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Abstract

Sense of touch plays an important role
in the life of a person, however it is un-
derutilised and understudied in the field
of robotics. Tactile sensory modality has
large potential in many areas, from robots
building and calibrating models of their
bodies using tactile feedback, to enabling
safe human-robot interaction.

Although rich literature exists on the
topics of active learning and intrinsic mo-
tivation, authors rarely test their hypothe-
ses on robots with the sense of touch. And
when they do, they often prefer to use
extremely simple simulations of planar
manipulators.

In this thesis, I address this problem
by developing an artificial skin simula-
tor for the iCub humanoid robot used
for research in cognitive developmental
robotics, and using it for experiments in
efficient exploration of the robot’s body.
I have successfully implemented the artifi-
cial skin simulator for the iCub humanoid
robot and used it to perform a set of ex-
periments in body surface exploration. I
have applied the goal babbling exploration
framework and exploration by disagree-
ment algorithm to efficiently explore the
simulated robot’s body surface. I have
also compared several inverse body mod-
els suitable for the task of tactile explo-
ration.

Once the artificial skin simulator is ac-
cepted into the iCub codebase, it will
make it easier for other researchers to
perform experiments involving the sense

of touch on a humanoid robot.

Keywords: artificial skin, humanoid
robot, iCub, active learning,
curiosity-based learning, exploration,
intrinsic motivation
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Abstrakt

Zatímco u člověka hraje hmat velmi dů-
ležitou roli, v robotice je mu věnována
malá pozornost. Dotyková zpětná vazba
má přitom obrovský potenciál, od auto-
matické kalibrace robotů po bezpečnou
interakci člověka s robotem.

V oblasti aktivního učení a vnitřní moti-
vace existuje celá řada prací, ale málokdy
jsou algoritmy testovány na robotech s
dotykovou zpětnou vazbou. Pokud je tak-
tilní modalita přece jen použita, jedná se
často o velmi jednoduché simulace např.
planárních manipulátorů.

V této práci jsem k existujícímu simu-
látoru robota iCub, který se používá v
kognitivní vývojové robotice, v Gazebo
přidal taktilní zpětnou vazbu. Simulátor
jsem použil k sérii experimentů zaměře-
ných na aktivní průzkum povrchu těla. K
tomu jsem použil algoritmy založené na
“goal babbling” a “exploration by disagree-
ment”. Také jsem porovnal různé způsoby
implementace inverzních modelů na úloze
taktilní explorace.

Po integraci simulátoru kůže do oficiál-
ního iCub Gazebo simulátoru bude tento
nástroj k dispozici široké komunitě uživa-
telů.

Klíčová slova: umělá kůže, humanoidní
robot, iCub, aktivní učení, učení založené
na zvědavosti, explorace, vnitřní
motivace

Překlad názvu: Efektivní průzkum
povrchu těla s taktilními senzory u
humanoidních robotů
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Chapter 1

Introduction

For humans, the sensation of touch is a crucial means of receiving information
about the environment. Self-touch plays an important role in the development
of human infants. Our entire bodies are covered with a dense network of touch
sensors. Information flow from these sensors allows us to perform complex
dexterous manipulation tasks, discern material properties, and navigate in
conditions where visual feedback is scarce or completely unavailable.

Modern robots, on the other hand, underutilize the sense of touch, re-
lying more on cameras and depth sensing devices. Commercially available
autonomous mobile robots, like Roomba, only have crude bumper sensors
that signal collisions with household objects and walls. Industrial robots
use the sense of touch mainly in the form of limit switches that signal the
boundaries of the operational space.

Equipping robots with full-body touch capabilities would expand their
limits. For example, research on collaborative robots shows that touch-
enabled robots can safely operate alongside human workers with minimal
risk of physical harm. Touch sensors can be fused with visual sensors for
more efficient autonomous navigation. Recently, artificial skin solutions have
found their way to the collaborative robot industry through Airskin (pressure
sensitive) and Bosch APAS (using proximity) [40].
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1. Introduction .....................................
With this work, I pursue the following goals:..1. Development of simulator for iCub humanoid robot with artificial skin...2. Application of curiosity-driven active learning algorithms to the problem

of exploration of body surface covered with artificial skin...3. Comparison of experimental results to our previous work in [46, 15, 16].

The thesis is structured as follows. Chapter 2 briefly reviews related
research in the areas of active learning, curiosity-driven learning, and touch-
enabled robots. Chapter 3 presents the robot simulator, learning framework
and algorithms. Chapter 4 presents my contribution in the form of simulated
artificial skin and the environment for conducting experiments in exploration
and learning. Chapter 5 contains experimental results: application of active
learning algorithms to the problem of artificial skin exploration and compari-
son with previous results obtained in [46, 15, 16] with exploration framework
based on goal babbling [38].

