
Master thesis

Czech
Technical
University
in Prague

Continuous Integration and Continuous
Delivery of addictologic web application

Jana Čikelová

August 2021

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

452759Personal ID number:Čikelová JanaStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Computer Science

Open InformaticsStudy program:

Data ScienceSpecialisation:

II. Master’s thesis details

Master’s thesis title in English:

Continuous Integration and Continuous Delivery of addictologic web application

Master’s thesis title in Czech:

Continuous Integration a Continuous Delivery webové adikotologické aplikaci

Guidelines:
The topic of the work is a pre-existing web application that enables
management of a addictologic programme, provides necessary APIs for
iOS and Android apps presenting the programme and drives programme
walkthrough. The application runs on Django python web framework with
PostgreSQL as database and Huey/Redis to providing asynchronous multithread processing and scheduled tasks.
1. Study and analyze existing addictologic web application.
2. Prepare application for containerization using Docker environment
and test fundamental functionality.
3. Study suitable container orchestration platforms for smaller
projects with limited resources, e.g. Docker Swarm + Portainer,
Kubernetes, Mickro8s. Use them to implement continuous
integration and continuous delivery pipeline.
4. Explore state and performance monitoring tools to ensure high
availability and provide means for tracking performance-related
problems.
5. Choose suitable framework from appointed tools above and
support your choice with arguments based on previous analysis.
6. Implement/configure the chosen solution.
7. Test the best framework on the real environment containing at least
5000 users

Bibliography / sources:
[1]Erich, Floris & Amrit, Chintan & Daneva, Maya. (2017). A Qualitative Study of
DevOps Usage in Practice. Journal of Software: Evolution and Process. 00.
10.1002/s
[2]M. Shahin, M. Ali Babar and L. Zhu, "Continuous Integration, Delivery and
Deployment: A Systematic Review on Approaches, Tools, Challenges and
Practices," in IEEE Access, vol. 5, pp. 3909-3943, 2017
[3]Arachchi, S A I B & Perera, Indika. (2018). Continuous Integration and
Continuous Delivery Pipeline Automation for Agile Software Project Management.
10.1109/MERCon.2018.8421965
[4]Sheyyab, Mahmoud. (2019). Managing Quality Assurance Challenges of
DevOps through Analytics.
[5] Khan, Muhammad & Jumani, Awais & Mahar, Farhan & Siddique, Waqas &
Shaikh, Asad. (2020). Fast Delivery, Continuously Build, Testing and Deployment
with DevOps Pipeline Techniques on Cloud. Indian Journal of Science and
Technology. 13. 552-575. 10.17485/ijst/2020/v13i5/148983.

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 1 from 2CVUT-CZ-ZDP-2015.1

Name and workplace of master’s thesis supervisor:

doc. Ing. Daniel Novák, Ph.D., Analysis and Interpretation of Biomedical Data, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 13.08.2021Date of master’s thesis assignment: 07.09.2020

Assignment valid until: 19.02.2022

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
Head of department’s signaturedoc. Ing. Daniel Novák, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce her thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 2 from 2CVUT-CZ-ZDP-2015.1

Acknowledgements
First, I would like to express appreciation
to my supervisor Daniel Novák and my
colleges Jakub Trmal and Jindřich Prokop,
which introduced me to the problematics
of DevOps and guided me while working
on this thesis. Furthermore, I would like
to thank my family and friends for giv-
ing me a great environment and support
during my studies.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses

Prague, August 10, 2021

v

Abstract
Providing stable application with fast re-
sponse to users’ requirements is a key ele-
ment in today’s competitive world. Fre-
quent deployment and high uptime are
extremely valuable. In this diploma the-
sis, we focus on the upgrade of the server
part infrastructure of smoke cessation web
application to reach better stability and
efficiency. Firstly we discuss the topic
of containerization and virtual machines.
Afterward, we dive into the concept of
orchestration platforms, and we provide
a wide comparison of the currently two
most popular orchestration platforms Ku-
bernetes and Docker Swarm. Addition-
ally, we introduce UI interfaces for easier
manipulation with these tools. We imple-
ment a Docker Swarm into our current
infrastructure, and on top of it, we use
Portainer UI. Furthermore, we discuss the
topic of continuous integration and contin-
uous delivery pipeline. Then, we design a
fully automated GitLab CI/CD pipeline,
so the deployment process can be per-
formed without any human interaction.
In the end, we present a solution for the
performance monitoring of containers and
the rest of the infrastructure.

Keywords: containerization,
orchestration platforms, Kubernetes,
Docker Swarm, CI/CD pipeline,
cointaner monitoring

Abstrakt
Stabilnosť aplikácie a rýchle reakcie na
požiadavky užívateľov sú kľúčovými fak-
tormi v dnešnom konkurenčnom svete.
Časté nasadzovanie aplikácie a dobrý up-
time sú mimoriadne cenené. V tejto di-
plomovej práci sa zameriavame na vy-
lepšeni momentálnej architektúry serve-
rovej časti aplikácie na odvykanie fajče-
nia s cieľom dosiahnuť lepšiu stabilitu a
efektivitu. Ako prvé prediskutujeme tému
kontajnerizácie a virtuálnych strojov. Ná-
sledne sa ponoríme do konceptu orchestrá-
cie a poskytneme široké porovnanie mo-
mentálne dvoch najpopulárnejších nástro-
jov pre orchestráciu. Tými sú Kuberne-
tes a Docker Swarm. Tiež predstavíme
možnosti rôznych uživateľských rozhraní
pre orchestráciu. Implementujeme Docker
Swarm do našej infraštruktúry a na vrch
neho pridáme uživateľské rozhranie Por-
tainer. Ďalej preberieme tému continous
integration a continous delivery. Potom
navrhneme riešenie plne automatizovanej
GitLab CI/CD pipeliny, vďaka ktorej sa
proces nasadenia aplikácie bude diať bez
zásahu človeka. Na záver predstavíme rie-
šenie pre monitorovanie výkonu kontajne-
rov a zvyšku infraštruktúry.

Klíčová slova: kontajnerizácia,
orchestrácia, Kubernetes, Docker Swarm,
CI/CD pipelina, monitorovanie
kontajnerov

vi

Contents
1 Introduction 1
2 Virtualization 3
2.1 VMs and Containerization 4
2.2 Docker . 5
3 Orchestration platforms 9
3.1 Kubernetes 10
3.1.1 Lightweight Versions of
Kubernetes 11

3.2 Swarm . 12
3.3 Kubernetes and Swarm
Comparison . 13

3.4 UI managment 14
4 CI/CD Pipeline 17
4.1 Continous Integration 18
4.2 Continous Delivery 19
5 Performance Monitoring 21
5.1 Collection of Mertrics 22
5.2 Monitoring Tools 24
5.2.1 Sysdig Monitor and Promethues
Comparison 24

6 Smoking Cessation Web
Application 27
6.1 Logical Structure 27
6.2 Technology 29
7 Solution design and its
implementation 31
7.1 Tuning of the upgrade and
containerization 31

7.2 Cloud infrastructure management 32
7.2.1 AWS . 32
7.2.2 Swarm Orchestration 33

7.3 GitLab CI/CD 34
7.4 Prometheus 36
8 Experiments and Results 39
8.1 Performance tests 39
8.2 Deployment improvement 42
9 Conclusion 45
9.1 Future work 46
A Bibliography 47

vii

Figures
2.1 Comparison of hypervisor-based
virtualization and containerization
architecture [3] 5

2.2 Traditional Linux container versus
Docker container [5] 6

3.1 Swarm service and its replicas [10] 13

4.1 The lifecycle of CI/CD pipeline
[11] . 18

5.1 Container monitoring architecture 22
5.2 Collection of metrics at different
levels . 23

6.1 Decision subtree of the application 28
6.2 The architecture of the app 29

7.1 Part of new admin interface. . . . 32
7.2 List of services deployed in the
Swarm cluster 33

7.3 The diagram of the designed
CI/CD pipeline 34

7.4 CPU usage of one of our containers
is displayed in Prometheus. 37

8.1 The result of performance test of
the old version of the application. 40

8.2 The result of performance test of
the new version of the application. 40

8.3 Comparison of time response of an
old and new version of the
application. 41

8.4 The CPU usage of main
computation unit 41

8.5 The CPU usage of database while
read request were send to it 42

8.6 Comparison of the efficiency
CI/CD pipeline and manual
deployment . 43

Tables
3.1 Summary of key differences
between Kubernetes and Swarm . . 14

5.1 Summary of key differences
between Prometheus and Sysdig
Monitory . 25

viii

Chapter 1
Introduction

It is becoming more and more crucial to provide stable, efficient applications
adaptive to the different amounts of traffic load. One of the approaches for
reaching flexibility is to use containerization. Furthermore, the performance
of the application is improved by setting it up to cloud infrastructure where it
can run on multiple hosts simultaneously. To be able to handle these dynamic
environments, orchestration platforms are used.

In addition, many mistakes done by developers are caused by repetitive
manual tasks during deployment. Continuous delivery and continuous in-
tegration pipeline helps to minimize these mistakes. Once the process of
deployment is automated, it allows developers to focus on the creative part of
work, save human power and decrease needed financial resources. In this the-
sis, we will focus on techniques that help improve the stability and efficiency
of the application. Furthermore, we will have a look at the automation of the
deployment process.

