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1. STATE OF THE ART

This chapter of the thesis statement describesuhent situation of the studied problem. The
area my work is dealing with is theory of anticgegt behaviour and its applications usable for
Artificial Life (ALife). This area is still consided one of the so far unresolved topics of Art#ici
Intelligence.

Nature evolves in a continuous anticipatory fashamgeted at survival. Sometimes we humans
are aware of anticipation, as when we plan. Oftenare not aware of it, as when processes embedded
in our body and mind take place before we realir tfinality. We can take an example from any
sport or game which requires precise and fast loyement. For example in tennis the return of a
professional serve can be successful only throutitipatory mechanisms. Even very fast but
conscious reaction takes too long to process. \afitficipation we start the action even before the
event that would normally trigger this action occuCreativity in art and design are fired by
anticipation. Before the archer draws his bow hismdnhas already hit the target. Motivation
mechanisms in learning, the arts, and all type®séarch, are dominated by the underlying principle
that a future state controls the present actianediat some goal. The entire subject of prevention
entails anticipatory mechanisms. | could continu@maming all the areas of life where we can find a
trace of anticipatory principles. It is true that averwhelming part of every being’'s everyday
behaviour is based on the tacit employment of pte@ models.

1.1. Anticipation

There are several definitions and descriptionsntitgation, some of them are just broadening
the initial definition of Robert Rosen [1]. Thesefiditions are not in contradiction, they describe
anticipation from different points of view. Overethast few decades research in anticipation adeance
rapidly but not only in ALife domain. Experimentasychology research gradually started to accept
the notion of anticipations beginning with Tolmarsaggestion of “expectancies” [2] due to his
observation of latent learning in rats (learningemfvironmental structure despite the absence of
reinforcement). More recently an outcome devalmapimcedure [3has been employed that provides
definite evidence for anticipatory behaviour inraals. The most recent works that inspired me is thi
chapter were the works of Martin V. Butz [4], Ddribaibois [5] and Carlos Martinho [6].

I would like to point out that a significant workas done on the field of anticipation and there
were several accomplishments published. As one gbeafar all | will name a conference held each
two years and dedicated to anticipation named CamgpuAnticipatory Systems (CASYS). This
conference organized and chaired by Daniel Dubas heen held since 1998 and has become an
excellent opportunity for researches in this aceexchange opinion. | consider it to be an honbat t
my article was accepted and published on this cente in 2009 [7].

1.1.1. The Basics Of Anticipation

Basic definition of anticipatory systems was puisid in 1985 by the biocyberneticist Robert
Rosen in his book Anticipatory systems [1]. He dedi an anticipatory system as follows: System
containing a predictive model of itself and/or @svironment, which allows it to change state at an
instant in accord with the model's predictions paring to a latter instarit Rosen in his book was
inspired by his observation of live organisms, nigniiee ones with higher intelligence. Especially by
their ability to predict the future and make ad#ptes based on them. This ability of live beingswa
already discovered before. Rosen however utilizinig knowledge, created a theory which was
abstracted for various systems in the following wBgsen in his work exposed a recurring basic
pattern of causality and laws, arising initially physics and generalized over the years stating tha
“in any law governing a natural system, it is fadlden, to allow present changes of state to depend
upon future features{[1], page 9). This law is widely followed in tatbal sciences such as physics
or control theory. Past states are allowed (inesgstwith memory) but not the future states. Thig ma
seem like a denial of causality and thus it appéarse an attack on the ultimate basis on which
science itself rests, while as a matter of fait itot the case. If we consider the behaviour ©fstem
which contains a predictive model and which catizetithe predictions of its model to modify its
present behaviour. If we further suppose that tbeehcan approximate by its predictions the future
events with a high degree of accuracy then thisesyswill behave as if it was a true anticipatory
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system (i.e. a system of behaviour that dependsitone states). So we do not have the present state
available only its estimate, and this estimateosbased on the information about the future dtate

on information from past and current states. Thgesn will not violate our notions of causality,tbu
since we explicitly forbid present changes of stdtedepend on future states, we will be driven to
understand the behaviour of such a system in dyprgactive mode (i.e. one in which present change
of state depends only on present and past st&iege we claimed that the information we can derive
about future can be based only on present andip@smation we respected the causality. Let's
describe this in a more formal way to clarify theughts. Let us suppose that we are given a sy§tem
which is the system of interest. For the sake wipficity let us consider the®is a non-anticipatory
dynamic continuous system. We will associate amatiigamic systenM with systemS whereM is a
model of S We require thaSis parameterized in real time and ti\tis parameterized by a time
variable that goes quicker than that. In this whg, behaviour oM predicts the behaviour & By
looking at the state d¥l at timet, we get information about the state tBawill be in at some time
later thart. We shall now allowM andSto interact with each other. We shall suppose tthesystem

M is equipped with a set of effectoEs which allow it to operate either df itself, or on the
environmental inputs df and change the dynamical propertieSdfForM to be a consistent model,
the actions operated @should also be operated & Figure 1 represents such a system. If we put
this system into a single box, that box will appeaus to be an adaptive system in which prospectiv
future behaviours determine present changes @&. 3t& will call this system an anticipatory system.

Environmen l—

A

Figure 1 — Rosen’s Definition of an Anticipatory Sgtem.S is the system of interest; M is the model of §lipped with a
set of effectors E that changes the dynamical prdjees of S or its environmental inputs. For consistgy, these changes
are also reflected in M.

It may seem that anticipation is a matter just ioldgical systems and what more that it is
present only in simple animals. On the contrarycgdtion plays important role in all living andsal
non living systems. My work is focused on artificidie hence mostly concerned about the living
systems. One of the researchers that noticed jpaticly behaviour even in non living systems is
Daniel Dubois. The demonstration of the fundamepitaperty of anticipation in electromagnetism is
made on the well-established and well experimgntatrified Maxwell Equations. It is shown that
very famous physicists like Feynman, Wheeler anth®ithought about anticipatory solutions to
resolve big problems in theoretical physics. At dmend, many physical processes deal with
electromagnetism, and at the other hand, many dicdb systems deal also with electromagnetism,
like, for example, the nervous system, the brdme, lheart, etc... in living systems. Robert Rosen
argued that anticipation distinguishes the liviggtems from the non-living ones. Dubois shows that
physical systems deal with strong anticipation beeahe anticipation is fundamentally embedded in
these physical systems. Rosen’s anticipatory sysiemls with weak anticipation, because the
anticipation is based on a model of the systemthnsl is a model-based prediction and not a system-
based prediction [8].

1.1.2. Current Types of Anticipation

One of the contributions my work brings is the @ip¢ to unify and to complete the categories
of anticipation. In order to build this in lateragters, it is necessary to briefly describe theerur
state. This chapter was composed based on theafidfiartin Butz [4]. According Butz anticipations
are an important and interesting concept. They apfee play a major role in the coordination and
realization of adaptive behaviour. Looking ahead anting according to predictions, expectations,
and aims seems helpful in many circumstances. ¥ample, we say that we are in anticipation, we
are looking forward to events, we act goal-oriented prepare or get ready for expected events, etc.
Despite these important approaches, it is stildlyaunderstood why anticipatory mechanisms are
necessary, beneficial, or even mandatory in ourddvdt might be true that over all constructible
learning problems any learning mechanism will penfaas good, or as bad, as any other one, the
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psychological findings suggest that in natural emvinents and natural problems learning and acting
in an anticipatory fashion increases the chancgiofival. Thus, in the quest of designing competent
artificial animals, the so called animats, the mpowpation of anticipatory mechanisms seems
mandatory.

Without a conceptual understanding of what anticpabehaviour is referring to, scientific
progress towards more elaborate and competentpatticy behaviour systems is hard to achieve. The
term anticipation is often understood as a synofynprediction or expectation - the simple act of
predicting the future or expecting a future eveninsagining a future state or event. Anticipation
really is about the impact of a prediction or expgon on current behaviour. Thus, anticipation
means more than a simple look ahead into the fultive important characteristic of anticipation that
is often overlooked or misunderstood is the immdidhe look into the future on actual behaviour. We
do not only predict the future or expect a futuverg but we alter our behaviour - or our behavibura
biases and predispositions - according to this igtied or expectation. Here we are moving in
definition from anticipation towards anticipatorghaviour. This is the very core of ALife research,
the behaviour is the main area of interest. Butlinde the anticipatory behaviour as follows:
process, or behaviour, that does not only dependpast and present but also on predictions,
expectations, or beliefs about the futuhe.fact, any “intelligent” process can be undersitais
exhibiting some sort of anticipatory behaviourhattthe process, by its mere existence, prediatdtth
will work well in the future. This implicit anticigtory behaviour can be distinguished from explicit
anticipatory behaviour in which current explicitdte knowledge is incorporated in some behavioural
process. This defines two very intuitive categoaganticipation.

Implicitly anticipatory animat-type is the one in which no predictions tsbaver are made
about the future that might influence the animdi&havioural decision making. Sensors input,
possibly combined with internal state informatiag directly mapped onto an action decision. The
predictive model of the animat is empty or does infiience behavioural decision making in any
way. One of the reasons for this might be memomitditions. Moreover, there is no action
comparison, estimation of action benefit, or anlgeottype of prediction that might influence the
behavioural decision. In nature, even if a lifeniobehaves purely reactively, it still has implicit
anticipatory information in its genetic code in tthlie behavioural programs in the code are
(implicitly) anticipated to work in the offspring.

If an animat considers predictions of the posgialgoff of different actions to decide on which
action to execute, it may be termpdyoff anticipatory. In these animats, predictions estimate the
benefit of each possible action and bias actiorisaet making accordingly. No state predictions
influence action decision making. There is no eiplpredictive model however the learned
reinforcement values estimate action payoff. Tralhough the animat does not explicitly learn a
representation with which it knows the actual sdnsensequences of an action, it can compare
available action choices based on the payoff ptiedie and thus act payoff anticipatory.

