
Instructions

The goal of the thesis is the creation of an application for managing personal finances. The key features

include:

- managing of multiple personal accounts

- tracking transactions on the accounts with advanced categorization

- support for recurring and future payments

- statistics and reports

The thesis should consist of:

- analysis of the processes and requirements

- research of existing applications and their comparison

- technology and architectural design of a custom solution

- implementation and testing of the solution

- documentation of the solution, including a user guide and deployment guide

Electronically approved by Ing. Michal Valenta, Ph.D. on 31 March 2020 in Prague.

Assignment of bachelor’s thesis

Title: ExpenseTracker - personal finance manager

Student: Jamaladdin Azizov

Supervisor: Ing. Zdeněk Rybola, Ph.D.

Study program: Informatics

Branch / specialization: Web and Software Engineering

Department: Department of Software Engineering

Validity: until the end of summer semester 2021/2022

Bachelor’s Thesis

EXPENSETRACKER -
PERSONAL FINANCE
MANAGER

Jamaladdin Azizov

Fakulta informačńıch technologíı ČVUT v Praze
Software Engineering
Vedoućı: Ing. Zdeněk Rybola, Ph.D.
June 27, 2021

České vysoké učeńı technické v Praze
Fakulta informačńıch technologíı
© 2021 Jamaladdin Azizov. Všechna práva vyhrazena.
Tato práce vznikla jako školńı d́ılo na Českém vysokém učeńı technickém v Praze, Fakultě informačńıch
technologíı. Práce je chráněna právńımi předpisy a mezinárodńımi úmluvami o právu autorském a
právech souvisej́ıćıch s právem autorským. K jej́ımu užit́ı, s výjimkou bez uplatněných zákonných licenćı
nad rámec oprávněńı uvedených v Prohlášeńı, je nezbytný souhlas autora.

Odkaz na tuto práci: Jamaladdin Azizov. ExpenseTracker - Personal Finance Manager. Bachelor’s
Thesis. České vysoké učeńı technické v Praze, Fakulta informačńıch technologíı, 2021.

Contents

Acknowledgments vi

Declaration vii

Abstract viii

Acronyms ix

1 Introduction 1
1.1 Goal of the thesis . 1
1.2 Structure . 2

2 Analysis 3
2.1 Current version . 3

2.1.1 Requirements and current application functions 3
2.2 Domain model and known issues . 4

2.2.1 User . 4
2.2.2 Account . 4
2.2.3 Transaction . 4
2.2.4 Category . 4

2.3 Current implementation . 5
2.3.1 Backend . 5
2.3.2 Frontend . 6

2.4 New Requirements . 6
2.5 New domain model . 7

2.5.1 Updated entities . 7
2.5.2 New entities . 7

2.6 Existing Solutions . 9

3 Design 13
3.1 Technologies . 13

3.1.1 Programming language and Run-time environment 13
3.1.2 Frameworks . 14
3.1.3 Databases . 15
3.1.4 Platform as a Service . 15
3.1.5 Database as a Service . 16

3.2 Architecture . 16
3.3 Database . 18
3.4 Class model . 20

3.4.1 Planned Transaction Service Class . 20
3.5 Sequence model . 21

3.5.1 Create Repeating Transaction . 21

iii

iv Contents

4 Implementation 23
4.1 Implementation Details . 23

4.1.1 Structure . 23
4.1.2 API documentation . 23
4.1.3 Authentication . 25
4.1.4 Caching . 26
4.1.5 Account balance calculation . 26
4.1.6 Repeating transactions . 28
4.1.7 Sharing accounts . 28

4.2 Testing . 29
4.2.1 Unit tests . 29
4.2.2 User testing . 31

4.3 Tools . 31
4.3.1 Node Package Manager . 31
4.3.2 Jest . 31
4.3.3 Gitlab . 31
4.3.4 Heroku . 32
4.3.5 JawsDB . 32
4.3.6 Visual Studio Code . 32
4.3.7 Sequel Ace . 32
4.3.8 Paw . 32
4.3.9 Docker . 32

5 Conclusion 33
5.1 Future work . 33

Contents of enclosed CD 37

List of Figures

1 Current domain model . 5
2 New domain model . 8
3 Comparison table . 11

4 Deployment diagram . 16
5 Logical architecture . 17
6 Database diagram . 19
7 Class model diagram . 20
8 Class model diagram . 21

9 Swagger UI . 24

v

I would like to thank my supervisor Ing. Zdeněk Rybola, Ph.D. for
supporting me with the topic and for all his valuable advice during
the creation of the thesis. Above all, I would like to thank my family
for all the support during my studies.

vi

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis. I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular that
the Czech Technical University in Prague has the right to conclude a license agreement on the
utilization of this thesis as a school work under the provisions of Article 60 (1) of the Act.

in Prague on 27th of June 2021 .

vii

Abstrakt

Ćılem práce je vytvořeńı aplikačńıho programovaćıho rozhrańı (API) pro správu osobńıch finanćı.
To zahrnuje analýzu aplikace XpenseTracker po předmětu BIE-SP2, analýzu a daľśı návrhy
vylepšeńı, realizaci vylepšeńı a testováńı vylepšeného řešeńı.

Keywords osobńı finance, rozpočtováńı, API

Abstract

The goal of the thesis is the creation of an application programming interface (API) for managing
personal finances. This includes the analysis of the XpenseTracker application after the BIE-
SP2 subject, analysis and further suggestion of improvements, realization of improvements, and
testing of the improved solution.

Keywords personal finances, budgeting, API

viii

Acronyms

API Application Programming Interface
CRUD Create, Read, Update, Delete

UML Unified Modeling Language
HTML Hypertext Markup Language

CSS Cascading Style Sheets
OOP Object Oriented Programming

FP Functional Programming
FRP Functional Reactive Programming
CLI Command Line Interface

ORM Object-Relational Mapping
RDBMS Relational Database Management System

ix

Chapter 1

Introduction

Since money is essential these days, there are plenty of good reasons why you should have a
personal expense tracker. Managing money is not an easy task – it takes effort and a sound
system. However, once you set it up, you can result in long-term success by staying on top of
your financial situation.