Chapter 6 summarizes the main conclusions from the experimental results.
Results are further discussed in Chapter ??. Possibilities for future work are
outlined in Chapter 7.
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Chapter 2

Related work

2.1 Sense of touch in robotics

Human skin is covered with tactile sensors and provides rich tactile feedback.
The spatial coverage of human skin with touch receptors reaches 240 units per
cm2 at the fingertips ([51], [52]) and at the moment is unparalleled by artificial
skins available for robots. Yamada et al. in [54] have developed an embodied
brain model of the human foetus, complemented with an anatomically correct
full-body skin model. In our previous work [46, 15, 16] we have experimented
with body model learning on a simpler humanoid robot with artificial skin
by employing the computational frameworks of intrinsic motivation and goal
babbling.

Various designs and applications of the sense of touch in robotics have been
studied by a number of researchers—see e.g., [7, 14] for surveys or the 2019
special issue of Proceedings of the IEEE [13]). Struckmeier et al. in [49] and
Suresh et al. in [41] investigated the possibility of using touch for navigation,
either in tactile only or in visuo-tactile SLAM algorithms. I did not use this
research directly, but as a matter of fact, a robot exploring its own body is
solving a SLAM problem.

Church et al. in [11] combined deep reinforcement learning with feedback
from TacTip soft tactile sensor [53] in order to teach a robot arm to type
on a Braille keyboard. Lloyd et al. in [27] used tactile feedback to learn
adaptive control policies for pushing objects of various shapes and materials

3



2. Related work.....................................
towards a goal pose. Lepora and Lloyd in [26] devised a novel algorithm for
controlling robots using soft tactile sensors called Pose-Based Servo Control.
Roncone et al. [39] and Rustler et al. [40] employed self-contact and robot
skin to calibrate the robot kinematics or the spatial coordinates of the tactile
sensors, respectively. These are few examples of a multitude of ways in which
robotic systems may be improved with the sense of touch.

2.2 Active learning and intrinsic motivation

Active learning refers to a subfield of machine learning methods in which
the agent is allowed to actively query for the next data point during the
learning process. Settles and Burr conducted an extensive general survey
of the active learning literature in [44]. Baranes et al. have developed the
SAGG-RIAC framework [5] specifically for active learning of inverse models
in high-dimensional redundant spaces. Another example is M. Rolf’s goal
babbling framework [37]. A sample application of this framework is given in
[38], where an inverse model is learnt for a bionic elephant trunk robot.

Intrinsic rewards are those generated by the agent, in contrast to the rewards
provided by the robot’s environment. Curiosity is a type of intrinsic reward.
Burda et al. performed a large-scale study of curiosity-driven learning [9].
Mori et al. in [31] showed that tactile-based curiosity induces the emergence
of tactile-rich object-oriented behaviors. Committee disagreement is another
type of intrinsic reward, first described by Seung et al. in [45]. Pathak et al.
show in [35] and [34] how disagreement can be used for efficient exploration
of the environment. I have based my artificial skin exploration algorithm on
this research.

There are numerous other examples of intrinsic motivation applications.
Sukhbaatar et al. in [50] show how intrinsic motivation can be combined with
asymmetric self-play for efficient exploration. Schmidhuber in [42] use curiosity
learning to build a control system which “actively tries to provoke situations
for which it learned to expect to learn something about the environment”.
Intrinsic rewards can be used with reinforcement learning algorithms, an
extensive survey of methods that combine intrinsic and extrinsic rewards has
been performed by Aubert et al. in [2] and by Barto in [6].

4



............................2.3. Comparison of robotic simulators

Random Multiple Support
External Force Physics Realistic for Soft Open

Simulator Forces Sensors Engines Rendering Bodies Source

Gazebo + + + - ** +
NVIDIA Isaac + * - + + -
MuJoCo + + - - + -
Webots + + - - - +

Table 2.1: Comparison of features of robotic simulators [12]
* - NVIDIA added support of DoF force sensors in latest versions of Isaac SDK
** - not supported natively, but can be implemented with FEM plugin [10]

2.3 Comparison of robotic simulators

Ayala et al. conducted a quantitative comparison of three humanoid robot
simulators in [3]. They evaluated the use of CPU, memory footprint, and
disk access by the simulators. Collins et al. performed a more comprehensive
review of physics simulators for robotic applications [12]. “Learning for
Robotics” section of their work is particularly relevant for my thesis; it
classifies the simulators according to several features important for robotic
learning algorithms: the availability of a multitude of sensors, the ability
to apply random external forces to a robot, realistic rendering etc. A brief
summary of these features is given in table 2.1.

