
CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

Faculty of Electrical Engineering
Department of Control Engineering

Master’s thesis

Reactive scheduling of
pickup-and-delivery tasks
for industrial mobile robots

Bc. Lucie Halodová

August 2021
Supervisor: Ing. Bc. Lenka Mudrich, Ph.D.

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

457087Personal ID number:Halodová LucieStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Control Engineering

Cybernetics and RoboticsStudy program:

Cybernetics and RoboticsBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

Reactive scheduling of pickup-and-delivery tasks for industrial mobile robots

Master’s thesis title in Czech:

Reaktivní rozvrhování „nalož-a-přivez“ úloh pro průmyslové mobilní roboty

Guidelines:
1. Familiarise yourself with:
a. the Pickup and Delivery problem with Time Windows (PDP-TW) [1]
b. failures occurring during execution of schedules addressing PDP-TW in a real industrial setting.
c. planning languages PDDL 2.1. [2] and PDDL 3.1. [3] and discuss which one is more suitable for modeling PDP-TW.
d. existing planners, such as TFD [4] and OPTIC [5].
2. Given a set of initial schedules, propose a system which would amend these schedules in reaction to failures during
execution.
3. Evaluate proposed scheduling system for use in simulated industrial environments.

Bibliography / sources:
[1] M. Desrochers, J. K. Lenstra, M. W. P. Savelsbergh and F. Soumis - Vehicle routing with time windows optimization
and approximation - Vehicle Routing Methods and Studies - Elsevier Science Publisher B.V. (North Holland), 1988
[2] M. Fox and D. Long - PDDL2.1 : An Extension to pddl for Expressing Temporal Planning Domains - Journal of Artificial
Intelligence Research 20 (2003) 61-124
[3] A. Gerevini and D. Long - Plan Constraints and Preferences in PDDL3, Technical Report, Department of Electronics
for Automation, University of Brescia, Italy, August 2005
[4] P. Eyerich, R. Mattmüller and G. Röger - Using the Context-enhanced Additive Heuristic for Temporal and Numeric
Planning - In Proceedings of the 19th International Conference on Automated Planning and Scheduling, 2009.
[5] J. Benton, A. Coles and A. Coles - Temporal Planning with Preferences and Time-Dependent Continuous Costs - In
Proceedings of the 22nd International Conference on Automated Planning and Scheduling, 2012.

Name and workplace of master’s thesis supervisor:

Ing. Bc. Lenka Mudrich, Ph.D., DataVision s.r.o., Ukrajinská 2a, Praha 10

Name and workplace of second master’s thesis supervisor or consultant:

Ing. Martin Hlinovský, Ph.D., Department of Control Engineering, FEE

Deadline for master's thesis submission: 13.08.2021Date of master’s thesis assignment: 15.01.2021

Assignment valid until:
by the end of winter semester 2022/2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Michael Šebek, DrSc.

Head of department’s signature
Ing. Bc. Lenka Mudrich, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce her thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

Declaration

I declare that the presented work was developed independently and that I
have listed all sources of information used within it in accordance with the
methodical instructions for observing the ethical principles in the prepa-
ration of university theses.

In Prague on August 13, 2021

. .
Lucie Halodová

i

Acknowledgment

I would like to thank all the people who supported me during this theses.
My deepest gratitude goes to my supervisor Ing. Bc. Lenka Mudrich for
her guidance through such a complex topic, her huge expertise in task
planning and scheduling, and her patience with me. I really appreciate her
individual and human approach and thank her for the amount of knowledge
I could gain under her supervision.

I would also like to thank the Technology Agency of the Czech Repub-
lic for accepting the project Guidance and Localization upgrade creating
Autonomous Mobile Robots under the TREND Programme FW03010020
and to Datavision company for allowing me to work on such an exciting
project in this thesis.

Besides, I would like to thank my friends and family for their support
during my whole studies. Namely, to Jitka Hodná, a partner in crime,
who shared my most beautiful and the most difficult moments during my
studies; to Matouš Pokorný, father Fura and the best coworker I met, for
all his always great advice and reducing my stress; and to Ewan Dickson,
Václav Veselý and Maťa Dubeňová for their willingness to help and correct
my grammatical mistakes in the thesis.

ii

Abstrakt
Tato práce se zabývá selháními, které nastávají při vykonávání planů speci-
fikovaných operátorem v industriálních prostředích jako například tam,
kde autonomní pozemní vozidla převážejí zboží. Hlavním problémem je, že
umělá inteligence řeší selhání neočekávatelnými způsoby pro lidské chápání,
a firmy se ji proto zdráhají používat. Pro řešení tohoto problému je v
diplomové práci navrhnuta metoda opravy plánů, která využívá co nejvíce
akcí z operátorova plánu a modifikuje pouze tu část, která souvisí se sel-
háním. Tento přístup je porovnaný s přeplánováním od začátku, ve kterém
je operátorův plán modifikovaný od momentu, kdy se selhání objeví. Oba
přístupy jsou zhodnoceny na sadě scénářů popisujících, kdy může nastat
selhání robota nebo selhání kvůli zablokované cestě v příkladovém indus-
triálním prostředí. Experimentální výsledky potvrdily, že metoda opravy
plánů dává plán, který je málo odlišný od operátorova plánu. Případová
studie dochází k závěru, že oprava plánů by se měla preferovat před pře-
plánováním od začátku, pokud je kritickým požadavkem malý rozdíl od
operátorova plánu. Na rozdíl od toho, přeplánování od začátku by se mělo
preferovat před opravou plánů, pokud se žádá, aby zpoždění modifiko-
vaného plánu a průměrné zpoždění doručení nákladu byly malé.

Klíčová slova: oprava plánů, přeplánování od začátku, selhání při
vykonávání, PDDL, plánování úloh.

Abstract
This thesis deals with failures occurring during the execution of plans
specified by an operator in industrial environments such as those where
autonomous ground vehicles are transporting goods. The main problem is
that artificial intelligence resolves failures in unexpected ways for humans
so that companies are reluctant to use it. To address this problem, this
thesis proposes a plan repair method, which reuses as many actions of the
operator’s plan as possible and modifies only the affected part related to
failures. This approach is compared with replanning from scratch, in which
the operator’s plan is modified from the moment when a failure appears.
Both approaches are evaluated on a set of scenarios describing when a
failure of a robot or a failure due to a blocked path occurs in an exam-
ple industrial environment. Experimental results confirmed that the plan
repair method provides a plan with a small difference from the operator’s
plan. The case study concludes that plan repair should be prefered over
replanning from scratch if a small difference from the operator’s plan is
crucial. In contrast, replanning from scratch should be prefered over plan
repair if the performance demands, such as the delay of the modified plan
or an average delay of a cargo delivery, are required to be small.

Keywords: plan repair, replanning from scratch, failures in execution,
PDDL, task planning.

iii

Contents

1 Introduction 2
1.1 Requirements specified by the REX project 3

1.2 Motivation example 4

1.3 Organization of work 6

2 State of the art 7
2.1 Routing problems . 7

2.1.1 Arc routing problems 7

2.1.2 Vehicle routing problems 8

2.1.2.1 Traveling salesman problem 8

2.1.2.2 Vehicle routing problem 9

2.1.2.3 Variants of VRP 10

2.1.2.4 Pickup-and-delivery problem 11

2.2 Failures . 12

2.3 Planning . 13

2.3.1 Classical planning 14

2.3.2 Planning Domain Definition Language 15

2.3.2.1 PDDL 1.2 15

2.3.2.2 PDDL 2.1 17

2.3.2.3 PDDL 2.2 18

2.3.2.4 PDDL 3.0 18

2.3.2.5 PDDL 3.1 18

2.3.2.6 Discussion of suitability for modelling PDP-
TW . 19

2.4 Planners . 19

2.4.1 Temporal Fast Downward (TFD) 20

2.4.2 OPTIC . 21

2.5 Plan modification . 21

iv

3 Problem definition 25
3.1 Problem background 25
3.2 Problem statement . 26
3.3 Solution approaches . 26

4 Solution 27
4.1 Minimal plan repair 27

4.1.1 Model of the world 27
4.1.1.1 Modelling of PDDL domain 27

4.1.2 Proposed methods 31
4.1.2.1 Plan repair 31
4.1.2.2 Replanning from scratch 38

4.2 System . 39
4.2.1 The REX system 39
4.2.2 Integration of plan modification 40

4.2.2.1 Implementation 41

5 Evaluation 45
5.1 Testing architecture . 45
5.2 Generation of data . 46

5.2.1 Operator’s problem file 47
5.2.1.1 Analysis of planning problem describing

an industrial environment 47
5.2.1.2 Initial problem file 50
5.2.1.3 Initial PDDL plan 50

5.2.2 Testing scenarios 51
5.2.2.1 Generation of AGV failure 52
5.2.2.2 Generation of failure due to blocked path 53

5.3 Metrics description . 55
5.3.1 Plan difference 55
5.3.2 Total plan delay 56
5.3.3 Average cargo delivery delay 56

5.4 Experimental results 56

v

5.4.1 Plan difference 57
5.4.2 Total plan delay 59
5.4.3 Average cargo delivery delay 62

5.5 Summary and discussion 64

6 Conclusion 66
6.1 Future work . 67

References 70

A Attached code 74
A.1 PDDL domain . 74
A.2 Initial PDDL problem 75
A.3 Initial PDDL plan . 78

B Graphs 79

vi

List of Figures
1 Possible usage of the REX ecosystem [1] 4
2 Testing scenario pictured as a topological map 5
3 The seven bridges of Königsberg [2] 8
4 Optimal tours for large number of instances in TSP [3] . . 9
5 Hierarchy of objects used in the domain 28
6 Plan repair method. Violet rectangular blocks are forming

the plan repair method. Elliptical blocks represent data. . 38
7 The REX ecosystem . 40
8 Overview of the REX system relevant to the plan repair . 42
9 Simplified architecture of the system for testing purposes . 46
10 Two extreme configurations of waypoints 48
11 Visualization of plans of individual AGVs. The red colour

marks paths required to deliver the first assigned cargo, the
yellow colour to deliver the second assigned cargo and the
blue colour denote paths necessary to get to the docking
centre. 51

12 Plan difference . 57
13 Total plan delay . 60
14 Average cargo delivery delay 62
15 Plan difference for all testing scenarios 80
16 Total plan delay for all testing scenarios 81
17 Average delay of a cargo delivery for all testing scenarios . 82

vii

List of Tables
1 Results from a set of problems with 3 AGVs, 10 cargos

and an increasing number of waypoints from 3 to 12 in
configuration all and line run on OPTIC and TFD planners. 49

2 Results from a set of problems with 3 AGVs, 20 cargos
and an increasing number of waypoints from 3 to 22 in
configuration all and line run on OPTIC and TFD planners. 49

3 Results of statistical values for plan difference for all testing
scenarios . 59

4 Results of statistical values for total plan delay for all testing
scenarios . 62

5 Results of statistical values for average cargo delivery delay
for all testing scenarios . 64

viii

Listings
1 Predicates used in the PDDL domain 28
2 Action load in the PDDL domain 29
3 Action unload in the PDDL domain 30
4 Action drive in the PDDL domain 30
5 PDDL domain . 74
6 Initial PDDL problem . 75
7 Initial PDDL plan . 78

ix

List of Algorithms
1 refine_goals(Gdisturbed) . 33
2 replay_plan(π, sinit, Lfailures) 34
3 get_current_state(π, sinit) 34
4 simulate_future(π, scurrent) 35
5 join_plans(πoperator, πnew, Ow) 36
6 Repair plan . 37

x

Chapter 1
Introduction

The fourth industrial revolution has already started in the most developed parts of
the world. It proposes the vision of two connected worlds - the world of real physical
objects and the virtual world representing these objects. This revolution brings a whole
new philosophy changing the overall society. The affected areas range from the industry,
over the technical standardization, safety, educational system, law regulations, science
and research, labour market up to social impacts. The consequences of the fourth
industrial revolution led to the formulation of the Industry 4.0 Initiative [4, 5]. The
aim of this initiative is to achieve and strengthen the long-term competitiveness of the
Czech Republic on a global scale.

Industrial production forms the centre of this fourth industrial revolution, and hence,
it is also called Industry 4.0. Each part of the production is represented as a complex
distributed system consisting of many autonomous subsystems. The smart integration
of these self-sufficient subsystems does not need any central hierarchical control because
every unit is able to communicate with each other. However, the whole production sys-
tem without a central controlling authority is still an extreme case nowadays. These
modular systems will be connected through standardized communication protocols en-
suring the openness of the entire system for variable subsystems and their reusability
in other systems.

Industry 4.0 is also connected with smart factories. The basic elements of the smart
factories are cyber-physical systems, which will be able to communicate with each other,
exchange information, analyze data in order to predict for example failures and adapt
in real-time to the changing conditions. The production process will be optimized and
able to react to the unexpected changes caused for example by a failure of a robot.

The first prerequisite for the application of the Industry 4.0 is the digitalization of the
production processes and the collection of the data for subsequent usage. The Industry
4.0 has the vision of the vertical integration of all subsystems from the lowest level of
automatization, over the management of the production to the planning of the company
resources by ERP systems (Enterprise Resource Planning). The automatization of
processes with the robotization of the environments further requires the Internet of
Things technologies. Finally, the last steps are covered by the research in the area of
cybernetics and artificial intelligence to autonomously plan the production processes or
suggest the optimal logistic routes. The level of companies’ readiness for Industry 4.0

2

can differ a lot.
This thesis is assigned by the Czech company Datavision s.r.o. which designs and

delivers solutions to industrial environments. The thesis is motivated by one of the
current projects of this company, called REX. This project is concerned with the cre-
ation of the intelligent system for the fleet of cooperating mobile robots in accordance
with the concepts of Industry 4.0. The REX system will be able to accept requests of
pick-up and delivery tasks, autonomously plan and schedule those tasks to robots. It
will also be able to change the plan based on an occurrence of unexpected events such
as a change of the environment or a failure of a robot. Therefore, the aim of this thesis
is to design a module capable of resolving failures by autonomous repairing of plans.

The proposed system in this thesis will introduce a minimal amount of artificial
intelligence (AI) in order to resolve failures. This approach is needed because many
companies with existing manufacturing processes are reluctant to use AI because they
do not believe in it enough. They still use scheduled plans by experienced operators
and resolve failures by themselves. If we can design such an AI system which would find
simple, well-understanding changes to the plan given by an operator, we can persuade
companies to trust and use such a system.

The minimal amount of AI will modify the operator’s plan as little as possible.
Hence, the proposed method will change only the part of the plan affected by failures
and let most of the original part unchanged. In this way, the unaffected part of the
plan can continue to execute, and during this time, the faulty part can be repaired. If
the flawless part of the plan is assumed to be finished, our system wrapping a state of
the art planner finds a plan achieving goals of the affected part of that plan and joins
these plans together. Therefore, the resulting plan preserves as much as possible from
the operator’s plan.

The significant benefit of this approach is that the production does not have to stop.
In existing manufacturing processes, the production has to be stopped until failures
are resolved, resulting in a huge loss of profit. Thanks to the repairing process during
the execution, our system does not block the production until a new plan is provided.
Consequently, the loss of profit is significantly suppressed.

1.1 Requirements specified by the REX project

The thesis is constrained by the specification of the REX project. Thus, the aim of this
section is to provide an insight into REX specification related to this thesis assignement.

The REX system will ensure the fleet management of the autonomous mobile robots
(AMR) including their control and planning. Thanks to the modularity of the system,
the fleet can contain various mobile platforms from different vendors. The heterogeneous
fleet can consist of autonomous ground vehicles (AGV) already used in factories as well
as new AGVs, AMRs, drones or platforms controlled by people like forklifts or tractors,
which can be localized and the information used for the planning. To support the
flexibility of the factory, the production line can be composed of several AGV. The
vision of the possible usages of the REX system is depicted in Figure 1.

3

Figure 1: Possible usage of the REX ecosystem [1]

The most prevalent failures occurring in factories are usually of three types - failure
of a robot, blocking off a path and change of time requirements. This thesis will focus
only on AGV and the first two types of failures.

Such a system can be applied in various branches of the industry related to the
production with storages and logistics. Particularly in automotive, which is one of
the key branches of the Czech industry, and thus it is advisable to deploy the system
first there, but also in agriculture or healthcare. REX can help during pandemics like
COVID-19 as well. One possible scenario is a field hospital, where infected samples can
be transported autonomously without infecting other people. Moreover, fewer people
will have to work in factories, or they will be allowed to work remotely. Consequently,
people would meet less and reduce the risk of the transmission of the infection.

This project is called Guidance and Localization upgrade creating Autonomous Mobile
Robots and is co-financed by the Technology Agency of the Czech Republic under the
TREND Programme FW03010020.

1.2 Motivation example

The problem addressed in this thesis is illustrated in the following motivational example,
which is used throughout the rest of the work.

The testing scenario is situated into a factory concerning production and logistics
of its material, motivated by a real factory setting such as one owned by the Skoda

4

company 1. In such a factory, the fleet of robots autonomously delivers material to
conveyor belts. The fleet consists of three homogeneous robots that are able to pick
a cargo at a storage centre and deliver it to a conveyor belt, where the material is
processed. Robots can park and recharge in a docking centre. The task of a robot is to
drive from the docking centre to the storage centre and pick up a requested material.
Then it should drive to a requested location at a conveyor belt, drop the material and
return back to the docking station.

The scenario is represented on a topological map, see Figure 2. The weighted graph
consists of nine nodes denoting locations connected by edges indicating bidirectional
paths weighted by a distance between nodes. In the map, there are two conveyor belts
with six locations coloured blue intended for a robot to drop the requested material.
The storage centre coloured as a green node serves as a pick-up location for a material,
further referred to as cargo. The orange node marks the docking centre, and the grey
node is only a crossroad allowing a robot to change the path, including turning back
along the same path. Each node, where two or more paths meet, also serves as a
crossroad.

wp3
cargo1

wp2
cargo0

wp4
cargo2

wp6
cargo4

wp5
cargo3

wp7
cargo5

wp1

7

14

wp0

11

wp8

4

5

2

3

2

2

22

22

Storage centre
cargo0 cargo1
cargo2 cargo3
cargo4 cargo5

Docking centre
agv0 agv1

agv2

Figure 2: Testing scenario pictured as a topological map

The reason for such a simple scenario is threefold. Firstly, only three robots are
sufficient to show a failure of a robot. These robots are modelled as homogeneous

1See the video introducing the current technology used in Skoda factory: https://www.youtube.
com/watch?v=5C-mCFnzQLU

5

https://www.youtube.com/watch?v=5C-mCFnzQLU
https://www.youtube.com/watch?v=5C-mCFnzQLU

because the heterogeneity would not influence our approach and thus can be neglected.
Secondly, the map is composed of enough nodes and edges to investigate a failure due to
a blocked path. Thirdly, the size of the example allows us to present the repair process
to readers and easily validate its correctness and behaviour.

If a failure of a robot occurs, the rest of the fleet will serve the goals of this faulty
robot. Consider a robot called agv0. This robot should deliver cargo0 to the location
wp0 and cargo3 to location wp5. Suppose a failure of this robot arises, for example,
before its goals are served. In that case, the rest of the fleet (i.e. agv1 and agv2) will split
the goals of agv0 robot equally and achieve them after the successful accomplishment
of their own scheduled plan.

If a failure due to a blocked path happens, the plan of influenced robots will be
modified to drive along different paths. Consider the robot agv0 from the previous
paragraph. The robot starts its journey at location wp1. Suddenly a path between
locations wp1 and wp0, where the robot should drive to the storage centre, becomes
untraversable. Therefore, the plan of this robot is modified to drive from wp1 to wp8
and from wp8 to wp0 to get to the storage center to be able to achieve its goals.

1.3 Organization of work

The structure of the thesis is divided into six chapters. The following chapter introduces
the plan modification for which the relevant topics regarding vehicle routing problems,
failures in execution, planning in PDDL language and corresponding planners are also
described. In chapter three, the solved problem is stated in more detail. Chapter
four is dedicated to the proposed method for modification of plans when failures in
execution occur. The integration of this method into the REX system is also included
in this chapter. The proposed system is evaluated compared to the operator’s plan.
The thesis is concluded in chapter six, providing an overview of the work done and
describing possible future steps.

6

Chapter 2
State of the art

The aim of this chapter is to provide an overview of topics related to repairing plans in
automated industrial environments.

Firstly, routing problems are discussed to gain knowledge about optimal logistic
routes. Further, failures typically occurring in industrial environments are investigated.
The PDDL language represents the plans, and therefore its variants are examined. The
suitability of PDDL versions for modelling a pickup and delivery problem with time
windows is discussed. Planner supporting PDDL languages are review. Finally, the
main focus is on the ways how plans can be modified.

2.1 Routing problems

Routing problems deal with the question of how to decide which routes to use and
in which order to fulfil the required task. Routing problems can be divided from the
viewpoint of the graphs into two groups. The first group is arc routing problems [6]
which are based on the Eulerian graphs, and the second one is vehicle routing problems
[7] that are based on the Hamiltonian graphs. There are also general routing problems
[8], which are the generalization of these two.

2.1.1 Arc routing problems

In arc routing problems, requests are dispersed along the arcs. These problems are
based on the Eulerian graphs. In these graphs, all edges are traversed, but none is
repeated.

Eulerian graphs were developed based on the Königsberg Bridges Problem formulated
by Leonhard Euler in the 18th century. This is also connected with the origins of the
graph theory [2]. The problem is formulated as follows. In the town of Königsberg,
seven bridges are crossing two branches of the river as depicted in Figure 3. The
question is whether a person can walk over each bridge exactly once. Leonhard Euler
proved that no such solution exists for this problem [9]. The bridges here are the edges,
all of which should be traversed but at most once.

7

2.1 ROUTING PROBLEMS

Figure 3: The seven bridges of Königsberg [2]

One of very famous applications of Eulerian graphs is a Chinese Postman Problem
[10, 11]. This problem is inspired by a postman who has to go through all roads in
his district before returning to the post office. The question is how to do it while
walking the smallest number of kilometres. The problem can be formulated as a graph
in which crossroads are the vertices and roads are the edges evaluated by the number of
kilometres. Again, the postman has to traverse all edges but to minimize the number
of kilometres, none of the edges should repeat. However, this sometimes can not be
fulfilled to satisfy the requirements, and therefore, some edges are allowed to repeat,
but the number of kilometres should be as low as possible.

