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Abstract

This work tackles the task of large-scale
document retrieval by utilizing multi-
stage methods for document retrieval. It
combines two retrieval stages: document
preselection and document reranking. It
considers classic DR approaches such as
TF-IDF and BM25 in the first stage and
modern Transformer networks in the sec-
ond stage. It evaluates and compares the
Cross-Attention and Two-Tower architec-
tures in various setups.
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Abstrakt

Tato préace se zabyva tkolem vyhledavani
dokumentt ve velkém méritku pomoci vi-
cestroviiovych metod pro hledani doku-
menti. Kombinuje dvé faze vyhledavani:
predvybér dokumenti a pfefazeni doku-
mentli. Zvazuje klasické pristupy vyhle-
dévani dokumenti jako jsou TF-IDF a
BM25 v prvni fazi a moderni Transfor-
mers sité ve druhé fazi. Vyhodnocuje a
porovnava architektury Cross-Attention
a Two-Tower v rtiznych nastavenich.

Kli¢ova slova: vyhledavani dokumentu,
fact-checking, transformers,
vicedroviové vyhledavani, TF-IDF,
BM25
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Chapter 1
Introduction

With every journal, article, sentence we read, we stand in front of a decision. A decision
whether to believe the information we have just read or not trust it and possibly find
more information on the topic. That may seem rather critical-minded but with the ever-
increasing number of information available online the need for verification surges.

Misinformation and disinformation are a rising challenge of the digital time we are living
in. Both are an act of spreading false, inaccurate, or misleading information. However the
first is without the intention of misleading, the second is knowingly sharing the information
with an ulterior motive such as economic gain, public manipulation, and others. From
disinformation it is a small step to fake news, which is the same concept but sensational,
often emotionally charged, and can be completely fabricated.

The terms misinformation, disinformation, malinformation, or in general terms regard-
ing the veracity and overall flow of information and communication need clear definitions,
especially recently with the COVID19 pandemic [Baines et al., 2020] and associated in-
fodemic (ubiquity of false or misleading information in digital and physical environments
during a disease outbreak) [WHO, 2021] in mind.

The solution to this sociological problem is complex. To prevent the spread of false
information we need the right mix of interventions, including support of independent
journalists and fact-checking platforms, efforts to boost digital media literacy, new policies
to prevent harm in the digital information ecosystems, etc. Fact-checking (performed by
humans or automated) is one of many ways to tackle the problem.

. 1.1 Fact-checking

Fact-checking is a process of verification of factual information. It seeks to classify a
claim (fact) as truthful, false, or another category suitable for the task at hand. For
some, fact-checking means verifying the truthfulness of factual political statements such
as numerical information, historical facts, or past acts of politicians. For the English-
speaking world, it is the site PolitiFact!, and for the Czech-speaking, it is Demagog?. In
the case of Demagog, there are four categories: true, false, misleading, and unverifiable.
PolitiFact’s six categories form a scale of how truthful the information is.

Yhttps://www.politifact.com/
2https://demagog . cz/
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‘ Demagog”

FACTCHECK POLITICKYCH DISKUZI

Mame tam (pro Ministerstvo dopravy v ndvrhu statniho
rozpoctu na rok 2022, pozn. Demagog.cz) 122 miliard, letos

byl rozpocet 127.5 miliardy, coz je absolutni rekord.
Karel

Havlicek e .
@ PrAVDA  trvaly odkaz =5

Rozpocet Ministerstva dopravy skutecné letos rekordni byl.
Jednalo se o 116 miliard korun, na pristi rok je planovanc o 5
miliard méne.

zobrazit celé odGvodnéni

POLITIFACT

The Poynter Institute s Fr ) 5
Investicni cast (planovaného rozpoctu na rok 2022,

pozn. Demagog.cz) je na Grovni 180 miliard, z toho vétsinu

tvofi doprava.
TRUE Karel

Havlicek B (o | »
&) NEOVERITELN trvaly odkaz

POLITIACT
TRUTH- O - METER™

Vladou schvalené parametry statniho rozpoctu na rok 2022
obsahuji investice ve vyii 189 miliard korun. Dle vyjadreni
Ministerstva financi bude podil investic uréenych na dopravu
Znamy az v srpnu.

zobrazit celé odGvodnéni

POUITIALCT
1REUTH- O METER™
V minulosti byl rast penzi podseknuty, mezi lety 2010 a 2014

se posunul o jednu tisicovku. Nejednalo se pritom o krizove

obdobi a ekonomika slapala.

Karel
Havlicek

© NEPRAVDA kaz =%

\ porovnani s cbdobim pred rokem 2010 a po roce 2014 rostly
dichody opravdu pomaleji, pramérny dichod se navysil

o necelych tisic korun. Ceska republika nicméné v letech 2012
a 2013 prochazela ekonomickou recesi.

zobrazit celé odtvodnéni

(b): Demagog’s verification examples labeling true, un-
(@) : PolitiFact’s Truth-O-Meter verifiable, and false in this order.

Figure 1.1: Examples of classification labels for political claims.

Another Czech fact-checking site example is ManipulétoFiB. It is also dedicated to ver-
ifying political statements or whole debates but it does not use the classifying approach
as the previous two. They find and reveal false claims and disinformation and justify the
reasoning behind it but do not try to select labels.

All three sites perform their fact-checking manually, which means collecting all the evi-
dence and composing it to assess the truthfulness of a claim. It would be highly beneficial
to automate the task or at least parts of it.

Another examples of English fact-checking sites are FactCheck.orgH that monitors the
factual accuracy of political speeches, debates, or news stories. Or Snopes? that provides
evidence for fact-checking urban legends, folklore, rumors, and misinformation.

Shttps://manipulatori.cz/
“https://www.factcheck.org/
https://www.snopes.com/
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1.2. Automated Fact-checking

. 1.2 Automated Fact-checking

The process of fact-checking requires a combination of various NLP (Natural Language
Processing) tasks ranging from document retrieval, question answering, natural language
inference, etc. There are many approaches to the task and also many levels of automa-
tion. The work of [IThorne and Vlachos, 2018h provides an overview of common concepts,
datasets, and modelling approaches of automated fact-checking. They discuss what inputs,
output, and evidence the automated pipeline expects and produces.

The input is the information that is being fact-checked. The most popular input is
simply a textual claim. There can be various types such as numerical claims, position
statements, entity properties, quote verifications, etc. Various approaches may process
the claim differently, eg. using Name Entity Recognition for disambiguation, while others
rely only on correct evidence retrieval.

The output can be as simple as labeling a claim true or false or as complex as producing
a justification along with labeling where the number of labels can be arbitrary.

Some approaches may use knowledge graphs as the sources of evidence, others a less
structured data such as news articles, scientific journals, encyclopedia articles, etc.

This thesis focuses on the evidence retrieval part of the fact-checking pipeline. We
examine document retrieval methods that select documents relevant to a query. The
query is the information intended for fact-checking and the documents are paragraphs or
sentences, that contain the evidence required for the justification of the verification.

* Symbolic (s. a. tf-idf-based) or
Knowledge | neural search engine that, given a claim ¢

base in a natural language, yields a set of para-
graphs from the knowledge base thet are
semantically closest to c.

Factic claim

Y

[ Document Retrieval *

To be trained using a dataset
@ matching sample claims to their

evidence within the provided
knowledge base.

vidence II e

** NLP-based engine that decides whether

a provided set of paragraphs entails given
factic claim — see Chapter 7.

Trained using a dataset mapping
evidence sets coupled with claims

Natural Language Inference ** }
to their respective labels.

Figure 1.2: Example of a fact-checking pipeline, reprinted from [Ullrich, 2021].



1. Introduction

B 1.3 Project

This thesis is a part of the AIC Fact-Checking project. The goal is to establish a strong
baseline for the fact-checking task in the Czech language. The work of [Rypar, 2021] focuses
on large-scale retrieval as well as this work. [Gazo, 2021 focuses on scaling the state-of-
the-art neural models for longer inputs. [Ullrich, 2021] concentrates on dataset collection
and processing and establishing a baseline for natural language inference (assigning a label
to the claims).

Our project group is growing in numbers and also in the number of challenges to conquer.
Our focus is on journalist articles and reports however, we examine methods for DR on
other datasets such as the FEVER dataset described in chapter 2.

B 1.4 Related Work

The multi-stage approach to document retrieval is not new. There are works already
exploiting this idea. [MacAvaney et al., 2020] suggests a Precomputing Transformer Term
Representations for precomputing part of document term representations before inference
time and then merging them with the query representation to compute the final ranking.
Their idea predominantly reduces the query-time latency which is also a goal in multi-stage
DR.

The work of [Matveeva et al., 2006] is closer to our approach in the sense of reranking
the documents multiple times. It presents multiple nested rankers that iteratively improve
the ranking scores of the document. The rankers use the RankNet algorithm for learning
ranking functions with gradient descent.