. Ability to apply random external forces is important for two reasons.
Firstly, the addition of exploration noise is crucial for efficient exploration
of the search space, as shown by M. Rolf in [37]. Secondly, the models
trained on noisy data are more robust, and it is generally easier to
transfer such models from simulation to the real robot. All simulators
that I have taken into consideration support this feature. I am not using
this feature directly, instead, I am adding noise when generating goals
for exploration.. Support for force sensing is crucial for the simulation of artificial skin
with tactile feedback. Unfortunately, NVIDIA Isaac simulator did not
have support for force sensing at the time when the decision about
simulator choice was made.. Gazebo allows the user to select one ofmultiple physics engines. Currently
Gazebo supports 4 physics engines: ODE (default), Bullet, DART, and
Simbody. Although this feature is not critical, it is beneficial to be able
to compare the simulation results with several physics engines. In this
work, I am only using ODE physics engine.
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2. Related work.....................................
. Photorealistic rendering is important for machine learning applications

where models are learnt from visual feedback. This feature is not critical
for experiments in tactile exploration.. Physics engines that simulate rigid bodies are known to generate contact
jitter (for example, see an open issue for ODE engine [17]). Simulators
that support soft bodies, deformation, and soft touch mitigate this prob-
lem. Unfortunately, the Gazebo simulator does not support this feature
natively. However, Chen et al. show in [10] that this functionality can
be implemented with a Gazebo plugin using the finite element method
(FEM) to accurately model the deformations. I have solved this issue by
adding a low-pass filter to the generated contact data..Out of the 4 simulators under consideration, only Gazebo and Webots
are both open source and free to use for education and research purposes.. The models for the iCub simulations are automatically generated from the
iCub CAD designs in URDF format. All the abovementioned simulators
support the URDF format, either natively or by automatically converting
URDF files into an internal representation format (e.g. SDF in Gazebo)

Based on these considerations, I have decided to use Gazebo robotic
simulator [25] in my thesis.

2.4 Thesis contribution

In our previous work [46, 15, 16], we used the Nao humanoid robot with
artificial skin and focused on efficient self-exploration as well as learning of
forward and inverse models of the robot’s body.

Nao is a proprietary robotic platform developed by SoftBank Robotics Cor-
poration. The iCub humanoid robot [30], on the other hand, is an open source
humanoid robot that was designed specifically for studies in developmental
cognitive robotics. Although the physical iCub robot comes with capacitive
artificial skin, there has been limited support for iCub artificial skin in the
simulation. Official iCub github repositories (icub-main, icub-models) come
without proper support of the artificial skin simulation.

In this thesis, I add artificial skin support to the iCub humanoid robot
Gazebo simulation. I then apply the curiosity-based active learning approach
described by Pathak et al. in [34], [9], and [35], to the novel task of artificial
skin exploration using the sensation of touch on a simulated iCub humanoid
robot. Finally, I compare the efficiency of curiosity-based exploration with
goal-based exploration techniques from our previous work [46, 15, 16].

6



Chapter 3

Methods

3.1 iCub humanoid robot with artificial skin

iCub is a humanoid robot for research in embodied cognition [30]. It was
designed and developed specifically for the study of the development of
cognitive abilities in physical agents. The iCub robot stands 104 cm tall and
weighs 22 kg (Fig. 3.1b).

The latest version of the robot at the time of writing has 53 degrees of
freedom (DoF) organized in the following way [20]:

. 6 DoF for the head, of which 3 DoF are in the neck and the other 3 DoF
control the eyes. 7 DoF for each arm: 3 DoF for the shoulder, 1 DoF for the elbow and 3
DoF for the wrist. 9 DoF for each hand, allowing control of individual fingers. 3 DoF for the torso. 6 DoF for each leg: 3 DoF for the hip, 1 DoF for the knee and 2 DoF
for the ankle

7



3. Methods.......................................

(a) : Frontal view of the iCub robot (b) : iCub robot with exposed artificial
skin [23]

Figure 3.1: iCub humanoid robot

iCub comes with artificial skin covering its torso, arms, legs, and hands
(Fig. 3.1b). The skin is made up of capacitive tactile sensors placed on
triangular flexible printed circular boards. Each triangle contains 10 sensors.
Triangles are connected to one another and form a network that is controlled
by a single MCU.

The number of taxels per relevant body part is: 440 taxels on the torso;
380 taxels on each upper arm; 230 taxels on each forearm; 104 taxels on each
hand (44 on the palm and 12 on each of the 5 fingers).

(a) : Physical sensors of the iCub arti-
ficial skin [22]

(b) : Simulation of the iCub robot with
artificial skin in Gazebo 11

Figure 3.2: iCub artificial skin
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...................... 3.2. Comparison of iCub with Nao humanoid robot

Figure 3.3: Tactile data flow [22].

Tactile data flow (schematically depicted in Fig. 3.3):

. Physical sensors produce raw tactile data and send it to /icub/skin/part_name
YARP port. Raw data consists of vectors of integer values (value range
[0..255]). 0 corresponds to the maximum pressure, and no pressure
value is around 235, according to the technical documentation.. SkinManager software module reads the raw tactile data, converts it into
compensated tactile data and writes it to /icub/skin/part_name_comp
YARP port. Compensated data consists of vectors of floating point
values, where 0.0 corresponds to no pressure and 255.0 means maximum
pressure.. Compensated tactile data can be used by the user code, and it is also
used for visualization by iCubSkinGUI module (Fig. 4.1).