In chapter 2, we will introduce the concept of virtualization. We will
compare hyper-based virtualization and containerization and discuss their
pros and cons. These two concepts are not mutually exclusive however,
containerization is often viewed as the new, improved version of virtual
machines. Furthermore, we will briefly talk about the currently most popular
type of containerization - Docker containerization. In chapter 3, we will present
orchestration platforms suitable for Docker containerization. Orchestration
monitors the health of the containers, which can run on multiple nodes,
and in case of problems, the traffic is redirected to the healthy node, and
the problematic container is automatically restarted. Also, orchestration
platforms help us to solve issues with load balancing and scaling. Nowadays,
Kubernetes and Docker Swarm are the two most popular orchestration tools
for Docker containers.

Chapter 4 will focus on the topic of the continuous integration and con-
tinuous delivery pipeline and its stages. By using the CI/CD pipeline, the
deployment process is significantly simplified and less time-consuming. Be-
cause of automatization, fewer errors are introduced to deployment, and
developers have more time to focus on other work. Furthermore, after the
deployment of an application, it is still needed to monitor the health and
performance of the application to make sure that everything runs smoothly.

1

1. Introduction
Challenges of the performance monitoring when using containerization will
be discussed in chapter 5. We will also introduce the currently best tools for
performance monitoring on the market.

The practical part will be done on the server part of the application, which
helps people to quit smoking through sessions with a virtual therapist. The
logic of this application and its infrastructure is explained in chapter 6. Chap-
ter 7 focuses on the solution design for this concrete application and its needs.
We will show a detailed implementation of the Docker Swarm orchestration
tool, GitLab CI/CD pipeline, and Prometheus container monitoring platform.
In the final chapter, we will run tests to confirm improved efficiency. We will
also compare the manual deployment with fully automated deployment.

2

Chapter 2
Virtualization

In the past, companies were hosting a single application per server, which
was using only a fraction of the server’s capacity. Also, the only possibility to
improve efficiency and performance was through additional hardware. This
approach led to higher operational costs. To save space and energy concept
of virtualization was introduced. It increases flexibility, efficiency, scalability,
and cost savings. When using virtualization, several applications on the same
machine are simultaneously running in an abstracted layer from the physical
hardware. Because these applications are in completely isolated environments,
it occurs to them like they would be running on separate machines. Therefore
it allows developers to test applications in various environments without
the necessity of setting up several computers. The main advantages that
virtualization brings to a company are:.Operational flexibility. Reduced cost. Resiliency in disaster recoveries. Higher productivity

There are two common ways to implement virtualization: Hypervisor-bassed
virtualization and containerization [13]. They are not mutually exclusive
giving the possibility to implement them separately or as a combination of
both.

In the IT community, the term virtualization is commonly used in the
meaning of hypervisor-bassed virtualization. Therefore, before we move to a
further discussion, we need to define couple of terms for this thesis to avoid
ambiguity.

Definition 2.1 (Virtualization). Virtualization is a process of running a virtual
instance of a computer system in a layer abstracted from the physical hardware
[2].

Definition 2.2 (Hypervisor-based virtualization). Type of virtualization provid-
ing virtual machines (VM), which requires the provisioning of an operating
system [13].

3

2. Virtualization.....................................
2.1 VMs and Containerization

Hyper-based virtualization has a hypervisor that separates the physical
resources from the virtual environments. The hypervisor creates VMs with
their own OS, which allows them to behave like individual computers. The
physical resources - processors, memory, storage - are divided between VMs
by the hypervisor. VM contains files regarding its configuration, the storage
for the virtual hardware, and snapshots of VM that are capturing the state
of VM at a specific time. VM behaves like a singular data file, therefore it
can be easily moved from one computer to another one and, it is expected
that it will work still exactly the same. User interaction is happening within
the virtual environment and its computation power. VMs have also access to
host devices such as webcam, USB devices, video cards, and other hardware,
which is shared between all the VMs on one host.

Containerization is a lightweight way of system virtualization used to
deploy and run an application without starting a VM for each microservice.
Containers are meant to perform a single function. They share the kernel of
the host OS, and therefore all containers on the same machine have to be
able to run on the same OS. However, a security threat to the host OS means
danger to all the containers which are running on the machine. Containers
are running in an isolated environments, therefore the application inside of a
container can run in different environments quickly and more reliably, without
any code changes. Also, libraries dependencies issues between containers are
erased. When using containerization, the single application is packed together
with its libraries and dependencies into an image. Once the executable code in
an image is deployed by the container engine, a container that defines system
resource limits such a CPU, memory and network, is created. Containers are
immutable, therefore it is settled that every time we run a container from the
same image, it will create the exact same container. Containerization brings
benefits also to deployment. It is faster and easier to deploy, the diversity
between local and staging systems is eliminated, and it provides very simple
scaling such as adding workers. Currently, the most common containerization
tool is Docker.

Hypervisor-based virtualization and containerization are often compared,
even though in some cases, a combination of both approaches is the best
choice. Containers do not require VM, however, they can also run inside
of them. As it can be seen in fig. 2.1, HB virtualization enables running
multiple OS, created by a hypervisor, on one physical machine. In comparison,
containers simulate different software applications while sharing the same
operating system between each other. Running an application in a container
requires significantly less space than in VM because the container does not
depend on a full guest OS. The typical size of a container can be only a few
tens of Mb compare to OS, which is starting at a couple of hundreds Mb
[4]. In contrast to HB virtualization and physical hosting, containerization
needs less memory, CPU, and storage. Thanks to their size, containers are
started faster and are an excellent solution for short-life tasks. On the other

4

....................................... 2.2. Docker

Figure 2.1: Comparison of hypervisor-based virtualization and containerization
architecture [3]

side, VMs are a better choice when full functionality of OS is needed while
running multiple applications on one server.

2.2 Docker

Docker is an open-source platform developed in 2013. It is the most popular
tool for building, deploying and running Linux containers. Originally it was
build based on LXC technology. But as it can be seen in fig. 2.2, compare to
traditional Linux containers, in Docker containers, applications are broken
into several processes. This division of applications brings several advantages
beyond classical containers:.Modularity. Layers and image version control. Rollbacks. Fast deployment

Docker segmentation of the application into separate processes brings a
possibility to take down only part of an application while working on an
update or repair. Additionally, sharing processes between applications is
achievable. Docker is very well suitable for microservice architecture however,
microservices are not a requirement for it. Microservices divide “monolithic”
applications into separate services. Microservices enable us to scale, manage,
and updated services separately and asynchronously.

5

2. Virtualization.....................................

Figure 2.2: Traditional Linux container versus Docker container [5]

Docker containers are using a layering system. After the build of a container
is initiated, a container engine goes through each line in the definition file and
makes a layer, by adding the following instructions to the previous layer. This
way a snapshot is created after every instruction. During the next build of
the container, the cache is used for every instruction. If an instruction did not
change, it is skipped by the container engine. The instruction that changed
since the last build and its following instructions are applied. Additionally,
the cache is used across containers, so if we have multiple containers, the order
of instructions is very important, so the part of the instructions can be taken
from the cache and used among various containers. So if we had another
container on a machine where the image from 2.1 was already built into a
container with the same working directory and requirements, the container
engine is going to skip instructions until line 9. The cache mechanism allows
to speed up the building process. Every time there is a change in the definition
file, a new version of the image is created giving a user control over multiple
versions of the image.

Image versioning makes quick rollbacks easier. If there is a problem with
the current version, it is possible to rollback to the previous version of the
application within a single command. This creates the perfect environment for
agile development and continuous integration and continuous delivery(CI/CD)
pipeline. The principle and advantages of CI/CD pipeline are further discussed
in chapter 4.

Docker containers are famous for fast deployment. Containers give a
possibility to share processes with the new app, which speeds up the building
process. In past, provisioning and setting up hardware could take up to
two days, nowadays with the Docker containers, we are able to deploy in
seconds. There is no need to boot OS when moving or adding containers,
therefore deployment time was significantly cut down. As a result the lifecycle
of containers is much shorter and the deployment is happening more often
which enables faster reactions to customer’s feedback.

6

....................................... 2.2. Docker

1 python:3.8-slim-buster
2
3 WORKDIR /app
4 #create working directory
5 COPY requirements.txt requirements.txt
6 #copy requirements into image
7 RUN pip3 install -r requirements.txt
8 # install dependencies
9 COPY . .

10 #add source code into image
11 EXPOSE 8000
12 #open port
13 CMD ["python3", "start.py", "runserver", "0.0.0.0:8000"]
14 #command to run inside of container

Listing 2.1: Example of Docker file

Docker alone has also some limitations. Once we start to have a bigger
number of containers, it gets hard to manage and keep track of them. This
and some other issues can be solved by orchestration platforms which we
discuss in the following chapter. Also, using the Docker engine is a security
issue. It requires root privileges, so it is important to be cautious about
access data and the place where Docker runs.

