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able model from Stanford University, are described. The thesis also discusses the
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Chapter 1

Introduction

My thesis deals with the development of a robotic leg and it’s control algorithms.

Whole thesis is divided into several chapters. In the chapter 2, I described the evo-
lution of mobile robotics, introduced similar projects and made an overview of ap-
proaches to dynamics management on mobile robots.

Following chapters, chapter 3 and chapter 4 are intended to be an introduction to
Doggo platform and describe my own leg design. The first task was the mechan-
ical design of the leg itself. It was based on a publicly available CAD model from
Stanford. However, as you can read in the chapter 3, their design had several major
flaws that I fixed, also some parts were simplified.

The chapters that follow focus on the design of leg control to copy the prescribed
dynamics. In the chapter 5, I took a more theoretical approach to the task. I con-
structed a mathematical model of the dynamics of the five-bar mechanism and iden-
tified its basic parameters. Subsequently, I designed a full state feedback controller
and performed its experimental validation. In the chapter 6, I used an experimen-
tal approach. I have verified that it is possible to change the dynamics of a BLDC
motor by cascading PID controllers. Based on the experimental data for different
controllers parameters, I developed a method that determines new parameters for
prescribed dynamic behavior.

Robotics is so complex domain, that I could not handle all task accompanied with
robotic leg and I did not try to do so. Robots mentioned in chapter 2 are group
projects with time span across many years and secured funding. My thesis was
work done by a single author during my master’s degree on CTU. This led to some
simplifications, assumptions and take overs. Biggest inspiration to me was Doggo
project done by Stanford university. They have born in mind not only financial side
of whole project, which can be crucial for such capable robot, but also have made
their mechanical, eletronical and software solutions fully available.

My main goal was to built a fully functional version, which other students can use
to push it’s boundaries further.
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Chapter 2

Mobile robotics overview

Mobile robotics plays and is going to play a big role in our lives. Thanks to their evo-
lution, robots can perform many tasks that help us. I would like to dedicate first part
of my thesis to present mobile robotics as a domain and it’s components. Further-
more, this chapter contains an overview of approaches to dynamics management in
similar projects to my thesis.

2.1 Introduction to mobile robotics “How we got here”

More than 1 million years ago, early humans began to make stone tools. They were
pretty smart, because they knew that with tools they could do more with less en-
ergy expenditure and in less time. This feature evolved with human being and we
gradually tamed fire, metals and power of steam. This led us to building more so-
phisticated tools than ever and those “machines” started doing tasks instead of us,
from moving heavy stuff to doing billions of operations during the blink of an eye.

In recent decades, scientists and engineers have begun working on machines that
combine mechanical capabilities with computer control. This starts with having
more motivators. Let me mention, for example, the demographic development of
Japan, when it is clear that the population is aging overall and it was clear to the
officials that it will be necessary to develop devices that will take care of the old.
Another motivator for development is the demand for machines that can withstand
human activities in unsuitable conditions - such as in the rubble after natural disas-
ters.

Individual attempts did not have a way to measure which one was objectively bet-
ter. And since robotics consist of many individual parts, a good way to do this is
to compare robots against high level goals. Many international competitions have
taken places for this purpose. Probably the most prestigious have been organised
by DARPA. To name a few, DARPA Grand Challenge gave a huge playground to
American Innovators in early years 2004 and 2005. Their goal was to build first
fully autonomous vehicle which could complete an off-road trail in a limited time.
DARPA Robotics Challenge then, between years 2012 and 2015, presented obstacle
course for humanoid robots.

Some competitions have been organised to bring this type of atmosphere and en-
thusiasm among students. For example The ARLISS Project, which takes place in
Nevada’s desert and simulates orbital mission to Mars, is students competition for
students from around the worlds. Similar competition takes place on the other side
of the Pacific Ocean. The China Adolescent Robotics Competition, which started in
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2001, brings China’s youth to the robotics via task to build their own robots and solve
fairly complex tasks, such as placing plastic hedgehogs on a thin piece of metal.

2.2 Scopes of mobile robotics

When we take a look at mobile robotics these days, we see many domains that have
to be mastered (Institute, 2018). Enumeration starts with mechanical design and
goes to high level control, etc. You can see a mind map illustrating domains in
fig. 2.1

FIGURE 2.1: Scopes of mobile robotics

A robot is, in its original sense, a mechanical machine. And as such, it has a mechani-
cal chassis that needs to be designed and manufactured. Knowledge from the design
of structures, production technology, materials (especially composites) is used here.

Along with the mechanical construction, the robot also contains a large amount of
electronics. It serves several purposes. First, using a computer or microcontroller, it
controls the movement of the robot itself. Either the robot can be controlled remotely
by the operator and the computer provides control of the actuators. Or there is a
control algorithm that is implemented directly in the computer, and the robot does
not need control instructions from the outside - in this case we are talking about an
autonomous robot. Another purpose of using electronics are actuators. These are
mainly electric motors - rotary or linear - in special cases piezoactuators. All these
electronics must have their own power supply. If the robot is not clearly mobile, it
can be supplied with energy by a power cable. When this is not possible - typically
the robot moves in free space - it must carry the energy source with it. Energy is
stored in batteries, which are attached to the chassis of the robot.

Another big part of robotics is software. Almost every machine today already com-
municates with its environment in some way. Communication is also a cornerstone
for the development of Industry 4.0, where the transfer of information between
things is key. The microcontrollers then run the programs that control the entire
robot. Here, SW practices such as state machine, full state feedback, Kalman fil-
ter or path planning are applied. An interesting SW field is swarm intelligence. In
many cases, the robot will not perform its actions alone, but will cooperate with
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other robots and machines. A current topic is, for example, the communication
of autonomous driving in convoy (Hobert et al., 2015). We call such communica-
tion "V2V" or "Vehicle-to-Vehicle", which falls under "V2X" ("Vehicle-to-Everything")
communication.

The robot in autonomous mode is directly dependent on information about its sur-
roundings. Operator-controlled robots are then usually equipped with cameras to
control them remotely. A wide range of sensors is used here, from position, force,
pressure sensors to the cameras or lidars, for example.

2.3 An overview of current mobile legged robots

My diploma thesis is based on the Doggo robot, which can be seen in the figure 2.2.
This is a student project that was completed in 2019. Its advantage is the relatively
low price ($ 3,000). For example, a Chinese copy of MIT’s mini cheetah robot, which
will be mentioned below, costs $ 16,000. It is also very beneficial that the whole
project is open to the public. You can take over and customize the design of the
chassis, electronics and software. The robot itself is composed of a large number of
off the shelf parts, only specific parts are made to order.

FIGURE 2.2: Stanford’s Doggo (Daily, 2021)

Another student project is the mini cheetah introduced at MIT in 2019 under lead
developer Benjamin Katz. The advantage of this robot is that it is robust and doesn’t
break easily, and if it does it can be fixed easily because it is built with modular
parts. What is not usual with student robots is that mini cheetah motors and their
controllers have been specially developed for this project. The robot can be seen in
the figure 2.3.

ANYmal from ETH Zurich in Switzerland can be considered as a representative of
European mobile robots. It is definitely worth paying attention to for the fact that it
does not have to move only by walking, but has wheels at the end of its legs that can
make it drive or combine these movements in "Hybrid Locomotion" (Marko Bjelonic
and Hutter, 2020). This platform is already mature and stable enough to be offered
for industrial applications.
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FIGURE 2.3: MIT’s mini cheetah (News, 2021)

FIGURE 2.4: ETH’s ANYmal (Zurich, 2021)

Probably the most famous robot of today is Spot (in figure 2.5) from Boston dynam-
ics. This American company has many years of experience in developing cutting-
edge robotic technologies. They have moved from clunky "walking cages" to hu-
manoid robots that can flip and dance (Dynamics, 2020). Spot can be fitted with a
robotic arm that allows it to further interact with its environment - for example, it
can open doors or carry objects. Spot is already in commercial use. Companies that
use it include NASA Jet Propulsion Laboratory, STRABAG, BP or Czech Alza.

2.4 Approaches to dynamics management in similar projects

In this section I will give a brief overview of leg movement control approaches for
projects similar to my thesis.

I’ll start, of course, with my "predecessors" - the creators of the Doggo robot (Kau
et al., 2019). Their approach to controlling the leg dynamics was similar to mine in
chapter 6. The dynamic behavior was provided by PID controllers implemented in
ODrive. They used the proportional term of the controller to add virtual stiffness
and the derivative term to add virtual damping.
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FIGURE 2.5: Boston Dynamic’s Spot (Dynamics, 2021)

The very simplest way to control leg movement was used by students at FAMU FSU
College of Engineering (Blackman et al., 2016). For steering, they are concerned only
with the kinematics of the motion. However, they augment this with end effector
forces, which they use as feedback to perceive the surrounding environment.

Previously, there has also been an attempt (Hutter et al., 2013) to control the dynamic
behaviour of the foot mechanically. This principle was referred to as "Series elastic
actuators" and consisted of a unidirectional spring and damper as part of the leg, as
can be seen in the figure 2.6.

