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Abstract

A free-gait motion planning approach for quasi-static locomotion of a hexapod walking robot
on terrains with limited available footholds is proposed. The approach avoids using a prescribed
gait pattern allowing an arbitrary sequence of leg swings. Furthermore, it is allowed that some
legs do not need to be placed on the terrain for an extended period of time. A finite set of con-
sidered footholds is used to define a graph-search domain where pairings of the robot legs and
footholds define possible states. However, the connectivity of the search domain is limited by
kinematics, stability, and obstacles, which makes the problem challenging. The graph search
provides a candidate sequence of stances and intermediate configurations representing plausible
steps. The final robot path is found by solving constrained motion planning sub-problems to
connect the intermediate configurations into a valid path. The proposed parametrization based
on polynomial curves showed to be a suitable choice that provides not only fast convergence
of the path optimization but also natural-looking motion. The feasibility of the proposed solver
has been empirically validated in challenging scenarios with only a few footholds for a small
hexapod walking robot. Moreover, based on the initial implementation of the complex problem
solver, improvements have been proposed that significantly reduce the computational require-
ments making the developed HexaPlanner framework suitable for deployments on multi-legged
walking robots.

Keywords: motion planning; legged robot; free-gait

Abstrakt

Diplomová práce představuje novou metodu plánování kvazi-statického pohybu kráčejících robo-
tů s volným vzorem chůze v terénech s omezenou oporou nohou. Navrhovaný přístup nevyužívá
předepsaného vzoru chůze, což umožňuje využít libovolnou posloupnost kroků. Vyvinutý pláno-
vač pohybu dále umožňuje, aby některé nohy mohly být delší dobu mimo opěry, čímž je snížena
závislost na umístění nohou v terénu. K definování domény pro hledání požadované sekvence
je vytvořena grafová reprezentace, ve které dvojice nohy-robotu a opěry-nohou definují možné
stavy. Konstrukce grafu reprezentující prohledávanou doménu uvažuje konečnou množinu mož-
ných opěrných bodů. Konektivita prohledávané domény je však limitována omezujícími pod-
mínkami kinematiky, stability a překážkami, což činí problém velmi náročným. Navržené řešení
prohledávání grafu tvoří cestu, která odpovídá kandidátní sekvenci postojů a mezilehlých kon-
figurací robotu představujících pravděpodobně uskutečnitelné kroky. Plán pohybu robotu je z
nalezené sekvence získán řešením dílčích plánovacích podproblémů propojením mezilehlých
konfigurací s uvážením omezení pohybu. Navrhovaná parametrizace výsledné cesty robotu za-
ložená na polynomiálních křivkách se ukázala jako vhodná volba, která poskytuje nejen rychlou
konvergenci optimalizace cesty, ale také přirozeně vypadající pohyb. Schůdnost navrhovaného
řešiče byla empiricky ověřena v náročných plánovacích scénářích s malým počtem opěrných
bodů pro malý šestinohý kráčející robot. Kromě toho byla na základě počáteční implemen-
tace řešení komplexního problému navržena vylepšení, která významně snižují výpočetní nároky.
Vyvinutý softwarový rámec HexaPlanner tak představuje vhodné řešení pro nasazení na víceno-
hých kráčejících robotech.

Klíčová slova: plánování pohybu; kráčející robot; volný vzor chůze
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Used Abbreviations

COG Center of Gravity
COM Center of Mass
LSP Least Squares Pose
PSO Particle Swarm Optimization
SDF Signed Distance Field
SOCP Second Order Cone Program
SP Support Polygon
w.r.t with respect to
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Chapter 1

Introduction

As early as in the 1980s, scientists have begun suggesting the use of robots for search-and-rescue
missions [1], as mobile robots promise to navigate environments too dangerous for humans. At that
time, robotics has not been advanced enough for such missions. In 1995, two major disasters – the
Oklahoma City bombing and the Hanshin-Awaji earthquake in Japan – motivated advancement and
further research effort towards rescue robots. In both disasters, the rescuers struggled to find survivors
trapped under collapsed buildings.

The first recorded use of robots in a disaster relieve is dated after the 2001 terrorist attacks on the
World Trade Center [1], where some areas were unbearably hot for human rescuers due to fire. A
robotic rescue team from Washington, D.C. was led by Lt. Col. John Blitch of the U.S. Army, who
founded the Center for Robot-Assisted Search and Rescue (CRASAR) [2]. The additional robotic
team at the scene was lead by Dr. Robin Murphy from the University of South Florida, now the
director of Humanitarian Robotics and AI Laboratory [3], formerly CRASAR. The robots deployed
were tracked robots such as shown in Fig. 1a. Although the robots did not find any survivors, the
real-world experience provided invaluable feedback for the researchers. In later years, Dr. Murphy
helped to deploy robots in response to nearly 30 disasters [1].

(a) New York 20011 (b) Mexico 20172 (c) DARPA SubT Challenge 2020 [4]

Figure 1: Robots deployed in real-world or simulated rescue scenario: (left) A tracked robot used
in the aftermath of terrorist attacks in New York; (middle) Snake-like robot used to search rubble
after earthquakes in Mexico; (right) Tracked and hexapod robot deployed in the Tunnel circuit of the
DARPA Subterranean Challenge.

Another example comes from the 2017 earthquakes in Mexico, where roboticists from the Biorobotics
Laboratory at the Carnegie Mellon University (CMU) brought their biologically inspired snake-like
robots to the scene Fig. 1b. Deployed robots confirmed that nobody was trapped under the debris
without the need to move large parts of the rubble or endangering human rescuers.

In 2018–2021, the Defense Advanced Research Projects Agency (DARPA) of the United States De-
partment of Defense organized the DARPA Subterranean Challenge (SubT), a competition of robotics
teams worldwide. In the competition, teams deploy their robots in simulated underground search-and-
rescue scenarios. The goal is to find artifacts such as survivors, gas-leaks, tools, backpacks, gas leaks
scattered in an underground space, classify them, and report their location to score. Points are awarded
1Photo adopted form https://discovermagazine.com/technology/after-disaster-strikes-a-robot-might-save-your-life
2Photo adopted from https://cmu.edu/news/stories/archives/2017/september/snakebot-mexico.html

1
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1. Introduction

Figure 2: Example of the terrain traversed by hexapod walking robot and tracked robot. There are
visible footprints of the tracked robot, while the legged robot does not make any significant marks
when crawling over the sloped terrain.

for all correctly identified artifacts whose position is within five-meter precision from the ground truth
location. One of the main difficulties of navigating an underground environment is the lack of wireless
communication. Since underground environments are communication restricted, the robots need to be
autonomous to a large extent. Autonomy improves the speed at which a robot can progress, and it also
reduces requirements on the operator in potentially high-stress conditions. Indeed, the robotic team
responding to the 9/11 attacks reported difficulties operating the robots in the harsh environment [1].

Regarding types of ground mobile robots, we can distinguish wheeled, tracked, and legged robots.
Wheeled and tracked robots can be considered simpler to design, and control than legged robots be-
cause wheeled and tracked robots are more commonly used in practical applications nowadays. On the
other hand, legged robots tend to have more complex construction and more degrees of freedom; thus,
they are challenging to control. However, a legged robot can potentially traverse rougher terrain than
a comparably sized wheeled or tracked robot. Also, legged robots are potentially less likely to disturb
the environment, e.g., see Fig. 2, which may be very desirable in search-and-rescue scenarios, where
the underground cave system or rubble of a collapsed building may be unstable. Notably, the hexapod
walking robots provide increased stability over their competitors such as quadruped platforms, e.g.,
Spot [5] and ANYmal [6], or biped/humanoid robots such as Atlas [7] or HRP2 [8].

This thesis focuses on improving the autonomous traversability capabilities of legged robots moti-
vated by hexapod walking platforms used in the Computational Robotics Laboratory of the Artificial
Intelligence Center at the FEE, CTU in Prague. More specifically, we target to develop autonomous
planning methods for our experimental six-legged (hexapod) walking robot SCARAB II and hexapod
walking platforms Daisy and Lily from the HEBI Robotics, see the robots in Fig. 3. We aim to create
a motion planner that balances simplifications of the original problem and computational complexity
to perform robust online planning using the robot’s onboard hardware. In general, such a challenging
goal can be recognized to be too ambitious. Therefore, the thesis can be considered an attempt to im-
plement any tractable solution to the planning task and develop a general code base that can be further
improved and expanded upon.

The proposed idea builds on the previous work that is overviewed in the following section. Then, the
thesis is structured as follows. The theoretical background is introduced in Chapter 2. An overview
of the related work is presented in Chapter 3. The addressed problem is formally defined in Chapter 4

2



1.1 On Overview of the Previous Work

(a) SCARAB II (b) Daisy (c) Lily

Figure 3: Legged robotic platforms: (left) SCARAB II is the second generation of small hexapod
robot developed at the Computational Robotics Laboratory, the Czech Technical University; (middle)
Daisy a robotic kit by HEBI the Robotics. It is a large hexapod robot primarily intended for indoor
research; (right) Lily is a waterproof version of Daisy.

together with the used notation. The proposed solution is described in Chapter 5 followed by an
overview of the realized implementation in Chapter 6. The evaluation results of the developed solution
are presented in Chapter 7. Possible future research directions and improvements of the proposed
solution are discussed in Chapter 8. Finally, concluding remarks are dedicated in Chapter 9 with the
remarks on the possible future work.

1.1 On Overview of the Previous Work

The problem of legged locomotion planning can be represented by the Obstacle Race scenario inspired
by crossing a river stream using stones sticking from the water. A laboratory setup of such a scenario
used in [9] is visualized in Fig. 4a. Although it might seem like a very specific scenario, in highly

(a) Obstacle Race (b) Generated Cave Floor (c) Real cave floor

Figure 4: (left) Photo of the original ‘obstacle race’ scenarios; (middle) Virtual cave floor scenario
with filtered footholds; (right) Hexapod robot crawling on a rocky terrain in the Bull Rock Cave in
Moravia, Czech Republic.

structured terrain, there can only be relatively few and sparse safe footholds for the robot to use, e.g.,
an uneven cave floor where we need to avoid inclined or sunken footholds, see Figs. 4b and 4c. In [9],
the problem is addressed by Diar Masri, Petr Čížek, and Jan Faigl, further described in Section 3.4.2.
However, the drawback of their approach is using a regular gait, for which the robot moves from one
configuration with all legs on the terrain to the next configuration also with all legs on the terrain. The
employed simplification needs to use a two-dimensional terrain abstraction that limits the method to
relatively simple scenarios such as shown in Fig. 4a.

3



1.1 On Overview of the Previous Work

(a) 2D environment (b) 3D environment

Figure 5: Proposed more challenging obstacle race scenario than used in [9]; (left) simplified 2D
environment; (right) 3D environment.

We are motivated to address the drawbacks of [9] and the very first idea for a revised solution of the
obstacle race is to employ a graph-search algorithm, where the graph vertices would represent partic-
ular legs placement on the terrain footholds. Besides, it is allowed that a leg is not placed, and the leg
foot tip can be in the air. The initial concept has been inspired by the planning approach for humanoid
robots [10]. However, the goal is not to force the robot to move between configurations with all legs
on the ground as in [9], but to allow a leg not to be placed at some foothold for an extended period if
there is no viable foothold for it. A tougher obstacle race scenario such as shown in Fig. 5b has been
devised to evaluate the desired behavior. Instead of two beams with holes as in the original obstacle
race as of Fig. 4a, the new scenario features one full beam on one side and a single stepping pad in
place of the second beam. A proof-of-concept implementation in the Julia programming language
has been quickly produced for a planning task in a simplified 2D environment with the assumed finite
set of relatively sparse footholds, see in Fig. 5a. Even though the first developed solution has been
promising, it becomes apparent that the combinatorial complexity of the graph representation would
be computationally challenging. Nevertheless, a notable finding has been observed that such a method
runs relatively fast in scenarios with a limited number of footholds. Hence, the goal of this thesis
become to develop gait-free locomotion planning that will form a code-based allowing to solving sce-
narios similar to obstacle race. We follow the work of K. Hauser, who elaborates in-depth the legged
locomotion planning in [11], here overviewed in Section 3.4.3. Before describing the related work and
proposed method, the following chapter introduced the basic theoretical background of the employed
techniques and representations of the search space and trajectories.
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Chapter 2

Theoretic Background

In this chapter, a brief description of the basic theory used in the thesis is provided. First, the con-
cept of the configuration space and degrees of freedom is introduced. Further, the kinematics of the
robot composed of serial kinematic chains is formalized. Finally, a brief description of the Bézier
curve parametrization is presented because it is used in the trajectory parametrization in the proposed
approach presented in Section 5.4.

2.1 Mechanical System Specification

• Degrees of Freedom (DOF) – is the minimal number of independent parameters needed to
fully describe the state of a mechanical system.

• Controllable Degree of Freedom (CDOF) – is the number of DOF that can be controlled, i.e.,
the robot actuators.