7

8

Chapter 3
Orchestration platforms

Container orchestration manages the lifecycle of containers across multiple
servers. It is especially essential in large, dynamic, micro-service platforms,
in which containers are organized into clusters. When running an application
in a cluster instead of on a single node, it is possible significantly to improve
uptime, because when one node fails it is immediately replaced with a
service from another node. Container orchestration gives us a possibility to
deploy applications quicker, more often, and more efficiently, which is crucial
because companies that are releasing their software often are having a higher
chance to succeed in a highly competitive market [8]. Also, it allows us to
scale our application dynamically. Apps using container orchestration tools
can be managed by CI/CD pipeline, which brings the possibility of easier
deployment over multiple environments. By using container orchestration
tools, we are able to manage all containers in a cluster as one singleton.
Cluster management has a complexity of O(n2) for placing m containers on
n nodes [1]. The key abilities of container orchestration platforms are:. Provisioning and management of clusters. Scaling. Load balancing. Scheduling. Health checks of containers. Rolling updates and rollbacks

A wide range of orchestration tools is currently available on the market,
however, they share some common features. The most popular choices
nowadays are Kubernetes, Docker Swarm, and Apache Mesos. Typically
there is a configuration file in which there is a description about where the
orchestration tool can find images from which containers are built, networking
between these containers, their mounted storage volume, and logs. The
configuration file gives us as well the possibility to deploy several containers
at the same time. Container orchestration platforms deploy containers and
possibly their replicas to the respective hosts. When a new container is added

9

3. Orchestration platforms
to the cluster, an event is scheduled for it. Certain conditions about CPU
limits, memory availability, or metadata can be set. Once the containers
are up and running, the container orchestration platform takes care of their
lifecycle, and in case of failure of a container, it is started repeatedly.

1 version: ’3.3’
2
3 services:
4 #list of services to deploy
5 db:
6 image: postgres:13
7 #image from which container is build
8 volumes:
9 - ./.docker-data/postgresql:/var/lib/postgresql/data

10 networks:
11 - backend
12 deploy:
13 replicas: 1
14 restart_policy:
15 condition: on-failure

Listing 3.1: Example of configuration file in Swarm

Those tools, at which we will have a closer look and are popular within
the Docker containerization platform are:.Kubernetes.Micro8s. Swarm

Because of the current trend of high usage of orchestration tools and because
the wide IT community is having lack of skills in setting up and administrating
them, several cloud companies, such as Google, AWS, and Azure, are offering
container orchestration services. These services are mostly Kubernetes based.
Cloud-based orchestration offers various levels of management, starting from
very basic as handling only network hardware, storage, and servers, up to full
management when the customer interacts only through a web-based interface.

3.1 Kubernetes

Kubernetes is the most popular orchestration tool, which brings enormous
support community. It is an open-source platform for efficient deployment,
management, automation, and scaling of a containerized application. It
focuses on modular orchestration, therefore it is suitable for any architecture
deployment. Because of its robustness, it is a great solution for high-demand
applications with complex configurations. On the other hand, the management

10

..................................... 3.1. Kubernetes

of the Kubernetes master requires specific knowledge, and for this reason, it
is a too heavyweight solution for simple apps.

A Kubernetes cluster consists of master and worker nodes. Master controls
all the resources in the cluster. Workers contain pods - small logical units
which wrap one or more containers, which are managed by the controller.
Containers within one pod share among themselves computational power,
memory, IP address, port space, and specification about how to run the
containers. Each pod has to have the following services: Docker, Kubelet,
Kube-proxy.

On every node of a cluster, Docker is responsible for the preparation
of images. This is accomplished either by the creation of images or by
downloading them from the Docker hub, followed by starting of containers
from these images. Kubelet is in charge of communication with the controller.
It also guarantees that containers are up and running all the time. Kube-proxy
serves as a network proxy, and so it provides communication with external
users.

3.1.1 Lightweight Versions of Kubernetes

Kubernetes is an excellent orchestration tool for large-scale deployments. But
when it comes to smaller clusters or even a single host containerized apps,
the robustness of Kubernetes becomes a bottleneck. When working with
Kubernetes we should isolate from each other master and work nodes, a
database for Kubernetes state should have its own instance, and nodes for
incoming traffic should be separated. This approach makes sure that a large
amount of load will be handle properly. However, many instances have to
be started before starting our application. Therefore, following lightweight
versions of Kubernetes were developed:.K3s.Minikube.Micro8s

K3s is fully compliant lightweight Kubernetes, suitable for low-load appli-
cations. Backend storage based on the lightweight database SQLite. At the
same time, it gives a possibility to connect to an external database endpoint.
The supported databases are MySQL, PostgreSQL, and etcd - on which
Kubernetes is based. K3s is so small in size that compared to Kubernetes it
requires less than half of the memory [18]. Thanks to this fact, the installation
process and deployment are faster.

Minikube is a single-node Kubernetes which runs inside a VM on a local
machine. It supports almost all the features of Kubernetes. However, because
it runs locally, cloud-based features such as load balancing or persistence of
volumes are unavailable. Minikube needs only a relatively small amount of
resources, and for this reason, it is a perfect fit for local development and
experimentation.

11

3. Orchestration platforms
Micro8s is a newer version of Kubernetes than Minikube, which was intro-

duced in 2018 [12]. It is small, fast, multi-node, fully-conformant Kubernetes.
The main difference from Minikube is that it runs locally on your machine
with no virtual machine needed in between. Therefore it is appropriate for
prototyping and testing. To reach an isolated environment from the local
machine it packs all the binaries needed into a single snap package. Because
a virtual machine is unnecessary, the consumption of resources such a RAM,
CPU is much lower compare to Minikube. Compare to Kubernetes, Micro8s
does not contain a controller in the cluster. All nodes connected to the
Micro8s cluster are running as working nodes. Once there are three or more
nodes in the cluster, the high availability feature is automatically enabled,
providing reliable service with zero downtime. Micro8s is a promising tech-
nology. However, it is still under development, not containing all the features.
For example, availability on Windows or MacOS, was only added in 2020.

3.2 Swarm

Swarm is an orchestration tool designed by Docker, which is nowadays part of
the docker engine. Like Kubernetes, it can be used to manage, scale and deploy
Docker containers. Any service which runs inside of the docker container runs
exactly same in Docker Swarm mode. Through Swarm, we can easily manage,
scale, and deploy a cluster of Docker nodes. In Swarm, various application
environments can be efficiently maintained through multiple clusters. Swarm
uses the same CLI (command line interface) as Docker, which makes it very
simple to start Swarm once the Docker is installed. Swarm may be an ideal
solution for applications with a lower workload.

Similar to Kubernetes, Swarm consist of manager node and worker nodes.
The communication between manager and workers nodes is direct. Swarm
manager have two parts; scheduler and discovery service. The scheduler’s
job is to make sure that containers are running in their optimal states,
which includes keeping the number of replicas up, accessibility to ports, and
network. The manager node is also a work node by default. However, it can
be configured to not accept any workload. The discovery service determines
if a node joined or left the cluster. Manager node assigns one or several tasks
to each of the worker nodes. Tasks are executed independently from each
other, and in each of them, a single container is running.

Docker images are deployed through services. Service is generally an image
within the context of a larger application. A service can run on one or more
replicas of an image, as can be seen in fig. 3.1. A container image has to be
defined before creating a service. Additionally, details such as the number of
replicas, CPU and memory limits, rolling update policy, or behavior when
service is restarted can be specified. Afterward, Swarm schedules tasks from
service to nodes as one or more replica tasks. Service can be global or
replicated. When service is global, it runs on every available node. For
replicated service, manager schedules exactly the defined number of tasks
and assigns them between available nodes.

12

...........................3.3. Kubernetes and Swarm Comparison

Figure 3.1: Swarm service and its replicas [10]

3.3 Kubernetes and Swarm Comparison

Both Kubernetes and Swarm can manage containers in a cluster, distributed
workload between nodes, take care of frequent deployment and significantly
improve uptime. As a result, it can appear that both of the platforms provide
the same services and it can be hard to choose which of them is more suitable
for a project. Therefore it is important to have a closer look on features such
as installation, management, scaling, load balancing, storage in which they
differ. Summary of the key differences can be seen in table 3.1.

Swarm is a part of the Docker machine. Once Docker is installed, it is
possible to start Swarm default configuration with a single command through
Docker CLI. In comparison to Swarm, starting a cluster in Kubernetes is
quite challenging. Kubernetes has to be installed additionally to Docker.
Also, network, ports, storage, IP addresses for pods need to be properly
configurated. On the other hand, when Kubernetes is managed by one of the
cloud providers, no installation is required.

Because Swarm is directly integrated within Docker and uses the same
CLI, it has a very easy learning curve. In comparison, Kubernetes has a large
set of commands which makes it harder to start with. On the other hand,
Kubernetes comes with its own GUI, which makes it easier to manage the
clusters once the Kubernetes is running. Swarm does not have an integrated
UI management system. However, there are available various UI tools which
can be smoothly connected to Swarm. We will discuss this option in the 3.4.

One of the main reasons for orchestration is the possibility of handling
higher loads of work. Therefore it is very useful to be able to scale up by
adding VM. On the other side, when the demand is smaller, it is financially
effective to scale down, so minimum resources are used. Since Swarm can
deploy containers fast, it is possible to manually and quickly scale up or
down the application. On the other side, Kubernetes supports horizontal
auto-scaling based on servers traffic and automatically scales up or down as

13

3. Orchestration platforms
needed.

It is not enough to have the correct amount of VMs, but it is also necessary
to be able to distribute the work properly between them. In Swarm, all
services are connected into one network, which allows connection from any
node to any container. It has a DNS component that takes care of load
balancing. Also, it assigns ports to services automatically or according to
specific conditions of the user. In the case of Kubernetes manual configuration
is required unless pods are exposed as services.

Swarm and Kubernetes have also various approaches to storage and sharing
of volumes. Kubernetes allows distributing data volumes only between
containers within one pod. In Swarm, it is possible to share data volumes
between containers across all nodes. When a container is killed in Swarm
also its data volumes are deleted. In Kubernetes, it is necessary to stop the
whole pod to clear the data volumes of a container.