While in payoff anticipations predictions are reded to payoff, insensory anticipations
predictions are unrestricted. However, sensorycgatiions do not influence the behaviour of an
animat directly but sensory processing is influeihhcéhe prediction of future states and thus the
prediction of future stimuli influence stimulus pessing. As will be shown later, comparison of the
expected value with the actual value can be usddcigs attention as well as to produEmotions
Expected sensory input might be processed fastar timexpected input or unexpected input with
certain properties (for example possible threaghinbe reacted to faster.

Maybe the most interesting group of anticipatiossthie one in which animat behaviour is
influenced by explicit future state representatigksin sensory anticipations, a predictive modasm
be available to the animat or it must be constdudby the animat. In difference to sensory
anticipations, howeveistate anticipations directly influence current behavioural decisionking.
This means that the predicted future state(s) tiradluences the actual action selection.

1.1.3. Strong and Weak Anticipation

This chapter was based on the work of Daniel Dufis[8]. In his work he deals with some
mathematical developments to model anticipatoryabdities in discrete and continuous systems. He
also noticed that even non-living systems withaoy possibility of construction of a model (like
electromagnetism and relativity transformations)ilkits some anticipatory behaviour. Dubois puts a
tentative definition of anticipatiorAn anticipatory system is a system for which thes@nt behaviour
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is based on past and/or present events but alstutbme events built from these past, present and
future events. Any anticipatory system can obegngsphysical systems, the Maupertuis least action
principle.

In view of explicitly mathematically defining sysits with anticipation, Dubois introduced the
concept of incursion, an inclusive or implicit region. An incursive system is a recursive systean th
takes into account future states for evolving. Som@inear incursive systems show several potential
future states, that he called hyperincursion. Adnyursive anticipatory system generates multiple
potential states at each time step and corresptindse-to-many relations. A selection parameter
must be defined to select a particular state amdhgse multiple potential states. Here we canyappl
criteria to select the best states from the paikstates. These multiple potential states collapsme
state (among these states) which becomes the atatalthe anticipation of a system can be based on
a model of its environment.

In this case, the notion of exo-anticipation isaduced, with the following definitiorAn exo-
anticipation is an anticipation made by a systerowbexternal systems. In this case, anticipation is
more related to predictions or expectatiombis defines a weak anticipation.

The anticipation of a system can be based on itsgtier than its environment. In this case, the
notion of endo-anticipation is introduced, with tlfelowing definition: An endo-anticipation is an
anticipation built by a system or embedded in atesysabout its own behavioutlhis is not a
predictive anticipation anymore but a built antatipn. In this case, this is a strong anticipation.

1.2.  Anticipatory Classifier System

One of the most successful approaches using Matkain theory is anticipatory modification
of Learning Classifier Syster(LCS) invented in 1975 by John Holland [10]. AICBs have in
common that they are rule-based systems able tomatically build the rule set they work ¢4].
LCSs are based on two fundamental mechanisn@enetic Algorithms(GAs) and Reinforced
Learning(RL). The anticipatory modification of these idled Anticipatory Classifier Syste(ACS).

ACS consists of a set of rules callgdssifierscombined with adaptive mechanisms in charge
of evolving the population of rules. Classical Reined Learning (RL) algorithms such as Q-learning
rely on an explicit enumeration of all the statéshe system. But, since they represent the state a
collection of a set of sensations callgttibutes ACSs do not need this explicit enumeration thaoks
a generalization property that will be describetkrlaon. This generalization property has been
recognized as the distinguishing feature of ACSh vaspect to the classical RL framework.

An LCS is composed of a population of classifidesach classifier is a triplec, a, p>
containing gCondition] part, anfAction] part, and an estimation of the expected accundit&@ard
that the agent can get if it fires this classifiehe c anda represent the condition and action of the
agent, angb the current estimate of the long term reward ti@tagent can expect from tiigs a)pair.
Formally, thgfCondition] part of classifiers is a list of tests. There asemany tests as attributes in the
problem description, each test being applied tpegific attribute. In the most common case wheee th
test specifies a value that an attribute must takehe [Condition] to match, the test is represented
just by this value. There exists a particular tdsfjoted as “#” and called “don’t care”, which mgan
that thelCondition] of the classifier will match whatever the valuetloé corresponding attribute. At a
more global level, thgCondition] part of a classifier matches if all its tests haldthe current
situation. In such a case, the classifier canrieel fiAfter describing the representation manipdldtg
LCSs, we must present their mechanisms. The gegeadlis to design an RL system, thus there will
be at its heart an action selection mechanismnglgn the value of all actions in different sitoas.
Furthermore, these systems are endowed with a @eradion capability which relies on classifier
population evolution mechanisms in order to reacatisfactory level of generality. | present both
categories of mechanisms in the next sections awitl $how afterward that families of systems can
be distinguished by the way they deal with intecaxst between these mechanisms. The set of
classifiers whos§Condition] part matches the current situation is called thatth-set” and denoted
[M] . Furthermore, we denote 4], the “action-set”, the set of classifiers[M] which advocate the
actiona that is actually chosen. Given the generalizafipyperty of classifiers, thECondition] part
of several classifiers can match at the same timgle they do not necessarily specify the same
action. Thus, LCSs must contain an action seleatieshanism which chooses the action executed
given the list of classifiers ifM] . In order to benefit from RL properties, this masism must use the



expected accumulated reward of each classifier,itbotust also include some trade-off between
exploration and exploitation.
Ensuring that each classifier reaches the ideatrgdination level is a crucial concern in LCSs.

The system must find a population which covers dtade space as compactly as possible, without
being detrimental to the optimality of behaviouheTmechanisms responsible for this property differ
from one system to the other, but they all relyamtding and deleting classifiers. In the case of
anticipation-based systems, more deterministic igdimation and specialization heuristics are being
used.

Input (Sensors)

[01010111 Reinforcement

[#10#0#1# [010] 05| Output (Effectors)
[#1010##1] [100] 0.6

[ [#10m#1#1] [001] 0.7 |_>

[10#0#101] [001] 0.1
[0#1010#0] [001] 0.8

Condition  Action Quality

Figure 2 — Learning Classifier System Example

Although they share a number of common characiesisACSs deviate from the classical
framework on one fundamental point. InsteadQdndition] — [Action] classifiers, they manipulate
[Condition] [Action] — [Effect] classifiers. ThgEffect] part represents the expected effect (next
state) of thdAction] part in all situations that match tf@ondition] part of the classifier. Such a set
of classifiers constitutes what is called in the IRérature a model of transitions. Since they hear
model of transitions, ACSs are an instance of mbdskd RL architecture. As a result, ACSs can be
seen as combining two crucial properties of RLayst First property is that they learn a model of
transitions, which endows them with anticipation ganning capabilities and speeds up the learning
process. The second is that they are endowed wgitnaralization property, which lets them build
much more compact models. The first design of AGS wmtroduced by Stolzmann [11]. ACS was
later extended by Butz to become AJ%2]. ACS use classical solutions to deal with the
exploration versus exploitation trade-off. The agnst chooses actions bringing more information
about the transitions that have not been tried gmotWihen, if the best actions are equivalent with
respect to the first criterion, it chooses actibringing more external reward, as any RL systensdoe
Finally, if the best actions are equivalent witbgect to the first and second criteria, it cho@s®®ns
that have not been tried for the longest time,sstwdandle non-stationary environments as effilsien
as possible. In order to obtain a model of trams#ias general, accurate and compact as possible,
ACSs generally rely on the combination of two hstics. A specialization heuristic is applied to
inaccurate classifiers and a generalization heéaristapplied to overspecialized classifiers. When
appropriate, the combination of both heuristicaultesin the convergence of the population to a
maximally general and accurate set of classifieéos.the specialization process, all ACSs rely an th
same idea. When a general classifier oscillatewd®t correct and incorrect predictions, it is too
general and must be specialized. [[Bondition] part must be modified so as to match only in
situations where its prediction is correct. ACSdamly chooses a # test and changes it into a
specialized test. The generalization process irmomplex. Usually in ACS a GA is used to replace
specific classifiers with more general ones.

1.3. Emotivector

Emotivector was proposed and described by Carladimfta in his dissertation thesis [6]. The
emotivector architecture is based on four main ddga) to be based on the software agent
architecture, (b) to not alter or interrupt thewfl@f the agent architecture, (c) to be transpayentl
addable or removable from the agent architectaieto(be usable in both symbolic and sub-symbolic
processing models. The architecture design builas/e the Russell and Norvig architecture [13],
which is an approach used in most of the desigmsadays where an agent perceives its environment
through its sensors (e.g. gnand acts upon that environment through effecters. eff). This basic
design is used even by me and my current archigecttiis typically composed of three phases,
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executed as a sequence or running in parallel.ir®eribat is providing the agent with percepts
translated by the sensors from the environmentatggaccording their capabilities. Processing that i
mapping the percepts and constructs into a seffegter actions and updating the current constructs
And as last step acting that is modifying the emwinent through the agent effector actions, within
their limitations. Graphical representation of Rallsblorvig architecture together with block
modification by Martinho is shown on Figure 3.

The approach that Martinho used was enrichingétahitecture by a semi-autonomous module
he called salience module. This will perform coivfe®e monitoring of the percepts flowing from the
sensors to the processing module as well as oattien commands flowing from the processing
module to the agent effectors. In more detail thiorimation flowing from the sensors to the
processing module of the agent is observed byalense module that computes its a-priori salience.
Each sensor (spsis associated with an emotivector (gmihat computes a context-free a-priori
salience for the signal and sends it alone witrstheal to the processing module.