They also describe here the widely used mathematical model "Spring-Loaded-Inverted-
Pendulum", which simplifies the robot’s mass point supported by a compliant leg.
This model is used to control the dynamics of the legs.

FIGURE 2.6: Series elastic actuators leg (Hutter et al., 2013, edited)

As an alternative to the "Spring-Loaded-Inverted-Pendulum" model, where the stiff-
ness of the leg is primarily controlled, an approach is described here (Park, Chuah,
and Kim, 2014) where the motion of the leg during walking is defined by the time
of contact with the ground and the time the leg is in the air. This ensures the charac-
ter of the movement - for example, gait or trotting. A sample time course of such a
movement can be seen in the figure 2.7.

In this context it is interesting to compare the normal pad contact time of a hu-
man, which is 150 ms, and that of a snow leopard, which is significantly shorter
at 45 ms.(Institute, 2018)
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FIGURE 2.7: Bounding Control with Variable Duty Cycle (Park,
Chuah, and Kim, 2014)
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Chapter 3

Design of robotic leg mechanics

I devoted a significant amount of work on the mechanical design to the possibility of
manufacturing the leg. This means checking all dimensions to match European ones
and modifying some. It is necessary to mention that the CAD model of Stanford was
not complete, some parts were completely missing. For example, I had to invent a
radial bearings for pulleys. Some parts were not assembled at all. I solved such
things in my model as well. The Doggo’s documentation (Kau, 2020) contains a
bill of materials and standardized components. But it no longer contains assembly
instructions and some items have only a short description of what function they are
used for. It took me a long time to assign them correctly. I have created this detailed
bill of materials to ensure smooth production and to be able to buy all components in
the Czech Republic. However, Doggo project is cost effective thanks to maximal use
of off the shelf components. While other robots, such as the previously mentioned
Cheetah for example, already have custom-made motors. (Katz, 2018)

The mechanism as a whole can be seen in the figure 3.1. The leg linkage (number 1 in
the figure) consists of 4 segments that form a closed loop. Two segments are actuated
by an "inner drive shaft" (number 2) and an "outer drive shaft" (number 3). These
shafts are coaxial. Torque is supplied to the shafts from two BLDC motors (number
4) by belt transmissions (number 5). The gear ratio has been chosen to be 1:3 (16:48
teeth pulleys (number 6 and 7)). This is done in order to gain torque with smaller
motor mass. At the same time, the ratio is not too large so that the dynamics of
this belt transmission is as small as possible and proprioception can be done in the
motors and not on the leg linkage. With a too high ratio, for example, the transfer
of moments from the leg linkage to the motors would not be possible and the me-
chanical design would have to be made more complex. The "side plate" (number 8
in the figure) is the side of the robot and serves to mount the whole mechanism. The
brace (number 9) is used to provide radial clearance between the motors and dive
shafts.

Adjusting screws are used to transfer the torque from one of the 3D printed pulleys
to the shaft and its axial securing, which are mounted in the 48T pulley by means
of threaded inserts. However, the dimensions of the pulley and the insert do not
fit in the available CAD model Doggo, so I remodeled the pulley and adjusted the
necessary dimensions. Due to the high mechanical stress of the pulleys, I had them
made by a 3D printing method called "selective laser sintering" (SLS) from pow-
dered nylon, which provides better mechanical properties than same pulley made
with Fused deposition modeling from standard PLA material. Final design of a re-
modeled pulley can be seen in fig. 3.2, where edited parts are highlighted by red
circles.
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FIGURE 3.1: Coaxial shafts (Kau et al., 2019, edited)

FIGURE 3.2: Remodeled pulley

Probably the biggest change in mechanical design has been performed on clamping
joint between leg and driven axis. Solution invented by Stanford (see figure 3.3a)
uses only adjusting screw. Which seems to work, according to their public mate-
rials (Stanford, 2019). However, since my robot should last as long as possible, I
preferred a more robust clamping joint (see figure 3.3b).

Last but not least, I designed a new housing for attaching the entire leg assembly
to the frame. The original design (fig. 3.4a) was effective, but very demanding for
production (use of a milling machine, etc.). Therefore, I took over only the main
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(A) Stanford’s version (B) My version

FIGURE 3.3: Old and new versions of the clamping joint

dimensions (e.g. to be able to insert the designed bearings) and proposed a struc-
turally significantly simpler solution. The resulting housing can be produced almost
completely on a lathe and can be seen in the figure 3.4b.

(A) Stanford’s version (B) My version

FIGURE 3.4: Stanford’s and my version of the housing

After evaluating the production and during the assembly, I came to a few remarks
that should be taken into account when creating another version of the leg.

Firstly, the clearance of the bolts transmitting the torque to the outer shaft is de-
termined by the (in)accuracy of the manual assembly. Two things go against each
other here: manual assembly and minimal clearance. In certain cases, the resulting
clearance will be non-zero, thus creating hysteresis, which will be reflected in the
dynamics.

SLS pulley production is not the cheapest and the mechanical properties can only
be verified experimentally, so it would be appropriate to consider production from
a pulley stock bar for other versions. This bar already has the necessary dimensions
for the selected belt and all that remains is to finish the required mechanical connec-
tion. Example of such rod can be seen in figure 3.5.



Chapter 3. Design of robotic leg mechanics 11

FIGURE 3.5: Pulley stock bar (Tyma CZ, 2020)
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Chapter 4

Design of robotic leg electronics

In this section, i will briefly touch on electronics used in Doggo’s legs. I decided to
use the same electronics as they did because it has been tested to work as a whole,
a mechanical bearing design has been prepared for it and it has good dynamic ca-
pabilities. Electronics consists of three parts only - the main control board, magnetic
encoders, brushless DC motors and LiPo battery pack. The electronics diagram can
be seen in the figure 4.1. One of the following subchapters is devoted to each of the
components.

The electronics form a closed control loop. ODrive represents a regulator that con-
trols the action variable - the voltage on the motor - based on the setpoint. The
position of the motor shaft is then measured using a magnetic encoder and sent to
the ODrive as a feedback.

FIGURE 4.1: Diagram of the overall connection of electronics

4.1 Control board - ODrive

The main electronic component of the Doggo robotic leg is the ODrive motor con-
troller. It is controller board for high power (120 A peak current per motor) brushless
motors intended for hobby applications. ODrive was open source up to version v3.5
(both hardware and software), when current version v3.6 is closed-source with re-
spect to board files and schematics.

The board can be seen in the figure 4.2. It is built on a arm-based microcontroller
and controls up to two brushless motors at the same time.
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FIGURE 4.2: ODrive board (Robotics, 2021b)

Its advantages over competing projects include: accessible complete documentation,
an extensive user community that helps each other, and increasing new features. On
the other hand, for example, the moteus platform from mjbots is more compact. Un-
like ODrive moteus’s PCB, it already contains encoders and only the motor, power
supply and CAN bus are connected to the board.

Another advantage of ODrive board is the wide range of developed functions. The
motors have position, velocity, and current control modes. The board automatically
identifies the motor parameters. As for communication, ODrive can be controlled
via real-time USB communication from Python, UART communication using the
developed Arduino library or CAN.

TABLE 4.1: Specifications of ODrive v3.6 56 V

Attribute Value

Input voltage 12 V to 56 V
Interfaces & Protocols USB, UART, CAN, PWM
Max continuous current with heatsink in still air 40 A per channel
Dimensions 135.5 x 50 mm

4.2 Absolute position sensors - AS5047D

Feedback of motor shafts to ODrive is secured via absolute position sensors. AS5047D
are used in this particular application. They are 14-bit magnetic rotary position sen-
sors suitable for high speed measurements. I used the sensors in the so-called "Eval-
uation Board" version, where the sensor is supplied on a printed circuit board with
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lead-out pins for powering the wires. This solution (which can be seen in the fig-
ure 4.3) is advantageous for possible replacement of the sensor, but above all the
plate facilitates the mounting of the sensor, because it has holes for screws. One lim-
itation had to be taken into account when choosing an encoder, namely a supported
interface. Although ODrive has SPI and PWM hardware interfaces, at the time of the
selection these interfaces were not supported in the firmware, so it was more appro-
priate to choose encoders with the ABI interface than to develop your own firmware
version. At the time of writing this text (July 2021), there is already a new firmware
version that supports SPI and PWM. Main specifications can be found in table 4.2.

FIGURE 4.3: Evaluation board AS5047D-TS_EK_AB (Digi-Key, 2021)

TABLE 4.2: Specifications of AS5047D

Attribute Value

Position resolution 14-bit
Interface SPI, ABI, UVW, PWM
Operating Supply Voltage 3.3 V, 5 V
Weight 22 g

4.3 Brushless DC motors - T-motor 5212

Brushless DC motors T-motor 5212 are used as main actuators in robotic leg. Since
two links are powered, two motors are needed for one leg. Brushless motors are
usually used for high speed applications - copters, etc. However, they can also be
used here at low speeds thanks to the advanced control in ODrive.