3.2 Comparison of iCub with Nao humanoid robot

In my bachelor’s thesis [46] and the follow-up research [15, 16], we have used
the Nao humanoid robot. The iCub robot has a number of advantages over
the Nao:

9



3. Methods.......................................

(a) : iCub’s hand [43] (b) : Nao’s hand

Figure 3.4: Comparison of robotic hands of iCub and Nao humanoid robots..1. iCub is distributed as Open Source following the GPL/FDL licenses
[30], whereas Nao is a proprietary product developed and distributed
by SoftBank Robotics. This makes research made with iCub more
reproducible and accessible for the research community...2. iCub has 7 DoF arm with anthropomorphic proportions, whereas Nao
was not designed to closely resemble human anatomy...3. Design of iCub’s hand has close resemblance with the human hand. Each
hand of the iCub robot has 9 degrees of freedom that enable meticulous
control of individual fingers. Nao only has 1 controllable DoF which
opens and closes all 3 fingers simultaneously (Fig. 3.4)...4. iCub robot comes with artificial skin covering its torso, legs, arms and
hands. Nao, on the other hand, does not have skin sensing capabilities
and has to be modified for the kind of research we are doing. These
modifications turn out to be expensive and time-consuming.

3.3 Gazebo simulation environment

The simulation environment is based on YARP [29] and Gazebo 11 [25]. The
Robotology github organization that brings together software for the iCub
robot platform provides the icub-models repository [21] and gazebo-yarp-plugins
[19] that enable the simulation of the iCub robot with Gazebo simulator.
However, these repositories do not enable simulation of artificial skin. My
contribution to the simulation environment is described in detail in Section 4.1.

10



.....................................3.4. OpenAI gym
3.4 OpenAI gym

OpenAI gym is a toolkit for research in reinforcement learning (RL) [8]. The
gym defines a standardized interface for the environments, which makes it
easy to test learning algorithms on any environment that implements the
gym API. The OpenAI gym environment I have developed is described in
detail in Section 4.2.

3.5 Curiosity-driven exploration framework

To efficiently explore the surface of the robot’s body covered with artificial skin,
I am using several exploration frameworks based on intrinsic motivation. In
this section, I describe the general theoretical basis of intrinsically motivated
learning, and then describe the particular framework I am using.

3.5.1 Intrinsically motivated active learning

Intrinsic motivation (IM) describes learning methods where the agent does
not receive any external reward from the environment. The agent performs
actions and develops a certain behavior for the shear satisfaction of it, not
for external reward [33], [4], [28], [2], [5].

Active learning describes a subset of machine learning algorithms where
the agent is allowed to choose the data from which it learns [44]. These
algorithms allow the agent to learn more accurate models with a smaller
number of labeled instances, increasing the sample efficiency.

A number of measures of intrinsic motivation are described in the active
learning literature:

. Competence is defined as the ability of the agent to successfully perform
selected tasks. For example, competence is defined for robot’s reaching
attempts in [5] as the similarity between the point in the task space yf

11



3. Methods.......................................
attained when the reaching attempt has terminated, and the actual goal
yg:

C = −‖yf − yg‖ (3.1)

We have successfully used this intrinsic motivation measure for explo-
ration in our previous work [46, 15, 16].. Curiosity can be used as an intrinsic reward. Pathak et al. use prediction
error as a curiosity reward in [34].. Empowerment is the measure of how much control the agent has over its
environment [24]. To maximize empowerment, the agent is rewarded if
it is heading towards areas where it can best control the environment.. Disagreement intrinsic motivation works with ensembles of forward mod-
els and steers exploration to areas where the predictions of ensemble
members disagree with each other the most [35].

Interesting effects may come from combining several measures of intrinsic
motivation. For example, Rayyes et al. in [36] proposed a novel intrinsic
motivation signal named interest measurement which combines competence-
based and knowledge-based elements. This new signal, combined with interest-
driven goal babbling exploration strategy and online episodic mental replay
technique, allowed the authors to efficiently guide the exploration process
and achieve very high sample efficiency.

3.5.2 Exploration via disagreement

In self-supervised exploration via disagreement model, described in [35], the
agent maintains an ensemble (or committee) of forward models

~f = {f1...fn} (3.2)

Given the current state xt and action at, the ensemble of forward models
predict the next state estimates

x̂t+1 = {x̂1
t+1...x̂

n
t+1} (3.3)

12



........................... 3.6. Goal-based exploration framework

The disagreement intrinsic motivation measure is defined as the variance
of these estimates:

ri
t = Eϑ

[
‖~f(xt, at;ϑ)− Eϑ[~f(xt, at;ϑ)]‖22

]
(3.4)

where ϑ is the vector of model parameters.