Environment Environment

n" Layer n" Layer

L&
-
*
3
&
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! i ! i
| Sensors Effectors | | Sensors Effectors
snsi eff; snsi eff;

)
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A
|
1
1
1
1
|

| Processing |

Figure 3 - Russell and Norvig Architecture (left),Martinho’s Modification with Emotivector (right)

Isla and Blumberg [14] define salience as the “degto which an observation violates
expectation’s(x) = (1- c(x))/ ¢(x) . As noted by Martinho there seems to be no neeadotext to

estimate this a-priori salience. Salience coulgpddormed using only the changes in percept values
over time. The salience module is context-free leastes to the processing module the responsibility
of putting the salience in the context of the agamdl its environment. Of course, the processing
module can use this recommendation or ignore irating to its processing resource policies. So we
can conclude that to detect when the mismatch leetverir expectation and the percept value is
significant and, when it does, tag the percepidisrs, we don’t need context or interpretation.ai'h
the salience information reaches the processingufapdensations are appraised in the context of the
agent and its environment, and emotions may bergtkand expressed accordingly by our agent.
Please note that the evaluation is a context frestimeasures the mismatch between expectatidn an
value, in relation to a desired value. The codéhefinformation flowing through a sensor is usually
consistent, in the sense that it is the repeatexsunement of a specific aspect of the environmerd o
same scale over time. We define our universe afgmions as an n-dimensional vector space where n
one-dimensional vectors (or a n-dimensional vecwefine a perception in time. Each one-
dimensional vector is thus the perception of a ifiperspect of the environment at a certain moment
in time. Note that we do not associate any a-prégmmantics with the one-dimensional vector.
Additionally, to ensure that our mechanism can $edun a variety of situations, every aspect of the
world is reduced to a value in the normalized rar@e 1>. The normalization function may be
customized according to the characteristics of efrtension of perception. We would like to model
the fact that a same difference between two meamnts is more relevant near the agent than far
away from it. Depending on the situation we can specific modulation function to stress out
changes in particular interval of values like ip txample where closer changes are more relewant th
changes far from agent.

The definition of emotivector provided in Martinisoivork is as followsEmotivector is a one-
dimensional vector with a memory and mechanismgukis memory using an anticipatory affective
model to assert the salience of a new value. Thieipatory affective model generates an affective
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signal from the mismatch between sensed and peedistlues, providing some qualitative
information regarding the salience of the new valllge emotivector is used to generate the low-level
context-free attention and also emotion.

Architecture and computational details was desdridved presented in Martinho’s work and |
have presented my use and modification in [K5]. De@eral principle of the emotivector is the
following. Using the signal history of a sensore tbmotivector computes the next expected signal
value of the sensor. Then, by comparing the expentaith the actual sensor value the emotivecor i
evaluated for attention potential. Afterwards, assdion is generated. The combination of both
attentional and emotional salience is then fedhéoprocessing module to be used to support resource
management. The Martinho’s model of attention pregk in his thesis is inspired by Posner’s
exogenous and endogenous systems [15] and MidadsRabbit hypothesis [16]. This inspiration is
reflected in the two components that are used topce the emotivector salience. The exogenous
component, inspired in bottom-up, automatic reftertrol of attention, and emphasizing unexpected
values of a signal. The endogenous system, inspiréap-down, voluntary control of attention, and
emphasizing the closeness of a signal value teedgtsearched values.

2. AIMS OF THE DOCTORAL THESIS
2.1. Problem Statement

The problem that my work is focused on is #rgicipatory behaviour. Anticipation is often
seen as another word for prediction especialihaAttificial Life (ALife) area. | claim it to be much
more than that. It gives anothd@imensionto the decision process — the information aboetftture.

It is also a very elegant way to generate emotibrigd it difficult to categorize all the types of
anticipation | met with using the current categeridlso the topic ofvoluntary control of
anticipatory behaviour is in my opinion not well ppeed. | identified all this as a problem to be sdlv
in my work by a design of a complex but scalableh&ecture. Some questions that this work
addresses are mentioned below:

* What is anticipation?

e What is anticipatory behaviour?

* What are the types of anticipation?

* Various definitions and categories of anticipatéwa given, but what is the difference?
* What is the difference and similarities of reactaral anticipatory approach?

» Can anticipation be of any help or improvemenhim ¢xisting systems and how?

¢ What is the difference between anticipation andligte®n?

* Does anticipation necessarily need learning?

* How is anticipation linked to emotions?

* Is anticipation a single mechanism in the artifici@ature architecture?

2.2. Goals of the Thesis

The main goals of this thesis are stated belowrd bee four higher level goals, where some of
them are broken down to sub-goals:

1. Surveystate of the artin the field of anticipation, anticipatory behawioand the associated
fields, including technical (agent architectureti@at selection mechanism, artificial intelligence
and artificial life approaches) and non-technieah@tion, expectation, behaviour), closely related
to the researched topic.

2. Suggesbwn view onanticipation so that
a. the idea of anticipation playing role in more agpe@d behaviour control is visible,
b. the different anticipation approaches can be satisfily identified,
c. anticipation improves the behaviour in certainesrd,
d. levels of anticipation are explained in detail.
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3. Based on the described thealgsign and implement owrarchitecture so that
each identified layer is built and tested sepayatel

the layers are chained and the whole architecasted,

learning should be in-time and unsupervised,

the simulated environment is open,

it enables the generation of emotions as a refulting anticipation,
implementation of anticipatory behaviour bringsieain measurable terms.

~0o0 oW

4. Analyze the achievegksults and evaluate

the usability of the suggested approach,

the quality of achieved results,

the complexity of simulations and the effect ofwitagy complexity on the approach,
the comparison with other approaches.

coow

3. MY APPROACH TO SOLVING THE PROBLEM

This chapter presenthe core of my thesisand is devoted to details ofiy contribution
(working methods) to the field of anticipation irtificial life domain. One of my main contributions
as | see it is to propose a single architectureed@-factor anticipation. This term is my original
term that | introduced in this thesis the desigscdbed in this chapter is my original work. Each
“factor” of my architecture is described in thisagter.

What is not that obvious and sometimes even misaatcipation is not matter of one
mechanism in a living organism. Anticipation happ@m many different levels in one creature. The
works studying anticipation seems to overlook fait so far, focusing on the anticipatory princgle
mechanisms and their optimization. There was uradidynigreat progress in past years in theory and
applications of the anticipation. What | miss ire tdeployment of anticipation in Artificial Life
domain is to follow the nature’s example and usg&cgration principles in more design blocks.
Several researchers categorized the anticipati@ady. Even though | embrace the categorization of
anticipation Martin Butz did | was not fully safesfl with it. | missed there connection between the
types and the consciousness. In addition to th&tiley types | added the consciousness and thus
created 8 types of anticipation. This idea is theid of my theoretical contribution to the fieldyM
thinking here is that each algorithm is better idifferent way and by combining them and properly
selecting the right one | can improve the results.

Implicit Senzory Reward State

Unconscious

) O QO O

Figure 4 — The 8-Factor Anticipation

All the types are schematically shown on the Figur&/e can say that the complexity grows in the
picture from left to right and from bottom to top.

3.1.  Unconscious Implicit Anticipation

Unconscious implicit anticipation (UIA) concluddset behaviour that was imprinted in the
creature by nature or creator (in our case) andttizanot voluntarylUnder this we can understand the
very basic reactions with anticipation imprintediie design. Reactions and reactive behaviour$ itse
IS not anticipatory and in fact is very often usenl understood as exact opposite of anticipation. S
what exactly are reactions with anticipation? Wentd say that the reaction is associated with
prediction of next sensed value, state or rewahlge these are subject of the other anticipation
types. There classical view of implicit anticipatiovould be satisfied with the fact that it is the
prerequisites given to the system wither by thelewaluation or by the creative mind of architeetur
designer.
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In order to describe it we need to define a forsmalio approach this is systematic manner. At
this very basic level we have only the set of isplut and set of possible outpuf9. By this we
implicitly assume discrete values which we typigdihve in a virtual environment. Please also note
that we are not speaking about agent sensory inpuastions yet. The reason is that I'm trying to
generalize this description so it can be useddents’ internal blocks and not only for agent a®lh
The reaction base is typically in form of projeatib= O. The inference mechanism is very simple:

if any of the input matches the output is executdekre couple of possibilities from binary rulebése
ACS. On the contrary the anticipatory approach wdg to expect another input after the executed
action | = Ox | . It still might seem as nothing new one can saat #wverything was already

presented. We must realize here that on unconsaiplicit anticipation there is no mechanism to
modify this rulebase other than evolution. As wasdsabove it reflects only the non-learned
behaviour. The interesting question is if the saomle as here can be then created in some other
probably conscious level. The answer is yes theesae can be inferred by the consciousness of the
artificial creature but its execution takes lonpgath so it is less likely to be executed. We donesd

to solve creation of new or forgetting of obsolesées here because the rulebase is fixed and it is
subject of only minor evolutionary changes.

3.2. Conscious Implicit Anticipation

The combination of conscious implicit anticipati@@A) may seem illogical because as we said
above implicit anticipation is something imprintéd the creature by design. How can this be
consciously controlled is the right question and thoment. Here still everything depends on the
design but the results are available to the hitdhaals and also higher levels data such as desiatel
(converted to the desired value in the currenf)saep available as inputs. This means that hereame
chain the existing actions together in order t@iea new non-atomic action, which would have no
decision time in between and focus the attentiomillicontinue here with the formalism | started in
the previous chapter. We still have only the sahpéits | and set of possible outpés In previous
chapter we ended with anticipatory projection frioput to output and expected new input> O x |
. We explore this further here with two modificatsodescribed below.

