyperparameters in methods for label
shift adaptation. The proposed methods (S)CM¥ and (S)CMW take a single
hyperparameter - learning rate in gradient ascent. Since both methods have
well-defined objectives, we can find the learning rate by solving the task for
several different rates and then select the one maximizing objective given by
the Equation and for (S)CM’ and (S)CM"W respectively. In the
same way, we select the learning rate for (S)CMZ®, but the objective is given
by the Equation . The regularization constant is selected manually as

36

4.2. Label Shift Adaptation

A =0.001 and A = 1. Note that A cannot be determined by cross-validation
because in general, the validation set has different label distribution from the
test set. (S)CM™M also has two parameters: learning rate and « - parameter
of symmetric Dirichlet distribution. We search only for the learning rate by
maximizing objective given by the Equation (3.8) and set o = 3, following [17].
In all proposed methods the gradient ascent runs for 1000 iterations. The
results for RLLS are based on the authors’ codd?, using the cvzpy optimizer.
As termination condition for the EM and MAP algorithms, we set a threshold
to l9-distance between two consecutive solutions. The threshold is set to
0.001.

B 4.2 Label Shift Adaptation

Bl 4.2.1 Re-weight or Retrain?

Recall from Section [2.4] that we have basically two options how to deal with
the label shift if we know the test priors pg(Y') or priors ratio w(Y):

1. Adapting the predictions of a previously trained classifier fr(x) =
pr(Y|x), according to Equation 2.14.

2. Training a classifier fg(x) with a sampler following the known new class
priors pg.

When we choose a method estimating the test priors pg(Y') rather than
the priors ratio, the training priors can be determined either as a proportion

of class labels in the training set, i.e.]3%‘—/[(1/ =k) = %, or as an average

M
of predictions f(x) on the training set, ﬁ%c-(Y) = 4 > f(x;). The intuition
i=1

behind the latter one is that the classifier has learned some inner trained
prior, possibly different from the training set prior, due to some unknown
phenomenon at the training stage.

The retraining and re-weighting strategies are experimentally compared in
the Table 4.1 on datasets CIFAR100-LT*, Places365-LT and ImageNet-LT.
The results show that re-weighting the classifier by the ratio of test and
training priors outperforms retraining in all of the cases. In most of the cases,
re-weighting with the training priors estimated by averaging predictions on

2h't'.tps ://github.com/Angie-Liu/labelshift/tree/5bbe517938f4e3f5bd14c2c105de973dcc2e0917

37

https://github.com/Angie-Liu/labelshift/tree/5bbe517938f4e3f5bd14c2c105de973dcc2e0917

4. Experiments

Standard training sampler Sampler follows pg
D c| NA be e NA
pT bt
CIFAR100*

LT—UNI | X || 31.66"1%" 33.99*4 34.06*13° 22.44
LT—UNI | v || 31.71°%% 30.41*5" 34.54*1-32 22.44
UNI-LT || X || 63.83% 69.14*6! §9.13*0-8 67.34
UNI-LT || v | 63.83°%% 70.63*™ 70.65°"™ 67.34

Places365
LT—UNI | X | 25.14**14 28.03*¢% 32,9906 24.98
LT—UNI | v/ || 25.16"%* 27.36*%1® 33.51'0:%° 25.00

ImageNet
LT—UNI || X || 34.30°1 37.36°007 37.34°01 30.01
LT—UNI || v | 34.31"*19 36.07*%%° 37.45°-19 30.01

Table 4.1: “Adapt or Re-Train?” Accuracy (% std. dev.) of classifiers adapted
to new known priors pg(Y') with different estimates of trained priors (ﬁ%v-[,ﬁfr),
compared to training a classifier with a sampling strategy following pe(Y). NA
denotes no adaptation of predictions. Results of classifier adaptation on CIFAR
are averaged from 10 experiments, on Places365 and ImagNet from 5 experiments
respectively. Re-training the classifier with a sampler following pe(Y) was only
experimented once for each dataset. The column denoted as D determines the
training and the test distribution for a particular row, while the column denoted

as C denotes if BCTS [47] calibration was applied.

a training set performs better than label proportions. Hence, we will use

pr(Y) = ﬁ%c-(Y) in all of our following experiments.

B 4.2.2 Improving Estimates from Confusion Matrix

Table [4.2| compares accuracy after adaptation with new prior estimate based
on confusion matrix (CM) inversion [16] and our proposed method from
Section (3.1 (CMY) . The proposed method handles inconsistent estimates
p(D) and Cd|y and consistently improves the results both using the confusion
matrix (CMY) and the soft confusion matrix (SCMY). In all cases, the
proposed SCMY method using soft confusion matrix achieves the best results.

