Master Thesis

Czech
Technical
University

in Prague

F 3 Faculty of Electrical Engineering
Department of Computer Science

Contextual Embeddings for Predictions
Based on Log Files

Bc. Petra Vankova

Supervisor: Ing. Jan Drchal, Ph.D.
Field of study: Open Informatics
Subfield: Cybersecurity

August 2021

ii

cvuT ZADANI DIPLOMOVE PRACE

CESKE VYSOKE
UCENIi TECHNICKE
V PRAZE

I. OSOBNI A STUDIJNi UDAJE

(PFijmeni: Vankova Jméno: Petra Osobni Eislo: 492583
Fakulta/ustav: Fakulta elektrotechnicka
Zadavajici katedra/ustav: Katedra pocitactl
Studijni program: Oteviena informatika

L Specializace: Kyberneticka bezpecénost

Il. UDAJE K DIPLOMOVE PRACI

Nazev diplomové prace:

Kontextové reprezentace pro predikce zalozené souborech logti

Nazev diplomové prace anglicky:

Contextual Embeddings for Predictions Based on Log Files

Pokyny pro vypracovani:

The task is to develop, implement, and evaluate methods for extracting fixed-size
embeddings for log files. Focus on embeddings applicable to the downstream
prediction tasks. The methods will be based on related approaches known from
NLP.

1) Familiarize yourself with state-of-the-art contextual embedding methods used in
the NLP domain.

2) Select and modify an appropriate method to work on log lines (either single lines
or several successive log lines).

3) Evaluate the method on a downstream task of manufacturing process duration
prediction based on a dataset by Skoda a.s. (will be supplied by the supervisor).

Seznam doporucené literatury:

[1] Wang, Jin, et al. "LogEvent2vec: LogEvent-to-Vector Based Anomaly Detection for
Large-Scale Logs in Internet of Things." Sensors 20.9 (2020): 2451.

[2] Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for
language understanding." arXiv preprint arXiv:1810.04805 (2018).

[3] Marek Soucek, "Log Anomaly Detection", master thesis, supervisor Jan Drchal, FEE
CTU, 2020.

[4] Du, Min, et al. "Deeplog: Anomaly detection and diagnosis from system logs
through deep learning." Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2017.

[5] Saxe, Joshua, and Konstantin Berlin. "eXpose: A character-level convolutional
neural network with embeddings for detecting malicious URLSs, file paths and registry
keys." arXiv preprint arXiv:1702.08568 (2017).

Jméno a pracovisté vedouci(ho) diplomové prace:

Ing. Jan Drchal, Ph.D., katedra teoretické informatiky FIT

Jméno a pracovisté druhé(ho) vedouci(ho) nebo konzultanta(ky) diplomové prace:

Datum zadani diplomové prace: 11.02.2021 Termin odevzdani diplomové prace: 13.08.2021

Platnost zadani diplomové prace: 30.09.2022

Ing. Jan Drchal, Ph.D. podpis vedouci(ho) ustavu/katedry prof. Mgr. Petr Pata, Ph.D.
podpis vedouci(ho) prace podpis dékana(ky)

NG

CVUT-CZ-ZDP-2015.1 Stranalz?2 © CVUT v Praze, Design: CVUT v Praze, VIC

ll. PREVZETi ZADANI

Diplomantka bere na védomi, Ze je povinna vypracovat diplomovou praci samostatné, bez cizi pomoci, s vyjimkou poskytnutych konzultaci.
Seznam pouzité literatury, jinych pramenu a jmen konzultant(je tfeba uvést v diplomové praci.

Datum prevzeti zadani Podpis studentky

CVUT-CZ-ZDP-2015.1 Strana 2z 2 © CVUT v Praze, Design: CVUT v Praze, VIC

Acknowledgements

I would like to express my sincere grati-
tude to my supervisor Ing. Jan Drchal,
Ph.D., for his guidance, support and pa-
tience, to the CTU in Prague for allowing
me to pursue education in a relatively new
field for me and lastly to my family for al-
ways being supportive and tolerant during
my studies.

Declaration

I declare that I elaborated this thesis on
my own and that I mentioned all the in-
formation sources that have been used in
accordance with the Guideline for adher-
ing to ethical principles in the course of
elaborating an academic final thesis.

In Prague, 13. August 2021

Abstract

Contextual embeddings have become an
significant part of Natural Language Pro-
cessing tasks, being able to capture infor-
mation of a word in a context of a whole
text sequence.

Current state-of-the-art techniques of
contextual embeddings are studied in this
work in terms of log analysis. One of such
techniques - a model based on BERT - is
used to derive contextual embeddings of
log lines included in a custom dataset pro-
vided. To evaluate the quality of embed-
dings created, several regression analysis
models were chosen - Temporal Convo-
lutional Network, the Longformer - also
a BERT-based model and fastText tech-
nique as a baseline approach. The aim of
the models is to be able to predict certain
values in the dataset. Unfortunately, none
of these models was able to learn on the
dataset.

Anomaly detection problem was cho-
sen as a simplification of the regression
task and the TCN model was chosen for
the evaluation. As neither this approach
produced better results, leveraging of an-
other dataset with similar features could
verify whether the original dataset is a
suitable choice for contextual embeddings
evaluation.

Keywords: contextual embeddings,
NLP, logs, BERT, regression analysis

Supervisor: Ing. Jan Drchal, Ph.D.
Karlovo nameésti 13, E-406, Praha 2

vi

Abstrakt

Kontextové reprezentace (embeddingy) se
staly dulezitou souc¢éasti prirozeného zpra-
covani jazyka (NLP), nebot umoznuji za-
chyceni informace o daném slové v kon-
textu celé sekvence textu.

Soucasné nejmodernéjsi technologie na
vytvareni kontextovych reprezentaci bu-
dou predmétem studia této priace se za-
mérenim na analyzu logi. Jedna z téchto
technologii - model postaveny na archi-
tekture BERT - bude pouzita k vytvoreni
kontextovych reprezentaci logt z datasetu
poskytnutého vyhradné pro tuto praci. K
vyhodnoceni kvality téchto reprezentaci
bude pouzito nékolik regresnich modeli s
cilem predikce urcitych hodnot v datasetu
- konvolucéni sit TCN, Longformer - dalsi
model postaveny na architekture BERT a
jako vychozi bod kvality byla pouzita tech-
nologie fastText. Bohuzel, zddny z téchto
modeld se nebyl schopen na predlozenych
datech natrénovat.

Detekce anomalii s pouzitim konvoluc¢ni
sit¢ TCN byla zvolena jako jednodussi
pristup oproti regresi. Ani tento pristup
bohuzel neprinesl lepsi vysledky. Pouziti
jiného datasetu by mohlo pomoci odhalit,
jestli ten ptvodni byl vhodné vybran pro
vyhodnoceni kontextovych reprezentaci
logi.

Kli¢ova slova: kontextové embeddingy,
NLP, logy, BERT, regresni analyza

Preklad nazvu: Kontextové
reprezentace pro predikce zalozené
souborech logt

Contents

4.4.3 Loss function

1 Introduction 1
5 Implementation
2 Related work 3 ,
5.1 Embeddings..................
2.1 Log analysis...................)
5.2 Value prediction
2.1.1 Log parsing
5.2.1 Temporal Convolution
2.1.2 Log anomaly detection..... .. Network,
2.2 Transformer................... 4 5.2.2 Longformer
23BERT L 523 FastText . . oo
2.4 Word embeddings.............. 5.3 Anomaly detection............
2.4.1 fastText 5] . .
6 Experiments and evaluation
2.4.2 Contextual embeddings 6

6.1 Contextual embeddings........

2.5 Temporal Convolutional Network [6] 6.2 Val dicti
.2 Value prediction

3 Problem analysis 6.2.1 Temporal Convolutional
3.1 Dataset introduction [7] Network
3.1.1 CAKL dataset 8 6.2.2 Longformer
3.1.2 AWR datasets [6.23 FastText
3.2 Problem statement............ 1ol 6.2.4 Data split.................
3.3 Exploratory analysis 6.3 Anomaly detection............
3.3.1 CAKL dataset 10 6.3.1 Error correction
3.3.2 AWR datasets 6.4 Discussion
4 Methodology 19 7 Conclusions
4.1 Log preprocessing. Bibliography
4.2 Contextual embeddings........
4.2.1 Tokenization 19
4.2.2 Embeddings creation
4.3 Regression analysis
4.3.1 Temporal Convolutional
Network, 211
4.3.2 Longformer
4.3.3 fastText
4.3.4 Loss function
4.4 Anomaly detection............
4.4.1 Motivation 23
4.4.2 Data preparation

vii

Figures

2.1 The Transformer encoder-decoder
structure. Image from [26]

2.2 Architecture of TCN. Image from

3.1 Number of log lines per day
3.2 Number of SQL-Dauer values per
day ...

3.3 Distribution of Query 1, Query 2
and Query & over the dataset, the
y-axis represents the total number of
occurrences of each query per day .

3.4 Number of SQL-Dauer values of
Query 1, Query 2, Query 3 per day

3.5 Distribution of SQL-Dauer values
in time of four chosen queries -
throughout the whole dataset in the
left column and throughout the day
of 30/11/20 in the right column; the
z-axis represents a time of the
occurrences and the y-axis the actual
SQL-Dauer values

3.6 Distribution of AWR datasets . .

4.1 Tokenization example
4.2 Data flow
5.1 TCN tensor shape
5.2 Summary of TCN structure

6.1 Train/Validation loss per different
time spans of the day of 30/11/20,
with the z-axis representing number

ofepochs
6.2 Train/Validation loss of anomaly
detection experiments

6.3 Train/Validation loss per 12-hour
time span of the day of 30/11,/2020

6.4 Train/Validation loss of shifted
timespan...................... 42|

viii

6.5 Train/Validation loss per 4-hour

time span of the day of 30/11/2020

with different window sizes

Tables

3.1 Datasets comparison
3.2 Number of log lines per query

CALEGOTY « vttt e e [11]

3.3 Number of log lines per query ..

3.4 Number of occurrences of
SQL-Dauer value; number of log lines
in-between each query occurrence
and their relationship

3.5 Queries selected for anomaly
detection

3.6 Number and percentage of
anomalies of each query per time
spans of 30/12/20; all time spans
begin at midnight...............

6.1 t-SNE visualization with different

perplexity...........
6.2 Query 1 - 3 experiments -

30/11/20 o i
6.3 Value prediction per whole CAKL

dataset - Query 6 & Query 7
6.4 Train loss per different time spans -

Longformer

6.5 fastText model parameters
combinations 38

6.6 fastText experiments - Query 1 .

6.7 Query 1, 4, 5 anomaly experiments
- 80/11/2020; initial 1h, 2h, 4h, 12h
and 24h time spans per query

6.8 Query 1, 4, 5 anomaly experiments
- 30/11/2020: additional 10k, 11h,
13h and 14h time spans per query.

6.9 Query 1 anomaly experiments -
12-hour time spans per days 1/12/20,
8/12/20 and 14/12/20

6.10 Query 1, 4, 5 anomaly
experiments after error correction -
30/11/2020

ix

Chapter 1

Introduction

In recent years the demand for automation in industry has increased signif-
icantly. Companies rely on software solutions to accelerate their processes,
an essential part of which is logging. Well-structured logs provide necessary
information about the behaviour of the software system itself, but also about
the industrial process and are therefore a crucial tool for troubleshooting. As
computation resources have become more affordable, simply storing logs as
historical data no longer fulfils its potential. The collected data are widely
reused in various machine learning tasks such as regression and classification
to discover patterns or predict values, which can bring further improvements.

Since logs are the favourite method of holding all required information a
developer or a system administrator needs to analyse and solve a potential
problem, the memory consumption of generated log files notably increases
with the complexity of the system. To reduce the memory consumed by
logs, complete sentences are often truncated to contain only keywords or
parameters. Nevertheless, despite the absence of proper syntax, logs are still
textual structures. When working with texts, word embeddings - numerical
representations of words, values of which encode semantic relations between
the words - are often used. Recent state-of-the-art machine learning techniques
for Natural Language Processing tasks have shown significant improvement in
such embeddings creation, now outstandingly handling context of sentences
or longer texts.

