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Abstract

Goal of this thesis was to explore and
compare the state-of-the-art methods of
distributed gradient descent. This thesis
focuses on improving the stochastic gradi-
ent descent method, that is being applied
across Machine Learning. Based on the
research we have selected algorithms, that
are described and implemented in Julia
programming language.

The data for purposes of analysis are se-
lected from domain of cybersecurity with
not only huge number of model parame-
ters, but especially huge amount of train-
ing data. The analysis is performed on
these datasets.

Multiple distributed algorithms of
Stochastic Gradient Descent were imple-
mented as part of this thesis, that achieve
better results than state-of-the-art meth-
ods in regard to processing time.
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learning, Deep learning
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Abstrakt

Cilem této prace je prozkoumat a porov-
nat nejmodernéjsi reseni pro distribuova-
nou metodu nejvétsiho spadu. Prace se
zameéruje na vylepseni metody nejvétsiho
spadu (SGD), ktera je vyuzita naptic stro-
jovym ucenim. Na zdkladé provedené fe-
Serse jsou vybrany algoritmy, které jsou
dale popsédny a implementovany v progra-
movacim jazyce Julia.

Pro ucely analyzy jsou vyuzita data z
bezpecnostni domény nejen s velkym po-
¢tem parametrti modelu, ale predevsim
i velikosti trénovacich dat. Tato data
jsou vyuzita ve formé hierarchického vice-
instanéniho modelu. Na téchto datech je
nésledné provedena analyza.

V ramci prace vznikly implementace
distribuovanych algoritmi metody nej-
vétsiho spadu, které dosahuji lepsich vy-
sledkl nez nejmodernéjsi reseni, vzhledem
k rychlosti zpracovani.

Klicova slova: SGD, Metoda nejvétsiho
spadu, distribované procesovani, Strojové
uceni, Hluboké uceni

Pteklad nazvu: Distribuované uceni

neuronovych siti
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Chapter 1

Introduction

B 1 Background

We are living in a golden age of data aggregation, statistics and data analysis.
The human population is steadily increasing in numbers and there is an even
greater growth rate in the amount of device usage (both online and offline).

It is estimated that in the year 2023 there will be 4.3 billiorﬂ mobile phone
users. The amount of social media users is estimated to hit around half of
the world’s population in the year 2025@ At the time this thesis is being
written, almost a third of the social media users are based in East Asia.

In the past, most devices used to have applications that worked with local
data with little information aggregated for processing, but with improvements
of technology |§| data aggregation is abruptly increasing.

The amounts of data generated by sensors of a single autonomous vehicle
is around 12TB/ dayEL with some articles even mentioning it is as high as

Thttps://www.statista.com/statistics/330695 /number-of-smartphone-users-worldwide/

2https://www.statista.com/markets/424 /topic/540 /social-media-user-generated-
content/

3The latest noticeable technologies are the introduction of 5G internet, the addition of
Neural Engine cores in Apple M1 and the switch to ARM - RISC architecture, or NVME
improvements.

“https://blocksandfiles.com/2020/02/03 /autonomous-vehicle-data-storage-is-a-game-
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750MB/s°, and that is just one vehicle. Even a single study of drivers of
autonomous vehicles by MIT amounted to around 3.5-billion video frames
[FBG™17].

At the moment more than 90% of all the data generated has been generated
in the past few years®. It is predicted that the speed of data generation is
(much) faster than the speed of data processing and it is estimated that more
than 50%/" of data is the dark dataP.

. 1.2 Motivation

If all the data generated by the usage of social media were saved, it would fill
all the storage in the world in few minutes. The only way to make use of the
data is to process it. In conclusion processing as much data as possible in a
reasonable time is the only option. With limited resources it requires finding
the best possible algorithm.

Algorithms are essentially recipes. We, as a society, have recipes for almost
everything. In some cases there are too many of them and we are overwhelmed
by the amount. Finding the correct recipe can be close to impossible as some
work well in one domain but are lacking in some attribute in a different one.
It is often advised to work with a “good enough” solution, as finding the best
solution is sometimes impossible. . Improving the recipe, in this case the
algorithm, in one domain comes at the cost of some other domain.

In computer science, the algorithms, or whole applications, act as recipes
to solve select problems. The algorithms solve the problem by using a
sequence of steps. It is not trivial to find a working algorithm for some
cases. Furthermore, application quality may vary. Anyone can create an
application,'’| To distinguish good algorithms from the rest there has to
be some parameters by which they can be evaluated. Applications may be
simple to solve some trivial problem, but are fairly complex to solve harder
problems.

of-guesses/

5http:/ /www . kurzweilai.net /googles-self-driving-car-gathers-nearly-1-gbsec

Shttps://www.sciencedaily.com /releases/2013/05,/130522085217.htm

"https:/ /priceonomics.com/companies-collect-a-lot-of-data-but-how-much-do/

8The type of data that is collected but never used.

9In real time. Some problems are in class NP-Hard, or even worse in recursively
enumerable class of problems.

10T some programming languages it’s easier than in others (eg. Julia vs C).
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“No application is flawless.”

A developers’ saying

In my work experience of more than 5 years as a software developer, I have
never seen a perfect application. Every application has at least one problem
in some domain. The application problem domains are mainly functionality,
stability, processing, memory, or network inefficiency, or are good only in a
case specific environment and do not work (as well) in other cases. Most of the
time some inefficiency leads to other problems, like slowdowns in processing
efficiency.

B 13 Data generation

The data generation spectrum is incredibly huge. Depending on the problem
domain, be it application usage, sensor activity, or network activity, data
is being generated all the time. Some data is generated automatically (eg.
by periodic sensor scanning), other data is generated by some form of usage
either by the user (eg. device usage, social media application usage or virtual
reality application usage) or by some form of communication (eg. network
activity).

As described before, the amounts of data generated is growing. Not only
the amount, but even the size of data files (eg. due to sensors’ improved
sound and video recording resolution) and the type of data, for example that
of new resources being tracked (eg. voice assistants and GPS navigation).

Current applications monitor their usage by customers, the users, to classify
them into customer groups and better predict which products to offer. The
social networks are created to keep the users addicted to their products, eg.
to scroll more to entertain themselves longer on their platform/'t

HShoshana Zuboff’s book Surveillance Capitalism, 2019

3
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B 1.4 Data storage

Data stores, containing some structured data, are one of the problem domains
in computer science. Data structures can be saved into simple text files,
formatted files (eg. comma separated files, csv) or into some database
systems.

In last more than three decades the standard for storing data was relational
database systems. In relational databases the data is divided into subgroups,
called tables, and the relations between the tables creates the complex data
logic.

This relational model does work well with smaller amounts of data. De-
pending on the hardware, relational databases work well even for tens of
Gigabytes (with some improvements, like indexing) but have problems with
larger sizes.

Another problem is that relational databases are not scalable. Relational
database is built to be run on a single computer. To improve the performance
of a relational database it is necessary to buy very expensive components.

B 1.4.1 Big data

To solve the problem of increases in the amounts of data, a new term was
introduced, Big data systems. Big data is a field of computer science methods
solving various problems often containing larger amounts of data.

Big data systems solve the problem encapsulated in the abbreviation called
the 5Vs. The data volume, possibly even Petabytes of data, data variety,
possibly unstructured data (eg. text or images), data velocity, the incredible
speed of data generation, data variability, changes in data structure, and the
data value, the profitability of the saved data analysis.

The CAP theorem states that distributed databases cannot guarantee the
following three properties at once: consistency - every read receives the latest
write, availability - every request is served by the database, and partition
tolerance - the system operates even when the connection between nodes fails.
To comply as much as possible with the relational database standard, which

4
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can provide all three CAP guarantees (as the data is not partitioned), big
data is able to guarantee just two out of the three CAP requirements at once.

Big data instead guarantees the BASE shortcut: basic availability - reads
and writes work on all nodes, but there are no consistency guarantees, soft
state - the state may not yet propagate as there is no consistency guarantee,
and the eventual consistency - after some time (if the system is working) the
change will eventually propagate.

The NoSQL databases are further divided into categories. Core types are
Key-value stores, Wide column stores, Document stores and Graph databases.
Each of these stores and databases are useful in various places.

Key-value stores are useful for simple problems, like session data or user
profiles. Wide column stores are for structured flat data, like event logs
and content management. The document stores have the whole data stored
in some structure, like JSON formatted text file from event logs and web
analytics. Graph databases are stores of nodes and their relationships, like
social networks and routing.

This thesis uses the data generated in, or rewritten to, JSON format,
based on the security domain, with logs from routers and malware network
communication for algorithms analysis. More details about the data used in
Section 5.2, [Experimental datasets|

B 1.4.2 Data privacy concerns

Base solution of data analysis is to collect the data on the server, where the
sampled data is prepared to datasets. When data is on the servers, the data
analysis is run and for example neural networks are used to create models.

Most of the data is not allowed to be shared or transferred, because it is
private. But applications try to empower users with Al, like personalised
choice of music, videos, movies and news, improving photos or advice on
sporting performance.

The problem may not be only the privacy of the data, but the aggregation
of data may not be possible. Reasons stretching from the owner’s choice,
to the privacy or security reasons. The aggregation of the data may be
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impossible to solve as the devices will not be connected to the network any
given time or devices may be disconnected completely.

Possible solution having privacy of data at its core is Federated Learning.
ederated learning is learning on edge devices using local data without sharing
them. It is a very interesting solution but it is out of the scope of this thesis
and will not be described further. All of the solutions in this thesis are
traditional centralized and decentralized solutions. This will not be stated
further.

The drive to get better models and better predictions means to save as
much data there is'?. The collection of data is so fast that no human being
can read it all. Luckily the humans aren’t the only ones who can create the
models by learning from data. New field of study has emerged to solve this
problem - Machine learning.

. 1.5 Problem statement

Inter-device communication is one of the biggest data generators as point
to point communication between devices is still done with some proxy. In
almost any network it is done via network router and possibly servers in the
middle of the conversation as well.