The FEVER shared tasks [Thorne et al., 2018b], [Thorne et al., 2018d], [Aly et al., 2021]
inspired a lot of work in the fact-checking domain. The first task introduced the problem
to the wider community and the challenges are set higher and higher with the following
tasks. The newest task introduces unstructured data into the picture which until now was
a great challenge. It also inspires fact-checking in other less represented languages than
English. We can see that on the efforts in Danish [Binau and Schulte, 2020] fact-checking
or in the surge in the creation of fact-checking datasets in other languages [Shahi and
Nandini, 2020)].

. 1.5 Thesis Outline

B Chapter 1 introduces the fact-checking domain and its challenges. It presents some
already employed fact-checking sites and reviews related work.

B Chapter 2 familiarizes us with the two datasets used for this work. It describes the
dataset collection and its properties.

B Chapter 3 dives deep into the background of document and information retrieval,
presenting classical approaches as well as modern approaches.

B Chapter 4 describes the proposed solution to the multi-stage method approach to
document retrieval. Goes through the evaluation metrics and method used in our
work.

B Chapter 5 details the setup of experiments and presents the results.

4



1.5. Thesis Outline

B Chapter 6 concludes the work with a summarization of our efforts and results and
discusses future work.






Chapter 2
Datasets

This chapter describes the datasets we created and used in the fact-checking domain. In
the Czech language, there are not any such datasets for the task therefore, we had to
search for inspiration. In the English language (and other generally more used languages
than Czech), there are usually various datasets for each NLP task. We took inspiration
from the FEVER [Thorne et al., 2018a] dataset, further described in the next section,
and created a Czech version called FEVER CS (sec. 2.2).

Another dataset that we used is the CTK dataset (sec. 2.3) created from articles
provided by Ceska Tiskova Kancelaf (Czech News Agency). A set of annotators from
the Faculty of Social Sciences at Charles University helped us create a collection of claims
(containing labels, evidence sets, etc.) such as the claims from the FEVER dataset. We
used these two Czech datasets for all experiments in this thesis.

For a detailed description of creation, localization and properties of the datasets see
[Ullrich, 2021].

B 2.1 FEVER

FEVER [Thorne et al., 2018a], the Fact Extraction and VERification dataset is a base
point for many attempts to create a dataset for factual verification in other lower resource
languages, for example, Danish [Binau and Schulte, 2020], [Ngrregaard and Derczynski,
2021]. The FEVER shared task [Thorne et al., 2018b] also prompted many submissions,
efforts, and development in this NLP task.

The FEVER dataset is created by extracting and altering sentences from Wikipedia.
The sentences form claims that are subsequently verified and classified as SUPPORTED,
REFUTED, or NOT ENOUGH INFO by annotators.

We say that a claim is VERIFIABLE if it is supported or refuted, otherwise it is NOT
VERIFIABLE. When a claim is verifiable, then it has at least one evidence set to justify
its label. A claim can have multiple evidence sets however, every set alone is sufficient to
verify the claim.

The construction of the dataset consists of two parts:

1. Claim Generation: Extraction of information from Wikipedia where the annotators
create claims from approximately 50,000 most popular pages. Each claim contains
a single piece of information from a certain Wikipedia page. It can be arbitrarily
complex, and the annotators can draw from additional knowledge in the form of a
dictionary. The annotators also mutate the claims by rephrasing, negating, generaliz-
ing, specifying, or substituting parts of the claims, creating new ones that often need
new evidence or even different labels.



2. Datasets

2. Claim Labeling: Classifying a claim as SUPPORTED or REFUTED and providing the
evidence. If there is no evidence or not enough to verify, the claim is classified as NOT
ENOUGH INFO. The annotators can find the evidence on any Wikipedia page. They
select one or multiple sentences that form the evidence set.

id: 119669

verifiable: "VERIFIABLE"

claim: "Venus takes 22 Earth days to orbit the Sun."
evidence: [[[140651, 155801, "Venus", 0]]]

label: "REFUTED"

Figure 2.1: FEVER annotation example.

The claims are stored in dictionaries, where each dictionary has five keys: id, claim,
label, evidence, and verifiable flag. In figure 2.1 we can see an example of a dictionary
representing a claim that is classified as REFUTED. The evidence is a list containing sets
of evidence sentences. In the example, there is only one set that contains only one evi-
dence sentence. The evidence sentence is structured as [annotation_id, evidence id,
article_wikiid, sentence_index]. Meaning that the sentence with index 0 on the
page Venus is the evidence sentence in the example. If we look it up in the Wikipedia
articles it states: Venus orbits the Sun every 224.7 Earth days, which counters the claim.

After the creation of the data, various data validation techniques were used. Such as
selecting 1% of data to be annotated by super-annotators who did not have any time
restrictions per claim. Or validation of a small amount of data by the authors.

After this process they achieved the following split sizes:

Split SUPPORTED REFUTED NEI
Train 80,035 29,775 35,639
Dev 3,333 3,333 3,333
Test 3,333 3,333 3,333
Reserved 6,666 6,666 6,666

Table 2.1: FEVER split size

B 2.2 FEVERCS

We created a dataset deriving from the English FEVER dataset with the help of Czech
Wikipedia. We adopted the FEVER annotation practices and decided to use the same
three labels. We created a similar but smaller Czech verification dataset.

First, we took every evidence used in the original FEVER dataset and mapped the
English Wikipedia page to the Czech one using MediaWiki API!. It utilizes the links at
every Wiki page to the same page in foreign languages. The data loss was not significant
because most English pages have their Czech opposite. More detail in [Ullrich, 2021].

As a knowledge base, we used a Wiki dump? from June 2020, which was parsed and
tokenized to sentences. The vast majority of evidence is located in the abstracts of articles,
thus we only used those resulting in every article being one paragraph long.

'https://www.mediawiki.org/wiki/API:Main_page
Zavailable at https://dumps.wikimedia.org/ or http://bertik.net/cswiki
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2.3 CTK

Followed the translation of claims via Google Cloud Translation API, then normalization
of both claims and knowledge base, and finally splitting the dataset into train, dev, and
test parts. The split sizes are roughly comparable to the ones in Tab. 2.1.

Split SUPPORTED REFUTED NEI

Train 53,542 18,149 35,639
Dev 3,333 3,333 3,333
Test 3,333 3,333 3,333

Table 2.2: FEVER CS split size

The format of the dataset is similar. Only difference being that the Czech dataset also
keeps the original English claims in the dictionary, for better orientation between the two
datasets. The complete annotation is analogous to Fig. 2.1 only with the claim divided
into two entries - claim_en and claim_cs.

B 23 €Tk

Our goal is to work with and fact-check news articles and for that we needed another
Czech dataset for verification that would not be dependant on Wikipedia this time. We
decided to create a new one with a different knowledge base from the area of journal-
ism. We took advantage of news reports from the archive provided by the Czech News
Agency (CTK).

In total, there are over 11 million articles from between the years 2000 and 2019. The
number was reduced to 11 million from 15 million after cleaning the data. We eliminated
sports results and daily news summaries due to frequent occurrences of tables, charts, and
other structured data. Raw textual data fit better for our task.

B 2.3.1 Collection of the dataset

The collection of the dataset took place at the Annotation platform? [Ullrich, 2021]
and was performed by around 170 students from the Faculty of Social Sciences at Charles
University. There were three rounds of annotating during which we collected 3,293 cross-
annotated claims with labels and evidence sets. After each round, the Annotation
platform was adjusted to help avoid the most common mistakes or misunderstandings of
the annotators.

We followed the general directions of such dataset creation as in FEVER [Thorne et al.,
2018a]. The FEVER dataset was created from the Wikipedia knowledge base and the
CTK dataset from news reports. Wikipedia articles often have a summary at the be-
ginning, causing the most useful information for the formation of evidence to be located
predominantly there. The news reports, on the other hand, do not share this advantage.
Therefore we approached all paragraphs from the reports equally and claims along with
evidence could be extracted from all. Despite these differences in data, the process could
otherwise run similarly.

3https://fcheck.fel.cvut.cz/site/login
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Anotacni Platforma Fcheck Ura: 33 Ugbi97 Usa:07 Usbilss Doma  Statistiky

Uy: Tvorba tvrzeni

Cilem Gkolu je vytvofit mnozstvi pravdivych a nepravdivych tvrzenf extrakel z nabizenych vét z korpusu tiskovych zprav CTK.

D Tutorial 3K Zadit tvofit tvrzenl

U,: Anotace faktické spravnosti tvrzeni

Cilem tikolu je identifikovat dikazy z korpusu tiskowjch zprav CTK, které Ize pousit k potvrzeni nebo vyvraceni jednoduchych faktoidnich tvrzen.

Anotace vlastnich tvrzeni slou#i jako referencni anotace. Doporuéujeme se jf vénovat ve chyili, kdy méte sva tvrzeni v Zivé paméti po U1.