One motor is shown in the figure 4.4. It can be seen that it has a relatively small
height, which is an advantage especially for the design of the chassis - it has less de-
mands on installation space. As for the performance of this motor, from the dynamic
presentations of the Doggo (Kau, 2021), it is sufficient for jumps with a robot up to
a height of 1 m. Maximal continuous power of T-motor is 840 W as can be seen in



Chapter 4. Design of robotic leg electronics 15

table 4.3 with other specifications. It’s maximal continuous current is 35 A, which is
less than ODrive can handle and battery pack can deliver.

FIGURE 4.4: T-Motor MN5212 (3DXR, 2021)

TABLE 4.3: Specifications of T-motor 5212 KV340

Attribute Value

KV 340 rpm/V
Motor diameter 59 mm
Motor length 33.5 mm
Weight 205 g
Idle current 1.1 A
Max continuous current 35 A
Max continuous power 840 W
Internal resistance 69 Ω

4.4 LiPo battery pack

The main power source for leg is LiPo battery pack. A classic battery used for RC
models, such as a quadcopter, was used. However, sufficient capacity was an impor-
tant requirement for longer-term testing. If a low-capacity battery pack were used,
it would discharge rapidly, reducing its voltage, and this could affect the overall dy-
namic capabilities of the motors. The selected LiPo akupack consists of 6 cells, as
required by the motor. The battery minimal working voltage is 22.2 V and 25.2 V
when fully charged, which is sufficient for ODrive. The maximum load of the bat-
tery pack can be up to 159 A, which is enough for the demands of the motors. Main
attributes of used akupack can be found in table 4.4. The specific battery that has
been used can be seen in the figure 4.5.
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FIGURE 4.5: Used LiPo battery pack

TABLE 4.4: Specifications of LiPo battery pack

Attribute Value

Voltage 22.2 V
Cells 6
Capacity 5300 mAh
Max load 159 A (30 C)
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Chapter 5

Proposed control based on
mathematical model of the five-bar
mechanism

In order to control the dynamic mechanism with applied knowledge from control
theory, I had to build a mathematical model of this system.

First of all, I would like to describe how the mechanism looks like in terms of dy-
namics. Its idealized scheme can be seen in the figure 5.1, where I have replaced
each arm with a perfectly rigid beam with all the mass concentrated in the center of
gravity. The linkage consists of 4 arms that have lengths l1 to l4, masses m1 to m4,
moments of inertia I1 to I4, and distances of the center of gravity from the joints lc1
to lc4. I have placed the x-y coordinate system in the mechanism to frame connection
- the joint of arms 1 and 2. These arms are driven completely independently by ex-
ternal moments τ1 and τ2, while arms 3 and 4 move dependently of these moments.
In my text, I refer to the joint between arms 3 and 4 as the end-effector. Linkage is
in the general position in the picture. Typically, the angles q1 and q2 will be around
270°.

5.1 Mathematical model of the specific five-bar mechanism -
paralelogram

Configuration in figure 5.1 with two driven segments is called five-bar linkage and is
one of the commonly used parallel mechanisms, because it provides greater rigidity
of the mechanism and also lower weight of the moving parts due to the possibility
of placing the drives in the base frame. In this section I formulate a mathematical
model describing this mechanism.

I started from the mathematical model described by Spong (Spong, Hutchinson, and
Vidyasagar, 2005) and added a damping matrix. I further linearized this model and
designed its control in next sections.

The derivation of this model will first describe the positions of the centers of gravity
of each segment and their derivations. Subsequently, after defining the Jacobians
can be fitted to the inertia matrix. These steps are not listed here; the reader can
consult the literature for them. However, I describe the following steps.

The inertia matrix is given by:
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FIGURE 5.1: Linkage scheme

D(q) =
4

∑
i=1

mi JT
vc Jvc +

[
I1 + I3 0

0 I2 + I4

]
. (5.1)

Where the individual elements have following forms:

d11(q) = m1l2
c1 + m3l2

c3 + m4l2
1 + I1 + I3

d12(q) = d21(q) = (m3l2lc3 − m4l1lc4) cos (q2 − q1)

d22(q) = m2l2
c2 + m3l2

2 + m4l2
c4 + I2 + I4.

(5.2)

The potential energy of the mechanism is given by

P = g
4

∑
i=1

ysi (5.3)

and it’s partial derivatives are
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∂P
∂q1

= g1 = g cos(q1) (m1lc1 + m3lc3 + m4l1)

∂P
∂q2

= g2 = g cos(q2) (m2lc2 + m3l2 − m4lc4) .
(5.4)

Which are then combined into single vector g as

g =

[
g1
g2

]
. (5.5)

Now, lets define τ as vector of external torques.

τ =

[
τ1
τ2

]
(5.6)

Equations 5.1, 5.5 and 5.6 are then written into Euler-Lagrange equation in it’s com-
mon form

D(q)q̈ + C(q, q̇)q̇ + g(q) = τ. (5.7)

Where matrix C is damping matrix.

Spong states the condition that segments 1 and 2 are not dynamically affected. How-
ever, in my case it is not fulfilled due to the asymmetrical weight distribution and it
is not possible to conveniently divide the control into individually driven segments.

Damping is not considered for this Spong’s mdoel, however I put the friction caused
by the bearings into damping matrix C. Individual components of bearing friction
and their action are described, for example, by Zughaibi (Al-Zughaibi, 2020). How
bearing friction changes with angular velocity can be seen in fig. 5.2. The friction of
the belt drive, which connects the pulleys on the individual motors and the coaxial
shafts, is not considered. BLDC motors operate in such torque and speed ranges that
both belt friction and weight can be neglected.

FIGURE 5.2: Dependence of bearing friction on angular veloc-
ity (Sander et al., 2016)
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5.2 Determination of physical parameters of the five-bar mech-
anism

Model described before is in general form - physical parameters are represented by
variables. In order to tune proposed control strategy, I had to replace these parame-
ters with real values of this leg.

The individual leg segments are described in the model by their weights, moments
of inertia, lengths and distances of the centers of gravity. To determine these parame-
ters, I used a CAD program in which I performed the proposed mechanical improve-
ments (Autodesk Inventor 2020). I determined the actual density from the weights
of the manufactured segments. For example the measured weight of segment 1 is
55 g and its volume given by Inventor is 20.1208 cm3. This gives us the desired
density 2.7335 g/cm3 after dividing weight by volume. These parts are made out
of aluminium which is already included in Inventor’s material library with density
2.7 g/cm3. I chose density of aluminium from material library for further measure-
ments. Housing together with bearings and pins are made out of steel and their
density was therefore set to 7.85 g/cm3.

Furthermore, it was necessary to take into account the weights of the pins, which
were not negligible but not considered in the mathematical model. I decided to add
half the weight of the joint to each segment that is connected by this joint. This was
achieved by creating new assemblies and assigning half the density to the joints.

After selecting the materials, I proceeded to subtract the above-mentioned parame-
ters of individual segments.

The mechanism uses bearings for smooth running of joints. These are known for
their nonlinear friction, which had to be taken into account when creating a mathe-
matical model. I used a Simulink block “Coulomb Viscous friction” to implement
the bearing behavior. This block is described by Coulomb and viscous friction val-
ues, that had to be identified. I chose to identify them from experimental data. The
experiment consisted in bringing the sine wave to the input moments. The ampli-
tude of the torque was chosen so that the leg would move in the range of motion in
which leg would typically work.

I identified the coefficients of friction from these experimental MATLAB data with
the fminsearch function, which optimizes in terms of least squares. The figure 5.3
shows the response of the segment 2 in the simulation and in reality after the identi-
fication of these coefficients.

5.3 Linearization of a mathematical model

The mathematical model 5.7 is nonlinear and it is necessary to linearize it for the
design of full state feedback linear control. First I made a choice of state variables.
These came from reducing the order of derivation method and state variables are
independent variables from the mathematical model and their derivatives. Thus
state variables are noted: q1 - angle of rotation of segment 1, q̇1- angular velocity of
segment 1, q2 - angle of rotation of segment 2, q̇2 - angular velocity of segment 2

x = [q1 q̇1 q2 q̇2]
T. (5.8)
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FIGURE 5.3: Simulation and experiment responses after identification
of friction parameters

In order to obtain system dynamics given by state-space model

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

(5.9)

where x are state variables, y are output variables, u are manipulated variables, A
is state matrix, B is input matrix, C is output matrix and D is feedforward matrix, I
continued to linearize the model 5.7 in the sense of:

Jx =
∂f
∂x

∣∣∣∣
x0,u0

= A

Ju =
∂f
∂u

∣∣∣∣
x0,u0

= B,
(5.10)

where f are own equations of motion in 5.7.