According to the ratio of the CDOF and the total DOF (TDOF) on the robot, we can distinguish robots
that are

• Holonomic – CDOF = TDOF;

• Nonholonomic – CDOF < TDOF;

• Redundant – CDOF > TDOF.

A legged robot is fully specified by the position of its body (6 DOF) that is composed of

• Translation – x, y, z coordinates,

• Rotation – yaw, pitch, roll angles,

and by the set position of all its actuated joints. For rotational joints, the position of the actuator can
be described by a vector of the angle values θ, by which individual joints are rotated. The actuators
represent the Controllable DOF, and thus dim(θ) = CDOF; thus, legged robots are nonholonomic.

2.2 Configuration Space and Planning

Configuration space C of a robot is a set of configurations, where a configuration is a complete descrip-
tion of the robot’s state, including its position in space and all set position of all controllable degrees of
freedom. Feasible subset of the configuration space Cfeasible ⊆ C is the set of all configurations that are
feasible under the physical constraints. In the literature, it can be found that the set of collision-free
configurations Cfree is considered as the feasible subset. However, for this thesis, it is useful to explic-
itly enforce more constraints than just collisions. It holds that Cfeasible ⊆ Cfree, therefore we distinguish
these two sets.
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2.3 Kinematics of Robots Composed of Serial Chains

The constraints can be expressed by an equality constraint function f : C → Rk and an inequality
constraint function g : C → Rm , such that f(q) = 0 and g(q) ≤ 0 iff q ∈ Cfeasible. The equality
constraint decreases the topological dimensions of Cfeasible. The set Cfeasible forms a submanifold of C.
More specifically, the dimension is reduced by the number of equalities [12] as

dim(Cfeasible) = dim(C)− k. (1)

In planning tasks, there might be multiple constraint functions. In general, the constraint functions
depend on some discrete part of the configuration space representation. The submanifolds of the
configuration space defined by the individual constraint functions are called modes [12]. Hence, a
planning problem with multiple modes is called multi-modal planning problem.

Legged locomotion planning is a multi-modal planning problem, and the legged robots interact with
the terrain using their foot tips. More generally, we refer to the parts of the robot’s body meant for
interaction with the terrain as effectors. The modes correspond to the placement of the robot effectors
on the terrain, and we say these effectors are fixed by the mode. The modes in the legged locomotion
are called stances [13]. The equality constraint function describes the kinematic constraints for the
effectors fixed by the stance.

In addition to discrete parameters, the constraint function can also be parametrized by continuous
parameters. In such a case, we can talk about continuous families of modes [14]. The family contains
all modes defined by the same combination of discrete parameters. An example for legged locomotion
can be climbing a ladder, where the discrete component defining the mode family is a mapping of a
specific leg onto a specific rung of the ladder, and the continuous parameter is the position on the
rung. The continuous parameters are fixed within the mode family. In order to change the continuous
parameters within a mode family, it is needed to leave the family and enter in with a new parameter
value. Continuing with the ladder analogy, the problem is to change the leg position on the ladder
rung; it is needed to go off the rung and grab it at a different position.

In path planning, we can define a path as a continuous mapping from the closed interval [0, 1] to
Cfeasible as

π : [0, 1]→ Cfeasible. (2)

We can further distinguish a trajectory as time-parametrized path

q : [t0, tf ]→ Cfeasible. (3)

Path planning is a problem to find a path or trajectory satisfying the respective constraints. On the
other hand, motion planning is to find a sequence of actions to execute the path. Since in the pre-
sented approach, we need to determine individual position values of the robot actuators that represent
configurations in Cfeasible, the path in configuration space provides a solution of the motion planning.

The herein in addressed motion planning task P is given by an initial configuration q0 ∈ Cfeasible and
a goal region G ⊆ Cfeasible. Hence, a solution to the planning task is a path π such that π(0) = q0 and
π(1) ∈ G. In multi-modal planning, finding a valid path also means finding a sequence of modes that
are described in Section 4.3.

2.3 Kinematics of Robots Composed of Serial Chains

We are considering walking robots with a structure that can be represented by a directed rooted tree
with branches representing the legs that form a serial chain of actuators. A schema of a branch rep-
resenting a leg of a hexapod robot is depicted in Fig. 6. The edges of the graph correspond to the
individual robot links l ∈ L. The vertices correspond to joints/actuators connecting the links.
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2.3 Kinematics of Robots Composed of Serial Chains

Lb,c
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Figure 6: Schematics of a serial kinematic chain of a legged robot leg. The angle of the coxa joint
θcoxa is zero in the visualized configuration, thus the coordinate frames F̂coxa and Fcoxa are aligned in
the figure.

Each vertex/joint is associated with two coordinate frames Fl and F̂l, where Fl is the coordinate frame
of the link l, and F̂l is the pose of the joint connecting l to its parent link. For the actuated joints, the
transformation between F̂l2 and Fl1 corresponds to a single CDOF of the robot. For the fixed joints,
the coordinate frames are equal. Each edge/joint is associated with an isomorphism Ll1,l2 composed
of the rotation Rl1,l2 and translation tl1,l2

Ll1,l2 =

[
Rl1,l2 tl1,l2
01×3 1

]
, (4)

where Ll1,l2 describes the isomorphism from F̂l2 to Fl1 , the position of the joint connecting l2 to l1
within the coordinate system of l2; i.e, the edge is oriented from l2 to l1

Using the Denavit-Hartenberg convention, F̂l2 is the coordinate frame of the base of the joint connect-
ing l1 and l2. Our robots consist only of revolute joints associated with an angle θl, where the subscript
l is used for the joint angles because each joint corresponds to a link. By convention, the revolute joint
connecting the link l rotates about the z-axis of the reference frame F̂l. Thus the isomorphism from
Fl to F̂l can be expressed as

Zl(θl) =


cos θl − sin(θl) 0 0
sin θl cos(θl) 0 0

0 0 1 0
0 0 0 1

 . (5)

Let ln, ln−1, . . . , l2, l1 be an oriented path in a tree. The isomorphism Ml1,ln(q) is the transformation
from the coordinate frame Fln to Fl1 with respect to (w.r.t) the robot configuration q that can be
expressed as

Ml1,ln(q) = Ll1,l2 Zl2(θl2)Ll2,l3 Zl3(θl3)Ll3,l4 . . . Zln−1(θln−1)Lln−1,ln Zln(θln) (6)
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2.3 Kinematics of Robots Composed of Serial Chains

where θli is the set angle of the joint connecting li at the configuration q.

A point xln is transformed from Fln to Fl1 as

x̂l1 = Ml1,ln(q) · x̂ln (7)

where x̂ is the homogeneous coordinate representation of x

x̂ =

[
x
1

]
. (8)

Let p be a point in the coordinate frame Fl. The following steps are performed to find its coordinates
p(q) in the global coordinate frame at a given configuration q ∈ C.

1. Find an oriented path l, . . . , lroot from the link to which p is fixed to the base link.

2. Compute Mlroot,l as in (6).

3. Compute hatp(q) = G ·Mlroot,l · p̂, where G is the isomorphism performing the transformation
from Flroot to the global coordinate frame.

Let pl be a position in the coordinate frame Fl. Jacobian J
(θl)
pl of pl w.r.t. the angle θl can be computed

as [15].
J

(θl)
pl = k̂l × pl , (9)

where k̂l is the unit vector pointing in the direction of the z-axis of the coordinate frame Fl. Note that
Jacobian J

(θl)
pl is in the coordinate frame Fl.

If J(θl)
pl(q)

is Jacobian of pl(q) w.r.t. θl in the coordinate frame Fl at a configuration q, we can compute

Jacobian J
(θl)
pl(q)

(q) w.r.t. θl in the global reference frame at the configuration q in the following manner.

1. Obtain Mlroot,l(q) in the same way as in (6).

2. Set Rlroot,l(q) as the rotation component of Ml1,l(q).

3. Compute J
(θl)
pl(q)

(q) as:

J
(θl)
pl(q)

(q) = RG ·Rlroot,l(q) · J
(θl)
pl(q)

, (10)

where RG is the rotation component of G.

Jacobian J
(θ)
p (q) of a point p fixed to link l w.r.t. the vector θ of all joint angles can be determined as

follows.

1. Find the oriented path l, . . . , lroot the link p is fixed to from the base link.

2. Compute pli(q) (position of p in Fli) for each link li along the path. Set the column corre-
sponding to θli to J

(θl)
pl(q)

(q) computed as in (10).

3. The other columns are zero.
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2.4 Bézier curve

The complete Jacobian matrix Jp(q) of a point p fixed to the link l w.r.t. to the configuration q is

Jp(q) =
[
J

(G)
p (q) J

(θ)
p (q)

]
, (11)

where J
(G)
p (q) is Jacobian w.r.t. the body pose G that can be expressed as

J
(G)
p (q) =

[
E3×3 (RzRy î)× (p0(q)− t) (Rz ĵ)× (p0(q)− t) k̂× (p0(q)− t)

]
, (12)

where î, ĵ, and k̂ are the unit vectors aligned with the x, y, and z axis, respectively, and Rz , Ry, Rx

are the rotations about the x, y, z axes that define the rotation component of G

RG = RzRyRx , (13)

and p0(q) is the position of the point p in the global frame at the configuration q.

2.4 Bézier curve

Bézier curve is a description of a general curve in Rd defined by the polynomial expression. Bézier
curve B(t) : [0, 1] → Rd with the degree n is defined by n + 1 control points p0,p2, . . . ,pn where
each pi ∈ Rd. A point on the curve for a given value of t is computed as a weighted sum of the control
points. The vector of weights for the given t is defined as Bn(t) = [Bi,n(t)]i∈0...n where

Bi,n(t) =

(
n

i

)
ti (1− t)n−i . (14)

A point on the curve can be expressed as

B(t) =
n∑
i=0

Bi,n(t)Pi (15)

=
n∑
i=0

(
n

i

)
ti (1− t)n−iPi . (16)

Let us express Bézier curve as a multiplication of the matrix P whose columns are the control points
and vector of the weights Bn(t) are expressed as a function of t

B(t) = P(n) ·Bn(t) =
[
p0 p2 . . . pn

]
·


B0,n(t)
B1,n(t)

...
Bn,n(t)

 . (17)

Note that B(0) = p0 and B(1) = p1 holds.
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Chapter 3

Related Work

This chapter provides an overview of the most related motion planning work, together with exam-
ples of existing methods for legged locomotion planning. The approaches for rough terrain traversal
without planning are also described to provide an overview of the complementary methods. Besides,
methods for constraints evaluation are summarized in Section 3.5. Summarizing discussion is pre-
sented in Section 3.6.

3.1 Motion Planning

An analytic approach to motion planning is to formulate the planning task using a potential func-
tion [16, 17] in the configuration space. The virtual force field attracts the robot towards the goal and
pushes it away from the obstacles/infeasible regions. If we construct such a function, we can find a
valid path by following its gradient, which is the reason why such functions are also called naviga-
tion function [18]. However, the potential function might have multiple local minima in structured
environments, and the method may get stuck. Although methods for dealing with local minima in
the potential field exist [17, 19], such as using a harmonic potential function, the approach might still
suffer from numerical issues [20].

An approach related to the potential function method is path optimization. The path of the robot is
parametrized as a polynomial or piecewise polynomial curve. It is optimized w.r.t a constraint penalty
function and optimality criterion, e.g., [21]. The difference from the potential function is that the
constraint function does not define the solution but is only used to evaluate possible solutions.

Discrete planning tasks, e.g., planning on a grid or in a graph, are being solved by graph-search al-
gorithms such as the A* algorithm and its variants [22–24]. Applying those to continuous planning
problems requires a discretization of the configuration space. Grid-like discretization does not scale
for more complex systems [12], and randomized sampling-based methods show to be a robust alter-
native [25].

3.2 Randomized Sampling-based Planning

Sampling-based planning algorithms solve the problem of discretizing high-dimensional continuous
space by sampling the configurations randomly. A graph (also called a planning roadmap) is built from
samples to approximate the connectivity of the configuration space. Two general variants of sampling
methods can be distinguished [12]:

• Multi-query (graph-based) – incrementally constructs a graph by randomly sampling Cfeasible
and attempts to connect the sample to nearby vertices. A graph-search algorithm can then search
the resulting graph. The approach is referred to as multi-query because the constructed graph can
be reused for the following queries. A representative is the Probabilistic Roadmap (PRM) [26].

• Single-query (tree-based) – incrementally constructs a tree by randomly sampling Cfeasible and
connecting the samples to a single neighbor in the tree. The approach is called single-query
since the resulting tree is not so readily usable for different queries. However, it has to evaluate
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3.3 Multi-modal Planning

fewer connections, which may improve the performance on a single query. A representative is
the Rapidly-exploring Random Tree (RRT) [27].

The sampling-based algorithms are designed to be probabilistically complete and possible also prob-
abilistically optimal that can be described as a property that with the increasing number of sampled
configurations grows, the probability of finding a feasible and eventually also the optimal path is going
to one [28]. There are many variants of the PRM and RRT based methods that can be found in the
literature, e.g., [29–33] to list few. Many of them can be found as implementation using the Open
Motion Planning Library [34], which helps to extend and compare various approaches.