D Tutorial A Anotovat vlastni tvrzeni &3 Anotovat cizi tvrzeni

Figure 2.2: Annotation platform for the CTK dataset. UI task - claim generation, U2 task -
claim labeling both with tutorials for the annotators.

Before the work of the annotators could begin, we preselected source paragraphs for claim
generation. We skimmed the articles, selecting paragraphs that contained any verifiable
information. The annotators then received these preselected texts as the initial building
stone.

Firstly, the claim generation task includes claim extraction and claim mutation. During
the claim extraction task, the annotators were presented with a paragraph from which
they had to extract a single factoid claim without using their world knowledge. They
could use knowledge from other paragraphs from the same article.

After the claim extraction follows claim mutation. The annotator has to mutate the
original claim using a set of given approaches such as generalization, negation, substitution,
paraphrase, and others. He can use his world knowledge as well as the source article.

Lastly, the task of claim labeling takes place. The annotator assigns a veracity la-
bel from the three categories SUPPORTED, REFUTED, NOT ENOUGH INFO as in the FEVER
dataset. Then selects evidence justifying the label choice. Every annotator has to label
part of claims generated by himself and part of claims generated by other annotators. This
practice also ensures that every claim is annotated at least one time, but usually more.

id: 200
verifiable: "VERIFIABLE"
claim: "Radnice Postoloprt nechava chatrat kapli ¢trnacti svatych pomocniki."
evidence: [[[-1, 33, 20010711F01495_ 1, -1]],
. [l-1, 174, 20010711F01495_1, -1 |]]
label: "REFUTED"

Figure 2.3: CTK annotation example with two evidence sets. Both contain an evidence sen-
tence from the same article.

The annotated examples are in the same format as the FEVER dataset in ﬁg.[ll.

B 2.3.2 Datasetversions

After the data collection, the dataset was cleaned manually to resolve every conflict in
labeling. Many were caused, e.g. by temporal reasoning which can be resolved by using
timestamps. We addressed the most common problems in the annotation by informing the

10



2.3 CTK

annotators in the following rounds of annotations and by making the Annotation platform
clearer.

The collection of the data was cross-annotation driven which means that each claim
was labeled by more annotators. Also resulting in every verifiable claim having at least
one evidence set but many having two or more. That inevitably leads to disagreements in
some annotations (labeling or evidence sets).

We measured the Fleiss « score [Fleiss, 1971] for the k-way inter-annotator agreement.
It measures nominal scale agreement between a fixed pair of raters (annotators). We
calculated it to be 0.61 for a 5-way agreement which is encouraging compared to 0.6841
for the original FEVER dataset.

The process of cleaning reduced and refined the dataset, also introducing various versions
of the data. The first version after the first round of annotations was experimental and
helped form the final dataset. The version used in this thesis and in all experiments in
Chapter § is called CTK v2.1 and corresponds to the split size in Tab. 2.3. It was
generated after all three rounds of annotations. There is also another augmented version
CTK v2.1nli used in [Ullrich, 2021].

Split SUPPORTED REFUTED NEI

Train 1,132 519 473
Dev 100 100 100
Test 200 200 200

Table 2.3: CTK CS split size
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Chapter 3
Background

This chapter provides background to Document Retrieval (DR) methods from the classic
approaches in section B.1 to the modern Transformer networks, in section 3.2, that are a
popular choice when treating any Natural Language Processing tasks nowadays.

Document retrieval in information science is the task of matching a user request (query)
against a document. The required output of a DR pipeline is a relevance-ranked list of
top k& documents selected from a broad collection of documents. The structure of the
documents varies from newspaper articles, website pages to database records. The query
can also be arbitrarily complex, from one word to multiple sentences long. DR systems
are used daily, for example, in the form of web search engines.

A document retrieval system consists of two main tasks:

1. Matching - Finding relevant documents to the query.

2. Ranking - Evaluating and sorting the matching documents.

. 3.1 Traditional Document Retrieval

In the traditional document retrieval pipeline (see Fig.3.1), some processes such as doc-
ument processing can run in advance before the query is posed. After normalizing the
document to a predefined format, it is broken down into retrievable units. Those can be
paragraphs, chapters, or even full documents. That is followed by deleting stop words (i.e.,
prepositions, conjunctions, articles) and stemming (removing suffixes), which results in
higher frequency counts due to the lack of all morphological variants of a word. The last
step is producing an inverted file, a sorted array consisting of all indexable terms, their
weights, and links to the documents.

After document processing, we also need a representation of the query. The query
processing is done in real-time and partly consists of similar steps as document processing.
It begins with tokenization of the query terms (deletion of stop words, stemming, and
phrase recognition), followed by their ezpansion. The expansion introduces synonyms to
the terms and also highly associated terms. It improves the recall measure but might
reduce precision depending on the length of the query.

The query and document representations are vectors with information about term fre-
quency and weights. Having these vectors, we search the inverted file for documents
containing any of the query’s terms. We compute a similarity score between the query
vector and the candidate document vectors using different matching functions depending
on the DR model we are using. Finally, we order the documents decreasingly by the sim-
ilarity score and return the list to the user. The user then has the opportunity to modify
the query, thus starting the pipeline anew.

13



3. Background

Query
Query Document
representation representation

DOCUMENT
LIST

Figure 3.1: Document retrieval pipeline [Liddy, 2005].

There are four different classic document retrieval models based on various approaches
and theories:

B Boolean Model - simplest and oldest DR model based on classical set theory

B VectorSpace Model - algebraic model, where documents and queries are represented
as vectors

H Probabilistic Model - model, that relies on probabilistic theories such as Bayes’
theorem

B Language Model - statistical method based on determining a probability of a se-
quence of words

Follows the presentation of the four theoretical models along with their advantages and
disadvantages at the end of each subsection [IPannu et al., 2014]].

B 3.1.1 Boolean Model

The Boolean Model is based on set theory, where documents are represented as a set of
terms and queries as logical expressions. It does not use term frequencies and term weights.
The query representation is formed by terms linked with boolean operators AND, OR, and
NOT. The relevance of a document is a result of a logical evaluation of the query, with
respect to the document. Each term in the query is assigned a logical value of 1 or 0
depending on whether it is located in the document or not. When the logical expression
is evaluated to 1, the document is considered relevant.

An example of a query for which documents, that contain pair of term; and terms or
pair of termy and terms, should be retrieved:

14



3.1. Traditional Document Retrieval

query = (termy AND terms) OR (term; AND terms).

A document has to fulfill this logical formula; otherwise, it will not be considered relevant
even if it contains some of the terms but not all and might be relevant.

The Boolean retrieval model does not provide a ranked list of documents due to the
binarity of the results. In order to relevance rank the documents, we need to relax the
logical interpretations of the boolean operators and use them as distances, which can be
ordered. Another disadvantage of the model is that the terms are not weighted, mean-
ing that the retrieved document has to contain exactly the terms specified by the query
logical formula. This causes the model to be more suitable for data retrieval rather than
information retrieval.

B 3.1.2 Vector Space Model

The Vector Space Model (VSM) [Salton et al., 1975] is an algebraic model in which the
query and documents are represented by vectors. The vectors exist in a term space of the
size of all unique terms in the document collection. The similarity between a query and a
document is determined by the closeness of the vectors. We measure the closeness using
the angle between the normalized vectors either by cosine similarity or dot product. We
typically use weighted vectors, which we obtain by document indexing.

Document indexing is the task of representing a document by a vector of terms that
appear in the document, where each term has a weight denoting its importance. The
creation of the vector includes steps such as stop word removal and stemming, mentioned at
the beginning of the chapter. Universally, the terms are weighted using Term Frequency
(TF) and Inverse Document Frequency (IDF) vectors. TF is a frequency with which
a term ¢ appears in document d, calculated as the raw count of the term ¢ over the sum
of all other term ¢’ counts in d:

Jtd
Yveafvd
IDF represents the importance of a term ¢ with respect to all documents from the

collection D. It is calculated as a logarithm of the inverse fraction of documents that
contain t over the total number N of documents in D:

tfit,d) = (3.1)

N
idf(t, D) = log —, (3.2)
T
where n; is the number of documents containing ¢.
The final weight for each term in a vector representing a document is the multiple of
the term frequency value with the value from the inverse document frequency vector:

tf-idf(t, d, D) = tf(t, d)- idf(t, D). (3.3)

With this calculation, longer documents have an advantage. They get higher relevance
because each term from the query appears more times. By dividing each term weight by
the vector length, we normalize the vectors. Then the length of the document no longer
affects the result.