Knowing your financial situation can help you make better decisions with your money. It can
be as simple as having a budget and sticking to it.

When it comes to tracking expenses or incomes, there are plenty of great ways you can do
it—from excel templates to applications that you can use.

There’s no reason people should be running up debt or be unable to pay for essentials because
of their spending habits. There is a lot of unnecessary spending in people’s everyday lives that
can be stopped. Even small cheap purchases can add up. Logging all expenses can help to
prevent that.

Another reason to keep track of monthly expenses is that it allows one to look into the future
with a clearer idea of what funds are available. Budgeting also lets us know how much we could
save and thus how much we can put away into different funds and accounts per month. So
keeping track of monthly expenses gives a better overview of the budget, which can be very
helpful.

In the end, realizing you have little money is stressful, but knowing that and not knowing
what you are spending it on is much worse. So while making sure you have enough to meet your
lifestyle and basic needs is one stressor, worrying about tracking does not have to be.

Considering all the details above, it was decided to create a system that will help manage
your finances.

1.1 Goal of the thesis
The goal of the thesis is the creation of an API for managing personal finances with the following
main features:

Managing multiple personal accounts

Tracking transactions on the accounts with advanced categorization

Support for budgeting

Sharing personal accounts with other users

Support for recurring payments

1

2 Chapter 1. Introduction

The frontend part of the application will be created by Amir Qamili as his bachelor thesis
using this API.

The initial version of the application has already been created for two semesters under the
guidance of Ing. Zdeněk Rybola, PhD, in subjects BIE-SP1 and BIE-SP2 by the group of
6 students: Amir Qamili, Beksultan Baatyrbekov, Ilya Ryabukin, Jamaladdin Azizov, Nilay
Baranwal, Rishabh Malik. The application is used to track the expenses and incomes of the
users using several payment accounts and categorization with a simple web interface.

1.2 Structure
The first chapter of this work deals with an acquaintance with the current version of the
application, an analysis of the current and the new state of the application. This part is followed
by the design part chapter, where a new application and new requirements are presented. The
last chapter is the implementation chapter, which deals with the development of the application
itself into its final form.

Chapter 2

Analysis

In this chapter, an analysis of the current version of the ExpenseTracker application will be
performed. The chapter will help to understand better and present the current version of the
application, what state it is in, what it can do and can not do. The result of this analysis will
serve as a starting point for the next part of this chapter, which will describe new application
features. In addition, this chapter includes a comparison with existing solutions in the market.

2.1 Current version
In this section, the current version of the ExpenseTracker application is discussed. In addition,
it contains the requirements that were already implemented, the domain model and issues of the
current version.

2.1.1 Requirements and current application functions
The current version of the application does not satisfy the specifications that were planned at
the start of the project. The followings requirements were implemented:

User registration and login
The application provides user profiles. Registration of a user is done via email and password.
After logging in, the user has access to all the features of the application.

Payment accounts
A payment account is an account that you use to deposit funds or to spend money. Each user
can create several payment accounts. Basic CRUD operations are implemented for accounts.

Categories
Categories help organize past and new records into aggregated structures - both for incomes
and expenses. Each category can also have a subcategory. Basic CRUD operations are
implemented for categories.

Transactions
Transactions are the basis of the whole application. Each account consists of transactions.
Each transaction can be either income or expense. Basic CRUD operations are implemented
for transactions.

3

4 Chapter 2. Analysis

2.2 Domain model and known issues
Another important part of the analysis is the domain model. This model is often illustrated
using the UML class diagram. It does not contain any implementation details, but will serve as
a good starting point for modeling the database model and the design model of classes. On the
[1] is shown the Domain model of the current version.

As it can be seen from the model, the current version of the application does not have all the
functionalities which were planned at the start of the project. Moreover, The model is missing
several important attributes. The main entity in this model is Transaction, which is composition
of Account and Category. It is possible to create two types of transactions: income and expense.
But, the model is missing a transfer type, which is important if the user wants to transfer money
from one payment account to another. Moreover, it is not possible to split transactions into
several subtransactions.

Account have transactions, but it is missing balance attribute to see overall balance of an
account.

Finally, there is no possibility to create repeating transactions and share payment account
with another users. Both of these functionalities were planned in the initial requirements of the
application. Below is a short description of each entity in the model:

2.2.1 User
This class represents registered users. In order to use the application user has to register. User
entity is associated with Account and Access entities.

2.2.2 Account
Each Account consist of a name, type, currency and icon. Accounts may have only one user or
could be shared with another users. Each account will have their own transactions.

2.2.3 Transaction
The main entity in this model Transaction. Transaction has to have an Account and a Category.
In addition, Transaction has an amount, date, description, state and type. Transaction could be
type of Income or Expense.

2.2.4 Category
Category is used to categorize transactions. Each category has to have a name. Moreover, each
category may have a subcategory.

2.3. Current implementation 5

Figure 1 Current domain model

2.3 Current implementation
This section describes the current architecture of the application.

2.3.1 Backend
The entire backend part of the application, which takes care of working with data, was
programmed in PHP with Laravel framework. The application is based on a three-layer
architecture. The layers are divided into:

Presentation layer - Takes care of displaying information to the user, often using HTML
pages, which are accompanied by CSS styles. This layer can control user input and take care
of changes in the business layer or in view.

Business layer - Takes care of the application’s logic and is independent of the presentation
and data layers. It will provide for methods of accessing and maintaining data, and it might
accommodate the movement of work from one function to another.

Data layer - Enables a communication between the application and the data storage.

6 Chapter 2. Analysis

2.3.2 Frontend
The application’s front end uses the Blade templating engine for PHP, created specifically for the
Laravel framework. The styling of the website is complemented by styles using the CSS language
and the Bootstrap package. JavaScript with the jQuery library takes care of the dynamics of
the site.