In computer security, or cyber-security, it is necessary to distinguish ma-
licious actors from actors with fair intentions. There are the applications
on the computer, the devices on the network or the communication on the
network. In any case, finding out the intruder, or malicious intent, is crucial
as soon as possible.

The machine learning tries to solve these challenging issues'l These types
of challenging issues are often complex and require heavy processing power.
The main problem in Machine Learning is to solve optimization problems
with high dimensions of parameters and huge amounts of data.

The method called Gradient Descent is quite simple and solves many non-
trivial problems, but with larger amounts of data and higher dimensions of

12 A1l the data the companies are allowed to take. There are some restrictions, some ways
to keep safe, but the collection of data is pushed to the limits.
13Tssues like predicting the attacker and taking action against the intent.

6



1.5. Problem statement

the parameter space it works slower and slower. This is well improved by
processing random smaller subsets of data - this method is called “Stochastic
Gradient Descent”. Ultimately even Stochastic Gradient Descent doesn’t
converge as fast with huge datasets, as processing smaller batches leads to
slower convergence. To improve convergence speed and find good enough
solutions even faster, Stochastic Gradient Descent needs to be paralellized.

Unfortunately even parallelism has limits. The first is the cost limit, where
the cost of slightly better components grows exponentially. The second is that,
if the costs are not the problem, buying better than the best components is
not an option. The only option is to use distributed processing. The essence
is to distribute the problem to many computers. It is a much less costly
option and the main attribute is that it is scalable, using clusters of more
basic computers.

The Julia programming language is relatively new. It is designed for
mathematical and numerical computing which is amazing for high performance
Machine Learning problems with large datasets. It has many qualities but as it
is fairly new, some of the machine learning algorithms, or their parallelised and
distributed versions, are not yet implemented. The most of the implemented
Stochastic Gradient Descent versions in Julia are (to my knowledge) purely
seriall4l

The main machine learning framework in Julia Programming Language
is Fluz.jI[ISFT18|] containing fundamentals like learning models and data
structures. Additionally, multiple libraries exist to either simplify the pro-
cess of creating the machine learning task or allow more support, like Zy-
gote.jl[Inni8al. The only exception of parallelisation of machine learning

tasks is PrayTools.jI".

This thesis is targeting the data analysis using machine learning method in
distributed systems and therefore we will describe these parts in more detail.
In the end of this chapter we will sum up the challenges for stochastic gradient
descent in the parallel and distributed systems and define the problems for
next chapter.

MWith exception of parallelisation from Julia basic commands like @parallel
Bhttps://github.com/pevnak/PrayTools.jl

7
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B 16 Objectives

The first objective of this diploma thesis is to research and analyse the
Stochastic Gradient Descent method with additional research into prior work
in the field of Stochastic Gradient Descent in a parallel and distributed setting,
as well as to find and select multiple state-of-the-art distributed algorithms
to be implemented.

The second objective is to implement the selected state-of-the-art dis-
tributed algorithms and create a public library for the Julia Programming
Language, and to analyse the implemented algorithm with different initial
parameters, different settings and different datasets.

. 1.7 Outlines

This paper is divided into two parts based on the objectives. The first part is
research, the second part is implementation and analysis.

This Chapter (1] introduces the problem domain by briefly explaining basic
concepts in broader context. Chapter [2] talks about concepts of data analysis,
explains training of model and later emphasises on gradient descent and
machine learning. Chapter [3| talks about concurrency concepts and defines
the stochastic gradient descent types in distributed systems. Chapter 4
summarizes research in the topic of stochastic gradient descent in distributed
systems and defines the algorithms to be implemented.

Chapter 9| defines performance metrics, describes experiment datasets and
gives short introduction on algorithm parameters. Further analysis discusses
the experiment results and reasons about future analysis.

Chapter 6| concludes the work and discusses further work.



Chapter 2

Data analysis

Process of data analysis can be generalized into a process consisting of the
following steps[OS13].

1. Data requirements

2. Data collection

3. Data processing

4. Data cleaning

5. Exploratory data analysis
6. Modelling and algorithms
7. Data product

8. Communication

This thesis focuses on number 6 - Modelling and algorithms. First we will
define data analysis notion with emphasise on model creation and model
training. Later we will focus on improving the model training in more
complex systems. We shall define machine learning in the following section.
Specifically, we shall be using distributed machine learning algorithms.

9



2. Data analysis

. 2.1 Model creation

The analysed dataset creates a mathematical model of the problem. The
model simplifies the logic behind the dataset trends. It adds the possibility
of predicting a value based on arbitrary input.

The model exists in the form of a function. This function takes data
input, which we will call the data sample, and creates an output, called a
prediction. The complexity of the model often negatively correlates with
interpretability. Simple models are more easily explained, as the function
of the model parameters may be simply displaying trends like in Linear
Regression, whereas complex models, like Neural Networks, chaining multiple
layers of neurons, are much harder to interpret.

model(X) =0TX =3 (2.1)

An example of a model is the prediction based on model parameters shown
in Formula 2.1l The model is a function with 6 as its parameter and the
variable X represents data for which the prediction should be made. The
resulting ¢ is the prediction.

Assessing the quality of the model is done using multiple methods, based
on the predicted value. If the simple model is inaccurate, that is if the
predicted value is far from the real value or different in case of classification,
it is necessary to use more complex methods.

We are trying to achieve the best model possible for a specific problem and
as such we need to improve the initial model.

B 22 Model training

The set of input samples used for training is called a training dataset. The
learning methods, often called optimizers, try to minimize the value of some
objective function. The objective function is a function that is optimized dur-
ing the training, in the context of minimization it is a cost function. The cost

10
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function is the total of all the individual loss functions potentially combined
with regularization, whereas the individual loss function is a measure of the
penalty of single sample.

In the literature the terms objective function, cost function and loss function
are interchangeable|[GBC16]. We will be using the loss function as an objective
function in this thesis.

loss(X10) = %Zlossi(model(xi\e), i) (2.2)
i=1

where loss; is individual loss based on an model estimate and real value of
single sample 7. We define loss as sum of all the individual losses.

arg;nin (1OSS(X\9)> (2.3)

The training of model is a process of changing the model parameters or
weights and bias of the model by minimizing the loss. The learning process of
the model is by solving the Formula [2.3] that is minimizing the loss of model
based on the observed data samples.

Measuring the quality of a model is based on the set of samples called the
testing dataset. There are multiple methods for model quality evaluation,
but we will mention only a few that will be explained in more detail in the
Chapter 5, [Experimental results|

Accuracy is the probability of a data sample being classified correctly.

Loss function depends on selection in learning, often selected variant is
cross entropy

To have as accurate a model as possible it is necessary to get as much data
as possible. It is obvious that smaller amounts of samples are easier and
therefore faster to process, as having bigger amounts needs more calculation

11
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and therefore makes the processing harder. A less obvious problem is that
the amounts may be too enormous to even be processed in finite time.

One of the methods that gradually improves the solution by moving closer
with the intermediate result is called Gradient Descent. This method was
invented in 1847[Lem12] and is attributed to Cauchy, but similar methods
were proposed by several others.

B 2.2.1 Gradient descent

Gradient descent is a functional approach where the result is being approxi-
mated with some regard to the difference of an actual, possibly measured,
value and the value predicted by a model. In statistics, the difference is called
an error or the residual and is often used as a cost function. The Gradient
Descent algorithm gradually minimizes the cost function.

Using differentiation we can approach the local minimum using the slope of
the function, where the slope of a function is described by the first derivative.

A single iteration of the gradient descent method works in two phases:

calculating gradient the method approximates the model of the objective
function by partial derivation of each of the parameters, creating a
gradient G

updating parameters the method subtracts a portion of a gradient, called
the learning rate 7, from the previous solution, creating new parameters

0141

0t+1 == Gt - T]Gt (24)

One of the challenges of gradient descent is choosing the best step size 7.
In case we choose an excessive step size, the function can diverge from the
objective. On the other hand, if we choose a step size which is too small,
it will take an infinite amount of time to find the objective function for the

12
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parameters. Often the 1% step size (n = 0.01) seems like a good fit. It
is simple enough for the calculation, yet big enough to make change in a
relatively small amount of iterations.'

B Stochastic Gradient descent

It is infeasible to use the gradient descent algorithm in cases of Big Data
datasets. Even using gradient descent on fairly big datasets (hundreds of
Megabytes of formatted text) can get computationally expensive and require
huge amounts of memory. Therefore it is necessary to run the gradient descent
with smaller batches instead of whole dataset.

Algorithm 1: Flux SGD implementation

function train!(loss, ps, data, opt; cb =(0)->(0))
ps =Params (ps)

@progress for d in data

try

gs =gradient(ps) do
loss(batchmemaybe(d) . ..)

end
update! (opt, ps, gs)
cb()

catch ex

end
end
end

Introducing stochasticity to gradient descent allows for selection of random
subset of training samples. Additionally smaller batch size allows for the
processing of large datasets with a greater amount of iterations and similar
results. The random sampling of a training dataset, can greatly improve the
speed of processing of the gradients as the gradient descent method calculates
only the smaller portion of training dataset, called a “mini-batch”. SGD

! There are many types of step sizes. Some optimizers are using a decay rate to decrease
7 in time as the calculation comes closer to the objective, eg. ADAM. Some optimizers
calculate the biggest improvement possible in the iteration based on the parameter and the
gradient, eg. the backtracking Armijo rule.

13
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selects random samples from the training dataset as the mini-batch and
calculates the gradient descent with a "small training dataset".

The implementation of Stochastic Gradient Descent algorithm in Flux
Algorithm |1[ISFT18|[Inn18D)] is considered to be state-of-the-art. We consider
the implementation of Algorithm |1, as the base to be compared with. Our
implementations of distributed SGD will be described in the Chapter 4} |Prior
artl.