38

4.2. Label Shift Adaptation

D [¢| NA | CM CME | seM SCME | Oracle
CIFAR100*

LT—UNI | X || 31.66*127 | 21.37*%% 33.00°'°¢ | 26.64"3% 33.47*13% | 34.06"-%

LT—UNI || v/ || 31.67*% | 19.11*2% 32.41*150 | 26.98*37 33.42*15! | 34.40*13

UNI—LT | X || 63.839%2 | 68.06"%2 68.08°07 | 68.10°*% 68.24"7 | 69.13*0-

UNI—LT | v/ || 63.83%2 | 69.08%% 69.10°°% | 69.31°*% 69.40*°"" | 70.65"-™
Places365

LT—UNI | X || 25.14°01 | 17.45%030 27, 77+045 | 197822 28.47+0-11 | 32.99*0-46

LT—UNI | v/ || 25.14*01 | 16.24*1%° 27.69*0°! | 18.88*161 27.83*0-27 | 33.38*-%

UNI—LT | X || 58.17=10! | 81.16*%¢! 81.64°0% | 82.04%15 82.04%-5% | 88.14*0-7

UNI—LT || « || 58.17*% | 81.20*061 81.65*0¢1 | 82.04*015 82.07+0-6¢ | 88.150-3
ImageNet

LT—UNI | X || 34.30°%1 | 19.02*02¢ 33.57+0-33 | 2394204 35,91+0-20 | 37.34*0-1%

LT—UNI || v/ || 34.30*%Y | 17.28°048 32.34*041 | 24.783% 35,8617 | 37.39*0-16

Table 4.2: “Improve Estimates from Confusion Matriz.” Accuracy (+£std.

dev.) after adaptation with new prior estimate based on confusion matrix (CM)
inversion [I6] and our proposed method from Section 3.1/ (CMY) and Section 3.4
(CMW). SCM denotes soft confusion matrix, NA denotes no adaptation, Oracle
is an adaptation with ground truth priors. Results on CIFAR are averaged from
10 experiments, results on Places and ImageNet are averaged from 5 experiments.
The best results are displayed in bold. The column denoted as D determines the
training and the test distribution for a particular row, while the column denoted
as C denotes if BCTS [47] calibration was applied.

B 4.2.3 Comparing Regularization

Comparison of (S)CMY method with its regularized version (S)CMM is in
Table 4.3, We show the results for (S)CM“® with two different regularization
constants A = 0.001 and A = 1. For A = 0.001 the effect of regularization is
very small and the results are very close to (S)CMY. With A = 1 the results
start to be deteriorated in the case of UNI—LT shift. We evaluated the
regularization also for bigger regularization constants and with increasing A
the results are getting even more deteriorated. This is due to the stronger
effect of regularization, where the estimated test prior gets closer to the
training prior. Note that the setting of our experiments disadvantage the
methods with regularization because the purpose of regularization is to make
the estimation of the test prior more stable when the label shift is small,
while the shifts between the training and test distributions in our experiments
are large. In several cases (S)CM™® outperforms (S)CMY by a small margin.
We conjecture this is because the likelihood close to the optimum doesn’t
have to correspond to the best accuracy due to an inaccurate estimate of the

39

4. Experiments

D |Jc| NA | comE oMEE o CMEE SCMP SCMEE 001 SCMEE, | Oracle
CIFAR100*

LT—UNI | X [31.667% | 33.00"' 33.06° 33.147%° [3347°'% 33.48"%% 333471 [34.06"%

LT—UNI | v/ | 31.675'%7 | 32.41*'%0 32425190 33.34*147 | 334241% 3338 33.48°150 | 34.401%

UNISLT | X || 63.83°2 | 68.08'™ 68.0407 67.86*"%° | 68.24°%™ 68.24°*7 67.91°% | 69.13:0%

UNISLT | v | 63.83% | 69.10%%% 69.071" 69.02°% | 69.40°%7 69.397 69.19°%" | 70.65°°™
Places365

LT_>UNI X 25'14*014 27.77+0.45 27'77+l)v45 27'69*1)46 28'47%'.14 28'54%)10 28'55+0.15 32'99*4)'46

LT—UNI | v/ || 25.14:0 | 27,6905 27.69°07' 27.69°% | 27.83%0%7 27.85:026 27.82:0% | 3338031

UNISLT | X | 58.17510 | 81.64°%% 81.67°066 80.29°0%7 | 82.04*"%* 82.09'¢t §0.55°11 | 88.14:0%

UNISLT | v | 58.17519 | 81.65°6' 81.72°067 80.30°°% | 82.07*"¢° 82.10°%* §0.53° | 88.15°0%
ImageNet

LT_>UNI X 34'30*019 33'57‘4]'33 33'57*4)'33 33.89+0.31 35'91*0.20 35'78%) 17 35'754'26 37'34+Uv15

LT—-UNI | v/ | 34.30°0% | 32.34°041 32.34*04 32.74°042 | 35.86°%17 3559 35631 | 37.39:016

Table 4.3: “Compare Regularization.” Accuracy (£std. dev.) after adaptation
by proposed method from Section 3.1/ ((S)CMY) and method proposed in Section
3.3/ ((S)CM R making use of regularization. The (S)CMIR methods is evaluated
with two different regularization constants A = 0.001 and A = 1. NA denotes no
adaptation, Oracle is adaptation with ground truth priors. Results on CIFAR
are averaged from 10 experiments, results on Places and ImageNet are averaged
from 5 experiments. The best results are displayed in bold. The column denoted
as D determines the training and the test distribution for a particular row, while
the column denoted as C denotes if BCTS [47] calibration was applied.

D |JC| NA |OMLR o OMEE SOMEE o SCMLE RLLS | Oracle
CIFAR100*

LT—UNI || X || 31.66**" | 33.06*'°% 33.14*'%0 33.481%2 33.34*41 32754140 | 34.06%

LT—UNI || v || 31.67*%7 | 32.42*50 33.34*147 33.38*148 33.48150 32,6240 | 34.40*1%

UNI-LT || X || 63.83°0%2 | 68.04"° 67.86""% 68.24°0" 67.9140% 68.02*07 | 69.13*05®

UNI—LT v 63.8310.82 69.0711.00 69'02&.85 69.3910‘79 69'19t0.80 69'05&.97 70'65t0.75
Places365

LTUNI [X [25.14007 [27.7770% 27.6077 2854010 28.55% 26.94707 | 32.997 %

LT—UNI || v || 25.14*" | 27.69"°" 27.69"%0 27.85°0-26 27.8240% 27,0304 | 33.38*04!

