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Abstract

The field of Graph Neural Networks ex-
tends the capabilities of Deep Learning
methods from grid-like tensor data to
structured representations outside the Eu-
clidean domain. This allows to utilize the
power of Neural Networks upon irregular
graph-like structures, which are common
descriptors of learning problems in vari-
ous domains. This thesis builds upon the
principles of Graph Neural Networks and
extends them further by coupling with
concepts from relational logic to address
learning problems beyond simple graph
propagation. This is done via introduc-
tion of a new declarative modelling lan-
guage building upon the logic program-
ming paradigm, in the spirit of a con-
cept previously introduced as “Lifted Re-
lational Neural Networks”. The proposed
extension significantly adds to the expres-
siveness of existing Graph Neural Net-
works, allowing to encode complex deep
relational learning models in a transpar-
ent, interpretable and user-friendly man-
ner within the Python language.

Keywords: Graph Neural Networks,
Relational Logic, Lifted Relational
Neural Networks

Supervisor: Ing. Gustav Sir
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Abstrakt

Oblast grafovych neuronovych siti roz-
Sifuje moznosti metod hlubokého uceni
z reprezentace dat ve formé tenzori do
strukturované reprezentace mimo Eukli-
dovsky obor. To umoznuje vyuziti vykonu
neuralnich siti na nepravidelnych grafo-
vych strukturdch, které jsou bézné pro
popis ucicich problému v mnoha domé-
nach. Prace se opird o principy grafovych
neuronovych siti a rozsifuje je zapojenim
konceptt relac¢ni logiky, diky kterym je
mozné vyjadieni ucicich problémi nad ra-
mec jednoduché propagace grafu. Tohoto
je docileno pomoci nového deklarativniho
modelovaciho jazyka, ktery je zalozen na
logickém programovacim paradigmatu v
duchu konceptu jiz diive predstavenym
pod oznacenim “Lifted Relational Neural
Networks”. Navrzené rozsifeni vyrazné pti-
dava na expresivité existujicich grafovych
neuronovych siti a umoznuje vyjadieni
komplexnich ucicich modeli z oblasti hlu-
bokého relacniho uceni transparentnim,
interpretovatelnym a uzivatelsky privéti-
vym zpusobem pomoci Python programo-
vaciho jazyka.

Kli¢ova slova: Grafové Neuronové Site,
Relac¢ni Logika, Lifted Relational Neural
Networks

P¥eklad nazvu: Rozsireni grafovych
neuronovych siti o rela¢ni logiku
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Chapter 1

Introduction

Deep Learning methods span a wide range of application areas ranging from
Natural Language Processing to Computer Vision, where they have proven
to be powerful tools. The input data for these methods have been usually
represented within the Euclidean domain in grid-like formats of numeric
tensors, which are suitable for numerous tasks, however, there are also
domains where these grid-like formats are not a proper representation for
capturing information about a given problem.

The introduction of Graph Neural Networks (GNNs) approached this issue
by bringing the power of Neural Networks into the non-Euclidean domains -
particularly to graph representations. Graphs can efficiently capture entities
and their relations, making them natural and fitting descriptors for a diverse
range of real-world problems, such as drug discovery, social network analysis,
or fraud detection.

In this thesis, we build upon the Graph Neural Network concepts by ex-
tending them with Relational Logic. This yields a highly expressive custom
modelling language inspired by the declarative logic programming paradigm,
in the spirit of so-called “Lifted Relational Neural Networks”, which have
been introduced with a similar aim of extending standard feed-forward neural
networks. By marrying these two disciplines, we try to reach beyond the
possibilities of regular Graph Neural Networks by enhancing their expres-
siveness, while also improving the interpretability of the underlying models.
We showcase various possible extensions and scenarios, which cannot be
performed using regular Graph Neural Networks or require some specifically
crafted models which are usually presented as black boxes that cannot be



1. Introduction

easily customized or reasoned about. In contrast to these, the proposed
modelling paradigm makes it easy to modify, combine, and extend various
modelling concepts in a very direct and interpretable manner.

The main contribution of this thesis is a custom Python Machine Learning
library, which can be used in conjunction with the extensive existing Python
ecosystem, making this work usable for a broad audience of machine learning
practitioners. The main contribution of the library itself is implementation
of the aforementioned GNN modelling constructs and their relational exten-
sions, while utilizing features of the Python language itself. To reflect this, ex-
amples of various learning scenarios are presented throughout the thesis in the
form of modelling concepts in the library’s custom modelling language stem-
ming from the relational logic programming paradigm. Note that all the pre-
sented examples are an actual Python code that can be run within the library,
which is available at https://github.com/LukasZahradnik/PyNeuraLogicl

The thesis is structured as follows. Chapter [2| introduces readers to Graph
Neural Networks and their existing frameworks, Relational Logic and Lifted
Relational Neural Networks. In Chapter [3 we present the basic syntax,
formats, and other internals of the implemented library, which are critical
for understanding the models, examples, and GNN enhancements. Chapter 4
presents the workflow of defining the model, dataset, and learning on a simple
example. Chapter |5 examines the representation of a selected set of Graph
Neural Network models in the implemented library. In Chapter [6, we demon-
strate use cases that extend the possibilities of Graph Neural Networks via
Relational Logic, and conclude in Chapter [7.


https://github.com/LukasZahradnik/PyNeuraLogic

Chapter 2

Theoretical Background

B2 Graph Neural Networks

Graph Neural Networks (GNN) provide frameworks for learning from data
represented in the form of graph data structures. Such graph representation
can be beneficial and natural for several problems in various areas, such
as chemistry, biology, and social networks, expressing relations (edges) between
objects (vertices) [1].

B Graph Classes

We define a simple homogenous graph as a tuple G = (V, E'), where V is a set
of vertices and E' = {(u1,v1), ..., (un, vn)} is a set of pairs of vertices u;,v; € V
representing edges. Additionally, we define a function z, : V. — R™*™ and
a function z, : F — R™*™ which map nodes and edges to feature tensors.
Graph G is called a directed graph if the pairs in the set of edges E are
ordered.

A heterogeneous graph is then a graph G = (V, E), with additional mapping
functions f(v): V — Y and g(e) : E — Z, which are mapping vertices and
edges to different types.
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A hypergraph is a generalization of a simple graph G = (V, E), that does
not bound only two vertices to form an edge, but allows an edge to be formed
from an arbitrary number of vertices; thus, (vg,...,v,) € E vy, € V.

B GNN Classes

GNNs, according to 2], can be categorized into four categories:

RecGNNs
ConvGNNs
GAE
STGNNs

For the purposes of this work, we will focus on the ConvGNN class, but
the proposed library is not strictly limited to the said class, as the main
principles are similar amongst categories. We have made a choice to focus
on ConvGNN because it is the most popular category. The ConvGNN class
can be further divided into two subcategories - Spectral methods and Spatial
methods. We will further discuss only spatial-based methods, as they are
significantly more used than the spectral-based methods, and will use the
term GNN interchangeably with spatial based ConvGNNs.

ConvGNNs, during updating node representation, utilize multiple layers
with learnable parameters unique to every layer. ConvGNNSs take the currently
updated node and convolve its representation with nodes based on their spatial
properties - convolve with direct neighbors’ representations of the updated
node. Such mechanism of propagation which depends on the existence of edges
is termed message passing.

B Message Passing

The computation of the update at layer i of node u via message passing-
based GNNs can be characterized by two steps. The first one being the
aggregation step, where we take the central node’s neighbors’ N(u) hidden

)

representations hg.ig]\l](u) as inputs to the aggregation function. In the next
step - the combination or the update step, we take the aggregated value
and combine it via the combine function with the hidden representation

hg U of the currently updated node u (the central node). Both aggregation

4



2.1. Graph Neural Networks

i-1
hy,

. i-1 .
;! P |
— g = aggregate( h",; ) —» O = combine( h[;l g)
i1
hV3

Figure 2.1: This figure shows how the new representation h, of the blue vertex in
the left graph is computed via the message passing mechanism, given the current
representation of each node h;_l and the aggregate and combine functions.

and combine functions can be parameterized and do not share parameters
throughout layers.

