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1 Problem Formulation
The problem of finding correspondences between different views of an object or
scene has been well studied in computer vision. Many algorithms need to estab-
lish correspondences of objects in the scene, including real-time tracking, wide
baseline stereo, multiview geometry estimation, object detection and recogni-
tion, and large-scale image retrieval. Recent state-of-the-art methods [21, 12,
24, 26] for object recognition and image retrieval are based on establishing
correspondences by matching invariant descriptions of local features. Objects
or images are decomposed into smaller salient points or regions, called local
features. The local features are represented by invariant descriptors and are
matched on the basis of descriptor similarity. Subsequently, the matches are
typically verified using a global geometry constraint.

The visual correspondence problem formulated as a search for a geometri-
cally consistent set of matching descriptors of local features between the query
and database images has following components: feature detector, feature de-
scription, matching or indexing, and verification. All of the components are
already available for some classes of objects. However, they have limitations,
some of which are addressed in this thesis. The goals of the thesis are to:

• Analyse the Maximally Stable Extremal Regions (MSERs) detector [14],
propose improvements addressing its weaknesses and improve the com-
putational costs.

• Propose a novel concept for affine covariant detection of stable parts of
the extremal region boundary.

• Demonstrate the benefits of using local geometry constraints provided by
affine covariant local features in efficient visual correspondence verifica-
tion and symmetry detection scenarios.

• Develop an efficient representation of the local geometry constraints of
affine covariant local features to meet the requirements of recent large-
scale retrieval systems.

2 Contributions
The main contributions of the thesis are:

• Generalisations of the MSERs stability function used in the MSER de-
tector are proposed. The performance is evaluated in a large-scale image
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retrieval application, and the repeatability measured using a standard pro-
tocol.

• The union-find based implementation of the MSER detector was anal-
ysed, critical performance parameters identified, and a set of improve-
ments that reduces the number of allocations and size of memory foot-
print was proposed. The obtained implementation is showing benefits
of the reduced memory footprint, optimisation of internal structures and
improved output performance and achieves a two fold reduction of the
execution time with respect to the baseline implementation [14].

• A novel concept of Stable Affine Frames is proposed that relaxes the
requirement of a stable extremal region and enables the extraction of the
stable part of the boundary of an extremal region.

• The visual correspondences of affine covariant features are exploited in
a new approach for efficient estimation and verification of epipolar ge-
ometry. The approach uses RANSAC with local optimisation to robustly
estimate the model of epipolar geometry from a single pair of affine cor-
respondences. This allows lower order dependence on the inlier ratio in
estimation of the epipolar geometry for the wide baseline stereo, object
recognition and image retrieval.

• The estimation of bilateral symmetry from local features by Cornelius
and Loy is extended to form the hypothesis of a bilateral symmetry from
a single correspondence of affine covariant features. This reduces the
number of possible hypothesis, and also speeds up the verification phase.

• Finally, a new method for representation of local geometry is proposed
and its performance shown in a large-scale object retrieval application.
The method enables storage of the local geometry in less than 24 bits per
feature without a significant influence on the retrieval performance. Ge-
ometry and appearance information is achieved with less than 6 bytes of
storage per feature enabling real-time retrieval in large (> 106) collec-
tions of images.

3 The State of the Art

This thesis addresses many aspects of the visual correspondence problem, some
of the relevant references to each of them are listed in the following.
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The Maximally Stable Extremal Regions (MSERs) has been used in a wide
variety of computer vision tasks, including wide-baseline stereo [14], image re-
trieval [24, 18]), object recognition [20], and tracking and 3D segmentation [7].
The MSER detector has been implemented on FPGA as well. Several exten-
sions of the MSERs were proposed, that enable processing of colour images [8],
extend MSERs to a temporal dimension [7] and volume [6] or enable detec-
tion of class specific region [15]. Demand for processing of large-scale image
databases (with more than 106 images) encourages research of computational
costs [17, 19] of the baseline algorithm.

The boundaries of MSERs contain all parts of discrete intensity level sets,
also denoted as discrete isophotes. Caselles et al. [1] studied the properties of
the intensity level sets and shown that they contain enough information for re-
construction of the image. The stability of MSERs is influenced by the stability
of the whole connected component, selection of repetitive affine covariant parts
or features on the regions boundary was proposed by Lamdan et al. [11] and
Obdrzalek et al. [20]. Both assume that whole boundary is available before-
hand.