Motion planning under constraints is discussed in the survey on sampling-based motion planning by
Kingston, et al. [12]. For the unconstrained case, the dimensionality of Cfeasible is the same as C. In
the constrained case, Cfeasible is restricted by an equality constraint expressed by a constraint function
f : C → Rk such that Cfeasible = {q ∈ C | f(q) = 0}; hence, the dimensionality of Cfeasible is reduced
by k (see Section 2.2). The set Cfeasible has a zero measure in C, and thus, valid configurations cannot
be found by random sampling alone. Kingston, et al. further differentiate ways of dealing with the
sampling and planning under the equality constraints as follows.

• Reparametrization – define a new unconstrained configuration space that fully describes the
robot’s state. The configurations in the new configuration space have to map to valid configu-
rations smoothly. An example is a legged robot with 3DOF legs where a leg’s foot tip is fixed
to a point on the terrain. In such a case, the joint angles are uniquely defined (under mild
assumptions) by the pose of the robot’s body.

• Relaxation – instead of enforcing f(q) = 0, we relax the constraint to ‖f(q)‖ < ε. The
set satisfying the relaxed constraint has a non-zero measure in the configuration space. Thus,
it delegates the need to solve the constraint to the robot’s controller precisely. Note that we
always work with some finite precision, and therefore, we can say that a method is relaxation-
based when ε� εM , where εM is the machine precision.

• Tangent space – in some cases, it is possible to locally approximate the manifold defined by
the constraint function using known valid configurations. Hence, the method is viable only
for sampling neighborhoods of known valid configurations and constructing local paths. It is
somewhat analogous to the potential function methods.

• Atlas – the tangent space can be used to define a piecewise-linear approximate representation
of the valid set. Atlas is a data structure storing the tangent spaces. The tangent spaces are
generated dynamically. Atlas is used in a variant of the RRT called the AtlasRRT [35].

• Projection – define a projection operator that takes any configuration and projects it to the
valid space. In practice, it means numerically solving the set of equations f(q) = 0, e.g., by
gradient descend or Newton-Raphson method [36]. Some form of projection to the manifold
has to be used in all the previously mentioned approaches except for the reparametrization.

3.3 Multi-modal Planning

In some domains, multiple constraint functions are defining multiple intersecting submanifolds of the
configuration space, determining multiple modes of the system. In the domain of legged locomotion
planning, the modes correspond to specific placements of legs on the terrain – stances. The modes can
be purely discrete (e.g., a finite set of footholds) or accompanied by continuous parameters defining
mode families (such as a set of contact regions). A graph representation can be used to describe

11



3.4 Legged Locomotion

the rules for transitioning between modes/mode families [13, 37, 38]. Solving a multimodal planning
task thus requires finding a sequence of mode transitions and solving the constrained planning sub-
problems.

Kingston, et al. describe a heuristic approach for searching a sequence of modes selected from
parametrized mode families [14]. They test the heuristic on a simplified model of a two-limbed
robot moving by grasping bars – similarly to Robonaut 2 [39]. In [11], K. Hauser proposes a gen-
eral probabilistically complete sampling-based algorithm called Incremental Multi-Modal Probabilis-
tic Roadmap – Incremental-MMPRM for multimodal problems with discrete modes.

3.4 Legged Locomotion

The task of navigating a legged robot in a rough/structured environment can be solved by several
approaches, each considering and relaxing different constraints. Legged robots have two main pro-
nounced abilities compared to their wheeled/tracked counterparts.

• Ability to position the body without changing terrain contacts – For most legged robots, the
body essentially forms a parallel over-actuated platform. Such additional freedom of movement
allows the legged robot to avoid obstacles better and redistribute its weight.

• Ability to select terrain contacts – Legged robots interact with the environment via a set of
footholds. The footholds can be carefully selected and precisely reached, and maintained by the
robot’s legs. Legged robots can thus navigate environments with very little supportive terrain
and control the forces applied to the environment.

While body position and terrain contacts mutually constrain each other, they are not as tightly linked
as is the case for wheeled or tracked robots. These extra degrees of freedom, combined with the multi-
modality of the configuration space, make controlling legged robots a non-trivial task. However, it is
possible to decouple the combinatorial and continuous planning successfully. We can distinguish two
general kinds of approaches to legged locomotion planning.

1. Planning the continuous path for the robot’s body and selecting terrain contacts as needed on a
step-by-step basis. Ground-reachability constraint needs to be enforced, which roughly corre-
sponds to the relaxation approaches distinguished by Kingston, et al. in [12].

2. Finding a feasible sequence of stances (modes) and solving the continuous constrained subprob-
lems to validate the transitions between modes.

Besides, legged robots can locomote without planning that is briefly overviewed in the following
section. The body planning and multi-model planning approaches are described in Section 3.4.2 and
Section 3.4.3, respectively.

3.4.1 Locomotion without Planning

Legged robots are capable of negotiating quite a rough terrain even without using any deliberative
approach. In [40], Mathis, et al. report on experimental demonstration (using human volunteers) that
it is possible to walk efficiently even with limited visual information (to about the distance of two steps
for humans/bipeds). Methods using a purely reactive control scheme with only positional feedback
from the servos, e.g., [41], can be quite successful in negotiating uneven terrain. Approaches based
on blind locomotion can even deal with unexpected obstacles or missing supports as reported in [42].
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3.4 Planning for Body

Agility Robotics demonstrated the ability of their biped robots (ATRIAS, Cassie) on rough terrain
using blind walking [43], where moderate terrain disturbances are handled by the controller, without
foothold planning and exteroception.

In the reactive approaches, it is assumed that most parts of the terrain are safe to step on. Because of
that, they have trouble with environments such as stairs, where bad foot placement can lead to failure.
An approach dealing with shortcomings of the blind methods has been developed by P. Fankhauser, et
al. from ANYbotics [44]. If the nominal foothold is unreachable or unsafe, a model of the environment
built using exteroceptive sensors is used to find an alternative, valid foothold. Pose optimization is used
to find a body pose that ensures the foothold is reachable while maintaining stability. Fankhauser, et
al. uses a Signed Distance Field (SDF) for fast collision detection, which is further described in more
detail in Section 4.2.4 because it is adopted in the herein proposed approach. The trajectory of the leg
is optimized for speed and collision avoidance. For that end, the method described in [21] is used.

3.4.2 Planning for Body

Using the classification [12] of Kingston, et al., the following approaches can be categorized as re-
laxation approaches. Only a simplified description of the legs’ workspaces is considered in these
methods, and it is assumed that footholds and single-step leg motions can be found later. The primary
consideration is for the movement of the robot’s body while making sure all legs have some feasi-
ble footholds in their respective workspaces. The footholds are selected such that they facilitate the
planned motion of the robot’s body.

D. Belter, et al. use a two-stage planner in [45]. A high-level grid-based planner finds a path of the
robot body using estimated terrain traversability cost. Then, a random sampling-based planner finds a
precise path to intermediate goals along the rough path found in the first stage. The sampling planner
essentially plans in SE(2). Footholds are selected for the given body positions, and the other body
coordinates (height, pitch, roll) are optimized based on the footholds and the terrain.

M. A. Arainn, et al. proposed to use map preprocessing to create a grid-map of body positions [46].
The cost of those positions is evaluated based on the kinematic model of the robot. A path of the body
is found using a graph-search algorithm, and footholds are selected later.

In [9], P. Čížek, D. Masri, and J. Faigl proposed a similar approach but with random sampling as
opposed to the grid discretization. They interpret the 2.5D height map as an image and use image
processing techniques to construct a ranking of feasible body positions to construct a probabilistic
roadmap. Each body position is evaluated according to the number of valid footholds in the workspace
of each leg. The planner then uses a pentapod gait to move between stances with six contacts.

N. Perrin, et al. define a notion of weak collision-freeness in the robot’s configuration space [47]. It is
essentially a redefinition of the collisions free space in the way that ensures it is possible to assign foot
contacts to body poses along a continuous path produced by a sampling-based planner – the workspace
of the robot’s legs has to intersect with feasible contact regions on the terrain. The method is similar
to method [9] proposed by Čížek, et al. in that it requires a valid foothold to be present in all legs’
workspaces. Perrin, et al. do not go into too much detail regarding the application of the method on
a hexapod robot mentioned in [47]. However, it appears that stances with six fixed contact points are
required, and a simplified model of legs’ workspaces is utilized.

Tonneau, et al. also proposed an approach based on terrain reachability in [48]. The authors focused
on selecting the contacts in such a way that a regular gait pattern is not imposed. The algorithm is
hand-crafted and works with the predetermined motion of the body.

In [6], R. Buchanan, et al. focus on planning in confined spaces where obstacles limit the motion of
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the robot’s body. First, they plan the robot’s body path, avoid obstacles, and then select footholds. The
footholds are selected to support the planned path of the body similarly to [44]. Planning the path for
the robot’s body is important because obstacles constrain the motion.

A. Norby and A. M. Johnson proposed to plan a trajectory of the robot body using a long-horizon
sampling-based planning under kinodynamic constraints [49]. Ground reachability is ensured by en-
forcing a minimum distance to the terrain. Nevertheless, the planner also allows leap phases during
which no legs are touching the terrain. The specific individual footsteps are planned later.

A nonlinear solver is proposed by A. W. Winkler, et al. to find a trajectory by solving constraints
considering the robot’s dynamic and kinematic model in [50]. They manage to avoid decoupling the
foothold planning from the body trajectory planning. Duration of the stance and swing phases for
individual legs are part of the trajectory parametrization; so, it is the position of footholds for the
stance phases. Note that the number of stance and swing phases has to be selected beforehand. The
approach can be considered more of a relaxation approach since the position of the footholds on the
terrain is mostly unconstrained, and only an approximation of the legs’ workspace is used.

V. Tsounis, et al. propose a method based on reinforcement learning [51]. They formulate both
the motion planning and control problems as Markov decision problems and learn policy functions
implemented as artificial neural networks. Convolution layers are used to process the local terrain
represented as a heightmap.

3.4.3 Multi-modal Planning

The approaches that consider the multi-modality of the planning task use a graph representation to
capture the possible transition between the individual modes [12,13,52] or mode families [14]. Using
a graph representation has been successfully used on humanoid/biped robots [10, 53–55]. The modes
correspond to the position and orientation of the standing leg, and when selecting possible neighboring
modes, several sampled foot positions and orientations are considered.

K. Hauser extensively studies motion planning for multi-legged robots and general multi-modal plan-
ning in his dissertation thesis [11] and several related papers [37, 52, 56]. The most crucial parts of
his work that are relevant for the legged robot domain are summarized in [36]. He approached the
problem by delaying the one-step planning after a candidate sequence of modes was found. For con-
sidering a step between two stances, he only tests whether the intersection of subsets of configurations
attainable from the two stances has a non-empty intersection; the existence of such transition con-
figuration is an indication a continuous path could be found [11]. Hauser argues that in very-rough
terrains with a limited number of usable footholds, the movement of the robot is mostly constrained
just as it places/lifts its foot onto/from the terrain [57]. Thus, a sequence of steps is planned first,
including the leg’s configurations can be planted/lifted. The smooth motion between those transition
configurations is computed in the second phase. The first phase is realized by a graph-based algorithm
where the vertices are modes corresponding to a particular assignment of the robot’s legs to footholds
on the terrain. The existence/non-existence of edges corresponds to the existence/non-existence of the
transition configurations. A random sampling algorithm realizes the smooth motions between those
configurations after a candidate path in the graph is found.

Hauser builds on the work of T. Bretl, who coauthored some of Hauser’s paper [56, 57]. Bretl worked
on a multi-step planner for a multi-limbed free-climbing robot LEMUR [13]. He focused on solving
the problem of disconnection proofs – showing a path does not exist between two intermediate con-
figurations. The motivation is to avoid using a sampling-based planner for obviously impossible steps.
Since random-sampling algorithms cannot disprove the existence of a valid path in general, much time
can potentially be wasted on solving a single subproblem.
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Hauser also formulates a general probabilistically complete multi-modal planner [11] based on a prob-
abilistic roadmap. The algorithm balances sampling the transition configurations and configurations
in the individual submanifolds. A very similar approach is used by P. Vernaza, et al.. They applied
a graph-search method similar to Hauser on a quadruped robot [58], but compute the sequence of
stances using a randomized graph search algorithm R* [23]. A multi-component cost function is de-
fined to avoid infeasible steps. The robot controller handles the one-step motions. Unlike Hauser’s
more general approach, Vernaza, et al. only focus on planning for a quadruped robot.

Z. Kingston, et al. proposed a method of informing the search for the sequence of modes by using
results from the previous single-mode planning queries [14]. They work with parametrized families of
modes corresponding to grab locations on a bar handle for a simplified 2D robot and environment sim-
ilar to Robonaut 2. Planning a sequence of contact modes in continuous mode families for humanoid
robots is studied by A. Escande, et al. in [8]. The continuous families represent possible positions of
an effector contact on a flat surface of the environment.

