
Instructions

Dowry Towns of Bohemian Queens is a platform for visualizing the historical environment in mobile

applications using the means of augmented reality.

1. Analyze the possibilities of 3D image visualization concerning augmented reality (VRML, X3D,

WebGL, applicable frameworks).

2. Perform analysis of the possibilities of the web environment in VR and AR applications.

3. Based on previous analyses, define the functional and non-functional requirements for the web

application.

4. Design a prototype of the web application for displaying 3D models using methods of software

engineering.

5. Implement the web application prototype.

6. Subject the resulting prototype to UX tests.

Electronically approved by Ing. Radek Richtr, Ph.D. on 16 February 2021 in Prague.

Assignment of bachelor’s thesis

Title: Dowry Towns of Bohemian Queens - web-based 3D model viewer

Student: Martin Púčala

Supervisor: Ing. Jiří Chludil

Study program: Informatics

Branch / specialization: Web and Software Engineering, specialization Computer Graphics

Department: Department of Software Engineering

Validity: until the end of summer semester 2022/2023

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F8 Faculty of Information Technology
Department of Software Engineering

Bachelor’s Thesis

Dowry Towns of the Bohemian
Queens - Augmented reality model
visualization

Martin Púčala

May 2021
Supervisor: Ing. Jiří Chludil

Acknowledgement / Declaration

I thank my parents for their sup-
port, my supervisor Ing. Jiří Chludil
for leading me through this journey
and Ing. Radek Richtr, Ph.D., Ing. Petr
Pauš, Ph.D. and Daniel Srb for valuable
advice.

I hereby declare that the presented
thesis is my own work and that I have
cited all sources of information in accor-
dance with the Guideline for adhering
to ethical principles when elaborating an
academic final thesis.

I acknowledge that my thesis is sub-
ject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the
Copyright Act, as amended, in particu-
lar that the Czech Technical University
in Prague has the right to conclude a
license agreement on the utilization of
this thesis as a school work under the
provisions of Article 60 (1) of the Act.

In Nesluša on June 27, 2021

. .

iii

Abstrakt / Abstract

Táto práca sa pozerá na možnosti
zobrazovania obsahu rozšírenej reality
na mobilných zariadeniach v prostredí
webového prehliadača. To znamená
dostupnosť len obmedzených hardwa-
rových i softwarových prostriedkov. Je
implementovaný algoritmus ORB na
detekciu obrazových príznakov a opti-
malizovaný pomocou paralelizovaného
spracovania obrazu pomocou knižnice
GPU.js. Bolo preskúmaných niekoľko
algoritmov pre odhad polohy kamery a
výpočet projekčnej matice. 3D modely
sú zobrazené na obraze z kamery a sú
preskúmavané možnosti ich zobrazova-
nia tak aby sa zhodovali s orientáciou
scény. Na konci sú popísané scenáre
testujúce jednoduchosť používania ovlá-
dania výsledného widgetu.

Kľúčové slová: rozšírená realita, AR,
ORB, perspektíva z n bodov, priama
lineárna transformácia, DLT, WebGL,
Three.js, GPU.js; TEX.

This thesis looks into the possibilities
of displaying augmented reality content
on mobile devices in the web browser
environment. This means there are lim-
ited hardware and software resources
available. The ORB algorithm for image
features detection is implemented from
scratch and optimized with the use of
parallelized image processing using the
GPU.js library. Several algorithms for
pose estimation and projection matrix
generation were collected and exam-
ined. 3D models are displayed over the
camera feed and measures are exam-
ined to project it to match the scene’s
orientation. There are test scenarios
described checking whether the controls
of the resulting widget is easy to use.

Keywords: augmented reality, AR,
ORB, perspective-n-point, direct linear
transformation, DLT, WebGL, Three.js,
GPU.js; TEX.

iv

Contents /

1 Introduction .1
2 Analysis .2
2.1 Breaking up the problem2
2.2 Web as a platform3
2.3 Web graphics .3

2.3.1 Images .3
2.3.2 SVG .3
2.3.3 2D Canvas.3
2.3.4 VRML .3
2.3.5 X3D .4
2.3.6 WebGL .4

2.4 WebGL frameworks6
2.4.1 A-Frame .6
2.4.2 Babylon.js7
2.4.3 Three.js. .8
2.4.4 Comparison results8

2.5 3D file formats9
2.5.1 Wavefront OBJ 10
2.5.2 FBX (FilmBox) 12
2.5.3 glTF (GL Transmis-

sion Format) 12
2.5.4 Comparison results 13

2.6 Backend server 14
2.6.1 Resources. 14
2.6.2 Structure 15
2.6.3 3DObject 15
2.6.4 Model. 15
2.6.5 Texture 15
2.6.6 Asset . 15

2.7 Augmented reality 16
2.7.1 Camera 16
2.7.2 Moravec corner detector . 18
2.7.3 Harris corner detector . . . 18
2.7.4 Shi-Tomasi (a.k.a.

Kanade-Tomasi) cor-
ner detector 19

2.7.5 FAST - Features from
accelerated segment test . 19

2.7.6 ORB - Oriented FAST
and rotated BRIEF 20

2.8 Pose estimation 23
2.9 Parallel computation in the

browser using GPU.js 26
3 Design . 28
3.1 Requirements. 28

3.1.1 Functional require-
ments . 28

3.1.2 Non-functional re-
quirements 29

3.2 Wireframe . 30
3.3 Model displaying activity di-

agram. 31
3.4 Components . 32

4 Implementation 33
4.1 Git . 33
4.2 Yarn . 34
4.3 Webpack. 34
4.4 Babel . 35
4.5 React.js . 35
4.6 Three.js. 35
4.7 Web camera . 36
4.8 Full-screen toggle 36
4.9 OrbitControls 36

4.10 TrackballControls 36
4.11 Model loader 37

4.11.1 Loading progress indi-
cator . 37

5 User Testing . 38
5.0.1 Entering AR visualiza-

tion . 39
5.0.2 Leaving AR visualiza-

tion . 40
5.0.3 Selecting structure

variant from the list 41
5.0.4 Rotating structure 42
5.0.5 Zooming structure 43

6 Conclusion . 44

v

Tables /

2.1. WebGL frameworks8
2.2. 3D model formats 13

vi

Chapter 1
Introduction

Mobile devices computational performance, mobile network speeds and prices and
multimedia API possibilities in modern web browsers have come to the point where it’s
starting to make sense to provide tourists with new level of experiences: dig historical
buildings and other structures that are no longer standing and let them be seen as if
they were still in their place.