Arc routing problems are applied for example in mail delivery, garbage collecting
or street services such as street sweeping, salt gritting or snow ploughing. For more
information about the arc routing problem, refer to the book [6].

2.1.2 Vehicle routing problems

Requests in these problems are placed at the vertices. They are based on the Hamilto-
nian graphs, which are graphs in which vertices and edges do not repeat, but all vertices
have to be visited, and it is allowed or required to end up in the starting point.

Finding a Hamiltonian graph is much harder than an Eulerian graph [12]. Finding
an Eulerian graph in its most simple version belongs to the class P, which means that
the solution can be found in the polynomial time [6]. Whereas finding a Hamiltonian
graph belongs to the class NP, meaning there is not known any algorithm that would
solve it in a polynomial time [11].

The travelling salesman problem is first introduced in the following sections, then
the vehicle routing problem and its variants. Finally, the description of the pickup and
delivery and its variant with time windows is described.

2.1.2.1 Traveling salesman problem

One of the very famous applications of Hamiltonian graphs is the Traveling salesman
problem (TSP) [13]. In this problem, a salesman wishes to visit a number of cities
and then to return back to the home city. The question is how to find the order of
these cities so that the time or distance is minimized. In this problem, cities are the
vertices and roads among them are the edges evaluated by the number of kilometres.

8

2.1 ROUTING PROBLEMS

The salesman has to visit all vertices in the graph, but none of them should repeat as
well as the edges, and the number of kilometres should be minimized.

An optimal tour was found already in 1954 for 49 cities in the USA [13], see Figure
4a. Researchers continually upgraded their methods, and in 2004, an optimal tour for
24 978 cities in Sweden was found. It is considered as the largest solution applied on
cities [14], see Figure 4b. However, the largest number of TSP instances for which the
optimal tour was found is 85 900 in a chip design application. The computation time
of this record is very long, over 136 CPU years with total running time of computer
platforms over 568 hours [15].

(a) Optimal tour for 49 cities in the USA (b) Optimal tour for 24 978
cities in Sweden

Figure 4: Optimal tours for large number of instances in TSP [3]

2.1.2.2 Vehicle routing problem

The Vehicle Routing Problem (VRP) is a generalization of the Traveling Salesman
Problem. In this problem, requests are no longer satisfied by one person, the salesman,
but by a fleet of vehicles. This extension results in a more complex problem in which
the concern is not only about the order in which the places should be visited but also
about which vehicle should fulfil which requirement. If this is known in advance, then
it reduces to multiple TSPs. However, there are many applications in the real world in
which no constraints are given such that the assignment of vehicles to requirements is
fixed. This class of problems focuses on both the assignment and the sequencing.

In the classical VRP, all vehicles start in the depot and then return to the same
place. Each vehicle performs exactly one route. The goal is to serve customers placed
in the vertices of a graph in the way that the total routing cost is minimized. Each
customer is served exactly once.

9

2.1 ROUTING PROBLEMS

2.1.2.3 Variants of VRP

The class of VRPs is very broad, including many variants that aim to fill the gap in
real-world applications. Some differences among the variants are so slight that some
papers concerning the same problem are named according to different variants of VRP.

VRP was first introduced in 1959 as the Truck Dispatching Problem [16]. In this
problem, an optimal route for a fleet of trucks delivering gasoline is sought so that
the total number of kilometres of this fleet is minimized. However, the trucks have a
limited capacity that can be transported and therefore, the constraint on the capacity
is also discussed. Considering the capacity constraint forms a variant of VRP called a
capacitated vehicle routing problem (CVRP), which is the most basic variant of VRP
and is widely studied. Customers’ demands then represent the amount to be delivered.

Variants of VRP can be classified according to the decisions that have to be consid-
ered [17, 7]. In VRPs with profits, it might be impossible to serve all customers, and
thus, a decision has to be made whether to serve a customer with respect to the overall
profit. Unserved customers can be penalized or served customers rewarded. VRPs with
split deliveries indicates a group in which customers can be visited more than once
because their demands can be served by multiple vehicles. In VRPs with multiple co-
modities, commodities can be in different locations and delivered only by some vehicles.
Deliveries from suppliers to customers can use intermediate transfer points. This prob-
lem is referred to as combined shipments. Vehicles that can be reused are addressed by
VRPs with multiple use of vehicles, but then recharging or refuelling has to be taken
into account. If vehicles start or end their routes in different depots, then the problem
is called a Multiple depot VRP.

Several other variants are classified according to the common characteristics that
can be added to the aforementioned variants [7]. As for the fleet characteristics, the
vehicles can be identical and thus, the fleet is homogeneous or the vehicles can vary in
capacity, costs, speeds or accessibility to customers and thus, the fleet is heterogeneous.
In dynamic VRPs, some information such as customers’ locations or demands become
available during the execution. The occurrence of vehicle breakdowns or delays is also
considered a dynamic, and the rescheduling of routes is required. In stochastic VRPs,
some information such as customers’ demands or travel times are uncertain and can be
described as random variables. The impact of these uncertainties on the cost is analyzed.
Open VRPs are VRPs in which vehicles do not have to return to the depot. If some
services are indirect, it forms problems in which locations close enough to customers are
visited. Vehicle scheduling problems refers to problems in which customers or locations
are only visited, e.g. routing of public transport. One of the very important variants is
also a pickup-and-delivery problem, which is discussed in more detail in the next section.

Another characteristic is a repeating pattern like deliveries of goods that repeat over
time. For example, in periodic VRP, the goods are delivered on a visiting pattern such
as every Monday. Repeating of supplies is also discussed in Inventory routing problems,
in which retailers share their inventory with vendors who can decide about suitable
supplies. The application is, for instance, in deliveries to supermarkets or fuel delivery

10

2.1 ROUTING PROBLEMS

to gas stations.
Furthermore, VRPs can also be constrained by time windows considering when the

route can start or end. In the VRP with time windows, each edge has a traversal
time, and each vertex has a time window, in whose time interval the service should be
performed. If the vehicle comes earlier than in the time interval, it has to wait, whereas
coming late is prohibited. If being late is allowed, then we call it soft time windows,
which can be modelled by a penalization function. Multiple time windows are also
possible. The periodic patterns or driving and rest periods can also be included.

In VRPs, various constraints can be taken into account. One of these constraints
already mentioned is capacity and is addressed for example in CVRPs. There are
also loading constraints modelling that for example food cannot be transported with
washing powder or the order of goods if the vehicle can be loaded or unloaded only
from one side. Other constraints can be on the length, duration or cost of the route,
number of vehicles allocated to a specific depot or number of specific routes. There
can be constraints also on synchronization of, for example, tasks or movements. When
considering trucks and their trailers, the constraints, for example whether the trailer
can be manoeuvred in a specific place, are discussed.

The objective can be to maximize the profit or customer satisfaction, minimize the
total time or waiting times, distance, etc. Some of the objectives can be conflicting,
e.g. minimizing the number of vehicles and the total time or distances. Therefore, the
objectives are hierarchical, applied one after another.

2.1.2.4 Pickup-and-delivery problem

Pickup-and-delivery problem (PDP) is a variant of VRP dealing with deliveries to cus-
tomers and collections from them. Collections from customers are called pickups. Prob-
lems with collections are also known as many-to-one VRPs and with distributions as
one-to-many VRPs.

From the viewpoint of transportation, two classes of problems can be distinguished.
The first class deals with the transportation of goods from the depot to the so called
linehaul customers and from the backhaul customers to the depot. These problems are
also known as one-to-many-to-one, and are addressed mainly by VRP with simultaneous
pickup and delivery. In this problem, both the delivery from the depot to the customer
and pickup from the customer to the depot are performed by one vehicle in a single
visit. An example can be the delivery of milk and a simultaneous collection of empty
bottles. The route is built in the way that the customer with a higher amount of
deliveries than pickups is visited first. A relaxation of this problem is a VRP with
divisible deliveries and pickups in which deliveries and pickups can be done in two visits
by the same vehicle. One of the problems in this class is also VRP with backhauls, in
which all deliveries have to precede the pickups. Problems in which only pickups or
deliveries, but not both, occur are known as single demand.

The second class deals with the transportation between linehaul customers and back-
haul customers or also between pickup and delivery locations. These problems are also

11

2.2 FAILURES

known as many-to-many VRP because neither of these locations is a depot. This class
of problems is called VRP with pickups and deliveries. In one-to-one PDP, the load
is transported from one pickup vertex to one delivery vertex. Each commodity has
only one origin and one destination instead of many origins and many destinations in
many-to-many VRP. These problems are also known as Pickup-and-delivery VRP. In
the context of people transporting, these problems are also called dial-a-ride problem,
e.g. routing of school buses. Pickup and delivery points can also be paired.

Pickup and Delivery problem with Time Windows

As mentioned earlier, time windows can be hard or soft. In the case of hard time
windows, the time interval cannot be violated, and therefore the vehicle has to wait to
begin the service if it arrives earlier. Whereas in the case of soft time windows, the
time interval can be violated and punished by a penalty cost. Time windows can also
be one-sided, for example if only the delivery time is important.

Therefore, some routes in PDP or VRP are no longer considered feasible because
they violate the time windows. In [7], the authors determine that time windows with
wide time intervals are more difficult to solve because the number of feasible routes
increases. However, infeasible solutions can be allowed and penalized, which makes
it again more difficult. Generally, PDPs are harder to solve than VRPs due to the
precedence constraints [7].

In [18], the authors solve a multi-pickup and delivery problem with time windows.
Each vehicle has to perform multiple pickups and then the delivery in a single tour
in this problem. The problem can be applied to companies for ordering food such as
Uber Eats allowing the customer to order meals from several restaurants. The authors
developed a new heuristic algorithm to solve the problem. An unpaired pickup and
delivery problem solved in [19] is concerned with the air transportation of cargos and
its flight itinerary decisions so that the cargos are delivered before the due date. In
addition, [20] tackle recharging of autonomous mobile robots, whereas in [21] batteries
are swapped.

For more information about VRP or PDP and their variants, refer to the book [7].

2.2 Failures

This section discusses possible failures that can occur during the execution of schedules
addressing PDP-TW in industrial environments. First, failures from the viewpoint of
planning are considered, followed by failures from the industrial point of view.

According to [22], failures can be categorized into three groups with respect to the
planning problem. In the first group, weak failure of the execution of the plan means
that performing an action does not bring some of the expected positive effects. In the
second group, strong failure of the execution of the plan means that the action cannot

12

2.3 PLANNING

be performed due to its inapplicability (i.e. some of the expected preconditions are not
satisfied). Weak failures often lead to strong failures. The third group represents any
other failures that can happen for example because the state is changed, but not by the
agents. In this case, it depends on domains.

Several failures can appear during the execution of schedules dealing with PDP-TW
and make some execution steps and their successors impossible. Considering the tasks
for ground vehicles only because this thesis focuses on them, the three most frequent
issues can happen.

The first of them is any type of vehicle’s disorder. The reason for these defects is
various. For example, low battery causing the low level and high level of a robot not
responding to any orders; hardware-like breakdowns such as stuck motors or a tech-
nology used for pickups and deliveries of goods, and non-working computer controlling
the robot. Platform-related malfunctions such as punctured tires and other mechanical
wear and damage making the robot unable to fulfil the order.

There can also be external issues that might cause a fault of a vehicle. A typical
example is network issues. A fleet management software is usually placed on a server
and communicates with individual robots. If the connection is broken or there are any
other problems with networking, the vehicle cannot satisfy any further tasks due to
this.

External influences can affect the fulfilment of orders. These problems are directly
related to industrial environments. The second group of most frequent failures repre-
sents issues when the robot cannot pass through a path assigned by the server. The
reason can be an obstacle blocking the path or, based on the navigation technology,
a magnetic tape which the robot follows is damaged, for instance. Similar issues can
happen at pickup and delivery places. Moreover, the lack of resources in the pickup
location makes the transportation of goods impossible.

The third most frequent type of failure is related to time demands. Transported
material is scheduled in PDPs-TW. Thus, there can appear delays in deliveries of cargos.
This fault can be caused because of the two aforementioned most frequent types of
failures. Another reason can be the deceleration of vehicles when avoiding each other
or on crossroads, depending on the navigation technique used. The majority of other
reasons are connected with unsuitable schedules in which cargos are scheduled to be
delivered late. However, these issues are related to the scheduling of PDP-TW, and
thus, they are not intended to be fixed during the execution of given schedules. Time
windows are not handled in this work because it creates a complexity that goes beyond
the scope of the diploma thesis.

2.3 Planning

Planning is a form of general problem-solving. There are three key components to be
able to solve it. There are models for defining, classifying and understanding problems,

13

2.3 PLANNING

languages for representing problems and algorithms for solving them. This section will
briefly introduce the planning languages. The following section will describe planners
able to solve problems.

2.3.1 Classical planning

Classical planning is planning for a restricted state-transition system that is also com-
monly referred to as STRIPS planning. Stanford Research Insitute Problem Solver
(STRIPS) is an early planner for such a system, and the same name was later used to
refer to the formal language based on the inputs to this planner.

The representation is based on predicate logic and it can be divided into a planning
domain, a planning problem and a solution for a problem, i.e. a plan [23].

Domain A planning domain is a state-transition system consisting of

� a finite set of states,

� a finite set of actions and

� a state-transition function.

A state is a finite set of ground literals, i.e. logical atoms that are either true or
false. If a literal is in a state, we say that it holds in this state. If it is not in a state,
it does not hold. Further, a literal that is not explicitly specified in a state is assumed
not to hold in that state.

An action is a ground instance of a planning operator represented as a triple com-
posed of the operator’s name, preconditions and effects. A name is defined as a symbol
with variables appearing in the operator, e.g. n(x1, . . . , xn), where n is a unique symbol
and x1, . . . , xn are variables. Preconditions and effects are a set of literals. We further
say that an action is applicable in a state if positive literals of action’s preconditions
hold in this state and negative does not. In other words, an action’s preconditions are
a subset of the state.

A state transition function is changing the truth values of literals in the state. If an
action is applicable in a state, then negative literals of action’s effects are removed from
the state, and positive literals of action’s effects are added to the state. The application
of action’s effects to the state can also be imagined as changing literals contained in
action’s effects from positive to negative and vice versa in the state.

Problem A planning problem is a triple composed of

� a planning domain,

� initial state, i.e. a state of the state space,

14

2.3 PLANNING

� a set of ground literals that have to hold in a state in order to be a goal state.

The ground literals are evaluated literals by a variable defined in a problem.

Plan A plan is a solution to a problem. It is a sequence of applicable actions from the
initial state to the goal state. A plan with a sequence of actions π1 = 〈a1, . . . , ak〉 have a
length of its number of actions k (or also called plan steps). A concatenation of two plans
π1 = 〈a1, . . . , ak〉 and π2 = 〈a′1, . . . , a′j〉 is a plan π = π1 · π2 = 〈a1, . . . , ak, a′1, . . . , a′j〉.
The plan is a minimal solution for a problem if no other solution contains a fewer
number of actions.

The set of all sucessors of a state is a set of state-transition functions such that its
actions are applicable in this state. The transitivity can be applied to the set of all
successors resulting in a transitive closure forming a set of states reachable from the
state. A plan has a solution if a goal state is in the set of states reachable from the
initial state.

An ordering constraint is a constraint specifying that an action has to come before
another action. If there is no ordering constraint, actions can run concurrently.

A causal link represents a relationship between two actions and shows the reason
why an action was added. A causal link links a precondition of an action to an effect
of another previous action. Between these two actions, there must be an ordering
constraint. There can be a threat on a causal link. It can happen if there is a causal
link between two actions sharing a positive literal p and another action ordered between
them has in its effects a negative literal ¬p. A possible solution to this threat is a change
of orderings of actions.

2.3.2 Planning Domain Definition Language

Planning Domain Definition Language (PDDL) is an action language for specifying
state transition systems and modelling a world. It was developed by Drew McDermott
for the first International planning competition in 1998 [24].

The first version of this language starts at 1.2. The language was later extended to
PDDL 2.1 [25] in 2003, PDDL 2.2 [26] in 2004 and PDDL3 [27] in 2005.

2.3.2.1 PDDL 1.2

PDDL 1.2 [24] is inspired by STRIPS and several other formalisms. The intent of
PDDL was to express physics. The language was designed to separate a domain de-
scription and problem description. Moreover, one such definition is allowed per file.
The planning problem is then created by a pairing of a problem description with a
corresponding domain description. The huge advantage of the separation is that the
domain description can be pair to several problem descriptions.

15

2.3 PLANNING

Domain The definition of a domain starts with a keyword define followed by (domain
<name>) specifying a name of this domain. The name is important for later pairing
with a problem description.

Then a listings of requirements follows. It represents the fact that it was not expected
that all planners would handle all features of the language. Therefore, there are subsets
of features, which should be declared in each domain under requirements. These re-
quirements allow a planner to tell if it is able to handle the domain. If the requirements
are missing, the default requirement is :strips specifying the basic functionality as in
classical representation.

The domain defintion further contains predicates followed by definitions of actions.
A predicate is represented as an atomic formula with variables denoted by a question
mark. The list of all predicates in the domain is defined under the keyword predicates.
Predicates are either true or false, and if a predicate is not specified, it is assumed to
be false. These predicates represent the state, and all their possible combinations form
the state space.

The definition of action is similar to that in a classical representation. After the key-
word action, there is a name followed by three keywords parameters, precondition
and effect. Parameters are all variables appearing in the action. Preconditions and
effects are predicates using these variables. Again as in the classical representation,
preconditions must be satisfied in order to apply the action’s effects. The effects then
change the values of predicates representing the current state.

The :strips requirement or a missing requirement usually support only the afore-
mentioned features supporting mainly the basic addition or deletion of action’s effects.
The language allows several other additional features such as constants, typing, extend-
ing or axioms. However, these features are usually not supported by a majority of
planners.

The keyword extends followed by a domain name allows inheriting requirements,
types, constants, actions, axioms and timeless predicates from that domain.

The keyword types defined by a requirement typing allows to use objects of different
types. Any object is by default a built-in type object. There is one more built-in type
called number. It is possible to define more types and then create hierarchies and use
the typed variables in the definition of predicates or action’s parameters. Planners
supporting this notion can then substitute only a subset of variables that might result
in savings of time and memory. Moreover, it can operate with predicates taking types
higher in the hierarchy. Actions can also take the top-hierarchy type and represents
the transition for a more general group of types. But then predicates for a specific type
cannot be used. It is also possible to use the keyword either followed by types instead
of a single type. This feature is useful as a union of disjunctive hierarchical groups.
Although this keyword seems to be a part of the requirement typing, not all planners
supporting typing also support either.

The keyword constants allows symbols that will have the same meaning in all
problems for this domain. The keyword timeless is followed by a list of literals that

16

2.3 PLANNING

are taken to be always true and cannot be changed by any action in the domain.
By default, an action’s preconditions and effects can only be a literal or a list of lit-

erals connected by a logical operator and. If a requirements :disjunctive-preconditions
is used, logical connections or and imply are also allowed in preconditions and logi-
cal operator not can be applied on the conjunction as well. Requirement :universal-
preconditions allows the use of for all providing that the condition is true across all
objects of a type or all objects. Requirement :existential-preconditions allows the use
of exists providing that the condition is true if at least one object of a type exists.
Both :universal-preconditions and :existential-preconditions requirements can be also
expressed only as the requirement :quantified-preconditions.

If an action is applied, effects define which values should be set to true or false.
Whereas in STRIPS representation, predicates are deleted or added. Requirement
:conditional-effects allows the use of for all and :conditional-effects the use of when.
It represents the secondary precondition meaning that if this precondition is true before
the action, then the effect occurs. If this condition is not true, the action can be still
applied, but the effect will not happen. If requirement :action-expansions is used, a key-
word expansion is used instead of effects. This expansion is intended for performing
abstract actions used by hierarchical planners. For example, an action move could be
defined to describe a movement by a train, a car or a plane. An action expanded into
several subactions intended to be in serial has to define the ordering among them. This
is not required for parallel subactions.

2.3.2.2 PDDL 2.1

PDDL 2.1 [25] was the official language for the 3rd IPC in 20022. This version introduces
numeric fluents, durative actions and metrics.

Numeric fluents allow modelling also non-binary resources such as fuel, capacity,
distance, time and so on. They are defined via functions in the domain file and initialized
in the initial state in a problem file. Their values can be then changed using numerical
operations on them in effects. They can also be accessed in conditions and their value
compared to another value or a number.

Durative actions are actions similar to that in PDDL 1.2, but several changes were
made to be able to represent a more realistic model of the world. These actions now
have a duration that is represented by a numerical variable with the usage of numerical
fluents. Thanks to the fact that time can be represented, durative actions can distin-
guish three time instants defined by keywords at start, over all and at end to be
able to differentiate between conditions and effects applicable at the beginning of the
action, during the duration of the entire action and at its end.

Metrics can be specified to improve the quality of the plan. In the metrics, there can
be numerical variables that are evaluated at the end of the plan or a variable total-time
denoting makespan, i.e. the length of the plan.

2https://ipc02.icaps-conference.org/

17

https://ipc02.icaps-conference.org/

2.3 PLANNING

2.3.2.3 PDDL 2.2

PDDL 2.2 [26] was the official language of the 4th IPC in 20043. It introduces derived
predicates and time-initial literals.

Timed initial literals enable that the literal becomes true or false at a specific time. In
the previous version, it was supposed that predicates are either true or false at the start.
This more realistic way of modelling allows representing that some resources become
available from a certain time, and thus, they can be manipulated only afterwards.

Derived predicates can then model dependency between facts. For example, it allows
evaluating if a vehicle is available based on the facts that it is charged and its loading
space is empty.

2.3.2.4 PDDL 3.0

This version was the official language of the 5th IPC in 20064. PDDL 3.0 [27] introduces
constraints and preferences.

Preferences are a form of soft constraints allowing to define soft goals or precondi-
tions. Soft goals represent desirable but not so necessary goals. If such a goal is not
satisfied, the solution is still acceptable. There is a cost for not meeting the goal, which
can be incorporated into the plan metric and then influence the resulting quality of the
plan.

Constraints represent hard constraints such as a strong goal. Such a goal has to be
satisfied in order to consider the plan valid. It can also reduce the number of states
needed to explore by describing additional logic. Constraints are useful for problems
where vehicles are required to visit each location at most once. It is also possible to
specify a time window for a predicate to be true.

2.3.2.5 PDDL 3.1

PDDL 3.1 was the official language of deterministic track in the 6th IPC in 20085. It
is the latest version of the language, and it has been used up to IPC 2018 so far6.