Whilst previous research on contextual embeddings has focused mainly on
existing languages, the aim of this work is to illustrate that embeddings of
logs learned by the same techniques are able to encode the context as well.
One of these techniques - the BERT architecture - will be described and
evaluated on a custom dataset provided for this work.

Since contextual embeddings of log lines have been previously studied and
evaluated on anomaly detection models, a more complex approach will be
analysed in this work - several regression analysis models used for prediction
of certain values in the dataset will be used to evaluate the contextual
embeddings created.

Chapter 2

Related work

B2 Log analysis

This thesis is a part of a larger project focusing on log analysis. It follows the
work of Marek Soucek [24], and is parallel to the theses of Martin Korytak
[13], which focuses on anomaly detection task with an exhaustive research on
autoencoder-based models, and of Prokop Cerny [29], who analyses contextual
embeddings of logs and evaluates them on anomaly detection experiments.
The objective of this work is to extend the pool by leveraging of contextual
embeddings in regression analysis. Unlike anomaly detection, regression
analysis in log analysis is not widely studied.

B 2.1.1 Log parsing

In general approach to log analysis, log parsing is the initial step. It is a
process of transforming of raw log messages into a sequence of structured
events [10]. Traditional approaches rely on regular expressions, however this
approach is not ideal as the amount of unique log messages is unlimited.
That led to automated log parsing, which are data-driven approaches that
are able to learn the patterns from the log data and automatically generate
log templates . Such approaches include frequent pattern mining (LogCluster
[25]), an online streaming method Spell, which utilizes longest common
subsequence computation [7] and parsing tree (Drain [11]). [2§]

The step following log parsing is feature extraction, which is a process of
encoding information from structured data to numerical vectors that can be
later fed into machine learning models. [24]

B 2.1.2 Log anomaly detection

The task of anomaly detection in logs is a commonly used approach in log
analysis. With the volume of log lines generated by systems, automated
anomaly detection can possibly save great amount of time.

3

2. Related work

General anomaly detection methods are either supervised or unsupervised.
The supervised method where labels are provided is nothing else than a
binary classification. The most common methods are Logistic Regression,
Support Vector Machines (SVM) and Decision Tree. Among the unsupervised
methods are Log Clustering, PCA and Invariant Mining. [12]

An Online Evolving SVM algorithm is proposed in [9] for log-based anomaly
detection. Another approaches to log anomaly detection use Recurrent Neural
Networks, such the LSTM network in DeepLog [8], or Bi-LSTM network used
in LogRobust tool [27].

. 2.2 Transformer

The Transformer [26] is a model that utilizes attention mechanism ([I] and
[16]) to speed the learning process instead of relying on recurrence. It follows
the encoder-decoder architecture, its structure is depicted in Figure 2.1\

The stack of encoders are on the left side, while the the stack of decoder on
the right. Before entering an encoder or decoder, the input embeddings pass
through a positional encoding operation that addresses the order of the words
in a sequence. Each encoder consists a self-attention layer and a feed-forward
neural network, both layers are followed by a normalization layer.

The architecture of decoder is very similar apart from an additional atten-
tion layer the input of which is the output of the encoder. The outputs of the
decoder stack are then transformed to a vector of next-token probabilities
with linear layer and a softmax function.

B 23 BERT

BERT (Bidirectional Encoder Representations from Transformers) [6] is the
current state-of-the-art model for Natural Language Processing tasks. It
derives from multiple technologies such as the Transformer introduced in
previous section, ELMo [I§] - deep word representations that allow words to
be handled differently according to their context, semi-supervised sequence
learning [5] and OpenAl Generative Pre-trained Transformer [19].

BERT model derives the encoder-decoder structure from the Transformer.
Like ELMo, BERT is a bi-directional model, which means it handles both
left-to-right and also right-to-left context, which the OpenAl GPT does not -
it is uni-directional. This is done by so-called "masked language modelling"
(MLM) where a portion of the input tokens - randomly chosen - are masked
and the model is trying to predict the word only by its context. An advantage
that BERT derived from OpenAl GPT is that by replacing the encoder stack
with the OpenAl Transformer a fine-tunable pre-trained model is created.

4

2.4. Word embeddings

Qutput
Probabilities

Linear

Add & Norm
J
| Add & Norm }-s
Critlee Mo Wit Head
Feed Attention
Forward Nx
Nx | Add & Norm
Add & Norm Masked
Multi-Head Multi-Head
Attention Attention
t 4 At
] J L —
Positional ®_@ @ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs QOutputs

(shifted right)

Figure 2.1: The Transformer encoder-decoder structure. Image from [26]

It can be used for variety of tasks such as sentence classification, question
answering or only to create contextualized word embeddings.

When using BERT as a model pre-trained for specific tasks, there are
several special tokens, that the model expects on the input based on the
task selected. The first one is [CLS], which stands for classification and is
prepended in front of every input, the [SEP] token serves as a separator
in two-sentence tasks. For MLM the masked tokens are replaced with the
[MASK] token.

B 24 word embeddings

B 2.4.1 fastText

FastText is one of the most common techniques of word embeddings creation.
It was introduced in [4] as an extension to a skip-gram flavour of word2vec
algorithm [I7] where also subword information is considered.

Each word is split into character groups called n-grams of a specified length
n, minimum and maximum of which can be set as a parameter. The resulting
substrings are stored in a vocabulary. Characters < and > are added to the
beginning and to the end of the word respectively, thus inner parts of words
are stored as is and prefixes and suffixes are distinguishable by the special
characters.

2. Related work

B 2.4.2 Contextual embeddings

Simple word embeddings take into account only words as they are, therefore
words like "car" and "vehicle" will be embedded as ultimately different words
despite having very similar meaning. This led to a new approach to numerical
word representation - the contextual embeddings.

ELMo (Embeddings from Language Models) [18] introduces a new approach,
that each token is represented by a function of the whole input sequence.
ELMo derives from a bi-directional LSTM, thus is able to handle context in
both directions.

BERT word representations are deeply bi-directional (see section ,
which unlike with ELMo means that each tranformer layer of the BERT
model creates a contextualized representation of each token. BERT is the
current state-of-the-art in contextual word representation.

9o T Do gr—29r-197 20 = (30 59)

Output iResidual block (k, d)

d=4 Dropout ~——————————#
H +

ReLU
+

!

Hidden WeightNorm
H t
Dilated Causal Conv
d=2 H 1 1x1 Conv
: Dropout (optional)
: +
Hidden ! GELY

+

Input

36D = (36D 27Dy

,,,,,

Zo Ti1 T2 Tr_2Z7-1%T

(@) (b)

Figure 2.2: Architecture of TCN. Image from [2]

B 25 Temporal Convolutional Network

Temporal Convolutional Network [2] introduces a new approach to sequence-to-
sequence modeling. Instead of using recurrent networks a simple convolutional
architecture is presented. The key characteristics of the TCN are causality of
convolutions, meaning that the direction of information is never from future
to the past and that the TCN can map a sequence of an arbitrary length to
a sequence of the same length.

TCN is also able to build long effective history sizes by dilated convolution
and very deep networks. The dilation convolution with dilation factors
d =1,2,4 and filter size k = 3 is shown in [2.2(a) This way An example of a
generic residual block that the TCN consists of is shown in Figure .

Chapter 3

Problem analysis

This chapter proposes the goal of this thesis. Initially, section describes
the datasets used. With the initial knowledge of the data provided the actual
aim of this work is introduced in section and section analyzes the
datasets and their features with respect to the goal stated earlier that are
fundamental for further experiments.

. 3.1 Dataset introduction

Altogether three datasets were provided by Milan Suchy (Trask solutions a.s.,
SKODA AUTO a.s.). The first and the largest one, which will be referred to
as the CAKL dataset, consists of a collection of logs generated by an internal
software system of the company. Data included in this dataset will be the
main source in later work. The other two datasets consist of logs generated
by Automatic Workload Repositoryﬂ which is a "automatic performance
statistics data warehouse" and is a feature of Oracle Databasé?l Each of the
AWR datasets provided contains different database statistics. Comparison of
sizes of all datasets is displayed in Table [3.1]

Query Size No. of log lines
CAKL 20.4 GB 44248555
AWR DB STATS 92.8 MB 693621
AWR QUERY STATS | 123.5 MB 211684

Table 3.1: Datasets comparison

Ihttps://www.oracle.com/technetwork/database/manageability/
[diag-pack-ow09-133950. pdf]|
1https ://www.oracle. com/database/l

https://www.oracle.com/technetwork/database/manageability/diag-pack-ow09-133950.pdf
https://www.oracle.com/technetwork/database/manageability/diag-pack-ow09-133950.pdf
https://www.oracle.com/database/

3. Problem analysis

B 3.1.1 CAKL dataset

The logs included in this dataset were collected within the span of 21 days
- from 29th November 2020 until 19th December 2020. The total number
of log lines provided is 44248555. Figure [3.1] shows the number of log lines
generated each day. For 2020-12-05 and 2020-12-19 the numbers are 6565
and 410 respectively. The periodicity of lower numbers can be attributed
to the fact that 2020-11-29 was a Sunday, thus higher numbers occur on
workdays.

4000000 A
3500000 A
3000000 A
2500000 A
2000000 A
1500000 A
1000000 A
500000 -
0_

OO d N M T N OMN~NWODDO A N MST 1N O™~ 0O

8922000090 o dadd i

N = AN AN AN ANANANANANNNNNNNNN NN N

i B B

O O O O O O O O O O O O O O O O O O o o o

AN N AN AN DN AN AN AN DN DN DN NN DN AN NN NN NN NN

O O O O O O O O O O O O O O O O O O o o o

AN AN AN AN AN ANANANANNNNNNNNNN N NN

Figure 3.1: Number of log lines per day

The format of each log line of this dataset is the same:

<timestamp> <host> <log message>

The timestamp part contains a timestamp in a human-readable format. The
host part contains one of two hosts SKDAMBSCAKLIN(O1 and SKDAMB-
SCAKLINO2. Finally the log messages is what differs significantly. The
only common part is the beginning - each log message starts with a time
information in a local timezone. The rest of the raw message can be divided
into two groups. The first group which includes the majority of log lines
starts with an unexplained number, the log origin - a file with a line number
and a path to class method of origin. These are each enclosed in square
brackets and followed by a custom log message:

[<number>] [] [<log origin>] <custom message>

The second group consists of much fewer lines supposedly called telegrams.
These do not contain any readable text and can be recognized by the majority
of characters being an asterisk (*). Examples of both groups are shown below:

8

3.1. Dataset introduction

11:32:26.210 [1][][StdClassDB.pas:3128, StdClassDB.TStdClassUniDac.
StartTransaction] Transaction started

11:32:25.819 000268 : MTUO03120405119564**kkkkkkkskkkkokokkg 147 dkkkkkk %k
okskokkokok ok kokok ok okskokkokok ok k ok k k25 3% 006000000 0% ks sk sk koskkok sk ok sk kk ok k B2k kB2 —
QUT-SCALE*****x***xB2SC03216237 *****x*k**B2-R30 1 kkk*kkkxkkk*kk*xB2-R301 ***x*
sokokokokokok ok kB2 OV kook ok skook sk ok sk sk ok sk ok sk sk ok sk sk ok sk sk ok sk ok sk sk sk sk sk sk ok ok sk sk ok sk ook sk sk sk sk ok sk ook sk skok ok ok ok
soksfokskokok sfok ok ok skokok ok skoskok ok sk sfokskoskokskokkskokkokokkokokok ok ok k100014093431 . 0001 . 0001 *%*
ok stk sk ok ok ook ok ok ok sk ook ook sk ok ok ook ok sk sk ok ok sk ok sk ok stk ok ok sk ok ok ok sk ok skokok ok skskok ook ok sk ok ok ok
ook stk sk ok ok sk ok skokok ook skokok ok sk skok kokok ok sk skok skokok stk kokok skokok sk kokok ok sk sfok skokok ok k ok ok ok kok)

000386000 * ****
>k 3k >k 3k ok K ok 3k >k 3k >k 3k sk 5k ok P D 38 6O sk sk 5k sk sk 3k sk 3k sk >k 3k >k 3k >k 3k >k 3k >k 3k >k 3k >k 3k >k >k >k >k >k >k 3k >k 3k >k 3k >k 3k >k 3k >k >k >k >k >k >k >k %k 5k

KokokkKK KKK KK KKKk Kk ok Kk xkkkx0001000000EE

The most important log lines for the purpose of this thesis are members of
the first group and contain SQL queries. The custom message of each such
log line is of the following format:

SQL-Dauer=<time> ms, SQL="<query>", Params=[<params>]

The SQL-Dauer value, which translates to "SQL duration", stores information
of how long the respective SQL process took in milliseconds. For simplicity,
any such value will be later referred to as SQL-Dauer value.