The seven point algorithm embedded in RANSAC is a standard method
for epipolar geometry estimation in wide baseline stereo [14]. The speed of
RANSAC is inversely proportional to an exponential function of the sample
size. Chum and Matas [2, 3] studied whether the required seven point-to-point
correspondences obtained from three correspondences of affine frames allows
efficient estimation of epipolar geometry. Experiments in [3] show that stan-
dard RANSAC fails in this case. However, a simple modification called local
optimisation of the so-far-the-best solution leads to an algorithm that benefits
from the small sample size without losing efficiency; speed-ups of up to 103

were reported.
Symmetry detection has found use in numerous applications ranging from

facial image analysis and vehicle detection to 3D reconstruction and visual at-
tention. The local-feature based approaches offer numerous advantages. In
particular, the ability to efficiently detect local symmetries in images that are
not globally symmetric. Tuytelaars et al. [25] presented a method for the de-
tection of regular repetitions of planar patterns under perspective skew using
a geometric framework. Recently Cornelius and Loy [5] proposed a method
for grouping symmetric constellations of features and detecting symmetry in
perspective.

Geometric verification has been shown essential in recent state-of-the-art im-
age retrieval approaches [4, 22, 9]. Local geometry represented by an affine
covariant ellipse is noticeably bigger than the size of tf-idf weights and labels
when stored in a naive way thus becoming a significant factor determining the
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(a) (b)

Figure 1: Effects of finite resolution and blur on a square region. Left original image.
Right image blurred by Gaussian blur. Mixed pixels (between black background and
white object appeared).

limits of a method.

4 MSER Improvements

The extremal regions are defined as a connected components of pixels that are
all of a either higher (maximal region) or lower (minimal region) value than the
pixels on the boundary of the region. In other words, the extremal regions are
sub-level sets of the intensity function (minimal regions) or sub-level sets of the
reversed intensity function (maximal regions). The standard maximally stable
extremal regions are selected among extremal regions by the stability function:
q(i) = |Qi+∆ \ Qi−∆|/|Qi|, where Qi is extremal region at intensity i, |.| de-
notes number of pixels. Extremal region Qi∗ is maximally stable iff has a local
minimum at i∗. Extremal regions posses interesting properties, they are invari-
ant to affine transformations of image intensities and covariant to any adjacency
preserving continuous transformation of the image domain. Since no smooth-
ing is involved, MSER detector concurrently finds both very fine and very large
structures. MSERs can be enumerated in linear [18] or quasi-linear time [14]
in the number of pixels. However, they also have few weaknesses [16] that in-
clude sensitivity to blur, discretisation effects or sparseness (non-extremality of
interesting structures).
Discretisation effects. The change of region area is given by the number of
pixels Qi+∆ \ Qi−∆ denoted as mixed pixels. An examples are shown in Fig-
ure 1(a) and 1(b), the mixed pixels are the grey pixels on boundary of a white
maximal region. Notice that even though the stability definition is affine invari-
ant, the minimum value of q(i) varies for stable regions of different sizes due to
discretisation effects. Small regions tend to have a much higher relative num-
ber of mixed pixels on their boundary than big regions. In practise, one do not
want to extract all local minima of q(i) and picks the “stable” ones by setting
a threshold on q(i). However, the threshold on the value of q(i) results in an
underestimation of the stability due to discretisation effects on small regions.
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Figure 2: Analysis of the stability functions (cols) behaviour on blurred scene. Re-
peated features are for same values of the stability threshold. Note the absence of nested
regions for the MSER aff. centre method.

Sensitivity to blur. Depending on the size of the square, resolution of the
camera, and amount of blur, different a number of mixed pixels appear on the
boundary of the region. Now let us assume some fixed threshold t on the value
of q(i). On an in-focus image of the scene (c.f . Figure 1(a)), the number of
mixed pixels is proportional to the length of the boundary, and easily falls under
the threshold t. In contrast to a blurred image (c.f . Figure 1(b), the number of
mixed pixels grows significantly e.g. threefold which effectively increases q(i)
three times.
Stability based on the centroid of the region Suppose that the number of
mixed pixels on the region boundary is function of the amount of blur. The
amount of image blur cannot be easily determined, this would require to solve
the blind deconvolution problem, although estimates from image gradients or
other statistics may be computed. We are looking for a criterion of stability
that exploits some property common to both stable and blurred regions. The
stability of the centroid of the region, because the position of the centroids of
the stable regions in the in-focus image will not differ much in the defocused
image. Affine invariance can be added to the stability function by using the
region’s covariance matrix to measure the movement of the centroid position in
the normalised coordinates. Several weaknesses of MSER detector were anal-
ysed and generalisations of the stability function proposed that address them
were proposed. Experiments on standard datasets show, that the proposed gen-
eralisations are comparable with the other state-of-the-art methods and are ben-
eficial in image retrieval.
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Computation cost improvements