UNI-LT || X || 58.17*0' | 81.67'0%¢ 80.29"67 82.09*%-6 80.55* 1% 82,0406 | 88.14*07

UNI-LT || v || 58.17*0" | 81.72*067 80.30*"% 82.10°% 80.53*112 82.04*% | 88.15°0:%0
ImageNet

LT—UNI X 34‘3010.19 33‘5710.33 33'89&.31 35.7810‘17 35'75&.2(; 34'69&.14 37'34t0.15

LT—UNI Ve 34'3010,10 32.34t0f11 32.74&.'12 35.591(11'1 35'63t0.15 34.3110.08 37.39t0.16

Table 4.4: “Compare regularization.” Accuracy (£std. dev.) after adaptation
with methods based on regularization, i.e. RLLS [I9] and method proposed in
Section 3.3 (S)CMEL. NA denotes no adaptation, Oracle is adaptation with
ground truth priors. The (S)CMYF methods is evaluated with two different
regularization constants A = 0.001 and A = 1. Results on CIFAR are averaged
from 10 experiments, results on Places and ImageNet are averaged from 5
experiments. The best results are displayed in bold. The column denoted as D
determines the training and the test distribution for a particular row, while the
column denoted as C denotes if BCTS [47] calibration was applied.

40

4.2. Label Shift Adaptation

confusion matrix.

The methods leveraging regularization to prevent large shifts from training
prior p7(Y) are compared in Table |4.4. Concretely, we compare RLLS
[19], which is estimating priors ratio w(Y) by minimizing lo-norm with
regularization term penalizing large shifts, against our method proposed in
Section 3.3 with two different regularization constants A = 0.001 and A = 1.
The best performing method is SCM“#® with A = 0.001.

B 4.2.4 Comparing Ratio Estimation

Having an estimate of the trained priors, Table 4.5 compares prior ratio
estimation with BBSE, BBSE-S [20] and RLLS [19] against the best perform-
ing prior estimation method, SCM", and our methods (CMW and SCMW)
proposed to handle the negative weights in the estimates from BBSE and
BBSE-S. The improvement of our method (S)CMW compared to BBSE and
BBSE-S is apparent on datasets CIFAR100 and ImageNet, while on Places365
the result is deteriorated. The results indicate that it is better to estimate
the new priors with SCM’ than to directly estimate the prior ratio.

B 4.2.5 Methods for MLE and MAP Prior Estimation

Existing methods for maximum likelihood and maximum a-posteriori prior
estimation are compared against the methods proposed in Sections [3.1] and
3.2 respectively in Table 4.6 Note that the methods maximize a different
likelihood function: The EM algorithm of Saerens et al. [16] maximizes the
likelihood of observed classifier outputs f(x;), while the proposed methods
based on the confusion matrix (CM%) and the soft confusion matrix (SCMF)
maximize the likelihood of classifiers decisions. The same difference in like-
lihood functions holds for the MAP approach of Sulc and Matas [17] and
MAP estimate proposed in Section [3.2], but we use the same hyper-prior on
pe(Y) for all methods: Dir(a = 3). Although the (S)CM"W is also based on
maximum likelihood estimation, we do not compare this method here since it
is outperformed by (S)CM¥ as experimentally shown in Section 4.2.4.

From the maximum likelihood estimators, the proposed SCM™ achieves the
best results in most cases, except for Places365 "UNI—LT", where the EM
algorithm performed slightly better. Similarly, the Maximum A-Posteriori
version of the proposed method, SCMM performs better than the existing
MAP estimate [I7] in most cases. As expected, the MAP estimation improves

41

4. Experiments

D ¢ NA | scwmF cMW scMW RLLS BBSE BBSE-S | Oracle
CIFAR100*

LT—UNI [X [31.66°% | 33.47°%% 32.77°1%0 327513 32,7540 31.28°T% 31.92°1% [34.06°%

LT—UNI || v/ || 31.67°1% | 33.42°151 33.11°1% 329813 32,6214 264715 29.06°26° | 34.40°13

UNI—=LT X 63‘83i0‘82 68.24:0'75 68.04ﬂ)'76 68‘24ﬂ]‘72 68.02:0'77 67.95ﬂl'06 68‘12*”‘”” 69.13ﬂ)'58

UNISLT || /|| 63.83°% | 69.407 69.087 69.41% 69.05"7 69.30<* 69.51* | 70.65"
Places365

LT—UNI [X [25147 [28.47°01 231427 197529 26.04°011 24.79°07 25557099 [32,9900

LT—UNI || v || 25.14°*1 | 27.83°027 23.16°%% 18.80°1%2 27.03°%4 23.12°0™ 236807 | 33.38'03!