The best indexing terms are those that appear with high frequency in a low number of
documents. When a term does not appear in a document then it is assigned a weight of
0 since the first multiple in equation 3.3 is 0.
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3. Background

We have indexed all documents in our collection, and we do the same with our query
(only the normalization is not necessary), obtaining both document and query represen-
tation. Next, we take our matching function (see Fig.3.1) and calculate a score for every
query-document pair to rank the documents. The function calculates the closeness be-
tween the two vectors P (document), () (query) using cosine similarity. It is the cosine
of the angle 6 between the vectors, calculated as the dot product of the vectors divided
by the magnitude of each of the vectors:

COS(Q) P Q _ ?:1 DPiq; (34)

IR av=N )

where p; and ¢; are weights of individual terms of the vectors. When both vectors are
normalized, their lengths are equal to 1, and we are left only with the dot product.

The Vector Space Model is commonly used for its consistency in performance over many
collections of documents. Another advantage of the VSM, is that it allows partial matching
as opposed to the Boolean binary model. It can also easily adapt its parameters, including
the term weighting scheme. However, it relies on information from the document collection
and when the collection is changed, it has to recompute all weights.

I 3.1.3 Probabilistic Model

The Probabilistic Model aims to rank documents according to the probability of their
relevance to the user query. It depends on estimations and probabilities and operates
under certain assumptions. The first assumption is that terms appear independently of
each other in the collection. The second is that they are scattered differently in relevant
documents than in nonrelevant documents.

If we had a set of relevant and nonrelevant documents, we could estimate the probability
of a term appearing in a relevant document. Since we do not have these sets, we estimate
the probability by counting the number of documents in which the term appears and in
which it does not. The estimate is further refined based on the distribution of the term in
the documents.

Similarily to VSM, we create a vector of term weights where the weight for i-th term is:

pi(1—qi)
(1 —pi)’
where p; is the probability that a document containing term ¢ is relevant and ¢; is the

probability that a document contains the term but it is not relevant. It is then calculated
as:

(3.5)

w; = log

where:

M 7, is the number of documents containing term i
M r; is the number of relevant documents containing term 3

B VN is the number of documents
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3.1. Traditional Document Retrieval

M R is the number of relevant documents.

As mentioned earlier, R is not known; therefore, we assume that p is constant (e.g., 0.5)
and ¢ is estimated by the values from Inverse Document Frequency. Now eq. B.5 can be
rewritten as:

TZ'(N —R—n; +7"i)
(’I’Li - ’l“z)(R — Ti)
but with the assumption that p; is 0.5, the number of relevant documents containing ¢

and nonrelevant containing ¢ is equal. That leads to n; — r; = 0 being in the denominator
of the fraction. To overcome this issue, we can add 0.5 to each term and we get:

w; = log

(TZ' + 0.5)(N —R—n;+r; + 0.5)
(’I?,i — 7 + 0.5)(R — 7 + 0.5) ’

a term weight that can be used similarily to IDF vector in VSM.

Among the advantages of the Probabilistic Model are its theoretical foundation, the
ability to rank the documents by their probability of relevance, and good performance
over many collections. The biggest disadvantage is the unrealistic assumption that terms
occur independently

w; = log (3.6)

Hl BM25

BM25, Best Match 25, or Okapi weighting scheme [Robertson and Zaragoza, 2009 is a
ranking function rooted in probabilistic document retrieval, which also takes advantage
of the TF-IDF model. The relevance of document d (from collection D) to a query ¢ is
calculated by the following formula [Manning et al., 2008]:

BME5(0.d.D) — if(aD). f(a.d) - (k + 1) 1) Wled)

ki-(1—b—+b- Lﬁgg) +tf(q.d) ks +tf(q.d)

where idf and tf were already introduced (sec. B.1.2), Lg is the length of document d
and L4 is the average length of a document. Remaining k1 and k3 are positive tuning
parameters and b is another tuning parameter. k; calibrates the document term frequency
scaling. When k1 = 0, then no term frequency is used, corresponding to a binary model.
On the other hand, higher values of k; correspond to using a raw frequency count. The
ks parameter calibrates the term frequency scaling of the query. The last parameter b
(e< 0,1 >) determines the scaling by document length. When equal to 0, no length
normalization is used, when equal to 1, the parameter fully scales the term weight by
the document length. The reasonable values of the three parameters, achieved by ex-
perimentation [Manning et al., 2008], are between 1.2 and 2 for k; and k3 and 0.75 for
b.

The BM25 weighting scheme is widely used for its good performance across a range
of collections [Jones et al., 2000]. It performs especially well in the TREC evaluations
[Voorhees et al., 2005].

B 3.1.4 Language Model

The last model, Language Model (LM), ranks documents based on the probability that
they generated the query. Each document has its own language model and the goal is
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3. Background

to determine the probability that a query was generated by that model. The retrieved
documents are then sorted by the probability. LMs are used in various areas of NLP and
in information retrieval it is called query-likelihood retrieval model. There are also various
types of language models:

B Unigram also known as bag-of-words model assigns probabilities to different terms,
where the probability of each term depends on the terms probability of occurrence
in the document summing over all term probabilities in a document to 1. In other
words, it uses only the count of the terms in a document and estimates each term
independently, not taking advantage of the context. The probability of a query ¢ is
then the multiples of all probabilities of the query’s terms:

P(g) = [T P(0). (38)

teq

B N-gram as opposed to unigram takes advantage of the context by conditioning on
the previous n - 1 terms. It predicts the next item in the sequence using conditional
probabilities. It approximates the probability of occurrence of the i-th word w; in
a context to a probability of its occurrence in a shorter context, consisting only of
preceding n - 1 terms. Then the probability of a query of m terms would be:

m

P(ty,....tm) =~ H P(ti|ti,(n,1), coytisn). (3.9)
1=1

Unigram is then a special case of an n-gram. We denote bigram and trigram as
n-grams where n = 2 and n = 3 respectively since they are the most used n-grams
along with unigram.

M The Bidirectional model, unlike n-grams, analyzes the context in both directions
and not only backwards, which increases result accuracy. It is utilized in machine
learning and speech generation applications.

B The Exponential model combines feature functions and n-grams in an equation to
compute the rank of a document. The model is designed to maximize cross entropy.

M Lastly, the Continuous space or Neural network model uses continuous repre-
sentations of embeddings of words (the process of assigning a weight to a word). It
represents the words as a non-linear combination of weights in a neural network. This
model is especially useful when the dataset is very large and usually it contains rare
words which cause problems in a linear model (n-gram).

. 3.2 Transformers

The last type of language model, the Neural network based language model, leads us to the
currently popular and state-of-the-art NLP models. The probabilistic LM (in Sec. B.1.4)
encounters two problems. A context problem of the n-gram, where the probability
depends only on the n words which is often not enough for complex texts. When n grows,
it widens the context but the number of word permutations grows exponentially making it
impossible to store. This creates the second problem - sparsity. Most of the permutations
of words never occur and are still stored.

18



3.2. Transformers

Neural networks solve the sparsity problem by the way they encode the input in em-
beddings of words (continuous vectors) that also encode semantic relationships. To
solve the context problem, we need a system to learn which words are more important
than others. That is where Recurrent Neural Networks (RNNs) come in.

Il 3.2.1 From RNNs to Transformers

Recurrent neural networks are good at processing sequential data like audio [Chung et al.,
2014], video, or most importantly text. In NLP tasks, they can be used for machine
translation [Cho et al., 2014b], sentiment classification [Tang et al., 2015], question an-
swering [Lyyer et al., 2014], etc.

Regardless the specific task, the concept is always the same. On an example of a
sentence, the RNNs take the first word, pass it through the network and get an output,
like a classic feedforward network. They take the second word and feed it to the network
along with the hidden state from the previous pass. They obtain a new hidden state to
pass with the next word and so on until the end of the sentence. This means that the
context problem is solved because they take every word into account.

However due to the backpropagation of the gradient in the network (the vanishing gra-
dient [Hochreiter, 1998]), the words at the beginning of the sentence start to matter less.
This is known as short-term_memory and is the reason for the arrival of LSTMs (Long
Short-Term Memory Units [Hochreiter and Schmidhuber, 1997]) and GRUs (Gated Re-
current Units [Cho et al., 2014al]).

LSTMs solve the vanishing gradient problem by preserving the error through back-
propagation. They contain information in gated cells where it can be stored, written to,
or read from. Each cell contains a forget gate, input gate, and output gate. Throughout
the training of the network, the cells learn what information to store, write or forget. The
gated units help maintain a more constant error and they allow the recurrent networks to
learn over many timesteps.

GRUs are LSTMs without the output gate which means that the output from a memory
cell writes itself directly to the larger net. GRUs contain an update gate (acts similar to
the forget and input gate) and a reset gate (acts as another forget gate). Both GRUs
and LSTMs learn long-term dependencies using the gated units. The units learn what
information to add or remove to the hidden state, solving the short-term memory issue.
The GRU tends to be quicker to train, although it is good practice to train both a GRU
and an LSTM to decide which is more suitable for a given task.