Swarm Kubernetes

Installation Easy and fast Manual configuration re-
quired

Managment Docker CLI Build-in GUI

Scalling Scalling on demand Horizontal auto-scalling

Load Balance Internal load balancers Manual configuration
needed

Storage Allows sharing between
containers on any nodes

Allows sharing within a
pod

Table 3.1: Summary of key differences between Kubernetes and Swarm

To conclude, Swarm is a part of the Docker engine with default configuration,
which makes is it easy to start up and use. On the other hand, Kubernetes
is more robust. It is compatible with various types of containerization and
therefore its popularity is higher. However starting with Kubernetes is more
challenging, because it has its own language, and manual configuration at the
beginning is required. Therefore Swarm is better for smaller projects, which
need to manage fewer containers, and a high load of work is not expected.
Kubernetes is more suitable for big projects, where specifying configurations
is preferred. Also, a higher budget is essential since Kubernetes requires more
manpower than Swarm.

3.4 UI managment

Using Swarm alone and managing it only through CLI might be difficult
and unnecessarily confusing, particularly when the cluster is more complex.
This is a rising issue, especially because often, a wider range of developers
on projects need to be able to access and manage containers without deep

14

....................................3.4. UI managment

insight into specific commands and configuration files. Therefore for easier
management and better accessibility, various web-interface applications were
developed. Many of them are also applicable to Kubernetes even though, by
default, it has its own GUI. We will discuss the following most popular GUI
for Swarm:. Portainer. Swarmpit. Rancher

Portainer is a lightweight management UI tool for containerized applica-
tions [9] for maintaining different Docker environments. Portainer runs locally
as a single container on a Docker engine which can run on Windows, MacOS,
or Linux. It works with both Docker Swarm and all versions of Kubernetes.
The UI of Portainer gives the user a possibility to build and publish images,
deploy and manage applications. After deployment, Portianer gives you easy
access to logs generated by containers, and in case the application fails, to
fast redeployment. It is also possible to monitor basic performance such as
CPU and memory. Portainer is a great tool if all you need is to manage a
cluster. However, it is not very suitable for running more than one project
simultanously since the GUI is not well adjusted for it.

Swarmpit is an open-source lightweight GUI that can be added on top of
Swarm. Similar to Portainer it runs as a single container on the Docker engine.
It is currently available only for Linux OS. It provides management of services
as well as stacks, networks, or volumes. Also, a user has access to real-time
usage of resources such as CPU, memory, or disk. One of the best features of
Swarmpit is the possibility to share the management console with the whole
team since it allows multiple users for one Swarm cluster. Because Swarmpit
is still a relatively new open-source project, some important features like
autoscaling are not implemented yet.

Rancher offers complete management of clusters and acts as a frontend of
a whole orchestration platform. It focuses on solving operational and security
issues in a multi-cluster infrastructure, therefore it is great for medium to
big environments with complex architecture. It runs on Linux OS and it is
compatible with Swarm, Kubernetes as well as Cattle. Compare to previously
discussed container GUIs, Rancher is far more complex with extra features
such as changing the number of instances, host insights, or Docker machine
drivers. Additionally to GUI, it also offers a CLI. Rancher is a robust tool and
usually offers more than an average user needs. For this reason, a lightweight
version of container GUI might be often more suitable to use.

15

16

Chapter 4
CI/CD Pipeline

In today’s competitive world, the pressure to deliver software more often
and at stable quality is increasing. However, rapid feature development and
stability are in constant battle. On the one hand, introducing new features is
bringing possible bugs into a steady system and on the other hand, trying to
keep stability is preventing frequent software deployment. Also, humans are
naturally failing at repetitive tasks and can not keep up their performance at
a stable level. Therefore, new approaches how to automate the frequent and
reliable deployment of software were introduced.

One of such approaches is continuous integration (CI) and continuous
delivery(CD), also known as CI/CD pipeline. It brings automatization and
monitoring to the software delivery process. The goal of CI/CD pipeline is to
make it easier for developers to work simultaneously and deliver bug-free code
several times per day. CI/CD pipeline builds code, runs tests, and deploys
code to the production. It consists of series of steps that improve development
as well as deployment of the application. Each of the steps can be executed
manually, however, the goal of the CI/CD pipeline is to automate the process
as much as possible. CI/CD pipeline makes the release cycle faster, reduces
errors, and gives developers standardized feedback.

CI/CD pipeline consists of two main parts - CI and CD, and each of them
contains several stages as can be seen in figure 4.1. The continuous delivery
part can be further updated to continuous deployment [6]. Once this happens
the whole process is fully automated including production deployment. The
benefits gained by the implementation of CI/CD pipeline are:. Automation of the software release process. Higher quality of code. Improved developer productivity. Faster delivery of updates

As the code moves forward through the CI/CD pipeline, the quality of code
is increasing. If for any reason one of the stages fails, the progression stops,
and the results are sent back to developers. Therefore to be able to start any
stage, all of the previous stages have to end successfully. As a result of this

17

4. CI/CD Pipeline....................................
process, it is guaranteed that only code which passed all tests is deployed to
production.

Figure 4.1: The lifecycle of CI/CD pipeline [11]

A script can be build to initiate an automatic process of whole or part of
CI/CD for every commit, even in development branches. This includes stages
such as building, testing, and deploying. Each push to the repository can
have a tag and therefore multiple scripts can be built for various situations.
By using these scripts, the chance of bringing an error to the application is
decreasing.

4.1 Continous Integration

The first part of the automated pipeline is continuous integration. Developers
using the CI technique commit their changes to the common repository on
regular basis, usually at least once per day. This allows several developers to
work on the app simultaneously while minimalizing the chance of conflicts
between commits of different developers. After changes are integrated into
the central code base, automated builds and multiple tests are executed. Bugs
are detected and easily fixable. Because hundred of tests are performed by
CI server automatically, tests costs are reduced massively. After the code
runs through the whole CI, developers receive feedback. This process should
not run more than 10 minutes. Continuous integration generally consists of
the following stages:. Code. Build. Test

During the code stage, several developers are coding and committing
simultaneously to a shared repository. Before starting a full build, the code
gets first checked for static policies, during which syntax errors are revealed.

18

.................................. 4.2. Continous Delivery

This cuts down resource utilization and time. In the build stage, the automatic
build of committed code in the staging environment is executed. The staging
environment is a replica of a production environment. It makes sure that
newly committed code is compatible with the rest of the application and its
libraries and that the build will always work. The executable files and SQL
scripts are created and tested along with other configurations files.

During the test stage, automated tests are performed to check the function-
ality and performance of the app, which reduces the cost of testing significantly.
Based on the size of the build, this process can take anywhere from seconds
to hours. To save time, large corporations are running these checks in parallel
environments. Integration tests investigate if parts of an application, and
also an application as a whole, fulfill specified functional requirements. Load
and stress tests are checking the stability and performance of an application
during high load traffic. These tests are not usually run after every small
update because full-performance tests can take a significant amount of time.
Instead, they are executed when a major release is coming or after a bigger
group of updates was committed.

4.2 Continous Delivery

The next phase after automated builds and tests is continuous delivery. It
makes sure that the validated code is released to selected environments of
application as soon as possible. This process can be fully automated or
with manual steps at critical points, such as triggering deployment. When
the deployment does not need any more human intervention, we talk about
continuous deployment. Typically, the teams are working with more than
just a production environment. Usually, the changes are first deployed into
the testing and developing environment. Continuous delivery makes sure
that new features can be delivered faster and more often based on customer
feedback. The main phases of CD are [7]:. Binary Packet Manager. Staging. Production

In the binary packet manager stage, binary packages of required dependen-
cies are combined with already successfully build code. Also, a configuration
file with database changes and other infrastructure updates is added.

Next, the code is deployed to the testing/stage environment, where further
tests are performed such as testing against the corresponding database,
production acceptance test, etc.

After passing all the tests the code is ready to be deployed to the production
environment. Not every commit gets deployed to production right after
passing all the tests in the stage environment. Sometimes is preferable
to group several updates before releasing a new version of the application.

19

4. CI/CD Pipeline....................................
However, the point of continuous delivery is to make sure that every code
change is production-ready as soon as possible.

Because there is officially no definition of CI/CD pipeline, the line where
it is ending is a little bit blurry. Additionally, after a deployment few more
stages such as monitoring, operate and optimize could be included. After
deployment of a new version, the application needs to be monitor if performed
behavior is valid. In case of unexpected issues, a fast rollback should be
executed. Once the app is live it has to be continuously monitored for health
issues in production. Latency and usage of resources such as CPU and
memory have to be tracked. When needed, the application can adapt to
changing conditions using, for example, load balancing.

20

Chapter 5
Performance Monitoring

Projects based on containerization can consist of anywhere between a few up
to several hundreds of containers. We need to understand the health of whole
applications but at the same time being able to break down the statistics into
singular containers to detect issues fast. Container monitoring is a critical
step for the optimization of performance. To ensure peak app performance,
real-time monitoring is needed. The main advantages of container monitoring
are:. Early detection and solution of issues. Safe implementation of changes while keeping an eye on the entire

environment. Improved performance and better user experience. Resource allocation optimization

The possible complexity of container structure and dynamic allocation of
resources brings challenges to performance and log monitoring. Therefore it
is crucial to be able to deploy performance monitoring tools quickly across
all the nodes. Since containers create a dynamic environment, container
monitoring tools are sending collected data into a centralized location before
they vanish when a container dies. Containers make monitoring problematic
because they act like isolated "black boxes". The main challenges of container
monitoring are:. Addition of the second service to a container - The key idea of containers

is having only one service per one container. Adding a monitoring process
inside of a container to obtain inner visibility is in direct conflict with
the main advantage of container - simplicity.. Scalability of containers - Containers can move around and scale up or
down. Therefore it is not possible to point monitoring tool to relevant
applications. Additionally, we want to monitor the performance of the
whole service, which can include several containers, as well as the metric
statistics of single containers.