This thesis has two main goals:

. delve into the augmented reality algorithms and the options of their application in
web applications. prototype a 3D graphics viewer combined with live camera video stream

Displaying models in augmented reality means detecting the scene’s pose and location
and projecting models into the visible image so that they look like they belong into the
scene. For this it is important to find a way to do this. This thesis looks to find
algorithms for pose estimation and combine them with algorithms for image feature
extraction and ways of parallel computation on the GPU to speed up this process.

1

Chapter 2
Analysis

Just a few decades, augmented reality was a mere sci-fi fantasy, something to be seen
only in movies. The mathematics and optics has been now available for decades, but
only recently pocket computers performance is becoming capable of processing camera
and other sensors input and rendering output in real time.

By augmenting reality it is typically meant to enhancing the objects in the viewport
with additional graphics. This means capturing and projecting captured information
to the viewer with additional visible elements to the image. These added visual objects
need to be projected transformed in such a way that they seem to belong into the scene.

In computer graphics, there are typically three main transformations done before
projecting 3D image data - scaling, rotation and translation. When trying to to match
projected image data to the image received from camera, lense distortions come into
play and need to be taken into account. This is because when finding the transforma-
tions for projected models, distortions in the captured image can bring inaccuracies,
resulting in projected image data being shown a bit off from expected positions.

Displaying objects as if they somehow belonged into the scene visible through
the viewport on user’s screen requires knowing object’s position in the real world -
otherwise it would feel as if it was fixed to the camera. An object’s position in the
real world can be read as a combination of GPS coordinates and a fixed (camera)
coordinate frame for given location. Direction can be read from compass and gyroscope
data.

With proper image transformations, image enhancement 3D data can be displayed.

2.1 Breaking up the problem

The problem of visualizing structures1 using augmented reality can be broken up into
several subproblems:

. determining camera position - typically by using a combination of sensors like GPS. determining orientation - using compass and gyroscope. loading model data with the appropriate mesh and texture versions matching weather
and lighting conditions. increasing accuracy of position and orientation using methods from photogrammetry. model visualization transformed according to values in previous steps

1 Already assuming the models exist in digital form and can be arbitrarily proocessed

2

. 2.2 Web as a platform

2.2 Web as a platform
In the three decades since its invention, the World Wide Web has grown from a means
for sharing scientific documents where support for embedding images was the top to a
full-fledged ubiquitous multimedia platform available across all device platforms. Not
limited to desktop computers and with growing performance of mobile everybody car-
ries around in their pockets and ever-increasing range of supported technologies and a
still widening range of sensors1 it seems to be the ideal platform for presenting visual
elements combined with information in text form and exploration.

2.3 Web graphics
There are many ways to display graphical data on web pages, not all of them are
suitable for use of this project.

2.3.1 Images
Image support has been there in all major web browsers since the early versions of
HTML and PNG, JPEG and GIF formats can today be rendered in virtually every-
where. These could be used in a very limited way using CSS 3D transforms2 for small
angles and rather surfaces.

2.3.2 SVG
Scalable Vector Graphics is best suitable for rendering 2D vector data. It can be used
in an image tag and also inlined into HTML markup. 3D data could be displayed, but
at the cost of modifying the document’s contents and its elements’ properties on every
change. All that with no hardware acceleration and with all modifications being done
in JavaScript code.

2.3.3 2D Canvas
For programmatically drawing geometric shapes, there is the HTML5 canvas3 element.
Canvas API can be used to draw basic graphic primitives as well as bitmap image data
onto a drawing area occupied by the element.

2.3.4 VRML
Developed in the second half of the last decade of the 20th century, Virtual Reality Mod-
eling Language is a file format for representing interactive 3D vector graphics mainly
on the web. It was designed in the end of the 1990s and never gained bigger popularity.
It was never natively supported and required a plugin installed, but today there are
JavaScript libraries supporting loading and rendering of VRML files using newer 3D
rendering technologies.

1 GPS, compass, gyroscope, accelerometer, magnetometer, LiDAR in some newer devices etc.
2 https://developer.mozilla.org/en-US/docs/Web/CSS/transform
3 https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API

3

https://developer.mozilla.org/en-US/docs/Web/CSS/transform
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API

2. Analysis .
Simple VRML example1:
#VRML V2.0 utf8

Shape {
geometry IndexedFaceSet {

coordIndex [0, 1, 2]
coord Coordinate {

point [0, 0, 0, 1, 0, 0, 0.5, 1, 0]
}

}
}

2.3.5 X3D
EXtensible Three-Dimensional is a standard for declaratively representing 3D graphics,
aiming to bring support for 3D data description to HTML5, similar to SVG.

Same example as above, in X3D notation2:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE X3D PUBLIC "ISO//Web3D//DTD X3D 3.2//EN"

"http://www.web3d.org/specifications/x3d-3.2.dtd">

<X3D profile="Interchange" version="3.2"
xmlns:xsd="http://www.w3.org/2001/XMLSchema-instance"
xsd:noNamespaceSchemaLocation=
"http://www.web3d.org/specifications/x3d-3.2.xsd">

<Scene>
<Shape>

<IndexedFaceSet coordIndex="0 1 2">
<Coordinate point="0 0 0 1 0 0 0.5 1 0"/>

</IndexedFaceSet>
</Shape>

</Scene>
</X3D>

As for now, there is the X3DOM3 library adding X3D rendering support using
JavaScript and WebGL.

The X3DOM’s website provides documentation and tutorial, but the examples pro-
vided are not always properly formatted and overall the project looks like a work-in-
progress (slow progress - last commit in their GitHub repository was 5 months old at
the time of writing this text). The project looks still alive and for could be very useful
for simple uses of 3D objects (similar to inlined SVG icons).

3D graphics files loading is supported through a third-party project’s tool4, requiring
conversion to another format to be then read by X3DOM nodes. This seems to be like
an extra step with no benefits.