PDDL 3.1 introduces object fluents which are state variables mapped to a finite
domain. Object fluents also supports undefined value. For example, this value can be
used when a durative action is moving an object o from the first location to the second
location. Then, location(o) can be set to undefined at the start and to the second
location at the end. Other actions which require the object o to be at the first location
or at the second location during this movement action cannot be used. Further, object

3https://ipc04.icaps-conference.org/deterministic/
4https://ipc06.icaps-conference.org/deterministic/
5https://ipc08.icaps-conference.org/deterministic/PddlExtension.html
6https://ipc2018-classical.bitbucket.io/

18

https://ipc04.icaps-conference.org/deterministic/
https://ipc06.icaps-conference.org/deterministic/
https://ipc08.icaps-conference.org/deterministic/PddlExtension.html
https://ipc2018-classical.bitbucket.io/

2.4 PLANNERS

fluents are initially undefined and thus should be initialized analogously to numerical
fluents.

This extension of the language allows the use of so-called multi-valued state variables,
and therefore, this version can also represent SAS+ formalism. While this formalism
has become to be popular, the usage of functional fluents is very limited.

2.3.2.6 Discussion of suitability for modelling PDP-TW

At least the PDDL 2.1 is necessary for modelling PDP-TW because it introduces dura-
tive actions and thus allows concurrency. Both these aspects are necessary for describing
schedules addressing PDP-TW.

PDDL 2.2 allows using timed initial literals, which can be suitable for modelling
failures. However, failures are processed before invoking the planner so that they are
not a direct input for PDDL but for our system first. Our system can handle time when
the failure occurs, and thus, it can be classified as capable of limited usage of timed
initial literals.

PDDL 3.0 further extends the previous versions by preferences whose violation costs
can be reflected in a plan metric. These preferences could be used to describe the
problem more appropriately with returning to the dock as a soft goal. Vehicles are
then advised to go there but not required because the fulfilment of this task is not
so essential for transporting goods. These preferences also enable to specify in which
order cargos should be transported. While both these aspects model the environment
more realistically, it does not have to be suitable for all specific PDP-TW. It depends
on concrete usage and the environment. In the industrial environment solved in this
thesis, both these features could be considered as rather not suitable. However, PDDL
3.0 allows modelling of time windows which are necessary for describing PDP-TW.

PDDL 3.1 adds object fluents that are not necessary for modelling PDP-TW.

To conclude, PDDL 3.0 is most suitable for modelling PDP-TW. However, as stated
earlier, time windows bring a great complexity when failures are handled. Because
this complexity goes beyond this thesis, time windows are not considered. Therefore,
after this relaxation of the problem, PDDL 2.1 is sufficient for modelling PDP-TW.
Moreover, significantly more open-source planners are available for use in PDDL 2.1
than PDDL 3.0 and above.

2.4 Planners

Several planners participated in International Planning Competitions (IPC), which
places interesting task planning challenges. Two planners attracted our interest and
are described in more detail in the following sections.

19

2.4 PLANNERS

2.4.1 Temporal Fast Downward (TFD)

Temporal Fast Downward (TFD) [28] was published in 2009 and represents a group
of planners focusing on temporal planning. This type of planning allows plans with
concurrency thanks to the temporal ordering between actions. In contrast, classical
planning takes into account only causal links. Previous planners to that time could
find only sequential plans rescheduled in post-processing. TFD supports concurrent
durative action and numeric fluents, and thanks to that, it can represent more real-
world applications.

This planner translates PDDL formulations into SAS+ formalism, which can handle
multi-valued state variables and logical dependencies. SAS+ is composed of state vari-
ables, initial state, goal state, axioms and durative actions. State variables are divided
into logical and numerical variables. Numerical variables allow numerical operations
such as addition, subtraction, multiplication, division and comparison operations such
as less, greater, equal or combinations of two of them. These operations, together with
classical operations on logical variables, are described by axioms. Durative actions can
have start, persistent and end conditions; start and end effects; and a duration rep-
resented by a numerical variable. The planner also supports conditional effects. As a
result, the authors claim that this temporal numeric SAS+ formalism can handle the
whole PDDL 2.1 level 3 except duration inequalities and metrics.

The planner performs a heuristic search in the space of time-stamped states. These
states contain a time stamp, a state with grounded variables, persistent and end condi-
tions that have to hold until the time stamp with a delta of time, and effects with the
remaining time after which they will apply if their persistent and end conditions hold.
If there are no more conditions and effects in the state, it is called a progressive state.
The search starts at time-stamped state with time 0, no conditions and effects, and
repeats the progression until no further improvements appear. The planner performs
an A* search in which durative actions are inserted to a certain time, and the time is
incremented. There are small time increments to the time to ensure that if an action
access a variable, any other action cannot update it. Duplicate actions differing only
in this small time increment are eliminated. The search minimizes the function of the
sum of the time and a heuristics estimating the cost to the goal.

The context-enhanced additive heuristic is extended to cope with temporal actions
and numeric fluents. Because this heuristic was designed for non-temporal actions, it
was necessary to create instant actions from the durative actions with the cost of its
duration, start actions representing the durative action after applying start effects with
the cost of the duration of the operator and waiting actions with the cost of delta of
time. For the representation of numerical variables, it is sufficient to estimate the cost
of changing the values and hence, actions that move variables closer to the desired value
are identified. The objective of the search is to find plans with a low parallel makespan,
but the concurrency is not taken into account. However, durative actions are summed
into sequential makespans which usually correspond to parallel makespans.

The planner provides low-makespan plans of high quality, and it outperformed state-

20

2.5 PLAN MODIFICATION

of-the-art temporal planning systems in the article. Moreover, it can solve problems
requiring plans with overlapping actions.

2.4.2 OPTIC

OPTIC [29] was published in 2012 and belongs to the group of planners dealing with
preference-based partial satisfaction planning. This planner does not aim to focus on
minimizing makespans typical for temporal planning. Instead, the main interest is in
preferences influencing the cost to be minimized.

The planner supports discrete penalty costs as defined in PDDL3, and it can also
handle time-dependent costs from PDDL+. Thus, it can cope with a discrete model of
the world provided by PDDL3, where deadlines appear precisely at a particular time.
The cost function is then discretized into a set of deadlines. However, this approach may
improperly represent the cost, and also deadlines can be missed. Therefore, the planner
also supports the time-dependent costs increasing gradually over time, representing a
continuous model of the world as in [30]. The continuous cost functions are modelled
using PDDL+ and a variable to track the time. This variable is updated by a process
that has no conditions. The effect of the process is only to increase the variable by one
per time unit.

A mixed integer program (MIP) is used to find a preference-cost-optimal schedule.
PDDL3 allows defining temporal preferences such as soft deadlines, goals or precondi-
tions and can describe how these preferences were violated. The metric is then based
on how these violations affect the total plan cost. The actions in the plan have to be
scheduled according to the costs influencing the violations of preferences. MIP then
optimizes the cost of preferences, assignment of timestamps to steps, and other metrics
subject to the ordering constraints to find a minimal cost. To guide the search, a re-
laxed plan heuristic is used whose principle is similar to iterative deepening A* (IDA*).
Actions are then scheduled at the earliest possible time to obtain the lowest cost.

This approach showed good scalability. In contrast, it suffers from difficulties to find
a solution to larger problems within 30 minutes limited to 4 GB memory. However, if
a solution is found, the first plan has a good makespan.

2.5 Plan modification

There are several reasons why one might want to modify a plan rather than generate
a new one from scratch. One can feel the intuition that doing so is more efficient,
faster or easier. Several authors supported this idea [31, 32, 33, 34]. However, from
the analytical point of view, the worst-case scenario of these intuitively better methods
might be even harder than generating a plan from scratch [35]. As stated in the paper,
it depends on the context.

21

2.5 PLAN MODIFICATION

Kambhampati distinguished three situations when one finds the modification useful
[31]. The first situation is plan reuse. In this situation, the existing plan is used to
solve new planning problems. First of all, a similar plan has to be mapped to the new
situation. This typically involve searching for a plan stored in a plan library, which has
a very similar init state and goal state. Nevertheless, this plan cannot usually be directly
used in the new planning problem because there is a gap between the old plan and the
new one. There might be several inconsistencies necessary to repair. They are of three
types - unused effects because some goal is unnecessary in the new situation, missing
effects supporting new goals and possibly threads to links. Therefore, some links are
removed, some added, and some redirected in [31] so that unnecessary parts of the plan
are removed, new tasks are added, and the plan is validated to be correct. The resulting
plan is then reduced with the usage of the planner. According to Kambhampati, it is
faster to start with a partially reduced plan than generate it from scratch. Although the
proposed method introduces 20-98% savings in the blocks-world domain, the matching
part is not discussed, and a similar plan to reuse is given. [35] argue that this matching
part can have a significant impact on savings. The second situation is referred to as
replanning, in which the current plan is modified in response to failures due to time
execution; and the last one is called incremental planning when the current plan is
updated in response to evolving specifications.

The idea of storing various plans is also typical for refinement planning [32, 36]. The
set of all possible potential solutions, called a candidate set, is reduced by constraints
until a solution is found. Different refinement strategies can be applied to obtain a
partial plan. The refinement planning can also be useful for extending the plan with
actions that will reach the goal. [32] extends the refinement planning with unrefinements
in which actions are removed from the tree, and a heuristic is computed to estimate
from which node a solution is obtained. The tree represents the dependency of action,
and hence, it is possible to backtrack which actions have unused effects and thus can
be removed, and the plan can be shrunk.

The derivational analogy in case-based planning is presented in [33]. The trace
of previously made decisions is kept and applied to create candidate sets. Then the
refinements techniques are applied to gain the solution. The proposed method results
in savings in search space compared to planning from scratch. It is also more efficient
because the first found candidate is used without any requirements on preserving as
many plan steps as possible.

It is important to differentiate various purposes of plan modification. Plan mod-
ification done in the plan reuse context can be seen as a more efficient way how to
obtain new plans. The reason for that is usually in the sense that creating a plan is
an operation consuming a huge amount of time and memory. Therefore, to lessen this
consumption, some parts of already created plans can be reused to create new ones.
However, there is a number of caveats to bear in mind [35]. On the one hand, a huge
amount of time can be consumed on searching the best candidate from the plan library
which would fit the new planning problem so that the modifications done to reuse this
plan are quite fast. On the other hand, the less time is spent searching for a similar

22

2.5 PLAN MODIFICATION

plan, the more time then the modification part lasts. Nevertheless, plan modification
can be faster than a generation from scratch in some cases, such as the usage of ef-
fective matching of plans. Nowadays, considering modern planners and hardware, the
generation of the plan is not that painful as it used to be earlier.

Plan modification can also be done in the replanning context. In this context, the
emphasis is put on retaining as many same steps in the new plan as in the original one,
which is usually specified by the user. The new plan is usually required due to some
occurred failures or the changed specification of the goal.

Komenda et al. [22] defined a multi-agent plan repair. The execution of the original
plan fails after some number of steps and gets into the failed state. The aim is to find a
solution to the new planning problem starting in that failed state. The minimal repair
of the plan is such that mutual differences between the original plan and the new one
are minimized. If the new planning problem is just constructed from the failed state
and then given to a planner to solve it, then this principle is called replanning.

In [22], there are presented three plan repair algorithms. A number of actions were
executed from the original plan when the failure occurred, and the situation has changed
to the failed state sf . In the first algorithm, a planner is invoked to get from the failed
state sf into some state of the original plan so that the remainder of the actions of the
original plan can continue executing. The longer this remainder is, the more preserving
the resulting plan is. In the second algorithm, the remainder of actions from the original
plan is reused starting at the failed state sf , and this results in some state slazy. From
this state slazy, a planner is invoked to get into the goal state. Both previous algorithms
are combined in the third. Firstly, the parametrized number of actions f are reused
from the original plan starting at the failed state sf and resulting in some state spre.
Secondly, the parametrized number of actions g are reused from the original plan ending
in the goal state and starting in some state ssuf of the original plan. The state spre is
obtained by applying the actions, while the state ssuf is gained by backtracking from
the goal state. A planner is then invoked to provide a plan starting at the state spre
and resulting in the state ssuf . If the plan is not found, different combinations of f
and g are tried. Repair algorithms were compared to replanning from scratch in terms
of communication overhead among agents in distributed planning and perform more
efficiently.

Another approach related to plan modification is plan merging. In [37], partial order
plans with durative actions are merged together. The input plans are plans for tasks
obtained separately. The aim is then to merge these plans together into a single plan so
that actions can be interleaved, resulting in a shorter plan. There are two key features
in this approach. Firstly, not all actions from the input plans have to be used. Secondly,
some new actions can be added to satisfy the causality of the resulting plan. In [38],
the goals are assigned to agents who provide plans individually. These plans are then
merged by simple concatenation. If goals are not achieved, a centralized planner is
called. If the merged plan is not valid, then it is reused as an input to the RRT-based
planner. The resulting valid plan is then parallelized. [39] deals with the problem of
conflicts in terms of threatening causal links when trying to merge plans of individual

23

2.5 PLAN MODIFICATION

agents. The plan to be included in the joint plan can be delayed, but then this delay
is included in a cost penalty whose higher number encourages an agent to deviate
from its plan. Agents iteratively revise their plans with respect to the joint plan until
convergence has reached.

The plan can also be modified in the sense of contingency. In [40], the contingency
planning is presented for UAV domain missions. There are two resources in this domain
limiting the number and type of tasks achievable by a vehicle - the finite amount of a
battery and a data storage space. In these missions, the aim is to obtain as much data
as possible with respect to the battery and also to be able to recover them, e.g. by
going to the surface or transmitting them in order to increase the storage space. To be
able to do so, the vehicle is allowed to change its plan during the execution by switching
among the generated plans according to the available resources. The proposed method
is based on the Markov decision process with penalties and rewards.

A criterion on how to measure preserving as many plan steps of the original plan as
possible is defined in [34]. This measure is called plan stability, and it can be computed
as the difference between two plans. This difference is obtained as a number of actions
occurring in the new plan but not in the original plan, plus the number of actions
appearing in the original plan but not in the new plan. The importance of both sides is
supported by the following example. The series of drive actions in the original plan can
be replaced by a flying action in the new plan. The number of actions occurring in the
new plan but not in the original plan is 1. However, the plan is completely different,
and the measure of it is shown by the second side of the criterion - the number of actions
appearing in the original plan but not in the new plan. In this paper, the criterion is
used as a heuristic for plan modification to estimate the cost of adding or removing an
action in a partial plan. The performed experiments showed that the plan adaptation
approach is usually faster and has a significantly better plan stability than generating
a new plan from scratch. It is also interesting to observe that for small problems, there
is only one way how to solve them, and the solution is found by both approaches.

24

Chapter 3
Problem definition

The purpose of this chapter is to define the general problem addressed in the thesis.
This chapter starts with a general introduction to the background of the solved problem,
and then it presents the problem tackled in this thesis. Finally, solution approaches are
suggested.

3.1 Problem background

The problem for which this thesis resolve failures is a pickup-and-delivery problem, more
specifically the one-to-many-to-one PDP in industrial environments such as factories
with production and logistics. In this problem, each robot typically delivers goods from
a depot (e.g. a storage centre) to a customer (e.g. a conveyor belt) and from the
customer back to the depot. The latter part can represent for example a collection of
empty boxes back to the storage centre. As in the classical VRP, the question is which
robot should serve which delivery and in which order. The solution to this problem is
given by an operator or a state of the art planner in the form of a plan.

The additional constraints on our PDP are as follows. The fleet of robots can be
heterogeneous, but each robot has its capacity of one box, i.e. it is either full or empty.
All robots start in a dock station and, in the end, return back. Robots are reused for
different deliveries such as in VRP with multiple use of vehicles, but their battery is
assumed to be sufficient to serve all requests. There are no other constraints such as
time windows because it is out of the scope of this thesis.

The given plan is represented by a set of durative actions as defined in PDDL 2.1.
These actions represents a pickup, a delivery and driving. During the execution of such
a plan, failures can occur so that execution of (some) tasks cannot proceed. Failure
addressed in this thesis are of two types - failure of a robot and failure due to a blocked
path. The aim of this thesis is to resolve these failures so that the execution can
continue.

25

3.3 SOLUTION APPROACHES

3.2 Problem statement

Suppose that the plan specified by an operator is given. While this plan is executing,
a failure occurs at some time instant, resulting in a change of the state. Due to this
failure, (some) tasks of the plan cannot be fulfilled. The task is to find a plan that
achieves the goals of the operator’s plan while preserving most of its plan steps.

3.3 Solution approaches

We suggested two methods to solve this problem - plan repair and replanning from
scratch.

Plan repair. This approach is based on modifying the operator’s plan. The idea is
to preserve the plan steps unaffected by the failure and provide a new plan only for
the influenced steps. To obtain this new plan, the unaffected goals of the operator’s
plan are included in the initial state of the corresponding problem, and the goal state
contains mainly the goals not satisfied due to failures. These two plans are then joined
into the resulting plan. The detailed description of this method is in chapter 4.1.

Replanning from scratch. This is an approach that provides a whole new plan. The
initial state is equal to the state in which a failure occurred, and goals are equal to those
of the operator’s plan. Although a state of the art planner is used in both methods,
this approach does not respect the preservation of the operator’s plan.

26

Chapter 4
Solution

Two approaches to solve the problem stated in chapter 3 are described in this chap-
ter. The aim is to present the proposed method of repairing a plan in which a failure
has occurred while preserving as much as possible of the original plan specified by an
operator. The method of repairing a plan by replanning from scratch when a failure
appears is demonstrated for comparison reasons. The second part of this chapter con-
cerns the integration of these methods into the REX system.

4.1 Minimal plan repair

This section focuses mainly on the description of the plan repair method, but the
important differences in the replanning from scratch approach are introduced at the
end of this section.

First of all, a model of the world is presented. This thesis focuses on industrial
environments in which AGVs are transporting goods. Hence, both methods are adapted
to such a world which is described by the PDDL language. A planning domain modelling
the world is then necessary to obtain a new plan. The proposed methods are discussed
in more detail in the following sections.

4.1.1 Model of the world

Modelling of a world corresponding to an industrial environment such as a factory
with production and logistics was done in the PDDL language. In the next sections,
the decisions made to model the domain representing the world are described. The
description of the corresponding initial problem representing the task of the pickup-
and-delivery problem follows.

4.1.1.1 Modelling of PDDL domain

In this section, a PDDL domain used in the thesis is described, and its modelling
is explained. The PDDL domain is modelled in PDDL 2.1, which allows the use of
durative-actions. These durative actions enable the possibility of keeping track of the

27

4.1 MINIMAL PLAN REPAIR

time required in real-time applications. The entire domain is attached in Appendix
A.1.

The domain uses types whose hierarchy is depicted in Figure 5. All objects are of
type object by default. Then there are two children extending the type object - waypoint
and locatable. A waypoint represents nodes in a graph, i.e. possible locations, in which
robots can perform some actions. The type locatable is further divided into agv used for
robots and cargo used for transported goods. Both these objects change their position
in time, and hence, the type locatable can be referenced to use this property instead.

Locatable

Object

AGV

Extends

Cargo

Waypoint

Ex
te
nd
s

Ex
te
nd
s Extends

Figure 5: Hierarchy of objects used in the domain

Predicates used to model properties of the aforementioned objects are described in
Listing 1. It is necessary to know where the robots and goods are. This is represented
by the predicate at - the locatable object (either an agv or a cargo) is at a waypoint. If
the cargo is loaded into a robot, it is no longer at the waypoint but in that robot. This
is represented by predicate in - a cargo is in an agv. Further, there has to be a path from
a waypoint to another waypoint, to be able to drive there by a robot. A failure due to a
blocked path can be then easily obtained by the negation of this predicate. The rest of
the predicates are properties of each robot. The capacity of the robot is modelled either
as full or empty. Notice that these predicates represent the same property, i.e. they are
the negation of each other. The redundancy of these two predicates is necessary to be
able to use planners that do not support negative-preconditions. In order to be able to
simulate a failure of a robot, the information whether the robot is alive is needed.

Listing 1: Predicates used in the PDDL domain
1 (:predicates
2 (at ? obj − l o c a t a b l e ?wp − waypoint)
3 (in ? cargo − cargo ?agv − agv)
4 (path ? from − waypoint ? to − waypoint)
5 (empty ?agv − agv)
6 (f u l l ?agv − agv)
7 (a l i v e ?agv − agv)
8)

28

4.1 MINIMAL PLAN REPAIR

No more predicates are needed because of several assumptions about the environment
and robots. A path is assumed to be a single bidirectional path, i.e. there always exist
a path from a first waypoint to a second waypoint and vice versa. If a path is blocked
because of an unavoidable obstacle, then it is blocked in both directions. AGVs are
assumed to be smart enough to avoid each other and small obstacles on a path which
is wide enough for such manoeuvres. Thanks to this assumption, AGVs can go around
those AGVs which became not alive on a path. Additionally, more AGVs can drive on
the same path. If an AGV is not alive at some waypoint, it is assumed that there is
still enough room for another AGV to load or unload. Therefore, it is not necessary to
model how to block a waypoint. These assumptions simplify the modelling of a world
and problem-solving so that the solution can be provided in a reasonable time.

A function is used to represent a different duration of driving along paths. A function
(travel_time ?wp1 - waypoint ?wp2 - waypoint) allows to define a travel time be-
tween two waypoints. This value is initialized for every two connected waypoints in a
problem file.

The description of actions changing the state of the world follows. There are only
three actions necessary to represent the pickup-and-delivery problem - the action load
representing the pickup in a storage center, the action drive to be able to get to another
location and the action unload for delivering goods. These actions are described in more
detail in the following paragraphs.

The action load means that an agv loads a cargo at a waypoint, see Listing 2. For
this action to be applicable, all conditions have to be met. The agv has to be alive
and at the waypoint for the entire time that this action lasts, i.e. two minutes. This
duration is inspired by Driverlog domain7, the value is not important for the proposed
method. At the start of the action, the agv has to be empty and the cargo has to be
at the waypoint. The effect of performing this action is that the cargo is not at that
waypoint, but in the agv at the end. This means that the agv is not empty anymore,
but becomes full.