The above definition is model-agnostic. Pathak et al. use ensembles
consisting of 5 deep neural networks in their work [35]. I am using locally
weighted linear regression (LWLR) forward models [1, 32], as well as non-
parametric nearest neighbor (NN) and k nearest neighbors (kNN) models.

Given a motor command q ∈ Q, the LWLR forward model finds its k
nearest neighbors in the database and computes a linear regression of their
corresponding observations x ∈ X. Here k and σ2 are parameters of the model.
The algorithm uses normalized Gaussian weights. Let di be the distance
between q and its i-th nearest neighbor, wi the i-th regression weight, then:

w′i = e−
d2
i

2σ2

wi = w′i∑k
j=1w

′
j

(3.5)

3.6 Goal-based exploration framework

We have used goal-based exploration framework in our previous research [46,
15, 16]. In this work, I am using previous results as a baseline for comparison
with the results obtained by the disagreement exploration framework. Here I
will briefly describe goal-based exploration architecture, for a more detailed
account, please refer to [4], [32] or [16].

13



3. Methods.......................................
3.6.1 Action and observation spaces

Action space Q represents all possible actions of the agent. Each action
q ∈ Q causes an outcome x ∈ X in some observation space X. The causal
relationship between action space and observation space is defined by some
forward function f [37, p.5]:

f : Q→ X
f(q) = x

(3.6)

3.6.2 Random motor babbling

In random motor babbling exploration strategy, a motor configuration q ∈ Q
is sampled uniformly from the action space. Selected action is executed,
observation x ∈ X is recorded and the database is updated. This exploration
strategy is the most naive and least effective method for learning forward
and inverse models.

3.6.3 Random goal babbling

In random goal babbling exploration strategy, a goal g ∈ X is first sampled
from the observation space. The agent then performs an action q ∈ Q to try
and reach the selected goal. With each attempt, the agent is incrementally
updating the model based on the feedback from environment.

Goals can be sampled either uniformly or based on some intrinsic motivation
signal. For example, in our previous work [46, 15, 16] we have achieved good
results with discretized progress goal sampling strategy: the observation space
is discretized into xcard cells, a cell for goal generation is selected randomly,
with a probability proportional to the current value of interest in each cell.

14



Chapter 4

iCub Gazebo simulation with artificial skin
and OpenAI gym environment

In this chapter, I give a detailed account of my contribution. All code, data
files and experiment results are available in the public GitLab repository [18].
Video demonstration of the developed simulation environment is available
online at [47, 48].

4.1 Gazebo simulation of artificial skin

As the basis for the simulation, I have used iCub_2_5_visuomanip model
from icub-models repository [21]. This model has fully articulated hands
and is capable of performing complex manipulation tasks. In order to add a
simulation of artificial skin to Gazebo, I had to complete several steps.

Firstly, a physical model of the sensors had to be added to the model. I
have modeled each taxel as a small sphere. 3D coordinates relative to the
parent link of taxels for the torso, arms, and palms of the hands were available
in iCubSkin module of icub-main repository. For the taxels on the robot’s
fingers, I had to deduce coordinates from iCub CAD designs.

Secondly, I have created a contact sensor plugin for Gazebo that registers
detected taxel activations, converts them to iCub compensated tactile data,
and sends the data to /icubSim/skin/part_name_comp YARP port.

15



4. iCub Gazebo simulation with artificial skin and OpenAI gym environment...........
A similar plugin was developed for my bachelor’s thesis to connect Gazebo

simulation of Nao robot with ROS ports. The plugin from previous work was
slowing down the simulation, causing an experiment of 1000 time steps to
last for several hours, slowing down the entire research. In this thesis, I have
solved this issue in the following way: instead of creating an instance of a
sensor plugin for each body part covered with artificial skin, I have created a
single model plugin instance that subscribes directly to ~/physics/contacts
Gazebo topic and filters out relevant tactile information. This solution helped
to speed up the simulation to a factor of approximately 0.75 of real-time
speed. Now a simulation of 1000 time steps lasts for about 20 minutes.

Another problem with the simulation was a “flickering contact”. This was
caused by a long known, but still unsolved issue with the physics engine
used in Gazebo [17]. Due to the numerical nature of the dynamic physics
simulation of the rigid bodies, contact forces between surfaces caused tiny
bumps and jumps, such that in consecutive time steps the surfaces would
oscillate between contact on and off states.

I have solved this issue by reducing the update frequency of tactile data
from 50 Hz (used on the physical robot) to 20 Hz. Between updates, the
contact data is accumulated in the plugin’s internal buffer, and any flickering
occurring between two consecutive updates gets filtered out. The effect can be
clearly seen in the videos: 50 Hz update rate causes visible contact flickering
[48], while at 20 Hz update rate this problem is mitigated [47].