B 3.1.2 AWR datasets

This section introduces both AWR datasets at once. They both serve a
supporting purpose.

The first is the AWR DB STATS dataset, which consists of statistics of
the database metrics measured periodically. The format of each log line is as
follows:

<timestamp>, SNAP_ID=<snap_id>, END_TIME=<timestamp>, METRIC_NAME=<
name>, VALUE=<value>

The AWR QUERY STATS dataset contains information about certain SQL
queries that were run on the system. The format of each log line of this
dataset is shown below:

<timestamp>, SNAP_ID=<snap_id>, END_INTERVAL_TIME=<timestamp>,
SQL_ID_HASH=<hash>, MODULE=<module file>, EXECUTIONS_DELTA=<delta
>, BUFFER_GETS_DELTA=<delta>, ROWS_PROCESSED_DELTA=<delta>,
CPU_TIME DELTA_MS=<delta>, ELAPSED_TIME DELTA_MS=<delta>,
IOWAIT_DELTA_MS=<delta>, PHYSICAL_READ_REQUESTS_DELTA=<delta>,
PHYSICAL_READ_BYTES_DELTA_KB=<delta>,
PHYSICAL_WRITE_REQUESTS_DELTA=<delta>,
PHYSICAL_WRITE_BYTES_DELTA_KB=<delta>, SQLTEXT=<sql_query>

Examples of log lines of each dataset are listed below:

9

3. Problem analysis

2020-12-19 23:59:42.000, SNAP_ID="75762", END_TIME="2020-12-19
23:59:42.0", METRIC_NAME="Host CPU Usage Per Sec", VALUE
="524.429261789702"

2020-12-19 23:45:14.825, SNAP_ID="75761", END_INTERVAL_TIME
="2020-12-19 23:45:14.825", SQL_ID_HASH="450f0g08ssct3_1287658384
", MODULE="PMS_WMS_ALLOC.exe", EXECUTIONS_DELTA="22500",
BUFFER_GETS_DELTA="33660", ROWS_PROCESSED DELTA="22500",
CPU_TIME_DELTA_MS="317.562", ELAPSED TIME_DELTA MS="775.236",
IOWAIT_DELTA_MS="0", PHYSICAL_ READ_REQUESTS_DELTA="O0",
PHYSICAL_READ BYTES DELTA_KB="0", PHYSICAL WRITE_REQUESTS_DELTA
="0", PHYSICAL_WRITE_BYTES_DELTA_KB="0", SQLTEXT="SELECT COUNT (%)
FROM tblWMS_ARTICLES WHERE WART_IDENT = :AArticleIdent"

. 3.2 Problem statement

Previous section introduced the CAKL dataset and the log lines containing
SQL queries. The general objective of this work is a regression analysis that
would yield and hopefully be able to predict the individual SQL-Dauer values
based on previous log lines.

B 33 Exploratory analysis

In this section a thorough analysis of all three datasets with respect to the
SQL-Dauer value will be provided.

B 3.3.1 CAKL dataset

Initially, Figure [3.2] illustrates the daily distribution of SQL-Dauer value in
the whole dataset. Clearly the amount corresponds to the overall number of
log lines in the dataset. The total amount of all SQL-Dauer values in the
dataset is 3397650.

There are altogether 114 different queries present - BEGIN, SELECT,
UPDATE, INSERT and also DELETE statements are represented. Table [3.2
contains concrete figures of frequency of each statement category.

For simplicity only SELECT statements were chosen to be analyzed. All
log lines containing a particular query are considered identical even though
the parameters of the query differ. The most frequently occurred queries
over the whole dataset with respective amounts are shown in Figure |3.3| for
illustration.

10

3.3. Exploratory analysis

4000000 1 B Total lines
3500000 4 B sQL-Dauer
3000000 A
2500000 A
2000000 A
1500000 A
1000000 A
500000 A
0_
OO AN MTINDONDODNAOANMSZTIN ON DO
M QO QQQQQ O dddddddddd
HoH NN NNNNNNNNNNNNNNNNN
PR gRddddddgdgdddggdgdgad
O 0O 000000000000 OO0 OO O O O
N NN NNNNNNNNNNSNNNNNSS
OO0 0000000000000 O0O0 O OO0 O
NNANNNNNNNNNNNNNNNNNNN
Figure 3.2: Number of SQL-Dauer values per day
Query No. of queries No. of log lines
SELECT 57 2894683
UPDATE 46 317458
INSERT 185505
DELETE 2
BEGIN 2
Table 3.2: Number of log lines per query category
‘ Query Lines
a | select * from tblWMS_ARTICLES where WART_NUMBER = 520555
:refWART_NUMBER
b | SELECT * FROM TBLWMS_TASK_ITEMS WHERE WTIT_TASK = 496802
:TaskItem ORDER BY WTIT_TASK, WTIT_POS
c | SELECT * FROM TBLWMS_TASK_SPLITS WHERE WTSP_TASK = 496796
:TaskItem ORDER BY WTSP_TASK_POS, WTSP_POS_SEQ
d | SELECT lu.*, luty.*, artl.* FROM tblWMS_LU lu INNER 237292
JOIN tblWMS_LU_TYPES luty ON (lu.WLOU_TYPE_IDENT =
luty.WLTY_IDENT) LEFT JOIN tblWMS_ARTICLES artl ON
(1lu.WLOU_ARTL_IDENT = artl.WART_IDENT) WHERE WLOU_HU
= :AParentIdent ORDER BY WLOU_IDENT, WLOU_MASTER,
WLOU_GRID_POS
e | SELECT * FROM TBLWMS_TASKS WHERE WTAS_IDENT= 233153
:par_WTAS_IDENT

Table 3.3: Number of log lines per query
11

3. Problem analysis

The top three statements were selected to be further studied. They will be
later referred to as Query 1, Query 2 and Query & in the same order as in
the table. Obviously the second and third statements are very similar, this
fact is also supported by the respective numbers of lines.

Figure |3.3| shows the daily distribution of each of the three statements
throughout the dataset. Apparently, calling of Query 2 and Query 3 must
always occur simultaneously as their daily frequencies appear to be almost
identical. The distributions correspond to the overall distribution of the SQL
queries in the dataset, thus apart from the weekend days with general lack of
data, other parts of the dataset seem suitable for experiments.

50000 A

BN Query 1

W Query 2

40000 A I Query 3
30000 A
20000 A
10000 A
0_

O O 14 N M T 1N O™ 00O O A N MT D © N 0O

WM QQQQ QO Qo ddddddddd o

N = AN AN AN AN AN AN AN AN AN NN AN NN NN N NN

AP

O O O O O O O O O O 0O OO OO0 OO OO OO OO OoO o

AN AN AN AN AN AN AN AN AN AN NN NN AN NN NN NN N NN

O O O O O O O O O O O OO OO0 OO OO o o o

AN AN AN AN AN AN AN AN N AN AN AN AN AN NN NN NN (N

Figure 3.3: Distribution of Query 1, Query 2 and Query 3 over the dataset, the
y-axis represents the total number of occurrences of each query per day

Apart from the frequencies of each of these queries shown in Table it is
crucial to explore individual SQL-Dauer values. Not only the range of values
were inspected, but also the count of lines between each log line containing
the same SQL query. Each column in the histograms in Figure represents
one of the three queries. Histograms in the first row show the distribution
of the SQL-Dauer values over the dataset. The z-axis represents individual
SQL-Dauer values of the respective query and y-axis represents the total
number of occurrences of each value. The second row histograms illustrate the
distribution of the number of log lines between each SQL-Dauer occurrence,
again individual amounts of log lines in-between are on the z-axis, while the
total amount of the each number of lines is represented by the y-axis. Finally,
the last row represents a relationship between the two.

Another feature worth evaluation is a distribution in one day. The day of
30/11/20 was chosen as it is the first workday, thus containing a reasonable
amount of log lines. The distribution is shown in Figure As this date will

12

3.3. Exploratory analysis

drgsuorjera1 I1eY) pue 20USLINII0 AIonb [oes Uemla|-ur seul] So[JO IaquInu ‘anfes 4annJ-7HS§ JO $OUIIMII0 Jo IdqUNN '€ dlqel

Janeg-10s Janegds Janeg-os
0or 008 00z oot 0or 008 o0z oot gy ost 00E o5t 00z ost oot 05 0
- - P R A I R e 3 0 - I a4 [P R AL I T e 0
v ._..: T
i :
1t 00005 % . 00005 < 00002
g 5 i
3 2 00007 3
00000T & 000007 & - o
4 5 il &
z H H
K i i
3 5 H
= = aooos 7
0000ST 0000ST
00008
000002 000002
€ Aianp z fisnb 1 Aang
Janeg-105 1=neqos 12neq-106
00000 0000ST 00000t 00008 0 000002 D000ST 000001 00005 0 oonaa] [o000z 0
(L W01 T W01 I I 7 j W0t
0T 0T 0T
0T Eus 0T
0T 0T 0T
0T 0T 0T
0T 0T 0T
£ Mianh z fiand 1 fuanp
1aneg-108 1=nea1os 1aneq-106
[oge 0 ooy 00e 002 00T 0 00 05t 00E 05t uoz 05t 0ot 05 0
i T T O Wm0 _7_ 1T .
0T 0T 0T
Fus Eus 01
0T 0T 0T
0T ST +0T
0T
0T 0T B
£ Kianh z fand 1 fiang

13

3. Problem analysis

have been already analyzed, this time span will be later used in experiments
as a 24 hour sample when needed.

mm Query 1
mmm Query 2
1750 . Query 3

750

500

250

e s Mmoo w o e m e @ 2 4 4 70 2 1 838 5 3 3] & A A
DateTime

Figure 3.4: Number of SQL-Dauer values of Query 1, Query 2, Query 3 per day

The last feature studied was unfortunately forgotten in the initial work
on this section, which might have implications on the course of this thesis.
The feature is the distribution of the actual value of the SQL-Dauer variable.
Histograms were created for each of the SELECT and UPDATE query
containing more than 1000 such values. To capture as much information
possible, two histograms were generated for each query. Examples in Figure
[3.5 were chosen to illustrate certain patterns. Each row consists of two
histograms generated for one specific query. While the first column contains
histograms generated with the whole dataset, the second one illustrates a
shorter portion of the data - only one day - again of 30/11/20.

The first query represents those where the SQL-Dauer values form at least
two groups, in this case the most frequent SQL process duration values are
15ms and 30ms. This leads to a thought that rather than predicting a concrete
SQL-Dauer value, it might be easier to predict a category which the value
falls in.

The second row demonstrates a category where a portion of the data is
missing. The query in the second row could be used for experiments only
when a shorter dataset is considered such as the day of 30/11/20. In both this
and the third row, the SQL-Dauer values form two groups, one containing
almost exclusively a value of 15 milliseconds (with several 14ms and 16ms)
and the other one consisting of different other values - anomalies. Queries
in this category would therefore be suitable for classification experiments, in
this case anomaly detection.