UNI-LT || X || 58.17°1" | 82.04°0%% 814931 81574 82.04°% 80.66 81.69°% | 88.14*0%

UNISLT || v/ || 58.17°10 | 82.07°%66 81.52°°%7 81.64°%% 82.04°%% 80.71°°% 81.69*% | 88.15'0%
ImageNet

LT—UNI || X [34307 [35.91°020 35.21°088 352805 346911 30.77°0% 31.31°% [37.34°05

LT—UNI || v/ | 34.30" | 35.86°17 34.757% 3500717 34.31°%% 26.8904 28.05°% | 37.39:016

Table 4.5: “Estimate test priors or directly the prior ratio?” Accuracy (£ std.
dev.) after adaptation with the priors estimated by SCMY or with the prior ratio
estimated by BBSE [20] (without re-training), RLLS [19] (without re-training),
CMW and SCMW. Results on CIFAR are averaged from 10 experiments, results
on Places and ImageNet are averaged from 5 experiments. The best results
among all methods are displayed in bold. The best results among methods
estimating priors ratio are underlined. The column denoted as D determines the
training and the test distribution for a particular row, while the column denoted
as C denotes if BCTS [47] calibration was applied.

D |c¢| NA | CMF SCMF EM | oMM scMM MAP Oracle
CIFAR100*

LT—UNI | X |[31.66°% | 33.00" 33.47'%% 3281°M | 3349'% 33504 32732 | 34.06">

LT—UNI | v || 3167127 | 32.41*1%0 33.42°151 2943°1% | 33.99*14 34.13°155 2446245 | 34.40°1%

UNISLT | X || 63.830% | 68.0807 68.24'07 (7.23'0% | §7.01°°%" 67.00% 66.72'0 | 69.13:07

UNI-LT | /|| 63.830%2 | 69.10°"% 69.40°°77 69.17°0% | 68.42°0% 68.380™ 68.30°"7 | 70.65°7
Places365

LT—UNI | X [25.1477 [27.770% 28,4701 2802709 | 28.02°% 27.68°77 252205 | 32.99°0%

LT—UNI | / || 25.1401 | 27,6050 27.83:027 28,09*132 | 27.0210% 27.41'015 2857024 | 33 3803

UNI*)LT x 58-17;1.01 81‘6410.63 82.0410.63 82'63LUA31 76‘1310.7\6 73‘2710.46 76.97L0A45 88.14L(].27

UNISLT | /|| 58.1710" | 81.65°090 82.07°°%° 82.63'°% | 76,16 73.30% 77.00°04! | 88.15:0%
ImageNet

LT—UNI | X [34.3077 | 33.57°% 35.91°% 346372 | 36.41°7 36.57°1° 34.64°% | 37.34"0%

LT—UNI | / || 34.30°" | 32,3441 35.86'*!7 27.26">% | 36.18'%'2 36.80°°™ 20.65°%7 | 37.39*16

Table 4.6: “How to estimate new priors?” Accuracy (+ std. dev.) after adapta-

tion to new priors estimated with different Maximum Likelihood and Maximum
A Posteriori estimates. NA denotes no adaptation, Oracle is adaptation with
ground truth priors. Results on CIFAR are averaged from 10 experiments, results
on Places and ImageNet are averaged from 5 experiments. The best results are
displayed in bold. The column denoted as D determines the training and the
test distribution for a particular row, while the column denoted as C denotes if
BCTS [47] calibration was applied.

42

4.3. Confusion Matrices Illustrated on an Artificial Dataset

upon MLE on the dense test distributions, favoured by the Dirichlet hyper-
prior.

B 4.2.6 Dependence on the Number of Test Samples

Figure displays the accuracy on the uniformly distributed sets after the
adaptation of classifiers trained on the CIFAR100-LT* and Places365-LT
datasets with different prior estimation methods, as a function of the number
of test examples used for prior estimation. While the proposed SCM method
achieves slightly higher accuracy with more samples, the EM algorithm works
slightly better with a low number of samples. With an extremely low number
of samples, the prior estimation should better be omitted. For the sake of
clarity, we exclude the other proposed methods ((S)CMMR, (S)CMW, (S)CMM)
from the comparison since they are just extensions to the (S)CM" method or
perform worse compared to the (S)CMPY.

. 4.3 Confusion Matrices lllustrated on an Artificial
Dataset

Let us consider an illustrative classification problem with two classes {0, 1},
generated from known normal distributions: p(z|Y = 0) = N (—2,2) and
p(z|Y =1) = N(2,2) with equal priors, p(Y =0) =p(Y =1) = 0.5. We use
3 different classifiers modeled by logistic regression in the form

1

f(z) = T4 o @iy’ (4.1)

The first classifier, f;(z), was trained with scikit-learn on 4 randomly
generated samples. The other two are Bayes classifiers: f.(z) is perfectly
calibrated with parameters a = 1 and b = 0; f,(z) is overconfident with
parameters a = 2 and b = 0. All three classifiers are illustrated together with
their decision thresholds and the known posterior probabilities in Figure [4.3

Following the Section we denote Cd|y the confusion matrix estimated
from top-1 predictions and CZ])J ! the confusion matrix estimated using the
softmax outputs, following the Equation . In this artificial example
with known distributions, we can compute the true confusion matriz Cg), as

follows

43

4. Experiments

CIFAR100 Places365

W
o
S}

Accuracy on seen samples (%)
N

(I) 2‘0 4‘0 6‘0 8‘0 0 2‘0 4‘0 6‘0 8‘0
samples / K # samples / K
— 36
X
~ 34
W
o 32
©
C 30
S
c 28
o
> 26 1
(9}
MO 24
—
8 22 125
[}
< 20 10.0
0 2‘0 4‘0 6‘0 8‘0 0 2‘0 4‘0 6‘0 8‘0
samples / K # samples / K
— EM— CM—— SCM—— CMt—— SCM*t BBSE—— BBSE-S--- NA

Figure 4.2: “How many samples do I need?” Accuracy after adapting CIFAR100-
LT—UNI (left) and Places365-LT—UNTI (right) using #samples for prior esti-
mation.

t

Figure 4.4] compares the distance of the two estimated confusion matrices
from the true confusion matrix, depending on the size of the validation set.
Note that the soft confusion matrix may not converge to the true confusion

matrix even with a perfectly calibrated classifier, but it provides a better
estimate in low-sample scenarios.