2.3.6 WebGL
With growing complexity of 3D data and ever-increasing demand for high-speed
rendering in real time, requirements push towards minimizing data transformation
1 https://en.wikipedia.org/wiki/VRML#Example
2 https://en.wikipedia.org/wiki/X3D#Example
3 https://www.x3dom.org/
4 https://doc.x3dom.org/tutorials/models/aopt/

4

https://en.wikipedia.org/wiki/VRML#Example
https://en.wikipedia.org/wiki/X3D#Example
https://www.x3dom.org/
https://doc.x3dom.org/tutorials/models/aopt/

. 2.3 Web graphics

necessary between the serialized form (as saved in a 3D graphics files) and the form
consumed by 3D APIs. This push is even stronger on platforms with limited power1

capabilities.

This led to introduction of WebGL standard based on OpenGL ES 2.0. Most browser
later came with support for WebGL 2.0 based on OpenGL ES 3.0, bringing several
new capabilities2. This effort is, however, hindered by lack of3 support from Apple.
Their Safari browsers are the default on their mobile devices and even third-party
applications are forced to use their WebKit component for rendering web pages4. This
limits what can be done using web technologies on the mobile without workarounds
and often big performance impact.

As 3D models rendering is typically highly computationally expensive5, there’s been
an effort to minimize required processing from serialized data to binary data. This led
to the introduction of typed arrays to the ECMAScript 6 standard6.

Today, both VRML and X3D are only supported through a JavaScript libraries
that use the lower-level WebGL APIs to render the high-level 3D data descriptions.
WebGL API is rather verbose and basically what it does is it loads data (vertex
coordinates, triangles formed from those vertices, texture images etc.) and code (GLSL
shader programs compiled from plain text source) to the GPU memory and calls these
programs. For basic rendering, there are two types of shaders - vertex shaders and
fragment shaders. Vertex shaders typically transform vertex positions positions from
model space to camera space by applying requested transformations. Fragment shaders
mostly apply colors and textures with respect to the lighting. WebGL basically is a
wrapper or JavaScript adapter for the OpenGL ES API, enabling JavaScript programs
access to fast parallel calculations on the GPU7.

To avoid unnecessary layer of processing, this thesis further takes into account only
the WebGL APIs and frameworks wrapping its low-level APIs, freeing programmers
from the most mundane tasks.

1 In both meanings - performance and energy.
2 https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API#webgl_2
3 Or just partial and by default not enabled.
4 https://www.howtogeek.com/184283/why-third-party-browsers-will-always-be-inferior-to-

safari-on-iphone-and-ipad/
5 Directly related to the level of detail of used models and textures.
6 https://exploringjs.com/es6/ch_typed-arrays.html#sec_intro-typed-arrays
7 And not only for graphics

5

https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API#webgl_2
https://www.howtogeek.com/184283/why-third-party-browsers-will-always-be-inferior-to-safari-on-iphone-and-ipad/
https://www.howtogeek.com/184283/why-third-party-browsers-will-always-be-inferior-to-safari-on-iphone-and-ipad/
https://exploringjs.com/es6/ch_typed-arrays.html#sec_intro-typed-arrays

2. Analysis .

2.4 WebGL frameworks
As the WebGL API is quite verbose, multiple libraries exist to shield developers from
having to deal with the initialization.

The following criteria were found relevant to framework selection:

. license (free and open-source preferred). contributors count (so that the project doesn’t suddenly die off). most recent contribution date (to avoid getting stuck with an abandoned project
dependency). documentation availability (what is what, how things are meant to be done etc.)

From the List of WebGL frameworks on Wikipedia, three free open-source JavaScript
frameworks with easily accessible source code repository have been pre-selected and
briefly compared below.

2.4.1 A-Frame
A-Frame is a declarative open-source web framework for authoring 3D and VR scenes
using HTML without the need to know WebGL. It was originally developed by Mozilla
VR team since 2015 and is now maintained by Diego Marcos and Kevin Ngo from
Supermedium and Don McCurdy from Google. There are about 350 contributors and
supported file formats are glTF, OBJ, COLLADA, PLY and Three.js JSON format.

Almost 350 people have contributed so far, with latest commits being just over a
week old.

Example code from A-Frame website1:

<!DOCTYPE html>
<html>

<head>
<title>Hello, WebVR! - A-Frame</title>
<meta name="description" content="Hello, WebVR! - A-Frame">
<script src="https://aframe.io/releases/0.5.0/aframe.min.js">

</script>
</head>
<body>

<a-scene>
<a-box position="-1 0.5 -3" rotation="0 45 0"

color="#4CC3D9"></a-box>
<a-sphere position="0 1.25 -5" radius="1.25"

color="#EF2D5E"></a-sphere>
<a-cylinder position="1 0.75 -3" radius="0.5" height="1.5"

color="#FFC65D"></a-cylinder>
<a-plane position="0 0 -4" rotation="-90 0 0" width="4"

height="4" color="#7BC8A4"></a-plane>
<a-dodecahedron color="#B96FD3" position="4 1 -4">

</a-dodecahedron>
<a-text value="Hello, A-Frame!" color="#111"

position="0 2.5 -2" align="center"></a-text>
<a-torus-knot color="#B96FD3" position="-4 1 -4"

radius-tubular="0.05" p="7"></a-torus-knot>

1 https://aframe-school-primitives.glitch.me/solution.html

6

https://aframe-school-primitives.glitch.me/solution.html

. 2.4 WebGL frameworks

<a-sky color="#ECECEC"></a-sky>
</a-scene>

</body>
</html>

Result can be seen in figure 2.1.

Figure 2.1. Basic A-Frame example. Screenshot of an example on project’s website.

. Homepage: https://aframe.io/. Source: https://github.com/aframevr/aframe. Documentation: https://aframe.io/docs/1.2.0/introduction/. License: MIT

The concise declarative syntax is definitely a plus for constructing 3D elements in
code. On the other hand, the models to be visualized are expected to be ready and
served by backend API, so this project cannot benefit from this. Still, A-Frame is built
on top of Three.js and can use models with loaders available for this framework.

2.4.2 Babylon.js

Babylon.js is another open-source real-time engine for displaying 3D graphics in the
browser using HTML5. First release in 2013 by Microsoft employees David Catuhe and
David Rousset, with the help of artist Michel Rousseau, today it’s being developed with
orientation on 3D games. Contributors count has risen to about 350 since then. Beside
games, it is used also in crime data visualization, medical education, product design
etc. It supports STL, OBJ and glTF file formats.