For this particular leg, matrices A and B have following values

A =


0 1 0 0

−66.12 −31.84 0 0.65
0 0 0 1
0 0.62 −65.78 30.22



B =


0 0

324.85 0
0 0
0 308.35


(5.11)
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Linearization has been performed using a symbolic toolbox in the MATLAB envi-
ronment. First, I differentiated my own equations of motion f according to the state
variables x and inserted into the equations the values for the balance of the operat-
ing point x0 and u0. Operating point has been chosen as a natural resting position
of leg - this means 267◦ for segment 1 (q1) and 273◦ for segment 2 (q2). Velocities
(q̇1 and q̇2) are equal to zero and input torques τ1 and τ2 are calculated for this equi-
librium. Subsequently, I performed a simulation comparison of a nonlinear and a
linear model - they behaved almost identically around the operating point.

5.4 Proposed control algorithm

After the linearization of the mathematical model, it was time to design a control
algorithm. I decided to use full state feedback, as it provides such system control
that the system has prescribed dynamics - theoretically any.

I achieved this with the command place, which determines the feedback gain K
from the prescribed roots. This command has been chosen because it can be used
on MIMO systems (which this system is) as opposed to it’s alternative - the acker
command.

The overall scheme of the control circuit with state feedback and observer can be
seen in figure 5.4. The vector r represents the required value of the state variables
x here, the vector u are then manipulated variables or action interventions - in my
case external moments.

State feedback is inherently working with all state variables, but I only measure
some of them. In fact, I do not measure all state variables. I only measure angles
q1 and q2, but no longer their angular velocity. State feedback K needs all state
variables, so I designed a state observer, which is marked in the diagram with the
notation “ˆ”. In order for the observer’s state variables to converge to the actual state
variables, the observer contains feedback gain L on a difference of the measurable
state variables y and their theoretical twins ŷ. The gain of this feedback was chosen
so that the dynamics of convergence was 6 times faster than the state feedback of the
whole system.

5.5 Experimental validation of proposed control

Implemented full state feedback can be seen in the figure 5.5. I used this model for
generating vectors of desired torques τ1 and τ2, which were subsequently used as
feed forward torque command for real leg with custom Python script.
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FIGURE 5.4: Closed loop control system block diagram with ob-
server (Vyhlídal, Vrána, and Bušek, 2019)



Chapter 5. Proposed control based on mathematical model of the five-bar
mechanism

24

FIGURE 5.5: Closed loop control system block diagram with observer
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To verify the correctness of the identified model parameters, I chose the step re-
sponse with closed-loop poles at [−7 − 7.007 − 7.014 − 7.021]. In Figure 5.6 we can
see the response of segment 2 from the experiment (red, solid line) and the response
from the simulation (blue, dashed line) for desired setpoint 20°. In Figure 5.7, the
detail of the run-up from both the experiment and the simulation can then be seen.

FIGURE 5.6: Comparison of step responses of the experiment and the
nonlinear mathematical model

FIGURE 5.7: Comparison of step responses of the experiment and the
nonlinear mathematical model - detail

You can see from the detail that the real mechanism has a faster response. Its steep-
ness corresponds to the steeper waveform in Figure 5.3 and is affected by the friction
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coefficients. Both the real leg and its nonlinear model have a skew over the required
290°. However, the difference in responses varies with the prescribed roots for the
state feedback and the magnitude of the step change in the control variable. All these
changes are manifested with the change in the velocity waveform of the driven seg-
ments. It can be inferred that this difference is due to the effect of the bearings,
which - as already mentioned - are replaced by a single aggregate element. There
are 12 bearings per leg, which operate at different speeds. Furthermore, the friction
coefficients - as Ruderman and Iwasaki state (Ruderman and Iwasaki, 2015) - de-
pend on the manufacturing roughness, temperature and sliding conditions, which
are completely individual for each bearing.
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Chapter 6

Proposed control from
experimental setting of PID
regulators

Alternatively to design control algorithm based on mathematical model, as described
in chapter 5, this chapter aims to adjust dynamics of leg’s end effector using cascade
control with PID regulators. As is known, mathematical models of nontrivial mecha-
nisms can be hard to obtain and it is often necessary to simplify such models in order
successfully simulate them (for example using Simulink) and/or design a control al-
gorithm. This turned out to be true for this specific mechanism as we could see in
chapter before. Therefore I propose alternative control strategy based on experimen-
tal data. Inspired by nature, where for example a cat swing with its body after hitting
a hard mat, I decided to investigate only overshoot responses in this chapter.

This chapter first proves that it is possible to change the dynamics of the BLDC mo-
tor using ODrive cascade PID controllers. Describes the experimental determination
of motor dynamics parameters for individual controller settings. Subsequently, ex-
perimental verification of the selection of PID controller parameters for preselected
dynamic behavior is done.

6.1 Replacement with second-order system

If it were possible to control the torque of motors with any time course, the end
effector could theoretically have any dynamics. In reality, however, this theory is
limited by the speed of control and power electronics. For this reason, I chose the
prescription of the second-order system, the response of which will be copied by the
effector.

Therefore, I implemented the following replacement scheme. The entire four-arm
mechanism is replaced by a virtual leg, which begins in the axis of the driven shafts
and ends in the effector of the lower segment. It also consists of a spring and a
damper, which give it the behavior of a second-order system. The whole diagram
can be seen in the figure 6.1.

This method of robot control design with replacement scheme is widely used. Es-
pecially where the robot actively responds to its surroundings. The basics of the
so called "impedance control" are thoroughly described by Neville Hogan (Hogan,
1984). At present, such control can be observed applied in collaborative robots (Kep-
pler et al., 2018) or other mobile robots (Hyun et al., 2014).
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FIGURE 6.1: Diagram of a virtual Leg

Newton’s equation of the mechanism in the figure 6.1 is

mÿ = F − ky − bẏ. (6.1)

Parameter m is the weight of the leg, b is the coefficient of the damper and k is the
coefficient of the spring.

The mathematical rule of the general second order system is expressed by the equa-
tion

ÿ + 2ξωnẏ + ωn
2y = kdcωn

2u. (6.2)

Which can be written as a transfer function in the following form

G(s) =
kdcωn

2

s2 + 2ξωns + ωn2 =
1

ms2 + bs + k
. (6.3)

Where parameters m, b and k connect this general mathematical model with my real
(i.e. physical) leg. All of them are real positive numbers.
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Parameter kdc is a static gain (also called a DC gain), which is ratio of the magnitude
of steady-state output y to the magnitude of the step input u. Parameters ξ and ωn
define dynamic behavior of a second-order system.

Parameter ξ is damping ratio. Behaviour of transient response depends on ξ and can
be divided into three possibilities. "If 0 < ξ < 1, the closed-loop poles are complex
conjugates and lie in the left-half s plane. The system is then called underdamped,
and the transient response is oscillatory. If ξ = 0, the transient response does not
die out. If ξ = 1, the system is called critically damped. Overdamped systems
correspond to ξ > 1." (Ogata, 2010)

FIGURE 6.2: Response curves for different ξ. kdc = 1, ωn = 1

This parameter appears in the response of the system as an exponential envelope
e−ξt, which the response will never exceed (this can also be seen in figure 6.2 for
general second order system). In real systems, damping is most often caused by
friction and resistances (e.g. friction in the joints).

Parameter ωn is the natural frequency (rad/s) at which system oscillates. Responses
of systems with different natural frequency ωn to the step input can be seen in the
figure 6.3.
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FIGURE 6.3: Response curves for different ωn. kdc = 1, ξ = 1
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6.2 Dynamics of BLDC motor with cascade PIDs

This approach uses cascade control used in ODrive board. Cascade control can be
understood as several consecutive controllers. Each one adjusts setpoint for follow-
ing controller. Particular solution implemented in ODrive can be seen in figure 6.4.
The outermost is position controller which has only proportional part, it’s output
is then summed up with velocity feed-forward command. This velocity setpoint
goes into velocity controller, that has proportional and integral components. Again,
it’s output is summed up with current feed-forward command. Last controller is
current with proportional and integral components. It is important to note, that PI
parameters of current controller are calculated internally in ODrive with respect to
individual motor and user should not change them. This left user with 3 parame-
ters to freely change - P component on position and velocity and I component on
velocity.

FIGURE 6.4: Cascade control implemented in ODrive (Robotics,
2021a)

Since the BLDC motor is represented by single block in scheme above and naturally,
every BLDC motor behaves differently, it is necessary to describe the dynamics of
the motor itself. I used a model described by Krishman (Krishnan, 2010), which can
be seen in figure 6.5.

FIGURE 6.5: Current loop of permanent magnet brushless DC mo-
tor (Krishnan, 2010)

Where Ra is twice the per phase resistance in PM brushless dc machines, La denotes
(L-M) in PM brushless DC machines, Kb is induced emf constant, B1 is friction coef-
ficient, J is total moment of inertia, Hc is gain of the current transducer.

This scheme does not describe the relationship of induced electromagnetic force T1
and shaft speed ωm, so it needs to be further described. This relationship is given by
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T1 = B1ωm. (6.4)

Taking this dependence into account, scheme of complete inner current loop of
BLDC motor can be seen in figure 6.6.