Stochastic Gradient Descent is being used by many systems, from very
simple to much more complex. One of the more complex examples is machine
learning with the neural networks. The neural networks are usually trained
using Stochastic Gradient Descent or its variants|[GBC16].

Bl 2.2.2 Broyden-Fletcher-Goldfarb-Shanno algorithm

Similar to Gradient Descent the Broyden-Fletcher-Goldfarb-Shanno algorithm,
also known as BFGS, is a functional approach of approximation of objective
function using descent direction and hessian matrix (e.g. second partial
derivatives) which is the main difference to SGD . It is in the family of
quasi-Newton methods used to solve large-scale optimizations with smaller
number of parameters.

Approximating Hessian matrix of model with many parameters requires
large amounts of memory which grows with square of the number of parameters
and is therefore very computationally expensive. Even its more recent variant
Limited-memory BFGS, also known as L-BFGS, is still very resource heavy.

Compared to SGD the L-BFGS is much more computationally intensive
and uses huge amount of memory. The processing complexity of BFGS
algorithm is based on approximation of second derivatives, creating Hessian
matrices, in contrast to first derivative used in Gradient Descent. L-BFGS
requires calculation of gradient on all samples in each step, whereas SGD is
working with minibatches. With these problems, usage of BFGS or its variant
L-BFGS is infeasible for optimization of large number of model parameters.
Recent neural networks have hundreds of billions of learnable parameters.

14



2.3. Machine Learning

B 2.3 Machine Learning

Machine learning is a field of computer science containing a set of methods
that gradually improve a model based on a training sample input. Learning
from samples in case of the machine learning methods may be seen as a
change of the model state based on data in training data input. Machine
learning is divided into multiple categories, based on the type of learning,
type of prediction or clustering.

The experimental part of this thesis contains implementations of learning
algorithms from a subset of machine learning called feature learning. Feature
learning algorithms are divided into multiple types of learning, based on
the training data: supervised learning, where the training dataset is mapped
to some label, unsupervised learning, where the training dataset does not
have any mapping to the label and the output needs to be guessed based on
the patterns, and semi-supervised learning, which is partially divided into
supervised and unsupervised training data. We are using supervised learning
for our analysis in Chapter |5, [Experimental results|

B 2.3.1 Neural Networks

A Artificial Neural network (ANN) is an network of interconnected artificial
neurons. Most artificial neural networks consist of multiple layers: the input
layer, the output layer and possibly multiple hidden layers in the center. The
artificial neural network is considered shallow if it has zero or one hidden
layer. If the network comprises of more than single hidden layer it is known
as a deep neural network.

Neural networks belong to the class of feature learning algorithms and
therefore for their learning process the ANN use both labeled and unlabeled
training data. The network may consist of multiple layers that are connected
in a feed-forward system.

Artificial neural network algorithms were invented for artificial intelligence
and resemble the biological brain. The artificial neural network consists of
artificial neurons in layers, opposed to the biological brain’s biological neurons.
The model is then approximated from the previous layer. A single neuron in
a layer consists of a bias and vector of weights of neurons, or inputs, from the
previous layer. The inputs are multiplied by the weights and accumulated
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2. Data analysis

with subtraction of bias to produce neurons output value.

Artificial neural networks can derive relations in complex data with enough
iterations. Shallow neural network uses at most one hidden layer and as such
it has been proven as an universal approximator[LLPS93]. This means that
when given enough layers and appropriate weights, deep learning algorithms
are able to approximate continuous functions to any degree of accuracy (if
and only if the network activation function is non-polynomial).

The deep learning family consists of many methods and architectures.
Some simple methods can be easily understood, but some methods are too
complex to be understood. Often the interpretability of the model negatively
correlates with the complexity of the learning methods, as every increase in
complexity decreases the understandability of a model.

In this thesis we are looking at the Neural Network as a black box, that is a
function where we are able to calculate the sub-gradient (it’s approximation)
without our knowledge how it is processed. We are not solving any particular
problem or category of Machine Learning or Data Analysis. Instead we are
solving the general problem of Stochastic Gradient Descent in distributed
systems. The Stochastic Gradient Descent method may be used in any
machine learning algorithm with loss being expressed as in Formula [2.2|
where y; can be empty.

B 2.4 Possible improvements of SGD

The stochastic gradient descent is very well thought out and efficient method.
It works well with large datasets, huge amounts of model parameters and it
finds the solution®.

B 2.4.1 Tuning of the method parameters

In basic Gradient Descent there is only one parameter, the learning rate
n € (0,1). Small change in learning rate may bring very different results in
few iterations. As mentioned selecting 1 close to 0 means minimal change,

2If the models parameters are differentiable
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on the other side selecting 7 close to 1 with brings divergence. Learning rate
is dependent on the problem and its data.

The Stochastic Gradient Descent brings new parameter - size of minibatch.
Batch size affects processing speed of gradients and memory usage. This
parameter is especially useful in parallelisation of algorithm to allow for faster
processing of iterations.

The variants of Gradient Descent change the learning rate method, e.g.
ADAM has three more parameters in addition to 7.

Balancing all of the algorithms parameters is hard as the best setup is
dependent on problem. More complex Stochastic Gradient Descent method
variants will bring more parameters to be selected.

B 2.4.2 Improving the processing or convergence time

We have defined Stochastic Gradient Descent’s iteration as having two steps:
calculating gradient GG} and then updating parameters 6;1.

These steps are done serially in order. In any case of improvement by using
divide-and-conquer algorithm the methods will need to run these steps and
add possibly some more for communication.

In this chapter we have now explored the problem domain of data analysis
and gradient descent in general. In the following Chapter |3, |Concurrency
of processing, we will improve measurable performance of SGD by being in
purely serial problem space to new dimension of speedup based on distributing
processing into multiple workers. We will describe the concurrency domain
in more detail.
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Chapter 3

Concurrency of processing

In the first part of this chapter we will discuss processing of tasks, with an
emphasis on improving run time. We will show the issues that may slow
down the execution of serial task execution and provide some long-standing
solutions. Concurrency will be described both theoretically and practically
with regard to the real world.

Second part is mainly be focused on parallelisation and the distribution of
previously serial tasks.

This thesis studies data analysis using machine learning methods in dis-
tributed systems and therefore we will describe the distributed parts in more
detail. At the end of this chapter we will sum up the challenges for stochastic
gradient descent in parallel and distributed systems and create algorithm
detail definitions for the next chapter.

B 31 Concurrency in real life

Since ancient times many recipes have been inherently sequential, in computer
science we call it serial processing. Recipes like “First cut the vegetable, then
start boiling water; when water is boiling, throw in vegetables..” are easy to
follow. We know! what action to do at what time as the order is described

'If we understand what exactly the recipe describes..
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3. Concurrency of processing

and is straightforward. The problem with processing recipes serially, is that
some actions, like “when” and “while” may require us to wait some time
period (e.g. “wait for water to boil”).

One of the solutions is changing the order as it may decrease the amount of
time needed to complete the whole task. This is called scheduling. Scheduling
is one of many combinatorial optimization problems. It is for a single worker
in the polynomial class of problems, yet there are many complications of the
problem of scheduling that can make the problem much harder. Depending
on the complexity of the tasks, the amount of workers and other conditions,
like the order of the tasks, this problem may be even in class of NP-hard?
problems.

In case the order of the tasks is rescheduled, e.g. “First start boiling water,
then cut the vegetables, when water is boiling throw in vegetables..”, some
task can be done during the waiting period. In this case the vegetable cutting
while we are waiting for the water to boil. But the complication may be that
the time to cut vegetables is different than the time for water to boil.

In case of slow cutting or a larger amount of vegetables, the water starts
boiling earlier than all the vegetables are cut and this leads to problem with
solving two problems at the same time®. On the other hand in case of a small
amount or expert cutting skills, the cutting part is done faster and there is
additional idle time*. The ideal variant is that the cutting problem is finished
at the time the water starts boiling.

Another solution to decrease the processing time was mentioned in the
previous paragraphs. It is possible to parallelise. For example, one cook may
be creating the side dish while making a main dish. While working on a series
of steps there are a few problems with the order, but when doing things in
parallel, things start to get even more complicated. The complication may
lie in the synchronization of finishing of two separate tasks, like having the
main course and the side dish at the same time.

To allow even better parallelisation, the tasks can be distributed into
multiple workers. In scheduling there are differences in organization. In
one case the workers do the same work at the same time, which is easier to
organize. The other case is that each worker works on a different task, where
the organization of the tasks is key.

2 As some variants are closely related to Travelling Salesman Person (TSP), which is well
known NP-hard problem.

3Solvable by splitting the tasks, if the tasks are divisible

4Solvable by doing additional tasks, otherwise the only option is waiting.
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B 32 Concurrency in computer science

In computer science, instead of recipes we have algorithms. Serially running
algorithms are easy to follow and do not create any disruptions in processing.
The main problem in serial algorithms is the wait time. Therefore we use
parallelisation of tasks as most problems are (at least in part) parallelisable.

The parallelisation of the problem is done on a single computer using
different threads. There are two possibilities of parallelisation on a single
computer - running the same code and running different code. A run with
same code may be done automatically using single instruction multiple data
(SIMD). In case of differing code, meaning different instructions, it is run
on different threads in multi-threading systems. Multi-threading allows for
the concurrent processing of tasks either on a single processing unit (using
scheduling of threads) or more often on multiple processing units.

Parallel processing Distributed processing Distributed processing
miltiple cpu centralized network decentralized network

N
ek

Figure 3.1: Parallel and distributed network types

shared
memory

Fakl

Algorithms can be parallelised using one of two concurrency model types.
The first is the shared memory model. It is a local parallelisation model,
where all the workers communicate through shared memory and is used for
parallelisation. The second is message passing model where the messages are
passed through the network. This allows for both parallel and distributed
processing.

B 3.2.1 Shared Memory systems

The shared memory model is a model for parallelisation on a single computer.
In the shared memory system, workers write the data to shared memory and
this way allows all the other workers to read the latest. This introduces the
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3. Concurrency of processing

problem of overwriting data.