2.4 New Requirements
The new requirements need to be implemented to achieve the pursued goals. First of all, the
missing requirements that were set at the initial stage:

FR1: Sharing payment account with another user
This functionality should enable sharing a user’s payment account with other users to keep
track of incomes/expenses in a common account. Each of the shared users may have different
permissions.

FR2: Creating repeating transactions
Most of the users will have some transactions that will repeat on certain days. In the current
implementation, the users will have to create them manually every time. In order to automate
this process, the application should be able to create repeating transactions with custom
recurrence patterns.

In the current version of the application, a user needs to create two separate ’income’ and
’expense’ transactions with two different accounts to transfer money between them. In addition,
the user needs to assign a category to them, which complicates the process. To ease the process,
the application should have a transaction of type ’transfer’. This type of transaction could have
several use cases, such as withdrawing money from a bank account to your wallet:

FR3: Transfer between payment accounts
Add a new ’transfer’ transaction type

The application should be able to show the overall balance of each payment account. When a
user creates a transaction, the balance should change according to the transaction type. Also, it
should be possible to set the initial balance when creating an account::

FR4: Calculate balance of the payment accounts
Add balance property to account. The balance should be updated after each transaction in
this account.

If you’re like me, nearly every Amazon order may go to various budget categories. It is not
possible to assign several categories with different amounts to the transactions in the current
version. Having this feature, users should be able to split a transaction into multiple sub-
transactions. Each of the subtransactions may have a their own category and amount spent:

FR5: Create/Show/Update/Delete Sub-transactions
Functionality to split a transaction into several subtransactions.

One of the goals of the application should be providing a way for users to eliminate debt, save
money, and reach their financial goals faster. Adding budgeting functionality can help with that:

FR6: Budgeting
Users can create daily/weekly/monthly/yearly budgets for specific categories to track their
spending.

2.5. New domain model 7

In addition to all of the above:

FR7: Create/Show/Update/Delete Project
Projects may be used to unite transactions into one group. They may be helpful if you’re
going on a trip or another special event.

FR8: Refresh token
In order not to force users to log in every hour, refresh token may be used by the web or
mobile apps.

2.5 New domain model
The domain model of the initial state of the application was shown in the figure [1]. Now an
extended version of the domain model is introduced in the figure [2]. The new version of the
domain model now covers all the requirements of the applications described above. Only new
and updated entities are described in this section.

2.5.1 Updated entities
2.5.1.1 Account
Account now has balance and starting balance attributes. Starting balance represents the initial
balance when the account was created. Balance is then calculated by adding starting balance
and adding or subtracting each account’s transactions—also, currency and type of an account
represented by enum types.

2.5.1.2 Transaction
The Transaction entity now has a new type, transfer, to represent transaction between two
accounts. In addition, now transactions may be a part of a Project. Moreover, the enum type
is used now to show the state of a transaction in the model. Finally, Transactions may have
sub-transactions.

2.5.2 New entities
2.5.2.1 Transaction template
Transaction template is a new type of transactions which are repeating transactions. User can
create a template with recurrence patterns when a transaction is going to be repeated. Moreover,
users may choose if repeating transactions are going to be created automatically or manually
confirm to create them.

2.5.2.2 Access
Access entity represents accesses to shared accounts. It consists of permissions for shared users.
The owner of an account may choose which permissions to give to other users when sharing the
account.

2.5.2.3 Budget
The Budget entity will be used to create repeating budget plans. Budgets consist of a name, a
repeat frequency, an amount the user wants to spend.

8 Chapter 2. Analysis

2.5.2.4 Project
Projects are used to unite transactions into one group. Projects consist of a name, start and end
dates.

Figure 2 New domain model

2.6. Existing Solutions 9

2.6 Existing Solutions
As this is not a new idea, several applications used for similar or the same purposes already
exist. This section will introduce some competing applications. Information about competing
applications was obtained directly from the applications’ website.

1. Mint – is one of the popular personal finance apps that provides your complete financial
picture in one place. Once you link your bank accounts, Mint pulls your transactions,
categorizes them, and adds them to the application. After that, you can keep track of your
bills and spendings and create a budget if needed. You can also add transactions manually
if you do not have one of your accounts connected but want to count its spending towards
your budget. The majority of Mint’s services are free to customers. However, Mint has
monetized its free product by including advertisements on various parts of its website and
app. In addition, Mint also generates revenue through the sale and distribution of aggregate
consumer data. Premium version costs $16.99 per month and offers ad-free experience and
credit monitoring service feature. [16]

2. Spendee – Spendee allows you to create shared wallets with other users that you can use
to manage shared expenses. You can import your bank transactions and let the application
categorize them for you. You can also add expenses manually. In addition, the application
offers budgeting for each spending category.
The free version allows only manual tracking with one payment account and one budget. Plus
version costs $1.99 per month and removes the limit for the number of accounts and budgets.
Premium version costs $2.99 monthly and offers sharing wallets with others and automatic
bank accounts synchronization. [23]

3. Wallet by BudgetBakers – Wallet is one of the most popular personal finance apps in
the Apple App Store and Google Play Store. It also can be used through its web interface.
However, the Android version of the app is the complete one, while the iOS and web versions
lack some of its useful features. [3]
Wallet’s free features on Android include:

Categorize spending. Each category has a list of subcategories and can be personalized
Saving goals and budgeting. You can set a budget for a specific account or category and
Wallet will notify you when you go beyond it
Planned payments

Here’s what Wallet’s premium option adds to its free version:

Bank synchronization—Transactions will automatically be added to Wallet and categorized
Unlimited accounts
Multi-user sharing

10 Chapter 2. Analysis

4. Financisto – is a free, open-source personal finance manager for the Android platform. It
has a lot of features, but the last version of the application was released two years ago. [22]
It has following features:

Multiple accounts
Scheduled and recurring transactions
Transfers
Splitting transactions
Hierarchical categories with custom attributes
Projects to organize transactions
Recurring budgets

The result of this analysis is that the ExpenseTracker application has all the main features of
other applications. Unfortunately, the application is missing a bank synchronization feature, but
even though getting API access to the banks is difficult, it may be implemented in the feature. In
a bright sight, ExpenseTracker has additional feature compared to most of the above-mentioned
applications, such as projects functionality for one time events and splitting a transaction into
subtransactions.