My first suggestion to this is to add to the exp&oh also expected next action. This is
expected to improve the reaction time. In our fdisna we are now projecting the current input and
the output to current output, expected output aqmketed inputl xO= O? x | . Please note that in

the agent terminology | moved from the term outpudction.
Imagine the predator evasion scenario and imagingtey agents. One of them equipped with
standard prediction scheme£ O x | ) and second with the suggested modified one (

I xO= 0’ x1). Both prey-agents are in the vicinity of predatdrich will through the sensors result

in (input 1) the action of both is to flee (outp@). Even if the reaction process is fast it stiHea

some time to search through the rule base for ahmbty question is what will happen in case agent
will have the chance to take another action betaecalls the appropriate action from the rulease
Since there will be no action selected yet it nwait till it the next step. On the contrary if this
moment comes to my modified agent it can straiglatyeexecute the “prepared action”. This is
graphically demonstrated on the Figure 5.

Normal ) ) )
Situation
|1 2
Action Selection |Action Ready

/5i>>>3

Dangerous
Situation j Decided Actlon
/ { 4
Prepared Action Action Selection

Figure 5 — Action Selection without the Action Antcipation (top) and with Action Anticipation (bottom)
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At this point because it is conscious part we cdroduce my second suggestion. We do not
have the reward yet but we can have a rate of ehforgthe input value. For output values, because
they are typically in ALife a discreet values nofpressed by numbers, statistical measure such as
probability or likelihood can be measured. Thiam®ther parameter that can add value to the dacisio
process and help to choose the right action irctimneect moment. This describes the typical scenario
but in fact any combination in term of discrete aodtinuous in the input or output can occur. So we

are adding two new values thig and r, which | will call rateability (the combination aford rate

andprobability). This enriches the projectiohxO = O’ x | x J?. For example we have a proximity
sensor for exploring creature that provides onetigplleddistance

Let's have a rule to change direction when theadis® is lower than half a meter to avoid
collision. We have two actions available “move” ditukn in one direction by a given angle”. Let's
also assume that the previous action was to mea@lst. This simple example shows that even on a
very basic level the amount of information avaiaban vary.

1. The classical reactive approach
IF X THEN y wherex 1,y0O

Example: IRdistance< 0.5 THEN turn(90)

2. The classical anticipatory approach
IF Xx THEN y EXPECTz where x, zO |,ydO

Example: IFdistance< 0.5 THEN turn(90) EXPECTistance > 0.5

3. First suggested improvement — action anticipation
IF x AND
THEN y EXPECTz AND EXPECT_ACTION b wherex, zO |,y,a,b00O

Example: IFdistance< 0.5
THEN turn(90) EXPECTistance > 0.’AND EXPECT_ACTION move

4. Second suggested improvement — rateability evaloati

IF x AND
THEN y EXPECTz AND EXPECT_ACTION b
WITH <riro> where x z[0 1,y,a,b0O,r,,r, 00

Example: IFdistance< 0.5 AND
THEN turn(90) EXPECTistance > 0.’AND EXPECT_ACTION move
WITH <0.1,0.6>

The approach that | find fit for this purpose isativector described in 1.3 and only the model
of attention since the second part the model oftemaeeds the information about reward too. This
determines this level for attention selection. Tinisdel does not have thateability factor, but this
can be added to the emotivector theory. The fiff¢rénce is that emotivector does not include the
output (action) value estimation and evaluatiomc8iactions are usually not expresses in the real
numbers but as worded abstraction, it would be wenyplicated to normalize them and calculate
differences. It is not even required, the only ghihat is required is to have an expected outuedt
(in other words) the prepared action. As mentiotiésl estimation will be based on previous action

therefored, = a,. The other difference is thateability evaluation. For input value it is simple, the
speed of change (velocity) for discrete valuesalsudated as a difference= Ax/4t in one step we
calculate the velocity = Ax = x,_, —x, =1, . However | will argue that there is a better measf how

the object is interesting and that is the saliesmaputed by the emotivector so we will use it ingte
of simple change speed = salience. For output rateability will be counted as freqoerof

occurrence of the output across the whole actipn$/N.
The model of attention is implemented as followsing its history at timé-1, the emotivector
estimates a value for next tiniéx,) and predicts that its value will change Ay = X, —x,_,. At time

t, a new value is senséd), and a variatiom\x, = x, — X,_, is actually verified. The newly sensed value
triggers the computation of the emotivector compdsieThe exogenous component at tin(EXQ),
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is based on the estimation error and reflects tirciple that the least expected is more likely to
attract the attentiofEXQ is computed as follow&XQ =|x —X|.

If the emotivector has no associated desired valigeexogenous component will be the only
factor contributing for the emotivector salienceowgver, if there is a desired valua)( then the
endogenous component of the emotivector is alggdred by the newly sensed value. Whenever a
desired value is present within the emotivectottimie t, the endogenous componei@ND,), is

computed. It is a function of the distance of teesed value to the desired val(ss,) and of the
estimated distance of the expected value to theedesalue (AQ). END, is computed as follows

END, = AS, —As, where As =|X[ —dt| and AS =|X —dt|. Together, the exogenous and endogenous
components define an a-priory salience for the amctor. This salience can computed by adding the
absolute value of both componentssaience = EXQ, + |ENDy. Of course, other emotivectors are
being evaluated at the same time, each one witbwts salience computed based on the described
process.

3.3.  Unconscious Sensory Anticipation

Moving on to the sensory anticipation on the uncamss level (USeA) concludes all the
sensory input gathering, pre-processing and diairig. Basically here we can meet all the funtdio
that cannot be voluntarily influenced. In broademse by this we can simulate the situation wheze th
input magnitude is so huge that it cannot be psamball by the conscious processes. This informatio
is collected, processed, stored or disregardeddbasdhe attention and other factors. In my work |
will not go that far to implement this in full sce@nd | will stay just with the input gathering gme-
processing. In anticipation we talk all the timeoabsome estimated future value but less we speak
about the means how to get this value. In mostémphtation very basic approaches such as the no-
change rule are used. However statistics providegda variety of very powerful and complex
methods to estimate the future values based otramsbiong history data. In my opinion these have
place exactly in this part. For anticipation pugdghey are just tools that present us with the
estimated value that we can in other levels usdatiaer process.

The second function that we sometimes requireetaigser to the animal world is filtering the
information in order to reduce the information v&ko more less informative data can be processed at
the same time. Let me demonstrate on an examplelwhean by this. We can take again our robot.
The robot has some hardware limitations in termslaif size it can process. So it is in our best
interest to give it more accurate data about thectd it has focus on (we already know where the
focus is from the previous level) and other objatdata can be reduced to some approximation. Let
still continue with the distance measure but timetthe distance is measured in four directionshén
direction we are close to the wall we would benegéed in the number, how close are we. In other
directions the information if the distance is shonedium or long would suffice. Of cause one can
object that in narrow spaces we would need detailfmimation in all the directions in worst case
scenario. Yes that is correct and that is why it tege then more than one time unit to processldte
and the robot would slow down.

Here we meet first possible conflict of the leviélare want to combine them together. For the
focus attention mentioned in the previous chapterwould need the exact data to measure the
changes and decide about the object we want tefocuut here | hid this data in some intervals. We
have two resolutions to this situation, leave ittés and accept the fact that objects can baeérfdcus
only if the cross borders of the intervals andhiyt are close. This variant does not seem to bring
value in certain sense it would impede the previthas factors significantly. Even if it is more
probable to have closer object in focus than thihén one we still would want our agent to be dble
focus even to object in long distance if they arteresting enough so we need another solution. The
second solution is to bypass this filtering foeation focus. That would solve our problem withusc
but neglect the reason why we used the filteringhi® does not seem to be optimal as well. The
solution is at hand, the sensors alone have the datl these are being pre-processed by the
unconscious layers, so these can have access fudltiidormation and present only results to fiithv
the above scheme of a limited data size that cgdissed at one time.

For the implementation | continued using Martinheimotivector and the suggested simple
predictor. In this simple predictor the predictioh the next value is the weighted sum of two
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parameters, the previous predictiépn, and the sensed valdg Both compete for influence in the
computation of the new predictiaq . In a certain way, the weight, accounts for the certainty of the
system in its previous prediction. When there islasired value, the exogenous componeXg is
used for the value oy, =|x, - %_,| = EXQ and the prediction is theR = X_, 1-w,) +x W, . When
there is a desired value in the emotivector thenlag rate is set to the intensity of the current
sensation associated with #8&ID, . As such, the change af, (Aw,) at each step is computed as

Aw, = & Tx, ~ %) W, whereg, =[END.

3.4. Conscious Sensory Anticipation

As in every chapter | will discuss first what | wrdtand under this category and support it by
examples. We are on tlednscious sensory anticipatidSeA) level at the moment, so we have
access to the sensor data and from the previoakdgen to the estimate of future data.

What else would we need at the sensory level? Taerestill many things that would be very
helpful for the artificial creature to derive thabuld require some higher level processing thah jus
having several expected values for each sensoogfdnting a rabbit does not need to sense the hare
continuously. If the hare, for example, disappdeisind a bush the dog predicts the future location
the hare by anticipating where it is going to tumnext and continues its hunt in this directiohisT
behaviour described below needs little bit morenthgoure sensory input. It requires recognition of
the objects (rabbit, bush) and making projecticna sensory data that cannot be directly measured a
the moment by sensors. Also some knowledge abeutahbit and the environment has come into
play. This means that we would need some alreamhgdtdata to be recalled from the memory and
associated with the recognized objects. As we @& the situation is complicated and requires
mechanisms that | did not described so far. Ithgiaus that model of some kind would be very
helpful at this level. The solution to this is tlve¢ are on conscious part of the architecture hed t
consciousness has access to the memory, plange &ctowledge etc... This knowledge is shared
across all my anticipatory levels. This means thated to introduce a shared part for the conscious
levels that they can either utilize or contribue It is schematically shown on Figure 6. For thekl
of better expression | will call inemory. This is only a logical design in the physicaligasof the
whole architecture several components will usertiin memory that is not shared or use this shared
memory. With the use of memory the sensory antimpacan be used now in our example to predict
even more complex events that just sensory inputam then abstract objects and predicts future
sensory input for these objects. We are still angénsory anticipatory level so we cannot derivte ye
any other observations than future sensory ingtitling the memory, building models and beliefs,
planning and other cognitive tasks, will be subdurther levels.