Just a few contributors short of 350, latest commits are less than a week old.

. Homepage: https://www.babylonjs.com/. Source: https://github.com/BabylonJS/Babylon.js. Documentation: https://doc.babylonjs.com/. License: Apache License 2.0

7

https://aframe.io/
https://github.com/aframevr/aframe
https://aframe.io/docs/1.2.0/introduction/
https://www.babylonjs.com/
https://github.com/BabylonJS/Babylon.js
https://doc.babylonjs.com/

2. Analysis .
2.4.3 Three.js

Three.js is an open-source cross-browser GPU-accelerated 3D graphics library wrap-
ping WebGL APIs. It is well-suited for visualizing 3D graphics in web browsers. It’s
development was started in 2010 by Ricardo Cabello (aka Mr.doob) and according to
its GitHub page has gained since more than 1400 different contributors. The preferred
file format is glTF, but COLLADA, FBX and OBJ are also supported.

Homepage of the project contains many examples, good API documentation and
several tutorials. Further documentation can be found all around the web as this
framework is the most popular one.

More than 1400 contributors with most recent commits only 2 days old.

. Homepage: https://threejs.org/. Source: https://github.com/mrdoob/three.js/. Documentation: https://threejs.org/docs/. License: MIT

2.4.4 Comparison results
Evaluated frameworks are compared in table 2.1.

framework license contributors most recent commit docs
A-Frame MIT ∼350 days 4/5
Babylon.js Apache 2.0 ∼350 days 4/5
Three.js MIT ∼1400 days 4/5

Table 2.1. WebGL frameworks comparison table.

Three most popular frameworks were compared, all of them available under open
source licenses, with good documentation, days-old latest contributions and hundreds
of contributors. Based no these criteria, the best choice seems to be Three.js, which is
also the most popular one.

8

https://threejs.org/
https://github.com/mrdoob/three.js/
https://threejs.org/docs/

. 2.5 3D file formats

2.5 3D file formats
Graphics data can be stored in textual form, binary form or mixed. Textual form’s
advantage is it is easily readable by humans. This can be important for debugging
or interpreting data stored in the file. Textual data can take more space, especially
with higher values where the text string (i.e. “123456”) is longer than the binary
representation (4 bytes bor 32-bit integers). This holds true even more for floating
point numbers typically used in 3D graphics for vertex coordinates.

As the planned platform is the mobile browser, power - both electric and compu-
tational - is an expensive resource. 3D graphics data size depends on the amount
of 3D vertices and faces and further information connected with each vertex/face
(material, texture(s), normals etc.). This depends on the detail level of the stored
model. Decreasing the detail level can lead to loss of visual information and thus lower
visual fidelity and degraded user experience. Storing vertex and faces information in
binary form can save memory and bandwidth, as well as the processing required to
convert the textual data to binary form used to store values in numeric variables.
Therefore, binary formats are preferred.

Having the framework selected, it would be convenient to have a loader that can
load this format into the selected format, therefore mainly OBJ, FBX, COLLADA and
glTF are of interest for this project. Currently, selected format doesn’t matter much
from the backend1’s perspective. As it was the case with glTF and GLB - adding
another file format support was only a matter of extending several types and adding
MIME types and file extensions to the backend code.

Googling for “3d file formats comparison” led to an article2 with also a bit of
background information. Additionally to the formats described there, glTF was added
to the list. From the types of information listed on the page (geometry, appearance,
scene, animations) only geometry (objectś shape) and appearance (colors, textures,
material etc)3 are relevant for this project.

Geometry can be saved in one of three ways:4

. approximate mesh - approximating the surface by tesselation into non-overlapping
polygons, stores vertex coordinates and face normals and thus higher detail means
more data to be stored. precise mesh - more precisely (for the price of higher computational costs) modeling
smooth surface with NURBS, storing their knots and control points. constructive solid geometry (CSG) - instead of storing mesh information, shapes are
created by combining primitive 3D shapes using boolean operations

To keep the performance requirements low and taking into account that visualized
structure models typically are to be viewed from distance, approximate meshes should
be sufficient (some details can be covered using textures and arcs and curves can be han-
dled by using several models with different levels of detail for different scales depending
on viewing distance).
1 Will be described in the next section
2 https://all3dp.com/3d-file-format-3d-files-3d-printer-3d-cad-vrml-stl-obj/
3 Ibid.
4 Ibid.

9

https://all3dp.com/3d-file-format-3d-files-3d-printer-3d-cad-vrml-stl-obj/

2. Analysis .
Based on the information above, the ideal format should:

. be free. be open-source. be binary. have an existing loader for Three.js.

2.5.1 Wavefront OBJ
This plain text open source format developed by Wavefront Technologies has beed
adopted by many other vendor. It stores 3D model geometry as a sets of vertex coor-
dinates, normals, material references, texture UV coordinates and face vertex indices.
Textures and material definitions are stored in extra files. The format is simple to
read, but not very economical from the standpoint of processing power as it needs to
be parsed and processed at load time. There is a model loader available for Three.js
and Blender can also export models in this format.

Very simple (and short) example borrowed and modified from an online article1,
resulting model can be seen in figure 2.2 rendered with Online 3D Viewer2:

cube.obj
mtllib master.mtl
v 0.000000 2.000000 2.000000
v 0.000000 0.000000 2.000000
v 2.000000 0.000000 2.000000
v 2.000000 2.000000 2.000000
v 0.000000 2.000000 0.000000
v 0.000000 0.000000 0.000000
v 2.000000 0.000000 0.000000
v 2.000000 2.000000 0.000000
8 vertices
g front
usemtl red
f 1 2 3 4
g back
usemtl blue
f 8 7 6 5
g right
usemtl green
f 4 3 7 8
g top
usemtl yellow
f 5 1 4 8
g left
usemtl orange
f 5 6 2 1
g bottom
usemtl purple
f 2 6 7 3
6 elements

Material file then contains color definitions, in this case only the ambient, diffuse and
specular components:
1 https://www.fileformat.info/format/wavefrontobj/egff.htm
2 https://3dviewer.net