W = X(v)
aggregate® (u) = aggregation(i)({hy_l) :jE€N(u)})

h) = combine™ (R~ aggregate® (u))

u

To learn the graph embedding h¢g for graph classification and graph re-
gression tasks, GNNs utilize yet another function output with learnable
parameters. The hidden representations from the last layer k of the GNN are
passed as inputs for the function output.

he = output({h*) : v e V})

B 2.1.1 Existing Python GNN Frameworks

The area of Graph Neural Networks gained momentum recently, resulting in
a higher frequency of introductions of new libraries. The following review
of GNN Python libraries considers only a selected sample of libraries. We
included the most popular ones at the present time.
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B PyTorch Geometric

PyTorch Geometric (PyG) [3] is a popular GNN library!| from the PyTorch
ecosystem. It implements numerous models for learning on irregular structures
such as graphs, a framework for implementing custom message-passing models,
and last but not least, data helpers and transformers.

The representation of graphs differs depending on the used model, but most
common is a list of tuples representing the id of the source and the destination
node of an edge. The representation of features is a fixed numeric tensor
of dimensions N x M, where N is a number of nodes and M is a number
of features. The number of features is constant for every node; we cannot
represent features as jagged arrays.

Currently, PyTorch Geometric has only one model which supports hetero-
geneous graphs. Only one implemented model also supports hypergraphs.

B DGL

The Deep Graph Library (DGL) [4] is another popular Graph Neural Networks
library?l The library itself is framework agnostic - can be run on top of different
frameworks/backends such as PyTorch, TensorFlow, or Apache MXNet.

DGL offers a number of implemented models mainly focused on homogenous
graphs with one heterogeneous model. Currently, DGL does not support
working on hypergraphs.

DGL represents the graph as a list of two lists with indices of the source
and destination node. The features are represented as one fixed tensor which
can be multidimensional.

"https://github.com/rustyls/pytorch_geometric| - At the time, it has over 11.5k
stars on GitHub
*https://github.com/dmlc/dgl - At the time, it has over 7.8k stars on GitHub


https://github.com/rusty1s/pytorch_geometric
https://github.com/dmlc/dgl

2.2. Relational Logic

B Spektral

Spektral [5] is a GNN library built on top of Keras and TensorFlow 2 and
follows the Keras principles to make usage simpler. The implemented models
focus on homogenous graphs and do not consider heterogeneous graphs.
Spektral also does not implement models operating on hypergraphs.

The graph is usually represented as an adjacency matrix - N x N, where N
is the number of nodes, or as a list of £ x 3 where F is the number of edges
and each row contains the source node of the edge, destination node of the
edge and weight. The node features are in the form of one fixed numeric
tensor of dimension N x M, where N is a number of nodes and M is a number
of features. The edge features can be represented as a tensor of dimension
E x M, where F is the number of edges and M is the number of features.

B Stellar Graph

Stellar Graph [6] is another GNN library built on top of TensorFlow 2 and
Keras. It offers various models, and many of them support heterogeneous
graphs to some extent. Hypergraphs are not currently supported.

The graph is represented similarly to other GNN frameworks in the form
of a list of tuples with indices of the source and destination nodes. The
features are then in the form of tensor N x M, where N is the number of
nodes and M is the number of features.

During our research, we have come across more libraries and frameworks for
GNNs; their features and possibilities were mainly identical to the ones listed
above. Many of them had poor documentation, were no longer supported, or
seemed to be abandoned; thus, we decided to omit those.

B 2.2 Relational Logic

Relational logic [7] introduces an expressive language to describe entities and
relations amongst them. We define relational logic following the definition
from [§]; that is, a relational logic theory is a set of formulae constructed

7



2. Theoretical Background

from constants representing objects, variables representing placeholders for
objects, predicates representing properties of objects and their relations, and
propositional connectives (A, V, =) and quantifiers (3,V). For this work, we
assume the formulae to be function-free, and all variables are considered to be
universally quantified.

Constants are represented either in numeric form or as strings with a first
lower letter (e.g., jerry). On the other hand, the variables are represented as
strings starting with an upper letter (e.g., Dog, Molecule, X). Variables and
constants are called terms. An atom is a predicate applied to a tuple of n € N
terms and is used to describe relations between objects or their properties,
e.g., haveBond (X, hydrogen). A ground atom is an atom with no variables
in its terms, e.g., haveBond(oxygen, hydrogen). A literal is then an atom
or its negation, e.g., a, —a. A disjunction of universally quantified literals
forms a clause. A clause is then called a definite clause iff the clause has
precisely one positive literal. A fact is a definite clause with only one atom. A
definite clause h V =b1 V ... V =b, can be expressed in the form of implication
as h <= by A\ ... A by, where the conjunction of b; atoms forms a body and h
atom forms a head.

The Herbrand base of a set of definite clauses is the set of all ground atoms
formed via constants and predicates in the set of definite clauses. A Herbrand
interpretation of a set of definite clauses P is a mapping assigning a truth
value to all elements from the Herbrand base of P. A Herbrand interpretation
I satisfies a ground atom F' if F' € I. A set of ground clauses is satisfiable if
there is at least one Herbrand interpretation I that assigns a true value to all
clauses. This Herbrand interpretation is called a Herbrand model. Every set
of definite clauses has a unique Herbrand model that is minimal w.r.t. the
subset relation - the least Herbrand model.

The grounding of a clause a from a set of non-ground definite clauses P is
the set of ground clauses G(a) = afy, ..., ab,, where 0y, ..., 0; is the set of all
possible substitutions (mappings of variables from non-ground definite clause
to constants in P). Grounding of P is then G(P) = U,ep G(a), and P’s
least Herbrand model is the least Herbrand model of G(P). The restricted
grounding is grounding limited to only those clauses which have satisfied
body in the least Herbrand model.
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. 2.3 Lifted Relational Neural Networks

Lifted (templated) models utilize highly expressive representations to capture
symmetries in relational learning problems [9]. A Lifted Relational Neural
Networks (LRNN) [8] language encodes various neural architectures and
problems as parametrized logic programs. In this work, the implemented
library builds upon the LRNN language, which in turn is based on the
language of Datalog [10]. LRNNSs are inspired by lifted graphical models
based on probability theory and logic programming [I1]. The internals and
formats of the library language are discussed in Chapter [3.

The mapping from the logic representation into the neural form is called
neuralization. Such neuralization of the logic program (set of clauses) follows
the definition from [8] and is done by taking a set of rules and facts N from
an example E and template T" while omitting weights. We then construct
the least Herbrand model of N denoted as N. To be able to construct
a computation graph for learning, the current query has to be present in N.
The mapping is then done as:

All weighted ground facts in the example are mapped to fact nodes.

All ground atoms in N \ E are mapped to atom nodes.

All ground rules present in N are mapped to rule nodes.

All ground rules with the same head atom are mapped to respective
aggregation nodes.

All nodes are later connected to follow the derivation of the logical facts by
the immediate consequence operator, starting from the fact nodes, ultimately
forming a computational graph, such as that of a neural network.

. 2.4 Related Work

The library implemented in this thesis (PyNeuraLogi(ED utilizes features, such
as the ground resolution and neuralization, of the NeuraLogic framework [g].

3|https ://github. com/LukasZahradnik/PyNeuraLogicl
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2. Theoretical Background

NeuraLogic implements its own custom declarative language that PyNeu-
ralogic extends, simplifies, and introduces into the Python ecosystem, thus
adding expressiveness while simplifying neural networks representation. This
is similar to the historical relationship between Torch [12] and PyTorch [13].

The NeuraLogic Toolbox [14] is remotely related work to the PyNeuraLogic
library. This toolbox also utilizes the NeuraLogic framework and serves
as a helper library wrapper and analyzer of problems for the NeuralLogic
framework. The PyNeural.ogic’s scope overlaps in marginal areas with the
NeuraLogic Toolbox, but its primary goals, use cases and features differ
significantly.

The ProbLog [15] language is also similar to the implemented library in
extending logic programs with numerical parameters. It offers a probabilistic
interpretation that is not present in Lifted Relational Neural Networks,
which PyNeuraLogic is based on. DeepProbLog [16] is then an extension of
ProbLog that incorporates deep learning employing neural predicates. The
shortcoming of DeepProbLog is not being able to model complex convolutional
patterns [§].

10



Chapter 3

Internals of PyNeuralogic

The library implemented in this work, PyN euraLogicﬂ allows users to encode
machine learning problems via parameterized, rule-based constructs. Said
constructs are based on a custom declarative language that follows a logic
programming paradigm. This, in conjunction with the Python language,
results in a highly expressive language which can describe an extensive range
of problems.