Memory )

Y Y Y

vneonsdous () () () ()

Implicit Senzory Reward State
Figure 6 — Shared Media for Conscious Factorforiginal drawing}

Now | will get more in details about how to implemé¢his. One of the suitable approaches was
suggested by Isla and Blumberg in their work [T Probabilistic Occupancy Map (POM). This is
simple yet efficient approach to track objects ewdren they are not visible (hidden behind another
objects) and estimate the probable position. badased on separating the environment to hexagons
(also called nodes) and assigning each of theragoh object the probability of its presence ifiitis
probability is diffused using simple isotropic difion

Pt =a-Npim+2 Y ) .

n'Oneighborgn)
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where A is a diffusion constant in the range [0,1] apn) is the probability of the nodeat timet
to reflect the last motion pattern of the obserebjict. The diffusion constant can be modified

A=A+ ma{o,%j 2

where V is the velocity vector|, is the position offset between the current nod# the node’s-th
neighbour, and), is the diffusion rate along thieth connection. A, is a constant diffusion rate,

ensuring that some probability is diffused to evegighbour, even if that neighbour does not ligha
direction of the velocity vector. One of the maintributions of this work is the fact that thedé
can support each other. In the USeA | implementedte sensors several estimators of the future
values. These can be used instead of using theothethaltering the diffusion constant to aid the
algorithm. The formula for diffusion constant helpdy to propagate the probability in the map ia th
right direction and to decrease it for more distaodes. But we can use estimators to aid this psoce
and provide estimated position based on the histbngeasured values.

3.5.  Unconscious Reward Anticipation

We are now finally approaching the area that alnatisturrent anticipation behaviour designs
operates with (sometimes with combination with lol@vels in the sense of my description) the
unconscious reward anticipatiofURA). The reason is at hand, the reward or be#aid
reinforcement to include also punishment is a pawevay to learning. Reinforcements together with
the expectations (anticipation) also serve to gegregmotions. My contribution to this area is tgpuar
about the categorization from point of consciousrtesfit this into my framework and to select the
appropriate approach to implement it. As in evearyel of design | will also introduce my own
improvements to the design.

The generation of emotion is in general achievewutph comparison of the expected
reinforcement with the received reinforcement. Tikig basic principle used in most of the current
works. The absolute value of the difference camedthe strength of the emotion. Multiple emotions
such as happiness, surprise, disappointment, dtisiy sadness etc... can be generated. This means
that without the algorithm to verify the expectatiagainst the real reinforcement, also the set of
emotions needs to be defined or in more general ttasset of rules for emotions and their genanatio
My first contribution to this level is in definition of three main enwmti elements to considéne
reinforcer (generated by received reward or punesitin expectation difference (generated by
comparing the expected and received reward) andufhmise (evaluates the expected versus
real valuelWe can normalize each of these to an intf@al] and then draw aemotion cubewith
these values on each of the axis Figure 7.

A /1
Expectation Surprise
difference
»
>
Punishiment Reward
Neutral
K v

Figure 7 — The Emotion Cube Reward/punishment on x axis, expectation differenaeyaxis and surprise on the z axis

Adding names of all the emotions to the cube wanltke it difficult to read. The Table 1
below gives the mapping of the emotions and costaig own definition of the combination of the
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emotions. The cells of the table maps to the cslthea intensity of each emotion grow. The intensity
of the final emotional state is created by supétiposof the intensity of the three parts of ematio
Their intensity is given for reward and punishmiytthe amount of the reward/punishment received
and for the surprise by the distance of the expectdue from the observed value. As | mentioned
already above, a complex creature pursues mors gbahce and hence the creature also has multiple
reinforcement (reward/punishment) expectations. Timal emotional state is generated by a
superposition of all the current emotions.

The described approach to emotion uses very simm¢hematical approach. The only
complexity is the superposition and evaluation lid emotion to be generated from the emotional
state. There is a value observed by the agent’s sensors and its expealad %. This value can be
connected with reinforcement. | defimeas the reinforcement that was actually receivetifathe as
the reinforcement expected. The difference betwegrected and received reinforcement will be
denoted ad\r . The surprise factor iAs.

r=r X=X

Ar = A As= A 3
max(r|,|]) max(x, |X)
More reward received Received as expected More punishment
received
Reward expected Joy + Surprise (Pride) Joy Sadness + Surprise
(Suffering)
Negligible Joy + Surprise | Neutral Sadness + Surprise
(Happiness) (Disappointment)
Punishment expected Joy + Surprise (Relief) Sadness Sadness + Surprise
(Anger)

Table 1 — My Designed Emotion Mapping on the Nine $sation Model

All these values need to be normalized in orddse@omparable and projectable to the cube. |
use both the actual observed value and the assdaiedvard in order to be able to capture situations
where there is small increase in reward/punishmertstill a significant difference between expecte
value and the actual value leading to higher vafusurprise.

The evaluation of final emotional state is donen@ntioned above by superposition of the
partial emotions. The resulting vector depictsghe of all the emotions and its position in theeub
then dictates the final emotional state. Therenisttzer aspect to emotion that | want to captuneyn
work as well. Usually in simulations the emotioririeffect until it is changed by another emotitm.

a simulated world that has many agents and objaidss a good approximation. However what if
there is no reinforcement for a longer period ofetj the emotion will not definitely stay the whole
time with the same intensity (i.e. the emotion fsiey decreases over time). This is another additio
made to the emotion approach implemented. Eachiemibiat has occurred is counted in, but it loses
intensity with each time step. This way even ifréhes a bigger reward received followed by minor
punishment, the emotional state will still favohe toutweighing contribution of the reward, buthét
punishment comes few steps later, where the japhefreward should wear off, if can influence the
emotional state.

3.6. Conscious Reward Anticipation

On the contrary to the previous chapter, on thescions level there is the advantage of the
consciousness shared media so the possibilitiemach wider. At this level we are finally reaching
full capabilities of the current architectures, plmy design has two additional levels above this on
thus leaving space for further advancements.

At this stage we are looking for framework that keowith reward, and is able of working with
the observations and gained knowledge includingtitre, modifying and deletion. We need to keep
in mind that these might serve for other conscileugls to work with and hence they need to be
compatible or abstract enough so all levels caretstdnd them. This also means that the system
should be open enough in terms of inputs it reguired outputs it provides co | can easily integitate
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in the complex architecture. In my opinion ACS @eal algorithm for the conscious reward
anticipation due to its generalization and spezadibn properties. In my implementation | selected
one of the basic ones that gave the idea to otleeithe work of Stolzmann [11].

3.7. Unconscious State Anticipation

This is the last of unconscious levels at the séime the most sophisticated one and most
complex one. This level has a similar problem ® ¢bnscious implicit anticipation. The combination
itself seems at the first sight confusing. Howeltas important part of the architecture and has it
meaning. All the state creations manipulations, estiimation of next states that are not brought to
consciousness right away or at all have place I@me.example is the internal state of the creattre.
is monitored through internal sensors, it is regudaand working without external actions needed but
some unusual states should be reported to the icossievels. The motivation was taken from the
nature as always. As long as all the internal \emare within the certain boundaries there inewd
to alert consciousness Once some of them dropscageds the threshold and external action is
required to get it back within the safe range (gpeis for example low — i.e. hunger). The
consciousness controlled action is needed as thatisn needs to be evaluated and proper actions
executed in order to address the situation. Sautifecial creature internal state can be monitozed
partially controlled from this level. Second corgition is if models of other agents or environment
can be created on the unconscious level. | cark thirone possibility — latent learning. It is syrel
subject for discussion if the latent learning iggered consciously — learning something “justase’
we will need it sometime. But | would here say tiais not. My argument will be based on the
available storage space and processing speecnitsseery unlikely to create models and statesef th
whole environments and store them for a long temththen for every new goal going through them if
they can be used or not. More likely the modelscaeated subconsciously in the short term memory
and when the proper reinforcer appears, and thehwgroven useful then it is kept in the conssiou
long term memory. This scenario seems to be moaiieiegft and reasonable from the resource
optimization point of view unfortunately I'm not ane of a nature experiment to support my theory.
Nevertheless I'm going to follow that theory in mvgrk.

What exactly is anticipatory about keeping therm&é state and latent learning? | will start from
latent learning because the answer is straightfoiwereation of knowledge and maps about the
situations we are going through and storing thetitigates that they might be useful in the futi8e.
latent learning is anticipatory in its very natuk®ith the internal state it is not that easy as the
principle seems more or less reactive (value dtopsertain level — alert is triggered). But theerat
internal values decrease is not same under diffariecumstance (more energy is consumed when
running than when exploring etc...). So anticipatamgnitors using the information about current
actions and observed internal values behaviour dvbelp to optimize the system and bring it again
from reactive to anticipatory.

For the implementation of this level, the ACS fravoek described already in previous section
can be used. Instead of creating an environmergplimits explicit representation (even if thaalso
possible). I've decided to capture the latent kmmlgk in terms of the ACS rule base. The advantage
is, that my architecture has support for ACS alydawild in and as such can work with it. Another
such advantage is that degradation over time dfi $gmowledge representation is then trivial and
means removal of random classifier from the rulsebd he disadvantage is that the next level than
would not be able to use for example planning diyeon such knowledge representation. | have
decided to stay with the ACS latent knowledge regnéation in my work for this level.