The following table overview in the [3] contains a comparison of the application with the
applications mentioned above. Paid features are marked with the character ”*”.

2.6. Existing Solutions 11

Figure 3 Comparison table

Chapter 3

Design

3.1 Technologies
This section contains the technologies used during the development process and why exactly
these technologies are chosen.

3.1.1 Programming language and Run-time environment
The Backend of the initial version of the application was developed using PHP, mostly synchronous
language and hardly scalable. In addition, PHP does not offer strict type checking. Moreover,
the application itself had many bugs, and most of the code had to be refactored.

As I was interested in learning Node.js - which solves all the above issues of PHP , I decided
to use the TypeScript programming language with Node.js runtime environment.

3.1.1.1 Node.js
Node.js is an open-source, cross-platform, JavaScript runtime environment built on Chrome’s V8
JavaScript engine that executes JavaScript code outside of a browser. It was created in 2009,
and it is used for building fast and scalable applications. [18] Advantages of Node.js:

Non-blocking code
Due to its asynchronous, non-blocking input/output processing and event-driven nature,
Node.js is a suitable choice for building modern solutions based on WebSockets, microservices,
event queues, and jobs. [18]

Faster performance
As I mentioned above, it has a non-blocking input/output model. So that makes processing
the requests very fast. [18]

Community
Node.js has the most significant open-source community and the largest repository of libraries
and packages. [18]

13

14 Chapter 3. Design

3.1.1.2 TypeScript
TypeScript is an open-source language that builds on JavaScript, one of the world’s most used
languages. [26] In addition to above-mentioned advantages of JavaScript, TypeScript adds
additional features on top of those:

Transpiler
TypeScript has a source-to-source compiler that converts TypeScript code into JavaScript
code, allowing early detection of code errors. [26]

Type checking
TypeScript allows for static type checking during compilation, so locating code errors becomes
much more manageable. Types provide a way to describe an object’s shape, provide better
documentation, and allow TypeScript to validate that your code is working correctly. [26]

3.1.2 Frameworks
This section describes frameworks and technologies which were used in the development of
ExpenseTracker application:

3.1.2.1 Nest.js
Nest is a framework for building practical, scalable Node.js server-side applications. It created
with TypeScript, preserves compatibility with pure JavaScript, and combines OOP, FP, and
FRP elements. Nest aims to provide an application architecture out of the box which allows for
effortless creation of highly testable, scalable, loosely coupled and easily maintainable applications.
Recently, the NestJS framework has been gaining extreme popularity due to its incredible
features. [17] Some of them are:

Easy to use, learn and master.

Powerful CLI to boost productivity and ease of development.

Detailed and well-maintained documentation.

Active codebase development and maintenance.

Open-source .

Support for dozens of nest-specific modules that help you easily integrate with common
technologies and concepts like ORM, GraphQL, Logging, Validation, Caching, WebSockets
and much more.

Easy unit-testing applications.

3.1. Technologies 15

3.1.2.2 MikroORM
MikroORM is a free, open-source ORM library for TypeScript for Node.js. ORMs work as
querying and object creation runtime between client code and relational database. They provide
multiple powerful features like object and query caching, concurrency control, object-oriented
query languages and much more. MikroORM itself was built with TypeScript and based on Data
Mapper, Unit of Work and Identity Map patterns. The first and most important implication
of having a Unit of Work is that it automatically handles transactions. In addition, thanks to
Identity Map, the application will always have only one instance of a given entity in one context.
That allows skipping loading already loaded entities, as well as comparison by identity. All of
that simplifies the implementation of the data layer; that is why this framework was chosen. [2]

3.1.3 Databases
3.1.3.1 Maria.db
MariaDB is a freely available open-source RDBMS that uses Structured Query Language. MariaDB
is a forked version of MySQL and is a general-purpose DBMS engineered with extensible architecture
to support a broad set of use cases via pluggable storage engines. Many features contribute to
MariaDB’s popularity as a database system. Its speed is one of its most prominent features.
MariaDB is also remarkably scalable and can handle tens of thousands of tables and billions
of rows of data. It can also manage small amounts of data quickly and smoothly, making it
convenient for small businesses or personal projects. Another feature that sets it apart from its
predecessors is its focus on security. These are the reasons why it is used in the development of
this application. [15]

3.1.3.2 Redis
Redis is an open-source, in-memory data structure store used as a database, cache, and message
broker. It supports data structures such as lists, strings, hashes, sets, bitmaps, and geospatial
indexes with radius queries. Because of its versatility, Redis was used as a database cache and
as a job queue in this application. [21]

3.1.4 Platform as a Service
PaaS, or Platform-as-a-Service, is a cloud computing model that provides customers with a
complete platform—hardware, software, and infrastructure—for developing, running, and managing
applications without the cost, complexity, and inflexibility of building and maintaining that
platform. With PaaS, developers only have to worry about managing the applications or software
they develop; the PaaS provider handles everything else, including any platform maintenance,
development tools, and database management. As a result, they can save the time and money
needed to maintain, upgrade, or replace systems and software. In this application, this technology
was used for the deployment. [7]

16 Chapter 3. Design

3.1.5 Database as a Service
DBaaS or Database-as-a-Service is a cloud computing service model that provides users with
access to a database without the need for setting up physical hardware or installing software. All
of the organisational tasks and maintenance are taken care of by the service providers so that
all the user needs to do is use the database. The DBaaS is used in the application as a cloud
database that connects to the PaaS where the application is deployed. [25]

3.2 Architecture
The ExpenseTracker application consists of a central database and the Node.js web server. The
application and the databases can run on different servers or share the same. Also, the application
and database can be deployed on PaaS. The possible deployment model of the application is
shown in the figure [4].