Listing 2: Action load in the PDDL domain
1 (:durative−action load
2 :parameters (? agv − agv ? cargo − cargo ?wp − waypoint)
3 :duration (= ? durat ion 2)
4 :condition (and
5 (over a l l (a l i v e ?agv))
6 (over a l l (at ?agv ?wp))
7 (at s t a r t (at ? cargo ?wp))
8 (at s t a r t (empty ?agv))
9)

10 : e f f e c t (and
11 (at s t a r t (not (at ? cargo ?wp)))
12 (at end (in ? cargo ?agv))
13 (at s t a r t (not (empty ?agv)))
14 (at end (f u l l ?agv))
15)

7Available at https://helios.hud.ac.uk/scommv/IPC-14/domains_temporal.html

29

https://helios.hud.ac.uk/scommv/IPC-14/domains_temporal.html

4.1 MINIMAL PLAN REPAIR

16)

The action unload is very similar, see Listing 3. An agv unloads a cargo at a waypoint
and it again lasts two minutes. During this action, the agv has to be alive and at the
waypoint. At start of this action, the agv has to be full because the cargo has to be in
this agv. After applying this action, the cargo is no more in the agv, but appears at the
waypoint at the end. This fact corresponds to the empty agv, which is no longer full.

Listing 3: Action unload in the PDDL domain
1 (:durative−action unload
2 :parameters (? agv − agv ? cargo − cargo ?wp − waypoint)
3 :duration (= ? durat ion 2)
4 :condition (and
5 (over a l l (a l i v e ?agv))
6 (over a l l (at ?agv ?wp))
7 (at s t a r t (in ? cargo ?agv))
8 (at s t a r t (f u l l ?agv))
9)

10 : e f f e c t (and
11 (at s t a r t (not (in ? cargo ?agv)))
12 (at end (at ? cargo ?wp))
13 (at s t a r t (not (f u l l ?agv)))
14 (at end (empty ?agv))
15)
16)

The last described action allows an agv to drive from a waypoint to another waypoint,
see Listing 4. The duration of this action is dependent on the travel time between these
waypoints. To perform this action, the agv has to be alive over the entire time and start
at the waypoint where the path begins. The path has to exist between these waypoints
during this action. The effect gets the agv to the waypoint where the path ends, which
means that the agv is no longer at the waypoint where the path begins.

Listing 4: Action drive in the PDDL domain
1 (:durative−action dr ive
2 :parameters (? agv − agv ? from − waypoint ? to − waypoint)
3 :duration (= ? durat ion (trave l_t ime ? from ? to))
4 :condition (and
5 (over a l l (a l i v e ?agv))
6 (at s t a r t (at ?agv ? from))
7 (over a l l (path ? from ? to))
8)
9 : e f f e c t (and

10 (at s t a r t (not (at ?agv ? from)))
11 (at end (at ?agv ? to))
12)
13)

30

4.1 MINIMAL PLAN REPAIR

4.1.2 Proposed methods

Two possible approaches solving failures in the execution of a plan are described in this
section. The first approach called plan repair respects as many steps of the operator’s
plan as possible, while the second approach called replanning from scratch does not,
but it uses the current state of the environment and creates a completely new plan.

For both methods, the operator’s plan has to be processed first, and the correspond-
ing planning problem can be recreated. The operator’s plan is analyzed after the failure
in the execution has occurred. These failures have the result that not all of the orig-
inal goals of the restored original problem can be achieved if the execution continues.
Therefore, it is required to provide a new plan for goals that cannot be satisfied by
the operator’s plan. A new planning problem has to be created to obtain a plan for
these goals. This plan is then integrated back into the execution. Two solutions that
provide a plan achieving all original goals even though failures occur are presented in
this section.

Restoration of problem from operator’s plan. The operator’s plan can be ana-
lyzed so that the corresponding problem can be recreated. The preconditions and effects
of actions in the operator’s plan can be obtained with the knowledge of the domain.
The initial state and goals of the problem can be then restored from these preconditions
and effects. Causal links between actions can be recreated to show the reason why an
action was added to satisfy the goal.

Analysis of a failure in a plan. Suppose a failure occurs so that some actions cannot
be executed anymore and some actions are not influenced by this failure at all and hence,
can continue to execute. Preconditions of influenced actions are not satisfied due to the
failure, and thus these actions cannot be applied, resulting in some goals that cannot
be reached. These goals are called disturbed goals. Actions that are not influenced
by a failure have satisfied preconditions, are applicable and lead to goals that can be
reached. These reachable goals are called valid goals.

4.1.2.1 Plan repair

In this approach, reachable goals are supposed to be finished to preserve as many plan
steps of the operator’s plan as possible. Doing so means that this part of the operator’s
plan is reused in the repaired plan. The rest of the operator’s plan is connected with
disturbed goals and thus has to be modified. The aim is to found a new plan for these
disturbed goals and join it with the original operator’s plan. In the following sections,
it is described how to obtain this repaired plan.

31

4.1 MINIMAL PLAN REPAIR

Creation of goals

To be able to provide a new plan for disturbed goals, it is critical to ensure that a plan
can be found for these goals. Therefore, an analysis of these goals is discussed in this
section first, followed by a solution on how to generate goals for the new problem to
obtain a new plan.

The problem addressed in this thesis is a pickup-and-delivery problem and therefore,
only two types of goals can appear in the disturbed goals. The first one is that an agv
is at a waypoint and the second one is that a cargo is at a waypoint.

A plan cannot be found if an AGV that becomes not alive at some waypoint is
requested to be at another waypoint. If a failure of an AGV occurs, then this AGV
cannot perform any actions in the real world. This situation is represented in the
corresponding model of the world by a literal saying that an agv is not alive. This
literal is in the preconditions of all actions in the model of a world, and therefore, any
such action cannot be performed with this AGV. This impossibility also means that
this AGV cannot drive to another waypoint. Therefore, any plan cannot be provided
to satisfy such a request.

The reason why any plan cannot be provided is that planners have to achieve a
state in which all goal literals hold. If one of the goal literals cannot be reached, then
a solution cannot be found. Although, the rest of the goal literals can be reachable.
In our domain, this behaviour of planners means an agv that is not alive cannot be
requested on any other waypoint than it already is. Otherwise, no solution could be
found on how to satisfy a cargo at a waypoint. Even though such a literal is reachable
and a plan on how to serve this cargo could be found, for example, any other alive agv
existing in the domain could transport this cargo.

There are situations where a cargo cannot be served as well. There are two reasons
for such a situation - either a failure of AGVs or a failure due to blocked paths. In the
former case, there are no alive AGVs existing in the domain that could serve this cargo.
In the latter case, there does not have to be any connection of paths to the place where
this cargo is or where it is requested to be. All these situations result in no solution so
that no plan can be provided. However, there is no other way to obtain a plan. Such
failure can be solved only by human interaction in a factory. Therefore, such failure
does not have to be analysed and solved in advance because it is a responsibility of a
state of the art planner.

It is also not necessary to analyse in advance whether it is possible to require an
alive AGV to be at a waypoint. If this literal is a goal, then the AGV is requested to
be at the waypoint where a docking centre is. If there is no path leading to the docking
centre, no plan can be provided. Although, the rest of the goals, such as serving a
cargo, can be satisfied. It is possible to analyse the connectivity of paths in advance
and then not to require such a request on a position, but this is a responsibility of a
planner. Moreover, all AGVs have to be in the docking centre at the end to recharge.

It is important to mention that a request for a cargo to be at a waypoint is much
stronger than for an AGV to be at a waypoint. If a cargo is not at a waypoint, the

32

4.1 MINIMAL PLAN REPAIR

production of the factory has to stop, so that this is a strong failure. Whereas if an
AGV is not at a waypoint, where a docking centre is, this AGV will soon run out of
battery, resulting in only a weak failure. This weak failure can, of course, become a
strong failure if all AGVs run out of battery because no AGVs can serve cargos anymore,
and the production of the factory has to stop anyway.

New goals for the new problem can be generated by refining the disturbed goals.
From the analysis discussed in this section, it is necessary to remove all literals request-
ing an AGV that is not alive to be at a waypoint. Handling only this removal has two
significant advantages. Firstly, the refinement is quite fast, and secondly, it has a high
level of achievement. Consequently, it is possible to require a cargo at a waypoint even
though there will be no solution.

The algorithm describing the refinement of disturbed goals is in Algorithm 1. It
terates over all disturbed goals. If there is a literal saying that an agv is at a waypoint,
this AGV is checked. If it is not alive, the literal is discarded.

Algorithm 1 refine_goals(Gdisturbed)
Input: Disturbed goals Gdisturbed

Output: Refined disturbed goals Grefined

1: for each literal lg in disturbed goals Gdisturbed do
2: if lg is (at ?agv ?wp) then
3: if ?agv is not alive then
4: continue;
5: end if
6: end if
7: Grefined ← lg
8: end for
9: return Grefined

Creation of initial state

The initial state of the new PDDL problem is developed from the current state of the
world in which the execution of some actions has stopped due to the occurrence of
a failure. At this moment, the plan repair approach is launched to provide the initial
state for the definition of the problem to provide a new plan for the inexecutable part of
the operator’s plan. To preserve as many plan steps of the operator’s plan as possible,
valid goals are assumed to be finished. This assumption has to be reflected in the initial
state. Goal literals from valid goals have to hold, i.e. they have to be included in the
initial state. Moreover, the initial state has to reflect the state of the world after these
goals have been achieved so that no other conflicts in the state of the world appear.
The current state from which the initial state is derived also contains the literals that
caused the failure of the execution of some actions in the plan.

33

4.1 MINIMAL PLAN REPAIR

Algorithm 2 replay_plan(π, sinit, Lfailures)
Input: Operator’s plan π, initial state of the operator’s problem sinit, failure literals

that induced plan repair Lfailures

Output: Future state sfuture
1: scurrent ← get_current_state(π, sinit)
2: scurrent ← scurrent ∪ Lfailures

3: sfuture ← simulate_future(π, scurrent)
4: return sfuture

The analysis of the plan revealed that the initial state could be obtained by simulating
the future execution of the plan. At the moment when the failure occurred, the current
state is changed to reflect this situation. This information is represented by literals
describing the failure in the current state. From this current state, the rest of the plan
is simulated. Some actions are no longer applicable due to failure literals, and thus,
their effects are not applied to the current state. This way, some further actions will
not be applied because their preconditions depend on the effects of previous actions.
Therefore, the part of the operator’s plan leading to disturbed goals is not applied
and does not change the current state. Whereas actions that are still applicable in
the current state are applied, resulting in the state in which valid goals of the original
operator’s plan are achieved. This state is called the future state. By this approach, as
many as possible plan steps of the operator’s plan are reused.

This simulation of the execution is described as the replay of the plan in Algorithm
2. First of all, it is necessary to obtain the current state of the execution, i.e. the state
in which plan repair is launched. The generation of the current step is needed because
the provided plan contains all plan steps from the start of the execution. Previously
executed steps are then crucial for setting the correct scheduled time of the new plan,
as discussed later. Therefore, the plan carries the information of which actions were
already executed. Further, failures that caused this plan repair are put into this current
state to reflect that failures changed the current state of the world. Finally, the plan

Algorithm 3 get_current_state(π, sinit)
Input: Operator’s plan π, initial state of the operator’s problem sinit
Output: Current state scurrent

1: scurrent ← sinit
2: for each action a in plan π do
3: if a is executed then
4: if preconditions of a hold then
5: apply effects of a to scurrent
6: end if
7: end if
8: end for
9: return scurrent

34

4.1 MINIMAL PLAN REPAIR

can be simulated until its final state. This final state is the initial state of the new
problem.

The generation of the current state is provided in Algorithm 3. The current state
starts as the initial state of the plan. It is further checked for each action from the plan
whether it was already executed and, if so, whether the preconditions of this action hold.
If this action is applicable in the current state, the effects of this action are applied so
that they change the current state. In a similar manner, the future state is simulated
in Algorithm 4. The difference is that the future state starts as the current state, and
only actions that were not yet executed and are applicable are applied. It is important
to notice that these actions lead only to valid goals because disturbed goals cannot be
achieved due to failure literals present in the state. In this way, the future state reflects
the state in which valid goals are already achieved, and moreover, it already contains
the failure literals.

Algorithm 4 simulate_future(π, scurrent)
Input: Operator’s plan π, current state in execution scurrent
Output: Future state sfuture

1: sfuture ← scurrent
2: for each action a in plan π do
3: if a is executed then
4: continue;
5: else if preconditions of a hold then
6: apply effects of a to sfuture
7: end if
8: end for
9: return sfuture

Plan for disturbed goals

A new plan for disturbed goals is gained by the state of the art planner. First of all,
the PDDL problem file has to be created. The definition of the problem is composed of
new goals provided by the refinement of disturbed goals, the new initial state generated
by the replay of the executable remainder of the operator’s plan, and objects that are
equal to objects of the restored problem corresponding to the original operator’s plan.
A system call is then used to wrap a state of the art planner and call it to solve the new
problem provided the domain file and the automatically generated problem file. The
output of the planner is a plan for the disturbed goals.

Joining plans

The newly obtained plan for disturbed goals has to be joined with the original operator’s
plan that provides steps to achieve valid goals, and thus, this part of the operator’s plan

35

4.1 MINIMAL PLAN REPAIR

is reused. The assumption that all valid goals are finished and the creation of the initial
state restrict the possibilities where the newly obtained plan can be placed into the
operator’s plan. The initial state created by replaying the operator’s plan constrains
the conjunction because the part of the operator’s plan that is reused by this process
is assumed to be finished. Therefore the plan for the disturbed goals of the operator’s
plan can be put after this part, i.e. at its end.

Algorithm 5 join_plans(πoperator, πnew, Ow)
Input: Executable remainder of the operator’s plan πoperator, plan for disturbed goals

of the operator’s plan πnew, objects from the problem corresponding to original
operator’s plan Ow

Output: Repaired plan πrepaired

1: πrepaired ← πoperator

2: agvs← all agvs objects from Ow

3: for each agv in agvs do
4: πagv ← select subplan of πnew regarding agv
5: if πagv is empty then
6: continue;
7: end if
8: last_action← last action regarding agv in πrepaired

9: πrepaired ← insert πagv after last_action of πrepaired

10: end for
11: return πrepaired

Durative actions are scheduled, and thus, it is necessary to handle the resulting plan
for each AGV separately to maintain the correct scheduled time of each action. The rest
of the executable operator’s plan and the newly obtained plan are divided into subplans
related to each AGV. The corresponding subplans are then concatenated. The time of
each action in the newly obtained subplan of each AGV is updated so that it fits the
previous action from the executable rest of the operator’s subplan of the corresponding
AGV. See Algorithm 5.

The benefit of such conjunction is that the rest of the executable operator’s plan can
continue to execute while the disturbed part is repaired and then connected to the end.
After the repair and conjunction of plans, the resulting plan can continue to execute
because all AGVs and cargos are at expected waypoints, and the state of the world is
expected so that further actions can be performed.

Plan repairer

A failure in the execution of the operator’s plan launches the plan repair method. First
of all, the operator’s PDDL plan file is parsed, and the corresponding problem file is
restored. The problem file contains the information about the initial state, goals and
objects of the operator’s plan. Further, the operator’s plan is analyzed so that the new

36

4.1 MINIMAL PLAN REPAIR

problem for the affected part of the operator’s plan can be automatically generated. A
state of the art planner provides a plan that is parsed and joined with the operator’s
plan so that the whole process can repeat.

The automatic generation of the problem for the affected part of the operator’s plan
attempts to reuse most of the original operator’s plan. The operator’s plan is analyzed,
and its execution is simulated until the end. The replay of the operator’s plan provides
a future state in which goals unaffected by failures are achieved while goals influenced
by failures are not. Moreover, this future state carries information about failures. Goals
influenced by failures are disturbed goals for which a new plan has to be provided. A
state of the art planner ensures the generation of the new plan provided a domain and
problem files. The problem file is automatically generated from the future state, which
is the initial state of the new problem, and refined goals developed from operator’s goals.
Such an initial state of the problem assures that as many of the operator’s plan steps
as possible are preserved. The goals have to be refined to guarantee that the resulting
plan can be provided for cases in which a solution to the task exists in general.

Algorithm 6 Repair plan
Input: Current plan file Fcurrent, domain file Fdomain. Objects Ow, goals G and initial

state sinit from the problem corresponding to original operator’s plan. Failure
literals that induced this plan repair Lfailures.

Output: Current plan file Fcurrent

1: πcurrent ← parse plan from Fcurrent

2: sfuture ← replay_plan(πcurrent, sinit, Lfailures)
3: Grefined ← refine_goals(G)
4: Fproblem ← create PDDL problem file, in which init is sfuture, goal is Grefined and

objects are Ow

5: Freplanned ← call a planner with domain file Fdomain and problem file Fproblem

6: πreplanned ← parse plan from Freplanned

7: πrepaired ← join_plans(πcurrent, πreplanned, Ow)
8: Fcurrent ← save πrepaired

9: return Fcurrent

Algorithm 6 realizes the plan repair method8. The current plan is parsed and replayed
within the occurred failure so that the future state is obtained. The future state is the
final state of the plan after all applicable actions are performed. A new problem is
generated from refined goals and the future state as the init. A new replanned plan
is obtained by solving this problem. Finally, the resulting plan is parsed, joined with
the current plan and saved to the PDDL file. If another failure occurs, the process can
repeat until the plan is finished.

The data flow diagram of the algorithm is depicted in Figure 6. The operator’s
PDDL plan file is parsed in Plan Parser. The resulting current plan is analysed in
Plan Analyzer based on the failures that occurred during the execution of the plan

8Check of empty goals, plans or files is omitted for better clarity.

37

4.1 MINIMAL PLAN REPAIR

and induced the plan repair and based on the knowledge of the problem corresponding
to the original operator’s problem. It provides new goals and new init for the new
PDDL problem that is created in the PDDL Problem Generator. This problem and
the corresponding PDDL domain are input to the state of the art planner wrapped in
Replanner, which provides the plan. The resulting PDDL plan is again parsed in Plan
Parser and joined with the current plan in Plan Joiner. The provided PDDL plan file
replaces the current plan provided by the operator.

new goals

new initPlan Analyzer

PDDL problem file

PDDL Problem
Generator

PDDL plan
Replanner

repaired PDDL
plan file

Plan Joiner

current PDDL
plan file

PDDL plan

current
plan

current plan

Plan Parser

replanned
plan

Plan Parser

PDDL
domain

file

objects

operator's
plan

Operator

init

objects Restored
PDDL

problem

PDDL domain

failures

Failures

goals

Figure 6: Plan repair method. Violet rectangular blocks are forming the plan repair
method. Elliptical blocks represent data.

4.1.2.2 Replanning from scratch

This approach provides a completely new plan if failures occur. The disturbed goals
are replanned from the current state of the execution in which the failure appeared.
The time of the resulting plan is updated so that it fits the previously executed action
from the operator’s plan. The method is described in more detail in this section.

Creation of goals. The goals of the new planning problem are the operator’s goals as
well. These goals are refined in the same way as in the plan repair approach to ensure
that the plan can be found.

Creation of initial state. The initial state of the new planning problem is the current
state of the execution, including the failures that triggered the replanning. The current
state is generated by simulating the provided plan until the last executed action. Al-
gorithm 3 is used to obtain the current state of the execution. This state merged with
failure literals is the initial state of the new planning problem. Because a new plan is
generated from this state and can differ from the operator’s plan, the execution has to
stop to make the plan applicable.

38

4.2 SYSTEM

Joining plans. The newly obtained plan for disturbed goals is joined with the opera-
tor’s plan to ensure continuity. The newly obtained plan is again divided into subplans
for each AGV. The corresponding subplans are then concatenated with the correspond-
ing already executed subplans of the operator’s plan. Algorithm 5 is the same also for
this approach with the exception that the last action regarding an AGV in the oper-
ator’s plan is the last executed action. Scheduled actions in the operator’s plan are
discarded, and new actions from the new plan are added.

Replanning method. The method is very similar to the plan repair algorithm 6.
Failures during the execution of a plan induce the replanning from scratch method. The
current operator’s plan is parsed and replayed so that the current state of the execution,
including failures, is obtained. The goals achieved in this state are valid goals, and the
rest are the disturbed goals for which a new plan has to be provided. Operator’s goals
are refined to ensure the plan can be provided. A new planning problem is then created
using the current state as the initial state and refined goals as the goal. A new plan is
gained by a state of the art planner, which takes the domain file and the new planning
problem file. The resulting plan is parsed and joined with the operator’s plan so that
the scheduled time of actions in the plan fits the last executed action. This plan is
saved and used as the current plan so that the whole process can repeat.

4.2 System

The system for the organization of robots is called REX, and its overview described in
more detail is given in [1]. In this chapter, REX is briefly introduced, and the main
concern is then focused on the part of the system referred to as Minimal plan repair.
The responsibility of this system is to react to failures occurring during the execution
and provide a repaired plan which will be very similar to a plan created by an operator.

4.2.1 The REX system

The system is composed of three main modules depicted in Figure 7. Each robot will
have its own localization unit so that it is possible to obtain its position at any time.
If a robot is controlled autonomously, it will also have a control unit responsible for
navigation and control, i.e. the execution. Each robot will communicate with the server
stored in a cloud. The server represents the central control authority that connects all
involved mobile platforms into a fleet.

The position information from the localization unit is necessary mainly for navigation
from one place to another one. It is also useful for the consequent planning. The task
of the control unit is to move to the goal position based on the initial position provided
by the localization unit and to control the carried technology such as a lift. This way, it
will perform the plan obtained from the server system while sending back the feedback
from the execution. The server system consists of the planning and scheduling of tasks

39

4.2 SYSTEM

Enterprise systems (ERP, MES)

Custom communication protocol

Map
management

Data
analysis

Task
planning Path planning

Communication protocol (VDA5050)

Control unit Localization unit

Custom communication protocol

AGV (low level control)

Se
rv

er
AG

V
hi

gh
 le

ve
l c

on
tro

l

Figure 7: The REX ecosystem

to the fleet of mobile robots, map management, diagnostics and visualizations. All three
modules are connected with each other through communication protocols allowing the
modularity of the system in accordance with Industry 4.0. They work as stand-alone
subsystems usable in other systems as well. The communication protocol with the
hardware platform enables independence of suppliers and provides the openness of the
system as well as its universality. The server system interacts with companies systems
like ERP through a communication interface. It is supposed that production processes
are already digitalized to a certain level. Thanks to that, the integration of the system
with the customer company will be much faster and easier. The proposed system in
this thesis is part of the task planning and scheduling subsystem of the server system.