21

5. Performance Monitoring
. Long-term analysis - The host, network, container, and orchestration

platforms provide information regarding the performance and health of
the application. Because the data are coming from different sources, the
cardinality of metrics grows exponentially [22]. Therefore for long-term
analysis and trends, horizontal scaling is required.

Figure 5.1: Example of a solution of container monitoring including graphical
visualization and alert manager [14]

Usually, performance monitoring does not end with collecting various types
of metrics. For a proper usage and understatement of statistics by developers,
we need to visualize them. This is usually done by an additional platform as it
can be seen in fig. 5.1. As a final step alert manager should be added, which
sends notifications to various communication canals. This way developers
can react quickly to arisen problems.

5.1 Collection of Mertrics

To obtain a real-time response, resource utilization, and overall health of the
application, we need to combine several types of metrics and event logs. It
is important to choose the correct technique or combination of techniques
suitable for a concrete project. The available approaches are:

.Monitoring process inside of a container. Sidecar containers. Agent-per-pod. Syscalls

22

................................. 5.1. Collection of Mertrics

When monitoring a process inside of a container, a manager agent service
is to a container, which collects and export metrics. However, this is quite an
inconvenient solution because containers were designed to include preferable
only one service.

The sidecar container approach appends a separate monitor container to
an existing container of application. Therefore, a monitor agent runs in its
own isolated environment. However, because to every container a monitor
container is attached, the overall amount of containers doubles.

When using the agent-per-pod technique, a monitoring agent is attached
to a group of containers, in the case of Kubernetes to a pod, which shares the
same namespace. This approach is relatively easy to set up. However, the
resource consumption of a monitoring container agent is quite big because of
the high flow of data through the agent.

Syscalls approach assigns one agent per host. The agent collects all system
calls which are traveling through the OS kernel. Therefore, it is possible
to see the inside of a container from the outside. Syscalls method reduces
agent’s resource utilization and does not complicate container infrastructure.
It collects metrics of single containers, short-lived processes, orchestration
tools as well as overall infrastructure.

Figure 5.2: Diagram of collection of metrics at different levels of Kubernetes
infrastructure [15]

Containers solutions collect data according to logical rather than physical
infrastructure. Therefore, the metrics can be collected at different levels of
the infrastructure hierarchy. As it can be seen in fig. 5.2, in Kubernetes we
get information about specific containers, pods, services, host, etc. In case
of a problem, we can drill down from the specific pod to process to identify
where exactly the problem is occurring.

23

5. Performance Monitoring
5.2 Monitoring Tools

There are several aspects that need to be considered when choosing a moni-
toring tool. Configuration and deployment difficulty, detail level of metrics,
visualization and its dashboard, alert configuration, and cost of the tool, all
of these questions need to be answered. Even though there is a broad variety
of tools on the market, Sysdig Monitor and Prometheus are the two most
widespread solutions. Both of them are very well compatible with Kubernetes
and Docker.

Sysdig was originally a troubleshooting tool used for Linux hosts as well
as for Kubernetes and Docker. It evolved into two branches Sysdig Monitor
and Sysdig Secure. Sysdig Monitor is a commercial tool for monitoring,
alerting, and troubleshooting containerized environments specifically focused
on Docker and Kubernetes. Sysdig Monitor’s backend is very scalable, and
therefore it is a great solution with a large number of nodes.

Prometheus is open-source monitoring and alerting tool. It uses a time-
series database. Because of its database, it is a great tool for modern dis-
tributed systems and it is not limited only to container monitoring. However,
additional software like Grafana and AlertManager are required to build a
complete monitoring infrastructure.

5.2.1 Sysdig Monitor and Promethues Comparison

We will compare the two most popular solutions, which are Sysdig Monitor
and Prometheus, from a technical point of view. We will have a closer look
at instrumentation, data types, query language, altering, and management.

Prometheus instrumentation is based on the agent-per-pod approach. But
the resource consumption can be quite high if there are too many pods in the
infrastructure. Also, every pod has to be configured to be possible to add
a monitoring agent. However, Prometheus is still relatively easy to set up.
In comparison, Sysdig Monitor uses the syscalls method, which means that
it installs one monitor agent per each host. A transparent instrumentation
layer is added between containers and the host. This layer collects all kinds
of metrics and sends them to the monitor agent for further processing and
forwarding. Both Prometheus and Sysdig Monitor also offer a possibility of
direct instrumentation of code, while providing several libraries for it.

When comparing data types and formats, Prometheus and Sysdig are
equally supporting Prometheus format and metadata. Sysdig Monitor ad-
ditionally provides JMX and StastD data. In Prometheus, these kinds of
data can be obtained with additional configuration. Sysdig Monitor also
collects events as well as incident response records which is a remnant of
Sysdig Monitor being originally a troubleshooting tool.

Prometheus offers a functional expression language through which we can
select, aggregate, and manipulate collected data. The result of a query is
either visualize in Prometheus’s browser or send to an external system. On
the other hand, Sysdig Monitor does not offer any kind of query language.

24

...................................5.2. Monitoring Tools

Alerting is an important part of processing metrics in container monitoring.
Prometheus is equipped with a component called ALertManager. Alerts are
built directly from Peomehteus queries, which gives us an opportunity for
pretesting. In Sysdig Monitor, alerts are managed through the GUI interface.
Because it collects information not only about metrics but also events, Sysdig
Monitor’s main advantage is that it alerts about both events and metrics.

When it comes to the management of data Prometheus and Sysdig Monitor
are having completely different approaches. Sysdig Monitor management
is based on the idea that developer and operational teams need different
access to data. Therefore it gives a user an individual dashboard with alerts,
metrics, and information relevant to him. On the other hand, Prometheus
management is more like a part of Kubernetes deployment. Therefore it is a
decision of the individual team if Prometheus backend gets managed by the
developer or operational part of a team.

Prometheus Sysdig Monitor

Instrumentation Agent-per-pod Syscalls

Data Types JMX and StastD after
configuration

JMX, StastD and Events

QL Yes No

Alerting Build in AlertManager GUI interface

Management Part of Kubernetes de-
ployment

Separate management for
developers/operators

Table 5.1: Summary of key differences between Prometheus and Sysdig Monitory

To conclude, the main differences between Prometheus and Sysdig Monitor
have displayed in table 5.1. Choosing Prometheus or Sysdig Monitor needs
to be based on monitoring, user access, and data management requirements,
and if you want to buy or build a solution. Therefore there is no generally
better tool for container monitoring.

25

26

Chapter 6
Smoking Cessation Web Application

The practical implementation of technologies discussed in previous chapters
will be built on the Smoking Cessation Web Application. It is an app, which
is for smokers who decided to quit smoking. It provides a simulation of
real-life therapy through everyday session’s dialogues with a virtual therapist.
The therapy is divided into two parts. The preparation part takes 10 days.
During this time, the user still smokes and collects the motivation why he/she
should stop. After 10 days of preparation, day D will come, when the user
smokes the last cigarette. Afterward, the therapy follows for several weeks,
while the virtual therapist tries to help the user to keep the motivation and
strength for not picking up the cigarette through everyday short talks which
last around 10 minutes.

Our smoking cessation web application is based on open-source logic-driven
project Serafin developed by Inonit AS [16]. This application provides flexible
building blocks and therefore it is very suitable for usage in web forms and
questionnaires or e-learning programs. The core of the project contains generic
features for everyday sessions such as text fields, multiple options questions,
or buttons. Because of the separation of standards elements and the data
which has to be filled out for concrete usage, it is very easy to change the
context of sessions or to add new language to the application.

6.1 Logical Structure

For the purpose of this diploma thesis, a basic understatement of the logical
structure of the application is needed. As mention above, the application
simulates real-life therapy through every day sessions with the virtual therapist.
Sessions are build from series of pages or other events like SMS, emails, or
notifications. The core framework runs as a decision tree algorithm. Based
on it each particular user path is distinguished.

The core decision tree consists of several crucial units:

. phase - the whole program is divided into two phases, the preparation
and follow-up phase. This division of therapy was suggested and studied
by Kulhanek in his paper [17];

27

6. Smoking Cessation Web Application...........................
. session - every day nth + 1 session is started, where n is the amount of

already finished sessions by the user. Each session has its own decision
sub-tree, which is responsible for rendering corresponding content. The
sub-tree of session 1 can be seen in fig. 6.1, where additionally, compare
to following sessions, registration of the user is required;. node - represents actions made by admin such as rendering pages, sending
emails or notifications, or starting a new session; and. edge - connects different nodes and ensures progress in the decision tree.
There are two types of edges. An automatic movement to the next node
is happening when an edge is marked by a value pass, or conditional
movement when an edge contains a boolean expression which has to
be fulfilled to be able to move further down through this edge in the
decision tree;

Figure 6.1: Part of the decision subtree of session 1. An orange node represents
saving variable value of concrete user to the database, such as phase in which the
user is or if he/she has already finished the session for the current day. Session 1
sub-tree also controls if the user is already registered. In case not, the registration
process is started.