Figure 4 Deployment diagram

3.2. Architecture 17

The application architecture is designed using the principle of Monolithic architecture. Monolithic
applications are a codebase that performs as a single unit. Developers do not need to think about
the communication between the various application’s components. Thus, they require less time
for building such apps. In addition, it’s faster to deploy such applications because of a single
unified codebase. Monolithic architectural style also has some weaknesses. It is hard to scale the
application. When an app’s component requires more resources, it is difficult to isolate such a
component for independent scaling. Also, it might be more difficult to keep adding more features
to the application as the size and complexity grows. [4]

The logical architecture of the application is shown in the figure [5].The application consists
of three basic layers.

Controller — provides the REST API and handles client requests,

Service — contains business logic

Repository — abstracts access to the database

Figure 5 Logical architecture

18 Chapter 3. Design

3.3 Database
The database model, like the domain model, is displayed using a UML diagram. The database
models differ from the domain model in that it contains specific information about attributes,
relationships, foreign keys, and database implementation. The model helps programmers to
better orient themselves in the given application structure. In the diagram [6], the new database
schema is shown.

The users table represents the registered user in the system. It consists of a name, an email,
a hashed password and a token version to revoke old tokens.

The accounts table defines payment accounts. It contains account type and currency,
starting and current balance, and an icon name. In addition, accounts belong to a user.
Users and accounts tables are joined via user id foreign key.

Shared accounts between users are realized by accesses table. The table has a shared account
id, the ids of the users with whom the account is shared, and permissions.

The categories table contains a name and an icon. A self-relation implements the subcategories
— defined by parent category id foreign key.

Budgeting functionality implemented through budgets and budget history tables. The
budgets table has general information about a budget: a recurrence interval and the amount
user wants to spend in the given interval. Budget instances for each recurrent interval is
saved in the budget history table. This table contains the amount spent and the budget
id. Finally, categories defined for budgets represented by categories budgets.

The projects table represents a list of projects. A project has a name, start and end date.
In addition, a column is active may be used to filter active and archived projects.

Planned transaction templates and planned transactions tables describe repeating
transactions. The template of the repeating transaction is saved in
planned transaction templates table with necessary fields to create a transaction in the
transactions table. All the future dates when the transaction will occur is then saved in
planned transactions table. is automatic column in planned transaction templates
table denotes he information if future transactions should be created automatically or confirmed
manually by the user in order to create them.

Transactions created manually by the user and repeating transactions created from the
template are saved in transactions table. The table consists of the amount of a transaction,
short description, transaction type and state. Also, it has the transaction date when the
transaction has occurred and the realization date. Every transaction should have an account
and a category (except when the transaction type is transfer). The information about the
transfer transaction is saved in the transfers table. In addition, a transaction may belong
to a project. Finally, the transactions table has a one-to-many relationship with the
subtransactions table. The tables are joined via the transaction id foreign key in the
subtransactions table.

3.3. Database 19

Figure 6 Database diagram

20 Chapter 3. Design

3.4 Class model
In this section will be shown examples of classes using class models.

3.4.1 Planned Transaction Service Class
As it was discussed before, the application consists of three layers. As the controller layer provides
the REST API and handles client requests, all the business logic contains in the service layer.
The figure [7] shows the Transaction Service Class, which was decided to be shown as an example
as one of the most nontrivial classes. All the service classes have a similar structure.

The class implements all the functionality related to creating transactions. Usage of repository
pattern allows isolating the business layer from the data layer. This allows the service just
to handle the managing of repeating transaction templates and not overwhelm the class with
additional functionalities.

Figure 7 Class model diagram

3.5. Sequence model 21

3.5 Sequence model
This section contains the sequence diagrams for a sampled use case scenario. As an example
Create Repeating Transaction scenario is chosen.

3.5.1 Create Repeating Transaction
A user wants to add a new repeating transaction to the system. This scenario starts when
the user has already logged in. First, the user should fill in all the information about the
repeating transaction he wants to add. It contains the name, account, category, amount, short
description, transaction type, recurrence pattern and the check if the transactions should be
created automatically. All the information is collected and sent to the ’/api/templates’ endpoint
via a POST request. Then the PlannedTransactionController validates the request and sends the
request body to the PlannedTransactionService. After that, PlannedTransactionService creates a
new TransactionTemplate instance and asks TransactionTemplateRepository to save the provided
entity to the database. After successfully saving new data to the database, a new template
entity is returned in the response. Meanwhile, the application asynchronously sends a message
to PlannedTransactionProccessor to calculate future transaction dates. The diagram [8] shows
the sequence diagram of this process.

Figure 8 Class model diagram

Chapter 4

Implementation

In this chapter, implementation details, testing of the application and the list of tools used during
development are discussed.

4.1 Implementation Details
This section goes into detail regarding the implementation of some parts of the application.

4.1.1 Structure
The code structure of the application is divided into 3 main parts:

Modules – they are used to organize the code and split features into logical reusable units.
Grouped TypeScript files are decorated with “@Module” decorator, which provides metadata
that Nest makes use of to organize the application structure.

Services – also called providers, which are designed to abstract any form of complexity and
logic. Services can be created and injected into controllers or other services.

Controllers – they are responsible for handling incoming requests and returning appropriate
responses to the client-side of the application.

4.1.2 API documentation
As this application provides REST API, the consumers of this API need to know how the model
looks like and which operations are available to be called. Furthermore, client applications can be
implemented in different technologies. One of the platform-independent solutions is OpenAPI
specification. The OpenAPI Specification defines a standard, language-agnostic interface to
RESTful APIs, which allows both humans and computers to discover and understand the service’s
capabilities without access to source code or documentation. When properly defined, a consumer
can understand and interact with the remote service with minimal implementation logic. [24]

23

24 Chapter 4. Implementation

The OpenAPI specification is usually defined in JSON or YAML file. The specification file
permits software developers to define their API’s essentials, including:

Present endpoints and each endpoint’s operations

The input and output operation parameters

Authentication techniques

To visualize and interact with the API’s resources, Swagger UI is used. It’s automatically
generated from OpenAPI Specification, with the visual documentation making it easy for client-
side consumption. In the diagram [9], documentation of one of the endpoints is shown. The full
version of ExpenseTracker API documentation can be found on
lhttps://xpensetracker-api.herokuapp.com/api/.