Even with more evolved versions of recurrent networks such as Chung’s Gated Feedback
RNN [Chung et al., 2015] or Schuster’s Bidirectional RNN [Schuster and Paliwal, 1997],
they still have limitations in remembering long-term dependencies which stem from their
sequential nature. It causes long training times because there is no possibility for paral-
lelization. The transformer architecture solves this problem with a mechanism called
Attention.

Il 3.2.2 Attention

The attention mechanism introduced by [Bahdanau et al., 2016] and [Luong et al., 2015]
ensures that the model learns which input deserves the most attention, in other words,
which part of the input is most relevant. In an example of machine translation (Fig. B.3),
there are two sentences in different languages forming a matrix. Fach pixel in the matrix
shows the correlation between the source and target word.
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Figure 3.2: Attention mechanism on a machine translation example, reprinted from [Bahdanau
et al., 2016].

When we put the same sentence on the sides of the matrix, it is called self-attention.
It shows how parts of the sentence relate to others. E.g., a pronoun referring to a noun
mentioned elsewhere in the sentence.

To calculate self-attention, we need three vectors for each input vector - query, key,
and value (¢, k, v). We obtain them by multiplying the embedding of the input vector
with a query, key, and value weight matrices (W%, WX WV) that we trained during
the training process. To calculate the attention score between two words a and b, we
take the dot product between the query vector g, and the key vector ky, divide it by the
square root of the dimension of the key vector di and pass the result through a softmaz
function. Finally, multiply that by the value vector v,. We usually calculate this for all
words (embeddings) in the input by grouping the vectors in matrices:

Attention(Q, K, V) = softmax(Lﬂ)V, (3.10)
Vdy
where @), K, and V are the matrices composed of the query, key, and value input vectors
respectively. The output are the attention scores for the input sentence.
In [Vaswani et al., 2017], they present:

1. Scaled dot-product attention, which is the self-attention described above (Equa-
tion B.10). There are two most common attention functions - additive and dot-
product. The paper argues that dot-product attention is faster and more space-
efficient due to optimized matrix multiplication. The scaled index can take on differ-
ent values; Vaswani suggests the square root of the key vector dimension which leads
to having more stable gradients.

2. Multi-head attention adds an arbitrary number of other weight matrices. Then the
scaled dot-product attention is calculated for each of these weight matrices. It helps
to project the input embeddings into different representation subspaces. Instead of
one vector of attention scores (as in a single calculation of the attention function), we
obtain as many vectors as the number of attention heads (number of weight matrices).
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3.2. Transformers

We concatenate the vectors and multiply the resulting matrix with an additional
weight matrix W©O. We are left with a single matrix capturing the information from
all attention heads which we can pass to the rest of the network.

MultiHeadAttention(Q, K, V) = Concat(heady, ..., head, )W,

0 X . (3.11)
head; = Attention(QW,*, KW;* , VW,").
1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention  5) Concatenate the resulting = matrices,
input sentence* each word* We multiply X or using the resulting then multiply with weight matrix to
with weight matrices MK/ matrices produce the output of the layer
W@

X

W@
*In all encoders other than #0, Q1
we don’'t need embedding. : :
We start directly with the output
of the encoder right below this one

FH*F Y _ &

Figure 3.3: Multi-head attention calculation, reprinted from [Alammar, 201§].

B 3.2.3 Transformer Architecture

makes parallelization possible and employs the attention mechanisms described in Sec.
Most of the state-of-the-art models for NLP tasks are utilizing this architecture, including
OpenAT's ! GPT models (newest GPT-3 [lBrown et al., 202d]) or Google’s BERT [
bl 201

The transformer adopts the encoder-decoder architecture. The encoder (left block
in Fig. @) consists of a self-attention mechanism and a feedforward network. There are
six identical layers composed of two sub-layers: a multi-head self-attention layer and a
fully connected feedforward network. Both sub-layers end with layer normalization and
have a residual connection around them.

The transformer architecture introduced in [|Vaswani et al., 2017|] (in contrast with RNNS!

The first layer of the encoder takes embeddings of the input sentence as well as posi-
tional encoding containing information about the order of the sentence. The initial input
embedding is the result of adding the sentence embedding with the positional encoding
vector. The positional encoding adds meaningful distances between the embedding vectors
once they are projected into the query, key, and value vectors (Fig. @) and are used for
the calculation of self-attention.

1ht‘cps ://openai. comA
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Figure 3.4: Transformer encoder-decoder architecture, reprinted from [|Vaswani et al., 2017“

The decoder (right block in Fig. @) consists of the same two parts as the encoder
plus an attention mechanism over the output from the encoder. The first decoder takes
embeddings of the output sequence and positional encodings, similarly to the encoder.
Every layer also has a residual connection and is followed by layer normalization. The
output sequence is partially masked to prevent the transformer from using future or current
output for prediction. In addition, the last decoder is followed by a linear layer and a
softmax function to generate the output probabilities over the vocabulary.

To sum up, the model perceives the entire input sequence simultaneously through the
encoder and maps it to a continuous representation. The decoder generates an output se-
quence given the representation from the encoder. Vaswani [lVaswani et al., 2017|] suggests
N = 6 as the number of the encoder and also decoder blocks.

B 3.2.4 BERT

BERT, Bidirectional Encoder Representations from Transformers introduced in [

et al., 2019] is a language representation model based on the transformer architecture.
It pre-trains deep bidirectional representations from unlabeled data by conditioning on

context from both directions. The pre-trained model can then be fine-tuned to any specific
task (such as question answering) with the same model architecture that only adds one
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additional output layer.

According to [lDevlin et al., 2019|], there are two strategies for applying pre-trained lan-
guage representations to downstream tasks: feature-based and fine-tuning approaches.
The first one has to use task-specific architectures that contain the pre-trained represen-
tation in the form of additional features. An example of this architecture is ELMo
]. The fine-tuning approach avoids task-specific parameters and trains all pa-
rameters while fine-tuning on a downstream task. The Generative Pre-trained Transformer
models [[Brown et al., 202d] take advantage of this approach.

BERT improves the fine-tuning based approach by using the Masked Language
Model (MLM) and Next Sentence Prediction (NSP) pre-training tasks, further de-
scribed in subsection m It demonstrates the importance of bidirectional pre-training in
contrast to uni-directional LM utilized in the GPT models lRadford et al. 20154 Thanks
to BERT’s pre-training, there is no need for task-specific architectures in the fine-tuning
phase and BERT achieves high performance on a wide range of NLP tasks.

B 3.2.5 Cross-Attention Approach

BERT uses something called cross-attention paradigm [lChang et al., 202d], also called
interaction-based paradigm in [lKhattab and Zaharia, 2020]. For a query ¢ and a
document d, it can model the interaction within themselves as well as between the two of
them at the same time. The input representation can represent one sentence and a pair
of sentences (in our example a query and an answer) in one single token sequence. The
first token of the input sequence is always a special token called [CLS]. The sequence
ends with another special token called [SEP]. If we want to use two sentences, like in our
example with query and document, we separate them with the same [SEP] token. The
input sequence is then a concatenation of: [CLS] 4 ¢ token embeddings + [SEP] + d token
embeddings + [SEP] (see Fig. @ on the right).

O (= Cagems | () (osaw

aggregator ‘ ( aggregator ‘ { aggregator }
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[ [CLS] ] [ qo ] [ [SEP] ] [ [CLS] ] |' do ] [SEP] ] [ [CLS] ] L go ] [SEP] d ] [SEP]

1 ]
Cross-attention Model

N

[ [CLS]] [ qin ] [ [SEP] ] [[CLS]] [ d_in ] ( [SEP}] [1{131] [ qin ] [[SEP]J d _in | [SEP]

Figure 3.5: Two-Tower paradigm (left) vs. Cross-Attention paradigm (right), reprinted from
[E Ehang et al., 202( h

The input sequence of token embeddings is further modified by adding another two
embedding vectors to it. The first vector is the segment embedding vector which
differentiates between the first and second sentence. The second vector is the positional
embeddings vector which encodes the order of the tokens.
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B 3.2.6 Two-Tower Approach

Another type of paradigm is the Two-Tower paradigm (Fig. B.5 on the left), as it is called
in [Chang et al., 2020], also known under Representation-based Similarity in [Khattab and
Zaharia, 2020], Siamese network in [Das et al., 2016], or Dual-Encoder model in [Cer et al.,
2018]. It is an embedding-based model that encodes the query and document separately
into a similar embedding space. The input embeddings are formed in the same manner
as in the cross-attention approach. The [CLS| and [SEP]| tokens are used similarly at the
beginning and end of the token sequence. The final input embedding is a sum of the
token embedding vector with the positional and segment embedding vector again. The
embeddings can be computed either by the same or a different language model, which
means that the towers in the model can be identical or different. In this thesis, we worked
only with the case of identical towers. The towers are usually based on the transformer
architecture and each tower takes one of the query/document embeddings. That means
that the attention is calculated within the query/document but not across both as in the
cross-attention approach.