The program starts with the registration of a smoker. After that initial
page is rendered, where basic data about the user are collected. Then a session
starts and the user follows up its specific path in the decision tree, where the
path is selected based on previously collected data. The session is built from
a sequence of pages. After finishing the session for the corresponding day, the
start of the next session is scheduled for the consecutive day. This is done
by adding a task to the queue for scheduled execution. For the purpose of
this thesis, it is important to know that trigger for a new day is scheduled
for all the users at the same time and therefore this time is the most critical
point in case of used amount of resources simultaneously since the rest of the

28

..................................... 6.2. Technology

events started by users are spread out over the whole day. The whole therapy
last around 2 months.

6.2 Technology

The computation server of the app is based on Django - a high-level Python
Web framework. The server is connected to PostgreSQL database storage,
where all the data about users and sessions are collected. The server unit is
also connected to the queue, where scheduled tasks and short-delayed tasks
are processed. These tasks are saved in key-value storage Redis, as can be
seen in fig. 6.2.

Django is an open-source framework that enables rapid and secure devel-
opment of websites. It takes care of user authentication, templates, content
administration, management of passwords, and other basic security issues
such as cross-site scripting or clickjacking. Because Django is easily scalable
and it is possible to build all kinds of websites from content management
systems to social networks, it is widely popular. Therefore also a broad range
of plug-ins libraries is available. However, they are often not compatible
with all the versions of Django, so in case of upgrading to a newer version of
Django, some libraries have to be completely replaced with new ones.

Figure 6.2: The architecture of the app. Grey rectangles represent individual
instances running on the cloud server.

The app currently runs on the cloud computing server AWS. PostgreSQL
database has its own RDS instance, which is an instance developed by Amazon
especially for easy setup, operation, and scaling of a database in the cloud.
Everything else, main computation unit, tasks’ queue, and Redis database
share one virtual computing machine instance. They run as separate virtual
machines with their separated OS. This is not the best solution, as the

29

6. Smoking Cessation Web Application...........................
performance and usage of resources might not be best as it was discussed in
chapter 2.

Right now, the app is being deployed into the developing and production
environments. Each of them has its separate main database and secondary
database. The secondary database is connected to the main database of the
other environment. The deployment is done manually by restarting the server.
However, before this, other steps need to be done separately corresponding to
changes in the database such as making and migrating migrations. This has
to be done separately for both environments. This is not the best solution
since a lot of manual steps are required between pushing into the Gitlab
repository and the new deployment. This takes a lot of time and also humans
naturally make mistakes at repeating tasks. Even though new features are
firstly tried in the developing environment, this way of deployment does not
give an opportunity for fast rollbacks, which can be problematic in case of
unexpected errors in the production environment.

30

Chapter 7
Solution design and its implementation

The second version of the app described in chapter 6 is under development.
The main reason for the new version was the upgrade of used technologies.
The original version of the app is using Django 1.8 version, which is not
supported since 2018, and python 2 which support ended in 2020. As part of
the update, the new infrastructure is designed. To maintain, test, and deploy
the application more easily, the Docker containerization approach was chosen.
The basic design of 4 containers (PostgreSQL - main database, Redis - short
term storage, Huey - tasks’ queue, and App - the main computation unit)
was formed by one of our colleagues in [20]. The natural follow-up is to use
an orchestration platform to manage and monitor these containers, and to
bring higher stability to the application. As the final step, we will design and
implement a basic CI/CD pipeline for more comfortable deployment.

7.1 Tuning of the upgrade and containerization

The upgrade to a newer version of Django was not completed properly. The
plug-in for the admin of the old version of the app was not compatible
with newer versions of Django, which interfered with its basic functionality.
Because the admin interface is used daily, we needed to find an alternative
as quickly as possible. The requirements based on which we were choosing
were compatibility with Python 3 and Django 3, timeliness of the project,
and popularity among the IT community. Based on these conditions it was
straightforward to use the Django-grappelli admin app, which is currently
obviously the most popular admin package [21]. The already integrated new
admin interface can be seen in fig. 7.1.

Additionally, to already build containers, we have formed one more Post-
greSQL container for a supplementary secondary database. Creating a
database container is a quite simple process because the basic images of
different databases are available at the Docker hub, which is a repository
for Docker images. We have extended the downloaded PostgreSQL image
with volume, environment variables, and binding of ports according to our
database.

Furthermore, we needed to secure that the migrations of the database will
be created and applied at every build of the container. The solution for it was

31

7. Solution design and its implementation

Figure 7.1: Part of new admin interface.

a little bit complex. We needed to apply migrations after creating an image
but before starting a container. This way, we could be sure that changes in the
schema of the database happened at the currently running container. However,
docker allows only call single line command when starting a container. We
have solved this problem by calling as a single line command part of a makefile,
which contains instructing for creating and running migrations and starting
a container at the proper port.

Finally, we have added the creation of static files and the installation of
npm dependencies when building an image. Therefore no more manual work
for the proper build of application images is required.

7.2 Cloud infrastructure management

7.2.1 AWS

The new version of the application is meant to eventually run, similarly to
the old version, on the AWS cloud. Naturally, it makes sense to first set up
cloud infrastructure, and then on top of it build orchestration. Since we are
working on a life application, we need to set up a new infrastructure for a
developer environment. Because it is a developer environment, the expected
number of users is low. Therefore as the main server, we have chosen an
instance with 2 vCPUs, 4 GiB of memory, and a rate of data transfer up to 5
Gigabit. In this instance, we run all the containers except PostgreSQL ones.
The size of our database is around 250Mb, and further growth is expected
because currently data about all the actions taken by users are being stored
permanently. Therefore for database containers, we have chosen an RDS
instance with 1 GiB of memory. As part of further security protection, we
have set up possible incoming TCP traffic from the only main server IP
address.

32

............................7.2. Cloud infrastructure management

7.2.2 Swarm Orchestration

As we have introduced in chapter 3, currently there are two main orchestration
platforms on the market suitable for Docker containerization. Kubernetes
and Docker Swarm. When choosing a proper orchestration platform, it is
important to consider mainly the complexity of the project, traffic load, and
human resources. Our application is divided into 5 containers. It is currently
actively used by up to a couple of hundred unique users per day. Based on
the discussion which we made in 3.3 we see that one of the biggest weaknesses
of Swarm, which is relevant to our situation, is scaling only on demand.
However, even when the number of users would be multiple times bigger, it
would still not required horizontal auto-scaling, which Kubernetes is offering.
Swarm offers to scale on demand which is enough for projects like ours, in
which the number of users is growing steadily. We also concluded that Swarm
is more suitable for small projects when there is no high load of traffic. It is
also much simpler to use it because Swarm uses CLI of Docker with which
we are already familiar. Also, there is no manual configuration needed when
starting a new cluster. Because of all these advantages, we decided that
Docker Swarm is a better fit than Kubernetes in this situation.

To create a Swarm cluster, Swarm mode has to be initiated on the manager
node. In our scenario, we have created a Swarm Cluster consisting of one
manager node. On this node, we run one stack consisting of 3 services relevant
to our application - main computation unit, tasks’ queue, and Redis database.
All of our services are running in replicated mode, which means that an
exact number of replicas was created regardless of the number of nodes in
the cluster. As can be seen in fig 7.3 each of the services is having exactly
one replica. However, in case it will be needed, services can be scale up
easily with a single command separately or simultaneously through changing
a configuration file and redeploying.

In the future, it is expected that more than one replica will be needed,
especially when considering the production environment. More replicas are
helping to reach the maximum uptime and better stability. However, this is
more a business decision as running more services requires finances. In the
case of having multiple nodes in the cluster, proper ports need to be opened.
It allows new nodes to connect to the Swarm cluster and communicating with
each other.

Figure 7.2: List of services deployed in the Swarm cluster. We have deployed 3
services regardless of the application. The fourth service is the UI management
tool Portainer, which runs as a single container.

As mention in 3.4, Swarm does not come with integrated UI management.

33

7. Solution design and its implementation
Therefore on top of Swarm, we had to implement a UI interface. We have
chosen the Portainer container management tool because it is lightweight, fully
developed, and currently the most popular management tool. It runs on a
single container. We have deployed a Portainer container in a separated stack
on our manager node to achieve isolation between applications. It runs as a
single replica as there is no need to have multiple replicas of Portainer since,
in case of failure, Portainer can be started and connected to our application
within few minutes.

7.3 GitLab CI/CD

We are hosting our shared repository on GitLab, which is one of the most
popular end-to-end developer platforms. Except repository hosting it provides
various tools for the software development cycle, including build-in continuous
integration tool GitLab-ci. Because our application already uses Gitlab as a
shared repository, GitLab-ci is a fast and easy solution for the implementation
of the CI/CD pipeline. To set up a pipeline no third-party tools are required.
Instead, a YAML file in the root directory of the project has to be created
inside of which pipeline is defined. Every time a code is pushed into the
Gitlab repository, it automatically looks and executes a gitlab-ci.yml file.

Every gitlab-ci.yml file consists of stages and jobs. Jobs define what is
gonna happen and the stages when the jobs are gonna be executed. Each job
is executed by a runner, which needs to be connected to the repository. If we
have more than one runner available, multiple jobs can run simultaneously,
speeding up the process significantly.