B Problem: Costly updates in shared-memory systems

Parallelisation on shared-memory systems is possible by having a thread for
every worker. Each thread reads the data, calculates the solution, in the case
of SGD gradients, and writes to memory. The reading and calculating parts
are memory safe but the writing part is unsafe.

We intentionally overlook the caches in threads and simplify the problem
by focusing only on shared memory. Threads reading without writing to
memory are memory safe. On the other hand, threads writing to memory are
not. In case of more than one thread writing to a single memory segment, the
memory may become corrupted’l Because of this problem, reads and writes
to memory are synchronized either on the hardware level by bus locking or a
similar locking software implementation.

Locks allow for single write without memory corruption and therefore
add one level of memory safety’. On the other hand, locking is very time
consuming as creating a lock, blocking reads and writes and the rest of the
synchronisation process generates massive overhead. Because of locking, the
updates in shared-memory systems are very costly.

Furthermore every thread will have its own data value in the cache. To
keep all of the threads synchronized, the processor must update all of the
thread caches. This action stops the processing for lot of cycles. There are
many optimizations to achieve the eventual consistency of the cache, but it
still means locking and cache misses.

Costly updates are often the bottleneck of parallel running workers, as
there is need for a locking-based mechanism in the shared-memory concept.
The memory locking of the solution memory space allows to keep all data
in the latest state without loss of precision by overwriting. There are a lot
of solutions for solving costly updates, but every solution for that problem
seems to bring other often unwelcome aspects to light.

®Memory cannot guarantee the data in the correct order, or even that the memory
segments will not be mangled. An example may be having two threads write to a single
memory segment. A result without locking would have some parts from the first and other
parts from the second thread.

5Locks do not fix problems with phantom writes and similar problems.
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B 3.2.2 Message Passing Interface systems

In the message passing model the transferred data will not get overwritten,
but the challenge is to transfer data between the workers.

In the literature][GKGKO03] the message passing system’s total time of
message transfer consists of three parts:

Startup time (¢5) Time spent on preparation on both sending and receiving
nodes,
like programming routes

Per-hop time (¢,) Time spent on transfer between multiple nodes as func-
tion of hops,
including network delays and switch latencies

Per-word transfer time (t¢,,) Time spent based on the length of the mes-
sage,
including all overheads, like bandwidth

The total time of receiving the message traversing multiple hops is equal
to Formula 3.1, where m is equal to size of message in words and [ is equal
to amount of communication links to traverse.

total = s 4+ (M x ty +tp) * 1 (3.1)

The hop time ¢, is in most platforms very small and may be omitted. We
however do not use these terms in this thesis as the amount of transferred
data is for both gradients and parameters the same.

We can distribute the data of harder parallelisable problems and process
them on clusters of computers. In computer science, distributed processing
has more types of network topologies and their specific communications. The
networks are divided into two main categories: centralized networks, with a
server in the middle and server - worker communication, and decentralized
networks, with special structures and communication between the workers.
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B Centralized networks

The centralized network is the network that has a device in the middle. It is
the most commonly used distributed solution called star network topology,
as it resembles a star.

The central unit, often called master or a server, aggregates data, whereas
the other nodes, called workers, are computation heavy and communicate
the processing results to the server. The central unit is communication heavy
and may get overloaded with communication. The slowdowns on the central
unit often propagate to the workers as the communication in the network is
often the biggest overhead.

B Decentralized networks

Decentralized networks on the other hand try to solve the problem of over-
loading the central unit by removing it and keeping the communication
between the workers. The amount of communication between the nodes
can be decreased by choosing specialized algorithms based on this network
topology.

Decentralized network Decentralized network Decentralized network
Ring Mesh Hypercube

o
>

Figure 3.2: Decentralized distributed network topologies

To give an example, for the Hypercube network the AllReduce method,
aggregating the data on the nodes, can be faster if the workers aggregate
the data and in the next communication propagate already aggregated data,
therefore instead of n communications for a single node there are only logs(n)
communications.
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B 3.3 Distributed systems and SGD

Bl 3.3.1 Definition: Network topology type

The selection of network topology is a key factor as the algorithm logic is
topology-dependent. Often algorithms are specifically designed for only one
specific type of topology.

I Problem definition

The communication between two nodes on the network consists of multiple
tasks mentioned in Chapter |3.2.2 Message Passing Interface systems. With
addition of waiting to get response the problem may become very grave. Most
of the solutions for minimization of communication are centralized, meaning a
single server and multiple workers. The "single server on network" parallelism
can be the biggest problem as the amount of communication between server
and all workers is so immense it may overwhelm the server.

The central unit can get stuck, congested or is not scalable enough. Conse-
quences can be vast. Adding more computers means no additional speedup,
even worse, there shall be slow-downs or maybe even no processing at all (if
the central unit gets stuck).

B Qualities of parallelization

In parallel systems, the communication takes place between the workers and
shared memory. Aggregation of the model parameters is in the shared memory.
All the data, including the model parameters, training dataset and testing
dataset, is on a single computer. Improving the processing time is done by
improving the computer hardware. The parallel solution is not scalable to
more computers.
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B Qualities of distributed systems - centralization

Distributed centralized systems are built on top of the communication between
the server node and worker nodes. The server node and master node exchange
global parameters and local parameters or local gradients. The master
node may be overwhelmed by the communication. Aggregation of global
model parameters takes place on the server node, with special cases having
aggregation of local parameters on worker nodes. The training dataset may
be partitioned to all worker nodes, testing dataset and global parameters are
on the server node. Improving the processing time is done by adding more
worker nodes, changing mini-batch size and decreasing the amount of data
communication. The centralized solution is well scalable to tens of worker
nodes.

B Qualities of distributed systems - decentralization

Distributed decentralized systems are built on top of the communication
between any worker nodes. The nodes exchange local parameters or local
gradients. No single node should be overwhelmed by the communication.
Aggregation of local parameters happens on worker nodes. The testing and
training datasets may be partitioned to all worker nodes, local parameters are
located on the worker nodes. Improving the processing time is done by adding
more worker nodes, changing the mini-batch size and decreasing the amount
of data communication. The decentralized solution is very well scalable to
hundreds of worker nodes.

B 3.3.2 Definition: Communication type

Both parallel and distributed synchronized systems communicate data from
workers. As has been mentioned before, it is either model parameters or
gradients. The ideal case is to have all the workers in the communication
finish at the same time, but that will not the actual case, as for example some
computations are more complex than others. The bottleneck is created by
waiting on slower-running workers.
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B Problem definition

Synchronization in parallel and distributed systems can be described as
achieving aggregation of the results from all of the workers. In SGD in
general, synchronization means waiting for results from all workers until they
finish the iteration. Different speeds of processing generates waiting between
iterations for all finished workers and with hundreds or thousands of iterations
the problem may become so grave that it is the bottleneck of the algorithm.

Synchronous workers without the latest parameters cannot calculate the
next iteration and must wait for communication of model parameters. This
generates unwanted staleness of remaining workers. The finished worker could
be doing computations for the next iteration, or possibly help slower workers.

There are multiple reasons for differing speeds of aggregation. The most
notable are

1. different hardware of processing units

2. network transfers worker-server for centralized, or worker-worker in
decentralized systems

3. processing times of gradients”

B Qualities of synchronous communication

Synchronization means aggregation of all the data, either gradients or local
model parameters, on the server node in centralized and on all worker nodes
in decentralized systems. The advantage of synchronous communication is
that it always uses the latest state of the global model parameters and is able
to converge like a serial SGD. The disadvantage is that it has to wait on all
the workers, where some slow workers generate big waiting overhead.

"The processing times may have a difference in speed of aggregation attributed to
processing complexity, or for example background processes on worker processors.
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B Qualities of asynchronous communication

Asynchronous communication means aggregation of the data from a single
node, either gradients or local model parameters, on the server node in
centralized and on some worker node in decentralized systems. The advantage
of asynchronous communication is that it does not have to wait on slow
workers and therefore the speed of iteration is rapid. The disadvantage is
that it does not use the latest state of global model parameters therefore the
convergence may be slower than serial SGD in terms of iterations, or in the
worst case even diverge.

B 3.3.3 Definition: Periodicity of communication

The communication on the network can be divided into multiple parts that
are described in Section 3.2 [Concurrency in computer sciencel In this section
we are mainly considering the amount of communication in regard to the
total time of the transfer. The overhead of communicating every iteration is
slowing the processing as the time spent in the communication (transferring
huge amounts of data, waiting for response, etc.) on any node means no
calculating during that period on that node.

B Problem definition

Huge data sizes and number of sources generating new data are increasing.
It simply means there is more data to be transferred. In context of data
analysis this is not the only problem. The bigger problem is the huge number
of data (small updates) during the processing phase of SGD on multiple
computers on a distributed system’s network. Communication via network
can be extremely costly.

In any synchronized solution the communication must happen in every
iteration. The problematic part is the amount of data transferred. Both
the dataset sizes and sizes of model parameters, or even their gradients, can
be very large. With addition of waiting on receiving and responding this
problem may kill the promising algorithm.
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B Qualities of semi-(a)synchronous communication

The combination of a synchronous and asynchronous approach. This type of
communication is often implemented as a communication after some period
of work on workers. The algorithms often communicate either local model
parameters or some portion of the local model parameters with subtracted
global model parameters creating a delta that acts like a gradient in some
direction. This communication allows for exploration in both synchronous
and asynchronous communications. It also tries to solve the problems with
waiting on slow workers in case of semi-synchronous communication as it
gives more time to the slow workers to catch-up.

B 3.3.4 Parallelisation of SGD

In previous Chapter [2.4.2 Improving the processing or convergence time),
we have defined the steps of Stochastic Gradient Descent algorithm. To
parallelise the method we can chose divide-and-conquer algorithm to select
sub-problems and try to process them faster.