3.8. Conscious State Anticipation

The most complex and therefore the most intereséiopr of my architecture is conscious state
anticipation. Basically all the classical Al appechas can find their place here starting from state
space search through different methods of plantiorgexample based on Markov decision chains) up
to the reasoning about others and self. These tgglcally require more time to process. This can b
imagined as a state of the agent where there wgent internal need (food, sleep, etc..) and #iso
agent external goals are satisfied. In that caseagfent can select the action to be to build, vevie
updated or evaluate the model of its own statef others. This type of meta reasoning case stiteha
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anticipatory basis. In my work | focused on theesinbnnection of several levels together connecyed b
memory as described above.

Working on the previous two levels where | used AI@S algorithm | noticed and pointed out
several weak spots of the approach. Thanks to tlebapilistic approach and low degree of
specialization of the newly created classifiers biehaviour even after long learning cycle is still
random. While this greatly promotes the environnmexgloration it lacks the deterministic use of the
gained knowledge. In my design the agent createslg@lato the rulebase of the ACS a map of the
environment in the memory. This map is howeverttighthe ACS very closely as is it created by the
ACS exploration phase and is composed of the agipécactions successfully executed. In a dynamic
environment the applicable actions can change, thissmap needs to be able to adapt to these
changes. The second modification is a priority gueithe goals. This queue has multiple levels and
priorities as we have a planning (deliberative apph), exploration (reactive approach) and internal
state (hysteretic approach) competing for acti®hsase note that this is a simplified situationmiy
architecture there will be up to 8 competing layarthe priority queue.

The last maodification is the actual planning apeta The planning is done on the map of the
environment created through the discovery of thérenment. This means that the agent is not able to
plan action that has not yet been applied as thidrée no knowledge in the agent map and rule base
about such action. This fact helps to balance tipioeation and the planning phase. The state sigace
then created by a position and the applicable asti8uch state space can be searched for goal state
by different algorithms from depth or breadth stspp@ce search, throudtt up to approaches based
on Markov decision chains such as dynamic progrargnmichose thé* algorithm.

4. RESULTS

For ALife in most cases simulations in the virtwavironment are the method how to test
theories and compare effectiveness of results wfitlers. | have conducted my experiments in the
REPAST simulation tool [17]. The presented simolatscenarios are intentionally made as simple as
possible to clearly demonstrate and articulatduhetionality.

4.1. Unconscious Implicit Anticipation

The setup of the experiment is placing a robotrfggato a world with several objects. There
are walls obstructing way and the beverage whiehabent has to reach. The goal for the agent
architecture is to reach the goal in effective neanithere are three layouts of the environment, one
without obstacles, and two containing differentetyf obstacles. In each simulation there are away
two agents, each trying to reach different goahtion. This experiment was designed to show in
practical sense the meaning and differences inntpécit anticipation and | understand it. The getu
of this experiment counts two instances of an agaiht similar sensors, effectors and action sebecti
mechanism. Each agent has a “proximity sensor” hef 8-neighbourhood. It gives the agent
information about presence of objects. In ordegrisure agents follow goals, one agent is thirsty an
goes to water and second agent is hungry and ssafehfood. Both agents for the sake of simplicity
know the location of the object they are searcliorg The task is to get there. To complete the task
the agents have a set of nine possible actionsherse is movement in all possible 8 directions and
“do nothing” action. In each scenario the agengiieen a set of rules that maps the inputs to the
outputs. In the first experiment the agents moaeslomly, the rule base has just one rule thattiedls
agent to stop when the food is found. There iselifinticipation in this scenario. In the second
experiment reactive behaviour was implemented thighimplicit anticipation of “right angles” which
means that when meeting the wall rotation by 90 ekgwill help to avoid it. The rulebase here has
the rule from previous agent plus 8 other rules tfinses appropriate action to the met walls. In the
third experiment, | enriched the reaction base wifferent mechanism for navigating in space with
obstacles which is called “wall following”. This s that we have even larger reaction base as more
situations of wall presence in the base is needleddcessfully navigate along the wall.

All these agents were tested in three differenhades where first was without obstacles,
second contained only straight obstacles and tiné tontained also curved obstacles. In the first
scenario it takes long until the agent randomlyrties on the food regardless the obstacles (please
note here that some single cell organisms usenbthod of navigation). In the second experiment the
3rd scenario is not achievable as the rules dalhmt the agent to cope with the obstacle. In ds |
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experiment we can see that it is quantitativelydsghan the previous one, not only it can reaeh th
goal in fewer steps, it also can complete the thgenario. The Table 2 shows the number of steps
necessary to complete the scenario.

4.2.

Experiment Scenario 1 Scenario 2 Scenario 3
(a) Rand Rand Rand
(b) 26 38 oo
(c) 26 35 38

Table 2 — Results of the Experiment with Unconsciousnplicit Anticipation

Conscious Implicit Anticipation

The aim is to test and prove the emotivector dttarfocus features. For this purpose | designed
scenario including several types of agents. Thelgice agent shown aswblf’ is observing the
environment and its task is to pick a target oériest based on their salience, there are thredsatgen
be observed. Twopiglets agents both with similar characteristics, excéy@ move pattern, while
one of them uses a random move method to navigedagh the environment, the second one moves
in a constant cyclic pattern. The last agent dediets flower’ is a static agent. It was confirmed by
this experiment that the moving agents are moreresting for the observing agent than the static
ones, which was expected based on the fact thativerotor is sensitive to the observed value change
in time. This reveals the strong and weak sides. tRe attention focus only the changes in the
environment are relevant on this level. This iseptable on the basic “reactive” level.

One of my suggested improvements to the emotiveagpproach was introduction of the
rateability. In the second experiment | demonstrated thatait ©e beneficial and lead to
improvement. | used the same setup as in thedkgeriment but | added one more agent this time
with the enhanced emotivector. In order to mainth|m same conditions | kept both agents on the
same position. For visualization purposes | show ohthe agents above the other and depicted the
additional agent as abéar’. In this experiment Icompared the performance of emotivector
improved by my own designbelow referred to as “enhanced emotivector” agaims Martinho’s
original version of emotivector below referred to“atandard emotivector”.

Due to the random movement of one of the agentthisr example | evaluated the results
statistically. | simulated the change in attentawer 1000 steps of the simulation, and repeated the
same simulation 3 times.

Experiment Enhanced Standard Stability
Emotivector Emotivector Increase

1 12.7% 14.9% 2.2%

2 11.6% 13.3% 1.7%

3 11.0% 14.3% 3.3%

Table 3 — Enhanced Emotivector Test
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Figure 8 — Standard (left) and Enhanced (right) Ematector Attention

The results are summarized in the Table 3 aboveatswda fifty steps sample is shown on the

two figures below. In each of the simulations myamced emotivector exhibited betstability of
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attention (in the experiments conducted in average by 2.@#i)e still being able to change the
attention focus if the other moving object is mimteresting.

The Figure 8 show the difference in both approachédsle my approach exhibits stable
attention focus areas (shown above), the standandtiwector approach shows unnecessary
oscillations between the objects of attention.

4.3. Unconscious Sensory Anticipation

The main experiment here is to test the estimatodsevaluate their qualities. In the referenced
work [6] there are some conclusions about themnbue of these is shown or proven. The predictors
tested are referenced by the abbreviati®®msple Predictor(SP) uses the equations described in 3.3,
Limited Simple Predicto(LSP) uses the same equation, but also keepsthistahe input values
calculates the mean and the deviation and lim@gptiediction if outside the statistical range aastly/
Desired Limited Simple PredictdDLSP) uses also the desired value. | decidethisrexperiment to
set the desired value to 0.6.

Both the predicted value and also the predictooreof all 3 estimators are shown on the
following Figure 9. It is clearly visible that theSP and the DLSP are nearly identical.

Predictor Testing - Data Set nr. 1 Predictor Testing - Data Setnr. 1
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Figure 9 — Results of the Predictor Testing Predicted Value (left) and Prediction Error (right)roData Set nr. 1

There are several conclusions that can be drawn fhe results above. Ti&mple Predictor
has poor results. It is not shown in the table abbwut the convergence speed was very slow. In this
experiment the convergence to value 0.1 + 0.01 8&asteps. The other two predictors showed
comparably better performance. As can be seen aheyeare both able to converge in 5 steps. In
situation of oscillating values they are not abladapt and they oscillate too.

4.4. Conscious Sensory Anticipation

This level has only one experiment and that isdahject persistence scenario. This enables the
agent to be able to estimate the position of amadlgent which is hidden behind obstacle and thus
cannot be directly perceived by the sensors. Thper@xent compares the original work with my
suggested modifications. For this experiment | usiedlar setup to the one used in 4.2. | still kapt
stationary observing agent. This is purely not tind another variable into the experiment. The
algorithm works even if the observing agent is mgviThe observer shown again asolf’ is trying
to follow up the movement of a moving agent showripglet’ similarly to the previous experiment.
This scenario contains also a wall which hidesdbserved agenpiglet) and thus renders is hidden
for the observing agent. When the moving agentpgisars the probabilistic occupancy map is
initialized and probabilities are diffused eachpste estimate the position based on the known last
position speed vector. In one experiment the pritibab are diffused using the modification of the
diffusion constant. In another my suggested maalifie with also the position estimation was used.