This criterion is not met by the Query 2 and Query 3, these form at
least three such categories; therefore, different queries had to be selected.
Apart from this feature, a number of SQL-Dauer values was also taken into

14

3.3. Exploratory analysis

Whole dataset One day
350 I SsQL-Dauer S50 mm SQL-Dauer
300 300
250 250
é 0 é 200
H 150
100
50
| |
0 DateTime] 0 DateTime
1. Query A
mmm SQL-Dauer mmm SQL-Dauer
300 300
250 250
8200 8200
% 150 g 150
€ €
100 100
50 ‘ H 50
- I o s
o 0 ‘H\HII IH\HHUII\I\I\I\UIM\H|II\HII\I\I\IIHHII\I\I\ \I‘H‘H i IIHHH\I\I\II\‘I\I\I\IIHHII\I\‘\IIH (T o \IIHIJ[I\I\I\I\HI‘HU\HI\\\II\I\I\I[\‘IJ\I\I\\\I\HII\IH\II\\HII\I\I‘IIHIJH\!\I\IH\II\I\I‘IIHHI \I\I\IIH\I\HIJ[HJII\\\I_IIHHI ‘I\I\IIH'I\I\ il \h\ \\II\HIJIIH\I\ \hIJHHH\I\I\hHIII\HIJ\IH\I\I\I\I i
DateTime DateTime
2. Query B
mmm SQL-Dauer mm SQL-Dauer
300 300
250 250
200 £ 200
% 150 é 150
£ E
100 100
50 50
0 T | 0 | il 111l
DateTime DateTime
3. Query C
mm SQL-Dauer mmm SQL-Dauer
3500 3500
3000 3000
2500 2500
§ 2000 § 2000
E 1500 E 1500
1000 1000
500 500
0 DateTime 0 DateTime
4. Query D

Figure 3.5: Distribution of SQL-Dauer values in time of four chosen queries - throughout
the whole dataset in the left column and throughout the day of 30/11/20 in the right
column; the z-axis represents a time of the occurrences and the y-axis the actual SQL-
Dauer values

15

3. Problem analysis

account. Thus Query I, which is the same as the one used previously, hence
the identical label, remains. Two other queries presented in Figure |3.5 with
their respective number of log lines, which will be referred to as Query 4 and

Query 5, were

selected.

’ ‘ Query ‘ Lines ‘
1 | select * from tblWMS_ARTICLES where WART_NUMBER 520555
= :refWART_NUMBER
4 | SELECT * FROM tblWMS_TASK_EXT WHERE WTAE_TASK = 204965
:ATaskIdent
5 | SELECT * FROM TBLWMS_TASK_SPLITS WHERE 197624
WTSP_IDENT= :par_WTSP_IDENT

Table 3.5: Queries selected for anomaly detection

Table |3.6| illustrates number of anomalies of each query with a percentage
in the data of the day 30/11/20 and certain time spans, all beginning at
midnight at ending after the number of hours in the first column

|

‘ Time interval ‘ Log lines | Anomalies | Percentage

. 24 hrs 30718 1751 5,7%
> 12 hrs 14082 698 4,96%
g 4 hrs 4424 162 3,7%

1 hr 1348 25 1,9%
- 24 hrs 17785 1298 7,3%
> 12 hrs 8153 466 5,7%
5‘:’; 4 hrs 2079 126 6,0%

1 hr 840 35 4,2%
- 24 hrs 15369 1025 6,7%
> 12 hrs 7314 399 5,5%
= 4 hrs 2844 81 2,8%
&

1 hr 836 8 0,96%

Table 3.6: Number and percentage of anomalies of each query per time spans

of 30/12/20; all time spans begin at midnight

The SQL-Dauer values in the last row of Figure |3.5| are more randomly
distributed than in the previous cases. Such queries would be more appropriate
for prediction of specific SQL-Dauer values. Unfortunately none of the three
queries selected at the beginning of this chapter belong to this group. Actually,
there are only two queries that do, altogether with 3084 and 3358 SQL-Dauer
values over the whole dataset - these will be later referred to as Query 6 and

Query 7.

16

3.3. Exploratory analysis

B 3.3.2 AWR datasets

Initially, the AWR DB STATS dataset includes periodical statistics of the
database. There are 23 unique log lines generated every minute over the
entire dataset.

The second AWR QUERY STATS dataset consists of statistics of certain
queries called throughout the whole time interval. As there are only 211684
values compared to 520555 of the Query I alone, only a small segment of
queries is actually included in this dataset. In fact, for example Query I is
not present at all. Figure shows the distribution of both AWR datasets.
It is clear that in contrast to the dynamically generated data in the CAKL
dataset, the AWR statistical data frequency remains almost constant each
day. Indeed the minimal frequency of the query statistics is 6772 log lines on
12th December, while the maximum is 9331 on 7th December.

mmm QUERY STATS
mmm DB STATS
30000

25000

20000

15000 A

10000

5000 4

2020-11-29
2020-11-30
2020-12-01
2020-12-02
2020-12-03
2020-12-04
2020-12-05
2020-12-06
2020-12-07
2020-12-08
3 2020-12-09
2020-12-10
2020-12-11
2020-12-12
2020-12-13
2020-12-14
2020-12-15
2020-12-16
2020-12-17
2020-12-18
2020-12-19

o

1

Figure 3.6: Distribution of AWR datasets

For some experiments all three datasets will be combined after sorting the
timestamps of log lines.

17

18

Chapter 4

Methodology

The goal of this chapter is to describe the approaches and architectures used
throughout the work in order to reach the goal stated in section which a
regression analysis for prediction of SQL-Dauer values of individual queries
based on previous log lines. Initially the log lines need to be transformed
into a numerical representation suitable for training. For this task a BERT
architecture will be used as it is currently the state of the art language model
for Natural Language Processing tasks.

B a1 Log preprocessing

A general approach used in most works focusing on log analysis is a framework
of log collection, log parsing and feature extraction introduced in [12].

As mentioned in section [3.1], the datasets for this work were provided, thus
the log collection is done. There are two approaches to log parsing in this
work. In the first one each log line in the CAKL dataset is split into three
parts - the timestamp, the host and the raw log message and only the raw log
message part is then transformed into embeddings. In the second approach
only timestamps are extracted from the log lines from both CAKL and AWR
datasets, but they serve only for sorting and combination of the datasets.

Considering feature extractions as a process of conversion of text to a set
of features, than it is the contextual embeddings creation in this work.

B 1.2 Contextual embeddings

B 4.2.1 Tokenization

Before being fed into a model, a raw text must be first tokenized, i.e. split
into tokens, which are groups of characters that form the original text. Each
token can be a single character, a whole word or a subword - e.g. a root

19

4. Methodology

or a prefix of a word. A new vocabulary of a tokenizer can be build from
scratch with a custom dataset, which is especially useful when a pre-trained
model of the dataset language does not yet exist. Even though the language
of the datasets provided for the experiments could not be considered proper
English, building of a new tokenizer is out the scope of this thesis. Thus
already existing tokenizers with pre-trained models will be used.

There are three different tokenizers used in the Transformers!|library that
will be introduced in section [5.1| - Byte-Pair Encoding [23], WordPiece [22],
and SentencePiece [14]. Each of them is used for different models. Related
to this work are the WordPiece tokenizer for BERT model [6], and also its
distilled version DistilBERT model [21], and the Byte-Pair Encoding tokenizer
used for RoBERTa [15].

Figure 4.1] demonstrates a shortened example of a tokenized log line with
the DistilBERT model which uses WordPiece. The total number of tokens
generated from this particular line is 112.

11:32:20.663 [2][]1[StdClassDB.pas:0902,3tdClassDB.TStdClassCommonDAC.
TimeLog] SQL-Dauer=000030 ms, SQL="SELECT * FROM TBLWMS_TASK_SPLITS
WHERE WTSP_TASK = :TaskItem ORDER BY WTSP_TASK_POS, WTSP_POS_SEQ ",
Params=["I100014094666"]

[’11’,’:’,’32,,’:’,’20’,’.’,’66’,’##3’,’[’,’2’,,]’,’[’,,]’,’[’,’St’,
J##dc’ , *##lass’ ,##db’,’ .’ ,’pas’,’ 1,209’ ##0’ ,H##2°,°,’ ,’st’, 'H##dc
» o##tlass’, ##db’ L0 .0, 0ts?, ##t?, C##dc’ , C##tlass’ , ##com’ , ’ ##mond’ , ’ #
#ac’,’.’,’time’, ##log’,’]’,’sql’,’-’,’da’, ##uer’,’=’,’000", ##0°’,
’##30°,’ms’,’,’,’sql’,’=",’"’,’select’,’*x’,’from’ ,’tb’, "##1’ , ##w’,
‘##ms’, ...]

Figure 4.1: Tokenization example

Apparently, words such as time and select are present in the tokenizer’s
vocabulary, but the word dauer is not, therefore it is split into a word da
from the vocabulary and a token ##uer, where the two ## denote that it is a
suffix and should be attached to the previous token.

B 4.2.2 Embeddings creation

After tokenization of log lines, the next step is the contextual embeddings
creation. The model chosen for this specific task is called the DistilBERT.
While the general aspects stay the same as the architecture of BERT, it is a
smaller, faster, cheaper and lighter - or distilled - version. To achieve this,
the token-type embeddings and the pooler were removed, and the number of
layers was reduced by a factor of 2. Also, most of the operations used in the
Transformer architecture (linear layer and layer normalisation) were highly
optimized in modern linear algebra frameworks. As a result, the DistilBERT

"https://huggingface.co/transformers/index.html

20

https://huggingface.co/transformers/index.html

4.3. Regression analysis

has 40% fewer parameters than the general bert-base-uncased?| model, runs
60% faster while preserving over 95% of BERT’s performances as measured on
the GLUE language understanding benchmark. [2I] This model is particularly
beneficial when computational resources are shared among researchers and it
is desired to reduce the time spent on training.

Again the model for embeddings creation can be trained from scratch,
but for simplicity a pre-trained model will be used. Regarding that, further
enhancement to the BERT architecture was adopted - the Sentence-BERT?
(SBERT). It is a modification of BERT that improves its ability to derive
semantically meaningful sentence embeddings by adding a pooling operation
to the output of BERT, which enables derivation of fixed-sized embeddings.
Semantically meaningful is understood as the fact that semantically similar
sentences are close in vector space. To achieve that the BERT model must
compare each pair of sentences, which becomes computationally too complex.
By using a twin network architecture, which means that two identical networks
are used for the two sentences in the pair and the outputs are then compared
by a specific objective function.[20] The default MEAN pooling strategy was
applied in this case, the output of which are the desired embeddings.

B a3 Regression analysis

There are three approaches chosen for regression analysis. In section |4.3.1
the Temporal Convolutional Network is described. It is the only model that
will be fed with the contextual embeddings created as introduced in [4.2.2]
The second approach is a BERT model called Longformer [3], which will be
used both for embeddings creation and for regression analysis. In the last
approach neither embeddings creation nor regression analysis is based on any
BERT architecture.

B 4.3.1 Temporal Convolutional Network

A sequence of log lines previous to the log line containing an SQL query is
used to predict the value individual SQL-Dauer value. Each sequence of
lines forms a window that is then fed into a neural network. Windows can
partially overlap as there is no minimal distance between log lines containing
identical queries. Temporal Convolutional Network (TCN) architecture is
chosen for this task as it is proven to outperform architectures such as LSTM
on a variery of tasks and datasets [2]. The windows fed into the TCN will
consist of contextual embeddings of individual log lines.