First step, the calculation of gradients, can be parallelized if we select
centralized distributed topology. But it means that in any iteration ¢ commu-
nication of the gradients G;; to server either from any worker i € workers(),
or from all of the workers based on selection of communication type. Server
will then calculate the global model parameters 6;. To keep the latest data
on workers this brings additional step of communication of model parameters
to worker(s).

calculating gradients G;; Done on workers
communicate gradients Overhead - Worker sending, server receiving
updating parameters 6;.1 Done on server

communicate parameters Overhead - Server sending, worker receiving

This means communication will happen every iteration. To allow decen-
tralized distributed topology the solution needs to change again. The worker
must be able to update its local parameters. Again there is a choice of
communication of worker i with worker j, or of all workers to all workers
based on selection of communication type.
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calculating gradients G;; Done on workers
communicate gradients Overhead - Worker sending, worker receiving
aggregation of gradients G; Overhead - Done on workers

updating parameters 6;;1 Done on workers

To allow less frequent communication based on selection of communication
type semi-(a)synchronous communication with communication period 7 a
new solution would need to combine the both previous solutions. Workers
would calculate the gradients and update local model parameters while not in
communication iteration. The communication iteration would happen every
iteration t = 0 (mod 7). In the communication iteration in case of centralized
distributed topology would workers send their local model parameters and wait
for global model parameters from server. In case of decentralized distributed
topology the workers would exchange local parameters.

Bl 3.3.5 Introduced problems by parallelisation of SGD

Parallelisation adds possibility of calculating gradient and/or updating pa-
rameters, but in case algorithm is incorrectly designed, set up or used the
processing may stop. We call the stopped processing waiting. This waiting
generates overhead on either worker, server, or in worst case both.

We define here two slowdown problems :

server is not processing all workers calculate gradients/updates

workers are not processing either server is busy, or some worker is stalling

One of more severe problems is if worker or server is shut down from
network. In case of worker in asynchronous algorithms this is recoverable, as
the network will work, but in case of synchronous communication this is fatal
as the server cannot progress. For centralized network it is unrecoverable if
the server fails
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Chapter 4

Prior art

In this chapter, we will describe the research of algorithms in prior related
academic work. We will describe multiple algorithms from different papers
aiming to improve the Stochastic Gradient Descent with regard to the speed-
up of the run time by using parallelization in different domains and parts
of algorithms. Authors try to improve the run time of the algorithms while
minimizing the decrease in convergence.

Every algorithm will have a small description of how the algorithm works,
figure describing the run of the first iteration (or similar amount of processing)
and the pseudo-code (based on Julia programming language) of an algorithm.

The Stochastic Gradient Descent has multiple parts in which it can be
improved. Authors of papers introduced later are working on and often fixing
the problems found in the previous papers. These algorithms are mentioned
in chronological order as the papers were introduced.

B 4.1 Definition of terms used in this chapter

We will now use these previously defined terms that will be used throughout
this thesis. We are adding the definition and variables in the algorithms to
give more clarity.
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p Number of workers, in algorithms the function is nworkers()
f# Model parameters at node, in algorithms the variable is ps
0; Center, or global model parameters in t-iteration
0 Worker-i, or local model parameters in t-iteration
G Gradient at node, in algorithms the variable is gs
G Worker-i gradient in t-iteration
G7 Sum of worker gradients, in t-iteration, G; = 3°¥_, G!
1 Learning rate, or step-size, in algorithms the variable is opt
7 Communication period, in algorithms the variable is tau

p Exploration amount, in algorithms the variable is rho

B 4.2 Bulk Synchronous SGD[RULIO]

The first paper’s goal is to implement parallel algorithms, make improvements
or create extensions to the state-of-the-art algorithm called MapReduce. Bulk
synchronous systems were created to aggregate data on a server with minimal
overhead of the network transfer. The name Bulk Synchronous was used as
the data on workers was aggregated and sent to the other nodes, possibly a
server, as a bulk during periodic checkpointing.

The authors introduced the algorithm using a similar approach to Bulk
Synchronous systems, being in a centralized network and having a central
unit. The central unit is called a synchronous parameter server. The approach
is called Bulk Synchronous SGD method as the gradients are sent in bulk
synchronously. The workers periodically send their gradients to the server,
the server sums the gradients together, calculates the model parameters and
returns the newly calculated parameters to the workers.

Gy => Gy (4.1)
j

where G+ is the sum of gradients in iteration ¢, the Gy ; is the gradient in
iteration t of the worker j.

34



4.2. Bulk Synchronous SGD[RULIQ]

Bulk Synchronous SGD

official
Initiation Counting gradients Counting gradients Counting gradients
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Initiate Workers: Workers count gradients Workers count gradients Workers count gradiemnts
Load data on the workers 1. - finished gradients, 1. - waits for params 1., 2. - waits for params
from server saves updates 2. - finished gradients, 4. - finished gradients,
2. - finished gradients saves updates saves updates
and waits for server 3., 4. - finished gradients 3. - finished gradients
3., 4. - counting gradients  and waits for server and waits for server
Counting gradients Reload params New iteraion
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Workers count gradients Params to Workers: Start of the new iteration
1., 2., 4. - waits for Server processes update
params of parameters
3. - finished gradients, Sends data to the
saves updates workers

Figure 4.1: Bulk Synchronous algorithm displayed on minimal run.

After the iteration is complete on all workers and all the gradients from the
workers are received by the server, the server calculates the mean gradient
for the iteration.

G

Gy = (4.2)

where G is the sum of gradients in iteration ¢, the n is number of workers
that processed the gradients and G, is mean gradient of iteration ¢. The
mean gradient is then used to approximate the iteration.

In the Figure [4.1) we have shown a randomized run of single iteration on
all workers where server gradually collects the gradients. After successfully
aggregating all of the worker gradients, the server then calculates the mean
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gradient and then updates the parameters. The blue worker nodes are loading
the parameters from the server and then change to white worker nodes where
they calculate the gradients. When the worker is finished calculating gradients,
it turns either green or red. The green worker nodes are saving the newly
calculated gradients onto the server, while the red nodes are waiting to send
the gradients to the server. Meanwhile, the yellow workers are waiting for
the server to send the newly calculated parameters.

Algorithm 2: Bulk Synchronous algorithm on Server

Q@everywhere function train_BulkSync!(loss, ps, data, opt,
server_channel; cb =()->() ,max_iteration =100)
t =0 # iteration
current workers =workers()
while t <max_iteration
next workers =[]
send_params_to_workers(current_workers, ps)
Gy« =empty_gradient ()
while !empty(current_workers) &&fetch(server_channel)
Gy, worker; =receive_grad_from_worker ()
Gis . +=Gyj
remove! (current_workers, worker;)
push! (next_workers, workeﬁﬁ
end
gs =Gy /n
update! (opt, ps, gs)
t +=1 # iteration + 1
current_workers =next_workers
end
end

There are two main waiting periods. Both waiting periods begin after the
worker finished calculating the gradient. The first waiting period is when the
worker finished calculating the gradient and wants to send the data to server.
As server is processing different requests, the worker has to wait. The second
waiting period is much more serious, as it affects all the workers that have
finished calculating gradients and are waiting for global parameters. This
problems comes from struggling workers. We can see these problems in the
Figure |4.1, both when the workers are ready to send the gradients (red) and
when the workers are waiting to receive the updated parameters (yellow).

The Bulk Synchronous SGD is a distributed synchronous algorithm that
collects all the gradients, then counts the mean gradient and with that mean
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Algorithm 3: Centralized SGD algorithm on Workers

Q@everywhere function train_centralized_worker! (ps::Params,
server_channel, worker_channel)
t =0 # iteration
while fetch_server_params() !=Nothing
XS =receive_server_params (worker_channel)
batch_data =random_minibatch()
gs, y =calculate_gradient(loss, ps, xs, batch_data...
)
send_grad_to_server(server_channel, gs)
t +=1 # iteration + 1
end
end

gradient updates the parameters of the model.

B 43 Hogwild! SGD[RRWN

Hogwild! was one of the first papers aiming to improve the run time of the
parallel SGD using the shared-memory approach with local parallelization
of SGD without memory locking. In the paper the authors mention the
problem of slow updates of parameters in the model because of locks. The
authors describe previous work in many cases as “performance-destroying
memory locking”. In the paper authors describe that processing of gradients
on workers is very efficient but updating the parameters with centralized unit
(both in shared memory and parameter server) brings big slowdowns because
of waiting periods.

By improving the updating scheme they achieve an impressive speed-up.
The idea of Hogwild! is to use shared memory and update the parameters
without any hardware or software memory locks. When the worker finishes
calculating the gradient and is ready to update, it can update the central
parameters without waiting!]

In most cases. Unless it is not atomic and therefore it is implemented with a compare-
exchange instruction, which can fail.
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Hogwild! SGD
official
Initiation Counting gradients Counting gradients Counting gradients
shared ——(2 ) shared _@ shared € 2 shared =2
memary - memary memary memary
—>® —0® —® «:
Initiate Workers: Workers count gradients Workers count gradients Workers count gradients

Load data on the workers
from shared memary

1. - finished gradients,
saves updates

1. - Inads parameters
2., 4. - saves updates

2., 4. - loads parameters
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Figure 4.2: Hogwild! algorithm displayed on minimal run.

In the Figure 4.2 we have shown in a single iteration® on all workers that
updates are not bound to one single worker at a time. The blue worker
nodes are loading the parameters from shared memory, after loading they
become the white worker nodes, while they are calculating the gradients.
After finishing, they become the green worker nodes and save the newly
updated parameters straight into shared memory.

In this method there is no waiting. Neither for parameters, nor for gradients.
But this solution works only on some very restrictive conditions. The Hogwild!
is described as working well under two conditions:

The first condition. is that the problem must be a sparse separable cost
function (graph cuts and similar problems), where update of the parameters
targets only a small subset of parameters.