To the best of our knowledge, regarding quasi-static gait-free planning for a hexapod robot, the only
work done is by T. Bretl and K. Hauser.

3.5 Constraint Evaluation

A major computational bottleneck in motion planning is evaluating the related constraints, such as the
kinematic constraints, collision constraints (self-collisions and collisions with the terrain), and stability
constraints. Besides, friction constraints and joint torque limit constraints are related to stability con-
straints. Hence, in constrained motion planning, one has to find valid configurations by solving a set of
nonlinear equalities and inequalities given by the relevant constraints unless a viable reparametrization
of the configuration space exists. A common method for implementing the projection to the valid sub-
set are descent algorithms – gradient descent, Jacobian inverse, or damped least squares [12, 52, 59].
These methods require the constraints expressed as a differentiable function. Particular approaches
for constraint evaluation are further discussed in the following paragraphs of the section.

Only kinematic and support polygon constraints are considered by the authors of [52], and the pro-
posed Iterative Constraint Enforcement (ICE) algorithm is restarted with a different initial sample
when the other constraints are violated. In the new iteration, the constraint function is extended to
account for other constraints violated by the previous sample.

The requirement to be differentiable, imposed on the constraint function by the descent algorithms,
is somewhat strict. For some types of constraints, it may not be possible or efficient. Algorithms
like the Nelder-Mead simplex method [60] and Particle Swarm Optimization (PSO) [61] can optimize
functions without using their Jacobians. The PSO is used for pose optimization by [45,62], and it thus
seems to be a suitable choice.

One of the hardest constraints to evaluate is the collision constraint. General collision detection can be
done by mesh interference using a hierarchical 3D model [63]. A disadvantage of mesh interference
detection is its low speed. A method of terrain collision detection that provides a good metric of
constraint violation and a gradient of the distance-to-terrain function is a Signed Distance Field (SDF)
used by [6, 21, 44]. Collisions can be quickly evaluated using the SDF for a robot whose shape is
approximated by a set of spheres. The SDF can be computed relatively quickly using a distance
transform of sampled functions described in [64].

Some researchers also use learned approximate constraint models that are faster to evaluate during
planning. The Gaussian mixture model is used by D. Belter, et al. to approximate several constraints
of legged robots that do not have a simply closed-form solution [62], such as distance to the edge of the
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3.6 Discussion of Approaches for Legged Locomotion

workspace of the legs and collisions between adjacent legs. N. Das, et al. addressed the computational
complexity of collision detection by using a technique similar to kernel SVM to learn an approximate
collision model and speed up collision queries [65]. The learned model improved the runtime of
sampling-based algorithms by orders of magnitude.

3.6 Discussion of Approaches for Legged Locomotion

It is possible to traverse rough environments without planning a whole-body motion using a blind
locomotion [21, 41–43] or to plan single-step motions using exteroceptive sensing [44]. These results
justify planning using relaxation methods focusing on planning body path first, such as [9, 45–47].
In moderately rough terrain with relatively abundant footholds, these approaches can be sufficient.
Planning body path/trajectory while relaxing the kinematic constraints lets us more easily consider
other constraints like terrain collisions or kinodynamic constraints [6, 49, 50]. There is an underlying
assumption in the methods mentioned above. It is assumed that it is possible to find footholds for each
robot’s leg in the body poses, which can be valid in many cases.

Multi-modal approaches that primarily plan the sequence of stances, such as [13, 14, 36, 58], seem
to be suited for scenarios where robot motion is mostly constrained by a limited selection of viable
footholds and where the available footholds severely restrict the robot’s configuration space. However,
the combinatorial complexity of the mode sequencing component of these methods makes them im-
practical for long-horizon planning. In a real-world deployment, the detailed knowledge of the terrain
is restricted to the direct neighborhood of the robot. Hence, planning footholds is mostly restricted to
creating short-range plans in practice. The goals for the short-term planner can be set by a long-term
planner working with a simplified configuration space and a traversability heuristic.

In scenarios, such as the obstacle race briefly introduced in Section 1.1, with very sparse footholds
planning, the sequence of stances is crucial for finding a viable solution. The assumption that footholds
can be selected after a viable motion for the robot’s body is planned is false. Therefore, in this thesis,
we focus on the motion planning solution in such scenarios with the assumption of a relatively short-
term trajectory.
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Chapter 4

Problem Statement

In the context of this thesis, a legged robot is a mammal-like quadruped or an insect-like hexapod
robot with a rigid body, bilaterally or radially symmetrically placed identical legs with three to six
joints per leg. The present approach is focused on hexapod walking robots with 3DOF on each leg;
however, most can be generalized for any legged robot. The following is assumed.

• Quasi-static motion – superior static stability is the main advantage of the hexapod platform.
A safe traversal of rough and possibly unstable terrain is desired; thus, the robot should move
deliberately. At any moment, the robot should be able to stop its motion and backtrack. Any
dynamic motions such as jumps or steps that require active balancing are therefore undesirable.

Formally it means ignoring the first and second-order terms in the Lagrangian equation, which
leaves (26).

• Rigid environment – in scenarios such as exploring collapsed buildings, disturbing the en-
vironment is dangerous; therefore, any deformable terrain should be avoided. A model of a
non-rigid environment can be included later. It is expected to restrict the set of viable footholds
and requires more careful consideration of the forces applied to the environment. Hence, the
environment is assumed to be rigid.

• Finite set of discrete footholds – In highly structured terrain, locally optimal footholds such
as small concavities might be desirable. Also, due to the physical dimensions of the foot tip,
the contacts with the environment cannot be selected completely arbitrarily. Any sliding of the
robot’s effectors on the terrain is also undesirable as it might disturb the environment. Therefore,
we work with a finite set of footholds selected before planning.

In the rest of the chapter, the configuration space of a statically stable-legged robot is described. The
planning task in the described configuration space is defined. Finally, based on the early results of
preliminary solutions, observations about the nature of the solution of the planning task are presented
to support the selected design choice of the proposed free-gait planning.

4.1 Configuration Space

A statically stable configuration q of a legged robot with N legs with M degrees of freedom consists
of a body pose and joint configurations. The body pose is an isomorphism P ∈ SE(3) and the angle
of the j-th joint of the i-th leg is a planar rotation θi,j ∈ SO(2). The whole configuration space is then
C = SE(3) × SO(2)NM with the dimensionality 6 + NM . That is NM CDOF and 6 + NM total
DOF. Therefore, a hexapod robot with 3DOF legs has 24 total DOF, and 18 of them are controllable.

Only some allowed parts of the robot, the robot’s effectors, can contact the terrain. Other contacts
with the terrain are considered a collision. Slippage of effectors is undesirable, and once placed on the
terrain, their position is fixed in the global coordinate frame. The effectors in contact with the terrain
are the only way the robot can exert forces on the environment. The effectors used to exert the forces
are in a stance state while the effectors not in the stance state are in a swing state. The state of the
effector is considered to change instantaneously.
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4.1 Configuration Space

A stance σ is a partial mapping σ : E → H, where E is a set of the robot effectors and H ⊆ R3 is a
set of viable footholds on the terrain. Let us denote Σ the set of all stances. The domain of σ, dom(σ)
are the effectors for which the mapping is defined. We say that effectors in dom(σ) are fixed by σ.
The image of σ, im(σ) ⊆ H is the subset of footholds to which some effector is mapped by σ.

For each valid configuration q ∈ C, there exists a stance that fixes the contacts allowing the robot to
exert the forces necessary to maintain its stability. There might be multiple stances associated with a
given configuration q. Indeed, multiple effectors can be touching the terrain in a given configuration,
but only a smaller subset of effectors might be considered in a stance state and used to exert forces.

A stance defines a contact constraint. A configuration satisfies the contact constraints of σ iff all
effectors fixed by σ are in the position they are assigned by σ. The set of all configurations satisfying
the contact constraint of σ is called the contact submanifold of σ, denoted Cσ.

The stance σ is critical for defining constraints and the subset of valid configurations Cfeasible. It is
therefore helpful to include σ in the description of the configuration. Therefore, we can define CΣ as

CΣ = SE(3)× SO(2)NM × Σ . (18)

Here, Σ is a part of the configuration space definition and the stance σ associated with a given config-
uration is used to determine if the stance-configuration qσ = (q, σ) is valid, i.e., qσ ∈ CΣ,feasible.

Beside the contact constraint, the following restrict the configuration space.

• Force/torque, friction – The robot must be able to hold the configuration q such that the sum
of forces acting on the terrain equals the force of gravity. The forces must not exceed the limits
imposed by the terrain. The torques at the robot’s joints cannot exceed the limit of the actuators.
Note that the joint torques could be made a part of the configuration space. However, it may be
easier to restrict configurations where it is impossible to achieve the necessary forces without
exceeding the torque limits, then increasing the dimensionality of the configuration space.

The stance is important in defining these constraints because it specifies effectors that may exert
forces on the environment.

• Terrain collisions – All parts of the robot must be at a safe distance from the environment.
The stance defines the allowed contact with the environment. It is necessary to allow the robot
effectors to contact the terrain near the footholds or even intersect the terrain to account for
effector compliability.

• Joint position limits and self collision – The rotation angles θi,j must not exceed the limits
given by the construction of the robot and the properties of the actuators. Any two links of the
robot must not intersect each other. These limitations constraint the allowable configurations of
the robot’s joints.

Let us define Fσ ⊆ Cσ, where Fσ are all configurations q such that qσ satisfies all other constraints
in addition to the contact constraint of σ. The set Fσ is called stance region3 [11]. While the contact
constraint is an equality constraint, the other constraints are inequality constraints and do not reduce
the topological dimension of Cσ.

The subset of valid configurations Cfeasible is the union of Fσ ⊆ Cσ,

Cfeasible =
⋃
σ∈Σ

Fσ , (19)

3Hauser calls it the feasible space but we find that less intuitive.
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4.2 Constraints

and therefore,
CΣ,feasible =

⋃
σ∈Σ

(Fσ × {σ}) . (20)

4.2 Constraints

In this section, the individual constraints of the robot’s configuration space are discussed. The descrip-
tion provided here is general, and the exact definition of the constraints is implementation-dependent.
For the exact formulation of the considered constraints, the reader is referred to Section 5.2.

4.2.1 Contact constraint

The contact constraint is defined w.r.t. a given configuration q and a stance σ. It is a set of equality
constraints

∀e FKq(e)− σ(e) = 0 ; e ∈ dom(σ) , (21)

where FKq(e) is the forward kinematic solution for the effector e in the configuration q. For σ ∈ Σ, let
Cσ ⊆ C be the set of all configurations q ∈ C that satisfy the contact constraint of σ. The set Cσ forms
a submanifold of C. Since the position of the foothold has 3DOF, each foothold fixed by σ reduces the
topological dimension of Cσ by three compared to C. Let |σ| be the number of contact points fixed by
σ, then it holds that

dim(Cσ) = dim(C)− 3|σ| . (22)

4.2.2 Stability, Friction and Torque Limits

A necessary condition for the robot’s stability at some configuration q and stance σ is that the position
of the center of mass in q projected to the level plane p̂COM(q) lays within the support polygon; that is a
convex hull of the footholds fixed by σ projected to the level plane. This constraint is easy to evaluate;
however, it is not a general condition for stability. The complete formulation needs to consider the
forces applied to the footholds.

Let σ(e1), σ(e2), . . . , σ(en) be the footholds for the effectors e1, e2, . . . , en fixed by σ. Let νi, µi, fi
for i = 1, 2, . . . , n be the respective terrain normals, static coefficient of friction, and reactive forces
acting on the robot. The robot is in the static equilibrium if the following constraint are satisfied.

• The net force action on the robot is zero

mg +
n∑
i=1

fi = 0 , (23)

where g is the gravity vector.

• The net torque acting on the robot is zero

pcom(q)×mg +
n∑
i=1

σ(ei)× fi = 0 , (24)

where pcom(q) is the position of the robot’s center of mass in the configuration q.

• All forces lay in the friction cones of their respective footholds

∀i :
∥∥(I − νiνTi )fi

∥∥
2
≤ µiνTi fi . (25)
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4.2 Joint Position Limits and Self-collisions

• The reaction forces can be achieved without exceeding the maximum torques acting on the
joints. Let τ be the vector of torques

τ = G(q)−
n∑
i=1

(
J

(θ)
pi(q)

(q)
)T
· fi , (26)

where G(q) is the generalized gravity

G(q) =
(
J

(θ)
pCOM(q)(q)

)T
·mg . (27)

The torques values can be found as a solution to the Second Order Cone Program (SOCP) [66]. The
constraint of the SOCP are expressed in (23) to (27).

4.2.3 Joint Position Limits and Self-collisions

Let us discuss constraints defined only by the joint configuration θ component of the robot’s con-
figuration. Some joint configurations are infeasible because links of the robot may collide with one
another and because of the limited range of the joints. Each joint has to respect its maximum and
minimum angle limit. This constraint is easy to check and every θi of θ = [θ1θ2 . . . θn]T has to satisfy

θi,MIN ≤ θi ≤ θi,MAX . (28)

The limits θi,MIN and θi,MAX are given by the range of the robot’s actuators and by the construction of
the robot to prevent collisions between adjacent links.