Zhttps://huggingface.co/bert-base-uncased
3https://sbert.net/index.html

21

https://huggingface.co/bert-base-uncased
https://sbert.net/index.html

4. Methodology

SQL-Dauer

Raw Tokenized Windaws of value
log lines log lines embeddings prediction

Tokenization Embeddings creation

Labels

Figure 4.2: Data flow

B 4.3.2 Longformer

The BERT models are trained for tasks such as sentence classification, trans-
lation or question answering. The input of all of these tasks is usually a
few sentences long and for one input, there is also one output - a class of a
sentence or an answer to a question. Even in tasks such as sentence similarity
the two strings are concatenated with tokens in-between mentioned in |2,

In this case, all log lines in a selected window act as a single input, therefore
they are chained into one string and fed into the network. As mentioned in
Section 5.1}, the maximum length of the input sequence the DistilBERT model
can handle is 512. However, as Figure |4.1| demonstrated, such length is not
sufficient even for a window of 10 log lines. To overcome such obstacle it was
necessary to find a different architecture - the Longformer. Longformer is also
a BERT architecture with the ability to manage long input sequences. The
original transformer-based architectures are not suitable for such tasks as the
attention mechanism memory consumption scales quadratically with the input
length. The Longformer introduces an improvement in the self-attention
operation the memory consumption of which is linear.[3]

The most significant difference between Longformer and the model used
in Section [5.1]is that the Longformer is derived from RoBERTa model and
not the DistilBERT. RoBERTa or the robustly optimized BERT, the size of
which is the same as the original BERT, but it is trained on 10 times more
data and outperforms the original BERT.[15]

The Longformer model will thus be used for both embeddings creation and
regression analysis.

B 43.3 fastText

Creating embeddings with fastText unsupervised model is chosen as a base-
line approach to BERT architecture since it is a commonly used tool in
log analysis and is verified to yield interesting results [24]. Unlike BERT
tokenizers introduced in section 4.2.1} fastText splits text into n-grams, where
n represents number of characters The regression analysis model will be based
on the LSTM recurrent neural network architecture.

22

4.4. Anomaly detection

B 4.3.4 Loss function

The most common regression loss function will used all regression models in
this work, its formula is shown in equation 4.1, where n represents a size of a
test set, y; is the observed/actual value and g; is the predicted value.

1 & .
MSE = — > (i —) (4.1)
i=1

. 4.4 Anomaly detection

B 4.4.1 Motivation

Despite the overall aim of this thesis was a regression analysis, it is demon-
strated in section [6, that it did not yield satisfactory outcomes. Therefore it
was decided to scale down in terms of difficulty and instead of attempting to
predict a certain real value, only anomalies will be detected instead.

B 4.4.2 Data preparation

The embeddings - or the input - created for value prediction can be reused in
this approach, however the output values need to be updated. As already
described in section |3.3.1] there are queries where the value of SQL-Dauer
variable visually form two categories - normal and anomalous. The normal
category contains a value of 15ms, while the rest is considered anomalous.
Since the visual separation of categories is not precise enough, a further
analysis of the values is done to properly distinguish them. Values 14 and 16
will also be considered normal because their frequency is too high to label
them anomalous. Several events occurred throughout the time span of the
whole dataset, each lasting from a few minutes to a couple of hours, when
the SQL-Dauer values gradually decrease below 15 ms, at most up to 6ms,
and then return back to the normal values. Such events will not be regarded
anomalous. To simplify the experiments all windows with the output value
less than 14 are skipped.

B 4.4.3 Loss function

For anomaly detection, the Temporal Convolutional Network architecture
described in section [4.3.1| with the only difference, that the loss function used
will be the binary cross entropy function which is the default loss function
for binary classification. Its formula is illustrated in equation |4.2, where p
is a target distribution and ¢ is an approximation of the target distribution,

23

4. Methodology

thus ¢_ i is the prediction of one output value and p_ i is the actual value.

BCE(p,q) = —_ qilogp; (4.2)

24

Chapter 5

Implementation

In this chapter a detailed description of implementation will be provided.
Initially the generation of contextual embeddings itself will be described, while
Section and Section focus on different approaches to evaluation of
the embeddings.

B 51 Embeddings

This section focuses on the implementation of the contextual embeddings
creation. As explained in Section 4, the Transformer-based technique called
BERT was applied. In all steps of the process the T mnsformemﬂ by Hugging
Face and the native PyTorch? libraries were used.

Due to a significant memory consumption of the dataset, the data is first
loaded into CPU and later processed by individual batches on GPU. As the
resulting embeddings will be analyzed and evaluated on a regression task
with the objective of predicting the SQL-Dauer values, a window of 100 log
lines preceding each value are included. For each query, those lines of which
the number of log lines between respective SQL-Dauer value and the previous
one seems anomalously too high are skipped. Each batch consists of 10 of
such windows.

The log lines in each batch are then tokenized, i.e. divided into string
tokens. To obtain the tokens, there is a specific tokenizer class designated
for this task in the library. For BERT models the BertTokenizer class was
implemented. This class inherits from a more abstract PreTrained Tokenizer.
According to the official documentationEL the PreTrained Tokenizer handles
raw input data tokenization by splitting log lines into token strings, converting
token strings to ids and back, and encoding/decoding (i.e., tokenizing and
converting to integers). The resulting tokens are then trained by a BERT

Thttps://huggingface.co/transformers/index.html

https://pytorch.org
https://huggingface.co/transformers/main_classes/tokenizer.html#
[transformers.PreTrainedTokenizer

25

https://huggingface.co/transformers/index.html
https://pytorch.org
https://huggingface.co/transformers/main_classes/tokenizer.html#transformers.PreTrainedTokenizer
https://huggingface.co/transformers/main_classes/tokenizer.html#transformers.PreTrainedTokenizer

5. Implementation

model, and a pooling operation is applied on the output that yields the
desired fixed-sized embeddings.

Because pre-trained models are used with both tokenizers and embeddings
creation, the AutoModel and AutoTokenizer classes were used instead, since
they are able to reliably select the desired BERT architecture according to
the pre-trained model used.

As for the tokenizer, the DistilBERT TokenizerFuast class was selected. The
Fast version of every Tokenizer class within the library is a Python wrapper
of the tokenizers library implemented in Rust, which as the title suggests
reduces the computational time even further. Since the input sequence length
of the DistilBERT model can not handle sequences longer than 512 tokens,
each log line is embedded separately. It was decided to use each raw log
message as a whole so that it contains the maximum information possible.
Any line longer than the maximum size is automatically truncated by the
algorithm during the preprocessing phase.

As the SBERT is built on top of BERT, it is possible to create the sentence
embeddings using only the libraries mentioned earlier. The SBERT part is
done by loading the appropriate pre-trained model - the distilbert-base-nli-
stsb-mean-tokens® model provided in the sentence-transformers framework.

All embeddings in the PyTorch tensor format are then concatenated and
saved to a file to be later analyzed.

B 52 value prediction

Bl 5.2.1 Temporal Convolution Network

Firstly the data needs to be loaded into memory. The GPU, on which the
training is run, is provided with significantly limited resources, thus the whole
data is loaded into CPU first, and later during the training it is processed
by individual batches in GPU. For each SQL-Dauer value a window of n
embedded log lines prior is selected - the exact number can be selected as a
parameter. All data is stored as PyTorch 3-D tensors®. As it was described
in the previous section, the dimension of one embedded log line is 768 and the
shape of the respective tensor is then [1,1,768]. Considering the window
size used is 20 and so is the sequence length, the final input tensor shape is
[1,20,768].

The next step is to standardize both the inputs and predicted values with
the standard score method shown in Figure 5.1

z = , (5.1)

4https://huggingface.co/sentence-transformers/distilbert-base-nli-stsb-mean-tokens
https://pytorch.org/docs/stable/tensors.html

26

https://huggingface.co/sentence-transformers/distilbert-base-nli-stsb-mean-tokens
https://pytorch.org/docs/stable/tensors.html

5.2. Value prediction

where x is the value of a tensor element, u is the mean of the data and
o represents the standard deviation of the data. The standardization is
computed for each data feature individually. The dataset is then split into
training and validation part. Each window is then randomly placed in either
group according to the selected ratio. The data preparation is thus finished.

Layer (type) Output Shape Param #
Convid-1 [1, 768, 21] 1,180,416
Chomp1d-2 [1, 768, 20] 0

ReLU-3 [1, 768, 20] 0

Convid-4 [1, 768, 21] 1,180,416
Chomp1d-5 [1, 768, 20] 0

ReLU-6 [1, 768, 20] 0
TemporalBlock-7 [1, 768, 20] 0
Conv1d-8 [1, 768, 22] 1,180,416
Chomp1d-9 [1, 768, 20] 0
ReLU-10 [1, 768, 20] 0
Convid-11 [1, 768, 22] 1,180,416
Chomp1d-12 [1, 768, 20] 0
ReLU-13 [1, 768, 20] 0
TemporalBlock-14 [1, 768, 20] 0
TemporalConvNet-15 [1, 768, 20] 0
Linear-16 [1, 1] 769
TCNModel-17 [1, 1] 0

Figure 5.1: TCN tensor shape

An already existing implementation of TCN architecture by locuslat® was
used with several adjustments. The network consists of two layers. Before
entering the first layer of TCN network, the tensor axes are permuted accord-
ing to (0,2,1)-ordering, hence the tensor shape is transposed to [1,768,20].
Figure [5.1] illustrates the output tensor shapes after each step of the algo-
rithm. Each layer of the TCN network (called TemporalBlock in the figure)
consists of 3 steps, repeated twice. Initially a 1D convolution is applied to
each tensor, which pads the tensor from both sides. To ensure causality, the
Chomp1d function removes relevant elements from the right. Finally, the
ReL U activation function is used.

Since one of the TCN principles is mapping a sequence of an arbitrary
length to a sequence of the same length, a linear layer was added as the
output layer to obtain a classification model. An overview of the model is
illustrated in Figure |5.2l

Several parameters needed to be set for training. The size of the kernel

Shttps://github.com/locuslab/TCN

27

https://github.com/locuslab/TCN

5. Implementation

TCNModel (
(tcn) : TemporalConvNet (
(network) : Sequential(
(0) : TemporalBlock(
(net): Sequential(
(0): Conv1d(768, 768, kernel size=(2,), stride=(1,),
padding=(1,))
(1): Chomp1d ()
(2): ReLUQ)
(3): Conv1d(768, 768, kernel_size=(2,), stride=(1,),
padding=(1,))
(4): Chomp1d()
(5): ReLUQ)
)
)
(1) : TemporalBlock(
(net): Sequential(
(0): Conv1d(768, 768, kernel_size=(2,), stride=(1,),
padding=(2,), dilation=(2,))
(1): Chomp1d ()
(2): ReLUQ)
(3): Conv1d(768, 768, kernel size=(2,), stride=(1,),
padding=(2,), dilation=(2,))
(4): Chomp1d()
(5): ReLUQ)
)
)
)
)
(linear): Linear(in_features=768, out_features=1, bias=True)

)

Figure 5.2: Summary of TCN structure

was set to 2, while dropout rate was 0.2.

B 5.2.2 Longformer

In this approach the contextual embeddings creation and SQL-Dauer value
prediction is implemented as one process. Similarly to the Section [5.1] the
Transformers by Hugging Face and the native PyTorch libraries were used.

First of all the data is loaded into memory, however only certain number of
log lines prior to each SQL-Dauer value are joined in a string and stored in an
array. The corresponding target values - or labels - are saved in another. These
labels are then standardized the same way as in the Temporal Convolutional
Network demonstrated in equation [5.1. The resulting arrays are randomly
divided into a training set and a validation set.

28

5.2. Value prediction

As the Hugging Face documentation of Longformen’ states the Longformer
model is still a work in progress, nevertheless it is the easiest BERT approach
for long sequences of the few available.

To simplify the process, a pre-trained Longformer model was used - the
allenai/longformer-base-4096°. According to its documentation site it is "a
BERT-like model started from the RoBERTa checkpoint and pre-trained
for MLM on long documents. It supports sequences of length up to 4,096
(tokens)". Usage of Longformer is the same as of other models included
in the Transformers library by Hugging Face. Similarly for tokenization
a LongformerTokenizerFast®| is used, which is again a faster implementa-
tion of the original LongformerTokenizer class. The training and validation
part are tokenized separately and the output is then fed into a Trainen'
alongside training parameters and a model. Again the pre-trained model
allenai/longformer-base-4096 is chosen and handled by a LongformerForSe-
quenceClassification class. Another parameter set is the number of label
which in this case is 1, since the target value is an integer. The last step is
then fine-tuning the model.