FIGURE 6.6: Inner current loop of permanent magnet brushless DC
motor (Krishnan, 2010)

6.3 Changing dynamics of BLDC motor using cascade PIDs

I implemented schemes shown in figures 6.4, 6.5 and 6.6 in Simulink (see figure 6.7)
in order to prove, that dynamics of BLDC can be changed by cascade PIDs.
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FIGURE 6.7: Closed loop control system block diagram for BLDC
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Parameter values used for simulations can be seen in table 6.1.

TABLE 6.1: Parameter values used for BLDC motor simulation

Parameter Value

Ra 1.2 Ω
La 0.56*10−3 H
Kt 25.5*10−3 NmA−1

tm 17.1*10−3 s
J 92.5*10−7 kg·m2

p 3 (number of phases)
Kb 0.0764 V/(rad/s)
B1 0.1 N·m/(rad/s)
Hc 1 V/A

One more thing had to be modeled - Invertor. It has been implemented as first order
system with small time constant, as described by Krishman (Krishnan, 2010).

The figure 6.8 shows the step responses for different PID controller settings. We
can see underdamped response in figure 6.8a with following PID values: propor-
tional term on position = 100, proportional term on speed = 0.1 and integral term on
speed = 10. On the other hand we can see overdamped response in the figure 6.8b
with PID values: proportional term on position = 8, proportional term on speed = 5
and integral term on speed = 0.3. It is clear that we can change dynamics of this
closed loop with BLDC using position and speed PID controllers.

(A) Response for first set
of parameters

(B) Response for second
set of parameters

FIGURE 6.8: Step responses for different PID parameters

6.4 Experimental identification of dynamics parameters

The main idea of this method is to obtain possible combinations of damping and fre-
quency of the second order system depending on the settings of the PID controllers
from experimental data. From these, subsequently adjust the PID parameters ac-
cording to the desired dynamic properties.
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First, I created a Python script that sets the BLDC motor controllers and measures
the step response for each selected combination of PID parameters. In this way, I
went through each combination of PID parameters until the leg became unstable.
Then I continued in the analytical phase.

One such response can be seen in the figure 6.9. Specifically, the PID controllers
had the following values: proportional term on position = 50, proportional term on
speed = 0.046 and integral term on speed = 0.001. To illustrate the dynamic response
options, I chose a response with an overshoot.

FIGURE 6.9: Step response of real mechanism for one combination of
PID parameters

Only one variable was used for the following analysis - the y position of the end
effector from figure 5.1. This was calculated by a simple goniometric calculation
from the angles q1 and q2 (equation 6.5). I omitted the x coordinates because the
effector moved symmetrically along the y axis.

y(t) = l1 sin(q1) + l2 sin(q2). (6.5)

I then processed the experimental data to find peaks in the data to determine damp-
ing and frequency. The data contained noise, so as part of the pre-processing, I
smoothed it using the MATLAB function smooth. Next, I used the function findpeaks
to find the peaks and their position in time in the response data. The position of the
found peaks for this particular measurement can be seen as red circles in the fig-
ure 6.10.

I then identified the damping coefficient ξ of second order system (of which I sim-
plify the system for it’s understandable parameters) using the Logrithmic decrement
method (Casiano, 2016) to the peak positions thus found. An auxiliary formula is
used for this method:

β = ln
(

At1

At2

)
, (6.6)
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FIGURE 6.10: Peaks in step response of real mechanism for one com-
bination of PID parameters

where At1 and At2 are measured amplitude envelope values at t1 and t2. Damping
is then calculated as:

ξ =
β

(
√

4π2 + β2)
. (6.7)

The natural frequency of a particular response was calculated using:

ωn[Hz] =
1

(t2 − t1)
. (6.8)

Investigating only overshoot responses, I discarded measurement that did not con-
tained at least 2 peaks. For simplification, I declared measurements with single peak
as critically damped (ξ = 1) and measurements without any peak at all as damped
with ξ = 2.

I then obtained pairs of 4D data from all measurements. Each pair had "axes": a P
position component, a P velocity component and an I velocity component. The val-
ues of the pairs were then set to the parameters ξ and ωn. Since I had not measured
all possible combinations, these "NaNs" needed to be completed. MATLAB does not
have its own function to fill in the 4D array, so I filled in the missing ones using the
custom function inpaintn (Garcia, 2020). I made measurements at discrete points,
cutting off the set of possible combinations of ξ and ωn. Therefore, I filled this space
at least partially with cubic interpolation using the interp3 command. How cubic
interpolation works for 1D and 2D signal can be seen in the figure 6.11.

The post-processing of the data followed. In some cases, either damping or fre-
quency points have been extrapolated to negative values. This is not physically
possible and therefore I deleted these points and visualized the rest. A graphical
representation of the possible combinations of ξ and ωn can be seen in the figure 6.12.
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FIGURE 6.11: 1D and 2D cubic interpolation (Ing. Václav Hlaváč,
2020, translated)

FIGURE 6.12: 2D map of possible parameter combinations

These are combinations that are theoretically realistic according to experimental data
and their extrapolation. Now I just need to select desired ξ and ωn values and the
MATLAB script will return the necessary PID controller parameters.

In case the desired values do not correspond directly to one of the points, the near-
est neighbor is found using the function dsearchn. Interpolation cannot be used
here a priori, because it is not certain that the neighboring points in the graph 6.12
correspond to the "neighboring combinations" of PID parameters.

6.5 Experimental validation of proposed control

In this section I will verify the proposed control using PIDs controllers. This consists
of selecting the desired dynamic properties, finding the appropriate PID settings and
experimentally testing the step response.

First, I chose the desired parameters as follows: ξ = 0.24 and ωn = 5. Then, I found
the exact indexes of desired ξ value in extrapolated 4D matrix using the function
ind2sub and then corresponding PID settings. Subsequently, I set these values to
ODrive board and measured the step response, which can be seen in the figure 6.13.
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FIGURE 6.13: Step response for PID method validation

Finally, I needed to identify the dynamics parameters. For which I used the same
method as in section 6.4. And they were: ξ = 0.229, ωn = 5.06. Both values lie in 5%
interval around the desired points. Given the fact, that I describe the entire closed
loop in figure 6.7 with second order, I consider this method as successful.
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Chapter 7

Software implementation

In this section i am going to describe which software I have used and how I have im-
plemented the function described in previous chapters. I will describe main Python
scripts in first section and MATLAB scripts in second section.

7.1 ODrive setup

First of all, I will present the way how I have controled the ODrive. I used the
ODrive Python library 1, which communicates with ODrive via USB. As mentioned,
ODrive can be controller for example from Arduino, but Python is suitable for rapid
prototyping and development. Python in version 3.8.5 has been used during whole
development.

Library has command line version, which can be started with Anaconda Prompt
odrivetool. After startup, computer connects to ODrive and returns object "odrv0"
which can be used for commands. This also means that multiple ODrives can be
controlled simultaneously - in Doggo’s case one ODrive per one leg.

From now on, It is possible to get ODrive configuration values and change them.
This is illustrated in listing 7.1. This configuration is critical since motor and en-
coder properties (which have been found in data sheets) are used during calibration
routine and limit values on current or velocity can be used as safety measures. This
configuration can be done only once, because ODrive save all values when com-
mand odrv0.save_configuration() is called.

1 odrv0.axis0.motor.config.current_lim = 10.0
2 odrv0.axis1.motor.config.current_lim = 10.0
3 odrv0.axis0.controller.config.vel_limit = 2.0
4 odrv0.axis1.controller.config.vel_limit = 2.0
5 odrv0.config.brake_resistance = 2.05
6 odrv0.axis0.motor.config.pole_pairs = 11
7 odrv0.axis1.motor.config.pole_pairs = 11
8 odrv0.axis0.motor.config.torque_constant = 8.27/340
9 odrv0.axis1.motor.config.torque_constant = 8.27/340

10 odrv0.axis0.motor.config.motor_type = 0
11 odrv0.axis1.motor.config.motor_type = 0
12 odrv0.axis0.encoder.config.cpr = 4000
13 odrv0.axis1.encoder.config.cpr = 4000
14

15 odrv0.save_configuration ()

LISTING 7.1: ODrive configuration setup

1https://docs.odriverobotics.com/odrivetool.html
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Minimal usable code can be seen in listing 7.2. Lines 1-2 run both motor and encoder
calibration for both motors and following lines switch motors to closed loop control
mode with velocity as setpoint and set arbitrary setpoint.

1 odrv0.axis0.requested_state = AXIS_STATE_FULL_CALIBRATION_SEQUENCE
2 odrv0.axis1.requested_state = AXIS_STATE_FULL_CALIBRATION_SEQUENCE
3

4 odrv0.axis0.requested_state = AXIS_STATE_CLOSED_LOOP_CONTROL
5 odrv0.axis0.controller.config.control_mode =

CONTROL_MODE_VELOCITY_CONTROL
6 odrv0.axis0.controller.input_vel = 1
7

8 odrv0.axis1.requested_state = AXIS_STATE_CLOSED_LOOP_CONTROL
9 odrv0.axis1.controller.config.control_mode =

CONTROL_MODE_VELOCITY_CONTROL
10 odrv0.axis1.controller.input_vel = 1

LISTING 7.2: Minimal viable commands to control velocity of each
motor

However using the command line is not very practical when multiple commands
are called in sequenced. I therefore created Python scripts with imported ODrive
library for all applications.