The optimisation of the running time of the baseline union-find based algo-
rithm [14] are focused on reduction of the memory footprint and improvement
of the “cache locality” of internal structures. Suballocation allows to reduce the
costs of the system/library allocator by allocating higher number of small struc-
tures at once in one location. The region recycling, re-uses the region structures
of terminated regions without stable thresholds and thus reduces the maximum
number of concurrently used regions. The small regions improvement reduces
the cost of small region construction by keeping limited statistics until region
reaches minimal usable size. The histogram integration integrates the bins with
sorted pixels of the image into the union find structure.

0 2 4 6 8 10

x 10
6

0

0.5

1

1.5

2

2.5

3

3.5

4

Image size [px]

C
P

U
 ti

m
e 

[s
]

 

 

base method
suballoc + recycling
suballoc + recycling + small

0 2 4 6 8 10

x 10
6

0

0.5

1

1.5

2

2.5

3

3.5

4

Image size [px]

C
P

U
 ti

m
e 

[s
]

 

 

base method
suballoc + recycling
suballoc + recycling + small

Figure 3: Example images and comparison of improvement of by suballocation, region
recycling and small region structures optimisations. Solid line – overall output time,
dashed line the time for output of the regions.

The set of improvements of MSER detector that reduces the number of alloca-

7



tions and size of memory footprint were proposed and evaluated. A significant
reduction of computational time was achieved and almost linear asymptotic
complexity was observed, comparable to the recent state-of-the-art implemen-
tation [19].

5 Stable Affine Frames

The stability of MSERs is influenced by the stability of the whole connected
component. A significantly growing part of the region often lowers the stability
measure. To overcome this, the ability to match parts of extremal regions be-
tween adjacent intensities in an affine covariant way has to be developed. We
have introduced the notion of extended extremal region boundaries as an effi-
cient way of enumerating all parts of discrete isophotes and an affine covariant
construction of the sequences of affine frames that represent the evolution of a
part of the contour over a range of intensities (see Figure 4).

(a) (b) (c)

Figure 4: Example of a stable affine frame construction: (a) each 10th isophote on a
part of an image, (b) entry and exit points (white) and the farthest point (green cross)
from a bitangent (green lines) constructed on isophotes, (c) SAFs; white lines connecting
points (1, 0)>, (0, 0)> and (0, 1)> in the frame coordinate system.

A novel concept of SAFs relaxes the requirement of a stable extremal region
and enables the extraction of the stable parts of the boundary of an extremal
region. We have shown experimentally that SAFs have a repeatability com-
parable to the best affine covariant detectors [16] and consistently produce a
significantly higher number of features per image. Overall, SAFs provide a
strong alternative to MSERs (combined with local affine frame constructions)
in applications where the longer running time is not an issue.
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a) b) c)

Figure 5: Mirrored LAF constructions: a), b) local affine frames and their matching
mirrored versions. c) the corresponding patches on the butterfly image. Note resid-
ual differences due to different background of normalised patches and their matching
mirrored counterparts.

6 Epipolar Geometry from Two LAF Pairs
The full use of the affine covariant features is as important as their repeatable
detection. We have shown that by exploiting all available local geometry in-
formation in a RANSAC framework, significant speed-up of the geometry es-
timation and verification can be achieved. The 2LAF-LO-RANSAC algorithm
requires lower number of samples, local optimisations, and significantly lower
number of iterations than the seven point LO-RANSAC with degeneracy test.