Thirdly, I have developed an OpenAI gym environment to implement, test,
and compare algorithms for exploration of the robot’s artificial skin. This
environment is described in detail in the next section.

4.2 OpenAI gym environment

I have developed icub_skin OpenAI gym environment that defines an inter-
face to the simulated iCub robot.

4.2.1 Observation

The observation is a composite object that contains 3 nested objects:
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............................... 4.2. OpenAI gym environment
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(b) : Forearm

100 200 300 400 500

x [px]

50

100

150

200

250

300

350

400

450

500

y
 [
p
x
]

(c) : Hand

Figure 4.1: Visualization of tactile data in iCubSkinGUI module..1. joints object contains the actual observed state of all joints in the robot’s
head, torso, arms, and hands:

"joints": Dict({
"head": Box(6),
"left_arm": Box(16),
"right_arm": Box(16),
"torso": Box(3)

})..2. skin object contains vectors of binary values corresponding to each
artificial skin taxel, where 0 indicates no touch and 1 indicates touch.
There are 7 vectors in this object: for the torso, and for the left/right
upper arm, forearm, and hand.

"skin": Dict({

17



4. iCub Gazebo simulation with artificial skin and OpenAI gym environment...........
"left_arm": Box(768),
"left_forearm": Box(384),
"left_hand": Box(192),
"right_arm": Box(768),
"right_forearm": Box(384),
"right_hand": Box(192),
"torso": Box(768)

})..3. touch object contains coordinates of the touch for each of the body parts.
These coordinates are computed using center of mass formula:

~x =
∑
~ximi∑
mi

(4.1)

Where the mass of each point is taken to be the pressure exerted on the
corresponding taxel. If there is no touch on some body part, it returns ~0
vector. 2D coordinates of individual taxels are deduced from the images
used for visualization by the iCubSkinGUI interface (Fig. 4.1).

"touch": Dict({
"left_arm": Box(2),
"left_forearm": Box(2),
"left_hand": Box(2),
"right_arm": Box(2),
"right_forearm": Box(2),
"right_hand": Box(2),
"torso": Box(2)

})

4.2.2 Actions

The action object contains target position values for each joint in the robot’s
upper body. The shape of the action object is the same as the joints
observation object described above. The limits for each joint are taken from
the URDF model of the iCub robot. The reset action sets default movement
speed for all joints and sends an action to move joints to the home posture.

4.2.3 Reward function

Since the goal of this work is to find effective exploration algorithms for the
skin surface, the reward function of the environment returns 1 for every
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............................... 4.2. OpenAI gym environment

newly discovered taxel. During the reset, a Boolean lookup table is initialized
with false value for each taxel. After each action, the taxels that were
activated during the current time step are checked against the lookup table,
and for each taxel that was not activated before the reward is increased by 1.

4.2.4 Episode termination

In accordance with the experiments conducted in our previous research, the
episode is terminated after 1000 time steps.
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Chapter 5

Experiments and results

5.1 Body surface exploration

A number of experiments were conducted with the main goal to assess and
compare several exploration strategies, forward and inverse models, and to
test if the artificial skin simulation works properly.

5.1.1 Experimental design

Experiments were conducted in the simulated environment using Gazebo 11
simulator. Each experiment started with the selection of the exploration
strategy, forward and inverse models.

All experiments were performed using the left arm of the simulated iCub
robot, with the goal to explore the artificial skin on the robot’s torso. The
last 9 degrees of freedom of the arm were locked in a position with the thumb
protruding outwards perpendicular to the palm of the robot’s hand.

Therefore, the exploration was performed using the first 7 DoF of the
robot’s arm (shoulder, elbow, and wrist). Exploration always starts from the
designated home position (Fig. 5.1) with the following joint coordinates for
the left arm: [-60,40,80,105,-60,24,0,60,90,0,0,0,0,0,0,0]
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5. Experiments and results ................................

(a) : iCub robot in the home position (b) : Torso skin taxel activation when
in home position, the observation is
(276, 306)[px] (see Section 4.2.1)

Figure 5.1: The home position

Each experiment was conducted for 1000 time steps, in accordance with
our previous research [46, 15, 16]. During the exploration phase, zero-mean
normally distributed exploration noise with σ = 0.03 is added to the inverse
predictions of the model.

Every 100 time steps, the current state of the model is saved and the
competence of the model is assessed on the testing taxel set. During the
assessment stage, no exploratory noise is added to the model predictions.

5.1.2 Training and testing taxel sets

The exploration was performed within the artificial skin on the iCub’s torso.
Skin on the torso consists of 44 triangles. Each triangle houses 10 taxels,
for a total of 440 taxels on the torso. The entire surface of the skin can be
considered the training set.

For the testing set, I have selected the central taxel of each triangle.
Therefore, the testing set on the torso consists of 44 taxels (Fig. 5.2a).