A valid joint configuration must not lead to self-collision. A straightforward way to check self-
collisions is to use a mesh-interference checker, such as [63]. A problem with the mesh-based collision
checker is that it gives only a binary answer. It does not provide a metric to evaluate how much the
constraint is violated or how close a given configuration is to violate the constraint. It is also relatively
slow to evaluate. A representation using a simplified geometric model of the robot could be faster and
sufficiently precise. Using geometric primitives allows for a closed-form expression of the distance
between two links. It is possibly faster to compute than mesh intersection and possibly provides more
information about the distance to and obstacle.

In some cases, it is possible to use knowledge about the robot to simplify the representation of the
collision constraint. For instance, the collisions between adjacent links can be handled by limiting the
range of the motion of the joint connecting them. In fact, we can eliminate the risk of self-collision
all together by imposing strict bounds on the joint angle. A less restrictive approach would be to
determine which body parts may not collide and only check collisions between the pairs that can. For
example, it may be enough for a legged robot to check collisions between neighboring legs only.

4.2.4 Terrain Collisions

Except for the effectors, no part of the robot may intersect the environment. This constraint must
be considered when walking on rough terrain and in confined spaces. A mesh-interference checker
can be used when checking for self-collisions. In addition to the issues with the mesh-based checker
discussed in the previous section, we would need to represent the environment using a mesh or a set
of meshes. Here, using geometric primitives such as spheres is not as straightforward as in the case
of self-collisions. It is unfeasible to represent a rough environment using geometric primitives. One
approach is to approximate only the shape of the robot using geometric primitives, namely spheres.
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4.3 Planning Task

With a representation of the terrain that would allow computing distance to the obstacle at every point
easily, it would be trivial to test for collision with the sphere model [21]. Such a representation can
be a look-up table precomputed using a distance transformation, which is the Signed Distance Field
(SDF) [64].

4.3 Planning Task

A general planning taskP is defined by the configuration space C, the constraints defining Cfeasible ⊆ C,
an initial configuration qinit ∈ Cfeasible, and a goal condition defining a goal set G ⊆ Cfeasible. For
example, a goal can be defined by some goal stance σgoal as Fσgoal or any other subset of C such as
all configurations with the given x, y coordinates. A solution to P is a continuous path π : [0, 1] →
Cfeasible, such that π(0) = qinit and π(1) ∈ G.

Because of (20) and since for every t it holds that π(t) ∈ Cfeasible, there exists at least one stance σ
at each t such that (π(t), σ) ∈ CΣ,feasible. Note that there can be multiple such stances that form a
valid pair with q. Let us define µ : Cfeasible → Σ such that µ(q) = argmax{σ | (q,σ)∈CΣ,feasible} |σ|. Each
configuration on the path π shall be associated with the largest possible stance. It is assumed that
all legs, whose foot tips are in contact with the terrain, are in the stance phase. Thus, πΣ : [0, 1] →
CΣ,feasible is defined as

πΣ(t) = (π(t), µ(π(t))) . (29)

Due to the nature of C and Σ, the stances switch discretely at t1, t2, . . . , tk. The interval [0, 1] is
split into subintervals I1 = (0, t1), I2 = (t1, t2), . . . , Ik + 1 = (tk, 1); those correspond to stances
σ1, σ2, . . . , σk+1. At the times of transitions between stances ti, the constraints of both stances must be
satisfied. It must hold that π(Ii) ⊆ Fσi and π(ti) ∈ Fσi ∩ Fσi+1. Let, without the loss of generality,
|σ1| > |σ2|, then the contact constraint of σ1 and the stability constraint of σ2 must be both satisfied
by all configurations in Fσ1 ∩ Fσ2.

Notice that for each solution to a general planning task, there are two implicit sequences:

• a sequence of stances that the robot uses to support its body during the motion; and

• a sequence of intermediate configurations π(t1), π(t2), . . . , π(tk) at which the discrete switch
from one stance to another happens.

Let has a planning task P = (Cfeasible, qstart,G) and sequence

S = q0 σ1 q1 σ2 q2 . . . σk+1 qk+1 (30)

satisfying the requirements:

σ1 = µ(qstart) , (31)

q0 = qstart , (32)

qk+1 ∈ G , (33)

qk+1 ∈ Fσk+1 , (34)

qi ∈ Fσi ∩ Fσi+1 . (35)

The existence of such a sequence is a necessary condition for the existence of a solution to the planning
task P . The sequence S is called a candidate sequence of P .
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4.3 Planning Task

If a candidate sequence for the planning task P is obtained, the problem decomposes to k + 1 single-
mode constrained planning problems. Let S = q0 σ1 q1 σ2 q2 . . . σk+1 qk+1 be a candidate sequence
for P . The solution to P – π can be obtained by finding π1, π2, . . . πk+1 such that

πi : (0, 1)→ Fσi , (36)

πi(0) = qi−1 , (37)

πi(1) = qi . (38)
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Chapter 5

Proposed Method

In this chapter, a description of the proposed method is provided. First, an overview of the method
is outlined, and the used constraint functions are formally introduced. Then, the proposed solution to
finding a candidate sequence is presented in Section 5.3. The proposed approach for finding a smooth
path is presented in Section 5.4. Finally, the chapter is concluded with the discussion of the transition
sampling approach in Section 5.5.

5.1 Overview of Proposed Planning Method

We are given the initial configuration q ∈ Cstart and an initial stance σstart. The goal is given as an
x − y position of the body because specifying the whole body configuration or a specific stance as a
goal would be too restrictive. The propose approach follows the methodology used by Hauser [11]
and Vernaza, et al. [58]. We decompose the planning task into two steps that are visualized in Fig. 7.

1. Find a candidate sequence of stances (Candidate sequence planning). The first step is based
on the A* graph search algorithm. The vertices of the graph correspond to feasible stances.
Because of the assumption of quasi-static motion, a valid stance must fix at least three effectors.
An edge exists between two vertices σ1, σ2 iff Fσ1 ∩ Fσ2 6= ∅.

Since the searched graph is building during the search, we use a simple geometric criterion to
select potential neighboring stances when enumerating all neighbors of a vertex, The existence
of edges to the potential neighbors has to be verified by finding a configuration satisfying the
constraints of both stances. A random configuration close to Fσ1 ∩ Fσ2 is sampled randomly
and projected onto the set by gradient descend methods like Newton-Raphson or Levenberg-
Marquard algorithm.

2. Find the final motion (Single-step planning). In the second step, we need to ensure that
the robot can move between the intermediate configurations in the candidate sequence. Here,
we assume it is relatively easy for simple-legged robots and that the smooth paths between
the intermediate configurations are not complicated. Therefore, we propose to represent the
subpaths as Bézier curves in C. A numeric method similar to the one used for finding the
intermediate configurations in the first step is used to move the curve close to Fσ. A relaxation
approach is employed as only limited precision is possible with the polynomial Bézier curve.

The used decomposition does not restrict the set of solvable planning tasks because the existence of a
candidate sequence is a necessary condition for the existence of a complete solution. Also, as stated
in [11], the motion of the robot is the most constrained near the intersections of the stance regions
Fσ; therefore, the existence of intermediate configuration is a good indication that a complete solution
exists. However, the existence of a candidate sequence does not guarantee that the second step will
succeed. If it is impossible to obtain a valid path from a particular candidate sequence, the task may
still be solvable. It may be enough to resample the intermediate configurations. It is also possible to
restart the planning with an adjusted cost of edges.
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5.2 Constraint Functions

Candidate sequence planning

Single-step planning

qstart, σstart

π1, π2, . . . πk+1

GΣ

{Fσ : C → Rk | σ ∈ Σ}
goal : Σ→ {true, false}

{Fσ : C → Rk | σ ∈ Σ}

q0σ1q1σ2q2 . . . σk+1qk+1

Figure 7: Schema of the planning method

5.2 Constraint Functions

This section presents a formal definition of the constraint function restricting the sets Fσ. The con-
straint function provides a measure of how much a given constraint is violated. The functions are also
differentiable to allow for the use of iterative descend methods.

We can numerically solve the set of nonlinear equalities and inequalities

f(q) = 0

g(q) ≤ 0

where f : C → Rn is the equality constraint penalty function, and g : C → Rm is the inequality
constraint penalty function. The inequality constraints are handled using the active set method. The
combined constraint function are solved as

F (q) =

[
f(q)
ĝ(q)

]
(39)

where ĝ(q) are the non-zero values of g(q).

In particular, the following constraint penalty functions are used.

• Contact constraint fCσ – For each leg whose foot tip is fixed by σ, the difference of the
position of the foot tip is given by the forward kinematics, body pose, and the target position
given by the stance.

• Support polygon constraint gSσ – We use the support polygon and the Center of Mass (COM)
position to evaluate stability. The stance also gives the support polygon. As of now, we do not
consider the force/torque limits.

• Joint limits gθ – The constraint restricts the range of the robot’s joints. We use this constraint
to prevent self-collisions. The limits are set such that no parts of the robot can intersect each
other in any configuration.
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5.2 Contact Constraint

• Terrain collisions gSDFσ – The constraint penalizes collisions with the terrain using an approx-
imate collision model of the robot and SDF.

• Goal constraint gG – The constraint is added when testing if a configuration is a goal configu-
ration; see Section 5.3.3.

Our constraint function is thus defined as

FFσ(q) =


fCσ(q)
ĝSσ(q)
ĝθ(q)
ĝSDFσ(q)

 . (40)

The individual constraints are further detailed in the following paragraphs.

5.2.1 Contact Constraint

Let FKq(ei) be the forward kinematic solution for the i-th effector e, fixed by a stance σ at the con-
figuration q. Let σ(ei) be the target position of the i-th effector assigned by the stance σ. The contact
constraint penalty function is then

fCσ(q) =


FKq(e1)− σ(e1)
FKq(e2)− σ(e2)

...
FKq(e|σ|)− σ(e|σ|)

 . (41)

The Jacobian matrix of the contact constraint is a concatenation of kinematic Jacobians of the individ-
ual foot tips w.r.t. the whole robot configuration

JfCσ (q) =


Je1(q)
Je2(q)

...
Je|σ|(q)

 . (42)

5.2.2 Support Polygon Constraint

Let σ be the support stance and the support n-gon be the convex hull of the foot tip positions prescribed
by σ projected to the x-y plane, the vertices of the support polygon be v1,v2, . . .vn,vn+1, where
vn+1 = v1, and ν̂i be the outward pointing normal of the i-th edge (vi+1 − vi) of the support
polygon. The position pCOM of the center of mass of the robot is computed as weighted sum of the
COM positions of individual links

pCOM(q) =
1

M

|L|∑
j=1

mjpCOM,j(q) , (43)

where L is the set of robot’s links. The point pCOM,j(q) is the position of the j-th link’s COM, mj is
the mass of j-th link, and M is the total mass of the robot.
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5.2 Joint Limits

Let p̂COM be the position of the center of mass projected to the x-y plane. The support polygon
constraint penalty function is determined using

gSσ(q) =


ν̂1 · (p̂COM(q)− v1) +Mstab
ν̂2 · (p̂COM(q)− v2) +Mstab

...
ν̂n · (p̂COM(q)− vn) +Mstab

 , (44)

where Mstab ≥ 0 is a stability margin. The Jacobian matrix of the support polygon penalty can be
computed as

JgSσ (q) =


ν̂T1 · Jp̂COM

(q)
ν̂T2 · Jp̂COM

(q)
...

ν̂Tn · Jp̂COM
(q)

 , (45)

where JpCOM(q) is defined as

JpCOM(q) =
1

M

|L|∑
j=1

mjJpCOM,j (q). (46)

5.2.3 Joint Limits

Let θmax,i,j and θmin,i,j be the maximum and minimum angle of the j-th joint of the i-th leg, respec-
tively. The joint limit penalty is computed as

gθ(q) =



max(θmin,1,1 − θ1,1, θ1,1 − θmax,1,1)
max(θmin,1,2 − θ1,2, θ1,2 − θmax,1,2)

...
max(θmin,2,1 − θ2,1, θ2,1 − θmax,2,1)
max(θmin,2,2 − θ2,2, θ2,2 − θmax,2,2)

...
max(θmin,n,m − θn,m, θn,m − θmax,n,m)


. (47)

Jacobian of the joint limit function can be defined as

Jgθ(q) =



01×6 ∂1,1 0 . . . 0 0 . . . 0
01×6 0 ∂1,2 . . . 0 0 . . . 0

...
...

...
. . .

...
...

. . .
...

01×6 0 0 . . . ∂2,1 0 . . . 0
01×6 0 0 . . . 0 ∂2,2 . . . 0

...
...

...
. . .

...
...

. . .
...

01×6 0 0 . . . 0 0 . . . ∂n,m


, (48)

where ∂i,j = sgn(2θi,j − θmin,i,j − θmax,i,j).