The Transformers library itself deals with CPU/GPU usage, therefore
it is not necessary to manually manage data loading and training memory
consumption differences.

B 5.2.3 FastText

This approach differs from the previous ones in terms of both embeddings
creation and value prediction. The reason it was chosen is that no Transformer-
based architecture is used.

To create the embeddings the fastTex{'! library and its text representation
feature is used instead. An existing implementation'? of library function
wrappers as well as a Model and a Trainer classes used later for value
prediction.

Initially a new model is trained in unsupervised mode using a log dataset
as an input. Windows of log lines preceding a SQL-Dauer value of a specific
query are then fed into the model to create embeddings. The embeddings are
concatenated with time delta values, which is a time difference between each
log line and the one prior. This feature adds additional information to the
embeddings about the relationship between the logged processes. Also labels
are saved into a separate file. After the preprocessing part the next step is
the training itself.

"https://huggingface.co/transformers/model_doc/longformer.html
Shttps://huggingface.co/allenai/longformer-base-4096
%https://huggingface.co/transformers/model_doc/longformer.html#
transformers.LongformerTokenizerFast
https://huggingface.co/transformers/main_classes/trainer.html
Uhttps://fasttext.cc/
%https://github.com/LogAnalysisTeam/ml4logs/tree/master/src/ml4logs

29

https://huggingface.co/transformers/model_doc/longformer.html
https://huggingface.co/allenai/longformer-base-4096
https://huggingface.co/transformers/model_doc/longformer.html#transformers.LongformerTokenizerFast
https://huggingface.co/transformers/model_doc/longformer.html#transformers.LongformerTokenizerFast
https://huggingface.co/transformers/main_classes/trainer.html
https://fasttext.cc/
https://github.com/LogAnalysisTeam/ml4logs/tree/master/src/ml4logs

5. Implementation

The Seq2SeqModel and Seq2Se2ModelTrainer were used. Initially a multi-
layer long short-term memory (LSTM) regular neural network is applied
to the input. It is followed by a linear transformation and a leaky ReLU
activation function. Then a combination of dense layer and again a leaky
ReLLU activation function is applied for each hidden layer. Finally, another
linear transformation is added as the output layer. Mean squared error is
used as the model estimator.

B 53 Anomaly detection

The same Transformer-based approach - TCN model was used for anomaly
detection as for the regression analysis with the difference in loss function.
Since the anomaly detection is actually a binary classification, the binary
cross-entropy loss function was chosen. Items in the anomaly category will
be represented by number 1, while the normal windows are set to 0.

Unfortunately, during the late stages of experiments, the linear activation
function of the output layer was changed to sigmoid function which is much
more suitable for binary classification tasks.

30

Chapter 6

Experiments and evaluation

In this section the outcomes of experiments will be thoroughly described.
Initially, section [6.1] evaluates the contextual embeddings creation. Section
describes different approaches to value prediction and their results and
finally section [6.3] evaluates the problem of anomaly detection.

The experiments were run on the computational cluster of the Research
Center for Informatics!

B 6.1 Contextual embeddings

A set of 100 consecutive log lines was chosen to help visually illustrate the
embeddings created. All log messages are mentioned exactly as in the dataset
with possible typos. As it was analyzed in section the formats of the
custom log messages cannot be easily divided into a small number of categories.
However there are certain patterns that can be observed. In this sample,
fourteen different categories were distinguished. For later reference, five of
them consist of log lines identical to the category name. Those are:

1. Partially loaded task will load all data now. this is SLOW!

2. Bearbeite Telegramm mit Satzart "0002" von SourceProcess
"PMS_COM_MQ"

Added data to list at position [0000]
No destinationsolver-bo configured, using default

Transaction started

Another four contain a placeholder * for specific parameters, that can be
different for each log line:

6. Next subsystem for moving with split <*> from <*> to <*> is <*>

7. Booking finished. Splitstate : <*>. LUState : <*>

"http://rci.cvut.cz/

31

6. Experiments and evaluation

8. Found reservations to resolve for HU <x*>

9. Received BO <*> for Destination <*>

The IPC DB category consists of 10 identical lines with the content of
IPC_DB->Data successful inserted and one line IPC_DB->Record update
successfull, due to the visual similarity it was assigned the same category.

The Telegram, and SQL-Dauer categories have already been described in
section [3.1L

The last two categories are rather mutually interlinked and the separation
is not unambiguous. One of them is the category Processing, which consists
of several slightly different log lines:

B Start processing telegram TTO2 for current number 297693
B Start processing Telegram : 0002
B End processing Telegram : 0002

B Finished processing telegram <>

Nevertheless each of them include the words processing and telegram.

The last category is simply referred to as Other. It contains the rest of log
lines, that do not match any of the previous categories. There is a minimal
overlap with the Processing category in log lines such as Start processing
<PrjClassWmsHostHandlerLogis.
TPrjClassWmsHostHandlerLogis.SendHostRequestTelegram>, but the lack
of the word telegram and the length of the parameter is assumed to be long
enough for the embedding to differ from the Processing category.

A t-SNE technique for dimensional reduction was used to visualize the
computed embeddings and to examine if the same categories can be dis-
tinguished. Each graph in Figure [6.1] contains a t-SNE visualization with
different perplexity. Each iteration was run in 1000 steps.

It is evident from a visual evaluation, that members of each category
(apart from the Other one) create a cluster. Members of the Other category
are intentionally numbered to analyze their position as well. For example
numbers 18 and 15 can be found close to each other in each graph, and
indeed the log lines are end proccessing article add/edit 5E3809514
and proccessing article add/edit 5E3809514. Similarly, numbers 5, 7
correspond to a template End processing <x> with result <*> and 11
to End processing <*>.

Apparently, the embeddings created by the BERT technique from each log
line are distinguishable according to the words they contain.

32

6.1. Contextual embeddings

Ayixordiod juarefIp Yirm uorezIfensia NS-1 :1°9 o|qel

Og paAIRdRy e weubaa
PYlo e <4> S| <x> 0} <x> WO <4> J|dS ym Buinow J0) WDISASANS IXaN @ +OW WO SINd. SS92044221N0S UOA ,Z000, Hezies Jw wwelba|a] ai19qieag
<4> NH 104 DA|0SDJ 0} SUOIIRAIDSDI puno4 [0000] uonisod je 3si| 03 e3ep PAPPY @ Buissad0.d
<> ! 9JRISNT "<x> : D}eISY|dS ‘paysiuy bupjoog e aa odl ® iMO1S S! SIU3 "MOU e3ep ||e Peo| ||IM Yse) papeo) Ajjleiied @
jinejap buisn ‘painbljuod 0g-ISA|OSUOIIRUIISSP ON @ paye3s uonoesuel] o Joneqg-10s e
14 4 0 - 9 4 0 - v 9- 8-
e L] e® 8—
LT
°® 9—
4.4 < . & ot " ® L "
o® » ® oo ® %
) ' -
] 61 [44 [o
-4 v® ® . .
» ¢ ae -
o ® &] . %2, o oz ¢ .
* *
P ce
¢ . v 0
. 2 o o °] 5.4
s
. » o o v .
44 : -
* 14
L]
€T
05 Axa|diad 0€ Auxa|diad
00z 00T 0 00T— 00Z— 00€— 009 oot 00z 0 00z—- 00v—
° ° L] F00ST—
o« o °
¢ 00z
F000T—
€
L]
L F00S—
. L o o . —
° L] L] C L] .. L)
M I o & eete, to
L] @ °
e * e o ° ° 0
® r e o o ° o F 005
e ° o ¢ P e o
L] L]
e o ¢ e v t ooot
L] L]
L 00T
o o
F00ST
Y L]
o % 00z t 0002

0z Ayixajdiad

G Kyxajdiad

33

6. Experiments and evaluation

B 6.2 Vvalue prediction

B 6.2.1 Temporal Convolutional Network

The first approach of SQL-Dauer value prediction was the TCN model. An
already implemented model as described in Section |5.2.1] was used with
several minor adjustments made throughout the experiments. Only the
CAKL dataset containing the SQL-Dauer values was used with this model.

Several experiments were performed with the model. The parameters
were an SQL query, a time span limiting the total number of SQL-Dauer
values to be predicted by the time of generation of respective log lines and a
window size i.e. the number of log lines prior to each predicted value. The
train/validation split ratio used was 9:1. Training and validation losses were
measured in each of these experiments. Since these metrics showed that the
model was not learning, the testing part was skipped.

The first SQL query used was the Query 1. The first several experiments
were performed with a batch size of 64, learning rate 10~2 and a window size
of 100 log lines. Due to RAM limits, the dataset was truncated to 2/3 of
the original size. The results were not satisfactory as after 25 epochs the
training loss decreased only insignificantly, its value remained above 1 and
the validation loss oscillated above 1 as well. The minima for training and
validation losses were 1.115 and 1.011 respectively, with the latter being a
value of the very first epoch. It implies that the model was not able to train
on the dataset at all.

Changes were made first to the learning rate - it was decreased to 1073,
the batch size was reduced initially to 10 and later to 1 log line, so that the
potential loss reduction was apparent faster and the window size was reduced
to 20. The number of epochs was increased to 50. Only certain time spans
were used, all within one day - 30/11/20. This date was selected because
the analysis of this part of the dataset it was subjected to in section |3.3.1
showed that there is enough data and the SQL-Dauer values are sufficiently
distributed. All time spans used start at midnight and end after respective
amount of hours.

This time the experiments were run for Query 1, Query 2 and Query 3.
Windows of log lines prior to each SQL-Dauer value of each query contain
different log lines; therefore, the chance of successful training is bigger and
the results can also provide more information crucial for further development.
For each query individually, a number of log lines between each occurrence of
the query was measured and those values having this number greater than
20000 were skipped. The measured training and validation losses of individual
experiments are shown in Table [6.2.

Even though the minimal train loss values are rather low, it is clear from the
validation loss minima and graphs in Figure|6.1/- only showing Query I results
- that the model is over-fitting on all time spans used. The graphs of Query

34

6.2. Value prediction

Start End No of values Min train loss Min val loss
00:00:00 00:59:59 1350 0.164 0.873
—00:00:00 01:59:59 2585 0.145 0.7
QE 00:00:00 03:59:59 4424 0.155 0.67
C 00:00:00 11:59:59 14090 0.204 0.831
00:00:00 23:59:59 30732 0.381 0.774
00:00:00 00:59:59 1803 0.089 0.432
& (00:00:00 01:59:59 3576 0.096 0.346
q;:? 00:00:00 03:59:59 6186 0.112 0.419
C 00:00:00 11:59:59 15467 0.079 1.254
00:00:00 23:59:59 31772 0.231 0.401
00:00:00 00:59:59 1803 0.087 0.353
o (00:00:00 01:59:59 3576 0.099 0.43
g 00:00:00 03:59:59 6186 0.101 0.386
C 00:00:00 11:59:59 15467 0.079 1.254
00:00:00 23:59:59 31764 0.23 0.441

Table 6.2: Query 1 - 3 experiments - 30/11/20

2 and Query 3 results look very similar. The facts that the amount of data
used with this model is not low and over-fitting prevention techniques such
as dropouts were used suggest that there might not be enough information
in the data itself, or the model is too complex for regression analysis. To
confirm or deny this assumption, another approaches were tested in following
sections of this chapter.