. 3.1 The anatomy of a rule
y

In PyNeuraLogic, rules are primitives used for building models and datasets.
The rule R = ((Wy, h) «— (W1,b1), ..., (W, by)), where W;’s are real-valued
tensors and h and b;’s are atoms, consists of two main parts - the head and
the body. Additionally, the rule can have metadata attached, which can be
used to specify aggregation functions, activation functions for the rule, and
more. Example [3.1] shows the syntax of rules, specifically one rule with two
atoms (b_1 and b_n) in its body. Weights assigned to each atom (i.e., W_0,
W_1, and W_n) are either scalars or numeric tensors.

Listing 3.1: Example of rule syntax
Atom.h[W_0] <= (Atom.b_1[W_1], Atom.b_n[W_n])

1|https ://github. com/LukasZahradnik/PyNeuraLogic|

11
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3. Internals of PyNeural ogic

The head can contain only one atom called the head atom, and the body can
contain an arbitrary number of atoms. Each atom consists of the predicate
name, an optional arbitrary number of terms, optional weight or value, and
optional predicate modifier.

B 3.2 Template, query, and example

To be able to learn a problem via the PyNeural.ogic library, it is necessary to
encode the problem in the form of a template, queries, and examples. A set
of queries, together with a learning example or examples, forms a learning
dataset. When only one example is provided to the dataset, the example is
streamed to all the queries present in the dataset.

B Template

The template T' = {Ry, ..., R} is a set of rules that encode the problem’s
architecture - i.e. the model, which is essentially equivalent to composing
modules in popular frameworks, but more versatile. The versatility is achieved
by utilizing lower-level primitives within the rules that can be freely modified.

Listing 3.2: Simple example template

Atom.predict <= (
Atom.first_feature[l,], Atom.second_feature[l,]
)

The template |3.2| defines one rule consisting of three atoms where atoms

first_feature and second_feature have a learnable one-dimensional (scalar)
weights associated, and these atoms imply the atom predict. Every atom

can have an arbitrary number of terms consisting of variables and constants,

as shown in Example |3.3|

Listing 3.3: Simple example template with terms

Atom.predict(Var.X) <= (
Atom.relation(Var.X, Var.Y),
Atom.feature(Var.Y, Term.some_constant)[1l,],

) )

12



3.2. Template, query, and example

The logic variables (e.g., Var.X) are the primary source of the said versatility.
They allow us to operate with entities (nodes, edges) and reference them
arbitrarily, enabling to express and capture various relations amongst entities
and other features discussed in Chapter (6.

B Example

The learning example is a set of facts which can also be used to express
node features, edge features, or any other facet or knowledge of the current
instance of the world.

Listing 3.4: Simple example

[Atom.first_feature[1.0], Atom.second_feature[0.0]]

In the Example 3.4] we have defined one example set of two facts that
assign values 1.0 and 0.0 to atoms first_feature and second_feature,
respectively. Values are not restricted only to scalars; it is also possible to
assign vectors and matrices as values, as shown in |3.5.

Listing 3.5: Vector and matrix values

Atom.vector_feature[[1.0, 2.0, 3.0]]
Atom.matrix_feature []

[0.0, 1.0],

(2.0, 3.0],
]]’

The predicate names are chosen arbitrarily by the user and serve as a descrip-
tor of relations and data in our models. There also exist special built-in predi-
cates that entail additional functionality. Such predicates are prepended with
the special keyword, such as Atom.special.alldiff, Atom.special.true,
and Atom.special.false.

B Query

The query is a valued fact used to describe the target regression or classification
target for any atom of the template. The query is not bound to only the last
layer of the defined template. In contrast to regular GNN frameworks, where

13
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we usually have only one output layer, in PyNeuraLogic, the output changes
depending on the query. Example 3.6/ shows the encoding of a simple query
that might be used for regression or classification on the graph, as it does
not target a specific node. On the other hand, Example 3.7 utilize terms to
target specific node for querying. Queries in Example 3.7 will yield different
computation graphs depending on the example set.

Listing 3.6: Simple query of the atom predict with the target value 1.0
Atom.predict [1.0]

Listing 3.7: Two simple queries with different terms - 0 and 1, which result in
different computation graphs

Atom.predict (1) [0.0],
Atom.predict (0)[1.0],

B 33 Dynamic computation graphs

For each data instance (i.e. example and query), a unique computational
graph is constructed based on the grounding (Sec. 2.2) and neuralization
(Sec. 2.3)) of the defined template. We present the visualization of the behavior
of neuralization and the construction of dynamic computation graphs on
a learning problem from the chemistry field, which is a model for learning on
molecules based on a model presented in [8]. Example 3.8 shows a template
of the model that defines two layers (rules). For the purpose of this section,
we do not specify concrete weights; we specify aliases (Wa, Wb, Wh1, Wh2)
instead to make them distinguishable in Figure 3.2,

Listing 3.8: Template for learning on molecules

Atom.h(Var.X) [Wh1] <= (
Atom.atom(Var.Y) [Wa],
Atom.bond(Var.X, Var.Y)[Wb],

) )

Atom.q[Wq] <= Atom.h(Var.X) [Wh2],

The template defines one layer (a rule) for aggregating and combining
the central node’s neighbors to compute the central node’s embedding h,,
similarly to the message passing mechanism (Sec. 2.1). The second rule does
the global pooling - it takes computed embeddings of all nodes and calculates
the graph output hg (Atom.q).

14
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a) b)

Atom.atom(Term.H1)

Atom.bond(Term.H1, Term.01) Atom.atom(Term.H1)

Atom.bond(Term.O1, Term.H1)
Atom.bond(Term.H1, Term.H2)

Atom.atom(Term.O1) Atom.bond(Term.H2, Term.H1)

Atom.bond(Term.H2, Term.O1)
Atom.bond(Term.O1, Term.H2)

Atom.atom(Term.H1)

Atom.atom(Term.H2)
Figure 3.1: H>0 and H> molecules samples

As the learning examples, we define two molecules - HoO and Hs visualized
in Figure together with their analogous encodings. We then ground those
examples with the template and retrieve two unique computation graphs
visualized in Figure |3.2

a)

Fact nodes Rule nodes Aggregation nodes Atom nodes Rule nodes Aggregation nodes Atom nodes

Atom.h(Term.H1).
Atom.h(Term.H1).

Atom.h(Var.X) <= .... Atom.h(Var.X)
Var.X / Term.H1, Var.Y / Term.01 Var.X / Term.H1

Atom.h(Var.X)
Var.X / Term.01

Atom.h(Var.X) <= .... Atom.h(Var.X)
Var.X / Term.H2, Var.Y / Term.O1 Var.X / Term.H2

Atom.h(Var.X) <= ...
Var.X / Term.01, Var.Y / Term.H1

Atom.h(VarX) <= ...
Var.X / Term.O1, Var.Y / Term.H2

Atom.q <= ...
VarX / Term.H2

Atom.h(Term.H2).

Atom.bond(Term.O1, Term.H2)

b)

Fact nodes Rule nodes Aggregation nodes Atom nodes Rule nodes Aggregation nodes Atom nodes

Atom.h(Var.X) <= ... Atom.h(Var.X) Atom.h(Term.H1)
Var.X / Term.h1, Var.Y / Term.H2 Var.X / Term.H1

Atom.h(Var.X) <= ... Atom.h(Var.X)

Var.X / Term.H2, Var.Y / Term.H1 Var.X / Term.H2

Atom.bond(Term.H1, Term.H2)

i

Atom.bond(Term.H2, Term.H1)

wb

Wb

Figure 3.2: H>0 and H> molecular computation graphs, grounded and neuralized
with the Template

We note that the resulting computation is equivalent to the GNN computa-
tion scheme from Section The graphs are evaluated from the fact nodes
containing input values to the last atom node on the right side (Atom.q),
which serves as the computation graph output.
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3. Internals of PyNeural ogic

. 3.4 Model formats

The PyNeuralLogic library offers a set of formats that can be used to describe
the model.

B Plaintext LRNN

Firstly, the template can be encoded in an external plaintext file using
a Datalog-like language. This format offers all implemented language-level
features but cannot be freely manipulated via code.

Listing 3.9: GCNConv encoded using plaintext file format
{1, 8} predict(X) :— edge(X, Y), feature(Y).

B Template using Python objects

Templating using Python objects brings the apparent advantage of manipu-
lating the template rules via Python language’s features and libraries, which
can simplify the creation of the template.

Listing 3.10: GCNConv encoded using Python objects

Atom.predict(Var.X)[1, 8] <= (
Atom.edge(Var.X, Var.Y), Atom.feature(Var.Y)
)

B Predefined modules

For convenience, the library also contains some predefined popular modules
such as GCNConv [17], SAGEConv [18], or GINConv [19]. Those modules can
be either translated in the background into template rules (Python objects)
or modules from Python Geometric, depending on the chosen backend.