Every 100 iterations of the exploration algorithm the robot would try to
reach for the taxels in the testing set, and the results of the evaluation were
recorded for further processing:
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(a) : Testing grid on iCub’s torso
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(b) : Testing grid on iCub’s forearm

Figure 5.2: The testing taxel set..1. Goal taxels xg..2. Actual observations xo..3. Reaching error, computed as Euclidean norm between the goal taxel
coordinates in observation space and the actual observation:

er = ‖~xg − ~xo‖2 =
√

(xx
g − xx

o)2 + (xy
g − xy

o)2 (5.1)

Additionally, the total number of taxels that were touched at least once
during the episode is recorded.

5.1.3 Random motor babbling

Random motor babbling is the weakest of the tested exploration strategies.
On average, random motor babbling produced less than 10 touches during an
experiment run of 1000 time steps (Fig. 5.5b)...1. It does not use feedback from the environment to adapt the exploration

process in any way...2. It suffers greatly from the curse of dimensionality, i.e. the exponential
growth of the complexity of the exploration task with the growing number
of degrees of freedom...3. The portion of the action space where touches with the artificial skin
can be observed is small compared to the whole volume. Random motor
babbling produces almost no touch events (Fig. 5.3), which results in
very poor data efficiency and quality of learned models.
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5. Experiments and results ................................

Figure 5.3: Examples of poses produced with random motor babbling exploration
strategy

5.1.4 Goal-based exploration

In goal-based exploration paradigm, the agent actively generates goals in the
observation space and tries to reach them. After each goal reaching attempt,
the agent incrementally updates the internal model. This approach achieves
great sample efficiency and allows for efficient exploration of the body surface.

A small drawback of the goal-based exploration techniques is the boot-
strapping problem. In order to try and reach a goal, the agent must already
have some crude inverse model available to him. I achieve bootstrapping by
explicitly initializing the agent with the information about the home position
and the corresponding observation (Fig. 5.1).

5.1.5 Random goal babbling

In the random goal babbling strategy (Section 3.6.3), the agent generates the
goals randomly in the observation space and then tries to reach them using
the inverse model. This strategy turns out to be much more effective than
random motor babbling (Fig. 5.5).
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(a) : Random goal babbling
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(b) : Exploration by disagreement

Figure 5.4: Qualitative results of the exploration experiments after 1000 time
steps. Light gray: goals. Black: regular taxels. Magenta: testing taxels with
error/3. Red: unreached taxels.

5.1.6 Exploration via disagreement

I have adapted exploration by disagreement (Section 3.5.2) to the problem of
body surface exploration in the following way. I maintain a committee of 5
forward models initialized with different random weights. At each time step,
the following algorithm is used:..1. Sample several random goals from the observation space...2. For each sampled goal, query the inverse model for the action to reach

that goal...3. Use the committee of forward models to obtain estimates for each action...4. Select the goal for which the variance in forward estimates is the largest.

In this way, exploration is steered toward the areas where the forward
models disagree the most.

5.1.7 Summary of the exploration experiments

Qualitative results of the experiments are shown in Fig. 5.4. Results for
random motor babbling are not shown here due to the extremely low number
of taxel activations and poor quality of the learnt models.
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Figure 5.5: Quantitative results of the exploration experiments

As you can see, the random goal babbling exploration strategy (Fig. 5.4a)
is less effective than exploration by disagreement (Fig. 5.4b). The latter
focuses exploration on areas where there is “more to learn”, which results in
an overall better exploration performance.

Quantitative results are shown in Fig. 5.5. These results confirm that
random motor babbling is practically unusable in high DoF exploration tasks,
random goal babbling provides a feasible solution. However, intrinsically
motivated exploration strategies, like exploration by disagreement, provide the
best results, both in terms of minimizing the reaching error and discovering
the larger skin surface area.

5.2 Tests of reading of sensor activation

During the development of the artificial skin simulation and when running
the exploration experiments, I have monitored the quality and stability of
the sensor activation. Unfortunately, I did not come up with any automated
way of testing, instead I had to rely on visual inspection of iCubSkinGUI
visualization of skin touches.

As stated above, I was able to achieve good stability with almost no
flickering of the contact. Video demonstration of the current state of contact
activation is available online at [47].
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Figure 5.6: Comparison of mean reaching error for different models

5.3 Comparison of inverse models

To compare different inverse models, I have used the random goal babbling
setting. Below is a brief description of each model and the numerical results of
their comparison. All of these models are non-parametric lazy learning models.
They maintain a database of tuples (q, x), where q is a motor command and x
is a corresponding observation. When a forward or inverse query is performed,
these models find 1 or more closest points, perform online processing, and
return the estimated result...1. Nearest neighbor (NN) model simply finds and returns the point

closest to the query point...2. Weighted nearest neighbor (WNN) model finds n nearest neighbors
of the query and returns their average weighted by the distance to the
query point...3. Locally weighted linear regression (LWLR) model computes a linear
regression of the n nearest neighbors of the query point.