5.2.4 Terrain Collisions

The shapes of the robot’s links are approximated by several spheres, where the set of spheres should
completely cover all links (see Fig. 8). Let k spheres cover the whole robot, ri being the radius of
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5.2 Terrain Collisions

the i-th sphere, and ci(q) be the position of the center of the i-th sphere at the configuration q. Let
SDF : Fglobal → R be a function computing the signed distance to terrain for query points in the
global coordinate frame. The value of SDF(x) can be negative if x is inside the terrain. The function
is realized by the Signed Distance Field (SDF), which is precomputed before planning.

Figure 8: Sphere-based robot collision model approximation.

The collision penalty is computed as

gSDFσ(q) ≈


Mcol + r1 − SDF(c1(q))
Mcol + r2 − SDF(c2(q))

...
Mcol + rk − SDF(ck(q))

 , (49)

where Mcol ≥ 0 is the collision margin.

The definition of the collision penalty, in combination with the contact constraint, leads to Fσ = ∅ for
Mcol � 0. Since a large collision margin prevents the foot tips from reaching their target footholds, we
propose to locally relax the collision constraint near the footholds similarly to [44]. The step function
is defined

s(x) =


0 x ≤ r
1− 1

b2
(x− r − b)2 x ≤ r + b

1 otherwise

. (50)

where r ≥ 0 is a dead-zone radius and b ≥ 0 is brim size.

Using the SDF, we can define a closest point function that computes the nearest point on the terrain
for a given position:

CP(x) = x− SDF(x)∇SDF(x) . (51)

For a stance σ, we can define a relaxation function

ρσ(x) =

|σ|∏
i=1

s(‖σ(ei)− CP(x)‖2) . (52)

Then, the collision potential function for σ becomes:

pσ(x, r) = ρσ(x) (−SDF(x) + ρσ(x) Mcol + r) . (53)
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5.3 Finding a Candidate Sequence

The collision constraint function is properly defined in terms of the potential function

gSDFσ(q) =


pσ(c1(q), r1)
pσ(c2(q), r2)

...
pσ(ck(q), rk)

 (54)

and its Jacobian is defined as

JgSDFσ(q) =


∇pσ(c1(q), r1)
∇pσ(c2(q), r2)

...
∇pσ(ck(q), rk)

 . (55)

The gradients can be computed as

∇pσ(x, r) = −ρσ(x) ∇SDF(x)− SDF (x)∇ρσ(x) + 2Mcol ρσ(x) ∇ρσ(x) + r ∇ρσ(x) , (56)

where

∇ρσ(x) =

|σ|∑
i=1

∇ (s(‖σ(ei)− CP(x)‖2))

|σ|∏
j=0 ; j 6=i

s(‖σ(ej)− CP(x‖2) (57)

∇ (s(‖σ(ei)− CP(x)‖2)) = − s′(‖σ(ei)− CP(x)‖2)∇CP(x)
σ(ei)− CP(x)

‖σ(ei)− CP(x)‖2
(58)

∇CP(x) = (E−∇SDF(x)∇SDF(x)T ). (59)

A visualization of the collision potential function near a foothold on flat terrain can be seen in Figure 9.
The relaxation function creates a funnel in the collision that allows the effector of the robot to contact
the terrain. To account for compliant effectors, the collision potential field allows the effectors to
penetrate the terrain in the deadzone. Notice that for points far enough from the footholds of σ, the
collision potential function is the same as the collision function defined in (49).

5.3 Finding a Candidate Sequence

The first step of the proposed planner is the search for a candidate sequence of a given planning task
P = (Cfeasible, qstart,G). We find the sequence using graph-search for which we define a stance graph
GΣ = (V,E) where V = Σ and E = {(σ1, σ2) | Fσ1 ∩ Fσ2 6= ∅ ∧ compatible(σ1, σ2)}. For each
edge of the graph (σ1, σ2), we can select an intermediate configuration from Fσ1 ∩ Fσ2 – indeed the
set Fσ1 ∩ Fσ2 is non-empty. The intersection of the stance regions is called transition [11]. Any path
from σstart to any σ ∈ G corresponds to a candidate sequence of P . We say that two stances, σ1 and
σ2, are compatible iff they only differ in one foothold, i.e., σ2 only removes/adds a foothold from/to
σ1. Note that we do not lose any valid path by restricting the candidate sequence in this way.

For the graph-search, A* with the lazy expansion is employed, see Algorithm 1. Sampling the inter-
section of two stance regions requires solving a nonlinear system of equations, and it is costly to test
the existence of an edge in the stance graph. Therefore, possible candidate neighbours are first gener-
ated using simple criteria. The existence of an edge is properly tested only if the neighbour would be
added to the open list. The following functions and predicates need to be defined as subroutines of the
algorithm:
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5.3 Cost and Heuristic Function

brim deadzone brim

Figure 9: Collision potential function with a collision margin (orange dashed line) around a foothold
(blue point) on a flat terrain showing a funnel created by the relaxation function. The deadzone radius
is the radius of the bottom of the funnel. The brim is the difference between the dead zone radius and
the radius of the affected neighborhood of the foothold.

• Cost function f(σ)

• Heuristic function h(σ)

• candidateNeighbours(σ)

• validEdge(σ1, σ2)

• goal(σ)

With the exception of candidateNeighbours(σ) and validEdge(σ1, σ2) the meaning is the
same as in the regular A*. Note that if all vertices returned by candidateNeighbours(σ) are
valid and validEdge(σ1, σ2) always returns true, the algorithm is equivalent to the regular A*.

5.3.1 Cost and Heuristic Function

A variety of quality measures about the candidate sequence can be optimized by selecting a suitable
cost function. We may want to optimize the path length, path energy consumption, or safety. The
heuristic function should be as precise a lower-bound approximation of the cost function as possible
if we care about a fast and optimal solution. However, if we mostly care about finding any feasible
solution, the cost function is not as important, and the heuristic should severely penalize vertices far
from the goal. In our implementation, we use the following cost and heuristic functions.

• Cost f : Σ2 → R – We set the cost to 1 for each edge. That is in line with the observation that
the robot’s motion is most restricted when it places or lifts a leg [11]. The maneuver of lifting
a foot from the terrain and losing support and the maneuver of placing a foot on the terrain
violating collision margin are inherently risky. Thus limiting the number of steps is desirable
arguably more than just optimizing the traveled distance.

• Heuristic h : Σ→ R – We use a least squares pose heuristic by setting

h(σ) = Dscale

∥∥∥ĈP(σ)− p̂goal

∥∥∥
2
, (60)
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5.3 Generating Candidate Neighbours

Algorithm 1: A* with lazy expansion
1: C ← ∅
2: σstart.cost← 0
3: O ← {σstart}
4: while (Q− C) 6= ∅ do
5: σcur ← argmaxσ∈(O−C) σ.cost + h(σ)
6: C ← C ∪ {σcur}
7: if goal(σcur) then
8: END succees
9: end if

10: for σn in candidateNeighbours(σcur) do
11: if σn /∈ O or σcur.cost + c(σcur, σn) < σn.cost then
12: if validEdge(σcur, σn) then
13: σn.cost← σcur.cost + c(σcur, σn)
14: O ← O ∪ {σn}
15: end if
16: end if
17: end for
18: end while
19: END failure

where p̂goal is the x-y goal position and ĈP(σ) represents the x-y coordinates of a base link
pose CP(σ) minimizing the squared distance of the effectors to footholds assigned by the stance
in a base joint configuration θdefault of the robot,

CP(σ) = argmin
p

|σ|∑
i=1

∥∥IK(p,θdefault)(ei)− σ(ei)
∥∥ . (61)

The parameter Dscale is a distance scaling factor, and with the appropriate value of Dscale, the
distance is the simplest estimation for the number of steps to reach the goal. If we do not care
much about optimality and want any feasible solution, setting large Dscale makes the heuristic
inadmissible, however, it will drive the algorithm to the goal faster.

A simple heuristic is used by K. Hauser, et al. [57] that uses a centroid of the support polygon
instead of the least-squares pose. The problem with the support polygon heuristic is that it
always penalizes lifting the front legs. The heuristic (60) penalizes lifting the front legs in
stretched stances, where it is desirable to move the rear legs. It actually rewards lifting the front
legs in squished stances where it is desirable behavior, see Fig. 10.

5.3.2 Generating Candidate Neighbours

We need to determine possible neighboring stances of the current stances during the search for a
candidate sequence. Only the stances that differ in a single foothold are considered when selecting
possible neighboring stances for the current stance It gives two types of edges.

1. Foothold removal – For each leg whose foot tip is fixed by the current stance, we consider a
stance with that foothold removed as a neighbor of the current stance. If the current stance has
three footholds, we do not consider these edges as they would violate static stability.
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5.3 Transition and Goal Sampling

(a) squished stance (b) stretched stance

Figure 10: Comparison of support polygon and least squares pose heuristics. The diagram shows
change in the position of the centroid of the support polygon and the pose of the robot minimizing the
sum of least square distances of effectors to footholds at the default joint configuration. Notice that the
proportions of the support polygon are exaggerated to enhance the effect. (left) When lifting a front
leg in a squished stance, the support polygon heuristic penalizes this step, although it is desirable. The
least squares pose heuristic rewards this step. (right) The least squares pose heuristic penalizes lifting
a leg in a stretched stance; this is a desirable behaviour.

2. Foothold addition – We find a least squares pose p to the current stance as in (61). For an
effector that is not fixed by the current stance, and each foothold on the terrain in a sphere
around the position of the effector at the configuration (p,θdefault), we form a stance with that
foothold added for that same effector, see a visual example in Fig. 11.

Figure 11: Footholds considered (marked red) for the swinging leg.

5.3.3 Transition and Goal Sampling

In order to implement the validEdge(σ1, σ2) procedure we need to test if Fσ1 ∩ Fσ2 6= ∅. We
propose to do that by repeatedly randomly sample Fσ1 ∩ Fσ2. However, it is impossible to get such
a configuration by random sampling C. Thus, the neighborhood of Fσ1 ∩ Fσ2 is sampled, and a
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5.4 Finding Smooth Paths

descend method is used to correct the sampled configuration. If the descending method converges,
the sampling was successful. Without the loss of generality, we solve only a sampling of Fσ1 ∩ Fσ2

where |σ2| = |σ1|+ 1. Indeed, only stances differing in a single foothold are considered, and placing
an effector is time-symmetric with the effector lifting. Let us relabel σ1 as σsupport and σ2 as σtarget.
The constraint penalty function of Fσsupport ∩ Fσ target becomes

FFσ support∩Fσ target(q) =


fCσ stance(q)
ĝSσ support(q)

ĝθ(q)
ĝSDFσstance(q)

 . (62)

We follow Algorithm 2 to obtain a configuration fromFσsupport∩Fσ target = ∅ by SampleTransition()
procedure.

In order to examine we reach the goal, i.e., implement the subroutine goal(σ) of Algorithm 1, we need
to test if Fσ ∩ G = ∅. That is done using essentially the same procedure SampleTransition(),
just the constraint function is extended by the goal equality constraint function fG as

fFσ∩G(q) =


fCσ(q)
fG(q)
ĝSσ(q)
ĝθ(q)
ĝSDFσ(q)

 . (63)

5.4 Finding Smooth Paths

The second step of the proposed planning method is finding smooth path for the determine candidate
sequence. Let has a candidate sequence

q0 σ1 q1 σ2 q2 . . . σk+1 qk+1 (64)

We need to find sub-paths πi : [0, 1] → Fσi connecting intermediate configurations qi−1 and qi to
obtain a full path.

Let defines a constraint violation function of the path using the constraint penalty function of Fσi as

FFσi,qi−1,qi(q) =


fCσ i(q)
gSσ i(q)
gθ(q)

gSDFσi,qi−1,qi(q)

 . (65)

Note that the collision function depends on the initial and final configurations qi−1 and qi, respectively,
on the stances µ(qi−1) and µ(qi). It is needed to relax the collision constraint near footholds of µ(qi−1)
and µ(qi) that needs to be reached at the endpoints of the path.

Now, let defines the penalty of the path πi for a given sampling S as

ES(πi) =


FFσi,qi−1,qi(πi(0/S))
FFσi,qi−1,qi(πi(1/S))

...
FFσi,qi−1,qi(πi(S/S))

 . (66)

In order to have a valid path, it must hold that

‖ES(πi)‖2 <
√
S ε, (67)
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5.4 Finding Smooth Paths

Algorithm 2: Sample Transition
SampleTransition(σ1, σ2)

1: σtarget ← argmaxσ∈{σ1,σ2} |σ|
2: σsuppport ← argminσ∈{σ1,σ2} |σ|
3: for i ∈ {1 . . .MaxIteration} do
4: q ← SampleNeighbourhood(σ1, σ2)
5: q ← SolveNewtonRaphson(q, FFσ [support]∩Fσ [target])
6: if fFσ [support]∩Fσ [target](q) ≤ ε then
7: END SUCCESS
8: end if
9: end for

10: END FAILURE

SolveLevenbergMarquard(q, f )
1: for i ∈ {1 . . .MaxIteration} do
2: if ‖f(q)‖2 ≤ ε then
3: RETURN q
4: end if
5: v← f(q)
6: δ ← (Jf

TJf − λE)−1Jf
T v

7: if ‖f(q + δ)‖2 < ‖f(q)‖2 then
8: q ← q − δ
9: λ← λdrop · λ

10: else
11: λ← λboost · λ
12: end if
13: end for
14: END FAILURE

SampleNeighbourhood(σ1, σ2)
1: σtarget ← argmaxσ∈{σ1,σ2} |σ|
2: θ0 ← Nominal Joint Positions
3: p0 ← argminp∈SE(3) fCσ target ((p,θ0))
4: ε← N (0,W)
5: RETURN (p0,θ0) + ε
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5.5 Discussion of Transition Sampling Approach

where ε is the desired precision. Note that
√
S ε is the value of l2-norm of ES(πi) if all S samples on

πi violate the constraint by ε.