Listing 3.11: GCNConv via predefined modules
GCNConv (8, 1, name="predict")
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3.5. Data formats

B 3.5 Data formats
The data in datasets can also be represented and stored in multiple formats.

B Logic

Logic format divides the dataset into two parts - examples and queries and
uses facts and rules to describe the data. This approach has the advantage
of being more expressive but, in some instances, can be considered too verbose.
An instance of logic format encoding can be seen in Example [3.12 which
describes the edges of a graph.

Listing 3.12: Encoding example of edges using a logic

examples = |
Atom.edge (0,
Atom.edge (1,
Atom.edge (1,
Atom.edge (2,
Atom.edge (2,
Atom.edge (0,

B Matrices/Vectors

This format is taken over from the PyTorch Geometric library and allows
users to describe nodes features, edge index, and target values as numeric
tensors. This format reduces verbosity but reduces readability due to features
having only numeric values without any text descriptors. Example |3.13 shows
encoded edges of the graph from Example [3.12] via matrix format.

Listing 3.13: Encoding example of edges using an array

edge_index = |
0, 1, 1, 2, 2, 0]
[17 O’ 27 17

This format also enables users to use the dataset for the template built via
predefined modules, such as GCNConv, in a scenario with PyTorch Geometric
modules, in which the equivalent encoded in logic cannot be used.
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3. Internals of PyNeural ogic

The format is not strictly the same as the PyTorch Geometric format and
requires some additional transformation to be compatible with the template
built on top of rules. Thus the PyNeuraLogic library contains a helper
PyTorch Geometric data converter.

. 3.6 Miscellaneous

PyNeuraLogic allows retrieving the embedding of hooked atoms while querying
different atoms. This can be achieved by adding a callback function, a regular
Python function that can wrap anything (e.g., visualization), as a hook to
specific predicate and terms. Usage of hooks can be seen in Example (3.14
where the hook is attached to the first rule’s head. Every time the hooked
atom’s (layer_1(3)) value is being calculated, the callback function my_hook
is called with the updated value, which can be utilized for helpful insight
while querying other atoms.

Listing 3.14: Hooking an atom with predicate somePredicate and a term &

template.add_rules (|
Atom.layer_1(Var.X)[1,] <= (
Atom.feature(Var.Y), Atom.edge(Var.X, Var.Y)
)

Atom.layer_2(Var.X)[1,] <= (
Atom.layer_1(Var.Y), Atom.edge(Var.X, Var.Y)
)

Atom.predict(Var.X)[1l,] <= Atom.layer_2(Var.X),

1)

def my_hook(value):
print (" Value of the hooked atom layer_ 1(3).is:

[

, value)

template.add_hook (Atom.layer_1(3), my_hook)
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Chapter 4

Introduction into PyNeuralogic

Learning the XOR operation is a relatively elementary task, but it serves
as a good example to showcase the basics of problem encoding and library
usageE Note that the problem is used for simple library introduction and is,
in fact, a propositional rather than a relational problemH

The XOR operation has two inputs - I € {0,1} and Iy € {0,1}, and one
output O € {0,1}. The whole operation can be summarized by Table .

E
E
E

_— O = O
= =0 O

);UO»—‘l—\O

Table 4.1: The XOR truth table

!The fully working example in the form of Jupyter Notebook can be
found at https://github.com/LukasZahradnik/PyNeuralLogic/blob/master/examples/|
[IntroductionIntoPyNeuraLogic.ipynb|

i.e. the template here does not contain any variables, causing it to correspond to a
standard neural network rather than a GNN.
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4. Introduction into PyNeural ogic

B Template

The model for learning the XOR, operation can be expressed in multiple ways;
the following model (Example 4.1) reduces the architecture into one rule,
representing one layer. The rule can be read as: "Atom xor is implied by
atom xy."

Listing 4.1: The XOR Template definition

with Template().context() as template:
template.add_rule (Atom.xor[l, 8] <= Atom.xy[8, 2])

We also declared weight with given dimensions for each atom - W, for
atom xor and W, for atom xy. Since we did not specify concrete values
for weights, those learnable parameters will be sampled randomly from, by
default, the uniform distribution®

This rule subsequently represents the following equation, where the output
of f(z) is the output of the xor atom and x is the value of the xy atom.
Functions ¢, and ¢, are activation functions of our rule and the atom xor,
respectively. In our case, we did not explicitly specify activation functions
via metadata; thus, they will be set to default activation functions depending
on the node type. This results in ¢, being equal to the tanh function, and
¢zor being the identity function.

Waor € RY W, € R®2 2 € {0,1}2
f(:’U) = beor(W:cor : d)rule(ny : -T))

B Defining a Dataset

To be able to learn our parameters Wy, and Wy, we need to create a training
dataset that contains examples. In our case, the dataset examples are
straightforward and mimic the truth table (Table 4.1). The representation of
the dataset is in Example 4.2.

3The distribution can be changed via settings.
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4. Introduction into PyNeural ogic

Listing 4.2: The XOR Dataset definition

with template.context ():
dataset.add_examples (

[

Atom.xor [0] <= Atom.xy[[0, O]],
Atom.xor [1] <= Atom.xy[[0, 1]],
Atom.xor [1] <= Atom.xy[[1l, O0]],
Atom.xor [0] <= Atom.xy[[1l, 1]],

Each example in the dataset corresponds to one row in the truth table.
In the scope of datasets, the value of each atom is its actual value and not (a
learnable) weight.

For example, Example [4.3| can be read as: "Given the atom xy’s value is
equal to the vector (0,1), we are expecting the atom xor to have a value equal
to scalar 1."

Listing 4.3: Single example
Atom.xor [1] <= Atom.xy[[0, 1]]

B Training

We can do the training manually by writing a training loop, similarly to
popular frameworks, or using a predefined training loop implemented inside
evaluators, which are suitable for quick prototyping and switching between
different backends, such as DyNet [20] or Java. Such evaluators can be
conveniently customized via settings to specify optimizer, learning rate, error
function, and more. In Example [4.4] we have chosen the DyNet backend
with a stochastic gradient descent optimizer for training and evaluated the
training using the evaluator.train function.

Listing 4.4: Training the model

settings = Settings(optimizer=0ptimizer.SGD, epochs=100)

evaluator = get_evaluator(
Backend .DYNET, template, settings—settings
)

for epoch, (total_loss, seen_instances) in \
enumerate (evaluator.train(dataset)):
pass
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4. Introduction into PyNeural ogic

Before the training is evaluated, our dataset is grounded with our template.
The grounding then yields one computation graph for each query from the
dataset. In our case this will produce, for each query, a computation network
with the same structure but with different input and target values.

B Testing

Evaluators also encapsulate testing with a user-friendly interface that is
analogous to training, which is presented in Example

Listing 4.5: Testing the model

for label, predicted in evaluator.test(dataset):
print (f"Label: {label}, predicted: {predicted}")
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Chapter 5

Expressing Graph Neural Networks

B 51 Expressing GNN models

The area of Graph Neural Networks encloses a broad number of different
models. This section will focus on a few prominent ones and show their
possible implementations in the PyNeuraLogic library. In the proposed im-
plementations, we can see similarities of the showcased models and inspect
their internals. These properties and similarities are commonly hidden in
the popular GNN frameworks which treat them as black boxes hidden be-
hind many abstraction layers, making additional customization and tuning
relatively unfeasible.

Bl GCNConv

The Graph Convolutional Network [I7], shortly GCN, is one of the most
popular proposed architectures for learning on graphs. Its architecture can
be essentially encoded as a rule in Example The notable disadvantage of
GCN is not considering the central node while computing its new embedding.

Listing 5.1: GCNConv representation via rules

Atom.h(Var.V)[1,] <= (
Atom.previous_h(Var.U),
Atom.edge(Var.V, Var.U),
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5. Expressing Graph Neural Networks

We encapsulate the GCN model in the GCNConv class (Example [5.2), which
is equivalent to the rule representation with the additional possibility to be
evaluated directly in different GNN backend library modules.

Listing 5.2: The GCNConv class prototype

GCNConv (in_channels, out_channels, *, activation, aggregation)

Il SAGEConv

The GraphSAGE [18] architecture can be looked at as an extension of the
GCN architecture. The GraphSAGE extends the GCN to incorporate the
central node itself in the computation of the node’s new embedding. The
architecture can be encoded similarly to GCNConv with an additional rule
for the task, as shown in Example [5.3. The model is also encapsulated
as SAGEConv class (Example 5.4).