We have designed a pipeline for a newly set up environment on AWS, which
we have described in the previous section 7.2.1. The goal was to introduce
such a solution of CI/CD pipeline that all direct human manipulation with the
server would be eliminated. The part of tthe configuration file of suggested
pipeline is displayed in listing 7.1. The pipeline gets executed only when new
code is pushed to the master branch. The master branch is protected, and
therefore it is only possible to merge into it after a review. This increases the
quality of code and makes sure that non-valid codes do not get deployed to
any environment. Thanks to tags, we can easily distinguish which commits
should run through CI/CD pipeline.

Figure 7.3: The diagram of the designed CI/CD pipeline, with parallel work
during the testing stage. The first three stages have passed automatically, the
fourth stage is still waiting for a manual trigger.

34

.................................... 7.3. GitLab CI/CD

The pipeline currently consists of four stages. The build, test, staging
and production stage. The build stage controls if the application gets build
without any errors and if it is compatible with its libraries. A script with
defined containers is executed, as can be seen on line 14 in listing 7.1. During
test stage, the script with automatic tests gets called. We have designed a
parallel testing to speed up the process. To make this possible we needed
to register a second GitLab runner. However, currently, there are no scripts
written for testing, and therefore we have only prepared the configuration for
testing stage. Staging stage is automatically deploying an application to the
developer server, which location is defined on line 19.

1 stages:
2 - build
3 - test
4 - staging
5 - production
6
7 build-dev:
8 stage: build
9 tags:

10 - dev
11 only:
12 - master
13 script:
14 - docker-compose -f docker-compose.yml build
15
16 deploy-dev:
17 ... #stage, tags, and branch are defined
18 variables:
19 DOMAIN: ec2-34-247-48-58.eu-west-1.compute.amazonaws.com
20 DJANGO_SETTINGS_MODULE: serafin.settings_aws_dev
21 DJANGO_DEBUG: "True"
22
23
24 deploy-prod:
25 ...
26 when: manual #starts via manual interaction

Listing 7.1: Part of the pipeline configuration file. Because of space restriction,
the complete file with the test stage and the rest of the file can be found in files
attached to this thesis.

Because we have set up only one environment, the CI/CD pipeline is
fully automated only for the developer environment for now. However, we
have constructed the configuration file with future expectations of multiple
environments. After a review and confirmation of proper functionality in
the developer environment, the newest version can be manually deployed to
production using a GitLab GUI, once the domain of production server is
known.

35

7. Solution design and its implementation
7.4 Prometheus

To make sure that our Swarm infrastructure is healthy and as efficient as
possible, we need to use a container monitoring tool. The basic features of
performance monitoring have been discussed in chapter 5, where we also
compared the currently two most used tools. For monitoring our application,
we have decided to use Prometheus.

Our current infrastructure of application consists of three services, two
databases, and a Portainer UI. Because of the size of the infrastructure, it
is enough that one host serves the whole application. When using a Swarm
cluster, in our case, we want to have one replica of each container at each
host. When monitoring the application, we need to obtain information about
individual services and containers. Sysdig Monitor uses Syscalls infrastructure
therefore it is not a suitable solution for use. On the other hand, Prometheus
uses the agent-per-pod method as well as having its own query language.
Also, the future plan is to eventually have full container monitoring with
alerting which Prometheus is offering.

We have set up Prometheus on our manager node of Swarm. We have
decided to use Prometheus for monitoring the Docker daemon and its container.
To be able to monitor the Swarm cluster, Prometheus needs to have access to
the Docker socket, and the Docker daemon has to expose its metrics to some
port. For monitoring containers, we have additionally deployed Cadvisor as
a separate service. Cadvisor is a daemon that exposes running container
metrics. These metrics are gonna be sent to Prometheus, where they can be
further processed.

The Prometheus behavior is determined by a configuration file. The
configuration file consists of a global and scrape part. The global part defines
parameters that refer to all other configuration contexts, e.g. how often to
scrape target. The scraping part specifies jobs and their parameters. Job
is a collection of instances with the same purpose. In jobs targets, that are
supposed to be scrape by Prometheus are defined.

1 scrape_configs:
2
3 - job_name: ’docker’
4 static_configs:
5 - targets: [’localhost:9323’]
6
7 - job_name: ’Docker␣Containers’
8 static_configs:
9 - targets: [’localhost:8080’]

10
11 - job_name: ’prometheus’
12 static_configs:
13 - targets: [’localhost:9090’]

Listing 7.2: Part of the Prometheus configuration file.

36

..................................... 7.4. Prometheus

As it can be seen in code listing 7.2, we have defined three different
targets in our configuration file. Firstly, we are monitoring the Docker
daemon which we have set up to export his metric to port 9323. The second
job is collecting metrics of individual containers. These metrics cannot be
collect by Prometheus alone. As described before we have deployed Cadvisor
as an intermediate layer between Prometheus and containers. Container
metrics collected by Cadvisor are sent to port 8080 and further processed
by Prometheus. As last we have decided to monitor also the behavior of
Prometheus alone.

Figure 7.4: CPU usage of one of our containers is displayed in Prometheus.

Prometheus provides a basic UI. By using a Prometheus querying language,
various metrics are displayed in either table form or graph form as we did in
fig. 7.4, where we obtain information about the usage of the CPU of one of
our containers. Additionally, a better graphical interface named Grafana can
be added to Prometheus. Also, AlertManager for sending alerts to various
information canals such as slack or email can be attached to Prometheus.

37

38

Chapter 8
Experiments and Results

In this chapter, we will show the improvement, which was potentially reached
by rebuilding the infrastructure of the application. We will focus on the
performance and stability of the application, which should be improved
because of containerization and orchestration tools. We will also examine
how much simpler and faster is deployment thanks to CI/CD pipeline.

8.1 Performance tests

The orchestration of infrastructure affects the stability and efficiency of
the application. We will compare the performance of the old and new
versions of the application. The test will be performed with help of JMeter.
JMeter is open-source software for load test functional behavior and measure
performance.

We will be sending HTTP get requests to the first page of therapy. The
performance test scenario will use the following parameters:. Number of users - 2000. Ramp-Up period - 4000s. Loop count - 10

Ramp-Up period determines the delay between two users. The delay period
is calculate Users/Ramp-Up, so in our case every 0.5 second a new user is
started.

In fig. 8.1 we can see the behavior of the old version of the application
during the test. However, the first look at the graph does not tell that much
about the performance of the application. For this reason, we need to go
to bigger details, especially have a look at the specific values. The most
important parameters are throughput, deviation, and the latest sample. The
throughput is the load processed during the unit of time. In our case, it
is a little bit more than 295 per minute, which means that the application
can handle around 5 users every second. The deviation shows us how close
the values are to the average. The lower deviation, the better because the
application is performing more constantly, without unpredictable behavior.

39

8. Experiments and Results................................

Figure 8.1: The result of performance test of the old version of the application.

In the case of the old version, the deviation is 207. The latest sample is the
response time for the last requested URL in milliseconds. In our case, it is
298 ms. However, we can see that the y-axis goes up to 575ms, which was
the worst response time. The throughput and deviation are fairly constant
during the test, so the behavior of the application is quite consistent.

Figure 8.2: The result of performance test of the new version of the application.

In comparison, fig. 8.3 shows the performance of the new version of the
application. The throughput is around 604 per minute, which means that
the application can serve 10 users per second compared to 5 users which
the old application was able to handle. The deviation is 12, which is quite
low. Therefore the performance of the application is consistent, which we
can also see from the graph where the green line is basically constant. In
the beginning, the throughput is growing until it reaches its saturation point.
Compared to the graph in fig. 8.1, the saturation was reached much faster

40

.................................. 8.1. Performance tests

because the users were handled quicker. The latest sample is 19 ms, with a
maximum of 21ms. This is lower compare to 207ms in the old version.

Figure 8.3: Comparison of time response of an old and new version of the
application.

In the second test on performance, we will have a closer look at the CPU
usage of containers. Because we will perform requests to part of the website
in which reading from the database is required, the two countries which are
gonna be affected are the main computation unit and database. This time
we will be sending via JMeter 40 requests with a 1-second delay between
users. Therefore the test will last 40 seconds. The output will be measured
in Portainer, a UI for Docker Swarm. Except for CPU statistics, Portainer
gives also information about memory, I/O, network usage for each container.
However, these statistics are only real-time, no historic data are available.

Figure 8.4: The CPU usage of main computation unit

In fig. 8.4 we see CPU usage of the main computation unit during the test.
At the beginning of the test, we see a growth from approximately 8% of CPU
usage to 55% in five seconds. This is the beginning of the test. After the end
of the test, we see a steep decline of CPU usage, to approximately 8% around
which the CPU usage is oscillating.

In fig. 8.5 we see CPU usage of the database during the test. However,

41

8. Experiments and Results................................

Figure 8.5: The CPU usage of database while read request were send to it

compared to the main computation, the CPU usage grows to 60%, in some
parts even up to 70%. When we tried to run the same test, but we changed
the delay between users from 1 second to 0.5, we have reached the CPU
usage of more than 100%, so there is a place for improvement in the database
organization. However, the overall high usage of CPU by both containers
while having a relatively small amount of users is probably caused by the
fact that at the moment of testing, except for app containers, there were also
running containers regarding the container monitoring and Portainer UI at
the same machine. Overall we had 8 containers between which the resources
had to be shared.

8.2 Deployment improvement

Automated deployment through GitLab CI/CD pipeline is minimizing the
manual interaction and making the process of deployment as efficient as
possible. To capture how efficient is to deploy through CI/CD pipeline we
measured two variables: time needed for deployment and the number of
manual steps which has to be performed. Tests were taken only on currently
used stages, which are the build and the staging stage. The results of both
tests can be seen in fig. 8.6.