Numerical results of comparing these 3 models (Fig. 5.6) confirm the
findings from my previous research [46]. Although WNN and LWLR models
are more effective than NN in the Cartesian manipulation tasks, NN model is
more effective for skin exploration, because regression and weighted average
often produce motor commands that result in no touch between the finger
and the skin surface.
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Chapter 6

Conclusion

In this thesis, I have developed an artificial skin simulator for the iCub hu-
manoid robot in Gazebo 11. The simulator is finished, tested, and I continue
working on a pull request to integrate the simulator into the official iCub
codebase on GitHub [21]. This work will be beneficial to the research commu-
nity working in the area of cognitive developmental robotics, enabling them
to incorporate tactile sensory modalities into their simulated experiments.

After developing the simulator, I have implemented an OpenAI gym envi-
ronment to work with the artificial skin simulation and performed a series of
experiments in exploration of the body surface using the sensation of touch.
I have adapted the exploration by disagreement framework to this task and
compared the obtained results with our previous work [46, 15, 16]. With this,
I have mainly confirmed our previous findings:

. Exploration by goal babbling is more effective than motor babbling, and
intrinsically motivated exploration is more effective than goal babbling..When working with the sensation of touch, the primitive nearest neighbor
inverse model works better than more complicated models based on
regression, because it more often returns estimates that generate touch
between the end effector and the surface of the skin.

All code, data files and experiment results are available online in the
associated GitLab repository [18]. Video demonstrations of the artificial skin
simulator are available online at [47, 48].
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Chapter 7

Discussion and future work

7.1 Pending pull request from robotology github
organization

In this thesis, I have added the support of tactile artificial skin to the Gazebo
simulation of the iCub robot. This functionality was previously not available
in the open source iCub codebase. I am currently in the process of preparing
and testing a pull request to be accepted into icub-main and icub-models
repositories that will add the abovementioned artificial skin functionality to
the iCub codebase.

Once completed and accepted, this pull request will make it easier for other
researchers to perform experiments in developmental and cognitive robotics
that involve the sensation of touch.

7.2 Mimicking tactile receptor distribution in
humans

For the artificial skin simulation implemented in this thesis, I have used
3D coordinates of taxels exported from the iCub CAD designs. Thus, the
simulated artificial skin, which mirrors the artificial skin of the physical iCub
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7. Discussion and future work...............................
robot, has the uniform density of taxels. This density is dictated by the
placement of capacitive sensors on PCB triangles.

This is nothing like the human anatomy. Human skin is covered with touch
receptors called mechanoreceptors that provide us the sense of touch [51].
The density of these receptors varies in a wide range, with the most dense
sensor coverage on the face and on the hands, reaching 240 receptors per
cm2 [51]. Grating orientation discrimination tests on humans give threshold
values of 0.51 mm at the lip, 0.58 mm at the tongue, and 0.94 mm at the
finger [52].

Yamada et al. have implemented an anatomically correct distribution of
tactile sensors in their embodied model of a human foetus [54] (although their
density data is based on less accurate human two-point discrimination data;
see [52] for details).

I suggest it would be beneficial to create a model of artificial skin for the
iCub robot with an option to choose between two distributions of the tactile
sensor density: uniform or one that more closely resembles human anatomy.

7.3 Utilizing more degrees of freedom of the iCub
robot

Similar to our previous research [46, 15, 16], I have used one of the iCub’s
fingers as a rigid end-effector to generate touch events. This approach was
necessary for the Nao humanoid robot, however, iCub has an anthropomorphic
arm and hand design with 5 fingers controlled by 9 degrees of freedom. For
that reason, the iCub robot is capable of accomplishing much more agile
manipulation tasks.

7.4 Combining different types of forward models
when exploring via disagreement

Pathak et al. in[35] have used an ensemble of neural network forward models
initialized with random weights. In this thesis, I have also used an ensemble
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of homogeneous linear regression models initialized with random values. It
seems to me that it would be worthwhile to investigate an exploration by
disagreement process where forward models would be of different kinds,
for example, a combination of several linear regressors with several neural
networks.

7.5 Implementing the discretized goal babbling
exploration strategy

In our previous work [46, 15, 16], we have achieved the best results in
exploration when using the discretized goal babbling (DGB) exploration
framework. Unfortunately, I was not able to implement this strategy in the
new iCub environment. In the future, I would like to finish this task and
compare DGB results with exploration by disagreement.

7.6 Technical issues with the simulation

When working on the OpenAI gym environment, I came across a minor
technical difficulty. Sometimes, possibly if the simulated iCub robot exerts an
effort larger than some threshold value, some of its joints will signal “hardware
failure” and switch to uncontrollable idle compliant mode. During the entire
development process this happened only a few times, and I have mitigated
this by limiting the maximum speed of the joints, however this remains an
issue I neither fully understand nor know how to fix.
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