10

https://www.fileformat.info/format/wavefrontobj/egff.htm
https://3dviewer.net

. 2.5 3D file formats

master.mtl
newmtl red
Ka 1.000000 1.000000 1.000000
Kd 1.000000 0.000000 0.000000
Ks 0.500000 0.500000 0.500000

newmtl green
Ka 1.000000 1.000000 1.000000
Kd 0.000000 1.000000 0.000000
Ks 0.500000 0.500000 0.500000

newmtl blue
Ka 1.000000 1.000000 1.000000
Kd 0.000000 0.000000 1.000000
Ks 0.500000 0.500000 0.500000

newmtl yellow
Ka 1.000000 1.000000 1.000000
Kd 1.000000 1.000000 0.000000
Ks 0.500000 0.500000 0.500000

newmtl orange
Ka 1.000000 1.000000 1.000000
Kd 1.000000 0.500000 0.000000
Ks 0.500000 0.500000 0.500000

newmtl purple
Ka 1.000000 1.000000 1.000000
Kd 1.000000 0.000000 1.000000
Ks 0.500000 0.500000 0.500000

Figure 2.2. Basic 3D model example with different material applied to each face.

This format is great for playing without the need of any graphical tools, but the
requirement of multiple files and textual form resulting in bigger file sizes are not ideal
for more complex models.

11

2. Analysis .
Multiple detailed descriptions available1 online and for example WebGL Fundamen-

tals tutorial contains a basic instructions for its processing2.

2.5.2 FBX (FilmBox)
Originally developed by Kaydaara for MotionBuilder3, it is one of the main 3D exchange
formats today even though it is proprietary and no official public documentation is
available. There are both plain text and binary versions of the format. Blender plugin
exists that implements both import and export without using the free but closed-source
C++ FBX SDK.

Description is available for example on Blender Developers Blog4 and there is also a
blog post5 about how to parse it (without sample code).

2.5.3 glTF (GL Transmission Format)
This is Three.js’ preferred6 format allowing to store binary 3D graphics data. Structure
of the scene is stored as UTF-8 JSON string and buffer data like vertex coordinates
is stored as binary block from the file can be loaded directly into JavaScript typed
arrays and uploaded to GPU memory without any transforming step (as it is the case
with OBJ or more complex document formats). As they state in the linked Three.js
documentation: “. . . glTF is focused on runtime asset delivery, it is compact to transmit
and fast to load. Features include meshes, materials, textures, skins, skeletons, morph
targets, animations, lights, and cameras.” For the purpose of this thesis, only meshes,
materials and textures will be relevant.

glTF can be stored as a JSON file and accompanying binary data (geometry buffers,
textures) in extra files (as shown in figure 2.3) at the cost of requiring additional network
requests, or data can be embedded in data URIs at the cost of increasing thy payload
size by one third due to base64 encoding used in data URIs, or everything can be
encapsulated together in a combined GLB container as shown in figure 2.4. The benefit
of combined data is the little processing required - scene structure is parsed from JSON
by functions available in browsers and buffer data is read into typed arrays and sent
directly to GPU with no further processing needed.

Figure 2.3. glTF overview. Image from project’s GitHub page.
1 For example https://www.fileformat.info/format/wavefrontobj/egff.htm
2 https://webglfundamentals.org/webgl/lessons/webgl-load-obj.html
3 https://docs.fileformat.com/3d/fbx/
4 https://code.blender.org/2013/08/fbx-binary-file-format-specification/
5 https: / / banexdevblog . wordpress . com / 2014 / 06 / 23 / a-quick-tutorial-about-the-fbx-ascii-

format/
6 https://threejs.org/docs/index.html#manual/en/introduction/Loading-3D-models

12

https://www.fileformat.info/format/wavefrontobj/egff.htm
https://webglfundamentals.org/webgl/lessons/webgl-load-obj.html
https://docs.fileformat.com/3d/fbx/
https://code.blender.org/2013/08/fbx-binary-file-format-specification/
https://banexdevblog.wordpress.com/2014/06/23/a-quick-tutorial-about-the-fbx-ascii-format/
https://banexdevblog.wordpress.com/2014/06/23/a-quick-tutorial-about-the-fbx-ascii-format/
https://threejs.org/docs/index.html#manual/en/introduction/Loading-3D-models

. 2.5 3D file formats

Figure 2.4. GLB overview. Image from project’s GitHub page.

Blender also supports export to this format, so this adds no extra steps for the
artists/content creators. Detailed public documentation is available on its GitHub
page1.

2.5.4 Comparison results
Evaluated 3D formats are compared in table 2.2. glTF comes as a winner from this
comparison thanks to its free/open source nature, storing data in binary format that
requires less processing when loading, and its detailed documentation.

format open source free binary/text docs
OBJ yes yes text 4/5
FBX no yes text/binar 3/5
glTF yes yes binary+text 5/5

Table 2.2. 3D formats comparison table.

1 https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md

13

https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md

2. Analysis .

2.6 Backend server
One part of the Dowry Towns project is also a backend server offering a REST API
interface with JWT authentication. The initial version by Jindřich Máca1 and further
extended by Daniel Vančura2 and at the time of writing, there was finished also the
master thesis project by Dominik Sivák3.

Current state of the backend server application from web frontend application’s view
was concisely described in a recently defended bachelor’s thesis by Pavel Antoš4, so
only brief information follows, mainly about observed problems that could be tackled
in future thesis projects.

2.6.1 Resources

3D models to be rendered need to be loaded depending on current location from a
backend server. Besides the geographic location, there are more parameters planned
to affect which textures and even model mesh is used (time period, time of the day,
current weather conditions and possibly more). The Dowry Towns project’s backend
publishes these resources relevant for the visualizer:

The structure objects hold geographical location where the structure stands and
a list of its available variants. Using the access information from the project of Pavel
Antoš it seems like the structure resource does not support filtering by location.

For some reason the the GET request should support specifying a location parameter
as a JSON dictionary. This seems to be worth of reevaluation as curly braces, commas
and quotes are not necessary and would be escaped in the URL.

Also, the structures in the database seem to have invalid transformation matrix
values set (all zeros) that if applied, would scale the models to nothing. Default value
should probably be an identity matrix.