7.2 Control ODrive with Python scripts

Script that has been used many times in chapter 5 is in listing 7.3. As mentioned in
that chapter, I exported the torque vector from Simulink to .csv file. Python script
then reads the file on line 13, sets both ODrive axis to closed loop control mode and
sets torque setpoint to desired values with given sampling and simultaneously saves
actual positions of linkage segments to vector on lines 39-54. After that, script shuts
motors down and exports segments positions vectors to .csv file which is later read
in MATLAB.

1 from datetime import datetime
2 import odrive
3 from odrive.enums import *
4 import time
5 import numpy as np
6 import matplotlib.pyplot as plt
7

8 # Find a connected ODrive (this will block until you connect one)
9 print("finding an odrive ...")

10 odrv0 = odrive.find_any ()
11

12 # Load .csv file with precalculated torque vectors
13 torqueMatrix = np.loadtxt(’Torque.csv’, delimiter = ’,’)
14

15 # Define time parameters
16 duration = 4.5 # [s]
17 sampling = 0.002 # [s]
18

19 # Wait for user to press enter , then continue
20 input("Press Enter to continue ...")
21 time.sleep (5)
22

23 # Set both axis to closed loop control with torque as setpoint
24 odrv0.axis0.requested_state = AXIS_STATE_CLOSED_LOOP_CONTROL
25 odrv0.axis0.controller.config.control_mode =

CONTROL_MODE_TORQUE_CONTROL
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26

27 odrv0.axis1.requested_state = AXIS_STATE_CLOSED_LOOP_CONTROL
28 odrv0.axis1.controller.config.control_mode =

CONTROL_MODE_TORQUE_CONTROL
29

30 # Define working variables
31 positionSegment1 = []
32 positionSegment4 = []
33 currentVector = []
34 timeVector = []
35 i = 0
36

37 startTime = time.time()
38

39 while True:
40 elapsedTime = time.time() - startTime
41

42 if elapsedTime > duration:
43 break
44

45 i = int(np.floor(elapsedTime *1000/2))
46

47 odrv0.axis1.controller.input_torque = torqueMatrix[i][0] # segment
1

48 odrv0.axis0.controller.input_torque = torqueMatrix[i][1] # segment
4

49

50 positionSegment1.append (360/4000/3 * odrv0.axis1.encoder.
shadow_count)

51 positionSegment4.append (360/4000/3 * odrv0.axis0.encoder.
shadow_count)

52

53 currentVector.append(odrv0.axis1.motor.current_control.Iq_measured)
54

55 timeVector.append(elapsedTime)
56

57 # Stop both axis
58 odrv0.axis0.controller.input_torque = 0
59 odrv0.axis1.controller.input_torque = 0
60

61 odrv0.axis0.requested_state = AXIS_STATE_IDLE
62 odrv0.axis1.requested_state = AXIS_STATE_IDLE
63

64 # Convert posiiton vectors to numpy arrays
65 positionSegment1 = np.array(positionSegment1)
66 positionSegment4 = np.array(positionSegment4)
67

68 positionSegment1 = positionSegment1 - positionSegment1 [0] + 3
69 positionSegment4 = positionSegment4 - positionSegment4 [0] - 3
70

71 # Plot motor positon with respect to time
72 plt.figure (0)
73 plt.plot(timeVector , positionSegment1 , color=’orange ’, label=’Segment1 ’

)
74 plt.plot(timeVector , positionSegment4 , color=’blue’, label=’Segment4 ’)
75 plt.title("Position")
76 plt.xlabel(’time [s]’)
77 plt.ylabel(’angle [deg]’)
78 plt.legend ()
79

80 # Load .csv file with simulation
81 positionSimulation = np.loadtxt(’simulation.csv’, delimiter = ’,’)
82
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83 ## Compare simulation and exprimental results
84 plt.figure (1)
85 plt.plot(timeVector , positionSegment1 , color=’orange ’, label=’

Experiment ’)
86 plt.plot(positionSimulation [0: int(duration/sampling), 0],

positionSimulation [0:int(duration/sampling), 1], color=’blue’,
label=’Simulation ’)

87 plt.title("Comparation simulation vs. experiment")
88 plt.xlabel(’time [s]’)
89 plt.ylabel(’angle [deg]’)
90 plt.legend ()
91

92 # Save position measurement to .csv
93 now = datetime.now()
94 outMeasurementMatrix = np.stack(( timeVector , positionSegment1 ,

positionSegment4), axis=-1)
95 np.savetxt(now.strftime("%Y%m%d_%H%M%S") + ’_positions.csv’,

outMeasurementMatrix , fmt=’%2.6f’, delimiter=’,’)
96

97 outTorqueMatrix = np.stack(( positionSimulation [:, 0], torqueMatrix
[:,0], torqueMatrix [: ,1]), axis=-1)

98 np.savetxt(now.strftime("%Y%m%d_%H%M%S") + ’_torque.csv’,
outTorqueMatrix , fmt=’%2.6f’, delimiter=’,’)

LISTING 7.3: Python script to measure response for given torque
vector

The main Python workhorse in chapter 6 is in listing 7.4. I used Numpy library
to create vectors of unique combinations on lines 20-36. Combinations have subse-
quently been used as PID parameters. For each combination, script set the param-
eters, performed and recorded a step response and saved the response to .csv file,
which had custom name containing PID parameters and timestamp.

1 from datetime import datetime
2 import odrive
3 from odrive.enums import *
4 import time
5 import numpy as np
6 import matplotlib.pyplot as plt
7

8 # Find a connected ODrive (this will block until you connect one)
9 print("finding an odrive ...")

10 odrv0 = odrive.find_any ()
11

12 # Define time parameters
13 duration = 1.5 # [s]
14

15 posPVector = np.linspace (20, 50, num=4)
16 velPVector = np.linspace (0.002 , 0.18, num =10)
17 velIVector = np.linspace (0.002 , 0.08, num =10)
18

19 # Prepare vectors
20 firstCol = np.ones((len(velPVector)*len(velIVector), 1))*posPVector [0]
21 secondCol = np.ones((len(velIVector), 1))*velPVector [0]
22 thirdCol = np.reshape(velIVector , (len(velIVector), 1))
23

24 for i in range(1, len(posPVector)):
25 a = np.ones((len(velPVector)*len(velIVector), 1))*posPVector[i]
26 firstCol = np.vstack ((firstCol , a))
27

28 for i in range(1, len(posPVector)*len(velIVector)):
29 a = np.ones((len(velIVector), 1))*velPVector[i%len(velPVector)]
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30 secondCol = np.vstack ((secondCol , a))
31

32 for i in range(len(posPVector)*len(velIVector) -1):
33 a = np.reshape(velIVector , (len(velIVector), 1))
34 thirdCol = np.vstack ((thirdCol , a))
35

36 allCombinations = np.hstack ((firstCol , secondCol , thirdCol))
37

38 # Wait for user to press enter , then continue
39 input("Press Enter to continue ...")
40 time.sleep (1)
41

42 positionS1Offset = odrv0.axis1.encoder.pos_estimate
43 positionS4Offset = odrv0.axis0.encoder.pos_estimate
44

45 for i in range(len(allCombinations)):
46 posP = allCombinations[i][0]
47 velP = allCombinations[i][1]
48 velI = allCombinations[i][2]
49

50 print("posP: {:.3f} velP: {:.3f} velI: {:.3f}".format(posP ,
velP , velI))

51

52 odrv0.axis0.controller.config.pos_gain = posP
53 odrv0.axis0.controller.config.vel_gain = velP
54 odrv0.axis0.controller.config.vel_integrator_gain = velI
55

56 odrv0.axis1.controller.config.pos_gain = posP
57 odrv0.axis1.controller.config.vel_gain = velP
58 odrv0.axis1.controller.config.vel_integrator_gain = velI
59

60 # Set both axis to closed loop control with torque as setpoint
61 odrv0.axis0.requested_state = AXIS_STATE_CLOSED_LOOP_CONTROL
62 odrv0.axis0.controller.config.control_mode =

CONTROL_MODE_POSITION_CONTROL
63

64 odrv0.axis1.requested_state = AXIS_STATE_CLOSED_LOOP_CONTROL
65 odrv0.axis1.controller.config.control_mode =

CONTROL_MODE_POSITION_CONTROL
66

67 # Define working variables
68 positionSegment1 = []
69 positionSegment4 = []
70 timeVector = []
71

72 startTime = time.time()
73

74 while True:
75 elapsedTime = time.time() - startTime
76

77 if elapsedTime > duration:
78 break
79

80 odrv0.axis1.controller.input_pos = positionS1Offset + 0.4
81 odrv0.axis0.controller.input_pos = positionS4Offset - 0.4
82