4.2.2 Integration of plan modification

Depending on the level of automatization of the factory, three stages can be distin-
guished. In the first stage, the factory has low automatization. In the second one, it is
partly automatized. The third stage is a highly automated factory. The REX system
can be applied to all three levels.

A low automatization of the factory usually means that material required for pro-
duction is transported by people. The plan for the transportation of goods is usually
done by experienced operators, also known as dispatchers. There are usually not many
enterprise systems in the factory. If the REX system is applied, operators can enter

40

4.2 SYSTEM

their plan into the REX web application and then robots, which can also be supplied
by Datavision, can perform the scheduled tasks. If a failure during the execution of the
plan occurs, the system can handle it.

In the partially automatized factory, there can be enterprise systems with manufac-
turing systems that control the production more automatically. In such factories, the
transportation of goods can still be performed by people, but the scheduled tasks are
assigned by a system. The operator usually specifies the production plan in the system,
and the rest can be controlled on-demand automatically. For example, if there is not
enough specific material at a conveyor belt, the system automatically assigns robots to
bring the material there. If the REX system is deployed in such a factory, the REX
web application is connected through a communication interface to the enterprise and
manufacturing systems in which the production plan is specified by the operator and
controlled by the system. Scheduled tasks can be then performed by robots, and if a
failure appears, our system can fix it.

If the factory is highly automatized, then it usually has enterprise and manufacturing
systems that control the production and robots that perform these tasks. These robots
are usually not very autonomous so that they only follow a magnetic line. In case a
failure occurs during the execution of a plan, there is no automatic solution to that, and
it has to be resolved by people. The REX system can contribute to such automatized
production by automatic resolution of failures so that the execution can continue.

In all three cases, a plan is either entered directly into the REX web application by
an operator or transmitted through a web interface from enterprise and manufacturing
systems. Finally, this plan carries the information on which robot should transport
which material to which place at what time. Such a plan is then represented by PDDL
and sent through the server interface into Plan Monitor, see Figure 8. The Plan Mon-
itor block sends the plan, which is transformed and transmitted through a VDA5050
communication protocol, to a robot’s control and execution block. This control unit
then moves the robot and controls its pickups and dropoffs to perform the assigned
tasks. The feedback from the execution is reported back to the Plan monitor. When
some failures occurrs, the new plan is found in the Plan repair and sent back to the
Plan monitor so that the execution of the plan can continue autonomously.

To preserve the operator’s plan as much as possible, the original operator’s planning
problem has to be reconstructed, and the information gained is then used to repair
the plan in this way. This original operator’s planning problem is reconstructed at the
time when the operator’s plan is entered into a system, and it is kept in the Problem
knowledge block.

4.2.2.1 Implementation

This section focuses on Plan monitor, Plan repair and Problem knowledge blocks which
were implemented in this thesis. The domain file implemented in PDDL 2.1 was already
discussed in more detail in section 4.1.1.1.

41

4.2 SYSTEM

operator's
plan

Operator

Web interface

operator's
problem

current
plan

current plan

failures

Plan MonitorERP
MES

Server interface

repaired
plan

Plan repair

execution status

Communication
protocol

Control and
execution Robot

objects, init state, goals

Problem
knowledge

domain file

Domain file

Figure 8: Overview of the REX system relevant to the plan repair

First of all, more details on the working of the plan repair in the system are provided.
Finally, implementation details are described at the end of this section.

Plan monitor

The input to the Plan monitor block is a PDDL plan. The whole plan is sent to a robot’s
control unit and transformed into a behaviour tree which is then executed. The status
of the execution is reported back to the Plan monitor, which keeps the information
about the current execution state up to date. If a failure occurs, the status that the
action was not executed successfully is reported. The Plan monitor also receives the
reason for a failure in the form of a PDDL literal. The failure is processed, and the
plan repair is triggered.

The processing of a failure also allows a preemptive replanning to some extent. If the
Plan monitor receives that an action was not successfully executed, it aborts all actions
which are relevant to the affected AGV and should be performed after the failed action.
Moreover, the Plan monitor validates the whole plan and determines which actions will
also be unsuccessful due to this failure in future. It aborts these actions and all relevant
actions after it. Doing so allows also repairing the plan of the so far unaffected robots.

Suppose that agv0 cannot drive from wp3 to wp5 because there is an unavoidable
obstacle on this path, see the visulalisation of plans in Figure 11. The robot will report
in the feedback that this action failed and the reason for it is that path from wp3 to wp5
is blocked. During the validation of the plan, preconditions of all scheduled actions are
checked. If preconditions of an action do not hold because of this failure anymore, the
action is aborted. This way, all following actions that should be applied after this action
are also aborted. As a result, the rest of the plan of agv0 will be aborted. Moreover,
the action of agv1 to drive from wp3 to wp5 will also be aborted. The rest of the plan of
agv1 since this action will also be aborted, even though agv1 is still executing previous

42

4.2 SYSTEM

actions successfully.
It could be possible to cancel also some previous actions that leads agv1 to wp3.

This approach could shorten the plan of agv1 in the way that it could drive other paths
going around the path from wp3 to wp5 earlier. But if doing so, fewer actions from
the operator’s plan would be preserved. This level of preemptive replanning would be
valuable only in the replanning from scratch approach. Consequently, this level of the
method is not used not to influence the preservation of the original operator’s plan.

Problem knowledge

The Problem knowledge block holds the original operator’s problem. The input to the
REX system is only in the form of a plan. Therefore, the planning problem correspond-
ing to the operator’s plan has to be restored. The planning problem is restored in the
Plan monitor when an input PDDL plan arrives. This original operator’s problem is an
input of the Problem knowledge block. The problem is kept until the plan is performed
till the end. This problem consists of objects, the initial state and the goal. All these
components are required in the Plan repair as described in 4.1.2.1.

Implementation details

The majority of the REX subsystems are written in ROS9 2 in version Foxy10 in C++.
ROS 2 is used because of the following reasons. First, this framework supports the con-
cept of modularity that is independent of a programming language. A package is a set
of code that can be written in C++ or in Python (some other programming languages
are also supported). Each package is then built and can be used as a standalone system
which can be reused in other projects and applications. Second, ROS 2 is intended to
be a more real-time11 than its previous version ROS 112. Third, the latest version of
ROS called Noetic13 is supported until May, 2025 and no more versions of ROS will be
released14. Fourth, such a robotics framework provides services, hardware abstraction,
low-level device control or passing of messages between processes. All these tools and
libraries make development easier. Last, ROS 2 is widespread so that lots of libraries
and open-source packages can be found and used. C++ is used because it has better
support in ROS 2 than other languages.

Plan monitor, Plan repair and Problem knowledge are ROS 2 packages implemented
in C++. Plan repair is an Action server, and Plan monitor is an Action client to this
server. Plan monitor sends a request containing the current plan and failures to Plan

9Robot Operating System
10The official documentation of ROS 2 Foxy is available at https://docs.ros.org/en/foxy/index.

html
11Real-time programming in ROS 2: https://docs.ros.org/en/foxy/Tutorials/

Real-Time-Programming.html
12The official documentation of ROS is available at http://wiki.ros.org/Documentation
13http://wiki.ros.org/noetic
14Distributions of ROS 1: http://wiki.ros.org/Distributions

43

https://docs.ros.org/en/foxy/index.html
https://docs.ros.org/en/foxy/index.html
https://docs.ros.org/en/foxy/Tutorials/Real-Time-Programming.html
https://docs.ros.org/en/foxy/Tutorials/Real-Time-Programming.html
http://wiki.ros.org/Documentation
http://wiki.ros.org/noetic
http://wiki.ros.org/Distributions

4.2 SYSTEM

repair. The server responds with a repaired plan in a result of the action message after
the request (to repair a plan) is processed. The Action server is used because it is a
non-blocking type of service, i.e. the request is processed in another thread so that
the Plan monitor is not blocked by waiting for the response. The Plan monitor node
cannot be blocked because it has to handle the communication with the control unit of
a robot.

Problem knowledge is a Service server that keeps the original operator’s problem.
Plan repair is a Service client to this server. Plan repair requests the objects, the initial
state and the goal from the original operator’s problem so that this knowledge can be
used to generate a new planning problem in the Plan repair node automatically. This
problem is then used with the domain file to provide a new plan fixing the failures in
the execution of the operator’s plan. This service is necessarily a blocking one because
the code in the Plan repair package is dependent on the response of the server and
cannot continue without it. Moreover, the processing operation is very fast, so that the
Action server is not needed.

44

Chapter 5
Evaluation

The goal of this chapter is to evaluate the two proposed methods. The organization
of this chapter is the following. First, the simplified architecture on which the evalua-
tion was performed is described. Then, the experimental setup in the form of a planning
problem is presented. Various testing scenarios follow. They aim to investigate the sys-
tem’s ability to modify the operator’s plan when a failure occurs. The metrics assessing
the behaviour of the proposed systems focus on the difference from the operator’s plan,
the total delay of the modified plan from the operator’s plan and an average delay of a
cargo in the presented case study further. The first criterion evaluates the property for
which the plan repair method was designed, and the other two metrics are investigating
the properties valuable for industrial operations. Finally, the experimental results are
interpreted and compared in the sense of these metrics.

5.1 Testing architecture

The majority of the subsystems (coloured in grey) in Figure 8 are not finished yet,
because Datavision is still developing them. Therefore, it is necessary to evaluate the
proposed method on the simplified system for testing purposes. This simplified system
is depicted in Figure 9.

First of all, an operator’s plan is generated by a state of the art planner. Furthermore,
this plan and failures occurring at a certain time are processed together in the Current
Plan Generator. The output of this block is a current plan in which all actions have
a status executed until the time when the failure appeared. Since that time instant,
the plan is validated. The failure causes some actions to no longer be applicable. The
status of these actions is set to aborted. Recall that this method relevant to preemptive
replanning was already discussed in the Plan monitor section in 4.2.2.1.

The generated current plan and failures are input to the simplified Plan Monitor
block and formed into an action message. The current plan and failures are recon-
structed in the Plan Repair package, in which the current plan is repaired as described
in section 4.1.2.1. The Problem Knowledge block provides objects, the initial state
and goals from the original operator’s problem through service to the Plan Repairer
package. The original operator’s problem is kept in the Problem Knowledge block and

45

5.2 GENERATION OF DATA

operator's problem

current
plan

current plan file

failures

Plan Monitor

repaired
plan

Plan repair
objects, init state, goals

Problem
knowledge

domain file

original
operator's planState of the

art planner

Domain file

Operator's
problem file

Current Plan
Generator

failure literals file
Failures

Figure 9: Simplified architecture of the system for testing purposes

initialized from the provided problem file. The generation of the operator’s problem file
and failures files is the subject of the following section.

5.2 Generation of data

The input data simulating the real execution of a plan in an industrial environment
were created to be able to test and evaluate the proposed systems. There are three
input files that have to be provided into the system in the testing architecture. These
files are the domain file, a problem file and a file containing failures.

The domain file modelling the world was already described in section 4.1.1.1. The
problem file is a PDDL planning problem corresponding to the operator’s plan. To
create the operator’s plan, the TFD planner is used, whose inputs are a planning domain
and a planning problem. Therefore, the operator’s problem file has to be created. The
way this problem was created, its description and the resulting operator’s plan are
discussed in the first part of this section.

The second part of this section deals with the testing scenarios in which two types of
failures occur. The time when they can occur and the way it was chosen are discussed
in this part. The failure appearing at a particular time then corresponds to the input
failures file.

46

5.2 GENERATION OF DATA

5.2.1 Operator’s problem file

To be able to test the proposed methods, it is necessary to have a plan provided by an
operator. The plan can be obtained by a state of the art planner, but then a planning
problem has to be specified. Therefore, the aim was to create such a planning problem
that would correspond to a real industrial environment as closely as possible. However,
there are some limitations on the runtime and memory that constrain the task. The
process of finding such a planning problem is described in the next section. In the
following sections, the final planning problem and the corresponding operator’s plan
are described in more detail.

5.2.1.1 Analysis of planning problem describing an industrial envi-
ronment

Our first thought was to generate a warehouse-like environment with 8 AGVs transport-
ing 30 cargos. The map had 78 waypoints, including locations for pickups, deliveries,
docking and crossroad points. The problem was first run with the OPTIC planner on a
computer with 16 GB RAM and four cores and then on a computer with 32 GB RAM
and four cores. No solution was obtained on any of those computers as they ran out of
memory.

The problem then was decreased to 3 waypoints - one for pickup, one for delivery and
one for docking - to avoid the performance issues. This attempt was also unsuccessful
because OPTIC did not provide any solution in 8 hours. Therefore, we decided to
decrease the complexity of the problem to only 3 AGVs and 10 cargos so that the
solution will definitely be provided. The aim was then to find the largest amount of
waypoints for which a solution can be obtained in a reasonable time. This time limit
was set to 30 minutes as it is usually used in planning competitions. Two planners were
chosen to compare their performance - OPTIC and TFD.

Finding the largest amount of waypoints that can be solved depends a lot on the
arrangement of waypoints and their interconnection. There are two possible extremes
in how waypoints can be connected. Either, there are all possible connections, i.e. a
bidirectional path between every two waypoints. This configuration of waypoints and
paths is called all and represents a complete bidirectional graph, see Figure 10a. Or,
there is a minimal amount of paths connecting waypoints in the way that an AGV can
still drive to any possible location. Each waypoint has a maximum of two bidirectional
connections so that paths are only between the consecutive locations. As a result,
this configuration forms a line of interconnected waypoints as depicted in Figure 10b.
Hence, this confuguration is called line. Between these two extremes, a map for a real
industrial environment can be designed. This map can have maximally the number of
waypoints as in configuration all and the minimal number of edges as in configuration
line to ensure that the solution of such a planning problem can be found.

I created a script to automatically generate a problem for a certain amount of AGVs,
cargos and waypoints in these two configurations. In the problem, all AGVs start and

47

5.2 GENERATION OF DATA

wp1

wp2

wp5wp4

wp3

(a) Configuration all in which
each two waypoints are con-
nected

wp1

wp2

wp5wp4

wp3

(b) Confuguration line contain-
ing a minimal amount of connec-
tion to be able to drive to any
waypoint

Figure 10: Two extreme configurations of waypoints

finish in the docking position at waypoint wp0. All cargos are in the pickup position
at waypoint wp1 at the start, and their goal positions are equally distributed over
all remaining waypoints. Such placement of delivery locations creates a dependence
between the number of cargos and waypoints. If the number of waypoints is equal
to the number of cargos plus two, i.e. there is exactly one cargo for each remaining
waypoint, then there is no significant difference in generated problems for a higher
amount of waypoints.

To find the biggest map describing an industrial environment, a set of problems was
generated for a fixed number of 3 AGVs and 10 cargos. The amount of waypoints is
increasing from 3 to 12 in configurations all and line. The minimal amount of waypoints
is three - one for pickup, one for delivery and one for docking, and the maximum is
equal to the number of cargos plus two. This set of problems was run on OPTIC and
TFD, and the results are in Table 1.

In Table 1a, it can be seen that configuration line is problematic for OPTIC planner
because the last provided solution was for 9 waypoints in this confuguration. TFD
planner solved the biggest problem in the set for both configurations, but it did not
provide any solution for two problems, see Table 1b. The makespan is shown for the last
problem that both planners solved, which means 12 waypoints for configuration all and
9 for configuration line. From these results, it can be seen that TFD provided shorter
plans than OPTIC. The runtime is shown for the same problems as the makespan. It
can be seen that TFD solved these problems in a significantly shorter time than OPTIC.

Because both planners successfully solved all problems in configuration all, one more
experiment was carried out. The number of AGVs remained the same, and the number
of cargos was increased to 20. Thus, the set of problems for two configurations was
generated for waypoints going from 3 to 22. The results from experiments on both
planners are shown in Table 2.

48

5.2 GENERATION OF DATA

configuration max waypoints
solved

no solution found
for waypoints makespan runtime [s]

all 12 - 136 72.44
line 9 10-12 376 1437.3

(a) Results for OPTIC planner

configuration max waypoints
solved

no solution found
for waypoints makespan runtime [s]

all 12 - 130 0.8
line 12 6-7 300 0.5

(b) Results for TFD planner

Table 1: Results from a set of problems with 3 AGVs, 10 cargos and an increasing
number of waypoints from 3 to 12 in configuration all and line run on OPTIC and
TFD planners.

configuration max waypoints
solved

no solution found
for waypoints

makespan
(wp13)

runtime [s]
(wp13)

all 14 12, 15-22 248 500.38
line 6 7-22 - -

(a) Results for OPTIC planner

configuration max waypoints
solved

no solution found
for waypoints

makespan
(wp13)

runtime [s]
(wp13)

all 22 5, 6-12, 14-17 270 1364.2
line 22 3-17 - -

(b) Results for TFD planner

Table 2: Results from a set of problems with 3 AGVs, 20 cargos and an increasing
number of waypoints from 3 to 22 in configuration all and line run on OPTIC and
TFD planners.

In Table 2, it can be seen that OPTIC solved the maximal number of 14 waypoints
in configuration all and 6 in configuration line. In contrast, TFD provided solution for
the biggest problem in the set again. However, it also did not solve several problems
in between. The makespan and runtime could be compared only for configuration all
because the same problem was not solved by both planners in configuration line. From
the obtained results, it can be seen that OPTIC provided a shorter plan than TFD in
a much faster time for a problem with 13 waypoints in configuration all.

To sum it up, TFD seems to be good enough to solve interestingly big problems.
Still, it has a significant drawback: it is not very deterministic because it did not
solve some problems in the set. OPTIC is very deterministic, but it cannot solve big
enough problems. Further, TFD showed a better performance than OPTIC for a chosen
problem from the smaller set of problems when comparing the length of the plan and

49

5.2 GENERATION OF DATA

the runtime. However, the results for TFD was significantly worse for a chosen problem
from the bigger set of problems than for OPTIC. More analysis would be necessary
to properly compare which planner has a better performance for such a problem from
the industrial environment. Nevertheless, the performance is not very relevant to the
analysis aiming at finding the biggest map.

To conclude, the biggest map of the industrial environment solvable by both planners
in 30 minutes can have maximally 14 waypoints, and the amount of connection can be
minimally the same as it is for 6 waypoints in the configuration line, i.e. 5 bidirectional
paths. The resulting map corresponding to an industrial environment was designed for 3
AGVs, 6 cargos and 9 waypoints in the end, see Figure 2. The additional requirements
for the map were that it should be small enough so that a planner will provide a
solution for it for sure and so that testing scenarios can be easily shown, imagined and
demonstrated on it.

5.2.1.2 Initial problem file

This section describes the final design of the operator’s problem representing the pickup-
and-delivery problem in an industrial environment such as a factory concerning pro-
duction and including logistics. This problem is described in the motivational example
in section 1.2 in general. A detailed description of the problem in PDDL is provided
in this section. The complete code is attached in Appendix A.2.

The map that is described by a PDDL problem is depicted in Figure 2. There are
nine waypoints, wp0 to wp8, representing locations. The storage center is in wp0, where
cargos are picked up. Locations for deliveries of these cargos are marked by waypoints
wp2 to wp7. Each robot starts and ends in the docking centre, denoted by the waypoint
wp1. Waypoint wp8 is only a crossroad. The fleet consists of three agvs that deliver six
cargos in this problem. To sum up, there are the following objects used in the problem
- three AGVs, agv0 to agv2, six cargos, cargo0 to cargo5, and nine waypoints, wp0 to
wp8.

In the initial state, the initial properties of these objects are defined. All three agvs
are alive and at the docking center, i.e. wp1. All six cargos are at the storage center, i.e.
wp0. The paths are bidirectional between each two waypoints according to the Figure
2. The weights of these edges are set as the travel times in both directions.

The goal state describes the state after this pickup-and-delivery problem is satisfied.
This means that all agvs are back in the docking centre, i.e. wp1 and all cargos are on
the requested positions. The requested positions are marked by the green text in the
Figure 2 and yields cargo0 at wp2, cargo1 at wp3, cargo2 at wp4, cargo3 at wp5, cargo4
at wp6, cargo5 at wp7.

5.2.1.3 Initial PDDL plan

A state of the art planner, more specifically TFD, was used to obtain a plan from
the described PDDL domain and corresponding initial PDDL problem. The plan is

50

5.2 GENERATION OF DATA

attached in Appendix A.3.
The planner decided to assign cargo0 and cargo3 to be served by agv0, cargo2 and

cargo5 by agv1, and cargo1 and cargo4 by agv2. The paths along which AGVs should
drive are depicted in Figure 11. The first journey to serve the first assigned cargo is
coloured in red, the second in yellow and the remaining blue colour denotes the trip
back to the docking station.

wp3
cargo1

wp2
cargo0

wp4
cargo2

wp6
cargo4

wp5
cargo3

wp7
cargo5

wp1

7

14

wp0

11

wp8
2

2

2

2

4

5

3

2

2

2

Storage centre
cargo0 cargo1
cargo2 cargo3
cargo4 cargo5

Docking centre
agv0 agv1

agv2

(a) Path describing plan of agv0
serving cargo0, cargo3 and return-
ing to dock

wp3
cargo1

wp2
cargo0

wp4
cargo2

wp6
cargo4

wp5
cargo3

wp7
cargo5

wp1

7

14

wp0

11

wp8
2

2

2

2

4

5

3

2

2

2

Storage centre
cargo0 cargo1
cargo2 cargo3
cargo4 cargo5

Docking centre
agv0 agv1

agv2

(b) Path describing plan of agv1
serving cargo2, cargo5 and return-
ing to dock

wp3
cargo1

wp2
cargo0

wp4
cargo2

wp6
cargo4

wp5
cargo3

wp7
cargo5

wp1

7

14

wp0

11

wp8
2

2

2

2

4

5

3

2

2

2

Storage centre
cargo0 cargo1
cargo2 cargo3
cargo4 cargo5

Docking centre
agv0 agv1

agv2

(c) Path describing plan of agv2
serving cargo1, cargo4 and return-
ing to dock

Figure 11: Visualization of plans of individual AGVs. The red colour marks paths
required to deliver the first assigned cargo, the yellow colour to deliver the second
assigned cargo and the blue colour denote paths necessary to get to the docking centre.

5.2.2 Testing scenarios

The proposed methods are tested with two types of failures - failure of an AGV and
failure due to a blocked path. Any other types of failures are not in the scope of this
thesis.