Furthermore, from previous discussions about the project requirements it sounded
like there are situations when a building or a structure moves when a landslide occurs.
Therefore it would probably make sense to extend the matrix with translation and add
it as the fourth column.

There seems to be missing information about whether the 3 arrays in the trans-
formation attribute hold columns or rows of the transformation matrix.

And as a last observed potential mistake, textures seem to be stored among models
(at least so it seems from the links in in structure variants), even though there is a

1 Accompanying thesis not published (yet)
2 Vančura, Daniel. Věnná města českých královen - jádro. Bakalářská práce. Praha: České vysoké učení
technické v Praze, Fakulta informačních technologií, 2020.
3 Sivák, Dominik. Věnná města českých královen - Backend administrační části. Diplomová práca.
Praha: České vysoké učení technické v Praze, Fakulta informačních technologií, 2021.
4 Antoš, Pavel. Věnná města českých královen – Webová aplikace pro schvalovací proces 3D modelů.
Bakalářská práce. Praha: České vysoké učení technické v Praze, Fakulta informačních technologií, 2021.

14

. 2.6 Backend server

separate endpoint for textures.

Having the benefit of being able to see this application for model approval process
using the latest version of the REST API and its code was a great help when analyzing
what requests will be required. This and the fact that the author already had some
experience with the older version of the APAI greatly reduced the time necessary to
analyze which objects to load for visualization.

2.6.2 Structure
The structure as a general term describes a building or a statue or some other historical
object to be displayed in the real world and can have multiple variants for different
historical time periods or weather conditions and so on. These variants are then stored
as 3DObjects with different models, textures, assets and other parameters.

2.6.3 3DObject
This is an object representing possible “versions” of the structure as it looked in different
periods or looks in different weather conditions. The transform matrix attribute needs
to be extended to have 4 columns so that it can hold a full transformation matrix,
including the translation vector. Also, the API should set it by default to an identity
matrix with zero translation vector and never allow storing a matrix with zero scale.

2.6.4 Model
Here is where the actual 3D model geometry file is stored and should reference textures
and possibly other assets (like the .MTL file for .OBJ files with material coefficients
and texture references).

2.6.5 Texture
Actual model texture files, currently for some reason stored under the same endpoint
as models.

2.6.6 Asset
Various other files required by the stored model, e.g. material definition file for models
in Wavefront’s OBJ format.

15

2. Analysis .

2.7 Augmented reality
For the context of this thesis let the the term augmented reality denote the experience
of perceiving the real world extended by the means of technology. The extensions can
be perceived by multiple senses, but the most typical today and the only one taken
into account in this thesis is visual. This typically means projecting some spatial
visual information in such a way that it gives the observer the impression it somehow
belongs into the observed surrounding scene of the world. To evoke this impression, the
projected visual objects are positioned and transformed to fit into the scene alongside
the real objects of the surrounding physical world.

Proper transformations are needed to position the virtual objects in the scene next
to real objects. This typically involves computing transformation matrix that anchors
the projected objects relatively to some visually distinctive parts of the environment.
Finding these distinctive features in the image feed streamed from a digital camera
requires resources that are becoming widely available only in the recent years (2010s-
2020s). The research in these areas though has been ongoing for decades - research
papers into edge and corner detection by Moravec1, Harris2 and others were published
in the 1980s and one of the methods for calculation of camera’s relative position and
orientation in respect to known positions of a set of three points in the environment
that is referenced by Haralick’s 1994 paper3 supposedly originates already in 18414.

This thesis tries to tackle the problem by first analysing camera video stream to find
distinctive points that could be tracked and extracting some characteristic information
for later matching. These are then matched against a set of points with known
measured positions relative to the device’s geographic location. Matched points are
then tracked as they move on the screen and from their known 3D position and their
position in the 2D image together with beforehand known device camera calibration
information transformation matrix is calculated that positions the virtual 3D models
into the scene.

2.7.1 Camera
Cameras record image by measuring light intensity hitting their sensors (greatly
simplified). The photo-sensitive sensor measures the light intensity it gets illuminated
with on each cell of its sensor grid (ignoring Bayer matrix and assuming each pixel in
the image is just one point with a grayscale intensity). The light particles landing on
the sensor surface are focused by camera’s lense.

Lenses are not perfect and the resulting image is typically affected by distortions.
The main two types are radial and tangential distortion and when real precision is
required, they need to be measured by a calibration process and then compensated.
1 Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover, Hans Moravec, March
1980, Computer Science Department, Stanford University (Ph.D. thesis)
2 C. Harris and M. Stephens (1988). A combined corner and edge detector. Proceedings of the 4th Alvey
Vision Conference. pp. 147–151.
3 Review and Analysis of Solutions of the Three Point Perspective Pose Estimation Problem, (R. M.
Haralick, C. N. Lee, K. Ottenberg, and M. Nolle), International Journal of Computer Vision, Vol. 13, No.
3, 1994, pp. 331-356.
4 J. A. Grunert, Das Pothenotische Problem in erweiterter Gestalt nebst Über seine Anwendungen in
der Geodäsie, Grunerts Archiv für Mathematik und Physik, Band 1, 1841, pp. 238-248.

16

. 2.7 Augmented reality

This process requires for each pixel to compensate its shift. This can be a complex
process involving some iterative calculations and for purposes of this process it is left
out and ideal lenses with no distortions are assumed.

The mapping from 3D world coordinates to 2D image coordinates is called a per-
spective projection and can be described as

x = PX = K[R|t]

. x is the homogenous vector with 2D image coordinates. P is the projection matrix. K is camera’s calibration matrix. R is rotation matrix. t is translation vector

For estimating camera’s position and direction, the P matrix needs to be decomposed
into K, R and t. But P should be perfectly fine when only projecting a virtual structure
into the scene observed on the device’s screen.

17

2. Analysis .
2.7.2 Moravec corner detector

Moravec’s corner detector takes a patch (denoting a squared/rectangular area) of an
image of given dimensions (in pixels) and tries to calculate difference of sum of squared
differences (SSD) of the intensities of all points in the patch from another patch moved
by some small distances u and v belonging to the patch window Wx,y.