To measure the similarity between the query and document embeddings, we need a
scoring function. It can be any similarity or distance metric or even dot-product between
the vectors. An advantage over the cross-attention approach is that the document embed-
dings can be computed in advance. During the inference time, it is sufficient to compute
the query embedding and find relevant documents with the nearest neighbor search using
one of the similarity metrics.

B 3.2.7 Pre-training Tasks

The BERT model pre-training phase [Devlin et al., 2019] depends on two pre-training tasks:
the token level masked LM (MLM) and Next Sentence Prediction (NSP). [Chang
et al., 2020] presents paragraph level pre-training tasks that can further improve models
like BERT on top of the primary pre-training tasks. The tasks are Inverse Cloze Task
(ICT), Body First Selection (BFS), and Wiki Link Prediction (WLP). They work
with Wikipedia articles as the training data.

B Masked Language Model - It is inspired by the Cloze Task [Taylor, 1953]. It
randomly masks some tokens from the input and predicts the masked words based on
the context. It fuses the context from left and right of the masked token which allows
pre-training bidirectional representations. In contrast with LMs that are trained
unidirectionally either from left to right or right to left. There are also LMs trained
in both directions and then concatenated [Peters et al., 2018]. This task teaches the
model to understand relationships between words. The BERT model adopts 15% as
the probability of a token being masked and uses the BooksCorpus [Zhu et al., 2015]
and English Wikipedia as the training corpus.

B Next Sentence Prediction - Teaches the model to understand long-term dependen-
cies across sentences (relationships between sentences). The training examples for
this task are formed by two sentences. 50% of the time, the second sentence is the
correct following sentence (positive example), and the other 50% is a random sentence
from the corpus (negative example).

® Inverse Cloze Task - The original Cloze Task [Taylor, 1953] predicts a masked out
text based on context. The inverse of that is predicting context based on a sentence
(described in [Lee et al., 2019]). The query is a random sentence from any passage

24



3.2. Transformers

and the document is the rest of the sentences from the same passage. It requires
more than learning matching features, it needs to capture the semantic context. For
example, the query sentence often does not contain the most important word and the
model still needs to understand the meaning and predict the context.

B Body First Selection - BFS takes a random sentence from the first paragraph of an
article (on Wikipedia it is the summary of the article) as a query and a random para-
graph from the rest of the article as the document. It captures semantic relationships
outside of the local paragraph.

B Wiki Link Prediction - WLP on the other hand captures inter-page semantic rela-
tionships. The query is again a random sentence from the summary. The document
is a random passage from another page from where there is a hyperlink leading to the
page of the query.
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Chapter 4
Method

This chapter describes the proposed method and our approach to the problem, used models
and architectures, and evaluation of the solution.

. 4.1 Multi-Stage Retrieval

When faced with a large-scale retrieval problem, we can simplify the problem to learning a
scoring function that assigns a score to pairs of queries and documents. The score from
the function f(q,d) is a real number and the higher it is, the closer the pair is (meaning
d is relevant to ¢). In the case of fact-checking, ¢ is the factoid for verification, and d is a
passage containing the evidence for the verification.

Using a BERT-like model based on the cross-attention architecture (Sec. B.2.5) on this
task might not be suitable considering that the scoring function has to be computed for
every possible query/document combination. The corpus can count hundreds of thousands
of documents or more. Therefore we use a less powerful algorithm to reduce the number
of documents followed by a transformer-based model to rerank the preselected documents.
The two phases of the retrieval are called differently in literature. The Retrieval phase
and the Scoring phase in [Chang et al., 2020], or the Retriever and Reader in [Chen et al.,
2017]. We are calling them Document Preselection and Document Reranking.

ll 4.1.1 Document Preselection

In the first phase, we take the training data in the FEVER-like format (for both datasets
feverCS and CTK), and for every claim, we preselect 500 potentially relevant documents
from the document database. 500 is the suggested upper limit in [Monz, 2003].

We work with two models in this part. The first one is DrQA from [Chen et al.,
2017] taken from their Retrieval part of the machine reading at scale pipeline. It takes
advantage of one of the classical document retrieval approaches, the TF-IDF (Sec. B.1.2
in the previous chapter). The queries and documents are represented as TF-IDF weighted
bag-of-words vectors improved by n-gram features and hashing. They use a bigram with
the hashing of [Weinberger et al., 2010] to map the bigram into 22 bins.

The second model is the Anserini model ( [Yang et al., 2017], [Yang et al., 2018])
from a Python Toolkit Pyserini [Lin et al., 2021)]. It works with the Lucene search library
and uses the BM-25 model (Sec. B.1.3) with the bag-of-words vector representation.

We use both of these models for the preselection of documents to reduce the searching
space for the reranking phase. We also refer to them as a baseline for all our trained
models.
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Document k preselected
[ Query ] D | preselection | @ | documents

b

k relevance Document
ranked documents Reranking

Figure 4.1: Preselection and Reranking pipeline.

B 4.1.2 DocumentReranking

In the second phase, we train a transformer-based model on the preselected data from
the first phase. There are many available pretrained transformer models in the Hug-
gingFace liblrauryEI [lVVolf et al., 202d]. We decided on a distilled version of BERT, the
DistilBERT [Banh et al., 2020] from the Sentence Transformers libraryﬁ. We train the
model on two different architecture: the two-tower (Sec. ) and cross-attention
(Sec. ) We choose the distilled version of BERT mainly because it is a smaller model
which results in faster training times, especially on the cross-attention architecture.

Model distillation is one of many ways to speed up a model. It is a compression technique
that transfers knowledge from a "teacher” model to a “student” model [lBucilué et al., 200d].
The student model learns to mimic the behavior of the teacher model. The DistilBERT
model achieves 95% of BERT’s performance while having 40% fewer parameters. The
training time is also 60% faster than that of BERT.

The Two-Tower model firstly creates a set of training examples. There are positive
examples formed by a claim and an evidence sentence. Regarding the negative examples,
we differentiate between hard negatives and soft negatives. A hard negative is formed
by the same claim as the positive and by one evidence from the 500 preselected. A soft
negative is a random evidence from the rest of the dataset (excluding the preselected
evidence for the current claim). The names follow from the expectation that a random
evidence should not be considered relevant to the claim as opposed to the preselected
potentially relevant evidence.

The Cross-Attention model creates the training examples by generating embeddings
of the claim and evidence (in the manner described in Sec. @) Again the positive
examples labeled 1 are formed by the claims and their correct evidence and the negative
labeled 0. The negatives are only created from the preselected documents that are not in
the evidence set.

. 4.2 Evaluation

To evaluate our trained models, we used four different evaluation metrics described below.

'https://huggingface.co/models
https://github. com/UKPLab/sentence-transformers{

D
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4.3. Faiss

B Precision is the fraction of relevant documents to the query among all retrieved

documents.

[relevant retrieved documents|

precision = (4.1)

[retrieved documents|

B Recall is the fraction retrieved of relevant documents among all relevant documents.

|relevant retirieved documents|

1l = 4.2
reca |relevantdocuments| (42)

M F1 is the harmonic mean of precision and recall.
Fl—2. precision - recall (4.3)

precision + recall

B Mean Reciprocal Rank (MRR) calculates the reciprocal of the rank at which the

first relevant document was retrieved and is averaged across queries. For one query it
is ralnk where the rank is the position of the highest-ranked (most relevant) document.
For multiple queries Q, it is:

1

rank;

| Q
MRR = — Y (4.4)
Q i=1

B 4.3 Faiss

As we mentioned in section B8.2.6 about the Two-Tower architecture, there is a scoring
function to measure the similarity between the query and document embeddings. We use
the FAISS library [Johnson et al., 2017] by Facebook AI® used for similarity search over
large datasets. It is a highly optimized nearest-neighbor search implementation. FAISS
indexes the pairs of queries and documents and searches for the highest indexed pairs in
the dataset. The search is sped up by different methods, such as partitioning the index
into Voronoi cells or using Product Quantization to compress the vectors.

. 4.4 Losses

During the reranking phase of training on the Two-Tower architecture, we examine differ-
ent types of loss functions that are calculated over the training examples. The examples
are formed differently depending on the loss function. We used three types of losses:

B Contrastive loss [Hadsell et al., 2006] expects two texts (query and document) and
a label. The label is 1 for a positive example and 0 for a negative example. The dis-
tance between the query and document embeddings is reduced for a positive example
and increased for a negative example. It introduces a margin which is a minimum
distance for a negative example (minimum distance between the query and document
embedding). The loss penalizes negative examples for being closer that the margin.