44

4.3. Confusion Matrices Illustrated on an Artificial Dataset

\
\
— |
x 1 Le
W - [
—_ o~ x |
X X S T3
— o _8_8"‘ |
[- = =
>>X X X 9 8% L
D — v 9=
Q O W W Wl 5 S |
| I B
T T T T T T
. @ © N e
— o o o o o

45

Figure 4.3: An illustrative 2-class example with known class posteriors (solid
curves), outputs of 3 classifiers for given = (dashed lines) and their decision

thresholds (vertical lines). Note that f.(z) and f,(z) are optimal Bayes classifiers
minimizing the 0/1 loss.

4. Experiments

(a) : Classifier f;(z) trained on 4 samples: (b) : Overconfident classifier f,(z):
o — |ICay - €apll11 o = ||Cay - €ayll1.1
£ — 1ICay - €1 e — 1I€ay - €RlIn1
5 o 5
c c
5 3
' ;)f saar:f\plél; foar0 es’é??na?ii)n . ' ;;f sa}()rwplég fof;'D estlﬁawa'lczi%n .
0.94 0.30| {0.785 0.396| {0.938 0.321| |0.82 0.16| |0.798 0.174| |0.841 0.159
0.06 0.70|]0.215 0.604 | |[0.062 0.679| |0.18 0.84||0.202 0.826| |0.159 0.841
Caly et Caly Caly et Caly

(c) : Calibrated classifier f.(z):

1.0

= ||Cqy - Cayll1.1

= ||Cayy - cé?f”l,l

Ly, 1 norm
2 5 2

°
N

0.0

0 20 40 60 80 100 120 140

samples for estimation
[0.82 0.16] [0.764 0.215] l0.841 0.159]

0.18 0.84| 10.236 0.785(10.159 0.841
Caly et Caly

Figure 4.4: Top: The distance (sum of absolute differences) of estimated confu-
sion matrix Cd‘y and soft confusion matrix Czoyf ! from the true confusion matrix
Cjy, depending on the number of validation samples. The distance values are
averaged over 50 trials. Bottom: Confusion matrices Cd|y, C;lo; ! estimated from
50 samples and the true confusion matrix Cg4j, computed from Equation .

46

4.4. Convergence Speed

B aa Convergence Speed

The convergence of all algorithms on the test set of Places365-LT is displayed
in the Figure . For the sake of clarity, we exclude (S)CMM"R, (S)CMW
methods from comparison in the Figure [4.5 since they are just extensions to
the (S)CM" method or perform worse compared to the (S)CMY. Note that the
optimization code for our methods is experimental and not optimized for run
time. The results for RLLS are based on the authors’ coddﬂ, using the cvzpy
optimizer. Table compares the runtimes of all algorithms on Cifar100-LT,
Places365-LT and ImageNet-LT, using the termination conditions used in
all our experiments and described in Section While the proposed
optimization in (S)CM” and (S)CM™ takes longer than the baseline (S)CM,
all methods converge within 0.5 seconds on Places365-LT. Even though the
predictions are adapted on CPU and the classifier evaluation is computed
on GPU, the time to adapt classifier to label shift is negligible compared to
the time it takes to evaluate the classifier on the test set, which takes several
minutes on ImageNet-LT.

. —— SCM-M
-== CM-M
f/" —— SCM-L

w
o
1

28 A
g 26 / T T — EM
> - T TTmmmmmmmmmmmmmmm e === RLLS
© 24 1 CM-L
S
§ 72 —— MAP
-—- BBSE-S
20 - -== BBSE
__________________________________ -== SCM
18 -
ikl ettt il el --- M
0.0 0.1 0.2 0.3 0.4 0.5
time (s)

Figure 4.5: Convergence of prior estimation on Places365-LT. The y-axis shows
the classification accuracy after prior shift adaptation. Bold lines depict a
particular method before the termination criterion is met. Dashed lines show the
constant accuracy after the computation is finished. Note that (S)CM, BBSE
and BBSE-S are single-step methods. Since RLLS uses a third party optimizer,
we only report the total optimization time.

3|h't'.1:ps ://github.com/Angie-Liu/labelshift/tree/5bbe517938f4e3f5bd14c2c105de973dcc2e0917

47

https://github.com/Angie-Liu/labelshift/tree/5bbe517938f4e3f5bd14c2c105de973dcc2e0917

4. Experiments

Cifar100-LT Places365-LT ImageNet-LT

CM 0.0038 0.0697 0.3486
SCM 0.0034 0.0555 0.2946
BBSE 0.0089 0.0678 0.3357
BBSE-S 0.0033 0.0506 0.2927
EM 0.0068 0.8293 2.2329
CM-L 0.2001 0.3104 1.3035
SCM-L 0.1828 0.2955 1.3595
CM-LR 0.2021 0.3349 1.3127
SCM-LR 0.1975 0.3197 1.3151
CM-W 0.1735 0.2985 1.2144
SCM-W 0.1665 0.2847 1.2456
MAP 0.0041 0.0916 0.3388
CM-M 0.2061 0.3355 1.3943
SCM-M 0.1998 0.3114 1.3510
RLLS 0.0268 0.1946 2.1280

Table 4.7: Run time (in seconds) of methods estimating test time prior pg(Y)
or prior ratio pg(Y)/p7(Y). The run time was measured on a laptop with Intel®
Core™ i7-6700HQ CPU @ 2.60GHz x 8 and averaged over 10 runs.