83 positionSegment1.append (360/4000/3 * odrv0.axis1.encoder.
shadow_count)

84 positionSegment4.append (360/4000/3 * odrv0.axis0.encoder.
shadow_count)

85

86 timeVector.append(elapsedTime)
87
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88 # Stop both axis
89 odrv0.axis1.controller.input_pos = positionS1Offset
90 odrv0.axis0.controller.input_pos = positionS4Offset
91

92 odrv0.axis0.requested_state = AXIS_STATE_IDLE
93 odrv0.axis1.requested_state = AXIS_STATE_IDLE
94

95 time.sleep (2)
96

97 # Convert position vectors to numpy arrays
98 positionSegment1 = np.array(positionSegment1)
99 positionSegment4 = np.array(positionSegment4)

100

101 positionSegment1 = positionSegment1 - positionSegment1 [0]
102 positionSegment4 = positionSegment4 - positionSegment4 [0]
103

104 # Save position measurement to .csv
105 now = datetime.now()
106 outMeasurementMatrix = np.stack(( timeVector , positionSegment1 ,

positionSegment4), axis=-1)
107 np.savetxt(now.strftime("%Y%m%d_%H%M%S") + "_{:.3f};{:.3f};{:.3f}".

format(posP , velP , velI) + ’_positions.csv’, outMeasurementMatrix ,
fmt=’%2.6f’, delimiter=’,’)

LISTING 7.4: Python script to measure responses for different PID
parameters

7.3 MATLAB scripts

In this section, I will comment all necessary information about SW implementation
in MATLAB.

All simulations for chapters 5 and 6 are initialized from MATLAB scripts, namely
their parameters. When multiple constants are related to each other, I used structure
array. This maintains the code clean and also simplifies calling function with many
parameters, because now the function has only one parameter - this structure.

Mentioned function can be found in listing 7.5. This function is used to linearizes
the mathematical model around a operating point. Function uses symbolic toolbox
for derivation which helps to prevent errors in typed equations. Symbolic variables
are defined on lines 13-19 and dynamics equations from chapter 5 are on lines 21-44.
The function returns structure, which contains torques for equilibrium (lines 45-46),
state space matrices (lines 49-93) and full state feedback gain and observer gain (lines
107-113). I had to implement differentiation with respect to another function - this
can be seen on lines 119-127.

1 function [linearized] = linearize(params , operatingPoint , poles)
2 % Liarize decoupled fivebar mechanism
3

4 % Parse input
5 % Operating point
6 q1s = operatingPoint.q1s;
7 dq1s = operatingPoint.dq1s;
8

9 q2s = operatingPoint.q2s;
10 dq2s = operatingPoint.dq2s;
11

12 %% Symbolic variables
13 syms q1(t) q2(t) t M1 M2
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14

15 dq1 = diff(q1);
16 ddq1 = diff(dq1);
17

18 dq2 = diff(q2);
19 ddq2 = diff(dq2);
20

21 %% Dynamic equations
22 % inertia matrix
23 d11 = params.m1*params.lc1^2 + params.m3*params.lc3^2 + params.m4*

params.l1^2 + params.I1S1 + params.I3S3;
24 d22 = params.m2*params.lc2^2 + params.m3*params.l2^2 + params.m4*params

.lc4^2 + params.I2S2 + params.I4S4;
25 d12 = (params.m3*params.l2*params.lc3 - params.m4*params.l1*params.lc4)

*cos(q2 -q1);
26 d21 = d12;
27

28 % friction matrix
29 c11 = params.frictionc11;
30 c12 = params.frictionc12;
31 c21 = params.frictionc21;
32 c22 = params.frictionc22;
33 C1 = [c11 c12;
34 c21 c22];
35

36 % gravitational vector
37 g1 = params.g*cos(q1)*( params.m1*params.lc1 + params.m3*params.lc3 +

params.m4*params.l1);
38 g2 = params.g*cos(q2)*( params.m2*params.lc2 + params.m3*params.l2 +

params.m4*params.lc4);
39

40 G = [g1; g2];
41

42 % equations
43 eq1 = 1/d11*(M1 - c11*dq1 - c12*dq2 - g1);
44 eq2 = 1/d22*(M2 - c21*dq1 - c22*dq2 - g2);
45

46 linearized.M1s = c11*dq2s + c12*dq1s + double(subs(g1 , q1 , q1s));
47 linearized.M2s = c21*dq2s + c22*dq1s + double(subs(g2 , q2 , q2s));
48

49 %% Differentiate
50 % Jacobian
51 J11_lin = diff2(eq1 , q1);
52 J11_lin = subs(J11_lin , q1, q1s);
53 J12_lin = diff2(eq1 , dq1);
54 J13_lin = diff2(eq1 , q2);
55 J14_lin = diff2(eq1 , dq2);
56

57 J21_lin = diff2(eq2 , q1);
58 J22_lin = diff2(eq2 , dq1);
59 J23_lin = diff2(eq2 , q2);
60 J23_lin = subs(J23_lin , q2, q2s);
61 J24_lin = diff2(eq2 , dq2);
62

63 % Convert to double
64 J11_lin = double(J11_lin);
65 J12_lin = double(J12_lin);
66 J13_lin = double(J13_lin);
67 J14_lin = double(J14_lin);
68

69 J21_lin = double(J21_lin);
70 J22_lin = double(J22_lin);
71 J23_lin = double(J23_lin);
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72 J24_lin = double(J24_lin);
73

74 % B
75 B21_lin = double(diff2(eq1 , M1));
76 B42_lin = double(diff2(eq2 , M2));
77

78 %% State space representation
79

80 linearized.A = [0 1 0 0;
81 J11_lin J12_lin J13_lin J14_lin;
82 0 0 0 1;
83 J21_lin J22_lin J23_lin J24_lin ];
84

85 linearized.B = [0 0;
86 B21_lin 0;
87 0 0;
88 0 B42_lin ];
89

90 linearized.C = [1 0 0 0;
91 0 0 1 0];
92

93 linearized.D = [0; 0];
94

95 %% Controllability , observability , poleplacement , observer
96

97 % disp(’The controllability rank on segment 1 is:’)
98 % disp(rank(ctrb(linearized.A1, linearized.B1)))
99 % disp(’The observability rank on segment 1 is:’)

100 % disp(rank(obsv(linearized.A1, linearized.C1)))
101 %
102 % disp(’The controllability rank on segment 4 is:’)
103 % disp(rank(ctrb(linearized.A2, linearized.B2)))
104 % disp(’The observability rank on segment 4 is:’)
105 % disp(rank(obsv(linearized.A2, linearized.C2)))
106

107 %% Full state feedback
108 P = poles.P;
109 linearized.K = place(linearized.A, linearized.B, P);
110

111 % Observer
112 Po = poles.Po;
113 linearized.L = (place(linearized.A’,linearized.C’,Po)) ’;
114

115 % Calculate setpoint compensation
116 linearized.Nbar = inv(-linearized.C*inv(linearized.A-linearized.B*

linearized.K)*linearized.B+linearized.D);
117 end
118

119 %% Function for differentiation
120 function [f_out] = diff2(f_in ,ableiten)
121 %src: https ://www.mathworks.com/matlabcentral/answers /159812 - symbolic -

math -toolbox -derive -a-function -with -respect -to-another -function
122 syms substitute;
123 f_zwischen=subs(f_in ,ableiten ,substitute);
124 f_zwischen_diff=diff(f_zwischen ,substitute);
125 f_out=subs(f_zwischen_diff ,substitute ,ableiten);
126

127 end

LISTING 7.5: Function for linearization

Following script 7.6 has been used in chapter 6. It’s job is to load all .csv files in
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given folder with measured responses and for each file parse PID parameters from
it’s name and call custom function "identifyParams" which returns dynamics param-
eters ξ and ωn. When all .csv files are processed, vectors containing PID values and
dynamics parameters are stored in .mat files for later use.