3https://github.com/facebookresearch/faiss
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B Online Conrastive loss is similar to Contrastive Loss. The difference is that it
only computes the loss for hard positive and hard negative pairs. A hard positive is a
positive that is far apart and a hard negative is a negative that is close. It often yields
better performances than the Constrative Loss although we will see the opposite in
experiment 5.2.1.

B Tripletloss takes three inputs: an anchor, a positive, and a negative. In our case, the
anchor is the claim, and positive/negative evidence serves as before. It is calculated
as:

loss = max(||anchor — positive|| — |Janchor — negative|| + margin, 0), (4.5)

where || - || is the distance measure.

B as ICT Pretraining

We also tried to improve the performance of the cross-attention architecture by another
pretraining task, the Inverse Cloze Task (Sec. B.2.7). We tried to adapt the task to the
cross-attention architecture.

The pretraining examples were created from the database of articles associated with the
dataset. In the case of FEVER CS, it is the Czech Wikipedia, and for the CTK dataset,
it is the collection of news reports and articles. We split the database into chunks of
sentences the size of a maximum of 288 tokens when tokenized (as suggested in [Lee
et al., 2019]), minus three tokens to make space for the special [CLS] and [SEP] tokens.
We split the chunks randomly into train and dev parts. For the FEVER CS dataset, the
dev part is around 2% of the chunks which is enough to make over 7500 positive and
7500 negative examples. The train part makes over 83.000 examples each positive
and negative. The CTK database is much bigger and collects over 700.000 positive and
negative examples.

The process of creation of the training examples for the ICT task is briefly described in
section B.2.7. We take the chunks in random batches, and from each chunk, we select a
random sentence that is masked (removed) with some probability. We used the probability
of 0.9. A training example is then formed as described in the cross-attention paradigm in
Figure 8.5. The masked sentence represents the query and the chunk without the sentence
(or with the sentence in 10% of cases) represents the document. The negative examples
are created by combining the query with a random document from the batch.

. 4.6 Transfer Learning

The database of articles from the CTK dataset is extensive, containing over 13 million
articles. The training dataset composed of claims and evidence is considerably smaller,
containing only around 3000 claims (not all verifiable). This means that the training of a
network (cross-attention or two-tower) on the CTK dataset has only around 700 positive
and 700 negative training examples available (around 190 for the dev split). The number
is lower also because an average CTK claim has only one evidence set as opposed to the
FEVER CS claims.

We decided to compare the results of learning the two-tower network solely on the CTK
data with the results of transfer learning of a network previously trained on the FEVER
CS data and finetuned on the CTK. We also tried to evaluate the results of a network
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trained on FEVER CS on the CTK dataset and compare it. The results are in the next

chapter.

The transfer learning approach is not new. For example, Google Research in [Roberts
and Raffel, 2020] suggests a T5 model, a Transfer Transformer, to create state-of-the-art
results in NLP. They train the model on unlabeled data with a self-supervised task and
then finetune it on a smaller labeled dataset.
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Chapter 5
Experiments

This chapter describes the setup of our experiments and their results.

B s.1

The first model used for preselection, the DrQA model, calculates the TF-IDF index for
all unigrams and bigrams and uses the Weinberger’s hashing into

The second, the Anserini model, calculates the index with the BM25 method. The
parameters we used were calculated by [Rypar, 2021]. The k; parameter for calibrating
the document term frequency scaling is 0.9 for the FEVER CS dataset and 0.6 for CTK.
The b parameter for scaling by the document length corresponds to 0.9 for FEVER CS
and 0.5 for CTK. The parameters were found by searching a grid of values with a step of

Preselection

224 hins.

0.1.
fever CS CTK
Precision | @1 @10 @20 @500 @1 @10 @20 @500
DrQA 0.4242 0.0756 0.0408 0.0021 | 0.125 0.0307 0.0176 0.0011
Anserini | 0.3441 0.0659 0.0370 0.0019 | 0.1550 0.0335 0.0197 0.0012
Table 5.1: Preselection precision at k
fever CS CTK
Recall @) @10 @20 @500 Q1 @10 @20 @500
DrQA 0.3914 0.6889 0.7399 0.8753 | 0.1275 0.3100 0.3550 0.5500
Anserini | 0.3165 0.6008 0.6731 0.8588 | 0.1575 0.3375 0.3975 0.5825
Table 5.2: Preselection recall at k
fever CS CTK
F1 @) @10 @20 @500 Q1 @10 @20 @500
DrQA 0.4072 0.1363 0.0773 0.0042 | 0.1262 0.0560 0.0336 0.0022
Anserini | 0.3298 0.1187 0.0702 0.0039 | 0.1562 0.0610 0.0376 0.0023

Table 5.3: Preselection F1 at k
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fever CS CTK

MRR @1 @10 @20 @500 | @1 @10 @20 @500
DrQA 0.4072 0.5081 0.5114 0.5141 | 0.1305 0.1831 0.1860 0.1894
Anserini | 0.3255 0.4159 0.4211 0.4245 | 0.1579 0.2095 0.2136 0.2164

Table 5.4: Preselection MRR at &

. 5.2 Reranking

The following experiment tested the cross-attention model (denoted as CA in results)
along with the ICT pretraining task. We tried three setups: training only the cross-
attention model on reranking the preselected documents (either from DrQQA or Anserini),
pretraining ICT task on the dataset article databases, and finetuning the pretrained model
with the cross-attention model.

For all training, we used the DistlBERT model version distilbert-base-nli-stsb-
-mean-tokens from the sentence transformers with a fully connected linear layer as a pre-
classifier and a linear layer with 2 output features at the end as a classifier. In the case
of the FEVER CS dataset, the training ran for 10 epochs on a Tesla V100-SXM2-32GB
GPU with a batch size of 16, learning rate le-5, weight decay 0.01, cross-entropy as the
loss function and AdamW optimizer. On the CTK dataset, it was 15 epochs with the same
parameters.

The ICT pretraining ran for 4 and 3 epochs on FEVER CS and CTK respectively with
the same training parameters as the cross-attention model. We ran the cross-attention
model with the pretrained models and finetuned them for another 30 and 15 epochs.

fever CS CTK
Precision @1 @b @10 @20 @1 @5 @10 @20
DrQA + CA 0.2114 0.0740 0.0450 0.0265 | 0.0075 0.0025 0.0018 0.0014
Anserini + CA 0.2801 0.0916 0.0526 0.0300 | 0.0000 0.0025 0.0033 0.0025
DrQA + ICT 0.0392 0.0241 0.0180 0.0132 | 0.0025 0.0010 0.0013 0.0006
Anserini + ICT 0.0311 0.0189 0.0142 0.0104 | 0.0075 0.0025 0.0018 0.0013
DrQA + ICT + CA 0.0246 0.0172 0.0130 0.0096 | 0.0000 0.0010 0.0013 0.0013
Anserini + ICT + CA | 0.1804 0.0464 0.0264 0.0161 | 0.0050 0.0025 0.0018 0.0016

Table 5.5: Cross-Attention precision at k

fever CS CTK
Recall Q1 @5 @10 @20 @1 @5 @10 @20
DrQA + CA 0.1949 0.3407 0.4146 0.4883 | 0.0100 0.0150 0.0200 0.0300
Anserini + CA 0.2606 0.4233 0.4839 0.5513 | 0.0025 0.0150 0.0350 0.0525
DrQA + ICT 0.0354 0.1083 0.1622 0.2385 | 0.0050 0.0075 0.0150 0.0150
Anserini + ICT 0.0278 0.0837 0.1274 0.1877 | 0.0100 0.0150 0.0200 0.0275
DrQA 4+ ICT + CA 0.0228 0.0765 0.1173 0.1727 | 0.0025 0.0075 0.0150 0.0275
Anserini + ICT 4+ CA | 0.1683 0.2169 0.2466 0.3017 | 0.0075 0.0150 0.0200 0.0350

Table 5.6: Cross-Attention recall at k
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fever CS CTK
F1 Q1 @5 Q@10 @20 @y @5 @10 @20
DrQA + CA 0.2028 0.1216 0.0811 0.0503 | 0.0086 0.0043 0.0032 0.0026
Anserini + CA 0.2700 0.1506 0.0949 0.0569 | 0.0000 0.0043 0.0059 0.0048
DrQA + ICT 0.0372 0.0394 0.0323 0.0251 | 0.0033 0.0018 0.0023 0.0012
Anserini + ICT 0.0293 0.0308 0.0256 0.0197 | 0.0086 0.0043 0.0032 0.0024
DrQA + ICT + CA 0.0237 0.0280 0.0235 0.0182 | 0.0000 0.0018 0.0023 0.0024
Anserini + ICT + CA | 0.1742 0.0764 0.0478 0.0307 | 0.0060 0.0043 0.0032 0.0031

Table 5.7: Cross-Attention F1 at k

fever CS CTK
MRR @1 (@) @10 @20 @1 (@) @10 @20
DrQA + CA 0.1950 0.2496 0.2596 0.2650 | 0.0084 0.0109 0.0119 0.0124
Anserini + CA 0.2618 0.3235 0.3323 0.3369 | 0.0021 0.0062 0.0079 0.0091
DrQA + ICT 0.0396 0.0663 0.0731 0.0779 | 0.0042 0.0053 0.0061 0.0061
Anserini + ICT 0.0300 0.0500 0.0562 0.0600 | 0.0084 0.0111 0.0119 0.0123
DrQA + ICT + CA 0.0254 0.0448 0.0513 0.0548 | 0.0021 0.0036 0.0044 0.0053
Anserini + ICT + CA | 0.1779 0.1964 0.2000 0.2033 | 0.0126 0.0145 0.0150 0.0158

I 5.2.1 Losses

Table 5.8: Cross-Attention MRR at &

We trained the two-tower model on both datasets with the DistilBERT model, however
we encountered a problem with the size of the CTK dataset that we tried to solve with a
transfer learning approach (Sec. 1.6 and results in 5.2.3).