Listing 5.3: SAGEConv representation via rules

Atom.h(Var.V)[1,] <= (
Atom.previous_h(Var.U),
Atom.edge(Var.V, Var.U),

)

Atom.h(Var.V)[1,] <= Atom.previous_h(Var.V),

Listing 5.4: The SAGEConv class prototype

SAGEConv (in_channels, out_channels, *, activation, aggregation)

B GINConv

The Graph Isomorphism Network (GIN) [19] is a powerful architecture based
on Weisfeiler-Lehman graph isomorphism test (WL test) [2I] and is ranked
upon the maximally powerful GNNs. GIN adds on top of aggregation an MLP
with two layers. Such architecture can be encoded as in Example 5.5, where
one of the GIN variations, GIN-0 [19], is implemented. Example 5.6 then
shows the encapsulated model of GIN-0 in class.

Listing 5.5: GINConv representation via rules

Atom.mlp(Var.V) <= (Atom.h(Var.U), Atom.edge(Var.V, Var.U)),
Atom.mlp(Var.V) <= Atom.h(Var.V),

Atom.h(Var.V)[1l,] <= Atom.mlp(Var.V)|[1,]
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5.2. Learning problems

Listing 5.6: The GINConv class prototype

GINConv(in_channels, out_channels, %, activation, aggregation)

B 5.2 Learning problems

PyNeuraLogic can be used similarly to other frameworks. This section
showcases the usage of pre-defined modules on a well-known example - the
citation network dataset Cora [22]. To load the dataset, we first load it using
PyTorch Geometric dataset loader, then we use one of PyNeural.ogic’s helpers
to get the train and test data out of the PyTorch Geometric dataset, which
will we then use to build PyNeuraLogic’s datasets, as shown in Example

Listing 5.7: The definition of a template with pre-defined components

dataset = Planetoid (

path, "Cora", transform=T.NormalizeFeatures ()
)
train_data, test_data, _| = Data.from_ dataset [0
pyg
train_dataset = Dataset(data=[train_data])

test_dataset = Dataset(data=[test_data])

Our datasets are now in the form of tensors and not in logic form. Dataset
can be implicitly transformed to the logical form, specifically to the plaintext
LRNN format.

The definition of the model (template) is similar to popular frameworks. We
can utilize a template list with pre-defined models, which will be sequentially
connected depending on their order in the list. Those modules can be
again implicitly translated into the logic format. In Example 5.8, we define
a template with two GCNConv layers with different activations - ReLLu and
Sigmoid.

Listing 5.8: The definition of a template with pre-defined components

template_list = TemplatelList (]
GCNConv(in_channels:dataset.num_features, out_channels=16,
activation=Activation.RELU) ,
GCNConv(in_channels=167 out_channels=dataset.num_classes,
activation=Activation.SIGMOID),

1)

template = Template(module_list=template_list)
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5. Expressing Graph Neural Networks

The training and testing then follow the previously shown workflow. We
can define our custom loop, which gives us more control, or we can use
implemented evaluator customizable via settings.

Listing 5.9: The training with evaluators

evaluator = get_evaluator (
Backend .PYG, template, settings, native_backend_models=True
)

for epoch, (total_loss, seen_instances) \
in enumerate (evaluator.train(train_dataset)):
pass

Example 5.9 shows using the PyTorch Geometric backend to train the
defined model. In the background, the template is being mapped from
PyNeuraLogic models to PyTorch Geometric models. The learning loop
is abstracted from the user, but we can still do some operations with metrics
in the loop (e.g., plotting loss). The testing is then the same as shown in the
previous chapter.
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Chapter 6

Extending Graph Neural Networks

B 6.1 Relational Logic

We utilize Relational Logic to add expressiveness and features to the area
of Graph Neural Networks. Via logic variables, we are able to query different
nodes and entities in the graph, depending on some of their characteristics,
which, together with other aspects of relational logic, opens doors to various
use-cases. This chapter presents some ways to utilize the expressive power
of the constructs implemented in PyNeuraLogic, which are based on the
Relational Logic language.

The Trains problem [23], also known as East-West trains or East-West
challenge, is a toy problem from the field of inductive logic programming
(ILP). The problem consists of a set of trains 7' = {¢,..., ¢}, and a set
of ordered carriages - feature vectors ¢;. The goal of the problem is to classify
the direction of each train, which can be either east or west, based on the
features of the carriages ¢;. Provided properties consist of information about
the shape, the length, the sides, the roof, the number of wheels, the load shape,
and the load number of each carriage.

This chapter is about showcasing how we can interpret one problem in dif-
ferent ways with only a few minor changesm The proposed approaches can
be improved, for example, by tuning weights’ dimensions or modifying rules.

The aim is not to come up with the best approach
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6. Extending Graph Neural Networks

B 6.1.1 Feature embedding and aggregation

In the proposed model in this section, we purposely do not consider each
carriage’s order. The accuracy of this model converges slower than the other
approaches to 1.0.

B The Dataset

For each train, we create one example containing features of only the specific
train and one query related to the train. We can directly encode the features
into examples as facts, where the atom predicate name is equal to the feature’s
name, and the feature value is present as a term together with the carriage
identification (in our case, the carriage’s position).

For example, we can encode the feature vector ¢; of one carriage in the form
of (position, shape, length, sides, roof, wheels,load,loadnum) and with the
following values:

—

¢ = (1, 7’rectangle”,”short”, "not__double”, "none”, 2, "circle”, 1)
into an example set encoded as in Example

Listing 6.1: Encoding of one carriage

Atom.shape(l, "rectangle"),
Atom.length(l, "short"),
Atom.sides (1, "not double"),
Atom.roof (1, "none"),
Atom.wheels (1, 2),
Atom.loadshape (1, "circle"),
Atom.loadnum(1l, 1),

The query is again a valued fact, with an assigned value of either —1.0 (east)
or 1.0 (west), depending on the train’s class. For the predicate’s name, we have
chosen the name direction. For example, the query for the train which is
supposed to go to the east will be defined as in Example

Listing 6.2: Train direction query

Atom.direction[—1.0]
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6.1. Relational Logic

B The Template

To define the template, we first declare lists of all possible values of each feature
(shown in Example , which we will utilize for the feature embedding. For
convenience, we also declare a list of all atoms related to the features of
a carriage.

Listing 6.3: All Features’ possible values

shapes = [Term.ellipse, Term.rectangle, Term.bucket,
Term.hexagon, Term.u_shaped]

roofs = [Term.jagged, Term.arc, Term.none,
Term.flat, Term.peaked]

loadshapes = [Term.hexagon, Term.triangle,
Term.diamond, Term.rectangle, Term.circle]

sides = [Term.not_double, Term.double]

lengths = [Term.short, Term.long]

loadnums = [0, 1, 2, 3]

wheels = [2, 3]

carriage_features = [Atom.shape, Atom.length, Atom.sides,

Atom.wheels, Atom.loadnum,
Atom.loadshape, Atom.roofcarriage]

The proposed template embeds every possible value of all features into
scalars unique for each value. This embedding results in all values having
their own learnable parameter - weights are not being shared here.

‘ Atom.length(Var.Y) ’

Atom.length(Var.Y) <= ‘

Atom.length(Var.Y, Term.short)[1,] Atom.length(Var.Y, Term.long)[1,]

Atom.length(Var.Y) <= ‘

Wy W,

‘ Atom.length(Var.Y, Term.short) ‘ ‘ Atom.length(Var.Y, Term.long)

Figure 6.1: The Length feature embedding
The embedding of features (Example 6.4) can be visualized as a graph.

Figure|6.1| shows the subgraph of our template, which describes the embedding
of one feature - the length feature with two possible values - short and long,
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6. Extending Graph Neural Networks

having their unique weights W; € R and W5 € R, respectively.

Listing 6.4: Train feature embedding
Y = Var.Y

template.add_rules (|

*[Atom.shape(Y) <= Atom.shape(Y, shape)|[l,]
for shape in shapes],

x[Atom.length(Y) <= Atom.length(Y, length)[1,]
for length in lengths],

x[Atom.sides(Y) <= Atom.sides(Y, side)[l,]
for side in sides],

*[Atom.roof (Y) <= Atom.roof (Y, roofs)|[l,]
for roofs in roofs],

x[Atom.wheels(Y) <= Atom.wheels(Y, wheels)[1,]
for wheels in wheels],

x[Atom.loadnum(Y) <= Atom.loadnum(Y, load)[1,]
for load in loadnums],

*[Atom.loadshape(Y) <= Atom.loadshape(Y, shape)[1,]
for shape in loadshapes],

The rest of the template is shown in Example where we define one layer
that embeds, aggregates, and combines all features to calculate carriage’s
embedding. The next layer is aggregating all possible positions of the carriage
present in an example set and embeds their associated carriage’s values
into one embedding to calculate the train value. Finally, the train atom is
again embedded to compute the direction value.