As explained in section [3.3| none of the queries used in these experiments
are not in fact suitable for value prediction; therefore, different ones were
chosen and the experiments were rerun. As mentioned, the frequency of both
queries is low, only little over 3000 values, per the whole dataset. Splitting the
dataset into smaller parts was rather unreasonable, hence only one experiment
was conducted for each query with the whole dataset as an input. In contrast
to the previous queries, the threshold of 20000 log lines between SQL-Dauer
values is too small, it was changed to 500000. All other parameters were
reused, the batch size equaled 1, the window size stayed 20, the learning rate
used was 1073,

No of values Min train loss Min val loss
Query 6 3351 0.091 0.707
Query 7 3076 0.07 0.478

Table 6.3: Value prediction per whole CAKL dataset - Query 6 & Query 7

Unfortunately, likely due to the lack of sufficient amount of data the

35

6. Experiments and evaluation

1 hour - Query 1 2 hours - Query 1
Legend 1.0 \
12 — Train

Validation \

0.4 Legend
—— Train
0.2 0:2 Validation
0 10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch
(a) : 1 hour - 00:00:00 - 00:59:59 (b) : 2 hours - 00:00:00 - 01:59:59
4 hours - Query 1 12 hours - Query 1
L2 Legend \
: — Train 1.0 A
10 N Validation \\
N N
55 \\ 0.8

0.4 Legend
—— Train
0.2 02 Validation
0 10 20 30 40 50 o] 10 20 30 40 50
Epoch Epoch
(c) : 4 hours - 00:00:00 - 03:59:59 (d) : 12 hours - 00:00:00 - 11:59:59
24 hours - Query 1
Legend
14 — T
Validation
12
w10
S
0.8
0.6
0.4
0 10 20 30 40 50
Epoch

(e) : 1 day - 00:00:00 - 23:59:59

Figure 6.1: Train/Validation loss per different time spans of the day of 30/11/20,
with the z-axis representing number of epochs

results did not bring any improvement and the testing part was also skipped.
Respective minimal training and validation losses are shown in Figure 6.3

At the latest stage of this work an implementation error in loading of data
that are fed into the TCN model was found; therefore concrete outcomes in
this section are invalid.

B 6.2.2 Longformer

The second approach, which was chosen to be simpler than the TCN model
and was potentially able to solve the over-fitting, is also a transformer-based
architecture - the Longformer.

All three datasets - the CAKL one with the two AWR datasets - were

36

6.2. Value prediction

combined for these experiments and Query 1, 2 and & were selected. The
number of log lines in each window prior the SQL-Dauer value was chosen
with respect to the limitations of the model used. As explained in the Section
5.2.2] these log lines are concatenated into one string, and thus the length
of 10 log lines appeared to be suitable. Despite it decelerating the process,
even a batch of size 10 proved to be too high due to RAM limits, therefore a
batch size of 1 was set. The train/validation ratio used was 8:2.

Experiments were again conducted on a portion of the data each, the same
time spans of 30 November 2020 as for the TCN model were used - 1 hour, 2
hours, 4 hours, 12 hours and 1 day (24 hours). Again all time spans start
at midnight and end after respective amount of hours. Initially the default
value of the learning rate - 5 x 107 - was used. According to training and
validation losses measured, the model was again not training at all.

Longformer 2h - Query 1
Longformer 1h - Query 1

25 Legend 7
— Train 6
2.0 Validation
5
Legend
15 w4 s
@ rd —— Train
5 =y Validation
1.0
2
0.5
' /\ ~7 "V/\v"\/ el /\/‘ VA_
, o 1N N
0.00 0.25 050 075 100 125 150 175 2.00 0.00 025 050 0.75 100 125 150 175 2.00
Epoch Epoch
Longformer 4h - QUE"Y 1 Longformer 12h - Query 1
Legend 25 Legend
16 —— Train — Train
Validation 2.0 Validation
14
&1_2 $1.5
=] i
10 10
0.8
0.5
0.75 1.00 125 150 000 025 050 075 1.00 125 150 175 2.00
Epoch Epoch

Table 6.4: Train loss per different time spans - Longformer

After that the learning rate was decreased to 1072 and the experiments
were run again. Figure |6.4] shows the resulting training loss over two learning
epochs for 1-hour to 12 hour time spans of Query 1 experiments. It is
apparent from the graphs that the model is still not learning, the training
loss oscillates around the value of 1 over the two epochs. Experiments with
Query 2 and Query 3 did not bring any significant change.

The Longformer approach was proven to be even less suitable for regression
analysis than the TCN architecture.

37

6. Experiments and evaluation

B 6.2.3 FastText

The results of previous approaches suggest that the data might be too noisy
and therefore not hold enough information to be suitable for the regression
analysis. For that reason an entirely different approach in terms of value
prediction and also embeddings generation was chosen.

Again only a section of the original dataset was used - first 12 hours of
the day of 30 November 2020. The experiments were run for the same three
queries already used in the approaches before. As for parameters of the
fastText model used for word vector creation, several combinations of the
dimension or the size of the word vector, minimum count of word to be
included and minimal and maximal length of character n-gram were tested,
as shown in Table [6.5.

’ H Dimension | Minimum count | Minimum n | Maximum n

1 100 5000 1 1
2 100 5000 3 6
3 300 5000 1 1
4 300 5000 3 6
5) 100 10000 1 1
6 100 10000 3 6

Table 6.5: fastText model parameters combinations

The regression analysis Seqg2S5eq model consists of one LSTM layer, two
hidden layers with the width of 300, and the learning rate was set to 1073.
All experiments were run for 20 epochs with batch size of 64.

Experiments were run for Query 1, Query 2 and Query 3. Training and
validation losses were measured during each run, the results are demonstrated
in table [6.6.

Combination Min train loss Min val loss

1 0.0613 0.0652
2 0.0616 0.0643
E: 3 0.0625 0.0648
é@) 4 0.0622 0.0642
5 0.0616 0.0649
6 0.0612 0.0624

Table 6.6: fastText experiments - Query 1

Only results of Query 1 experiments are shown as the results of Query
2 and Query & runs yielded much worse numbers. Neither training nor
validation losses decreased below 0.5, rather oscillated between 0.5 and 0.6.

38

6.3. Anomaly detection

The minimal losses of Query 1 experiments are rather low, but they do not
change much over the epochs.

B 6.2.4 Data split

As none of the models was not able to train on the dataset, instead of a
proper three-way data split, only training and validation sets were used.

B 63 Anomaly detection

The anomaly detection experiments were run for three queries again, however
they were chosen according to a different criteria. As demonstrated in Figure
3.5/ only certain queries are suitable for anomaly detection, the SQL-Dauer of
which form only two categories - normal and anomalous. Apart from Query 1,
also Query 4 and Query 5 introduced in section [3.3.1] meet this requirement.
When generating the embeddings for Query 4 and Query 5 the threshold for
log lines in-between was set to 100000.

Initially, the Temporal Convolutional Network approach experiments were
run. As with the value prediction experiments, for each query there were five
different time spans selected - 1 hour, 2 hours, 4 hours, 12 hours and 24 hours.
All these time spans were again taken from the day of 30/11/20 and overlap
as they all start at midnight and end after respective number of hours.

Query 1 -1 hour 24 hours - Query 4

Legend 0.30 Legend
0.20 —— Train — Train
Validation 0.25 Validation

0.10 K
0.05 .
\’\M 00 *\
0 10 20 30 40 50 0 10 20 30 40 50

Epoch Epoch

Figure 6.2: Train/Validation loss of anomaly detection experiments

The number of epochs was set to 50, learning rate stayed at 1073. For
each run a train and a validation loss were measured per epoch. Results are
shown in Table 6.7.

Both train and validation losses significantly decreased compared to the
regression experiments. However, the minimum values for the time spans
other than 12 hours occur at the earlier epochs and the validation loss either
oscillates or increases throughout the 50 epochs. Examples of one-hour time
span of Query I and 24-hour time span Query 4 is shown in Figure 6.2l The
only promising results for all queries were of the experiments run with the

39

6. Experiments and evaluation

Start End No of values Min train loss Min val loss
00:00:00 00:59:59 1348 0.005 0.012
— 00:00:00 01:59:59 2583 0.003 0.049
g 00:00:00 03:59:59 4419 0.004 0.059
C 00:00:00 11:59:59 14082 0.011 0.006
00:00:00 23:59:59 30718 0.015 0.055
00:00:00 00:59:59 840 0.002 0.072
<t 00:00:00 01:59:59 1604 0.001 0.104
ﬁg 00:00:00 03:59:59 2709 0.003 0.047
C 00:00:00 11:59:59 8153 0.004 0.002
00:00:00 23:59:59 17785 0.006 0.066
00:00:00 00:59:59 836 0 0.002
1w 00:00:00 01:59:59 1675 0.001 0.077
g 00:00:00 03:59:59 2844 0.003 0.036
C 00:00:00 11:59:59 7314 0.005 0.001
00:00:00 23:59:59 15369 0.006 0.062

Table 6.7: Query 1, 4, 5 anomaly experiments - 30/11/2020; initial 1h, 2h, 4h,
12h and 24h time spans per query

Start End No of values Min train loss Min val loss
00:00:00 09:59:59 11994 0.009 0.005
; 00:00:00 10:59:59 12757 0.011 0.005
é, 00:00:00 12:59:59 15931 0.011 0.005
00:00:00 13:59:59 17070 0.011 0.005
- 00:00:00 09:59:59 6937 0.009 0.005
p 00:00:00 10:59:59 7367 0.011 0.005
é, 00:00:00 12:59:59 9143 0.011 0.005
00:00:00 13:59:59 9717 0.004 0.002
00:00:00 09:59:59 6364 0.002 0.001
lg; 00:00:00 10:59:59 6600 0.003 0.001
é’ 00:00:00 12:59:59 8109 0.004 0.002
00:00:00 13:59:59 8516 0.003 0.002

Table 6.8: Query 1, 4, 5 anomaly experiments - 30/11/2020; additional 10h,
11h, 13h and 14h time spans per query

40

6.3. Anomaly detection

12 hours - Query 1 12 hours - Query 4

Legend 0.10 Legend
0.12 —— Train —— Train
Validation 0.08 Validation

0.08 \ 0.06

0.04

o o
> o
e o
7
Loss

™ 0.02 Al

0.00 0.00
0 10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch
12 hours - Query 5
16 Legend
0.14 —— Train

Validation
0.12

0.10
0.08 \

0.06 =3

0.04
0.02 \\

N e e
0.00

Loss

0 10 20 30 40 50
Epoch

Figure 6.3: Train/Validation loss per 12-hour time span of the day of 30/11/2020

12-hour time span as shown in Figure 6.3 where both training and validation
losses seem to reasonably converge to a small number.

Further analysis needed to be performed, since such difference between the
time spans, but also such consistency between the queries is slightly surprising.
To find out why exactly 12-hour time span is better than the others, for each
of the queries further experiments were run - time spans around 12 hours
were used, specifically 10, 11, 13 and 14 hours. Corresponding minimum train
and validation losses per query per time span are demonstrated in Figure |6.8.
The graphs of these experiments look similar to those in Figure (6.3l This
suggests that the data might be too noisy in the early hours after midnight
and the model learns to deal with it with longer time spans. It does not
explain though, why the 24-hour time span yield unsatisfactory results.

Until now, all anomaly detection experiments were conducted with the
input data being a part of the 30/11/20 day only and all time spans overlap as
they all start at midnight and finish after respective number of hours. Three
other days were selected - 1/12/20, 8/12/20, and 14/12/20 - and the data of
each day were split into two disjunctive 12-hour-long intervals. The results of
these experiments are illustrated in Table 6.9 Values of both the training
and validation losses are again reasonable, and graphs of their development
through epochs show similar trend as those in Figure |6.3.

To test the assumption that the data might be noisy in the early hours after
midnight of 30/11/20, another test was run for Query I with the 12-hour
time span shifted to start at 04:00:00 and end at 16:00:00. It apparent from
the graph in Figure [6.4) that the validation loss curve is less smooth than in
the previous graphs.

41

6. Experiments and evaluation

Start End No of values Min train loss Min val loss
S 00:00:00 11:59:59 13615 0.012 0.007
E 12:00:00 23:59:59 15413 0.012 0.006
S 00:00:00 11:59:59 31988 0.012 0.007
§ 12:00:00 23:59:59 16189 0.01 0.005
S 00:00:00 11:59:59 20068 0.002 0.001
E 12:00:00 23:59:59 21468 0.002 0.001

Table 6.9: Query 1 anomaly experiments - 12-hour time spans per days 1/12/20,
8/12/20 and 14/12/20

Query 1 - 12 hours shifted

0.10 Legend
—— Train
0.08 Validation

0.06 \
0.04 \

0.02 \ T

Loss

T e—AL

Figure 6.4: Train/Validation loss of shifted time span

Another approach to discover where the problem might be is in reusing a
model that was rather successfully trained in one of previous experiments. It
was decided that one of the very first runs with Query I and 12-hour time
span will be used. When running the following experiments, a previously
saved state of the trained model was first loaded from memory and then
fine-tuned during the experiments.