An alternative path cost functions considers the worst sample along the curve

ES,max(πi) = max
t∈{0/S,1/S,...,S/S}

FFσi,qi−1,qi(πi(t)) . (68)

In order to have a valid path, it must hold that

‖ES,max(πi)‖2 < ε . (69)

We propose to parameterize πi : [0, 1] → C using Bézier curve of the degree d in C ≡ Rn. Thus, the
Bézier curve is defined by d+ 1 control points. Let those control points be the column vectors of the
matrix P ∈ R(n,(d+1)) . A point on the curve for a given value t can be then computed as

πP(t) = P ·Bd(t) , (70)

where Bd(t) is the vector of the weights.

The advantage of Bézier curve-based parametrization is that we can control the path complexity by
selecting the number of control points. The single-step motions needed to connect the intermediate
configurations in a candidate sequence require a relatively simple motion for the hexapod robot with
3DOF per leg. In our experience, even a simple linear interpolation of the configurations produces
a viable path. Hence, by using Bézier curves with a low number of control points, the need to use
a more complex search algorithm is avoided, and it is possible to use the same constraint functions
and descend methods used for transition sampling. Limiting the motion in this way may also avoid
producing unnatural motions produced by sampling-based algorithms that are observed by Hauser
in [11].

The proposed path smoothing procedure starts with some initial control points P0. In our cases, a
linear interpolation of qi−1 and qi is utilized. The path constraint (66) is solved using the Levenberg-
Marquard algorithm depicted in Algorithm 2.

5.5 Discussion of Transition Sampling Approach

Regarding the solution of the constraints of the stances, two particular approaches have been imple-
mented and examined. At first, only the support polygon constraint and the kinematic constraints
have been considered. However, instead of formulating the contact constraint as equality, we took
advantage of the fact that the inverse kinematics of the 3DOF legs of a simple hexapod robot has a
closed-form solution for which, under mild assumptions, it is possible to define a unique solution. The
workspace of a 3DOF leg is also straightforward to model. A closed-form expression for the distance
to the boundary of the workspace of the leg was used to formulate an inequality constraint on the
position of the robot’s body. It is similar to the method used by D. Belter, et al. in [45]. Only the
6DOF pose of the robot’s body had to be optimized instead of the whole 24DOF configuration. The
angles for the swing legs were set to a default/retracted position with the legs held close to the body,
such that they do not stick out, to prevent them from colliding with the terrain or shifting the center of
mass.

Besides, also inspired by Belter, the Particle Swarm Optimisation (PSO) was used to solve the con-
straints. The PSO is a metaheuristic optimization algorithm based on a study of bird flocking be-
haviour [67]. However, we assumed that the PSO would not scale well to robots with more DOFs per
leg and more complex constraint functions. Therefore, it turns out that the final approach is inspired by
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Algorithm 3: Particle Swarm Optimization (PSO)
SolvePSO(f )

1: for i ∈ {1 . . . N} do
2: xi ← U(blo, bup) Uniform random initialization between lower and upper bound
3: pi ← f(xi)
4: vi ← U(−|blo − bup|, |blo − bup|)
5: end for
6: g← argminxi ; i∈{1...N} ‖f(xi)‖2
7: while ‖g‖2 > ε do
8: for i ∈ {1 . . . N} do
9: vi ← ω vi + ϕp U(0, 1) (pi − xi) + ϕg U(0, 1) (g − xi)

10: xi ← xi + vi
11: if ‖f(xi)‖2 < ‖f(pi)‖2 then
12: pi ← xi
13: end if
14: if ‖f(xi)‖2 < ‖f(g)‖2 then
15: g← xi
16: end if
17: end for
18: end while

Algorithm 4: Newton-Raphson
SolveNewtonRaphson(q, f )

1: for i ∈ {1 . . .MaxIteration} do
2: v← f(q)
3: δ ← Jf

† · v
4: α← 1
5: while ‖f(q − αδ)‖2 > ‖f(q)‖2 do
6: α← α/2
7: end while
8: q ← q − αδ
9: if ‖f(q)‖2 ≤ ε then

10: RETURN q
11: end if
12: end for
13: END failure
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the Iterative Constraint Enforcement (ICE) method [52] and the optimization is based on the Newton-
Raphson method (depicted in Algorithm 4) to find a solution to the whole 24DOF configuration.

Comparing the performance of the PSO and Newton-Raphson method, it has been observed that the
Newton-Raphson method is faster than the PSO with the 6DOF pose when the contact constraint and
support polygon constraint were considered, Admittedly, it might be caused by the need to tune PSO
much more than the Newton-Raphson method. Hence, it might be possible to tune the PSO in future
work as it could allow incorporating constraints that are not differentiable.

In the final revision of the implementation, the Newton-Raphson method has been replaced by the
Levenberg-Marquard algorithm (Algorithm 2). Although it is necessary to tune the damping parame-
ters λ, λboost, and λdrop, it converges for more initial samples and in fewer iterations. Thus, it provides
overall the best performance among the implemented optimization algorithms.
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Chapter 6

HexaPlanner Framework

The proposed planning method is implemented as a C++ framework for legged robot motion planning.
Modules of the framework reflect the abstractions used in motion planning. In this chapter, the most
important parts of the implementation are briefly described to provide an overview of framework
architecture and usage. A dependency diagram of the framework is depicted in Fig. 12.

planning
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Figure 12: Dependency diagram of the HexaPlanner framework.

The framework facilitates an approach inspired by [36, 58]; however, the abstractions are general
enough to be used in future research. The code and documentation are available at the GitLab reposi-
tory4. Besides, a version of the repository as-is at the time of submission of the thesis is uploaded as
an attachment of the digital submission, and it is also included on the DVD accompanying the physical
copies. The framework heavily utilizes the Eigen5 library for representation of vectors and matrices
and its linear solvers.

4https://gitlab.fel.cvut.cz/valoudav/hexaplanner
5https://eigen.tuxfamily.org
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6.1 Parts of the Developed HexaPlanner Framework

6.1 Parts of the Developed HexaPlanner Framework

6.1.1 Terrain Model

The terrain is represented by a height map stored as a 2D grid. The used implementation has an
interface for querying a height at the given x-y coordinates within the map. Bilinear interpolation is
used to calculate the result of the query.

For the used Signed Distance Field (SDF), described in Sections 4.2.4 and 5.2, we used the grid_map
library by ANYbotics [68]. The library is implemented as a package for the ROS6. Since we intend
to use only the core module and the SDF implementation from the grid_map library; a fork of the
ANYbotics’s repository7 is created, and the grid_map_core and grid_map_sdf modules were
extracted to keep the implementation compact and without unnecessary dependencies.

Selecting the set of footholds is a separate problem in motion planning, and it is out of the scope of
this thesis. Therefore, a straightforward implementation distributing the footholds in a grid is used.
The implementation of the foothold set provides nearest neighbor and radius search capabilities. For
that purpose, the nanoflann library implementation of the KD-Trees is employed [69].

6.1.2 Robot Model

The framework implements the OpenChainRobot class that represents a description of the robot
comprised of open kinematic chains. It is realized as an array of Links. The links are stored in
an order given by the topological ordering of the oriented tree isomorphic to the structure of the
robot described in Section 2.3), where the base link is being the first. Each Link stores information
about the index of its parent link and the isomorphism describing its pose in the frame of the parent
link. The representation allows for transformations from the coordinates frames of all links at a given
configuration to the global coordinate frame that can be computed in a single pass over the links in the
topological order.

Additional data are stored for each link, such as mass, the position of the center of mass (COM), and
the collision model. Based on the used data representation, the position of COM of each sub-tree can
also be computed in a single pass.

6.1.3 Search

Templated implementation of the A* algorithm with lazy edge evaluation described in Algorithm 1
is developed. The template parameters specify the type of the graph vertex and a graph class imple-
menting the subroutines of the A* algorithm listed in Section 5.3.

6.1.4 Optimization

A RawMatrix class is implemented for storing the value and Jacobian of a general function f :
Rn → Rm. The Eigen::Matrix class does not provide a way of appending matrices, which is
required by the implementation. Therefore, RawMatrix stores the matrix as an array of variables of
the Eigen::Triplet type. The Eigen::Triplet structure is used to store matrix coefficients
along with their row and column indices. In Eigen, it is used as a precursor representation to construct
sparse matrices. The representation allows adding coefficients into the matrix easily. RawMatrix

6Robot Operating System https://ros.org
7https://github.com/ANYbotics/grid_map
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6.1 Planning

is meant as an intermediate representation for a large matrix being constructed. Before it is used in
further computation, a dense matrix representation or a sparse matrix representation is constructed
from the Triplets.

A FunctionN2M abstract class representing a function f : Rn → Rm is implemented An abstract
method append(Eigen::Vector& argument, RawMatrix& value, RawMatrix*
jacobian) is defined by FunctionN2M. It appends a value of the function for a given argument to
a RawMatrix representation of the output vector. If the optional Jacobian argument is provided,
Jacobian for the argument value is appended.

Two implementations of the Levenberg-Marquard algorithm (see Algorithm 2) are implemented. They
are initialized with reference to FunctionN2M representing the set of solved equalities.

The first implementation is using a dense matrix representation and the Eigen::PartialPivLU
linear solver. The second one is using a sparse matrix representation and the Eigen:SparseQR
linear solver.

6.1.5 Planning

A StanceGraph class implementing the subroutines of the A* algorithm (Section 6.1.3) is provided.
A Stance structure is used to represent the vertices of the stance graph. More specifically, the
vertices are stored as std::shared_ptr<Stace>.

The constraints as described in Section 5.2 are realized as implementations of the FunctionN2M
interface.

The path constraint (66) from Section 5.4 is in an implementation of the FunctionN2M interface. It
is initialized with a reference to an instance of FunctionN2M implementing the constraint function
of the mode (65).
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Chapter 7

Results

The empirical evaluation of the proposed free-gait planning for the hexapod walking robot has been
performed in a testing scenario motivated by [9] that is depicted in Fig. 4a for a comparison. In that
setup, the robot has to cross a gap using two beams with holes in them. However, the scenario is
solvable using a terrain-aware crawling gait as demonstrated in [9]. In this thesis, we target more
challenging scenarios where not all legs can find a foothold in the gait-defined stance and support
phases. Therefore, a more challenging virtual experimental setup has been created, where we replace
one of the beams with a stepping stone with only a single foothold. The problem requires precise
motion planning and a solution of the sequencing part to determine the suitable sequence of stance
and swing phases. Furthermore, we modify the scenario to create an even more challenging planning
problem with a wider gap to be passed.

The herein presented results consist of the overview of the initial solution implemented to validate the
early ideas of the proposed method. In Section 7.2, the results of the proposed method as described
in Chapter5 are reported to demonstrate the feasibility and computational requirements of the method
further. All the presented results have been achieved with C++ implementation running on the com-
putational environment with the Intel i7-8565U running at 4.6 GHz accompanied with 32 GB RAM.

7.1 Early Results on the Proposed Planner

Early implementation of the proposed planner [70] slightly differs from the final method because later
improvements showed to be more efficient. In particular, the following parts differ.

1. Newton-Raphson method is used for constraints solving instead Levenberg-Marquard.

2. Distance from the centroid of support polygon is used as the heuristic instead of the distance
of the least squares pose (Section 5.3.1).

3. Candidate footholds are chosen using 2D criteria not 3D, thus the footholds in the “valley”
in the presented scenario are considered, albeit there might not be suitable.

4. Alternative path constraint (68) described in Section 5.4 is used.

The employed computational kinematic model of the hexapod walking robot is the same as in [9].

(a) Narrow gap scenario (b) Wide gap scenario

Figure 13: Visualization of the evaluation scenarios and the respective candidate sequences.
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Table 1: Sequencing Results - Early Implementation

Scenario Dscale
Time No. of Stance Sequence
[min] Expansions Length

Narrow 1000 55 4677 155
Wide 1000 31 3375 155

A summary of the results on the sequencing part of the planning is depicted in Table 1. It lists the
planning time, the number of expanded stances, and the length of the resulting sequence. The heuristic
scaling factor Dscale = 1000 is used in both cases (narrow and wide scenarios). The contact diagrams
representing which legs are assigned to a foothold by individual stances in the found sequences are
visualized in Fig. 14.
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(b) Wide gap scenario

Figure 14: Leg contact diagram in narrow and wide gap scenarios. Blue cells signify the leg is in the
stance state.