First, we measured the time of deployment. We were comparing the time
of deployment when no changes in migrations of database and in Docker file
were happening. That means that the build of the container was performed
fast because of the layer system in Docker. We have executed both manual
and automated deployment 5 times and took the mean of these data. The
time of the automated GitLab CI/CD deployment was measured by the
GitLab alone and the mean of 5 tries was 8 seconds. In the comparison, the
manual deployment took 52 seconds. However, this time can be significantly
longer as we had set up excellent conditions for testing. For example, the
commands needed for execution were used as the last ones in the terminal,
so it was possible to list them fast from the history, which gave us significant

42

............................... 8.2. Deployment improvement

time-saving.
The second test which we did was a comparison of manual steps needed for

deployment. When using GitLab CI/CD pipeline, only one command needs to
be performed, committing to GitLab. In the case of manual deployment, extra
steps such as connecting to a server, changes between directories, creation of
migration, migrating changes to the database, and deployment need to be
executed. Overall, in ideal conditions, we counted 9 steps that are necessary
to perform.

(a) : Time of deployment (b) : The number of manual steps

Figure 8.6: Comparison of the efficiency CI/CD pipeline and manual deployment

To conclude, the efficiency gap will grow even further when more stages are
gonna be included in the pipeline. Additionally, testing and deployment to
different environments can be implemented. In this case, manual deployments
become extremely inefficient because we will have to execute commands on
multiple hosts which complicates the whole process of deployment. Also in
the future it will be interesting to observe if the time between deployment of
two versions is shorterned. However, this will show later in real life usage of
designed CI/CD pipeline.

43

44

Chapter 9
Conclusion

The target of this thesis was to improve the stability and efficiency of the
smoking cessation web application using containerization and orchestration
tools. This is still a quite new area of computer science. Therefore at first
orchestrating an infrastructure can be quite challenging for people who are not
familiar with it. Naturally, after orchestration, the next step is to implement
CI/CD pipeline to automatize deployment.

While getting familiar with the application, we worked on a new admin
interface and adjusting docker files which are creating containers. Afterward,
we have set up the application to cloud service AWS, where we have imple-
mented the solution for orchestration of the app using the Docker Swarm
platform. The cluster currently consists of one node as it is enough for the
current traffic load however, it is easily scalable. We have also added a UI
interface. Therefore the creation of clusters, containers, rollbacks, and all
other features offered by Swarm can be performed easily without deep insight.

In the second part of our work, we were focusing on the creation of a
CI/CD pipeline. For this purpose, we chose GitLab, where we were already
hosting our repository. The suggested pipeline consists of four stages, even
though only build and staging stages are only currently needed. Additionally,
we have prepared a test stage that runs parallel on two runners to make the
testing stage faster. Also, we added the production stage, which is triggered
manually. Next, we dived into the topic of container monitoring which brings
various challenges because of the way how containers were designed. Out of
multiple platforms which are on the market, we chose Prometheus. We have
implemented Prometheus with cAdvisor as an intermediate layer to obtain
statistics about individual containers.

Finally, we performed few tests. Performance tests confirmed the higher
efficiency and stability compare to the old version. However, more impressive
were deployment tests where we compared manual deployment with an auto-
mated one. The complexity of deployment was extremely reduced basically to
only one command. We were also able to deploy our application in 8 seconds
when the docker image was taken from the cache. Therefore we can overall
conclude that we had successfully designed and implemented the CI/CD
pipeline, which was the main purpose of this thesis.

45

9. Conclusion......................................
9.1 Future work

The application still needs some further tuning. The test scenarios for
the test stage need to be written and properly fitted into the designed
pipeline. The production stage is designed to be executed manually, however,
environments variables and scripts need to be set up properly once the
production environment is up and running. When looking at container
monitoring, additionally an AlertManager can be added, which would send
notifications to various communication canals in case of undesirable behavior.

Also, we have found out that the database is quite large, around 500MB.
This is caused mainly because we keep information about accessing a single
page from every user. This information may be valuable only for a couple
of hours, maximum days, and therefore there is no reason for storing them
permanently. As we saw in our test scenarios the CPU usage of the database
container grows quite fast, which might be partly caused by the size of the
database.

46

Appendix A
Bibliography

[1] A. Khan, "Key Characteristics of a Container Orchestration Platform to
Enable a Modern Application," in IEEE Cloud Computing, vol. 4, no. 5,
pp. 42-48, September/October 2017, doi: 10.1109/MCC.2017.4250933.

[2] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. "Xen and
the art of virtualizatio," SIGOPS Oper. Syst. Rev. 37, 5 (December 2003),
164–177. DOI:https://doi.org/10.1145/1165389.945462

[3] Boxdell, D. (2018, March 15) Containerization: The need to Know. [Blog
post]. Retrieved from

https://www.armor.com/resources/blog/containerization-the-need-to-
know/

[4] RedHat, (2020, January 16) Containers vs VMs. Retrieved from
https://www.redhat.com/en/topics/containers/containers-vs-vms

[5] Collabnix, (2017, December 13) Docker vs Container. Retrieved from

https://dockerlabs.collabnix.com/beginners/docker/docker-vs-
container.html

[6] S. A. I. B. S. Arachchi and I. Perera, "Continuous Integration and Con-
tinuous Delivery Pipeline Automation for Agile Software Project Man-
agement," 2018 Moratuwa Engineering Research Conference (MERCon),
2018, pp. 156-161, doi: 10.1109/MERCon.2018.8421965

[7] Choudhury, B. R. (2019). A modern CI/CD pipeline on pure [White paper]
Pure Storage. https://www.purestorage.com/content/dam/pdf/en/white-
papers/wp-a-modern-ci-cd-pipeline.pdf.

[8] Fox A, Patterson D. Engineering Software as a Service: An Agile Approach
Using Cloud Computing. StrawberryCanyon LLC, 2014.

[9] Portainer, (2021, April 4) Application Management. Retrieved from
https://www.portainer.io/products/application-management

47

A. Bibliography.....................................
[10] Docker, (2016, July 27) How services work. Retrieved from

https://docs.docker.com/engine/swarm/how-swarm-mode-
works/services

[11] Path, S. (2020, July 26) CI/CD with Jenkins pipeline Nodejs into K8S
(Part-2). Retrieved from
https://sampath5898ch.medium.com/?p=ad01eb75bba9

[12] Canonical Ltd. (2021, 9 August) MicroK8s Release notes. Retrieved from
https://microk8s.io/docs/release-notes

[13] Silva, Vitor Kirikova, Marite Alksnis, Gundars. (2018). Containers
for Virtualization: An Overview. Applied Computer Systems. 23. 21-27.
10.2478/acss-2018-0003.

[14] Prodan, S. (2016, Octobere 6) A monitoring solution for
Docker hosts, containers and containerized services. Retrieved
from https://stefanprodan.com/2016/a-monitoring-solution-for-docker-
hosts-containers-and-containerized-services/

[15] Casalicchio, Emiliano Perciballi, Vanessa. (2017). Auto-Scaling of Con-
tainers: The Impact of Relative and Absolute Metrics. 10.1109/FAS-
W.2017.149.

[16] INONIT.NO, (2018) Serafin framework. Retrieved from
https://github.com/inonit/serafin

[17] KULHÁNEK, A. et al. eHealth Intervention for Smoking Cessation for
Czech Tobacco Smokers: Pilot Study of User Acceptance. 2018, Page(s):
81–85

[18] Böhm, Sebastian Wirtz, Guido. (2021). Profiling Lightweight Container
Platforms: MicroK8s and K3s in Comparison to Kubernetes.

[19] DOCKER, (2018, August 7) What is a container. Retrieved from
https://www.docker.com/resources/what-container

[20] J. Trmal, Optimization of server solution and perfor-
mance measurement. 2020. Czech Technical University in
Prague. Computing and Information Centre. Retrieved from
https://dspace.cvut.cz/bitstream/handle/10467/90234/F3-DP-2020-
Trmal-Jakub-thesis-trmal.pdf?sequence=-1isAllowed=y

[21] Django, (2021, August 11) Admin interface. Retrieved from
https://djangopackages.org/grids/g/admin-interface/

[22] J. S. Sanz, E. Carter, and K. Anderson. Running Containers in Produc-
tion for dummies - Special Edition. John Wiley Sons, Inc. 111 River St.
Hoboken, New Jersey. 2018. ISBN 978-1-119-52105-1

[23] GitLab, (2016, July 14) CI/CD pipelines. Retrieved from
https://docs.gitlab.com/ee/ci/pipelines/

48

	Introduction
	Virtualization
	VMs and Containerization
	Docker

	Orchestration platforms
	Kubernetes
	Lightweight Versions of Kubernetes

	Swarm
	Kubernetes and Swarm Comparison
	UI managment

	CI/CD Pipeline
	Continous Integration
	Continous Delivery

	Performance Monitoring
	Collection of Mertrics
	Monitoring Tools
	Sysdig Monitor and Promethues Comparison

	Smoking Cessation Web Application
	Logical Structure
	Technology

	Solution design and its implementation
	Tuning of the upgrade and containerization
	Cloud infrastructure management
	AWS
	Swarm Orchestration

	GitLab CI/CD
	Prometheus

	Experiments and Results
	Performance tests
	Deployment improvement

	Conclusion
	Future work

	Bibliography