SSD(x, y) =
∑

u,v∈Wx,y

(I(x, y)− I(x+ u, y + v))2

On a flat surface this sum results in a low value for all directions (Moravec’s filter
only works with 4 directions - horizontal, vertical and on both diagonals). On edges,
the sum of squared differences (SSD) stays small in the direction the edge and higher
in direction perpendicular to the edge. For corners, the result changes significantly in
all directions considered.

The measure of cornerness is defined as the smallest SSD calculated for a shift in all
of the considered directions - local maxima of this value indicate corners.

The author himself points out that this is method gives false positives for points on
lines/edges going not exactly in these 4 directions.1)

2.7.3 Harris corner detector
Improving on Moravec’s work, Harris and Stephens2 employ differential calculus to help
and approximated the sum of squared differences using Taylor expansion (Ix and Iy here
being the partial derivatives of the light intensity function in each pixel).

I(x+ u, y + v) ≈ I(x, y) + Ix(x, y)u+ Iy(x, y)v

and gave different points in the patch different weights according to values of a 2D
Gaussian function (see figure 2.5) to make it isotropic (direction invariant) thanks to
the weight decreasing with distance from the point that is being processed.

G(x, y) = G(x)G(y) = 1
2πσ2 e

− x2+y2
2σ2

Figure 2.5. A two-variable Gaussian function.

1 https://en.wikipedia.org/wiki/Corner_detection
2 C. Harris and M. Stephens (1988). A combined corner and edge detector. Proceedings of the 4th Alvey
Vision Conference. pp. 147–151.

18

https://en.wikipedia.org/wiki/Corner_detection

. 2.7 Augmented reality

This leads to

SSD(x, y) ≈
∑

u

∑
v

w(u, v)(I(x, y)− I(x+ u, y + v))2

which can be written in matrix form as

SSD(x, y) ≈
∑

u

∑
v

w(u, v) (u v)A
(
u
v

)
where A is the structure matrix

A =
(∑

W Ix
2 ∑

W IxIy∑
W IxIy

∑
W Iy

2

)
When both A’s eigenvalues are above some threshold, then that point is a corner.

To avoid square root calculation, Harris and Stephens suggest instead to calculate

R = det(A)− κ · trace2(A)

with κ being a constant between 0.04 and 0.15. Higher R means higher cornerness
factor.

2.7.4 Shi-Tomasi (a.k.a. Kanade-Tomasi) corner detector
This further improvement over Harris’ filter brings more stable corners detection, Shi
and Tomasi use the smaller of the eigenvalues of the same structure matrix A as the
corner response score with value higher than some threshold indicating a corner:

R = min(λ1, λ2)

where both can be calculated by a quadratic formula

λ1,2 = trace(A)±
√
trace2(A)− 4det(A)

2
Harris and Shi-Tomasi detectors not only detect, but also rate points according to

their cornerness. The problem is, for running them on the full image is too expensive.
Therefore it would make sense to prepare a narrower list of candidates, rank them
by the cornerness measure and maybe only select a top N candidates. There can be
multiple points evaluated as corners next to each other. To avoid possible mixup and
wasting processing power on multiple adjacent pixels, each keypoint is compared with
its close surroundings and only keypoints with higher corner score than their neighbours
are kept. This is called non-maximum suppression.

2.7.5 FAST - Features from accelerated segment test
The FAST algorithm runs through a set of image points and on a circle of a given radius
(see figure 2.6 from its Wikipedia page1) checks whether there is a continuous series of
points that are either all darker or all lighter than the currently processed point. This
can be done relatively fast, especially with a pre-computed list of point coordinates
around the circle’s circumference. Its speed makes this algorithm a good candidate for
real-time image processing. On the other hand it often marks also edges and gives no
information on the corner’s orientation.
1 https://en.wikipedia.org/wiki/Features_from_accelerated_segment_test

19

https://en.wikipedia.org/wiki/Features_from_accelerated_segment_test

2. Analysis .

Figure 2.6. Keypoint candidate surrounding pixels examined by the FAST algorithm from
its Wikipedia page.

2.7.6 ORB - Oriented FAST and rotated BRIEF
The ORB algorithm1 combines the FAST algorithm for finding keypoints and the
BRIEF algorithm for describing the patch surrounding that keypoint found by FAST.

The BRIEF (Binary Robust Independent Elementary Features) algorithm is a
member of the binary descirptors family known for their speed when compared to
the descriptors based on histogram of oriented gradients. It stores the keypoint patch
description as a binary vector of the results of comparison of pixel intensities of random
image pairs (e.g. figure 2.7, illustrative image from a introductory series2). It is
then, of course, important to use the same list of coordinates when comparing two
patches/their descriptros.

FAST nor BRIEF originally have no support for rotational invariance. This is added
by finding the so called intensity centroid described by Rudin3. The idea is to find the
angle the patch is rotated from its canonic orientation. This is done by using tangens
inverse of the horizontal and vertical patch moments. This angle is then quantized into
one of 30 angular steps and a lookup table is pre-calculated for each combination of the
quantized patch orientation angle and every one of the patch pixel pair coordinates.
This saves later calls to expensive cos and sin functions.

Having descriptor binary vectors, keypoints from an image or a single video frame can
be matched to another set of descriptors to find correspodences. Correspodence pairs
can be used for tracking keypoints changing locations between frames or for recognizing
patches representing corners of physical objects with known measured positions in the
real world.
1 Rublee, Ethan & Rabaud, Vincent & Konolige, Kurt & Bradski, Gary. (2011). ORB: an efficient
alternative to SIFT or SURF. Proceedings of the IEEE International Conference on Computer Vision.
2564-2571. 10.1109/ICCV.2011.6126544.
2 https://medium.com/data-breach/introduction-to-brief-binary-robust-independent-elementary-

features-436f4a31a0e6
3 P. L. Rosin. Measuring corner properties. Computer Vision and Image Understanding, 73(2):291 -
307,1999.

20

https://medium.com/data-breach/introduction-to-brief-binary-robust-independent-elementary-features-436f4a31a0e6
https://medium.com/data-breach/introduction-to-brief-binary-robust-independent-elementary-features-436f4a31a0e6

. 2.7 Augmented reality

Figure 2.7. Randomized BRIEF pixel pairs.