0=> 6.

eckE

(4.3)

where e is subset of E and 6, is vector containing a single parameter from
of all parameters in the vector 8 on the coordinate of e.

The second condition. is that the update of single parameter has to be
an atomic operation. The authors mention that on some CPUs and GPUs

2With exception of worker 1 doing 2 iterations, all others finished 1 iteration.
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it is implemented and on other processing units it may be done using a
compare-exchange instruction.

where a; is some coefficient from equation 0;11,; = 0;; — nb;G;. The b; is a
vector with coefficients in the interval {0, 1}, having only the elements with
index i € e equal to 1 and the elements with index ¢ & e equal to 0. The G;
is a gradient of 6; ;. The 7 is the step size of algorithm.

Processors are all granted equal access to shared memory. It is possible
to overwrite the previous value but in the sparse problem it is shown in the
paper that it doesn’t happen that often and therefore Hogwild! achieves a
nearly optimal convergence rate. The authors display a nearly linear speedup
based on the number of processors on sparse learning problems.

Algorithm 4: Hogwild! algorithm on Workers

Q@everywhere function train_Hogwild!(loss, ps, data, opt;
cb =0)->() ,max_iteration =100)
t =0 # iteration
while iteration <max_iteration
e =load_random_sample (E)
ps =load_current_parameters(e)
batch _data =random_minibatch()
gs, y =calculate_gradient(loss, ps, batch_data...)
for i in e
save_parameters_to_memory(ps, G;)
end
t +=1 # iteration + 1
end
end

As the Hogwild! algorithm is a local asynchronous parallel method, it only
has the workers and no server node. The results can be returned by the last
finishing worker.

This algorithm is not distributed and will not be implemented in this thesis.
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B 4.4 Downpour SGD[EBG"17]

The Downpour SGD is an asynchronous distributed algorithm. The authors
have aimed to fix the problems from both of the previously mentioned
algorithms - Bulk Synchronous SGD|RUL10] in Section [4.2| and Hogwild!
SGD|RRWNI11] in Section 4.3|

The |[Hogwild! SGD[RRWN11] is an asynchronous parallel algorithm, but
has many constrains, like only being able to solve sparse problems and
working in the shared memory model. Creating distributed shared memory
is considered to be impossible. To rewrite the Hogwild! algorithm into a
distributed algorithm with shared memory scheme would lead to overwhelming
synchronization.

On the other hand, the Bulk Synchronous SGD|RUL10] algorithm takes a
centralized, distributed a d synchronous approach. It has a server in the central
unit that is solving the problem of loading the gradients from the workers
and updating the model parameters. Yet the necessity of synchronization
means that there are long pauses introduced when waiting for the gradients
from all the workers.

To allow a distributed run of the Hogwild! it is necessary to switch from a
Shared memory model to a Message Passing system. In this case the problem
with shared memory is reduced by creating a single central unit that acts like
shared memory, just like the Bulk Synchronous SGD. Downpour is generally
slower than the Hogwild! algorithm, as the message has to be passed from
the worker to the server. Communication over the network instead of simply
saving into memory generates huge overhead. Although the saving times are
much bigger, the Downpour algorithm has the ability to scale to multiple
computers.

Difference in the updating of parameters is that it is calculated in every
single worker-server communication. Unlike the Bulk Synchronous SGD,
where it is done in each iteration for all workers (with mean gradients), and
in Hogwild!, where it is written straight to memory with sparse parameters
at any time (with atomic updates in memory).

In the Figure 4.3| we show a single iteration on all workers where the
server collects the gradient from a worker and updates the parameters. The
algorithm starts with loading the parameters to the workers, shown as blue
worker nodes. Then the workers change the color to white, where they
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Figure 4.3: The Downpour algorithm displayed on a minimal run.

calculate the gradients. Finished worker nodes are then shown in green, when
saving the newly calculated gradients to the server, or in red, when waiting to
send the gradients to the server. This method has still some waiting periods.
The only type is where the workers are ready to send the gradients (red) and
the server node is busy communicating with a different node.

The server receives the request, updates the global model parameters and
sends the global model parameters back to the worker. Worker code is the
same as in Bulk Synchronous SGD method in Algorithm [3| In this thesis, we
chose the approach where each update of parameters means a new iteration,
but it can be changed to a different approach, eg. the approach where a new
iteration begins only after all the workers finished the iteration (in a more
synchronous fashion).
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Algorithm 5: Downpour algorithm on Server

Q@everywhere function train_Downpour! (loss, ps, data, opt,
server_channel; cb =()->(),max_iteration =100)
t =0 # iteration
while t <max_iteration &&fetch(server_channel)
J» gs; =load_grads_from_worker (server_channel)
update! (opt, ps, gs;)
send_params_to_worker (j, ps)
t +=1 # iteration + 1
end
end

B 4.5 Elastic Averaging SGD[CPM™16]

While studying the problem of stochastic gradient optimization in a distributed
computing environment under communication constraints, the authors found
that the overhead caused by the amount of communication with the centralized
unit is the greatest problem. To decrease the amount of communication, they
used the technique called Elastic Averaging. Communication with the server
only happens in 7 iterations, instead of every iteration. They call period of
each 7 iterations, containing the communication iteration, is a single clock
cycle.

The authors’ base algorithm, the FElastic Averaging Stochastic Gradient
Descent, on equivalence of two equations for minimizing function called the
Global Variable Consensus or Augmentability in the literature. The worker in
the elastic averaging method is calculating the gradients and updating the
local parameters.

The frequency of communication between every worker and server is con-
trolled by the term 7. The term 7 is regarded as communication period in
the paper.

In the paper, the authors describe the magnitude of p to represent the
amount of exploration that is allowed in the model. To allow more exploration
in the local workers, the term p can be decreased and therefore allow 6% to
fluctuate further from the central parameter 6. The idea of Elastic Averaging
SGD is described as allowing the local workers greater exploration and the
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server to perform the exploitation, which is different from the main focus in
the literature to find the convergence of center parameters.

elastici = np(0! — 05) (4.5)

In Formula [4.5 we define elastic difference used in this method.

B 4.5.1 Elastic Averaging SGD - synchronous

Authors define Synchronous Elastic Averaging SGD algorithm with update
steps for worker (in Formula 4.6) and update step for server (in Formula |4.7)).

Or. ., = 0; — 1(gi(67) + (0} — 0r)) (4.6)
~ o~ p . ~
Orr =0 — 772 p(0; — 64) (4.7)
=1

where é; denotes the server parameters, also called center parameters,
and the 6! are the parameters on worker i, also called the local parameters.
The term 7 is a learning rate of Stochastic Gradient Descent and the term
p is quadratic penalty that ensures that local workers do not fall into the
attractors that are far away from the server parameter.

The elastic averaging introduced in the paper the simplifying variables
a =np and 8 = pa. The authors call the a moving rate and that 8 leads
to an elastic symmetry in the update rule. Further more authors describe
that the update rule of the center parameters 0, is taking the form of moving
average over space and time.

01 r = 0f =g + —(0}) + (0] — 0)) (4.8)
Orer = (L= B)0: + 3 (;Z%) (4.9)
i=1
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Elastic Averaging (EA) SGD
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Figure 4.4: Elastic Averaging algorithm displayed on minimal run with 7 = 2.

In Synchronous Elastic Averaging algorithm there is no difference in itera-
tion of global parameters and the local parameters and therefore s = ¢.

The single iteration ¢ on the worker i consists of having local parameters
0i from previous iterations, calculating the gradient and updating the local
parameters. In contrast the iteration on worker being in communication period
consists of receiving the center parameters 9~t, having its local parameters

", and calculating the elastic difference (in Formula 4.5) for next iteration
of both local parameters 6}, and global parameters. After calculating the
worker sends the elastic difference back to the server node. The server sums all
of the elastic differences, creates mean elastic difference and subtracts it from
the global parameters creating next server iteration §t+7 (in Formula 4.7)).

We classify this algorithm as Semi-synchronous centralized SGD algorithm.
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Algorithm 6: Synchronous Elastic Averaging algorithm on Server

Q@everywhere function train_EA_sync!(loss, ps, data, opt,
server_channel; cb =()->() ,max_iteration =100)
t =0 # iteration
while t <max_iteration
finished workers =[]
summary =empty_params_vec (ps)
while finished workers <nworkers()
&&fetch(server_channel)
J,» Ab;; =delta_from_worker (server_channel)
push! (finished_workers, j)
summary .+=0; ;
end
summary /=nworkers ()
update! (opt, ps, -summary)
send_params_to_workers (ps)
t +=7 # iteration + T
end
end

B 4.5.2 Elastic Averaging SGD - asynchronous

As in Synchronous EASGD the authors define Asynchronous Elastic Averaging
SGD algorithms update steps. For worker it remains the same (in Formula,
but for server the change is in update by single value (in Formula instead
of mean value.

Ossr = 05 — np(0] — 05) (4.10)

where 0 denotes the server parameters having different iteration s, where
s > t, from worker i, having local parameters 8 on iteration t.

Update the global parameters in every communication the server is rapidly
progressing in the amount of iterations.

As in the synchronous version, a single iteration ¢ on the worker i consists of
having local parameters 0] from previous iterations, calculating the gradient
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Algorithm 7: Asynchronous Elastic Averaging algorithm on Server

Q@everywhere function train_EA_async!(loss, ps, data, opt,
server_channel; cb =()->(),max_iteration =100)
t =0 # iteration
while t <max_iteration &&fetch(server_par_channel)
J =request_from_worker (server_par_channel)
send_params_to_worker(ps, j)
J» AB;; =delta_from_worker (server_channel)
update! (opt, ps, -Ab;;)
t +=7 # iteration + T
end
end

and updating the local parameters. During communication period iteration
worker i requests the global parameters from server 9~s, after receiving them it
calculates elastic difference and in Formula 4.5l and sends it to server. Server
after receiving the elastic difference from worker ¢ subtracts it from the global
parameters creating next server iteration §t+7 (in Formula 4.10).