1 clc
2 clear all
3 close all
4

5 % Get all files
6 myFiles = dir(’C:\ Users\Frantisek\OneDrive - esk v y s o k u e n

t e c h n i c k v Praze\ D i p l o m o v p r c e _ g i t \aclab_quadruped \[SIM]
Simulations\Lagrange\Spong ’);

7 % Get the filenames
8 filenames = {myFiles (:).name}’;
9 % Get only csv files

10 csvFiles = filenames(endsWith(filenames ,".csv"));
11 % Filter out measurements csv files
12 csvFiles = csvFiles(contains(csvFiles , "positions "));
13

14 % Initialize vectors to hold values
15 posPVector = [];
16 velPVector = [];
17 velIVector = [];
18 wnVector = [];
19 xiVector = [];
20

21 saveMilestone = 50;
22 %% For all csv files
23 for i = 1: length(csvFiles)
24 singleFile = string(csvFiles(i));
25 % Parse filename for PID parameters
26 nameParsed = split(singleFile ,{’;’, ’_’});
27 posP = str2double(nameParsed (3));
28 velP = str2double(nameParsed (4));
29 velI = str2double(nameParsed (5));
30

31 % Obtain second order system parameters from external function
32 [wn , xi] = identifyParams(singleFile , false);
33

34 % Store data to vectors
35 posPVector = [posPVector; posP];
36 velPVector = [velPVector; velP];
37 velIVector = [velIVector; velI];
38

39 wnVector = [wnVector; wn];
40 xiVector = [xiVector; xi];
41

42 % Save after every 50 files
43 if i > saveMilestone
44 save(’identifiedParameters ’,’posPVector ’,’posPVector ’,’

velIVector ’,’wnVector ’,’xiVector ’)
45 saveMilestone = saveMilestone + 50;
46 end
47 end
48

49 save(’identifiedParameters ’,’posPVector ’,’velPVector ’,’velIVector ’,’
wnVector ’,’xiVector ’)

LISTING 7.6: Step responses processing
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Function "identifyParams" is listed in 7.7. Is has two parameters. First is name of
.csv file and the second one is boolean value whether to plot analyzed data. The
function opens and loads .csv file to vectors, which are then smoothed and analyzed
using the logarithmic decrement method.

1 function [wn, xi] = identifyParams(filename , doPlot)
2 %% Load csv file
3 clc
4 close all
5

6 opts = delimitedTextImportOptions (" NumVariables", 3);
7

8 % Specify range and delimiter
9 opts.DataLines = [1, Inf];

10 opts.Delimiter = ",";
11

12 % Specify column names and types
13 opts.VariableNames = ["time", "angle1", "angle2 "];
14 opts.VariableTypes = [" double", "double", "double "];
15

16 % Specify file level properties
17 opts.ExtraColumnsRule = "ignore ";
18 opts.EmptyLineRule = "read";
19

20 % Import the data
21 measurement = readtable(filename , opts);
22 % Clear temporary variables
23 clear opts
24

25 %% Parameters identification
26 % Parse data
27 t = measurement.time;
28 y = measurement.angle1;
29 y = 0.16* cos(deg2rad(measurement.angle1))+0.16* cos(deg2rad(measurement.

angle2));
30

31 %% Logrithmic decrement method
32 [pks ,locs] = findpeaks(smooth(-y), t); % Signal processing toolbox
33

34 locs
35

36 if isempty(pks)
37 xi = 2;
38 wn = 0;
39 elseif size(pks) == 1
40 xi = 1;
41 wn = 0;
42 else
43 delta = -log(pks(1)/pks (2));
44 xi = delta/sqrt ((2*pi)^2+ delta ^2);
45 wn = 1/( locs (2)-locs (1));
46 end
47

48 %% Plot graphs
49 if doPlot
50 invertedY = smooth(-y); %smooth(max(y) - y);
51 [pks ,locs] = findpeaks(invertedY , t); % signal processing toolbox
52

53 plot(t, -y, ’LineWidth ’, 2)
54 title("Step response ")
55 xlabel ("time [s]")
56 ylabel (" position [m]")
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57 set(gca ,’FontSize ’ ,16)
58 hold on
59 plot(locs , pks ,’o’, ’LineWidth ’, 2)
60 end
61 end

LISTING 7.7: Function "identifyParams"

Saved .mat file in 7.6 is then used in following listing 7.8. Program loads the data
from .mat file into matrices (lines 5-19), fills them with the inpaintn method (lines
25-26), interpolate the data for finer sampling with interp3 function and plot all pos-
sible variants of dynamics parameters. At the end of the code (lines 56-70), it takes
desired dynamics parameters, finds nearest theoretically possible one and returns
it’s PID prameters.

1 clc
2 close all
3 clear all
4

5 load identifiedParameters.mat
6

7 x = unique(posPVector);
8 y = unique(velPVector);
9 z = unique(velIVector);

10 omegaMatrix = NaN(length(x),length(y),length(z));
11 xiMatrix = NaN(length(x),length(y),length(z));
12

13 for i = 1: length(posPVector)
14 x_ind = find(x == posPVector(i));
15 y_ind = find(y == velPVector(i));
16 z_ind = find(z == velIVector(i));
17 omegaMatrix(x_ind ,y_ind ,z_ind) = wnVector(i);
18 xiMatrix(x_ind ,y_ind ,z_ind) = xiVector(i);
19 end
20

21 % How much "sparse" is this matrix
22 % sum(isnan(data),’all ’);
23 % numel(data);
24

25 % Fill NaNs
26 omegaMatrix = inpaintn(omegaMatrix);
27 xiMatrix = inpaintn(xiMatrix);
28

29 % Interpolate for a new meshgrid
30 [Xq ,Yq ,Zq] = meshgrid(x(1) :1:x(end), y(1) :0.02:y(end), z(1) :0.02:z(end)

);
31 omegaInterpolated = interp3(y, x, z, omegaMatrix , Yq, Xq, Zq , ’cubic ’);
32 xiInterpolated = interp3(y, x, z, xiMatrix , Yq , Xq, Zq, ’cubic’);
33

34 % Flatten for plotting
35 omegaFlattened = reshape(omegaInterpolated , [], 1);
36 xiFlattened = reshape(xiInterpolated , [], 1);
37

38 % Remove negative frequencies and damping
39 omegaFlattened(xiFlattened <0) = NaN;
40 xiFlattened(xiFlattened <0) = NaN;
41

42 xiFlattened(omegaFlattened <0) = NaN;
43 omegaFlattened(omegaFlattened <0) = NaN;
44

45 figure
46 plot(xiFlattened , omegaFlattened , ’o’, ’LineWidth ’, 2)
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47 title("Map of possible parameter combinations ")
48 xlabel ("xi [-]")
49 ylabel ("omega [Hz]")
50 xlim ([0 1])
51 ylim ([0 10])
52 hold on
53 set(gca ,’FontSize ’ ,16)
54

55 % transform to 2D
56 combinedMatrix = [xiFlattened omegaFlattened ];
57 desiredPoint = [0.23, 5];
58 [k,dist] = dsearchn(combinedMatrix ,desiredPoint);
59 plot(combinedMatrix(k, 1), combinedMatrix(k, 2), ’*’, ’LineWidth ’, 2)
60 %%
61 closestValueXi = xiFlattened(k);
62 closestValueOmega = omegaFlattened(k);
63

64 %result = find(X==5);
65 [r,c,v] = ind2sub(size(omegaInterpolated),find(omegaInterpolated ==

closestValueOmega)); % src: https ://uk.mathworks.com/matlabcentral/
answers /789-using -find -in-a-3d-matrix -in -matlab

66

67 % Desired PID parameters
68 pSpeed = Yq(r)
69 pPosition = Xq(c)
70 iSpeed = Zq(v)

LISTING 7.8: Data mining
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Chapter 8

Conclusion and future directions

The aim of this master thesis was the realization of a robotic leg and the design of its
control. In the chapter 2, I described the evolution of mobile robotics and did a re-
view of similar projects and approaches to dynamics management. I then presented
in detail the Doggo platform, which I based my development on. Both the mechan-
ical (chapter 3) and eletrical (chapter 4) aspects of the project were discussed. I also
listed the changes to some parts that had to be made for the leg to work properly. I
described the main electrical components that were used.

In the following chapters, I proposed two approaches to control the dynamics of
the leg. The first approach (chapter 5) was based on the mathematical model of the
fivebar linkage. I supplemented this with a damping matrix and identified all the
necessary parameters. In validating this method, there were noticeable deviations
between simulation and experiment. These deviations are probably due to an over-
simplification of the modeling of the applied friction. The second method (chap-
ter 6) is then based on experimental measurement data. I successively analyzed the
dynamic parameters of the leg behavior for different settings of the cascaded PID
controllers. I then determined the appropriate PID parameters from these based on
the prescribed dynamics parameters and tested this. This method proved to work,
but it relies on many measurements and any change in the parameters (for example,
loading the robot with cargo) would necessitate doing all the measurements again.

Future development should focus on improving the mathematical model from the
chapter, especially the friction modeling. As mentioned, many bearings are used
throughout the mechanism, and furthermore, the fact that the mechanism consists
of many parts and thus friction can occur due to inaccuracies in geometric toler-
ances needs to be taken into account. Especially for 3D printed parts, the resulting
geometric tolerances are not very precise.

Nevertheless, I hope that the platform I have implemented will serve students in
their future research and development. I believe, that one day we will see fully
working mobile robot in our department.
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Appendix A

Contents of the attached CD

Folder "CAD model" contains my version of CAD model for robotic leg. This was
discussed in chapter 3.

Two additional folders are inside the folder "MATLAB and Simulink". Files inside
folder "Fivebar linkage" were used for chapter 5. Namely Simulink model of five-
bar linkage, it’s setup livescript and custom function for linearization. Folder "BLDC"
contains Simulink model, corresponding setup script used in chapter 6 and script
used for data analysis.

The custom Python scripts used to control ODrive are in the folder "Python scripts".
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