48

Chapter 5

Conclusion

“If we knew what it was we were doing, it would not be called
research, would it?”

— Albert Einstein

This thesis reviews and compares the existing methods for adapting classi-
fiers to label shift and proposes new methods based on the confusion matrix,
likelihood maximization and maximum a-posteriori estimation. The proposed
methods handle a known problem [21], [16], 18, [20] of inconsistent estimates of
decision probabilities and of the confusion matrix, which can result in negative
values in the estimated prior probabilities or in the estimated prior ratio.
The (S)CM* method for test set prior estimation deals with the problem by
maximization of the likelihood of classifier’s decisions on the new unlabeled
test set. The next method proposed in this thesis, (S)CM | extends (S)CM*
by adding Dirichlet hyper-prior on the test set label distribution, leading
to a maximum a-posteriori formulation. The third method proposed in the
thesis is (S)CM™® which extends (S)CM’ by adding a regularization term
to penalize large shifts. The last proposed method, (S)CM"Y | is estimating
the prior ratio instead of the test set prior. As part of the (S)CM" method,
this thesis proposed an algorithm for projection onto the prior ratio simplex
by generalizing an algorithm for projection onto the probability simplex
described by Wang et al. [48].

From the experimental analysis of the existing and the proposed methods
for prior shift adaptation we can observe and conclude the following:

® Adapting classifier predictions typically performs better than re-training
the classifier with sampling matching the shift, and it is significantly

49

5. Conclusion

computationally cheaper.

® The proposed (S)CMY method handles inconsistent estimates of decision
probabilities p(D) and confusion matrix Cy,, and it consistently improves
the results compared to the (S)CM baseline.

® From the compared maximum likelihood estimators, the proposed SCM"
achieves the best results in most cases.

® Extending (S)CM" with regularization, denoted (S)CM™R, does not lead
to any advantage on datasets with large shifts. Investigation of the effects
on datasets with smaller shifts is left for future work.

® The proposed Maximum A-Posteriori approach, SCMM, performs better
than the existing MAP estimator [17].

® [t is better to estimate the training and test priors separately than to
directly estimate their ratio with BBSE, RLLS or the proposed (S)CMW
method.

® Among the methods estimating priors ratio, the (S)CMW outperforms
all other methods on CIFAR and ImageNet, while on Places365 the best
result is achieved by RLLS.

® In a small sample scenario, the EM algorithm [I6, 47] and BBSE-S
perform the best among the compared methods. With an extremely low
number of samples, prior estimation should better be omitted at all.

B Soft confusion matrix is a biased estimate of the classifier’s confusion
matrix, but for a small number of samples in the validation set it gives
a better estimate than the confusion matrix computed by counting
decisions arg max;, f(x).

® All compared methods perform nearly real-time: The time to adapt
classifier’s predictions to label shift is negligible compared to the time it
takes to make the predictions on the test set.

® The (S)CM baselines are faster than the proposed methods, since they
compute matrix inversion in a single step, while the proposed methods
are iterative. EM algorithm has very fast convergence on a dataset with
a small number of classes (CIFAR100-LT), where it is also faster than
the proposed methods. On the other hand, on datasets with a higher
number of classes (Places365-LT and ImageNet-LT) the convergence of
EM is about twice slower than the convergence of the proposed methods.

50

5. Conclusion

® Prior shift adaptation relies on a well-calibrated classifier, assumed in Eq.
(2.14). In [47], BCTS improves prior shift adaptation of classifiers trained
on uniform distribution, similarly to our UNI—LT experiments. With
class-specific parameters, BCTS may overfit to errors on the validation
set. For classifiers trained on LT datasets, we show BCTS is not a reliable
calibration method, as it often decreases the final recognition accuracy.

Future Work. This thesis reviewed previous work on classifier calibration,
but the effects of calibration on adaptation to label shift were examined only
briefly. Deeper understanding of the mutual influence between calibration
and label shift adaptation will be needed for the future work to improve the
accuracy of calibrated classifiers after label shift.

Investigation into how regularization affects the proposed (S)CM" method
in small shift scenarios is left for future work, which will evaluate the methods
on a wider range of dataset shifts. The assumption is that regularization will
help when employed on smaller dataset shifts, as it prevents large deviations
from the original distribution. Inspired by Azizzadenesheli et al. [19], the
future work can attempt to find theoretical guarantees for our methods, which
could give us better insight into how to set up the regularization constant in
(S)CM™® or the hyperparameter of Dirichlet hyperprior in (S)CMM properly.

All methods in the thesis were solely focused on the classification task.
Adaptation to dataset shifts in other tasks, such as regression, object detection
or semantic segmentation, remains an interesting topic for future work.

51

52

1]

2]

8]

[9]

Bibliography

S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
Prentice Hall, 3 ed., 2010.

M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine
Learning. Adaptive Computation and Machine Learning, Cambridge,
MA: MIT Press, 2 ed., 2018.