Figure 9 Swagger UI

lhttps://xpensetracker-api.herokuapp.com/api/

4.1. Implementation Details 25

4.1.3 Authentication
The application uses JSON Web Tokens to authenticate users. JWT find their applications in
various authentication mechanisms. These are typically passed in the Authorization header when
a user submits a request to the client. It is a JSON encoded representation of a claim that can
be transferred between two parties. Then, the claim is digitally signed by the issuer of the token,
and the party receiving this token can later use this digital signature to prove the ownership on
the claim. [10]

JSON Web Tokens can be broken down into three parts: header, payload, and signature.

4.1.3.1 Header
The information contained in the header describes the algorithm used to generate the signature.
The decoded version of the header from may look like:

{
"alg ": "HS256",
"typ ": "JWT"
}

HS256 is the hashing algorithm HMAC SHA-256 used to generate the signature in the above
example.

4.1.3.2 Payload
All the claims within JWT authentication are stored in this part. Claims are used to provide
authentication to the party receiving the token. The decoded version of the payload from the
JWT example may look like:

{
" userId ": "12345" ,

}

The ‘userId’ field is used to identify the user to whom the token was issued to.

4.1.3.3 Signature
The signature part of a JWT is derived from the header and payload fields. The steps involved
in creating this signature are described below:

Combine the base64url encoded representations of header and payload with a dot

Hash the above data with a secret-key only known to the server issuing the token. The
hashing algorithm is the one described inside the header

Base64Url encode the hash value obtained from the step above

Because the secret key is only known to the server, only it can issue new tokens with a valid
signature. Users can not forge tokens as producing a valid signature for the token requires the
knowledge of the secret key. But how to invalidate a single token? A no-effort solution is to
change the server’s secret key, which invalidates all tokens. Not really nice for users that should
not have their token expired for no reason. In order to solve this problem, a token version
property was added to the user object in the database to reference the current version of the
token, and it is passed in the payload of a token. When users change or reset their password, the
token version attribute is incremented, which invalidates all previous token issued to the user

26 Chapter 4. Implementation

4.1.4 Caching
Caching is a great and simple technique that helps improve applications’ performance. It acts
as a temporary data store providing high-performance data access. In the ExpenseTracker
application, all the database queries are cached. The strategy implemented works with constants,
which specify the duration after which data are considered to be ”expired” and required to be
fetched from the database again.

4.1.5 Account balance calculation
Account balance calculation is one of the new requirements. Initially, it was implemented in the
business layer of the application. Every time a user created a new transaction, the transaction’s
amount was added to or subtracted from the account of the transaction. As all the database
queries were cached in the application, the request to get the account details could be the
outdated version. In order to make this feature work, I decided to use SQL Triggers. The
trigger is a statement that a system executes automatically when there is any modification to
the database. In a trigger, we first specify when the trigger is to be executed and then the action
to be performed when the trigger executes. [8] So after each change in the ‘transactions‘ table,
the trigger is executed, which updates the balance of an account. Below is an example of one of
the triggers in the transactions table:

4.1. Implementation Details 27

begin

SELECT balance
INTO @account_balance
FROM accounts
WHERE id = NEW. account_id ;

IF NEW.type = ’income ’ THEN
SET @account_balance = @account_balance + NEW. amount ;
UPDATE accounts set balance = @account_balance
WHERE id = NEW. account_id ;

END IF;

IF NEW.type = ’expense ’ THEN
SET @account_balance = @account_balance - NEW. amount ;
UPDATE accounts set balance = @account_balance
WHERE id = NEW. account_id ;

END IF;

IF NEW.type = ’transfer ’ THEN

SELECT from_account
INTO @fromAccount
FROM transfers
WHERE id = NEW. transfer_id ;

IF NEW. account_id = @fromAccount THEN
SET @account_balance = @account_balance - NEW. amount ;
UPDATE accounts SET balance = @account_balance
WHERE id = NEW. account_id ;

END IF;

IF NEW. account_id != @fromAccount THEN
SET @account_balance = @account_balance + NEW. amount ;
UPDATE accounts set balance = @account_balance
WHERE id = NEW. account_id ;

END IF;
END IF;

end

28 Chapter 4. Implementation

4.1.6 Repeating transactions
In order to create a repeating transaction, predefined structure of recurrence pattern has to be
sent by the clients. The repeating transaction can be repeated by frequencies:

Daily

Weekly

Monthly

Yearly

In addition to above:

If transaction is weekly, it is possible to define weekdays where the recurrence will be applied.

If transaction is monthly, it is possible to define month days.

If transaction is yearly, it is possible to define month days as well as months.

Finally, it is possible to defines intervals to the frequencies. For example, when using the weekly
rule, an interval of two means once every two weeks.

After receiving the recurrence pattern, the application calculates the dates when a transaction
will occur and saves these days to the database. Currently, dates in 10 years advance are
calculated. Finally, to create transactions automatically on each of the estimated dates, the
CRON job is used. A cron job is a Linux command used for scheduling tasks to be executed
sometime in the future. It is usually used to schedule a job that is executed periodically. [12]
The repeat pattern of this CRON job will be similar to the recurrence pattern of the repeating
transaction. This cron job will run a function, which will create a transaction.

One of the issues working on the implementation of this feature was timezone support.
Currently, the application supports only Central European Timezone, but it will be possible
to add additional time zones support in the future.

4.1.7 Sharing accounts
One of the problems during the development was the implementation sharing an account with
other users. The correct implementation has to be chosen, or otherwise, the application could
have serious security problems. A claim based authorization is used to solve this problem. When
an identity is created, it may be assigned one or more claims issued by a trusted party. A claim is
a name-value pair representing what the subject can do, not what the subject is. When sharing
an account, the user invites a new user via email and assigns claims. The following claims are
available:

Manage – Complete access to the account. Invited users can create, update and delete
transactions of the account.