7 Efficient Symmetry Detection
Symmetry is a visual and physical phenomenon, occurring both naturally and
in manufactured artifacts and architecture. If two symmetric image regions are
detected it is likely that these regions are related in the real world, and there is
a good chance that they belong to the same object. We build on the results of
Loy et al. [13] and Cornelius et al. [5] that illustrated the effectiveness of sym-
metry detection using local features. We take the concept proposed by [5] and
improve this by removing the need to form feature quadruplets, and thus solve
symmetry detection under perspective in a cleaner and more efficient manner.
That is, we show how to derive a unique symmetry hypothesis from a single
pair of affine covariant symmetric features, with the added challenge of an un-
known perspective distortion. To allow matching of bilaterally symmetric LAFs
(see Figure 5), a mirrored version of each frame and its descriptor is computed.
When pairs of reflected frames have been obtained by fast matching, an axis of
symmetry is calculated for all pairs where possible. A LAF is defined by three
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Figure 6: a) A reflective pair of LAFs (q1, q2) and the axis of symmetry around which
the pair is symmetric. The intersections of the three lines defined by the three points in
the LAFs all lie on the axis of symmetry (c1, c2, c3). b),c) Symmetries discovered from
the matching LAF pairs with axes of symmetry consistent with all hypothesis.

points and three lines can be obtained by connecting these points. For a sym-
metric pair of frames, the three pairs of corresponding lines will intersect on
the axis of symmetry. This means that the axis of symmetry can be estimated
from a single pair of matching LAFs (see Figure 6) if intersections c1, c2, and
c3 exist. Hypotheses for axes are counted and the ones with sufficient number
of votes returned.
A detection of very discriminant image structures – bilateral symmetries was
proposed by exploiting the local geometry of affine covariant features. In con-
trast to the previous work no Hough transform, is used. Hypotheses are gener-
ated from only one corresponding reflected pair of affine frames and vote for a
single axis of symmetry. The complexity of the proposed algorithm is n log(n),
where n is the number of affine frames detected in the image allowing in prac-
tise a near real-time performance.

8 Efficient Representation of Local Geometry

So far, we have focused on the detection and use of affine covariant local fea-
tures in visual correspondence problem, ignoring memory requirements for
storing the local geometry. Local geometry represented by an affine covari-
ant ellipse is noticeably bigger than the size of tf-idf weights and labels when
stored in a naive way thus becoming a significant factor determining the limits
of a method. The proposed discretized local geometry representation is learnt
by minimisation of the expected reprojection error after the ellipses are used to
hypothesise an affine transformation. This is the optimal cost function, since the
local feature geometry is stored exactly for this purpose. To reduce the mem-
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ory requirements of storing the geometric information, we aim at representing
a set of similar elliptical regions by a good approximation. Using simple ma-
nipulations we show that the reprojection error integrated over unit circle is a
monotonic function of the Frobenius norm of the error matrix, i.e. the residual
misalignment. Having this error measure a k-means algorithm is employed to
find the ellipse cluster centres, see Figure 7, that are analogous to geometric
“vocabulary”.

(a) (b)

(c) (d)

Figure 7: Learnt geometric “vocabularies”. Examples of ellipse prototypes (with scale
removed) for K = 4, 8, 16 and 64.

Experiments (c.f . Table 1) has shown that with 24 bits (method S0E8 - 8bits
for ellipse shape, 16bits for coordinates) representing position, elliptical shape
and scale (i.e. affine transformation modulo rotation) of each feature, the image
retrieval performance is almost as good as with exact representation of local ge-
ometry. The representation naturally incorporates the gravity vector assumption
that if used consistently in all stages of image retrieval from feature description
to spatial verification, improves the retrieval performance.
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Method Oxford5K vocab. Paris/Other∗

Ox5K Ox105K Ox5K Ox105K
S0E8 0.788 0.725 0.634 0.574

S0E8+SA 0.846 0.779 0.725 0.652
S0E8+QE 0.901 0.856 0.784 0.728

S0E8+SA+QE 0.916 0.885 0.822 0.772
Oxford 0.653 0.565 0.460 0.385

Oxford+QE 0.801 0.708 0.654 0.562
Oxford+SA+QE 0.825 0.719 0.718 0.605

INRIA - - 0.547∗ -
INRIA TR - - 0.610∗ -

Table 1: Comparison of the proposed S0E8 method with state-of-the-art methods:
Oxford [23], INRIA and INRIA TR, are the best results on Oxford5K dataset in [9]
resp. [10]. QE - query expansion, SA - soft assignment. , ∗please note that a different
vocabulary was used.