We classify this algorithm as Semi-asynchronous centralized SGD algorithm.

B 46 Stale Synchronous Parallel SGD

The Stale Synchronous Parallel (SSP) model is a partially asynchronous
centralized system. It is partially asynchronous as it has staleness threshold.
By bounding the staleness threshold, limiting maximum iteration difference
of the parameters on all the workers, the algorithm achieves faster processing.
The amount of communication decreases between the server unit and the
worker units proportionally. While using older, stale, versions of parameters
from local cache instead of communicating the latest data from central unit
the workers spend less time waiting and transferring the data and more time
calculating.

The Stale Synchronous Parallel SGD method is generalizing the Bulk
Synchronous Parallel SGD method, which is strongly synchronous. Partially
removing the staleness of synchronization introduces less waiting and therefore
allow for more processing during the same time period. Instead of removing
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the staleness completely the Stale Synchronous Parallel method only increases
the staleness difference from 0, meaning completely synchronous as all the
workers are on the same iteration, to some number of iterations m.

This m-iteration staleness in turn has implication that the parameters used
are not in complete disarray. It allows for more fluent run on multiple workers
as the slower workers can catch-up, but faster workers don’t have to stop and
wait. The wait may be eventually introduced if some worker gets stuck or
the staleness factor is too small, like in the Bulk Synchronous m equal to 0.

The SSP computation method is targeting the processing with heavy
memory usage. It works with thread and process caches. This method is very
hard to implement correctly, with tracking of the iterations and two local
caches based on iterations. It was not selected to be implemented.

B a7 Synchronous All-Reduce SGD

The initial implementation of the synchronous decentralized stochastic gradi-
ent descent method is called Synchronous All-Reduce SGD. It is the Bulk
Synchronous decentralized counterpart. The name is self-explanatory as it is
based on the type of synchronization of SGD and it’s communication method
between the workers, called All-Reduce.

The All-Reduce communication is presumed to be O(n), which it is on
some networks like ring, but when using different network it may be better.
The best case asymptotically is hypercube. On hypercube All-Reduce method
has asymptotic complexity equal to O(log(n).

In the Figure [4.5| we show random single iteration on all workers in the
hypercube network. They gradually collect the gradients from other workers
and update the local parameters. The algorithm starts with loading the
parameters to the workers, shown as blue worker nodes. Then the workers
calculate the gradients and change the color to white. Finished worker nodes
are then sending (green), or receiving (blue) the newly calculated gradients
to the first-bit neighbours (written as g(i)). There may happen the waiting
period, as the neighbouring worker may not finish and rest of the workers
must wait®, When worker aggregated the g(i) they send the new g(i, j) to
second-bit neighbours. The situation is repeated for the log(n) step, if there is

3This situation with waiting may happen but is not shown in the Figure [4.5
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Synchronous All-Reduce SGD
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Figure 4.5: Synchronized All-Reduce algorithm displayed on minimal run.

n workers. When all the gradients are received on the worker it then updates
the local parameters and starts new iteration.

We classify this algorithm as Synchronous decentralized SGD algorithm.
This method was selected to be implemented and analysed. During the
analysis of the smaller dataset the method displayed incorrect behaviour and
was not added to the methods to be analysed on the big dataset.

B 2.8 Gossiping SGD[IYIK16]

The centralized network had problem with the over-usage of the central unit
which is solved by switching to decentralized network having no central unit.
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But all-reduce step distributing its gradient to all workers and collecting
gradients from every worker in every iteration is even more costly with regard
to network overhead?. This solution does not overwhelm the server unit, but
the amount of communication (even though optimised from n to log(n) in
single iteration for one worker) is too massive. All-Reduce solution generates
slowdowns with the amount of data communication and additionally by
waiting on slow workers synchronization.

To make the decentralized network solution usable it is necessary to decrease
the amount of communication with the other workers. This means using
some simplification of communication. The authors used gossip aggregation
algorithm|[KDGO3| as fundamental building block. They describe the previous
gossiping algorithm as synchronous and introduce the asynchronous version.

The authors conceptually link gossip to elastic averaging algorithm and
therefore the gossiping can decrease the amount of communication of the
workers by communicating only in 7 iterations. Further more the authors
describe two Gossiping techniques: one is Pull and the other is Push technique.
Both techniques are heavily linked with the Elastic Averaging.

Pull Gossiping SGD. The authors describe Pull Gossiping as an equivalent
to “pull gossip” method. There every worker node receives only one parameter
per iteration. The general idea is that in communication iteration every worker
can “pull” or request exactly one other workers data. Therefore each worker
has exactly 2 averaged parameter data (itself and random other worker). This
is called “one-node estimator”.

Push Gossiping SGD. The authors introduced the “Push” version of Gos-
siping Stochastic Gradient Descent. Idea behind this method is that every
worker node “pushes” or sends its parameter data only once instead of being
queried any number of times. The worker sends their solution and receives
any number of parameter data from other workers. The minimum is 1 and
maximum is p parameter data to be averaged.

We classify both of these algorithms as Semi-asynchronous decentralized
SGD algorithms. Push Gossiping method was selected to be implemented
and analysed. Unfortunately during the analysis of the smaller dataset the
method displayed incorrect behaviour and was not added to the methods to
be analysed on the big dataset.

4Based on amounts of gradients transferred in the network
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Chapter 5

Experimental results

In this chapter we will first describe the setup for the experiments. It will
consist of performance metrics, by which the algorithms will be compared,
then experimental details, where will be more information about algorithm
setup and about selected datasets for this experiment.

In second part of this chapter we will run the algorithms and use the
performance metrics for the comparison. Details of the runs will display the
results in form of graphs.

. 5.1 Performance metrics

Measuring performance of algorithms in distributed systems is not trivial.
This is even more true for algorithms for analysis, like stochastic gradient
descent in this thesis.

Problems are: selection of algorithm parameters (like learning rate, ex-
ploration rate, or communication period), loading datasets onto the workers
(as the amounts of data are huge and it means transferring these over the
network), setting basic definitions for algorithms with different types of com-
munication and different amounts of communication periods (e.g. definition
of iteration for all algorithms) and measurements of time (as the logging
measurements take time, saving logs takes time), etc.
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We have selected metrics that we think are the most valid in the context.

Measuring the loss is closest to the accuracy without huge hit to the
performance of the algorithm. This performance metric is efficient in case of
comparison as all the algorithms will be working on same problem with same
resources and very similar setup. It displays how fast is algorithm progressing
in term of iterations as well as time.

This metric even allows for closer comparison of the algorithm itself, in
case it has multiple parameters to set up. Therefore we will first compare
the algorithm with itself and display how a choice of different parameters is
changing the progress and final convergence and speed of processing.

B 52 Experimental datasets

Selection of datasets for the experiment was very restrictive as the datasets
had to be very big, very complex and having very big amount of model
parameters to allow for more space to show the differences in this experiment.

All of the selected datasets were from security domain. These datasets were
recorded from data before 2018 and are being used in the research of malware.
The selected datasets had to be pre-processed into a unifying hierarchical data
structure to be later used for learning using Hierarchical Multiple Instance
Learning (HMIL). Hierarchical Multiple Instance Learning uses the structure
of a samples in dataset and reflects the structure in the models. Using this
type of learning from instances has added value in

B 5.2.1 Elastic Malware Benchmark for Empowering
Researchers (EMBER)

First dataset to be selected was Elastic Malware Benchmark for Empowering
Researchers, called EMBER[ARILS]. It is huge dataset that is very well
known. The 2017 and 2018 EMBER datasets contain features from more
than 1 million PE files scanned in or before their respective years.

Thanks to my advisors doc. Ing. Tomas Pevny, Ph.D. contribution of his
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prepared Ember dataset in json format and the serialized data in Julia jis
format we were able to use the EMBER dataset using HMIL model.

This dataset was selected as main experimental dataset having all the
parameters we required.

B 5.2.2 Android Malware Dataset (CIC-AndMal2017)

We have selected the second dataset to be Android Malware Dataset, called
AndMal2017[LKTGI§] or CIC-AndMal2017. This dataset was proven to
be hard problem. This dataset is in form of pcap files containing network
packet data. These types of data are used for network analysis. This dataset
contains 4 main categories - Adware, Ransomware, Scareware, SMS Malware.
Every category contains more than 5 subcategories, with different families of
malware in respective category.

Thanks to Be. Vojtéch Kozel[Voj21] who was very kind and contributed
the AndMal2017 data in json format, we were prepared to use them in our
experiment. This dataset was selected as secondary experimental dataset and
was prepared to be analysed.

Due to problems while processing the primary dataset the secondary ex-
periment was postponed and will not be part of this thesis.

B 53 Experimental details

In this section we first describe the setup of the experiment, the code used to
run the implementation and the server it is run on. Later we run all of the
selected algorithms with different parameters. We compare the progress and
results and discuss the details of the experiment preparation for each of the
algorithms used.

The algorithms will be run on smaller dataset to allow for faster processing
and more analysis. This test dataset is small but still very complex and will
display the differences in very good detail for comparison after few iterations.
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B 5.3.1 Hardware setup of experiment

Computer running the experiment had the configuration:

= AMD EPYC 7282 2.8 GHz (8 Physical Cores with Hyper-threading)
® 64 GB RAM
® 480 GB NVMe SSD

= 1 Gbit/s Port

Server was hosted by German company called Contabo, using the best
virtual dedicated server company has on offer |[VDS-XLL.

B 5.3.2 Bulk Synchronous SGD

Bulk Synchronous algorithm is simple and has few parameters that may
change the performance.

The first parameter setting the speed of processing is a minibatch size. In
this algorithm the minibatch will set the communication performance as it
may greatly increase or decrease waiting on workers based on how hard is
problem, in terms of computation, compared to other workers problems. This
method especially struggles with slow workers.