Listing 6.5: Train template

template.add_rules (|
Atom.carriage(Y)[1l,] <= (feature(Y)[1,]
for feature in carriage_features),
Atom.train <= Atom.carriage(Y)[1l,],
Atom.direction <= Atom.train[1l,],

1

The part of the template defined in Example can be visualized as
a graph with weights as in Figure At the bottom are omitted feature
embeddings, which are in the form of a graph in Figure 6.1

B 6.1.2 Ousting aggregation with embedding

This proposed template introduces additional information about the order
of each train’s carriage. The dataset and the template are the same as in
the previous section; the only difference is in one rule. By changing the rule
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6.1. Relational Logic

‘ Atom.direction ’

A

‘ Atom.direction <= Atom.train[1,] ’

A

Wio

‘ Atom.train ’

A

[ Atom.train <= Atom.carriage(Var.Y)[1,] ’

A

Wy

‘ Atom.carriage(Var.y) ’

A

‘ Atom.carriage(Var.Y) <= (Atom.shape(Var.Y)[1,], ..., Atom.roof(Var.Y)[1,]) ’

A A A A
‘W, Ws We (W

Atom.length(Var.Y)

Atom.roof(Var.Y)

Figure 6.2: The template graph representation

defining the train to four rules as in Example 6.6, we can add weights unique
to every possible position of carriages. From the observation of the dataset,
we assume that there is a maximum of four carriages per train.

Listing 6.6: Rules with information about the carriage’s order

x[Atom.train <= Atom.carriage(i)[1l,] for i in [1, 2, 3, 4]]

This considerably small change yields a graph presented in Figure [6.3| that
noticeably differs from the previous proposal. This model enables learning of
individual embeddings Wy_12 for each carriage position, compared to having
only one embedding for all carriages.

B 6.1.3 Utilizing Hypergraphs

The last, third proposed approach utilizes PyNeuraLogic’s ability to encode
hyper-graphs. Such ability is not common in popular GNN frameworks and
is usually limited. The PyNeuraLogic library expresses edges as atoms?, with
terms being the connected vertices. The number of terms is not limited; thus,
we can express a generalized version of edges - hyperedges by simply putting
an arbitrary number of vertices connected by a hyperedge as terms within
a predicate.

%j.e. there is no actual difference between representing a node or an edge - they are both

just logical facts about the world.
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6. Extending Graph Neural Networks

[ Atom.direction ]

X

Atom.direction <= Atom.train[1,] ]

[

W13

[ Atom.train ]

" T~

‘ Atom.train <=

Atom.carriage(1)[1,] Atom.carriage(2)[1,] Atom.carriage(3)[1,] Atom.carriage(4)[1,]

‘ Atom.train <=

‘ Atom.train <=

‘ Atom.train <=

A A A A

Wy Wio Wiy Wy,

Atom.carriage(3) ] [ Atom.carriage(4) ]
\ [ [ /
{ Atom.carriage(Var.Y) <= (Atom.shape(Var.Y)[1,], ..., Atom.roof(Var.Y)[1,]) ]

A A A A
W, iWs We W,

Atom.carriage(1) ] Atom.carriage(2) ]

Atom.length(Var.Y)

Atom.roof(Var.Y)

Figure 6.3: The template graph with embedding of different carriages

Bl The Dataset

The dataset is similar to one from the previously proposed approaches, but
we use only one example set holding information about the whole world - all
train instances. The example set is shared between all queries; thus, we must
establish additional terms to contain unique train ids. The introduction of
the additional term for features essentially produces edges with a cardinality
of three - connecting the train id, the carriage position, and the feature value,
, as is shown in Example 6.7

Listing 6.7: Encoding of features utilizing hypergraph

Atom.shape(train_id, 1, "rectangle"),
Atom.length(train_id, 1, "short"),
Atom.sides(train_id, 1, "not_double"),

Atom.roof (train_id, "none"),
Atom.wheels(train_id, 2),
Atom.loadshape (train_id, "circle"),

Atom.loadnum(train_id, 1),

The query for this approach has to be extended with one term containing
the train id as well, as in Example 6.8/ This is due to sharing one example for
all queries and the resulting need to distinguish which train we are targeting.

Listing 6.8: Parametrized direction query

Atom.direction(train_id)[—1.0]
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6.2. Learning on knowledge graphs

B The Template

Template [6.9]is inferred from the previous approach. The only change is an
additional term for the train id.

Listing 6.9: Template of model utilizing hypergraph
x[Atom.shape (X, Y) <= Atom.shape(X, Y, s)[1,] for s in shapes],

Atom.carriage (X, Y) <= (atom(X, Y)[1,]

for atom in carriage_atoms),
*[Atom.train(X) <= Atom.carriage(X, 1i)[1,]

for i in [1, 2, 3, 4]],
Atom.direction(X) <= Atom.train(X)[1,],

The graph of the template has the same structure as the previously proposed
model (Figure 6.3)), the only difference being in the naming of nodes - nodes
have an additional term.

B 6.2 Learning on knowledge graphs

Via the universal language of PyNeuralLogic, we are also able to encode tasks
from the area of Knowledge Base Completion (KBC) [24]. The purpose of
such settings is to deduce new information (e.g., property of entity or relations
between entities) from the provided knowledge graph containing information
about the instance of the world. The knowledge is commonly represented as
tuple (entity, relation, entity).

We might, for example, for the given background knowledge of different
nations and their relationships, e.g., diplomatic associations, infer the proba-
bility of Brazil having treaties with the UK or the probability of properties
such as the USA holding protests.

The representation of a GNN-based model for such a KBC setting can be
seen in Example |6.10, The atom predict/2 with arity two is used to compute
the probability of properties of the entity (e.g., Atom.predict(Term.usa,
Term.protests), and the atom predict/3 with arity three to compute the prob-
ability of a relationship between entities (e.g., Atom.predict(Term.brazil,
Term.treaties, Term.uk)).
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Listing 6.10: Knowledge base learning

Atom.embed_nationOne (Var.Nation)[3, 3] <= (
Atom.embed_relation(Var.Relation)[3, 3],
Atom.embed_nation(Var.NationTwo)[3, 3],
Atom.r(Var.Nation, Var.Relation, Var.NationTwo)[3,],

)

Atom.embed_nationTwo (Var.Nation)[3, 3] <
Atom.embed_relation(Var.Relation)[3, 3],
Atom.embed_nation(Var.NationTwo)[3, 3],
Atom.r(Var.Nation, Var.Relation, Var.NationTwo)[3,],

—

)

Atom.predict(Var.Nation, Var.Relation, Var.NationTwo)[l, 3] <= (
Atom.embed_nationOne(Var.Nation)[3, 3],
Atom.embed_nationTwo (Var.NationTwo)[3, 3],
Atom.embed_relation(Var.Relation)[3, 3],

) )

Atom.predict(Var.Nation. Var.Property)[l, 3] <= (
Atom.embed_nation(Var.Nation)[3, 3],
Atom.embed_property(Var.Property)[3, 3],

) )

The knowledge (entity, relation, entity) is represented in Example as
r(Term.entity, Term.relation, Term.entity), and we omit the relation
term when representing an entity having a property. We also assume that
the template contains embeddings for all entities (nations, properties) and
all relations, ensuring all relations and entities have their own learnable
parameters. Embeddings, which we omit for the simplicity in the model, are
then in the form of rules following the Example |6.11.