A failure of an AGV is represented by a literal (not (alive ?agv)), where ?agv is
the name of the AGV which failed. The real reason for a failure of a robot occurred
during the execution can be for example that a robot is out of the battery, a connection
to a robot is lost, or a hardware component like motors, a computer, a lift, etc. are
broken or stuck. All these cases are expected to get transformed into this literal.

A failure due to a blocked path can happen because of an obstacle on this path.
Recall that it is assumed that all AGVs are smart enough to avoid each other on a path
and that there is always enough space for such manoeuvres. They can also avoid small
obstacles such as an AGV that failed on a path or a waypoint. It is also assumed that
if there is some obstacle, it is always in both directions because the path is considered

51

5.2 GENERATION OF DATA

to be a single bidirectional line. Therefore, this failure is represented by two literals -
(not (path ?wp1 ?wp2)) and (not (path ?wp2 ?wp1)), where ?wp1 and ?wp2 are
some waypoints.

The testing scenarios are designed to test the proposed methods fixing these two
types of failures occurring during the execution of the initial PDDL plan attached in
Appendix A.3. The testing scenarios are divided into two parts, each relating to one
type of failure. There are 42 different interesting scenarios in total in which a failure
can occur and affect the plan. The discussion of how the testing scenarios were selected
follows in the next two sections.

5.2.2.1 Generation of AGV failure

There are three interesting time instants when a failure of an AGV can happen:

� before the start of the plan execution,

� before the execution of a load action and

� after the execution of an unload action.

Notice that failure occurring during the time when a cargo is in an AGV is not tested.
The cargo that is in an AGV is stuck there and cannot be accessed. To fulfil the task
of delivering this cargo, another cargo of the same category has to be transported to
the delivery place. For example, suppose that an AGV will encounter a failure while
transporting a box of car wheels. If there is another box of identical car wheels, then
the task can still be fulfilled. To satisfy this task, another AGV has to pick up this
box in the storage centre and transport it to the delivery place. As a result, this case
is very similar to the situation when a failure of an AGV occur before the execution of
a load action. In both cases, another AGV has to serve that cargo. Therefore, it is not
necessary to also investigate the situation when a failure of AGV appears during the
transportation of goods.

There are also various driving actions during which a failure of an AGV can occur.
However, all these situations are very similar to each other, and they do not bring any
further interesting information to the already selected three time instants.

Each AGV is assigned to serve various cargos to different locations. Hence, there is
a slight difference in testing scenarios depending on an AGV that failed and depending
on the number of cargos served. There are five interesting time instants for an AGV
when its failure can occur:

� before the start of the plan execution denoted as dead_agv_before_start,

� before the execution of a load action of the first transported cargo, denoted as
dead_agv_before_1st_load,

52

5.2 GENERATION OF DATA

� after the execution of a unload action of the first transported cargo, denoted as
dead_agv_after_1st_unload,

� before the execution of a load action of the second transported cargo, denoted as
dead_agv_before_2nd_load, and

� after the execution of a unload action of the second transported cargo, denoted
as dead_agv_after_2nd_unload.

There can be a failure of one AGV at any moment or two of them. If there is
a failure of three AGVs, the task cannot be fulfilled. There are five interesting time
instants when a single AGV can fail, and there are three AGVs to test on these cases,
generating 15 testing scenarios in total.

Further scenarios should investigate the failure of two AGVs. These failures occur
at the same time instant for simplicity. Failures are also set to appear in these five
interesting time instants. However, both AGVs do not drive the same path at the same
moment, so that these five time instants are not the same for both robots. Failures
are simulated to occur in the way that they appear before a load action of the first of
two investigated AGVs executing this action and after an unload action of the second
of two investigated AGVs performing this action. As a result, none of these AGVs fails
during the transportation of goods. There are three combinations of AGvs that can fail
- agv0 and agv1, agv1 and agv2, agv0 and agv2. For these three combinations and five
time instants, 15 more testing scenarios are generated in total.

In total, there are 30 testing scenarios investigating a failure of an AGV in vari-
ous time instants for different AGVs and their combinations, which should thoroughly
examine the behaviour of the proposed methods.

5.2.2.2 Generation of failure due to blocked path

Paths are selected to show the behaviour of the proposed system if one, two or three
AGVs encounter a blocked path during the execution of their plans. From Figure 11,
paths through which AGVs are driving during the execution of their plan were analysed,
and the appropriate, interesting paths were selected based on this analysis. In Figure
11, it can be seen that only agv2 is driving through the path between waypoints wp4
and wp6. This situation is denoted with the prefix path_1agv. Further, it can be seen
that agv2 and agv1 are both driving through the path between waypoints wp2 and
wp4. This case is named as path_2agv. Finally, all AGVs are driving through the path
between waypoints wp1 and wp3. This situation is called path_3agv. Blocking of these
three bidirectional paths is tested to investigate the behaviour of the system when a
failure due to a blocked path occurs.

There are also many time instants when this failure can appear. However, only three
time instants are interesting to investigate because other cases are similar to them.
Thus, the investigated time instants when a path becomes blocked are:

53

5.2 GENERATION OF DATA

� before the start of the plan execution denoted with the suffix before_start,

� before the execution of action drive through that path, named as before_path,
and

� after the execution of action drive through that path, called no_return, because
an AGV cannot return the same way back.

If more AGVs encounter a blocked path during the execution of their plans, these
time instants are modified as follows. For two AGVs scheduled to drive through such a
path, it can be further distinguished that the path is blocked:

� before the execution of action drive of the AGV that is scheduled earlier to drive
through that path, denoted as before_1st_path, and

� after the execution of action drive of the AGV that is scheduled earlier to drive
through that path, denoted as after_1st_path, in which agv1 is encountering
no_return scenario and agv2 still before_path scenario.

No more time instants can be investigated for these two AGVs because then only one
AGV would be scheduled to drive through a blocked path. There is only one possible
different combination of AGVs (namely agv0 and agv1) that could follow the same pat-
tern for testing. However, this combination would not bring any additional interesting
information about the behaviour of the system.

For three AGVs, the path is further blocked:

� after the execution of action drive of the AGV that is scheduled to drive through
that path as the second one since the beginning denoted as after_2nd_path, and

� before the execution of action drive of the AGV that is scheduled to drive through
that path as the third one since the beginning denoted as before_3rd_path

Further time instants would not test the behaviour of the system when three AGVs
failed due to a blocked path. Moreover, only these two mentioned scenarios and the
case before_start are investigated because other time instants are very similar to them
and thus, do not bring any more information about the proposed system.

Finally, three more specific situations were created. First, all paths to the waypoint
wp4 are blocked before start and after agv1 unloads a cargo there. No plan is provided
by a state of the art planner for these two cases because the goals cannot be anyhow
satisfied. Therefore, these two scenarios were not considered in the final evaluation.
Second, there are three blocked bidirectional paths so that AGVs are forced to use
the path between waypoint wp0 and wp6. The failure occurs before the start of the
execution of plans, and therefore, it is named path_force_wp0_wp6_before_start. The
third situation is similar. There are also three blocked bidirectional paths before the
start of the execution of plans. In this case, AGVs are forced to drive through the

54

5.3 METRICS DESCRIPTION

waypoint wp8. These two last scenarios are designed to force AGVs to go around the
conveyor belt, see Figure 2.

To conclude, there are 14 different scenarios in total investigating the failure due to
a blocked path that should properly test the ability of the system to repair the plan.
In total, there are 44 testing scenarios for both types of failures together. All of them
are designed to examine the system in various situations and evaluate its behaviour
according to the metrics described in the next section in more detail.

5.3 Metrics description

Three metrics were chosen to compare the ability, behaviour and performance of the two
proposed methods - plan repair and replanning from scratch. The most crucial measure
for the evaluation is a plan difference, in which the modified plan is assessed how much
different it is from the operator’s plan. Further, the proposed methods are compared
from the viewpoint of the total plan delay. The last metric is the average cargo delivery
delay, in which the average delay of a cargo delivery in the plan is investigated.

The first metric examines the ability of the method to preserve as much of the
operator’s plan as possible to persuade the companies to trust a system with a minimal
amount of AI, which can automatically handle the failure in the execution of a plan. In
contrast, the two remaining measures evaluate the properties significant for operations
in industrial environments. All three metrics are described in the following sections in
more detail.

One more metric was considered to analyze - the runtime. This measure examines
how much time is required for the execution of the plan when a failure occurs and is
fixed by the modification of the plan. This metric could show a difference between
the plan repair method that assumes the unaffected part of the plan to be finished
and therefore, solves a smaller subset of the planning problem, and replanning from
scratch solving the problem corresponding to the entire remaining plan. However, the
runtime was around one second for both methods and all testing scenarios, so that this
hypothesis cannot be tested on such small planning problems because the effect will
not occur with respect to the makespan. The difference could be significant for much
bigger problems, but there are difficulties to solve bigger problems by various planners
as discussed in 5.2.1.1.

5.3.1 Plan difference

The aim of this metric is to evaluate how the modified plan varies from the original
operator’s plan. This measure is taken from [34], where the metric is called plan stability
and is computed as a difference between two plans.

This difference is obtained as the sum of additional and missing plans steps which
penalizes the modified plan compared to the original plan. The additional plan steps

55

5.4 EXPERIMENTAL RESULTS

are the actions that are present in the modified plan but not in the operator’s plan.
The missing plan steps are the actions that are contained in the operator’s plan but
not in the modified plan, and thus, they are missing in the modified plan.

Both these parts of the sum are important. For example, suppose that agv2 is forced
to drive through a path between waypoints wp0 and wp6 that is one driving action
instead of three driving actions as in the original plan to deliver the cargo4 as visualised
in Figure 11c. If only additional actions are counted, the difference of these plans is
only one action. But in reality, the difference is bigger because three plan steps are not
contained in the modified plan. Therefore, also the number of missing actions is crucial
for the evaluation of the difference between the two plans.

5.3.2 Total plan delay

This metric evaluates the delay of the entire modified plan compared to the original
operator’s plan. This delay is computed as the difference of makespans of the modified
and operator’s plans. The delay is then expressed as a percentage of the makespan of
the operator’s plan so that it is possible to evaluate by what percentage the modified
plan is longer than the operator’s plan.

5.3.3 Average cargo delivery delay

This metric investigates the average delay of a cargo. The process of how it is measured
is explained further.

Each cargo is found in the modified plan and paired with the corresponding cargo
in the operator’s plan. The delivery time of a cargo is computed as the sum of the
scheduled time of the action unload and its duration. The delay of the delivery of a
cargo is a difference between the delivery time in the modified plan and in the operator’s
plan. This delay is computed for each cargo in the plan. From these delays, the mean
is obtained. Finally, this average is expressed as a percentage of the makespan of the
operator’s plan so that it is possible to investigate by what percentage a cargo will be
delivered later in average in the modified plan than in the operator’s plan.

5.4 Experimental results

The proposed system is evaluated on 42 various testing scenarios by three measures.
Six interesting testing scenarios are selected from this set to discuss the results of
the measures in more detail. Discussion for each metric follows in the next sections.
Statistical values such as mean and standard deviation are computed for each metric
on the set of all testing scenarios.

Two sets of experiments were performed. In the first one, the plan repair method
was used to fix the execution of the plan when a failure occurred, and in the second

56

5.4 EXPERIMENTAL RESULTS

one, the replanning from scratch method was used. In these experiments, the TFD
planner was chosen as a state of the art planner providing plans for the affected part of
the plan in case of the plan repair method and the remaining part of the plan in case
of replanning from scratch. This planner was chosen because it provided plans with a
shorter makespan in a shorter runtime, as analyzed in 5.2.1.1.

5.4.1 Plan difference

The results of the measure plan difference for 6 selected interesting testing scenarios
are depicted in Figure 12. Three scenarios are picked for each type of failure. For
the failure of an AGV, there is a scenario 06_dead_agv1_before_start in which a plan
from replanning from scratch differ significantly from the operator’s plan, whereas a
plan from plan repair does not. In the next scenario 08_dead_agv1_after_1st_un-
load, there is only a slight difference between the proposed methods, and in the last
scneario 25_dead_agv1_agv2_after_2nd_unload, there is no difference between them.
For the failure due to a blocked path, there is a scenario 32_path_1agv_before_path
in which also no difference between the methods can be observed. In the next scenario
40_path_3agv_before_3rd_path, there is a slight difference between them. In the last
scenario 44_path_force_wp8_before_start, the plan from the plan repair method is
more different from the operator’s plan than the plan from replanning from scratch
method. These results are revisited and interpreted in the following six paragraphs.

06
_de

ad
_ag

v1
_be

for
e_s

tar
t

08
_de

ad
_ag

v1
_af

ter
_1s

t_u
nlo

ad

25
_de

ad
_ag

v1
_ag

v2
_af

ter
_2n

d_u
nlo

ad

32
_pa

th_
1a

gv
_be

for
e_p

ath

40
_pa

th_
3a

gv
_be

for
e_3

rd_
pa

th

44
_pa

th_
for

ce_
wp8

_be
for

e_s
tar

t

Scenarios

0

10

20

30

40

50

60

70

80

Pl
an

 d
iff

er
en

ce

Plan difference for 6 selected scenarios
Plan repair
Replanning from scratch

Figure 12: Plan difference

57

5.4 EXPERIMENTAL RESULTS

In 06_dead_agv1_before_start scenario, the plan repair method is much better than
the replanning from scratch because a plan from plan repair method is significantly less
different from the operator’s plan than a plan from replanning from scratch. In this
scenario, the failure of agv1 occurs before the start of the execution of a plan. The plan
repair method assumes that plans of agv0 and agv1 are finished and then solves only
the task of transporting cargos that agv1 should have served. Whereas replanning from
scratch method solves the task of transporting all cargos by the two remaining alive
AGVs and the planner is optimizing the length of the plan. Thus, this plan can differ
a lot, and it does. Therefore, the results make sense and are expected.

In 08_dead_agv1_after_1st_unload scenario, the plan repair method is slightly bet-
ter than replanning from scratch. In this scenario, the failure of agv1 occurs after it
unloads the first transported cargo. The remaining AGVs also managed to serve the
first transported cargo. There are not many plan steps till the end of the plan, and
AGVs are in different positions so that the planner can provide a very similar plan to
the operator’s plan even when replanning from scratch. There can be only two signifi-
cant differences - to which AGV the second cargo of agv1 is assigned, and whether this
AGV has to visit the docking place before serving this cargo. These two cases explain
why the results for the proposed methods are only slightly different.

In 25_dead_agv1_agv2_after_2nd_unload scenario, the plan difference is the same
for both proposed methods. In this scenario, the failure of agv1 and agv2 occurs after
all AGVs transported all cargos. Moreover, agv0 is already back in the docking centre.
Thus, there are no more tasks to be planned. Therefore, there is no difference between
the plan repair and replanning from scratch. The plan difference is equal to the number
of missing actions which correspond to the plan steps neccessary for agv1 and agv2 to
drive back to the docking centre.

In 32_path_1agv_before_path scenario, the proposed methods has the same plan
difference again. In this scenario, the failure due to a blocked path between waypoints
wp4 and wp6 occurs right before agv2 will drive through it. Because agv2 is transporting
already the second cargo, and agv0 and agv1 have already begun to transport their
second cargo, there are not many possibilities of various plans to finish the task. The
planner will provide the same rerouting of agv2 through the same paths. Therefore,
there is no difference between the plan repair and replanning from scratch.

In 40_path_3agv_before_3rd_path scenario, the plan repair method is only slightly
better than replanning from scratch. In this scenario, the failure due to a blocked path
between waypoints wp1 and wp3 occurs before third AGV, which is agv0, is scheduled to
drive through this path. In this case, agv0 already managed to serve all its cargos, agv1
and agv2 are almost finished with the transportation of their second cargo. All AGVs
are affected by the blocked path because they are scheduled to drive through it to the
docking centre. There are also not many possibilities of various plans, but still, a plan
from replanning from scratch differs more than a plan from plan repair. In plan repair,
AGVs are executing the same plan as the operator’s one until the last possible path,
and then another path is used to avoid the blocked one. Whereas in replanning from
scratch, the blocked path is avoided earlier because the planner is optimizing the length

58

5.4 EXPERIMENTAL RESULTS

of the plan. Because of this small detail, plan repair differs less from the operator’s
plan than replanning from scratch.

In 44_path_force_wp8_before_start scenario, a plan from plan repair method dif-
fers more than a plan from replanning from scratch. In this scenario, paths between
waypoints wp1 and wp3, wp2 and wp3, wp6 and wp7 are blocked before the start of
the execution of the plan so that all AGVs are forced to drive through waypoint wp8.
The plans from the proposed methods are almost the same, but they differ in two plan
steps. In the plan repair method, the plan of agv1 is reused till it loads cargo2 and drive
from wp0 to wp2. But then TFD finds the plan in which agv1 should first unload cargo2
at wp2 and drive back to wp0, where cargo4 is loaded first. In contrast, a plan from
replanning from scratch is coincidently the same in the beginning (meaning cargo2 is
served by agv1), but then it immediately loads cargo4 at wp0. The plan difference then
varies by two extra actions that are reverted in the plan from plan repair compared to
the plan from replanning from scratch.

The ability to preserve as much as possible from the operator’s plan is also inves-
tigated throughout the whole set for both proposed methods. The statistical values
describing the set are shown in Table 3, and the graph depicting all results is attached
in Appendix B in Figure 15. It can be seen that plan repair has a much smaller mean
and standard deviation than replanning from scratch. These results indicate that ma-
jority of data are in a smaller range for plan repair than for replanning from scratch, and
thus, the behaviour of the plan repair method is more expectable than the behaviour of
replanning from scratch, which seems to be more random. This fact is also supported
by the smaller range of extreme values for plan repair than for replanning from scratch.

Table 3: Results of statistical values for plan difference for all testing scenarios

plan repair replanning
from scratch

mean 30.262 46.119
std 19.076 28.043
min 2.000 2.000
max 72.000 84.000

To sum it up, while there are cases in which plan repair method might be worse than
replanning from scratch or they can be equally good from the viewpoint of the plan
difference metric, there are the majority of cases in which plan repair method is better
than replanning from scratch, i.e. a plan from the plan repair method differs from the
original operator’s plan less than a plan from replanning from scratch.

5.4.2 Total plan delay

The same six selected scenarios that were already discussed for plan difference are also
evaluated from the viewpoint of total plan delay, and their results are shown in Figure
13. The total delay of the plan is interpreted for each scenario in separate paragraphs.

59

5.4 EXPERIMENTAL RESULTS

06
_de

ad
_ag

v1
_be

for
e_s

tar
t

08
_de

ad
_ag

v1
_af

ter
_1s

t_u
nlo

ad

25
_de

ad
_ag

v1
_ag

v2
_af

ter
_2n

d_u
nlo

ad

32
_pa

th_
1a

gv
_be

for
e_p

ath

40
_pa

th_
3a

gv
_be

for
e_3

rd_
pa

th

44
_pa

th_
for

ce_
wp8

_be
for

e_s
tar

t

Scenarios

20
10
0

10
20
30
40
50
60
70
80
90

100

To
ta

l p
la

n
de

la
y

[%
]

Total plan delay for 6 selected scenarios
Plan repair
Replanning from scratch

Figure 13: Total plan delay

In 06_dead_agv1_before_start scenario, plan from plan repair method is longer than
plan from replaning from scratch. The difference between these methods is caused by
reusing the operator’s plan in which an AGV is driving into the docking centre at the
end of the plan. Thus, agv2 has to go to the dock first and then it can serve one of the
remaining cargos of failed agv1. The actions necessary to drive to the dock first causes
a bigger plan delay than for replanning from scratch method, which can optimize the
makespan for the whole plan in this case. For both methods, the delay corresponds to
the number of actions connected with cargos that have to be served by remaining alive
AGVs.

In 08_dead_agv1_after_1st_unload scenario, the difference between the total plan
delay for both method is bigger. In this scenario, TFD is assigning the remaining cargo
of agv1 to the rest of the fleet. In the plan repair method, this cargo is assigned to
agv2 without any additional information because it is assumed that both AGVs start at
the docking centre as they already managed to transport all their cargos. Whereas in
replanning from scratch, the makespan is optimized for the rest of the plan so that the
cargo is assigned to agv0 because the planner computed that agv0 can fulfil it earlier
than agv2. This decision causes a much bigger delay of the plan from plan repair than
of the plan from replanning from scratch.

In 25_dead_agv1_agv2_after_2nd_unload scenario, the length of both plans is
shorter than the operator’s plan approximately by 15%, and thus, the value is neg-
ative in this case. The reason for such a value is that all tasks are already fulfilled,

60

5.4 EXPERIMENTAL RESULTS

and there is nothing left to plan for. Both plans have a smaller makespan than the
operator’s plan because agv1 and agv2 cannot drive back to the docking centre due to
their failure. These aborted actions correspond to approximately 15% of the length of
the operator’s plan.

In 32_path_1agv_before_path scenario, both methods modified the plan in the same
way by rerouting agv2 through identical paths as discussed already for plan difference
metric. Therefore, there is no difference between these methods. The delay of the plan
corresponds to the rerouted plan of agv2 which represents a delay by nearly 20% of the
operator’s plan.

In 40_path_3agv_before_3rd_path scenario, plan repair is reusing the operator’s
plan until the last possible path. In contrast, replanning from scratch can start avoiding
the blocked path earlier and thus, the planner has provided a plan with optimized
makespan in this case. Therefore, the delay of the plan from plan repair is slightly
higher than the delay of the plan from replanning from scratch. The difference between
the proposed method is small because the remaining plan to be finished is short, and
there are not many possibilities of various ways how the operator’s plan can be modified.

In 44_path_force_wp8_before_start scenario, both methods modify the operator’s
plan in almost the same way. The difference for the plan repair method is in two extra
plan steps of agv1 whose plan is reusing the operator’s plan until the last possible action.
These two actions are then immediately reverted, resulting in four redundant actions
in total. Therefore, the makespan of the plan from plan repair is much longer than
the makespan of the plan from replanning from scratch. Both plans have significant
delays compared to the operator’s plan because AGVs are forced to drive through the
path between waypoints wp8 and wp7 which takes more time than if they could drive
through blocked paths.

The total delay of the modified plan was also investigated for all testing scenarios,
and the corresponding graph with results is attached in Appendix B in Figure 16.
Statistical values describing the total plan delay metric on this set are shown in Table
4. It can be seen from the table that the mean is higher for plan repair than for
replanning from scratch. This result is expectable because replanning from scratch
can optimize the remaining part of the plan. In contrast, plan repair is resuing the
operator’s plan until the last possible action, which does not have to be the fastest
solution. Nevertheless, the values do not vary much for both methods. The standard
deviation is similar for both approaches, and it is relatively high, indicating that data
are distributed in a quite wide range. Therefore, the behaviour of both systems seems
to be rather random than expectable when considering the makespan of modified plans.
The range of extreme values is slightly bigger for the plan repair method, which can
correspond to the somewhat higher mean value.