Initially, the 12-hour time span was split into three disjunctive 4-hour-long
intervals. Neither of these tests brought any progress.

B 6.3.1 Error correction

At this stage of work an implementation error in loading of data that are
fed into the TCN model was found. Unfortunately this had implications to
the results of all experiments in this section. The error was corrected and it
was necessary to run the experiments again. Also at this time the activation
function of the output layer was changed from linear to sigmoid function.

With the adjustments set, new experiments were run for each query (Query
1, Query 4 and Query 5) with the same set of time spans of the day 30/11/20
- 1 hour, 2 hours, 4 hours, 12 hours and 24 hours. Each time span starts at
midnight and ends after respective number of hours. Number of epochs was
50, window size 20 and learning rate 1073,

42

6.3. Anomaly detection

Start End No of values Min train loss Min val loss
00:00:00 00:59:59 1348 0.034 0.016
; 00:00:00 01:59:59 2583 0.075 0.13
QE 00:00:00 03:59:59 4419 0.066 0.151
< 00:00:00 11:59:59 14082 0.051 0.185
00:00:00 23:59:59 30718 0.011 0.214
00:00:00 00:59:59 840 0.059 0.16
i 00:00:00 01:59:59 1604 0.094 0.174
q;j 00:00:00 03:59:59 2709 0.051 0.219
< 00:00:00 11:59:59 &153 0.103 0.23
00:00:00 23:59:59 17785 0.035 0.235
00:00:00 00:59:59 836 0.021 0.001
L; 00:00:00 01:59:59 1675 0.047 0.209
E_;S“ 00:00:00 03:59:59 2844 0.059 0.17
C 00:00:00 11:59:59 7314 0.066 0.226
00:00:00 23:59:59 15369 0.066 0.269
Table 6.10: Query 1, 4, 5 anomaly experiments after error correction -
30/11/2020
Query 1 - 4 hours Query 1 - 4 hours
0.25 0:18 \\
i 0.20 i jii \\\
§ 0.15 § 0.12
oo [e o Lo
Validation 0.06 Validation
0 10 20 EDOCh 30 40 50 0 10 20 EpUCh 30 40 50
(a) : Window size 20 (b) : Window size 50

Query 1 - 4 hours

0.18
0.16

Legend
0.08 —— Train
Validation

0 10 20 30 40 50
Epoch

(c) : Window size 100

Figure 6.5: Train/Validation loss per 4-hour time span of the day of 30/11/2020
with different window sizes

43

6. Experiments and evaluation

Results of these tests are demonstrated in Table[6.10. The trend of training
losses was decreasing even in the later epochs, hence with higher number of
epochs the number could possible drop even further, but the validation loss
trend suggests that the model is not training.

Other experiments were run for Query 1 only. The first set was to try
different window sizes, if it influences the result. A 4-hour time span was used
in these experiments. Graphs in Figure |6.5|illustrate training and validation
loss behaviour over the 50 epochs. Clearly the window size in this case does
not affect the ability of the model to learn on this portion of data.

Also another test for Query 1 was conducted, training on a two-day-long
dataset, which consists of data of the days 30/11/20 and 1/12/20. Neither
this experiment brought any improvement as the validation loss oscillated
between 0.2 and 0.3.

As with the regression analysis, as the validation jobs were not successful,
further testing on previously unused data was skipped.

. 6.4 Discussion

Initially, the experiments with BERT architecture proved to be a suitable
tool for creation of contextual embeddings of logs. Clusters formed in the
embedding space contain semantically similar log lines.

The experiments with regression analysis the aim of which was to predict
a certain value that occur repeatedly in the provided dataset were not sat-
isfactory. None of the three approaches used (TCN, Longformer, fastText)
verifies that the contextual embeddings provide enough information to the
model so that it is able to learn on the data. It is possible that either the
regression task is too complicated or the dataset itself is noisy.

A reduction in terms of complexity of the task was applied. Instead of
predicting a certain value, experiments were run to train the TCN model
to classify the values as either normal or anomalous. Unfortunately an
implementation error in the TCN model data loading meant a significant
setback. After a correction only few experiments were run, that did not yield
any improvement as the model was not able to train on the data.

44

Chapter 7

Conclusions

This thesis studied the usage of contextual embeddings in log analysis, with
focus on regression analysis. It extends previous work on numerical represen-
tations of log lines and their leveraging in anomaly detection. The research
shows that evaluation results of non-contextual embeddings depend on the
dataset used and also on a model used for evaluation. Nevertheless, there are
approaches showing outstanding results in anomaly detection experiments.
Significantly less work was done on contextual embeddings of logs, but the
initial results yielded on an anomaly detection task are promising and worth
further research.

Three custom not publicly available datasets were provided for this work.
CAKL - the largest one was mainly used in experiments. As there was no
prior information about the data it contains, an extensive analysis of the
dataset had to be conducted. It revealed several important features and the
overall complexity of the dataset. The initial aim of predicting of a certain
value in any SQL query occurring throughout the dataset was reduced to few
query representatives that were subjected to further inspection.

Initially, the contextual representations of log lines based on BERT ar-
chitecture were created. A visual evaluation proved that this approach is a
suitable method for contextual embeddings creation of log lines.

Several regression analysis models were chosen to properly evaluate this
assumption. The first one was Temporal Convolutional Network model using
the previously created contextual embeddings as input. The second one was
the Longformer sequence classification model, a BERT architecture suitable
for long sequences. None of these models were able to train on the dataset.
A baseline approach using fastText technique and its unsupervised model for
embeddings creation was then used. However, the model did not show any
remarkable results, as it was not able to train on the dataset either.

Finally, to simplify the task of regression analysis, anomaly detection
experiments were conducted using an updated TCN model. Seemingly, this
model was able to train on a certain portion of the dataset and further
experiments were run to clarify the reason why other parts of the dataset
are not suitable. While working on this task, an implementation error in

45

7. Conclusions

the TCN model data loading was found which unfortunately invalidated the
experiments and results conducted earlier with this technique. After the
correction several experiments were repeated, but neither this approach was
successful.

The next step would be evaluation of the proposed architectures on a
different dataset to learn if the provided one was suitable. A search of a dataset
that would have similar features such as a value that was worth predicting
was made during the first regression analysis experiments, unfortunately no
such publicly available dataset was found.

46

1]

2]

Bibliography

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by
jointly learning to align and translate, 2016.

S. Bai, J. Z. Kolter, and V. Koltun. An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling. CoRR,
abs/1803.01271, 2018.

I. Beltagy, M. E. Peters, and A. Cohan. Longformer: The long-document
transformer. CoRR, abs/2004.05150, 2020.

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. Enriching Word
Vectors with Subword Information. Transactions of the Association for
Computational Linguistics, 5:135-146, 06 2017.

A. M. Dai and Q. V. Le. Semi-supervised sequence learning, 2015.

J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT": pre-training
of deep bidirectional transformers for language understanding. CoRR,
abs/1810.04805, 2018.

M. Du and F. Li. Spell: Streaming parsing of system event logs. In 2016
IEEE 16th International Conference on Data Mining (ICDM), pages
859-864, 2016.

M. Du, F. Li, G. Zheng, and V. Srikumar. Deeplog: Anomaly detection
and diagnosis from system logs through deep learning. CCS ’17, page
1285-1298, New York, NY, USA, 2017. Association for Computing
Machinery.

S. Han, Q. Wu, H. Zhang, B. Qin, J. Hu, X. Shi, L. Liu, and X. Yin.
Log-based anomaly detection with robust feature extraction and online
learning. IEEE Transactions on Information Forensics and Security,
16:2300-2311, 2021.

P. He, J. Zhu, S. He, J. Li, and M. R. Lyu. An evaluation study on
log parsing and its use in log mining. In 2016 46th Annual IEEE/IFIP

47

7. Conclusions

[13]

[14]

[15]

International Conference on Dependable Systems and Networks (DSN),
pages 654661, 2016.

P. He, J. Zhu, Z. Zheng, and M. R. Lyu. Drain: An online log parsing
approach with fixed depth tree. In 2017 IEEE International Conference
on Web Services (ICWS), pages 33-40, 2017.

S. He, J. Zhu, P. He, and M. R. Lyu. Experience report: System
log analysis for anomaly detection. In 2016 IEEFE 27th International
Symposium on Software Reliability Engineering (ISSRE), pages 207-218,
2016.

M. Korytak. Anomaly Detection Methods for Log Files. Master’s thesis,
Czech Technical University in Prague, 2021.

T. Kudo and J. Richardson. Sentencepiece: A simple and language
independent subword tokenizer and detokenizer for neural text processing.
CoRR, abs/1808.06226, 2018.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov. Roberta: A robustly optimized BERT
pretraining approach. CoRR, abs/1907.11692, 2019.

M.-T. Luong, H. Pham, and C. D. Manning. Effective approaches to
attention-based neural machine translation, 2015.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Dis-
tributed representations of words and phrases and their compositionality.
In Advances in neural information processing systems, pages 3111-3119,
2013.

M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer. Deep contextualized word representations, 2018.

A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. Improving
language understanding with unsupervised learning. 2018.

N. Reimers and 1. Gurevych. Sentence-bert: Sentence embeddings using
siamese bert-networks. CoRR, abs/1908.10084, 2019.

V. Sanh, L. Debut, J. Chaumond, and T. Wolf. Distilbert, a distilled ver-
sion of BERT: smaller, faster, cheaper and lighter. CoRR, abs/1910.01108,
2019.

M. Schuster and K. Nakajima. Japanese and korean voice search. In
2012 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 5149-5152, 2012.

R. Sennrich, B. Haddow, and A. Birch. Neural machine translation of
rare words with subword units. CoRR, abs/1508.07909, 2015.

48

[24]

[25]

[26]

[27]

[28]

[29]

7. Conclusions

M. Soucek. Log Anomaly Detection. Master’s thesis, Czech Technical
University in Prague, 2020.

R. Vaarandi and M. Pihelgas. Logcluster-a data clustering and pattern
mining algorithm for event logs. In 2015 11th International conference
on network and service management (CNSM), pages 1-7. IEEE, 2015.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and 1. Polosukhin. Attention is all you need. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017.

X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie, X. Yang,
Q. Cheng, Z. Li, J. Chen, X. He, R. Yao, J.-G. Lou, M. Chintalapati,
F. Shen, and D. Zhang. Robust log-based anomaly detection on unstable
log data. In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2019, page 807-817, New York, NY,
USA, 2019. Association for Computing Machinery.

J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. Lyu. Tools and
benchmarks for automated log parsing. 11 2018.

P. Cerny. Contextual Embeddings for Anomaly Detection in Log Files.
Master’s thesis, Czech Technical University in Prague, 2021.

49

	Introduction
	Related work
	Log analysis
	Log parsing
	Log anomaly detection

	Transformer
	BERT
	Word embeddings
	fastText
	Contextual embeddings

	Temporal Convolutional Network

	Problem analysis
	Dataset introduction
	CAKL dataset
	AWR datasets

	Problem statement
	Exploratory analysis
	CAKL dataset
	AWR datasets

	Methodology
	Log preprocessing
	Contextual embeddings
	Tokenization
	Embeddings creation

	Regression analysis
	Temporal Convolutional Network
	Longformer
	fastText
	Loss function

	Anomaly detection
	Motivation
	Data preparation
	Loss function

	Implementation
	Embeddings
	Value prediction
	Temporal Convolution Network
	Longformer
	FastText

	Anomaly detection

	Experiments and evaluation
	Contextual embeddings
	Value prediction
	Temporal Convolutional Network
	Longformer
	FastText
	Data split

	Anomaly detection
	Error correction

	Discussion

	Conclusions
	Bibliography