Listing 6.11: Embedding of knowledge

Atom.embed_relation(Term.relation)[3,] <= Atom.rel(Term.relation)

B 6.3 Beyond GNNs

This section introduces a few of many possible scenarios and concepts that
can be expressed in the PyNeuraLogic library and go beyond the possibilities
of regular Graph Neural Networks.
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B 6.3.1 Matching Patterns

One of the substantial extensions of vanilla Graph Neural Networks introduced
by the PyNeural.ogic librarylﬂ is capturing underlying graph patterns. We
can, for instance, recognize nodes that are parts of cycles, such as cycles
of the length of three - triangles, presented in Example

Listing 6.12: Capturing the pattern of triangles

Atom.triangle(Var.X)[1l,] <= (
Atom.edge(Var.X, Var.Y), Atom.feature(Var.Y)[l,]
Atom.edge(Var.Y, Var.Z), Atom.feature(Var.Z)|[1,]
Atom.edge(Var.Z, Var.X), Atom.feature(Var.X)|[1l,]

I
)
bl

)

Another slightly more complex example might be capturing cliques in a graph
- i.e. subgraphs that are complete. We present capturing cliques of the size
of four in Example [6.13. In the clique exampld?, we utilize an atom with
a special predicate alldiff, which guarantees the specified variables in its
terms to have unique values (all different). We use ... in place of terms,
which PyNeuraLogic later substitutes for all variables found in the current
rule.

Listing 6.13: Capturing the pattern of a clique of the size of four nodes

Atom.clique(Var.X)[1,] <= (
Atom.feature(Var.X)[1,

I,
Atom.edge(Var.X, Var.Y), Atom.feature(Var.Y)([1,],
Atom.edge(Var.X, Var.Z), Atom.feature(Var.Zz)([1l,],
Atom.edge(Var.X, Var.R), Atom.feature(Var.R)[1,],
Atom.edge(Var.Y, Var.Z), Atom.edge(Var.Y, Var.R),
Atom.edge(Var.Z, Var.R),

Atom.special.alldiff (...),

B Distinguishing k-regular graphs

Multiple graph structures are not distinguishable by the standard message
passing Graph Neural Networks [25]. For instance, the Graph Neural Networks
are not able to distinguish between k-regular graphs of the same size, such as
the two graphs shown in Figure [6.4. Those graphs are not isomorphic and
are both 3-regular, meaning all nodes have precisely three neighbors.

ﬂhttps://github.com/LukasZahradnik/PyNeuraLogid

*The fully working example of capturing cliques and triangles in the form of Jupyter
Notebook can be found at https://github.com/LukasZahradnik/PyNeuraLogic/blob/
master/examples/PatternMatching.ipynb
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a) b)

Figure 6.4: 3-regular not isomorphic graphs

When we assign the same features to all nodes, the messages during
the update step of message passing GNNs will be identical, resulting in the
same features and eventually classifying both graphs as the same class. Such
misclassification can be problematic in multiple domains, e.g., chemistry,
where two indistinguishable graphs represent two different molecules.

Via the PyNeuraLogic library, we are able to embed the pattern of both
graphs or their parts. There are many alternative approaches to distinguish
between those two graphs; our presented Example utilizes previously
shown encoding of triangles (Example to capture triangles of graph b,
with additional rules aggregating the general graph structureﬂ This results
in two different computation graphs where the computation graph for graph
a considers only the general rule, but the computation graph for graph b
reflects both the general and the triangle rules.

Listing 6.14: Distinguishing between graph a and graph b

Atom.triangle(Var.X)[1,] <= (
Atom.edge(Var.X, Var.Y), Atom.feature(Var.Y)([1l,],
Atom.edge(Var.Y, Var.Z), Atom.feature(Var.Z)[1l,],
Atom.edge(Var.Z, Var.X), Atom.feature(Var.X)([1l,],

) )

Atom.general (Var.X)[1l,] <= Atom.feature(Var.X)[1,],
Atom.general (Var.X)[1,] <= (Atom.edge(Var.X, Var.Y),
Atom.feature(Var.Y)[1,]),

Atom.predict <= Atom.general(Var.X)[1l,],
Atom.predict <= Atom.triangle(Var.X)[1l,],

5The fully working example of distinguishing k-regular graphs in the form of Jupyter
Notebook can be found at https://github.com/LukasZahradnik/PyNeuraLogic/blob/
master/examples/DistinguishingKRegularGraphs.ipynb
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B Distinguishing non-regular graphs

There are instances of graphs that are not k-regular nor isomorphic and yet
are not distinguishable via the message passing GNNs when their nodes have
identical features [25]. An example of such graphs is shown in Figure
In PyNeuraLogic, we are capable of distinguishing those graphs, for example,
via the previously proposed model (Example which captures triangles
of graph a to distinguish between graphsﬁ

a) b) )

N\
Figure 6.5: Not regular not isomorphic graphs

Another interesting approach of a slightly different extension of vanilla GNNs
might be capturing based on the structure and the cardinality of nodes. We
can add additional information about the cardinality of each node into ex-
amples, for instance, as atoms with predicate’s name cardinality with two
terms - the node id and its cardinality. We can then choose which atom will
be aggregated based on its cardinality to distinguish graph a and graph b,
as shown in Example [6.15 where we capture only sub-graphs of graphs.

The a_graph captures a triangle (Var.X, Var.Y, Var.Z) connected to one
node (Var.T) with a cardinality of three. In contrast, the b_graph captures
a cycle of length of four (Var.X, Var.Y, Var.Z, Var.T) which has to satisfy
required cardinalities.

Listing 6.15: Distinguishing between graphs based on their cardinality
Atom.a_graph(Var.X) <= (

Atom.edge(Var.X, Var.Y), Atom.cardinality(Var.Y, 2)[1,],
Atom.edge(Var.Y, Var.Z), Atom.cardinality(Var.z, 2)[1,],
Atom.edge(Var.Z, Var.X), Atom.cardinality(Var.X, 3)[1,],

). (var.T, 3)[1.],

Atom.edge(Var.X, Var. Atom.cardinality(Var.
Atom.special.alldiff (...)

)

Atom.b_graph(Var.X) <= (
Atom.edge(Var.X, Var.Y), Atom.cardinality(Var.Y, 2)[1,],
Atom.edge(Var.Y, Var.Z), Atom.cardinality(Var.z, 2)[1,],
Atom.edge(Var.Z, Var.T), Atom.cardinality(Var.T, 3) ,

6 All fully working examples of distinguishing non-regular graphs from this section in
the form of Jupyter Notebook can be found at |https://github.com/LukasZahradnik/|
[PyNeuraLogic/blob/master/examples/DistinguishingNonRegularGraphs.ipynb
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Atom.edge(Var.T, Var.X), Atom.cardinality(Var.X, 3)[1,],
Atom.special.alldiff (...),

) )

Atom.predict <= Atom.a_graph(Var.X)[1,],
Atom.predict <= Atom.b_graph(Var.X)[1,],

a) b)
Figure 6.6: Bicyclopentyl and Decalin
Figure 6.6l shows two graphs, a and b, representing a real-world structure
of two molecules Bicyclopentyl and Decalin, respectively. The message passing
GNN cannot again distinguish between graphs under the condition of identical
features for all nodes [25]. In PyNeuraLogic, we can embed, for example,

the cycle of length five present in graph a and thus distinguish those instances,
such as is shown in Example 6.16

Listing 6.16: Capturing the cycle of the length of five

Atom.cycle_of_the_length_of_five(Var.X)[1l,] <= (
Atom.edge(Var.X, Var.Y), Atom.feature(Var.Y
Atom.edge(Var.Y, Var.Z), Atom.feature(Var.Z
Atom.edge(Var.Z, Var.R), Atom.feature(Var.R
Atom.edge(Var.R, Var.S), Atom.feature(Var.$S
Atom.edge(Var.S, Var.X), Atom.feature(Var.X
Atom.special.alldiff (...),

— — e —
— e

B 6.3.2 Expressing Features

Features in Graph Neural Network frameworks and libraries are usually
represented in the form of numerical tensors. Such representation loses
the information about the meaning of each feature element, and the users
are generally forced to use the exact dimension of the feature tensor for each
node feature or/and edge feature.

PyNeuraLogic feature values are not limited to be numerical nor to be
contained in a fixed-size tensor. We have already shown in Sec. that we
can encode a feature’s as a string inside of fact’s terms and that we can assign
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a name to a feature via predicate’s name, e.g., shape, roof, which simplifies
the readability and the understanding of models compared to the numeric
tensor representations.

Nodes in PyNeuralLogic can also have an arbitrary number of features of
one type, i.e. values of the same feature. To proceed with our trains example,
we might, for instance, propose a new carriage, which is constructed from two
different shapes and not only one, as is shown in Example |6.17, This enables
users to add features with ease and without the need to expand the feature
vectors of different nodes. If we were to replicate this feature in regular Graph
Neural Network frameworks, we might soon end up with high dimensional
tensors leading to problems with memory.