To summarize the results for this metric, there are more cases in which plan repair
produces a longer plan compared to the operator’s plan than replanning from scratch.
Still, there are also cases in which both methods provide equally delayed plans. This
behaviour is supported by the fact that replanning from scratch can optimize the entire
rest of the plan. In contrast, plan repair is reusing the operator’s plan until the last

61

5.4 EXPERIMENTAL RESULTS

Table 4: Results of statistical values for total plan delay for all testing scenarios

plan repair replanning
from scratch

mean 67.333 61.143
std 56.772 56.799
min -15.924 -15.924
max 181.753 172.639

possible action so that it does not have to provide the shortest plan. On the contrary, the
statistical investigation across all testing scenarios does not indicate that this behaviour
could be expectable.

5.4.3 Average cargo delivery delay

In this section, the six selected scenarios are investigated from the viewpoint of the
deliveries of cargos. The average delay of a cargo delivery for these scenarios is depicted
in Figure 14 and discussed in the following paragraphs in more detail.

06
_de

ad
_ag

v1
_be

for
e_s

tar
t

08
_de

ad
_ag

v1
_af

ter
_1s

t_u
nlo

ad

25
_de

ad
_ag

v1
_ag

v2
_af

ter
_2n

d_u
nlo

ad

32
_pa

th_
1a

gv
_be

for
e_p

ath

40
_pa

th_
3a

gv
_be

for
e_3

rd_
pa

th

44
_pa

th_
for

ce_
wp8

_be
for

e_s
tar

t

Scenarios

0

5

10

15

20

25

30

Av
er

ag
e

ca
rg

o
de

liv
er

y
de

la
y

[%
]

Average delay of cargo delivery for 6 selected scenarios
Plan repair
Replanning from scratch

Figure 14: Average cargo delivery delay

In 06_dead_agv1_before_start scenario, agv1 should have transported two cargos -
cargo2 and cargo5. Only these two cargos are delayed in the plan from the plan repair

62

5.4 EXPERIMENTAL RESULTS

method, and all others are delivered as scheduled in the operator’s plan. In the plan
from replanning from scratch method, four cargos are delayed, but because the planner
could optimize the makespan for the whole plan, the late deliveries are spread across
the entire plan and yield a shorter delay of a cargo delivery on average.

In 08_dead_agv1_after_1st_unload scenario, plans from both methods differ only
in the AGV that is assigned to serve the remaining cargo after the failure of agv1.
Because replanning from scratch is optimizing the entire rest of the plan, this cargo is
assigned to agv0 that can serve it earlier than agv2. As a result, the delay of this cargo
is shorter than in the plan from plan repair. Because this is the only difference from
the operator’s plan, it also corresponds to the average cargo delivery delay.

In 25_dead_agv1_agv2_after_2nd_unload scenario, all cargos were already trans-
ported and almost the entire plan executed. Thus, the delay of all cargo deliveries is
zero in this case. Therefore, the average delay of a cargo delivery is also zero.

In 32_path_1agv_before_path scenario, agv2 is affected by the blocked path during
the transportation of its second cargo and hence, is rerouted to fulfil this task. Both
proposed methods modified the operator’s plan in the same way. Only the second
cargo of agv2 is delayed because of the failure, and all other deliveries are performed as
scheduled in the operator’s plan. Therefore, the delay of this cargo corresponds to the
average delay of a cargo delivery in this scenario and is approximately only 3% of the
length of the operator’s plan.

In 40_path_3agv_before_3rd_path scenario, the path become blocked during the
transportation of the second cargo of agv1 and agv2, agv0 already served both its
cargos. The blocked path does not influence the transportation but only returning
back to the docking centre. Therefore, there is no delay in cargo deliveries, and thus,
the average delay of a cargo delivery is zero, too.

In 44_path_force_wp8_before_start scenario, the plan repair method is reusing the
operator’s plan so that it gives two extra actions compared to the replanning from
scratch. These two actions are then reverted in order to serve cargo4 in the plan repair
method. Because of these four redundant actions in plan repair, cargo4 is delayed. In
contrast, replanning from scratch coincidently managed to deliver this cargo on time.
This delay in the plan repair method is cumulated into the delay of cargo5 that is
delivered by the same AGV afterwards. The blocked path affects the plan of agv1 and
agv2, resulting in the delay of all their transported cargos. Therefore, the average delay
of a cargo delivery is relatively high. The value is smaller for replanning from scratch
than for plan repair because the latter is additionally delayed by four redundant actions
compared to the former one.

The analysis of an average delay of a cargo delivery was examined for all testing
scenarios, and the results are depicted in Figure 17 in Appendix B. The statistical
values describing this set of results from the viewpoint of average cargo delivery delay
are shown in Table 5. The table shows that mean values and standard deviations are
very similar for both proposed methods, and they are slightly higher for the plan repair
method. The standard deviation is not very high for both approaches indicating that

63

5.5 SUMMARY AND DISCUSSION

majority of data is in a rather small range, and thus, the behaviour of the proposed
methods is quite expectable, as for average cargo delivery delay. The difference between
the extreme values is more significant when considering both methods. The higher
maximum of the plan repair method can correspond to the fact the as much as possible
of the operator’s plan is reused, which might cause some local delays of deliveries.
Compared to replanning from scratch, this method can optimize the rest of the plan
and thus, the delay of cargo deliveries might be smaller.

Table 5: Results of statistical values for average cargo delivery delay for all testing
scenarios

plan repair replanning
from scratch

mean 24.810 21.343
std 28.963 26.373
min 0.000 -0.021
max 92.401 80.252

To sum it up, there are more cases in which the average delay of a cargo delivery is
higher for plan repair than for replanning from scratch. There are also cases in which
the average delay is equal for both methods or none in the considered set. While the
statistical investigation did not reveal very convincing results on which method performs
better, it is more expectable that a cargo will be delivered later on average for the plan
repair method than for replanning from scratch. The reason for this is that replanning
from scratch can optimize the makespan of the remaining part of the plan, and thus,
cargos are optimized to be fulfiled at the earliest time. In comparison, plan repair is
reusing as much as possible from the operator’s plan, which might cause longer delays
in deliveries.

5.5 Summary and discussion

This section discusses the results obtained from two performed experiments and evalu-
ated on three metrics. To assess the abilities and behaviour of both proposed methods,
all three metrics have to be considered together. First, the plan repair method is sum-
marized, then replanning from scratch and at the end, there is a comparison and final
evaluation of both approaches.

Plan repair method modifies the plan in the way that it differs less from the original
operator’s plan than the second investigated approach. This smaller plan difference
means that this method can preserve more from the operator’s plan than the second
method. From the statistical investigation, this result is more expectable than for the
second method. This good performance is redeemed by the length of the plan. The
aim to minimize the difference from the operator’s plan reduces the operation room for
the rest of the plan, which cannot be optimized so effectively due to this. As a result,

64

5.5 SUMMARY AND DISCUSSION

total plan delay against the operator’s plan can be bigger than in the second method.
However, this rule is not highly supported by statistical values describing the set of
all tested scenarios. The high standard deviation indicates that data are distributed
in a broader range, and thus, the behaviour of the system related to the plan delay is
rather random than expected. Analysis of average cargo delivery delay revealed that
a cargo could be more delayed from the operator’s schedule on average than in the
second method. This fact is closely related to the two previous metrics. The plan
repair method reuses as much as possible of the operator’s plan so that it can be longer
due to this, and it can also deliver cargos later. The reason is still the same - there is
not much of the rest of the plan left to optimize in time. However, statistical values
describing the entire set are similar for both methods, and thus, this rule is not very
convincing. Nevertheless, the standard deviation indicates that this behaviour is rather
expectable.

Replanning from scratch is not designed to reuse the majority of the operator’s plan.
It provides a whole new plan for the remaining goals of the operator’s plan from the
current state. Therefore, the modified plan obtained from this method differs from the
operator’s plan more than the first proposed method. Moreover, the plan difference
investigated on the set of all tested scenarios has a significantly higher mean value with
a small standard deviation from it, indicating that majority of data are expected in this
range and thus, to differ more from the operator’s plan. The advantage of this method
is reflected in total plan delay. The plans modified by this method can be optimized in
time so that the makespan of the plan from this method can be shorter than for the
first one. However, the standard deviation from the mean value on the set of all testing
scenarios is high, and thus, this behaviour of the system related to the plan delay is
rather random than expected. For the same reason, the average cargo delivery delay can
also be smaller than for the first method. While the standard deviation from the mean
value on the set of all tested scenarios is small and thus, the behaviour of the system
from the viewpoint of this metric is more expectable than random, the statistical values
are similar for both methods, and hence, the performance is difficult to assess.

The evaluation of both methods confirmed that plan repair could better modify the
plan in the way that as many as possible plan steps are preserved from the operator’s
plan than in replanning from scratch. Thus, the plan repair method is more suitable to
persuade companies to trust and use such a system with a minimal amount of AI capable
of repairing a plan when a failure in its execution occurs. However, it is necessary to
keep in mind that this method does not provide the best results when considering the
delay of the entire plan or an average delay of a cargo delivery. Nevertheless, the main
criterion is the difference from the original operator’s plan because it is required by
industrial companies.

65

Chapter 6
Conclusion

The goal of this thesis was to propose a system that would amend the input plan
specified by an operator in reaction to failures during its execution. Nowadays, compa-
nies are reluctant to use AI in their manufacturing processes because they are afraid of
its behaviour which can comprise unexpected solutions. Therefore, this thesis aims to
design a system with a minimal amount of AI responsible for resolving failures that will
modify the operator’s plan as little as possible so that these changes are straightforward
and well-understand by human beings.

While working on this thesis, I needed to familiarise myself with the following topics.

First, I needed to study Vehicle Routing Problems in which a fleet of vehicles should
visit a set of places so that some objectives are minimized. A specific group of these
problems is called the Pickup and Delivery problem, which focuses specifically on the
task of transporting goods. The Pickup and Delivery Problem with Time Windows
(PDP-TW) is a group of problems in which goods transportation is scheduled. The task
of delivering goods in industrial environments can be the most realistically described
as this problem. Therefore, the group of these problems is reviewed.

Second, I reviewed failures that can occur during the execution of schedules address-
ing PDP-TW in industrial environments such as production and logistics in factories.

Third, I deepened my knowledge about the planning language PDDL that is used to
model the industrial environment and describe the task. The planning languages PDDL
2.1 and PDDL 3 are reviewed, and their properties and possibilities are discussed with
respect to the PDP-TW. Both versions can be used for modelling. In the proposed
system, PDDL 2.1 is used because this version introduces durative actions necessary to
model schedules and thus, it is a sufficient version for addressing PDP-TW. Moreover,
using version 2.1 has the advantage that plenty of state of the art planners supports
this version in contrast to PDDL 3. Hence, we were able to test more planners and pick
the most suitable one.

Fourth and the last, planners that can solve problems described in the form of PDDL
such as TFD and OPTIC were reviewed. Both planners are reviewed. The TFD planner
was then used in the proposed system because it seems to be more suitable for the
tackled task than OPTIC, especially due to its computational speed.

The core of the thesis then proposes two approaches that can modify the operator’s

66

6.1 FUTURE WORK

plan when a failure during the execution occurs. First, the plan repair method aims
to preserve as many plan steps of the operator’s plan as possible. To be able to reuse
the majority of the operator’s plan, it is assumed that the execution finished with the
failure appeared. The operator’s schedule is then repaired with the use of a plan that
the TFD planner provides only for the part of the operator’s plan affected by a failure.
The second proposed method is replanning from scratch. This method uses a plan
provided by the TFD planner since the time when a failure occurred to amend the
operator’s schedule. The first approach is novel, while the second is a state of the art
solution, and it is used in order to evaluate the performance of the plan repair method.

Finally, the proposed systems were evaluated on a set of testing scenarios. These
scenarios describe an industrial environment and various time instants in which two
frequent types of failures, a failure of a robot and failure due to a blocked path, can
occur. The behaviour of both methods is assessed according to three criteria. These
criteria were chosen in order to evaluate the system’s ability to provide minor changes to
the operator’s plan when modifying its schedule and properties valuable for industrial
operations, such as a delay of the modified plan or an average delay of a cargo delivery.
Experimental results confirmed that plan repair provides plans with a small difference
from the operator’s plan than replanning from scratch. In contrast, plans provided
by replanning from scratch can be less delayed when compared to the operator’s plan
and can have a smaller delay of a cargo delivery on average. These findings can be
summarized in two most important conclusions:

� Prefer plan repair over replanning from scratch if the most critical requirement is
a small difference from the operator’s plan.

� Prefer replanning from scratch over plan repair when interested in performance
in industrial operations.

The advantage of the proposed system worth emphasizing is its modularity. Thanks to
that property, any state of the art planner that can deal with at least durative actions
can be used and thus, the performance of this system can be continuously improved
with novel and better-performing planners.

6.1 Future work

Further work can be divided into three directions. The first direction addresses the
improvements of the system’s properties. The second direction focuses on the analysis
of further abilities of the system. The practical part of the working system is targeted
in the third direction.

Improvements of the system’s properties

During the work on this thesis, several problems were revealed. These problems are
addressed in this section, and possible solutions to them are suggested.

67

6.1 FUTURE WORK

The plan repair method does not perform very well from the viewpoint of the total
plan delay and an average cargo delivery delay. These two abilities could be improved
by auctioning algorithms in which a remaining cargo to be served would be assigned
to an AGV who finishes the entire plan including this cargo at the earliest time.

Another drawback of the plan repair method can be seen in performance in industrial
operations when investigating the plan difference. In some cases, an AGV is forced to
reuse the operator’s plan until the last possible action so that the AGV drive back to the
dock first and then perform the extra assigned tasks. To overcome this disadvantage, a
merging algorithm based on the approach similar to [37] could be developed. Such
an algorithm could temporarily violate the reusing of the operator’s plan in the case
when an AGV is driving to the docking centre. This approach should not influence the
plan difference metric much because the driving into the dock is satisfied in the end,
but it could improve the total plan delay and average cargo delay metrics. This method
could be a compromise between plan repair and replanning from scratch by combining
both approaches and taking their advantages.

The last property that could be handled is a violation of time windows and planning
based on preferences. These properties would need to be modelled using PDDL 3, and
a planner supporting all those features would need to be available for public use.

Further evaluation

It would be interesting to evaluate the behaviour of the system on a huge problem and
also investigate its scalability in terms of AGVs, cargos and waypoints. The difference
between plan repair and replanning from scratch could be analysed in terms of the
runtime. Though, to be able to cope with these goals, a broader analysis of the state
of the art planners similar to that one done in section 5.2.1.1 would be necessary.

One of the most relevant algorithms to this work are presented in [22]. A com-
parison with similar algorithms could reveal more information about the proposed
system.

Execution

The further steps can be to integrate the system into REX and verify its functionality in
the real industrial operations as well as in simulated environments such as in Gazebo15.
The repeatability and robustness of plan modifications could be then analysed.

15http://gazebosim.org/tutorials?tut=ros2_overview

68

http://gazebosim.org/tutorials?tut=ros2_overview

References

[1] Datavision s.r.o. Project presentation, appendix number 1, 2020. Project Guid-
ance and Localization upgrade creating Autonomous Mobile Robots. Technology
Agency of the Czech Republic. TREND Programme FW03010020.

[2] Jonathan L. Gross and Jay Yellen. Handbook of graph theory. CRC press, 2003.

[3] Pictorial History of the TSP, May 2005. [Online; accessed 17. Apr. 2021]. Available
from http://www.math.uwaterloo.ca/tsp/history/pictorial/pictorial.
html.

[4] Ministry of Industry and Trade. Industry 4.0 initiative, 2016.

[5] Vladimír Mařík et al. Industry 4.0 national initiative, 2015. Ministry of Industry
and Trade.

[6] Ángel Corberán and Gilbert Laporte. Arc routing: problems, methods, and appli-
cations. SIAM, 2015.

[7] Paolo Toth and Daniele Vigo. Vehicle routing: problems, methods, and applications.
SIAM, 2014.

[8] Jan Karel Lenstra and AHG Rinnooy Kan. On general routing problems. Networks,
6(3):273–280, 1976.

[9] Leonhard Euler. The seven bridges of königsberg. The world of mathematics,
1:573–580, 1956.

[10] Jack Edmonds and Ellis L. Johnson. Matching, euler tours and the chinese post-
man. Mathematical programming, 5(1):88–124, 1973.

[11] Bernhard H. Korte, Jens Vygen, B. Korte, and J. Vygen. Combinatorial optimiza-
tion, volume 1. Springer, 2011.

[12] David Guichard. An introduction to combinatorics and graph theory. Whitman
College-Creative Commons, 2017.

[13] George Dantzig, Ray Fulkerson, and Selmer Johnson. Solution of a large-scale
traveling-salesman problem. Journal of the operations research society of America,
2(4):393–410, 1954.

70

http://www.math.uwaterloo.ca/tsp/history/pictorial/pictorial.html
http://www.math.uwaterloo.ca/tsp/history/pictorial/pictorial.html

[14] David L. Applegate, Robert E. Bixby, Vasek Chvatal, and William J. Cook. The
traveling salesman problem: a computational study. Princeton university press,
2006.

[15] David L. Applegate, Robert E. Bixby, Vašek Chvátal, William Cook, Daniel G.
Espinoza, Marcos Goycoolea, and Keld Helsgaun. Certification of an optimal tsp
tour through 85,900 cities. Operations Research Letters, 37(1):11–15, 2009.

[16] George B. Dantzig and John H. Ramser. The truck dispatching problem. Man-
agement science, 6(1):80–91, 1959.

[17] Andrea Mor and Maria Grazia Speranza. Vehicle routing problems over time: a
survey. 4OR, pages 1–21, 2020.

[18] Salma Naccache, Jean-François Côté, and Leandro C. Coelho. The multi-pickup
and delivery problem with time windows. European Journal of Operational Re-
search, 269(1):353–362, 2018.

[19] Farshid Azadian, Alper Murat, and Ratna Babu Chinnam. An unpaired pickup
and delivery problem with time dependent assignment costs: Application in air
cargo transportation. European Journal of Operational Research, 263(1):188–202,
2017.

[20] Sungbum Jun, Seokcheon Lee, and Yuehwern Yih. Pickup and delivery problem
with recharging for material handling systems utilising autonomous mobile robots.
European Journal of Operational Research, 289(3):1153–1168, 2021.

[21] Ramin Raeesi and Konstantinos G. Zografos. The electric vehicle routing problem
with time windows and synchronised mobile battery swapping. Transportation
Research Part B: Methodological, 140:101–129, 2020.

[22] Antonín Komenda, Peter Novák, and Michal Pěchouček. Domain-independent
multi-agent plan repair. Journal of Network and Computer Applications, 37:76–88,
2014.

[23] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: theory and
practice. Elsevier, 2004.

[24] Constructions Aeronautiques, Adele Howe, Craig Knoblock, ISI Drew McDermott,
Ashwin Ram, Manuela Veloso, Daniel Weld, David Wilkins SRI, Anthony Barrett,
Dave Christianson, et al. Pddl| the planning domain definition language. Technical
report, Technical Report, 1998.

[25] Maria Fox and Derek Long. Pddl2. 1: An extension to pddl for expressing temporal
planning domains. Journal of artificial intelligence research, 20:61–124, 2003.

[26] Stefan Edelkamp and Jörg Hoffmann. Pddl2. 2: The language for the classical part
of the 4th international planning competition. Technical report, Technical Report
195, University of Freiburg, 2004.

71

[27] Alfonso Gerevini and Derek Long. Plan constraints and preferences in pddl3.
Technical report, Technical Report 2005-08-07, Department of Electronics for Au-
tomation, 2005.

[28] Patrick Eyerich, Robert Mattmüller, and Gabriele Röger. Using the context-
enhanced additive heuristic for temporal and numeric planning. In Nineteenth
International Conference on Automated Planning and Scheduling, 2009.

[29] J. Benton, Amanda Coles, and Andrew Coles. Temporal planning with preferences
and time-dependent continuous costs. In Twenty-Second International Conference
on Automated Planning and Scheduling, 2012.

[30] Amanda Coles, Andrew Coles, Maria Fox, and Derek Long. Forward-chaining
partial-order planning. In Proceedings of the International Conference on Auto-
mated Planning and Scheduling, volume 20, 2010.

[31] Subbarao Kambhampati and James A. Hendler. A validation-structure-based the-
ory of plan modification and reuse. Artificial Intelligence, 55(2-3):193–258, 1992.

[32] Roman Van Der Krogt and Mathijs De Weerdt. Plan repair as an extension of
planning. In ICAPS, volume 5, pages 161–170, 2005.

[33] Tsz-Chiu Au, Héctor Munoz-Avila, and Dana S. Nau. On the complexity of plan
adaptation by derivational analogy in a universal classical planning framework. In
European Conference on Case-Based Reasoning, pages 13–27. Springer, 2002.

[34] Maria Fox, Alfonso Gerevini, Derek Long, and Ivan Serina. Plan stability: Re-
planning versus plan repair. In ICAPS, volume 6, pages 212–221, 2006.

[35] Bernhard Nebel and Jana Koehler. Plan reuse versus plan generation: A theoretical
and empirical analysis. Artificial intelligence, 76(1-2):427–454, 1995.

[36] Subbarao Kambhampati, Craig A. Knoblock, and Qiang Yang. Planning as refine-
ment search: A unified framework for evaluating design tradeoffs in partial-order
planning. Artificial Intelligence, 76(1-2):167–238, 1995.

[37] Lenka Mudrová, Bruno Lacerda, and Nick Hawes. Partial order temporal plan
merging for mobile robot tasks. ECAI, 2016.

[38] Nerea Luis, Susana Fernández, and Daniel Borrajo. Plan merging by reuse for
multi-agent planning. Applied Intelligence, 50(2):365–396, 2020.

[39] Jaume Jordán, Alejandro Torreno, Mathijs De Weerdt, and Eva Onaindia. A
better-response strategy for self-interested planning agents. Applied Intelligence,
48(4):1020–1040, 2018.