The original approach had problems to keep propagdhe probability in the right direction
and in some experiments tend to follow up in tis ¢tdoserved direction and speed but after few steps
the probabilities were so dispersed that the estidhgosition stopped being propagated in this
direction. In my approach the estimator was usedstimate the next position based on the same
values but also the observed history values. How#évie position has only a certain degree of
reliability, for this | used the probabilistic oqeancy map to reflect the fact that other positioest to
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this have also some probabilities of occurrencéhefobserved agent because the agent could have
changed the direction of the movement or even stpp

Figure 10 — Object Persistence - 3D Visualizationf ¢he Detail of Agent Pig) Starting to be Hidden for the Observer
(Wolf) Behind a Wall (left) and a Probabilistic Occupang Map created (right)

Figure 10 shows the exact moment when the ageaibasit to disappear behind an obstacle
(wall) and it also shows the generated occupancy maprewtihe height of a rectangular prism
represents the probability of the occupancy of plugition by the hidden agent.

4.5. Unconscious Reward Anticipation

This level focuses on emotion generation and swg#ipn. For this the scenario with the
predators Wolf’” and prey piglet’) was still used. The experiments are focusedroat®n generation
and to confirm that the correct emotions are gdadrin the correct situation. Emoticons are the
widely accepted for of expressing the emotion &inaulation.

| still have an agentwolf’ observing another agenpiglet’ and estimating its position after it
disappears behind the wolf. Once the observed agevisible again and the observing agent can
verify his expectation an emotion can be generatkss, the intensity of the emotion is evaluated and
the final emotional state generated. For this psgpthe behaviour of the observing agent was
modified and once it is hidden, it can decide tm tlack and continue its motion counter clockwise,
which will lead to surprise in the observing ageltte Figure 11 and show two different situations
with either confirmed or unconfirmed expectationd ¢he corresponding emotion.

Figure 11 — Emotion Generation - 3D Visualization bthe Agent (Pig) Reappearing Where Expected (left) and where
NOT expected (right) by the Observer \\Volf) and the Positive (left) or Negative (right) Emotioa Generation

4.6. Conscious Reward Anticipation

| have copied the scenario from work of Kadlle[18] in order to compare my results and to
show strengths and weaknesses of my approachisisdénario the main actor is a Taxi agent, shown
as a Yellow vari (or dot). This agent’s goal is to pickup cliergeats shown as ae¢d womai (blue
triangle) and take them to their destination, thsimtd destination is shown aswahite house; the
rest of the houses are shown brdwn’ (stars). The client agent is generated at randdervals (the
probability of client appearance is 1/6). At a tithere can be only one client agent until the tlien
delivered to the final destination. The scenariotaims also afflling station” (red cross) as the taxi
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agent consumes energy by moving and transportiegtchgents. Both the 2D and 3D view of the
scenario is shown on Figure 12.

Rulebase Convergence
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Figure 12 — The Taxi Problem Scenario Layout in 2D Vi (left) and 3D View (right) and The Convergence Spesl of
the ACS (middle)

This experiment shows that the ACS approach isldapaf learning to navigate in multi-goal
scenario. However it also shown that the ACS apgr@done has many weaknesses. First of all the
learning phase greatly depends on the random bmiravi happens quite often that in the early phase
a certain element of behaviour sucHithsip or customepick upis not learned. Then in a later phase
due to better strength of the already learned hebathese elements have smaller chance of being
selected and strength improved. | have analyzealdgrithm, and | believe the root cause is in the
new rule generation step. The rules that are getketay this approach are still not specific enough
and do not allow to unlearn conditions under witicd action has no effect. This can partially be
remediated by deleting rules however that step dagshelp to create more specific rules. The
convergence speed of the learning phase showngame12 is quite slow. As is shown on the graph
below it can be also misleading. Stopping the liearprocess after 5000 steps would suggest a good
convergence, but running the simulation for lonty@e revealed that there were additional 100 rule
base change attempts in the next 7000 steps. Tétgase in the scenario fully converged after 12000
steps. It is due to say that thanks to the higmtoti#-symbols, it can even happen that a ruleitha
connected with drop off or pick up action is detetend then it can never be executed again. This
shows another weakness of the ACS approach thehl to highlight. It can be concluded that ACS
alone is not the optimal driving mechanism, andaiber limited. While it can help to build latent
knowledge as will be shown below, it should noubked as the only decision making mechanism. But
as a part of my architecture it serves its pur@ssene of the eight levels.

4.7. Unconscious State Anticipation

This level focuses on latent learning. The expenimeused similar setup to Stolzmann, and
even he took the experiment from an ethology exaraprat learning. In this scenario an agent (in my
implementation depicted @gglet) is placed in a simple E shaped maze. The ageants st the middle,
and has a choice to go left or to go right. The lsoxks of each branch have different cololack and
white The agent is allowed a free run in the maze @aering phase. After a certain period the agent
is placed in the left sidélack) and is presented with reward@d. Then the agent is gain placed in
the starting point. If the latent learning is caotréhe agent should be able to run straight tolefte
black box with anticipation of a reward there. Boenario is shown on a Figure 13 where the agent in
the starting position is depicted as red circle.

Figure 13 — Latent Learning Scenario Layout in 2D view(left) and 3D view (right)
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To compare the results with Stozimann’s work, |dh@onducted the same experiments. This
means after the learning | executed ten times @i&®to observe, how many times the agent wil tur
left to reach the reward. The results of these ex@ats are shown in Table 5.

Trial number 1 2 3 4 5 6 7 8 9 10 Average
Go left (action 1) 28 | 26 | 26 | 28 | 22 | 27 | 29 | 24 | 24 | 26 26.0
Go right (action 2) 4 6 6 4 10 5 3 8 8 6 6.0

Table 4 — Latent Learning — Stolzmann’s Results

Trial number 1 2 3 4 5 6 7 8 9 10 Average
Go left (action 1) 24 | 24 | 25 15 | 26 | 24 | 19 | 21 | 20 | 25 22.3
Go right (action 2) 6 6 5 15 4 6 11 9 10 5 7.7

Table 5 — Latent Learning - The Statistical Evaluation 6the Experiment

There are two conclusions to be made from thisetaBine is that the latent learning was
successfully tested and gave reasonable resutten&es that compared with Stolzmann’s result, my
results are slightly worse, but since that head#pends on how the rule base was trained | cannot
make a definitive conclusion on the second point.

4.8. Conscious State Anticipation

For this complex scenario | again chose to compattework of my colleague David Kadiek
[18]. Except the taxi problem already introducedoag many other he also used so called Treasure
Problem. Again | aim to compare my results anchmnsstrengths and weaknesses of my approach.

In this scenario the main actor is an agent, shasva fobot’ (or purple dot). This agent’s goal
IS to reach and open theeasure chestyellow triangle). This chest is not reachable éhese it is
behinddoor (brown cross). To open the door the agent neegtateheavy stonefgray star) on the
pressure pads(black rectangle). The stone needs to remairherptessure pad for the door to open.
There are three such stones available in this sicer@n top of this goal the agent needs to sattsfy
own requirements for self preservation. The role®ds to supply energy in terms of food and also
water. There are two static food sources showredsapples(red circle) and two static sources of
water shown adblue bucketgblue circle). Agent can refill his level of foedter by executing
appropriate action of these sourcagple/bucket)

The hybrid ACS-planning algorithm as will be sholb&low can successfully solve the treasure
problem. Unlike the pure ACS approach it also digantly decreases the run time after the initial
exploration and convergence of the ACS rulebasanK#to the learned environment the planning can
then significantly reduce the run time while at s#aene time being able to satisfy the internal needs
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Figure 14 — Treasure Problem - The Cumulative Rewaradver Time with Individual Reward Spikes (left) and The
Level of Water and Food during the Simulation (righ?
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The Figure 14 below shows the cumulative reward divee (green line). The training tak
place for 8772 steps when the treasure is reacheal.irdividual reward spikes were created
multiplying the actual received reward by 5 sositvisible and to scale with the cumulative rew.
The smallest spikes show fulfilment of the interneéds of eating and drinking. The middle spike:
steps 296l1and 4559) show the placement of the stones on thesyre pads. The highest spi
identify when the treasure is found. As previouskgntioned once the treasure is once found an
environment is successfully learned the plannimggprthm takes precience and reaching the gt
again becomes very fast. As mentioned it took 8téps to reach the goal for the first time afteit
it took in average 93 steps to reach the goal ¢

For the same simulation the level of water and fedhown on th Figure 14. During the
learning phase it is shown that the levels go detpnegative values. What is also interesting tha
water level dropped belozero even after the first learning cycle at thep<8823. It is obvious th
reaching the treasure (goal) for the first time slo®t guarantee that the algorithm covered
environment fully. Even if planning is helping sificantly to keep the nee for food or water
satisfied during exploration the agent can wondefas from the source that it is not possible te
back in time. The coverage of the environment ia tase is shown on the 3D mest Figure 15,
where for each of the position | used only theaarctvith the highest number attached. It is simgdi
but shows clearly the positions of the stones, ghds and the treasure and they have been
successfully mapped.

Emotions can be also generated here by pluggitigeirappropriate layer of my design. Sii
the emotion cube was already prepared then ittsarmoblem to add it as another property of
agent.
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Figure 15 — Treasure Problem Emotion Expressior (left) and The Coverage of the States of the Environme
(right)

Since the scenario counts only with reward andpooishment and the agent in this scenar
not focused on anticipaity the reward then there is just one emotionak stagenerate, still to shc
how each factor influences each other | have endmbdtlide emotion cube helFigure 15 shows the
situation described.

5. CONCLUSION

My research and study of “the state of the artardmg the field of anticipation convinced n
that this topic can be a valid subject of dissentathesis. Anticipation perceived ¢ not just plain
prediction or estimation of the future. Anticipation ALife sense is much more than just prediciic
is utilizing the obtained information about theur# for the cognitive processes such as dec
control and planning. It is alsboutgenerating emotions, controlling attention and maiter things
described in my work.