Read – It is the default assigned permission. Invited user can see the transactions.

Update – The transactions of the shared account can only be updated by the invited user.

Delete – Invited users are only able to delete the transactions of the shared account.

4.2. Testing 29

Using the example below, it is possible to check which action on a specified account is allowed
for the user. As you probably guessed, can and cannot accept the same arguments but has
different meanings, can allow to do an action on the specified subject and cannot forbids.
async createForUser (userId : number) {

const { can , build } = new AbilityBuilder <Ability <[Action , Subjects]>>
(Ability as AbilityClass <AppAbility >)

can(Action .Manage , Account , { user: userId });

const accesses = await this. accessRepository .find ({ user: userId }, [
’account ’,

]);

accesses . forEach ((access) => {
access . permissions . forEach ((permission : Action) => {

can(permission , Account , { id: access . account .id });
});

});

return build ({
detectSubjectType : (item) =>

item. constructor as ExtractSubjectType <Subjects >,
});

}

4.2 Testing
In this section, the unit testing and manual user testing of the ExpenseTracker application are
discussed.

4.2.1 Unit tests
One of the reasons why the initial version of the ExpenseTracker application contained a number
of problems is that the code was not covered with unit tests. With the new functionalities being
implemented, the already existed ones were not tested properly to confirm that the changes did
not cause any unexpected behaviour. That is why the main functions of the application are now
covered with the unit tests. Although, some parts of the application was difficult to unit test.
For example, create a repeating transaction. Such functionalities were only tested manually. The
unit testing is done with the help of Jest, a JavaScript unit testing framework. All the tests can
be run during the build phase of the application or run manually. This is an example of the test
of create transfer method of class TransactionService:

30 Chapter 4. Implementation

const { balance : accountToBefore } = (
await DI.em

. getRepository (Account)

. createQueryBuilder ()

. select (’*’)

.where ({ id: defaultData . toAccount .id })

.limit (1)

. getResult ()
)[0];
const { balance : accountFromBefore } = (

await DI.em
. getRepository (Account)
. createQueryBuilder ()
. select (’*’)
.where ({ id: defaultData . fromAccount .id })
.limit (1)
. getResult ()

)[0];
const response = await api

.post (’/ api/ transactions /’)

.auth(defaultData .token , { type: ’bearer ’ })

.send(transferNew);
expect (response . status). toBe (201);
const { balance : accountTo } = (

await DI.em
. getRepository (Account)
. createQueryBuilder ()
. select (’*’)
.where ({ id: defaultData . toAccount .id })
.limit (1)
. getResult ()

)[0];
const { balance : accountFrom } = (

await DI.em
. getRepository (Account)
. createQueryBuilder ()
. select (’*’)
.where ({ id: defaultData . fromAccount .id })
.limit (1)
. getResult ()

)[0];
expect (accountFrom). toBe(

accountFromBefore - response .body.data [0]. amount
);
expect (accountTo). toBe(

accountToBefore + response .body.data [1]. amount
);

});

4.3. Tools 31

4.2.2 User testing
Even though all the parts of an application could be covered by tests, there still will be some bugs
not discovered by them. This is why User testing is important. As mentioned in the Introduction
chapter, the frontend of the application is being developed by another student, Amir Qamili.
Using the application during his development process, he reported some bugs, which were fixed.
Current functionalities that were tested by him while developing a user interface for them:

User authentication

Accounts

Categories

Transactions and subtransactions

4.3 Tools
This section contains the list of tools used during the implementation process.

4.3.1 Node Package Manager
NPM – or ”Node Package Manager” – is the default package manager for Node.js. NPM consists
of two main parts:

Online repository that hosts JavaScript packages

Command-line utility for interacting with said repository that aids in package installation,
version management, and dependency management [19]

4.3.2 Jest
Jest an open source project maintained by Facebook, and it’s especially well suited for JavaScript
code testing, although not limited to that: it can test any TypeScript code as well. Its strengths
are:

It is fast and safe – By ensuring your tests have a unique global state, Jest can reliably run
tests in parallel. To make things quick, Jest runs previously failed tests first and re-organizes
runs based on how long test files take.

Provides easy mocking – Jest uses a custom resolver for imports in your tests, making it
simple to mock any object outside of a test’s scope. [14]

4.3.3 Gitlab
Git is a source code versioning system that lets you locally track changes and push or pull changes
from remote resources. To keep track of the changes during the software development process,
GitLab was used as a Git repository hosting service. [9]

32 Chapter 4. Implementation

4.3.4 Heroku
During the development, the new changes to the application are deployed to Heroku. Heroku
provides a platform as a service. Here are five reasons why Heroku was chosen as a PaaS:

Simplicity – Heroku hides all of the complexity of the servers themselves behind a friendly
web-based user interface. Once your app is up and running on the platform, deployments are
just a click away.

Stability – Heroku’s global platform is backed by Amazon Web Services, by far the largest
cloud infrastructure provider.

Security – By abstracting away the servers, Heroku takes on the responsibility of making sure
they are secure.

Scalability – Heroku’s platform runs your code inside something it calls a dyno. A dyno is an
isolated container that bundles up computing resources with a copy of the application code
and its dependencies. [11]

4.3.5 JawsDB
JawsDB is a Database-as-a-Service (DBaaS) provider supplying a fully functional, fully managed,
relational database for use with your application. JawsDB provides easy delivery and management
of a relational database in the cloud. JawsDB provides integration with Heroku, which is one of
the reasons why it is chosen as a DBaaS provider. [13]

4.3.6 Visual Studio Code
Visual Studio Code is a free and open-source code editor developed by Microsoft for Windows,
Linux and macOS. It is super fast and lightweight which can be used to view, edit, run and
debug source code for applications. It has great JavaScript and TypeScript support which makes
it a great tool to develop Node.js applications. [5]

4.3.7 Sequel Ace
Sequel Ace is a fast, easy-to-use, open=source Mac database management application for working
with MySQL and MariaDB databases. It is used as a database administration tool during the
development of the application. [1]