C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org]

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp- 2278-2324, 1998.

H. Salehinejad, S. Sankar, J. Barfett, E. Colak, and S. Valaee, “Recent
advances in recurrent neural networks,” 2018.

J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and
M. Sun, “Graph neural networks: A review of methods and applications,”
2021.

F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He,
“A comprehensive survey on transfer learning,” 2020.

W. M. Kouw and M. Loog, “An introduction to domain adaptation and
transfer learning,” 2019.

53

http://www.deeplearningbook.org

5. Conclusion

[10]

[11]

[12]

[13]

[19]

[20]

21]

22]

B. Zadrozny, “Learning and evaluating classifiers under sample selection
bias,” in ICML, 2004.

M. Sugiyama et al., “Direct importance estimation with model selection
and its application to covariate shift adaptation,” in NIPS, 2008.

S. Bickel, M. Briickner, and T. Scheffer, “Discriminative learning under
covariate shift,” Journal of Machine Learning Research, vol. 10, no. 75,
pp- 2137-2155, 2009.

J. Huang, A. Gretton, K. Borgwardt, B. Scholkopf, and A. Smola,
“Correcting sample selection bias by unlabeled data,” in Advances in

Neural Information Processing Systems (B. Scholkopf, J. Platt, and
T. Hoffman, eds.), vol. 19, MIT Press, 2007.

K. Zhang et al., “Domain adaptation under target and conditional shift,”
in ICML, 2013.

M. C. du Plessis and M. Sugiyama, “Semi-supervised learning of class
balance under class-prior change by distribution matching,” CoRR,
vol. abs/1206.4677, 2012.

M. Saerens, P. Latinne, and C. Decaestecker, “Adjusting the outputs of
a classifier to new a priori probabilities: A simple procedure,” Neural
Comput., vol. 14, p. 21-41, Jan. 2002.

M. Sulc and J. Matas, “Improving cnn classifiers by estimating test-time
priors,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV) Workshops, Oct 2019.

S. Vucetic and Z. Obradovic, “Classification on data with biased class
distribution,” in Furopean Conference on Machine Learning, pp. 527-538,
Springer, 2001.

K. Azizzadenesheli, A. Liu, F. Yang, and A. Anandkumar, “Regularized
learning for domain adaptation under label shifts.,” in JCLR, 2019.

Z. C. Lipton, Y.-X. Wang, and A. Smola, “Detecting and correcting for
label shift with black box predictors,” 2018.

G. Forman, “Quantifying counts and costs via classification,” Data
Mining and Knowledge Discovery, vol. 17, pp. 164-206, Oct 2008.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2015.

54

[23]

[32]

[33]

[34]

5. Conclusion

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
2014.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015.

S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” 2017.

H. Zhang, C. Wu, Z. Zhang, Y. Zhu, H. Lin, Z. Zhang, Y. Sun, T. He,
J. Mueller, R. Manmatha, M. Li, and A. Smola, “Resnest: Split-attention
networks,” 2020.

M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for
convolutional neural networks,” 2020.

V. Tra, J. Kim, S. A. Khan, and J.-M. Kim, “Bearing fault diagno-
sis under variable speed using convolutional neural networks and the
stochastic diagonal levenberg-marquardt algorithm,” Sensors, vol. 17,
no. 12, 2017.

T. Kanamori, S. Hido, and M. Sugiyama, “A least-squares approach to
direct importance estimation,” Journal of Machine Learning Research,
vol. 10, no. 48, pp. 13911445, 2009.

B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars, “Unsupervised
visual domain adaptation using subspace alignment,” in 2013 IEEE
International Conference on Computer Vision, pp. 2960-2967, 2013.

M. Baktashmotlagh, M. T. Harandi, B. C. Lovell, and M. Salzmann,
“Domain adaptation on the statistical manifold,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2014.

J. Hoffman, T. Darrell, and K. Saenko, “Continuous manifold based
adaptation for evolving visual domains,” 2014.

S. J. Pan, J. T. Kwok, and Q. Yang, “Transfer learning via dimensionality
reduction,” in Proceedings of the 23rd National Conference on Artificial
Intelligence - Volume 2, AAAT'08, p. 677-682, AAAI Press, 2008.

S. J. Pan, X. Ni, J.-T. Sun, Q. Yang, and Z. Chen, “Cross-domain
sentiment classification via spectral feature alignment,” in Proceedings of

55

5. Conclusion

[41]

[42]

the 19th International Conference on World Wide Web, WWW 10, (New
York, NY, USA), p. 751-760, Association for Computing Machinery,
2010.

Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Lavio-
lette, M. Marchand, and V. Lempitsky, “Domain-adversarial training of
neural networks,” 2016.

R. Tachet, H. Zhao, Y.-X. Wang, and G. Gordon, “Domain adaptation
with conditional distribution matching and generalized label shift,” 2020.

Y. Li, M. Murias, S. Major, G. Dawson, and D. E. Carlson, “On target
shift in adversarial domain adaptation,” 2019.

H. Liu, M. Long, J. Wang, and M. Jordan, “Transferable adversarial
training: A general approach to adapting deep classifiers,” in Proceedings
of the 36th International Conference on Machine Learning (K. Chaudhuri
and R. Salakhutdinov, eds.), vol. 97 of Proceedings of Machine Learning
Research, pp. 4013—4022, PMLR, 09-15 Jun 2019.

E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “Adversarial discrimi-
native domain adaptation,” 2017.

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”
2014.