(a) Single step in the narrow gap scenario (b) Single step in the wide gap scenario

Figure 15: Single step parametrized as a Bézier curve in the configuration (joint) space.

One “interesting” step is selected in each sequence to demonstrate the proposed step planning with
the Bézier curve parametrization. The stances at which the step is taken and the two adjacent stances
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7.2 Results on the Improved Implementation of the Planner

are marked in the contact diagram in Fig. 14. In the narrow gap scenario, the step is chosen for
the situation where the right-rear leg is moved between two distant footholds, see Fig. 15a. In the
wide gap scenario, the chosen step is when the robot switches the right-front leg for the right-middle
leg on the stepping stone, shown in Fig. 15b. The planning results for the two described steps are
summarized in Table 2 showing the maximal degree of the Bézier curve, the number of iterations of
the Newton-Raphson algorithm, the planning time, and the used tolerance ε.

Table 2: Step Planning Results - Early Implementation

Scenario
Max No. of Time ε

Degree Iterations [sec] [m]

Narrow 5 747 4.0 0.001
Wide 6 1465 8.3 0.001

Discussion

The feasibility of the proposed planning has been validated in the evaluation scenarios, successfully
showing it is possible to execute motion without an explicitly prescribed gait. The gait-free property
can be observed in the diagram of the individual legs’ contact with the ground. Notably, in the scenario
with the wide gap, the right-middle leg is placed on the stepping stone for a significant portion of the
sequence. The right-rear leg is not in any foothold for most of the sequence, demonstrating the gait-
free capability of the hexapod robot. The sequencing part is computationally demanding because each
sequence induces expensive sampling of the intermediate configurations needed to validate the graph
edges. However, the performance can be improved by a more informed heuristic and employing fast
rejection of infeasible edges. On the other hand, the single-step planning using low-capacity path
parametrization shows to be a suitable choice. Even the steps with a substantial difference between
the initial and the final configurations have been successfully determined up to the specified precision.

The achieved results motivated us to improve the implementation further to reduce the computational
burden in the sequencing part of the planning. The results of the improved implementation are reported
in the following section.

7.2 Results on the Improved Implementation of the Planner

Based on the early results, we improved the implementation of the identified parts of the proposed
planning to decreasing the computational burden of the demanding parts. The most notable improve-
ments are as follows.

1. Levenberg-Marquard method shows to be more efficient for solving the constraints than the
Newton-Raphson method. Levenberg-Marquard method requires setting the damping strat-
egy [71]. However, it converges much faster than Newton-Raphson and makes the convergence
less sensitive to the initial sample. As a result, we can use lower the maximum allowed iter-
ations and the maximum number of samples tested before an edge is rejected in Algorithm 2,
without discarding too many feasible edges.

2. Least squares pose is used as the heuristic (Section 5.3.1).

3. Candidate footholds are chosen based on the radius search in the 3D and thus, some infea-
sible edges in the stance graph are no longer tested.
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7.2 Results on the Improved Implementation of the Planner

4. Path constraint (66) is used (Section 5.4).

The computational kinematic model is of the SCARAB II hexapod walking robot [72] with the same
morphology the robot used in Section 7.1; thus, it does not affect the computational requirements. In
addition to the narrow gap scenario and the wide gap scenario, the planner was tested on an artificial
cave floor (Fig. 16). This demonstrates the ability to plan on non-flat terrain.

Figure 16: Artificial cave floor scenario, with the planned sequence visualized.

The used heuristic and the strategy for candidate neighbor selection are the parts that most likely
significantly influence the combinatorial complexity of the sequencing part. Therefore, the sequencing
has been tested with both the heuristic based on the centroid of the Support Polygon (refereed SP) and
the new implementation using the Least Squares Pose (denoted LSP) heuristic. A summary of the
results is presented in Table 3 that lists the planning time, the number of expanded stances, and the
length of the resulting sequence. The heuristic scaling factor Dscale = 1000 is used in both cases.

Table 3: Sequencing Results - Improved Implementation

Scenario Heuristic Dscale
Time No. of Stance Sequence
[sec] Expansions Length

Narrow SP 1000 74 1811 122
Narrow LSP 1000 25 579 101
Wide SP 1000 204 2341 121
Wide LSP 1000 68 773 107
Cave SP 1000 107 1551 98
Cave LSP 1000 35 615 79

The reported results in Table 3 show significant computational improvements in comparison to Ta-
ble 1, and the implemented improvements yield the expected results. The LSP heuristic improves the
performance, and the results support the hypothesis about its properties presented in Section 5.3.1.
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Chapter 8

Discussion of Further Extensions

The herein addressed precise motion planning can be considered a challenging problem where the
computational requirements are increased because of the sequencing part of the free-gait locomo-
tion. The presented results show that the proposed approach is feasible. Furthermore, the improved
implementation also yields a significant reduction of the computational requirements. Based on the
achieved results, several directions for further extensions can be identified. In addition to improve-
ments in consolidating the developed C++-based HexaPlanner framework, there are possible gener-
alizations towards constraints, path optimization, and possible further speedups. Selected ideas are
briefly discussed in the following paragraphs.

Optimization of Joints Force/Torque

So far, the force/torque limits are not considered during planning. Since the configuration does not
uniquely define the ground reaction forces resulting in static stability, they are difficult to compute and
incorporate into our approach using the differentiable constraints. However, considering those con-
straints would allow us to plan using footholds on inclined or even vertical surfaces, e.g., scenarios like
climbing in a vertical shaft using the friction of the effectors. Thus, generalizations of the constraints
to respect the force/torque constraints during the optimization would solve such scenarios.

Generalized Stance Graph

In the stance graph definition presented in Section 5.3, we restricted ourselves to consider two stances
compatible when they differ in a single foothold. This definition is simple and does not discard any
solution. However, we can define a more general stance graph, where vertices still correspond to
stances V = Σ, but we redefine the set of edges in the following way.

The edge (σ1, σ2) is in E if two conditions are satisfied.

1. For each effector e it holds that if If σ1(e) and σ2(e) are defined thenσ1(e) = σ2(e), which
allows us to define the stance combination operator σ1 ⊕ σ2:

(σ1 ⊕ σ2)(c) =

{
σ1(c) σ1(c) is defined
σ2(c) otherwise

.

2. There exists q1, q2 ∈ Cfeasible such that

q1 ∈ Fσ1 ∩ Fσ1 ⊕ σ2

q2 ∈ Fσ1 ⊕ σ2 ∩ Fσ2 .

Note that if (without loss of generality) σ2 only adds footholds to σ1 then σ1 ⊕ σ2 = σ2. In such a
case, we only need to find q ∈ Fσ1 ∩Fσ2. So far, we are considering edges between stances differing
in a single foothold (Section 5.3). Thus, the definition of the stance graph based on [11] is a special
case of a more general definition.
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8. Discussion of Further Extensions

(a) adjoint (b) disjoint

Figure 17: (left) Two support polygons with adjoint stability regions but with disjoint stability regions
when considering stability margin. (right) Two support polygons with disjoint stability regions.

The advantage of the generalized stance graph is demonstrated in Fig. 17. Two intermediate configu-
rations q1 and q2 are checked, because it is easily possible for two stances σ1 and σ2 to have disjoint
stability regions, but those respective stability regions are both included in the stability region of the
combination σ1 ⊕ σ2.

Path Optimization using Stance Graph Expansion and n-convexity

As discussed in Section 5.4), the motion needed to execute a single step is relatively simple and can
be successfully approximated by a low-degree polynomial curve. Using the restricted parametrization
of the path, we can produce a sensible motion without the need for post-processing; as noted by
Hauser in [11], where sampling-based methods can produce unnatural, jerky motions. So far, in
preliminary evaluations, using randomized sampling produces the intermediate configurations and
yields more natural-looking poses by restricting the joint ranges. Thus, it might be interesting to
compute a single-step path (Section 5.4) and sample the transition (Section 5.3.3) at the same time. It
is expected that a more sparse sampling of the curve would be needed, and the endpoint of the curve
would need to be constrained to lay in the transition between two stances. The resulting intermediate
configuration might be more “reasonable”, as it would be an endpoint of the smooth motion starting
from a “reasonable’ configuration.

We also find it interesting to elaborate more on the mathematical properties of the sets that can be
navigated using low-degree polynomial curves. To this end, we propose a notion of n-convexity as
follows. A set A is n-convex iff every pair of points a1,a2 ∈ A is connected by a polynomial curve
of the degree n such that the whole curve lays in A. Note that for n = 1, the definition gives us a
regular convexity. The assumption about the simplicity of the single-step motion use in the presented
approach is an assumption that the stance regions Fσ can be approximated by an n-convex set.

Potential Search Speedup

It is known that one of the fastest statically stable motions possible with a hexapod robot can be
achieved using the tripod gait that might be used for speeding up the search policy. In the restricted
support graph setting, where it is only possible to lift/place a single leg, one step of a tripod gait would
correspond to six edges in the graph.8 At the start and the end of such a sequence, the robot is at the
stance with three stance legs. The support polygon is a triangle in that case. Now, let us label the
stance at the start of the step σ1 and the stance at the end of the step σ2; notice that the stance of the
size 6 in the middle of the sequence is σ1 ⊕ σ2. Therefore, one step of the tripod gait corresponds

8Placement of the three swinging legs one-by-one and lift the next three swinging legs one-by-one.
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8. Discussion of Further Extensions

to a single edge in the generalized stance graph, compared to six edges in the restricted stance graph
currently used in the proposed planner. Let us consider the time complexity of the graph-search query
in the generalized stance graph compared to the restricted stance graph.

First, let examines the case of the restricted stance graph as a baseline reference. The time complexity
of a graph search depends on the branching factor and the solution depth as

Trestrict ∈ O
(
BD
)
.

Note that the branching factor is proportional to the number of available footholds in the robot’s
vicinity at a given stance.

Let us express the branching factor of the generalized stance graph and the solution depth in the
generalized graph. In any edge (σ, σnew) leading from σ, we have to assign footholds to at most three
legs. Since no leg assigned as stance in σ can be assigned a new foothold in σnew, and each stance has
to assign footholds to at least three legs to remain statically stable. Given there are about B available
footholds in the neighborhood of the robot, there are O(B3) potential σnew. For the case of the tripod
gait, the solution depth may be up to six times lower than in the restricted graph. Let the depth be
O(DR ), where R is a reduction factor between one to six. Time complexity for the generalized graph
can be expressed as

Tgeneral ∈ O
((
B3
)(DR )

)
= O

(
B(3D

R )
)
.

Now let us express the ratio of Tgeneral and Trestrict:

Trestrict

Tgeneral
∈ O

(
BD

B(3D
R )

)
= O

(
BD(1− 3

R
)
)
.

Thus, if the reduction R is greater than three, Tgeneral/Trestrict would grow to∞ polynomially with B
and even exponentially with D. Hence, we can expect improvements in the computational require-
ments.
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Chapter 9

Conclusion

In this thesis, we present a planning framework for hexapod walking robots based on a decomposition
into the sequence determination and sequence validation parts. The developed locomotion planning
does not rely on a specific locomotion gait prescribing how the legs are alternating in swings. It
provides the ability to exploit the advantage of the multi-legged platforms to traverse environments
with only a few footholds. In the sequencing stage, a candidate sequence of stances with intermediate
configurations provides a necessary condition heuristic on feasible paths connecting the stances in
the sequence. In the sequence validation stage, finding smooth paths connecting the intermediate
configurations is attempted considering the robot’s motion constraints. A feasible solution is provided
if a complete path is found that can be directly executed by the robot effectors.

The proposed path parametrization based on Bézier curves used in single-step planning showed to be
a viable approach. The curve optimization finds a path even for steps with a substantial difference
between the initial and final configuration. Besides, the realization of the path yields motion that is
smooth and natural-looking. On the other hand, we found out that convergence of the numeric solver
for the path constraint exhibit inconsistencies that deserve further investigation because the focus of
the thesis is on the graph-based sequencing of the robot’s stances.

The computational requirements of the developed sequencing procedure have been significantly lower
in comparison to the early implementation. The solver provides candidate sequences needed in plan-
ning while considering all the constraints, including collisions with the terrain. Levenberg-Marquard
algorithm is proposed to solve the constraints that showed to be a more robust descend algorithm than
the Newton-Raphson method. The search has been accelerated by a more refined heuristic function
and an improved strategy for selecting candidate edges. The used heuristic function exhibit improved
performance compared to heuristics used in similar approaches found in related work. Since the com-
putational requirements are relatively low, we can consider the developed precise motion planner as a
free-gait locomotion planner because it allows to use arbitrary sequences of the legs swings.

The proposed planner is implemented in C++ as the modular and extendable framework called Hexa-
Planner. In addition to further generalizations and possible speedup of the planning, the natural next
step is to validate the found paths using real hexapod walking robots.
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Appendix A

Attachements

The following is the list of attachements to this thesis:

1. DVD containing a .pdf of this thesis and a .zip with the HexaPlanner repository.
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