Listing 6.17: One node having two features of the same type
Atom.shape (0, Term.ellipse), Atom.shape(0, Term.rectangle),

Another property of PyNeuraLogic is having features’ values not limited to
being one fixed tensor. We can mix different types and dimensions of inputs
in one model, e.g., scalar and vector feature, as in Example |6.18], where we
encoded a scalar value 1.0 and a vector value of the length of three with
values 1.0, 2.0, and 3.0 for node with id 0.

Listing 6.18: Example of scalar and vector features

Atom.scalar_feature(0)[1.0],
Atom.vector_feature(0)[[1.0, 2.0, 3.0]]

Both features can then be embedded into one value, such as a scalar,
as presented in Example [6.19. It is however important to make sure that
aggregated embeddings have the exact dimensions; for that reason, we are
embedding the vector value feature into a scalar first to be able to combine
it with the scalar value feature later. We might also embed the scalar value
feature into a vector instead since we are naturally not limited to scalar
embedding.

Listing 6.19: Template with scalar and vector features

Atom.feature_embed(Var.X)[1l,] <= (
Atom.scalar_feature(Var.X)[1,],
Atom.vector_feature(Var.X)[1l, 3]
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B 6.3.3 Extending Graph Outputs

We have already previously mentioned that via the proposed library, we are
able to get the output from an arbitrary rule and even an arbitrary atom.
For example, we can have multiple layers which we can query to obtain
information about different properties of the queried entity, as shown to

Example |6.20}

Listing 6.20: Layers embedding different properties

Atom.color(Var.X)[1l,] <= Atom.layer_1(Var.X),
Atom.shape(Var.X)[2,] <= Atom.layer_1(Var.X),

The output is also not restricted to be of one fixed dimension, as is usual
in regular GNN frameworks. In PyNeuralogic, different atoms can output
tensors of different dimensions, and we can achieve such behavior even on
atoms with the same predicate’s name. In Example 6.21, we propose the atom
predict. Its output depends on helper atoms arbitrarily named scalar and
vector, which serve for conditional computation to determine if the value of
atom embed_layer will be embedded via scalar or vector, respectively; thus
yielding tensors of different dimensions.

Listing 6.21: Output of different dimensions

Atom.predict[1,] <= (Atom.embed_layer, Atom.scalar),
Atom.predict[2,] <= (Atom.embed_layer, Atom.vector),

B 6.3.4 Heterogenous Graphs

Most GNN models do not consider graphs being heterogeneous, and GNN
frameworks support heterogenous only to some degree. Via PyNeural.ogic,
we can easily encode heterogeneous graphs with an arbitrary number of node

(e.g., Example [6.22) and edge (e.g., Example 6.23)) classes.

Listing 6.22: GCN Layer aggregating nodes of the same type as the central
node’s type

Atom.layer (Var.X) <= (
Atom.feature(Var.Y),
Atom.node_type(Var.Y, Var.Type)
Atom.node_type(Var.X, Var.Type)
Atom.edge(Var.X, Var.Y),

)
)
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Listing 6.23: GCN Layer with capturing edge type in Var.Type

Atom.layer (Var.X) <= (
Atom.feature(Var.Y),
Atom.edge(Var.X, Var.Y, Var.Type),

) ’

We might also encode heterogeneous graphs less universally by utilizing
predicate as the name of types, as is showcased in Example

Listing 6.24: Node types via predicates

Atom.layer (Var.X) <= (
Atom.feature(Var.Y),
Atom.my_type(Var.Y),
Atom.my_type(Var.X),
Atom.edge(Var.X, Var.Y),

We are even able to create a new type from merging types and create
hierarchies of types. In Example [6.25, the car class captures nodes with
types of types bus and pickup. The vehicle class is a superset of the car
class with additional capturing of nodes of a bicycle type.

Listing 6.25: Creating hierarchies of types

Atom.type(Var.X, Term.car) <= Atom.type(Var.X, Term.bus),
Atom.type(Var.X, Term.car) <= Atom.type(Var.X, Term.pickup),

Atom.type(Var.X, Term.vehicle) <= (
Atom.type(Var.X, Term.car)

)

Atom.type(Var.X, Term.vehicle) <= (
Atom.type(Var.X, Term.bicycle)

)

We can attach features to all proposed constructs above. Edge and node
types can have features, as is shown in Example [6.26

Listing 6.26: Types’ features

Atom.layer (Var.X) <= (
Atom.feature(Var.Y),
Atom.type_feature(Var.NodeType),
Atom.edge_feature(Var.EdgeType),
Atom.type(Var.Y, Var.NodeType),
Atom.edge(Var.X, Var.Y, Var.EdgeType),

Nodes and edges in PyNeuralLogic are not limited to only one class. Such
property can result in utilizing all features of classes linked to the node while
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computing embeddings. We also can define features globally for types and
the specific node of the class. This way, we can have features specific to the
node but dependant on its type, as shown in Example 6.27.

Listing 6.27: Types’ features

Atom.layer (Var.X) <= (
Atom.type(Var.X, Var.Type),
Atom.type_feature(Var.Type),
Atom.type_node_feature(Var.X, Var.Type),

) )

B 6.3.5 Heterophily Setting

GNN models usually consider homophily in the graph - frequently, nodes
of similar classes are connected with each other [26]. This setting does not
capture multiple problems adequately, where there is a heterophily amongst
connected nodes - mainly nodes of different classes are connected, resulting
in low accuracies of classifications. An example of such a problem might be
the arziv paper citation network [27], where each paper represents a node,
citation an edge, and each node is labeled by the year it was written.

Recently, there has been a development of models specifically dealing
with heterophily graphs, such as the H2GCN model [28]. The H2GCN
model combines three key designs - embedding the central node separately,
aggregating higher-order neighborhoods instead of the direct neighbors only,
and combining intermediate representations of nodes at the final layer.

All of the listed vital ideas can be effortlessly encoded via versatile constructs
of PyNeuraLogic, without the need for another specifically crafted black box.
The separate embedding can be encoded as in Example 6.28, the aggregation
of the higher-order (the second-order) neighborhood in Example [6.29 and
combining previous layers in the last layer in Example |6.30. Note that we do
not specify the weights here for readibility purposes.

Listing 6.28: Separate embedding of the central node

Atom.layer (Var.X) <= Atom.feature(Var.X)

Listing 6.29: Higher-order neighborhoods embedding

Atom.layer (Var.X) <= (
Atom.feature(Var.Z),
Atom.edge(Var.X, Var.Y),
Atom.edge(Var.Y, Var.Z),
Atom.special.alldiff (...),

)
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Listing 6.30: The last layer combines the representations of previous layers

Atom.last_layer (Var.X) <= (
Atom.layer(Var.X),
Atom.layer_2(Var.X),
Atom.layer_n(Var.X),

)
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Chapter 7

Conclusions

In this work, we proposed and implemented a machine learning library with
a custom language based on relational logic to enhance graph neural networks
beyond their current state. We showed how some GNN models can be
encoded in our proposed language via weighted clauses, essentially uncovering
the underlying models’ architectures, giving us the ability to adjust and
extend the said architectures with ease.

B Comparison with other libraries/frameworks

To quickly summarize, our solution supports both homogenous and het-
erogeneous graphs, whereas popular GNN libraries consider mainly only
homogeneous graphs (some include one heterogeneous model). We also sup-
port expressing hypergraphs, which are not frequently supported in other
GNN frameworks (usually only one specific model). Additionally, the library
allows for introduction of completely new embedding propagation schemes
upon these structures.

As a result, the common GNNs have problems with distinguishing some
graph classes, which our solution can solve by utilizing higher-order pattern
matching. While there exist some specialized GNN models explicitly targeting
this issue, our solution is more general and can encode and propagate messages
through arbitrary relational patterns. Via pattern matching, we are able to
match various complex subgraphs and embed them, which covers numerous
use-cases in domains such as chemistry or social networks. We also add more
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expressiveness in encoding node’s and edge’s features. Our solution enables
us to query any (logical) atom in the model, which leads to the possibility
of retrieving different underlying representations from different parts of the
model.

The shortcomings of our solution are mainly related to computational
efficiency, where popular GNN libraries and frameworks utilize lower-level,
well-optimized computing libraries. Our solution is noticeably slower for
problems that require operating on large input tensors due to the lack of
optimized multiplications and other tensor operations.

B Future Work

Future work might be focused on more efficient computational operations,
which would solve the trade-off between speed and expressiveness in some
instances. Such improvement might be achieved, for example, by utilizing
Torch for heavy bulk computations.
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