Concerning the FEVER CS dataset, in this experiment, we examined three different
loss functions. We trained the model for 5 epochs with a batch size of 16. We used the
NFC norm for all training. We experimented with different hard negative percentages and
ultimately decided on 100% being the best, therefore using it for all experiments with loss
functions. We used the DrQA preselection for training on the FEVER CS dataset because
it yields better results on this task as well as the following one 5.2.2.

fever CS
Precision @1 @5 @10 @20
Contrastive 0.8369 0.1953 0.0999 0.0509
Online Contrastive | 0.5788 0.1624 0.0878 0.0467
Triplet 0.7912 0.1846 0.0954 0.0490

Table 5.9: Two-Tower loss precision at k

fever CS
Recall @1 @5 @10 @20
Contrastive 0.7882 0.8981 0.9110 0.9233
Online Contrastive | 0.5396 0.7538 0.8111 0.8572
Triplet 0.7433 0.8548 0.8780 0.8977

Table 5.10: Two-Tower loss recall at k
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fever CS
F1 @1 @b @10 @20
Contrastive 0.8118 0.3209 0.1800 0.0964
Online Contrastive | 0.5585 0.2673 0.1584 0.0886
Triplet 0.7665 0.3037 0.1721 0.0929

Table 5.11: Two-Tower loss F1 at &

fever CS
MRR @) @b @10 @20
Contrastive 0.7968 0.8374 0.8394 0.8403
Online Contrastive | 0.5191 0.5995 0.6077 0.6113
Triplet 0.7542 0.7961 0.7989 0.8002

Table 5.12: Two-Tower loss MRR at &

B 5.2.2 Negative example selection

In this experiment, we try out different percentages of hard negatives (Sec. 4.1.2). The
setup is the same as for the previous experiment. We chose the contrastive loss and utilize
it in all training of this experiment.

fever CS
Precision | @1 @5 @10 @20
100% 0.8369 0.1953 0.0999 0.0509
5% 0.5303 0.1638 0.0898 0.0476
50% 0.3756 0.1300 0.0756 0.0418
0% 0.0255 0.0184 0.0134 0.0098

Table 5.13: Two-Tower HNP precision at k

fever CS

Recall | @1 (@) @10 @20
100% | 0.7882 0.8981 0.9110 0.9233
5% 0.4973 0.7532 0.8204 0.8663
50% 0.3525 0.6011 0.6938 0.7624
0% 0.0237 0.0861 0.1245 0.1802

Table 5.14: Two-Tower HNP recall at k

fever CS

F1 Q1 @5 @10 @20
100% | 0.8118 0.3209 0.1800 0.0964
75% | 0.5133 0.2691 0.1619 0.0903
50% | 0.3637 0.2137 0.1364 0.0792
0% 0.0246 0.0304 0.0242 0.0186

Table 5.15: Two-Tower HNP F1 at &
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fever CS
MRR | @1 @b @10 @20
100% | 0.7968 0.8374 0.8394 0.8403
75% 0.5038 0.6080 0.6170 0.6199
50% | 0.3556 0.4509 0.4634 0.4683
0% 0.0237 0.0450 0.0506 0.0541

Table 5.16: Two-Tower HNP MRR at k&

B 5.2.3 Transfer Learning

5.2. Reranking

We chose the best performing loss function and HNP percentage from the FEVER CS
experiments (contrastive loss and 100% HNP) and used them on the training on CTK
data. As the data was not extensive, we trained only for 2 epochs and monitored evaluation
loss to avoid overfitting. The results were underwhelming and we present only the most
important evaluation measure, the recall, for completeness.

CTK
Recall @1 @b @10 @20
FEVER CS 0.0025 0.0025 0.0025 0.0010
FEVER CS + CTK | 0.0025 0.0050 0.0125 0.0150
CTK 0.0025 0.0075 0.0225 0.0375

Table 5.17: Two-Tower recall at k evaluated on CTK
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Chapter 6
Conclusion

The goal of this work was to familiarize ourselves with the document retrieval algorithms
employed in the fact-checking scenario focusing on the Czech language. We studied clas-
sical methods of document retrieval as well as modern state-of-the-art algorithms.

The modern methods often rely on the basics and improve them by a novel approach.
We combined the traditional and proven methods, such as the TF-IDF and BM25 models,
with more powerful transformer-based networks. We utilized the classics in the first stage
of retrieval and we tried to improve these methods by reranking their results with BERT-
like models.

We worked with two Czech datasets, the FEVER CS and CTK. The FEVER CS provides
a larger training dataset including a little over 100.000 claims (compared to around 2000
verifiable claims for CTK). The CTK dataset, on the other hand, contains a broader base
of articles than the Czech Wikipedia.

We experimented with two different architectures and various setups on these. Firstly,
we explored the Cross-Attention network that did not exceed the baseline laid by the
DrQA and Anserini models. It decreased on Recall@20 by 25% with DrQA and by 12%
with Anserini. We experimented with the ICT pretraining task that was successfully
employed in the work of [Rypar, 2021] in combination with a multilingual BERT model.
We tried the pretraining task in the cross-attention setting but the results are far weaker,
decreasing the results of the cross-attention model trained alone. We found that the
choice of the preselected documents (DrQA vs Anserini) greatly influences the results of
the pretrained and finetuned model. The Anserini preselection working better by around
15% on Recall@20 on the FEVER CS dataset.

Secondly, we experimented with the Two-Tower architecture in two areas of interest:
the loss functions and the amount of hard negative examples. We discovered that the
strongest loss is the Contrastive loss over the expectation of the Online Contrastive loss
being stronger. We outperformed the DrQA baseline on the FEVER CS dataset by all
three loss function setups. The strongest, Contrastive loss, by 19%, the Online Contrastive
by 12%, and the Triplet loss by 16% on Recall@20.

We examined the effect of hard negative example percentage (HNP) and discovered
that the strongest model is the one trained with 100% of hard negatives and no soft
negatives. The trained models outperformed the baseline down to 50% HNP from where
they began underperforming. The final strongest combination is a two-tower model trained
with contrastive loss and 100% HNP, exceeding the baseline by 19% on the FEVER CS
dataset.

We conducted the same experiments on the CTK dataset without success. We connect
the results with the size of the training dataset which makes it more difficult to train
models. Also, the larger amount of articles to search the evidence in makes the task more
challenging. We tried to overcome this problem with transfer learning from the FEVER
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CS dataset but the datasets are too dissimilar. We noticed a bias in focusing on short texts
(eg. article titles) in the retrieved documents and tried to eliminate it by simply forbidding
to retrieve titles, although this heuristic helped only marginally and is not included in the
experiments.

In future work, we will examine the dataset more thoroughly to discover possible biases
and irregularities. An interesting direction could be to try the Two-Tower model with
different networks for each tower as well as experiment with various BERT models in
the Cross-Attention setting since the current models quickly become obsolete in the fast-
evolving field of NLP.
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Appendix A
Acronyms

BERT Bidirectional Encoder Representations from Transformers
BFS Body First Selection

BM25 Best Match 25

CA Cross-Attention

CTK Ceska Tiskova Kancelaf

DR Document Retrieval

FAISS Facebook AT Similarity Search

FEVER Fact Extraction and Verification

GPT Generative Pre-trained Transformer

GRU Gated Recurrent Unit

ICT Inverse Cloze Task

LM Language Model

LSTM Long Short Term Memory

MLM Masked Language Model

NLI Natural Language Inference

NLP Natural Language Processing

NSP Next Sentence Prediction

RNN Recurrent Neural Network

TF-IDF Term Frequency - Inverse Document Frequency
VSM Vector Space Model

WLP Wiki Link Prediction
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Appendix B
Project Structure

. B.1 Directory Structure

........................... repository with src codes
BIMDEA . .t e e embedding utils
EVALUAT IO . e DR evaluation
S o PP slurm scripts
L o 0 5= PP utils
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