4.3.8 Paw
Paw is a full-featured HTTP Mac client app. The application lets you test and describe the APIs
you build or consume. [20]

4.3.9 Docker
Docker is a containerization platform that enables you to create, deploy, and run applications
conveniently with the help of containers. Containerization is a lightweight alternative to full
machine virtualization that involves encapsulating an application in a container with its own
operating environment. This provides many of the benefits of loading an application onto a
virtual machine, as the application can be run on any suitable physical machine without any
worries about dependencies. [6]

Chapter 5

Conclusion

In this thesis, I analysed the initial version of the ExpenseTracker application. The analysis of the
implemented functionalities and problems discovered during this process allowed to make a list
of requirements that had to be implemented to accomplish the goals assigned to the application.
Moreover, the new domain model of the application was described. Based on the new domain
model and functionalities, I completed the overall picture of the application. Doing that allowed
me to analyse and compare the ExpenseTracker application to the existing solutions and see the
weak and strong sides of the application.

I discussed the architecture of the new version of the application and the technologies used
during the development process. Moreover, class and sequence models and the new database
model were also described. All of that helped to create the final version of the ExpenseTracker
application

The final version of the application completely fulfils the goal of this thesis. The application
provides functionalities to manage multiple personal accounts, track transactions on the accounts
with advanced categorization, budgeting, and recurring payments support, and share personal
accounts with other users. The application itself is deployed on Heroku on the following url:
xpensetracker-api.herokuapp.com.

5.1 Future work
While the created application is a fully-functional, there are ways in which it could be further
improved. The system works with the Central European Timezone only, but support for other
time zones something that should be included. That goes hand in hand with the fact that week
might start of different days in different countries. In addition, while the application has several
types of transaction, it is not possible to create a one-time planned transaction. It will also be
good to have more currency support and automatic currency conversion in the application. The
main feature of the existing solutions on the market is Bank synchronization. Some solutions
exist that provide the functionality to connect with end-customers bank accounts from across
the globe, such as SaltEdge and Plaid. The application could use these solutions to offer such
functionality. Finally, offering additional ways to register using third-party services such as
Google or Apple will be very useful.

33

xpensetracker-api.herokuapp.com

Bibliography

[1] Sequel Ace. Mariadb/mysql database management for macos. https://github.com/Sequel-
Ace/Sequel-Ace.

[2] Martin Adámek. Typescript orm for node.js. https://mikro-orm.io.

[3] BudgetBakers. Wallet by budgetbakers. https://budgetbakers.com.

[4] Oleksandr Bushkovskyi. Things to know about monoliithic and microservices architecture.
https://theappsolutions.com/blog/development/monolithic-vs-microservices/.

[5] Visual Studio Code. Code editing. redefined. https://code.visualstudio.com.

[6] Docker. Empowering app development. https://www.docker.com.

[7] IBM Cloud Educations. What is pas. https://www.ibm.com/cloud/learn/paas.

[8] GeeksForGeeks. Sql triggers. https://www.geeksforgeeks.org/sql-triggers/.

[9] GitLab. Iterate faster, innovate together. https://about.gitlab.com.

[10] Olivia Harris. Jwt authentication. https://www.softwaresecured.com/security-issues-jwt-
authentication/.

[11] Heroku. Cloud application platform. https://www.heroku.com.

[12] Hivelocity. What is cron job. https://www.hivelocity.net/kb/what-is-cron-job/.

[13] JawsDB. Database-as-a-service. https://www.jawsdb.com.

[14] Jest. Delightful javascript testing. https://jestjs.io.

[15] MariaDB. Enterprice open source. https://mariadb.com.

[16] Mint. Budget tracker and planner. https://mint.intuit.com.

[17] NestJS. A progressive node.js framework. https://nestjs.com.

[18] Node.js. Run javascript everywhere. https://nodejs.dev.

[19] Node.js. What is npm? https://nodejs.org/en/knowledge/getting-started/npm/what-is-
npm/.

[20] Paw. The most advanced api tool. https://paw.cloud.

35

36 Bibliography

[21] Redis. Redis. https://redis.io.

[22] Denis Solonenko. Open source personal finance tracker for android.
https://github.com/dsolonenko/financisto.

[23] Spendee. Money manager and budget planer. https://www.spendee.com.

[24] Swagger. Openapi specification. https://swagger.io/specification/.

[25] Techopedia. What is database as a service. https://www.techopedia.com/definition/29431/database-
as-a-service-dbaas.

[26] TypeScript. Typed javascript at any scale. https://www.typescriptlang.org.

Contents of enclosed CD

readme.txt....................................Description of the contents of enclosed CD
documentations...Documentation

models.eap..Enterprise Architect models
api.yaml ...API documentation

scripts..SQL scripts
create.sql .. Create script

src ... Source codes
impl...Implementation source code
thesis................................Source code of the thesis in the format of LATEX

text...The thesis text directory
thesis.pdf......................................Text of the work in the PDF format

37

	Acknowledgments
	Declaration
	Abstract
	Acronyms
	Introduction
	Goal of the thesis
	Structure

	Analysis
	Current version
	Requirements and current application functions

	Domain model and known issues
	User
	Account
	Transaction
	Category

	Current implementation
	Backend
	Frontend

	New Requirements
	New domain model
	Updated entities
	New entities

	Existing Solutions

	Design
	Technologies
	Programming language and Run-time environment
	Frameworks
	Databases
	Platform as a Service
	Database as a Service

	Architecture
	Database
	Class model
	Planned Transaction Service Class

	Sequence model
	Create Repeating Transaction

	Implementation
	Implementation Details
	Structure
	API documentation
	Authentication
	Caching
	Account balance calculation
	Repeating transactions
	Sharing accounts

	Testing
	Unit tests
	User testing

	Tools
	Node Package Manager
	Jest
	Gitlab
	Heroku
	JawsDB
	Visual Studio Code
	Sequel Ace
	Paw
	Docker

	Conclusion
	Future work

	Contents of enclosed CD