The simulation and visualization methods used m@aate an impression that this work
focused on improving the artificial intelligencer ftomputer game industry. is due to say that th
has never been the goal of this work. While my wak a value in this industry as well it is not
primary one. Tie main industries to apply my research in are podvstribution Smart Grid$,
Robotics (HRI) and prevention & protection of health and safety of human be
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5.1. Fulfilment of Goals of the Thesis

| claim that all the goals set for my work were ackeved and completed! will demonstrate
that by commenting how the goals were achievedpaimting to the chapter that completes the goal.

1. State of the art was mapped to a sufficient le¥eetail not only on technical side but also on an
ethology and psychology side (namely behavioureandtions).

2. | came up with original multi level anticipatory @pach. In my work | introduced the 8-factor
anticipation architecture in and described eaclhofaof the architecture including the selected
implementation. | demonstrated also the interfaaed information exchange between the
different levels.

a. The idea of anticipation playing role in more agpaxf behaviour control is clearly visible in
the multi level approach including eight factors.

b. The difference between my approach and alreadytimgisanticipation approaches is
highlighted thorough the work.

c. | claim in my work that anticipation gives anothgimension into the input of the action
selection it was shown on experiments that addimigipation improves the behaviour.

d. Each level (in my work called factors) is explalnie detail and each one of them has a
subchapter dedicated to its description.

3. I've implemented the anticipatory behaving agemtie REPAST environment. The approach to
implementation taken was to build the architectivoen the lowest levels and test functions of
each level separately before plugging in with thevipus ones and integrating in the single
architecture. The described theory, design andeémphtation of artificial life animat architecture
have the following features.

a. Each identified layer (factor) is build and tessegharately in dedicated sub chapters.
b. The layers are chained and resulting architectsireested on several occasions namely in
employing emotion generation.

Learning implemented with help of ACS is in-timedamsupervised.

The simulated environment is open.

The architecture enables to generate emotiongesuli of using anticipation.

The implementation of anticipation brings valuesimall and larger scale.

4. The conducted experiments not only prove the cbfftgtrction of selected algorithms, but also
where possible compare with either the algorithmbased my approach on or any other
comparable algorithms. The growing complexity @& #pproach is visible thorough the work.

a. The suggested approach as shown in all the sirankais usable for Artificial Life domain.

b. The achieved results exhibit in some cases bettitigs than the original approach.

c. The complexity is growing in the design and thewations. The whole 8-factor approach is
build with growing complexity.

d. The comparison of the design with other approackas sometimes difficult to achieve.
Where it was feasible | have compared my resultls wasults of others namely in the chapter
4.2 and 4.7 where | compared with the original epph and in chapters 4.6 and 4.8 |
compared with the similar scenario but differerprapch.

~ooo

5.2.  Main Findings

My design is still unique on this field and thisnminly because two main ideas. The first idea
Is that anticipation is not a matter of just singlechanism (similarly to any living being). Thisny
| came up with my idea of 8-factor anticipation waHiis multi-level architecture of anticipatory
behaving creature. Second idea is the introdudfaonsciousness into the categories of anticipatio
There are multiple secondary findings as a prodtichplementing and evaluating my architecture.

< Probabilistic occupancy map enriched with the estiid value can provide better results in
propagation of the probability.

* Emotion generation can be achieved thanks to thei@ation. | have proposed a method of
Emotion Cube that can be used not only to geneeaetions, but it is capable of
superposition of emotions with generation of treutéing emotional state.
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« The ACS approach is capable of completing the iiffescenarios other algorithms are able
to cope with however more focus should be doneherrile specialization techniques as the
future research.

* Even basic planning approaches when plugged intheo8-factor design can significantly
improve the behaviour if correctly learned. Thenplag algorithm is not expected to provide
any exploration capabilities and as such canndidmeficial when the rule base is not learned
through other mechanisms.

5.3.  Known Limitations of My Design and Future Work

On higher level the work as such is very focusetherArtificial Life simulations and as such it
IS not straightforward connected with real life ustry applications. There are several possibilities
the fact that the work is without the evaluatiortlué approach in the real life scenarios is onthef
main limitations of the work. On the level of thgaithms selected and the weaknesses there Ed lik
to mention several things. The Anticipatory ClassiSystem selected and implemented in my work
exhibited multiple limitations that | pointed out the respective chapters. In a summary the loel lev
of rule specialization leads to several disadvaggagyuch random behaviour even after the rulebase is
fully trained, removal of rules for actions thawvbarever been tested leads to non-optimal covarige
the state space.

The field of anticipatory behaviour for Artificidlife is a dynamically developing area and it
still puzzles researchers and presents more quedtian one work can answer and | believe that my
work is a contribution not only to the ALife aréhere are multiple areas that deserve more attentio
and further research. Among the first ones thés8tor of my design was leaves space for futurekwo
and improvements of the whole architecture. Thighis main area for future work namely on
deliberation techniques and reasoning about selfather objects. The cooperation of the factors
(levels) was in my work almost inherent and givendesign, a more formal interface description
would aid replacement of one algorithm with anothéthout drastically changing the rest of the
architecture. I'm also already considering the ity of adding other factors and thus extendihg
work even beyond 8 factors.
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SUMMARY

My work is occupied with a specific area of Artifit Intelligence. This so far outstanding problesm i
anticipation theory and it's applications in thetificial Life. My thesis on the topic of anticipatp
behaviours is employed with design of anticipatoepaviour architecture. This architecture builds on
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top of the current state of the art on the fielcanficipation namely works of Daniel Dubois, Martin
Butz and Carlos Martinho. My work was motivatedtiyp main ideas that can be summarized in two
sentences. The first key sentence is “anticipationot matter of a single mechanism in a living
organism - it happens on many different levels”’eTdecond pillar of my work is the fact that
“anticipation happens even without voluntary cofitrdhe combination of these two sentences is the
most important point in my work and together formg original approach to anticipation. | believe
that this brings novelty for the anticipation thgdRaturally research of anticipation at the begign

of this decade was focused on the anticipatorycjpies bringing advances on the field itself. This
allowed me to build on those, look at them fromighlr perspective, and use not one, but several
levels of anticipation in a creature design. Iis thork | will present my unified theory for antieifaon
and describe eight different types of anticipatiwdered in a semi-hierarchical structure. | cai$ th
approach the 8-Factor Anticipation. This presemstizer original idea in this work and that is the
agent architecture that has anticipation built Imast every function. My 8-factor anticipatory
behaviour approach is based on the current undeliist of anticipation from both the artificial
intelligence and biology point of view. | strongbglieve that some of my findings will be used and
applied in specific industry applications such asaf Grids. These are electricity networks that can
efficiently integrate the behaviour and actionsabfusers connected to it (generators, consumets an
those that do both) in order to ensure an econdimietficient, sustainable power system with low
losses and high quality and security of supply sadféty.

RESUME

Moje prace se zabyva specifickou oblasti¢léminteligence a to konkr&nednou z dosud
stéle nedieSenych problematik, totiz teorii anticipace anpgjaplikacemi vyuzitelnymi v
umglém Zivok. Ma disertani prace na témargdjimaného (anticigamiho) chovani se zabyva
navrhem architektury realizujici anticipd chovani. Tato architektura&zi z poznatk na poli
anticipace, zejména vSak z praci Daniela Duboisttivta Butze a Carlose Martinho. Vyzkum v
oblasti gedjimaného chovani v uplynulém desetileti byrqzers primarre zangten na funkni
principy samotnéhoipdjimani, jejich implementace a experimentalndfeni. To mi umoznilo na
téchto jiz probadanych principech stava gristoupit k nim z jiné perspektivy tedy nejen jako k
jednomu mechanismu v Zivém organismu ale jako kbenu rékolika vzajem@ provazanych
mechanism. Vyzkum a experimenty mnoha biolbog etolog ukazuji, Ze se &k se na mnoha
raznych drovnich i u velmi jednoduchych Zivotnichéior. Ja k tomutofidavam dalSi aspekt a to Ze
piedjimané chovani segj@ jak wdoms tak i bez ¥domého ovlivini. Prace presentuje originalni
pristup k teorii anticipace samotné, kde se objedw@ hlavni nosné nazory. Jednim z nich je
mySlenka z&lergni anticipace do vice Urovii bloka tak, aby pedjimané chovani se projevilo ve
vice aspektech i na bazdalnich Urovnich jako je tiagik chovani. Jako celek toto da vzniknout
emergenci fedjimaného chovani. Druhou z mySlenek motivovangimena pirodnimi wdami je
rozliSeni ¥domé a neédomé anticipace. Spojenigchto dvou myslenek vznikla v této pradivedni
osmi faktorova anticigai teorie. Kazdy z faktér(drovni) je detaild rozebran jako samostatny celek
a nasleda z&lerén do celkové architektury ve spolupraci s ostatnimovremi. Takovato
architektura je schopna zapojitepjimané chovani jak ve smyslovych vjemech, tikgpnerovani
emoci na zaklad porovnani odrny ofekavané (fedjimané) s odemou fakticky obdrzenou. V
neposlednitad® umoziuje architektura tvorbu modelprostedi a to jak cilet tak i tzv. &enim
latentnim. V prvém fipact (cilert) je nagiiklad odhadovana poloha agenta, ktery je samyskryt za
piekazkou. Ve druhém (latentnéani) je model naten ne¥done na zaklad provadni ¢innosti a
kratkodolé zachovan pro fiipad poteby. Prace se zabyva i wWikbm a modifikaci algoritiin pro
implementaci zmignych Grovni a diskuzi o vhodnosti zvolenych algoiita &innosti navrzenych
modifikaci. Pevl véiim, Ze rkteré ze z&ua prace budou dal vyuZity v konkrétnich realizacich.
Jednou z moZnych oblasti aplikacgdjimaného chovani je energetika a tzv. chytré @mart
Grids).
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