9 Conclusions
In this thesis, different aspects of the visual correspondence problem were
studied. We have analysed the MSER detector, proposed solution to the blur
and discretisation issues, and by reducing memory footprint achieved two-fold
speed up with respect to the baseline implementation. A novel detector of SAFs
was proposed. The advantage of the affine over point-to-point correspondences
was exploited in epipolar geometry estimation and symmetry detection. Fi-
nally an efficient representation of the local geometry was proposed and demon-
strated in a large-scale retrieval system.
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Resumé in Czech
Problém nalezenı́ korespondencı́ ve dvou různých pohledech na objekt nebo
scénu je v počı́tačovém viděnı́ zkoumán již dlouho. Nedávno publikované
metody rozpoznávanı́ objektů a vyhledávanı́ obrázků jsou založeny na vizuál-
nı́ch korespondencı́ch nalezených pomocı́ párovánı́ invariantnı́ch popisů lokál-
nı́ch přı́znaků. Problém nalezenı́ vizuálnı́ch korespondencı́ mezi hledaným
obrázkem a obrázky v databázi je formulován jako hledánı́ geometricky konzis-
tentnı́ch množin podobných popisů lokálnı́ch přı́znaků. Algoritmus pro řešenı́
takto formulovaného problému se skládá z následujı́cı́ch komponent: detektor
přı́znaků, generátor popisů, indexovánı́ a ověřovánı́ korespodencı́. Metody pro
realizaci každé z těchto komponent jsou známé, ale tyto majı́ různá omezenı́ a
nedostatky. Tato práce se zabývá analýzou a řešenı́m těchto problémů.
Nejdřı́ve analyzujeme některé nedostatky detektoru Maximálně stabilnı́ch ex-
tremálnı́ch oblastı́. Navrhujeme rozšı́řenı́ funkce pro výpočet stability, analyzu-
jeme kritické body implementace detektoru založené na Union-Find struktuře
a navrhujeme zlepšenı́ která snižujı́ velikost paměti potřebné k běhu a počet
alokacı́ paměti. Navrhujeme nový koncept lokálnı́ přı́znaků nazvaných Stabilnı́
afinnı́ rámce, které odstraňujı́ potřebu nalezenı́ stabilnı́ oblasti a umožňujı́ de-
tekci stabilnı́ch částı́ hranice extremálnı́ oblasti.
Dále využı́vame vizuálnı́ korespondence afinně kovariatnı́ch přı́znaků k nalezenı́
a ověřenı́ epipolárnı́ geometrie. Navržený algoritmus použı́vá RANSAC s lokál-
nı́ optimalizacı́ a detekcı́ degenerovaných konfiguracı́ k nalezenı́ epipolárnı́ ge-
ometrie ze dvou afinnı́ch korespondencı́. Algoritmus umožňuje rychlejšı́ ověřenı́
globálnı́ch geometrických omezenı́, často poslednı́ z kroků při rozpoznávánı́
objektů, hledánı́ korespondencı́ ze dvou různých pohledů a vyhledávánı́ obrázků.
Dále se zabýváme hledánı́m symetrie, jevem jenž se objevuje v přı́rodě i na
člověkem vytvořených objektech a architektuře. Výskyt symetrie v obrázku
objektu je často nenáhodný a velice charakteristický. Existujı́cı́ algoritmus pro
nalezenı́ bilaterálnı́ symetrie pomocı́ lokálnı́ch přı́znaků je rozšı́řen tak, že se
k hledánı́ hypotézy osy symetrie výužı́vá pouze jediná korespondence afinně
kovariatnı́ch lokálnı́ch přı́znaků.
Nedávný rozvoj systémů pro vyhledávánı́ ve velkých databázı́ch obrázků s se-
bou přinesl nový problém omezené kapacity paměti pri ukládánı́ geometrie
lokálnı́ch přı́znaků. V práci navrhujeme novou reprezentaci lokálnı́ geome-
trie založenou na kompresi a ukazujeme zásadnı́ úsporu pamětových nároku v
aplikaci pro vyhledávánı́ specifických objektů.
Studované problémy jsou doprovázené důkladným experimentálnı́m ověřenı́m
na standardnı́ch souborech obrázků pro porovnávánı́ detektorů a v aplikaci pro
vyhledávanı́ specifických objektů.
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