G. J. McLachlan, Discriminant Analysis and Statistical Pattern Recog-
nition. Hoboken, NJ, USA: John Wiley & Sons, Inc, 1992-03-27.

M. Kull, M. Perell6-Nieto, M. Kéngsepp, T. de Menezes e Silva Filho,
H. Song, and P. A. Flach, “Beyond temperature scaling: Obtaining
well-calibrated multiclass probabilities with dirichlet calibration,” CoRR,
vol. abs/1910.12656, 2019.

J. Vaicenavicius, D. Widmann, C. R. Andersson, F. Lindsten, J. Roll,
and T. B. Schon, “Evaluating model calibration in classification,” CoRR,
vol. abs/1902.06977, 2019.

B. Zadrozny and C. Elkan, “Obtaining calibrated probability estimates
from decision trees and naive bayesian classifiers,” in Proceedings of the
FEighteenth International Conference on Machine Learning, ICML ’01,
(San Francisco, CA, USA), p. 609616, Morgan Kaufmann Publishers
Inc., 2001.

56

[45]

[46]

[47]

[48]

5. Conclusion

C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of
modern neural networks,” CoRR, vol. abs/1706.04599, 2017.

A. H. Murphy and R. L. Winkler, “Reliability of Subjective Probabil-
ity Forecasts of Precipitation and Temperature,” Journal of the Royal
Statistical Society Series C, vol. 26, pp. 41-47, March 1977.

A. Alexandari, A. Kundaje, and A. Shrikumar, “Maximum likelihood
with bias-corrected calibration is hard-to-beat at label shift adaptation,”
in ICML, pp. 222-232, 2020.

W. Wang and M. A. Carreira-Perpifian, “Projection onto the probability
simplex: An efficient algorithm with a simple proof, and an application,”
ArXiv, vol. abs/1309.1541, 2013.

K. Cao et al., “Learning imbalanced datasets with label-distribution-
aware margin loss,” in NeurIPS, 2019.

7. Liu et al., “Large-scale long-tailed recognition in an open world,” in
CVPR, 2019.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770-778, 2016.

Y. Idelbayev, “Proper ResNet implementation for CIFAR10/CIFAR100
in PyTorch” |https://github.com/akamaster/pytorch_resnet_|
cifar10l. Accessed: 2021-03-23.

57

https://github.com/akamaster/pytorch_resnet_cifar10
https://github.com/akamaster/pytorch_resnet_cifar10

58

Appendix A
Code

B A1 Sample Code

We attach jupyter notebook with sample code to the thesis with the im-
plementation of the proposed methods and algorithms used for comparison.
Classifier’s predictions precomputed on CIFAR100-LT* are provided as well
for easy demonstration. Packages required to run the code can be installed
via pip or Conda using requirements.txt or env.yml files. The algorithms
for adaptation are implemented in separated script algorithms.py. The
sample code contains the following files:
sample_code

env.yml

requirements.txt

example.ipynb

algorithms.py

CIFAR100_LT_outputs

L outputs.pth.tar

To run the code start jupyter notebook and run all cells.

B A.2 Full Reproducibility Code

In addition to the sample code we also provide experimental code, used to gen-
erate all results in the main text. Use . ../experimental_code/requirements.txt
file to set up the python environment.

To train 10 classifiers on CIFAR100 on UNI and LT distributions run

59

A. Code

following command (assuming current directory is the root of experimental
code, i.e. .../experimental_code/):

python3 multi_train.py -c configs/train_configs/train_
config Cifar100. json -s

For Places365:

python3 multi_train.py -c configs/train_configs/train_
config Places365. json -s

And for ImageNet:

python3 multi_train.py -c configs/train_configs/train_
config_ImageNet.json -s

Note that you will need to set the path to the images of original CIFAR100,
ImageNet and Places365 datasets. This is done in corresponding config
file .../experimental_code/configs/dataset_configs/{dataset}.json
by setting "root" tag.

To run evaluation with label shift adaptation you can run following com-
mand:

python3 multi_eval.py -c adaptation/eval_configs/eval.json -s

Before running this command you need to set paths to the saved classifier’s
outputs into the eval.json config file (or another one you used in the
argument). The tag determined for this information is "outputs", taking
the paths as a list.

60

Appendix B

List of Attachments

® sample_code.zip

B experimental_code.zip

61

	Introduction
	Related Work
	Classification
	Training Classifier

	Convolutional Neural Networks
	Unsupervised Domain Adaptation
	Classifier Adaptation to Label Shift
	Confusion Matrix
	Adaptation Based on Maximum Likelihood
	Adaptation Based on Maximum Aposteriori
	BBSE
	RLLS

	Classifier Calibration
	Evaluating Calibration
	Calibration Methods

	The Proposed Method
	Maximum Likelihood Approach
	Maximum Aposteriori Approach
	Applying Regularization
	Ratio Estimation
	Projection onto the Priors Ratio Simplex

	Experiments
	Implementation Details
	Settings for Classifier Training
	Implementation of Label Shift Adaptation

	Label Shift Adaptation
	Re-weight or Retrain?
	Improving Estimates from Confusion Matrix
	Comparing Regularization
	Comparing Ratio Estimation
	Methods for MLE and MAP Prior Estimation
	Dependence on the Number of Test Samples

	Confusion Matrices Illustrated on an Artificial Dataset
	Convergence Speed

	Conclusion
	Bibliography
	Code
	Sample Code
	Full Reproducibility Code

	List of Attachments