[40] Catherine Harris and Richard Dearden. Contingency planning for long-duration
auv missions. In 2012 IEEE/OES Autonomous Underwater Vehicles (AUV), pages
1–6. IEEE, 2012.

72

Appendix A
Attached code

The domain and problem files are attached in the following sections in this appendix.

A.1 PDDL domain

The full code demonstrating the PDDL domain is in Listing 5.

Listing 5: PDDL domain
1 (define (domain agv t ran spo r t s imp l e func t i on s)
2 (:requirements :typing :durative−actions : f luents)
3 (:types
4 waypoint l o c a t a b l e − ob j e c t
5 agv cargo − l o c a t a b l e
6)
7
8 (:predicates
9 (at ? obj − l o c a t a b l e ?wp − waypoint)

10 (in ? cargo − cargo ?agv − agv)
11 (path ? from − waypoint ? to − waypoint)
12 (empty ?agv − agv)
13 (f u l l ?agv − agv)
14 (a l i v e ?agv − agv)
15)
16
17 (:functions
18 (trave l_t ime ?wp1 − waypoint ?wp2 − waypoint)
19)
20
21 (:durative−action load
22 :parameters (? agv − agv ? cargo − cargo ?wp − waypoint)
23 :duration (= ? durat ion 2)
24 :condition (and
25 (over a l l (a l i v e ?agv))
26 (over a l l (at ?agv ?wp))
27 (at s t a r t (at ? cargo ?wp))
28 (at s t a r t (empty ?agv))
29)
30 : e f f e c t (and
31 (at s t a r t (not (at ? cargo ?wp)))

74

A.2 INITIAL PDDL PROBLEM

32 (at end (in ? cargo ?agv))
33 (at s t a r t (not (empty ?agv)))
34 (at end (f u l l ?agv))
35)
36)
37
38 (:durative−action unload
39 :parameters (? agv − agv ? cargo − cargo ?wp − waypoint)
40 :duration (= ? durat ion 2)
41 :condition (and
42 (over a l l (a l i v e ?agv))
43 (over a l l (at ?agv ?wp))
44 (at s t a r t (in ? cargo ?agv))
45 (at s t a r t (f u l l ?agv))
46)
47 : e f f e c t (and
48 (at s t a r t (not (in ? cargo ?agv)))
49 (at end (at ? cargo ?wp))
50 (at s t a r t (not (f u l l ?agv)))
51 (at end (empty ?agv))
52)
53)
54
55 (:durative−action dr ive
56 :parameters (? agv − agv ? from − waypoint ? to − waypoint)
57 :duration (= ? durat ion (trave l_t ime ? from ? to))
58 :condition (and
59 (over a l l (a l i v e ?agv))
60 (at s t a r t (at ?agv ? from))
61 (over a l l (path ? from ? to))
62)
63 : e f f e c t (and
64 (at s t a r t (not (at ?agv ? from)))
65 (at end (at ?agv ? to))
66)
67)
68
69)

A.2 Initial PDDL problem

See Listing 6 for the whole PDDL problem file.

Listing 6: Initial PDDL problem
1 (define (problem prob_wp8_c6_a3)
2 (:domain agv t ran spo r t s imp l e func t i on s)
3
4 (:objects
5 agv0 − agv
6 agv1 − agv

75

A.2 INITIAL PDDL PROBLEM

7 agv2 − agv
8 cargo0 − cargo
9 cargo1 − cargo

10 cargo2 − cargo
11 cargo3 − cargo
12 cargo4 − cargo
13 cargo5 − cargo
14 wp0 − waypoint
15 wp1 − waypoint
16 wp2 − waypoint
17 wp3 − waypoint
18 wp4 − waypoint
19 wp5 − waypoint
20 wp6 − waypoint
21 wp7 − waypoint
22 wp8 − waypoint
23)
24
25 (: i n i t
26 (at agv0 wp1)
27 (empty agv0)
28 (a l i v e agv0)
29 (at agv1 wp1)
30 (empty agv1)
31 (a l i v e agv1)
32 (at agv2 wp1)
33 (empty agv2)
34 (a l i v e agv2)
35 (at cargo0 wp0)
36 (at cargo1 wp0)
37 (at cargo2 wp0)
38 (at cargo3 wp0)
39 (at cargo4 wp0)
40 (at cargo5 wp0)
41 (path wp0 wp1)
42 (path wp0 wp2)
43 (path wp0 wp6)
44 (path wp0 wp8)
45 (path wp1 wp0)
46 (path wp1 wp2)
47 (path wp1 wp3)
48 (path wp1 wp7)
49 (path wp1 wp8)
50 (path wp2 wp0)
51 (path wp2 wp1)
52 (path wp2 wp3)
53 (path wp2 wp4)
54 (path wp3 wp1)
55 (path wp3 wp2)
56 (path wp3 wp5)
57 (path wp4 wp2)
58 (path wp4 wp6)
59 (path wp5 wp3)

76

A.2 INITIAL PDDL PROBLEM

60 (path wp5 wp7)
61 (path wp6 wp0)
62 (path wp6 wp4)
63 (path wp6 wp7)
64 (path wp7 wp1)
65 (path wp7 wp5)
66 (path wp7 wp6)
67 (path wp7 wp8)
68 (path wp8 wp0)
69 (path wp8 wp1)
70 (path wp8 wp7)
71
72 (= (trave l_t ime wp0 wp1) 4)
73 (= (trave l_t ime wp0 wp2) 5)
74 (= (trave l_t ime wp0 wp6) 14)
75 (= (trave l_t ime wp0 wp8) 7)
76 (= (trave l_t ime wp1 wp0) 4)
77 (= (trave l_t ime wp1 wp3) 3)
78 (= (trave l_t ime wp1 wp8) 2)
79 (= (trave l_t ime wp2 wp0) 5)
80 (= (trave l_t ime wp2 wp3) 2)
81 (= (trave l_t ime wp2 wp4) 2)
82 (= (trave l_t ime wp3 wp1) 3)
83 (= (trave l_t ime wp3 wp2) 2)
84 (= (trave l_t ime wp3 wp5) 2)
85 (= (trave l_t ime wp4 wp2) 2)
86 (= (trave l_t ime wp4 wp6) 2)
87 (= (trave l_t ime wp5 wp3) 2)
88 (= (trave l_t ime wp5 wp7) 2)
89 (= (trave l_t ime wp6 wp4) 2)
90 (= (trave l_t ime wp6 wp7) 2)
91 (= (trave l_t ime wp6 wp0) 14)
92 (= (trave l_t ime wp7 wp5) 2)
93 (= (trave l_t ime wp7 wp6) 2)
94 (= (trave l_t ime wp7 wp8) 11)
95 (= (trave l_t ime wp8 wp0) 7)
96 (= (trave l_t ime wp8 wp1) 2)
97 (= (trave l_t ime wp8 wp7) 11)
98)
99

100 (:goal
101 (and
102 (at agv0 wp1)
103 (at agv1 wp1)
104 (at agv2 wp1)
105 (at cargo0 wp2)
106 (at cargo1 wp3)
107 (at cargo2 wp4)
108 (at cargo3 wp5)
109 (at cargo4 wp6)
110 (at cargo5 wp7)
111)
112)

77

A.3 INITIAL PDDL PLAN

113
114 (:metric minimize
115 (tota l−t ime)
116)
117
118)

A.3 Initial PDDL plan

The initial PDDL plan is provided in Listing 7.

Listing 7: Initial PDDL plan
1 0 .00100000 : (d r i v e agv0 wp1 wp0) [4 . 0 0 0 0 0 0 0 0]
2 4 .01100000 : (load agv0 cargo0 wp0) [2 . 0 0 0 0 0 0 0 0]
3 6 .02200000 : (d r i v e agv0 wp0 wp2) [5 . 0 0 0 0 0 0 0 0]
4 11 .03300000 : (unload agv0 cargo0 wp2) [2 . 0 0 0 0 0 0 0 0]
5 0 .00100000 : (d r i v e agv2 wp1 wp0) [4 . 0 0 0 0 0 0 0 0]
6 4 .01200000 : (load agv2 cargo1 wp0) [2 . 0 0 0 0 0 0 0 0]
7 6 .02300000 : (d r i v e agv2 wp0 wp1) [4 . 0 0 0 0 0 0 0 0]
8 10 .03300000 : (d r i v e agv2 wp1 wp3) [3 . 0 0 0 0 0 0 0 0]
9 13 .04400000 : (unload agv2 cargo1 wp3) [2 . 0 0 0 0 0 0 0 0]

10 0 .00100000 : (d r i v e agv1 wp1 wp0) [4 . 0 0 0 0 0 0 0 0]
11 4 .01200000 : (load agv1 cargo2 wp0) [2 . 0 0 0 0 0 0 0 0]
12 6 .02300000 : (d r i v e agv1 wp0 wp2) [5 . 0 0 0 0 0 0 0 0]
13 11 .03400000 : (d r i v e agv1 wp2 wp4) [2 . 0 0 0 0 0 0 0 0]
14 13 .04500000 : (unload agv1 cargo2 wp4) [2 . 0 0 0 0 0 0 0 0]
15 13 .04500000 : (d r i v e agv0 wp2 wp0) [5 . 0 0 0 0 0 0 0 0]
16 18 .05700000 : (load agv0 cargo3 wp0) [2 . 0 0 0 0 0 0 0 0]
17 20 .06700000 : (d r i v e agv0 wp0 wp1) [4 . 0 0 0 0 0 0 0 0]
18 24 .07800000 : (d r i v e agv0 wp1 wp3) [3 . 0 0 0 0 0 0 0 0]
19 27 .08900000 : (d r i v e agv0 wp3 wp5) [2 . 0 0 0 0 0 0 0 0]
20 29 .10000000 : (unload agv0 cargo3 wp5) [2 . 0 0 0 0 0 0 0 0]
21 15 .05500000 : (d r i v e agv2 wp3 wp2) [2 . 0 0 0 0 0 0 0 0]
22 17 .06600000 : (d r i v e agv2 wp2 wp0) [5 . 0 0 0 0 0 0 0 0]
23 22 .07700000 : (load agv2 cargo4 wp0) [2 . 0 0 0 0 0 0 0 0]
24 24 .08800000 : (d r i v e agv2 wp0 wp2) [5 . 0 0 0 0 0 0 0 0]
25 29 .09900000 : (d r i v e agv2 wp2 wp4) [2 . 0 0 0 0 0 0 0 0]
26 31 .11000000 : (d r i v e agv2 wp4 wp6) [2 . 0 0 0 0 0 0 0 0]
27 33 .12100000 : (unload agv2 cargo4 wp6) [2 . 0 0 0 0 0 0 0 0]
28 15 .05600000 : (d r i v e agv1 wp4 wp2) [2 . 0 0 0 0 0 0 0 0]
29 17 .06700000 : (d r i v e agv1 wp2 wp0) [5 . 0 0 0 0 0 0 0 0]
30 22 .07800000 : (load agv1 cargo5 wp0) [2 . 0 0 0 0 0 0 0 0]
31 24 .08900000 : (d r i v e agv1 wp0 wp2) [5 . 0 0 0 0 0 0 0 0]
32 29 .10000000 : (d r i v e agv1 wp2 wp3) [2 . 0 0 0 0 0 0 0 0]
33 31 .11100000 : (d r i v e agv1 wp3 wp5) [2 . 0 0 0 0 0 0 0 0]
34 33 .12200000 : (d r i v e agv1 wp5 wp7) [2 . 0 0 0 0 0 0 0 0]
35 35 .13200000 : (unload agv1 cargo5 wp7) [2 . 0 0 0 0 0 0 0 0]
36 31 .11100000 : (d r i v e agv0 wp5 wp3) [2 . 0 0 0 0 0 0 0 0]
37 33 .12200000 : (d r i v e agv0 wp3 wp1) [3 . 0 0 0 0 0 0 0 0]
38 37 .14200000 : (d r i v e agv1 wp7 wp5) [2 . 0 0 0 0 0 0 0 0]

78

39 39 .15300000 : (d r i v e agv1 wp5 wp3) [2 . 0 0 0 0 0 0 0 0]
40 41 .16400000 : (d r i v e agv1 wp3 wp1) [3 . 0 0 0 0 0 0 0 0]
41 35 .13200000 : (d r i v e agv2 wp6 wp4) [2 . 0 0 0 0 0 0 0 0]
42 37 .14300000 : (d r i v e agv2 wp4 wp2) [2 . 0 0 0 0 0 0 0 0]
43 39 .15400000 : (d r i v e agv2 wp2 wp3) [2 . 0 0 0 0 0 0 0 0]
44 41 .16500000 : (d r i v e agv2 wp3 wp1) [3 . 0 0 0 0 0 0 0 0]

Appendix B
Graphs

Graphs depicting results for 42 scenarios are attached in this appendix. Figure 15
shows the plan difference, Figure 16 presents the total plan delay, and an average cargo
delivery delay is in Figure 17.

79

A.3 INITIAL PDDL PLAN

01_dead_agv0_before_start

02_dead_agv0_before_1st_load

03_dead_agv0_after_1st_unload

04_dead_agv0_before_2nd_load

05_dead_agv0_after_2nd_unload

06_dead_agv1_before_start

07_dead_agv1_before_1st_load

08_dead_agv1_after_1st_unload

09_dead_agv1_before_2nd_load

10_dead_agv1_after_2nd_unload

11_dead_agv2_before_start

12_dead_agv2_before_1st_load

13_dead_agv2_after_1st_unload

14_dead_agv2_before_2nd_load

15_dead_agv2_after_2nd_unload

16_dead_agv0_agv1_before_start

17_dead_agv0_agv1_before_1st_load

18_dead_agv0_agv1_after_1st_unload

19_dead_agv0_agv1_before_2nd_load

20_dead_agv0_agv1_after_2nd_unload

21_dead_agv1_agv2_before_start

22_dead_agv1_agv2_before_1st_load

23_dead_agv1_agv2_after_1st_unload

24_dead_agv1_agv2_before_2nd_load

25_dead_agv1_agv2_after_2nd_unload

26_dead_agv0_agv2_before_start

27_dead_agv0_agv2_before_1st_load

28_dead_agv0_agv2_after_1st_unload

29_dead_agv0_agv2_before_2nd_load

30_dead_agv0_agv2_after_2nd_unload

31_path_1agv_before_start

32_path_1agv_before_path

33_path_1agv_no_return

34_path_2agv_before_start

35_path_2agv_before_1st_path

36_path_2agv_after_1st_path

37_path_3agv_before_start

38_path_3agv_after_1st_path

39_path_3agv_after_2nd_path

40_path_3agv_before_3rd_path

43_path_force_wp0_wp6_before_start

44_path_force_wp8_before_start

Scenarios

0 10 20 30 40 50 60 70 80

Plan difference
Plan difference for all testing scenarios

Plan repair
Replanning from

 scratch

Figure
15:

Plan
difference

for
alltesting

scenarios

80

A.3 INITIAL PDDL PLAN

01
_de

ad
_ag

v0
_be

for
e_s

tar
t

02
_de

ad
_ag

v0
_be

for
e_1

st_
loa

d

03
_de

ad
_ag

v0
_af

ter
_1s

t_u
nlo

ad

04
_de

ad
_ag

v0
_be

for
e_2

nd
_lo

ad

05
_de

ad
_ag

v0
_af

ter
_2n

d_u
nlo

ad

06
_de

ad
_ag

v1
_be

for
e_s

tar
t

07
_de

ad
_ag

v1
_be

for
e_1

st_
loa

d

08
_de

ad
_ag

v1
_af

ter
_1s

t_u
nlo

ad

09
_de

ad
_ag

v1
_be

for
e_2

nd
_lo

ad

10
_de

ad
_ag

v1
_af

ter
_2n

d_u
nlo

ad

11
_de

ad
_ag

v2
_be

for
e_s

tar
t

12
_de

ad
_ag

v2
_be

for
e_1

st_
loa

d

13
_de

ad
_ag

v2
_af

ter
_1s

t_u
nlo

ad

14
_de

ad
_ag

v2
_be

for
e_2

nd
_lo

ad

15
_de

ad
_ag

v2
_af

ter
_2n

d_u
nlo

ad

16
_de

ad
_ag

v0
_ag

v1
_be

for
e_s

tar
t

17
_de

ad
_ag

v0
_ag

v1
_be

for
e_1

st_
loa

d

18
_de

ad
_ag

v0
_ag

v1
_af

ter
_1s

t_u
nlo

ad

19
_de

ad
_ag

v0
_ag

v1
_be

for
e_2

nd
_lo

ad

20
_de

ad
_ag

v0
_ag

v1
_af

ter
_2n

d_u
nlo

ad

21
_de

ad
_ag

v1
_ag

v2
_be

for
e_s

tar
t

22
_de

ad
_ag

v1
_ag

v2
_be

for
e_1

st_
loa

d

23
_de

ad
_ag

v1
_ag

v2
_af

ter
_1s

t_u
nlo

ad

24
_de

ad
_ag

v1
_ag

v2
_be

for
e_2

nd
_lo

ad

25
_de

ad
_ag

v1
_ag

v2
_af

ter
_2n

d_u
nlo

ad

26
_de

ad
_ag

v0
_ag

v2
_be

for
e_s

tar
t

27
_de

ad
_ag

v0
_ag

v2
_be

for
e_1

st_
loa

d

28
_de

ad
_ag

v0
_ag

v2
_af

ter
_1s

t_u
nlo

ad

29
_de

ad
_ag

v0
_ag

v2
_be

for
e_2

nd
_lo

ad

30
_de

ad
_ag

v0
_ag

v2
_af

ter
_2n

d_u
nlo

ad

31
_pa

th_
1a

gv
_be

for
e_s

tar
t

32
_pa

th_
1a

gv
_be

for
e_p

ath

33
_pa

th_
1a

gv
_no

_re
tur

n

34
_pa

th_
2a

gv
_be

for
e_s

tar
t

35
_pa

th_
2a

gv
_be

for
e_1

st_
pa

th

36
_pa

th_
2a

gv
_af

ter
_1s

t_p
ath

37
_pa

th_
3a

gv
_be

for
e_s

tar
t

38
_pa

th_
3a

gv
_af

ter
_1s

t_p
ath

39
_pa

th_
3a

gv
_af

ter
_2n

d_p
ath

40
_pa

th_
3a

gv
_be

for
e_3

rd_
pa

th

43
_pa

th_
for

ce_
wp0

_w
p6

_be
for

e_s
tar

t

44
_pa

th_
for

ce_
wp8

_be
for

e_s
tar

t

Sc
en

ar
io

s

2002040608010
0

12
0

14
0

16
0

18
0

Total plan delay [%]

To
ta

l p
la

n
de

la
y

fo
r a

ll
te

st
in

g
sc

en
ar

io
s

Pl
an

 re
pa

ir
Re

pl
an

ni
ng

 fr
om

 sc
ra

tc
h

Fi
gu

re
16

:
To

ta
lp

la
n
de
la
y
fo
r
al
lt
es
tin

g
sc
en
ar
io
s

81

A.3 INITIAL PDDL PLAN

01_dead_agv0_before_start

02_dead_agv0_before_1st_load

03_dead_agv0_after_1st_unload

04_dead_agv0_before_2nd_load

05_dead_agv0_after_2nd_unload

06_dead_agv1_before_start

07_dead_agv1_before_1st_load

08_dead_agv1_after_1st_unload

09_dead_agv1_before_2nd_load

10_dead_agv1_after_2nd_unload

11_dead_agv2_before_start

12_dead_agv2_before_1st_load

13_dead_agv2_after_1st_unload

14_dead_agv2_before_2nd_load

15_dead_agv2_after_2nd_unload

16_dead_agv0_agv1_before_start

17_dead_agv0_agv1_before_1st_load

18_dead_agv0_agv1_after_1st_unload

19_dead_agv0_agv1_before_2nd_load

20_dead_agv0_agv1_after_2nd_unload

21_dead_agv1_agv2_before_start

22_dead_agv1_agv2_before_1st_load

23_dead_agv1_agv2_after_1st_unload

24_dead_agv1_agv2_before_2nd_load

25_dead_agv1_agv2_after_2nd_unload

26_dead_agv0_agv2_before_start

27_dead_agv0_agv2_before_1st_load

28_dead_agv0_agv2_after_1st_unload

29_dead_agv0_agv2_before_2nd_load

30_dead_agv0_agv2_after_2nd_unload

31_path_1agv_before_start

32_path_1agv_before_path

33_path_1agv_no_return

34_path_2agv_before_start

35_path_2agv_before_1st_path

36_path_2agv_after_1st_path

37_path_3agv_before_start

38_path_3agv_after_1st_path

39_path_3agv_after_2nd_path

40_path_3agv_before_3rd_path

43_path_force_wp0_wp6_before_start

44_path_force_wp8_before_start

Scenarios

0 10 20 30 40 50 60 70 80 90

Average cargo delivery delay [%]
Average delay of cargo delivery for all testing scenarios

Plan repair
Replanning from

 scratch

Figure
17:

Average
delay

ofa
cargo

delivery
for

alltesting
scenarios

82

	1 Introduction
	Requirements specified by the REX project
	Motivation example
	Organization of work

	2 State of the art
	Routing problems
	Arc routing problems
	Vehicle routing problems
	Traveling salesman problem
	Vehicle routing problem
	Variants of VRP
	Pickup-and-delivery problem

	Failures
	Planning
	Classical planning
	Planning Domain Definition Language
	PDDL 1.2
	PDDL 2.1
	PDDL 2.2
	PDDL 3.0
	PDDL 3.1
	Discussion of suitability for modelling PDP-TW

	Planners
	Temporal Fast Downward (TFD)
	OPTIC

	Plan modification

	3 Problem definition
	Problem background
	Problem statement
	Solution approaches

	4 Solution
	Minimal plan repair
	Model of the world
	Modelling of PDDL domain

	Proposed methods
	Plan repair
	Replanning from scratch

	System
	The REX system
	Integration of plan modification
	Implementation

	5 Evaluation
	Testing architecture
	Generation of data
	Operator's problem file
	Analysis of planning problem describing an industrial environment
	Initial problem file
	Initial PDDL plan

	Testing scenarios
	Generation of AGV failure
	Generation of failure due to blocked path

	Metrics description
	Plan difference
	Total plan delay
	Average cargo delivery delay

	Experimental results
	Plan difference
	Total plan delay
	Average cargo delivery delay

	Summary and discussion

	6 Conclusion
	Future work

	 References
	A Attached code
	PDDL domain
	Initial PDDL problem
	Initial PDDL plan

	B Graphs