Second parameter is the number of workers. The number of workers has
to be regulated to not overwhelm server, in our experiment environment the
maximum is 8 workers which is not problematic. Second parameter has two
subproblems: Are all workers stable? Do all workers have same hardware?
The response to both questions is in our environment yes.

Third parameter is learning rate. Change in learning rate affects how fast
the algorithm converges as well as in basic Gradient Descent method.
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B 5.3.3 Downpour SGD

Downpour algorithm is simple and has the same parameters as Bulk Syn-
chronous SGD. This method however does not need stable!| workers and does
not need the same hardware for workers. Even the first parameter, the size
of minibatch, is a smaller problem compared to the Bulk Synchronous. If the
minibatch is huge then the server will wait for the first finished worker. It
does not suffer from struggling workers.

Change in the learning rate does affect how fast the algorithm converges
the same as in basic Gradient Descent method.

B 5.3.4 Elastic Averaging SGD

This method has a lot of parameters and therefore has much harder setup
preparations. The previously mentioned parameters: size of minibatch and
learning rate affects this method. The slow workers have big effect on
Synchronous version of the Elastic Averaging with Asynchronous version
having similar solution as Downpour for this problemﬂ

Additional parameters are exploration and the communication period. For
these parameters it is necessary to run feWE| iterations to find the best starting.
In this case the amount was 100 iterations on the smaller dataset (hundreds
of Megabytes).

100 50 25 10 H 2
tau

Figure 5.1: Gradient Descent n = 0.5 Figure 5.2: ADAM n = 0.05

Tt will recover from failing workers
2Solution is the communication type - the communication with single worker
3 Amount required is determined based on the complexity of the problem
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In the Figures 5.1 and we search for best combination of parameters
7 and p in Elastic Averaging algorithm. The algorithm is run on eight
workers with optimization method the Gradient Descent. The final values
in the heatmaps are the accuracy. In just 100 iterations we can see that
the Gradient Descent progresses fast enough on this problem with defined
learning rate.

B 5.3.5 Synchronous All-Reduce SGD

This Stochastic Gradient Descent method is very similar in requirements to
Bulk Synchronous SGDl As mentioned in the previous chapter this method
was implemented but due to the problems with convergence but was not
tested on experimental data.

B 5.3.6 Gossiping SGD

The Gossiping method is very similar in requirements to [Elastic Averaging]
'SGDin respective communication types. As mentioned in the previous chapter
this method was implemented but due to the problems with convergence but
was not tested on experimental data.

B 54 Experiment preparation

As the results of computing the stochastic gradient descent are dependent
on randomness of samples we wanted to have the results reproducible and
comparable. For better comparability we have set the same parameters to all
algorithms. The initial Gradient Descent method didn’t show much progress
and therefore we have selected better performing ADAM for all of the runs.

In the Figures and we have analysed both Elastic Averaging algo-
rithms on EMBER dataset to find the best possible additional parameters.
After 500 iterations we can see that the Gradient Descent does not progress
fast enough on this problem with defined learning rate.
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F0.60

Figure 5.3: Gradient Descent with Figure 5.4: Gradient Descent with
0.5 - Asynchronous Elastic Averag- 0.5 - Synchronous Elastic Averag-
ing ing

Based on the results we have selected the learning rate to be ADAM instead
of basic Gradient Descent. The individual experiment runs were seeded based
on worker ids. Parameters were set to:

sample size 200

learning rate n based on ADAM with n = 0.001 and decay of momentums
B = (0.9,0.999)

amount of workers p 8
communication period 7 10 iterations

exploration amount p 0.05

B 55 Experiment results

We are comparing selected implementations of algorithms to the state-of-the-
art algorithm named Flux shown in Figure 5.5

Selected algorithms are shown in their respective figures. The Bulk Syn-
chronous is shown in Figure The Downpour is shown in Figure The
Synchronous Elastic Averaging is shown in Figure 5.8 and the Asynchronous
Elastic Averaging is shown in Figure [5.9

“In the Flux the definition is ADAM (n = 0.001, 3 :: Tuple = (0.9, 0.999))
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Figure 5.5: Line plots of 10.000 iterations of Flux algorithm on Ember
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B 5.5.1 Results summary - 10.000 iterations

Summary of measurements is in the the Table 5.1] with the graphical version
of losses shown in Figure [5.10/ and the accuracy shown in Figure [5.11]

The best accuracy in 10.000 iterations was by state-of-the-art solution Flux.
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Algorithm | Train loss Test loss  Accuracy (%) Time (hod) ‘ Speed-up

Flux 0.084 0.155 88.476 2.54 1
Bulk Sync. 0.039 0.174 75.183 4.85 0.52
Downpour 0.219 0.365 80.618 0.33 7.70

EA sync. 0.054 0.154 86.667 2.83 0.90
EA async. 0.091 0.156 79.077 0.32 7.94

Table 5.1: Comparison of final model after 10.000 iterations on Ember dataset
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Figure 5.10: Line plots of 10.000 iterations of all algorithms on Ember
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Figure 5.11: Line plots of 10.000 iterations of all algorithms on Ember

It did converge to almost 88.5% accuracy in around two and a half hours.
Little smaller accuracy was achieved by Synchronous Elastic Averaging with
almost two hours and fifty minutes. The Bulk Synchronous displayed the worst
results both in terms of accuracy as well as processing time. The problem
of Bulk Synchronous algorithm was the communication every iteration with
batch of size 200, where some workers struggled. On the other side very
impressive processing time with great accuracy was achieved by Downpour
with the Asynchronous Elastic Averaging right behind in terms of accuracy.

In terms of loss the worst was for both cases of training and testing
datasets the Downpour algorithm. The other algorithms were all very close
with exception to the Bulk Synchronous. Bulk Synchronous had very small
final training error which could potentially mean overfitting of the model and
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it would justify the smaller accuracy in comparison to the other algorithms.

The synchronous algorithms displayed slowdowns, but the asynchronous
algorithms were very fast. In just 20 minutes both impressed with speed-up
almost 8 times the speed of processing. That is close to linear speed-up.
This almost linear speed-up in centralized system was achieved by using
asynchronous communication, that is a communication worker-to-server and
server-to-worker instead of all workers-to-server and server-to-all workers.
This decreases the number of workers participating in single iteration from all,
in this experiment eight workers, to only one worker. Even better speed-up
could be achieved on Elastic Averaging methods by selecting communication
period 7 > 10.

The parameters were set for all of the algorithms before the actual run
on the EMBER dataset. Only tuning was the selection of the parameters
for Elastic Averaging based on the heatmaps for the parameters that are
algorithm specific. By tuning the parameters based on the requirements
of algorithms instead of setting the universal values for the algorithms the
results would be very different.

B 56 Results summary - time

The summary of measurements is in the the Table 5.2 with the graphical
version of losses shown in Figure [5.12] and the accuracy shown in Figure [5.13]

Algorithm | Train loss Test loss Accuracy (%) Time (hod) ‘

Flux 0.084 0.155 88.476 2.54
Bulk Sync. 0.039 0.174 75.183 4.85
Downpour 0.148 0.355 84.754 2.73

EA sync. 0.054 0.154 86.667 2.83
EA async. 0.051 0.138 87.435 2.59

Table 5.2: Comparison of final model after 10.000 iterations on Ember dataset
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Figure 5.12: Loss in Time Figure 5.13: Accuracy in Time

When all algorithms are given the same time, e.g. 2 hours as in Figure [5.12

the asynchronous algorithms achieve similar results as state-of-the-art method
Flux.

At the end of the algorithms training Downpour and both Elastic Averaging
algorithms are comparable to Flux in regard to accuracy as well as in regard
to processing time.
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Chapter 6

Conclusion

The goal of this thesis was to implement state-of-the-art algorithms for dis-
tributed training of any machine learning algorithm with loss being expressed
as in Formula |2.2, where y; can be empty. The algorithms then were to be
compared on training hierarchical multiple instance models. Emphasis was
put on improving processing speed as well as convergence. As this may not be
possible the resulting model should be with minimal decrease in convergence.

We have started by setting main principles of data analysis with emphasis
on stochastic gradient descent and machine learning. Next we have described
the concurrency with emphasis on the distributed networks and then pointed
out the prior art in distributed stochastic gradient. The research in these
chapters explains the problems. After carefully selecting the algorithms we
have implemented the algorithms and tested them EMBER dataset.

The algorithms that were implemented and tested were all centralised
with each being in the different communication type. The centralised syn-
chronous algorithm - Bulk Synchronous, centralised asynchronous algorithm -
Downpour, centralised semi-synchronous algorithm - Synchronous Elastic Av-
eraging and centralised semi-asynchronous algorithm - Asynchronous Elastic
Averaging.

Two algorithms, synchronous decentralised algorithm - All-Reduce SGD
and semi-asynchronous decentralised algorithm - Push Gossiping, were imple-
mented but omitted from analysis due to the problems with convergence.
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6. Conclusion

All of the implemented algorithms shown promise, but need more exten-
sive parameter tuning to perform better. Some implemented algorithms,
Downpour and Asynchronous Elastic Averaging, have achieved almost linear
speed-up with small impact on convergence in comparison to state-of-the-art
implementation of Flux. Additional exploratory analysis shows that especially
Asynchronous Elastic Averaging may converge even faster.

The algorithms are created as part of the library for Julia ecosystem and
will be released soon after the release of the thesis.

. 6.1 Future work

By creating the open-source library this thesis opens possibility for speeding-
up the process of research based on machine learning methods using Gradient
Descent. This is not strictly limited to using only Julia programming language’
but to any language.

In this thesis we have created the library improving state-of-the-art run
times with room for improvements based on the standards of Julia projects.
Additional improvements in the future may include adding more methods
in this library, with algorithms using momentum being an example, or im-
plementing the automatic research of algorithm parameters for debugging
purposes. Other improvements for the library may be by creating more stable
environment using automatic building with test cases and documentation
with code base.

!The library may be used in any programming language as Julia programming language
is embeddable into another languages, like Python.
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6. Conclusion

Appendices
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