Matching is done by simply finding keypoint pairs with the smallest Hamming dis-
tance of their binary descriptor vectors. This basically assumes that when two keypoints
have patches of pixels around them with most of the relative light intensities similar,
then there is a good chance that this is the same keyping in two images. This however
leads to false positive matches on shapes and/or surfaces with regular repetitive patterns
(like staircase banisters, balustrades, floor tiles, but also possibly grass or tree leaves
etc). One of possible ways to deal with this can be the RANSAC algorithm, where
translation and/or rotation transformation is computed that correctly maps most of
the matching points. Those whose mapping does not work for most correspodences are
then marked as outliers and are eliminated from further processing.

The most reliable algorithm for finding matches is brute-force matching when every
descriptor is compared with all the others. This however brings a great performance
penalty where the complexity grows to at least O(n2) when the circumstances allow
using a combination of special instructions like popcount1 with xor for counting dif-
ferent bits. In the JavaScript environment this would require preparing and loading
compiled WebAssembly modules and to be used for this purpose. Faster alternative
to brute-force matching is the FLANN algorithm using hierarchical data structures.
The prices for higher speed here are less accurate results according to Pavel Kříž2.
Šefčík also mentions cost of building the data structure, which would be worth of
consideration. This could make sense in case of matching currently tracked keypoints
against a keypoints dataset larger in order(s) of magnitude.

The ORB algorithm has been chosen due to its relatively good results34 and low
performance demands, which is important for its aimed use in real-time on mobile
devices.

1 https://en.wikipedia.org/wiki/Hamming_weight
2 Kříž, Pavel. Urban scene recognition and editing II.. Bachelor’s thesis. Czech Technical University in
Prague, Faculty of Information Technology, 2021.
3 Rublee, Ethan & Rabaud, Vincent & Konolige, Kurt & Bradski, Gary. (2011). ORB: an efficient
alternative to SIFT or SURF. Proceedings of the IEEE International Conference on Computer Vision.
2564-2571. 10.1109/ICCV.2011.6126544.
4 Šefčík, Jan. Rozpoznávání a editace urbanistické scény. Bakalářská práce. Praha: České vysoké učení
technické v Praze, Fakulta informačních technologií, 2020

21

https://en.wikipedia.org/wiki/Hamming_weight

2. Analysis .
This project uses the same set of generated 256 pixel pair coordinates is used as in

the Speedy-vision.js1, where its author adopted the list from the OpenCV 2 project.

1 https://github.com/alemart/speedy-vision-js
2 https://github.com/opencv/opencv

22

https://github.com/alemart/speedy-vision-js
https://github.com/opencv/opencv

. 2.8 Pose estimation

2.8 Pose estimation

Camera position and direction can be calculated from at least 4 point correspodences
between 3D points in the world and their projections to the image. The goal is to obtain
a rotation matrix R and a translation vector t or a 3× 4 matrix [R|t] combining them.
There are methods that can be used with both calibrated and uncalibrated cameras
and also methods for estimating the camera’s calibration information from several
images of objects with known dimensions. Another division can be to closed-form and
iterative methods. Closed-form methods produce results by combining mathematical
functions and operations as a finite list of steps. Iterative methods need an initial
guess and continue adjusting it towards a good-enough solution. Whether a solution is
good enough is measured by a so-called error function that, without knowing the best
solution, can still say whether the current guess is closer or further from it. One more
differentiating criterium could be required point correspodences between the world and
the image plane.

The idea this thesis was heading towards was to get a video from the camera stream
and after some pre-processing find distinct keypoints using the ORB (FAST + BRIEF
+ Harris or Shi-Tomasi + scale and orientation invariance modifications) algorithm due
to its lower performance requirements (+ attempt to implement parallelization of this
process using the GPU.js library to benefit from mobile devices’ GPU power). Then,
based on device navigation sensor’s location, get relevant (by direction and distance)
distinct keypoints, their descriptors and reference locations from the server. Then,
matching keypoints from the camera and from the server obtain list of correspodences
and to find an algorithm that would then produce a projection matrix that could be
used to project the virtual structure models to the image. During the analysis of this
problem, several other arised - calculating lighting and shadows and occlusion of the
projected model. These were not even attempted to tackle.

Several methods methods were evaluated, some implemented from scratch (Grunert),
some attempted but failed (DLT from 3D-2D correspodences), several converted from
C++ (with minor complications solved along the way - like switched order of the
matrices produced by SVD) from a great resource1 discovered too late in the process.
Many other are mentioned in one of the papers2 discovered.

Further more (like Dementhon’s POSIT) are mentioned in the thesis by Pavel Kříž3.

There are are projects like js-aruco4 and AR.js5 that showcase solutions to problems
similar to this project’s, but simpler in the sense that they rely on detection of pre-
defined markers in the camera stream. AR.js also has a demo with a so called NFT
(non-fiducial tracking) marker.

1 https://visp-doc.inria.fr/doxygen/camera localization/
2 S. Li, C. Xu and M. Xie, A Robust O(n) Solution to the Perspective-n-Point Problem, in IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 7, pp. 1444-1450, July 2012, doi:
10.1109/TPAMI.2012.41.
3 Kříž, Pavel. Urban scene recognition and editing II.. Bachelor’s thesis. Czech Technical University in
Prague, Faculty of Information Technology, 2021.
4 https://github.com/jcmellado/js-aruco
5 https://github.com/AR-js-org/AR.js

23

https://visp-doc.inria.fr/doxygen/cameraunhbox voidb@x kern .06em vbox {hrule width.3em}localization/
https://github.com/jcmellado/js-aruco
https://github.com/AR-js-org/AR.js

2. Analysis .
Description of these algorithms is left out due to time pressure of the near deadline,

therefore the author can only suggest to leave out the Grunert’s algorithm and similar
other in detail described and compared in Haralick’s 1994 paper1 due to its complexity
both cognitive and computational (goniometric functions, division, 4th degree polyno-
mial). The DLT algorithm seems to be a good starting point for 6 non-planar point
correspodences (6 points in the image that can be pretty accurately matched to 6
points known in the world) or 4 planar correspodences (4 points in the image with 4
known points in the world where the world points lie all in one plane), only a working
implementation (or linear algebra knowledge to implement it) of the SVD algorithm is
needed.

Originally there was the idea of having to compute the camera’s location was key
for accurately positioninig the virtual models. For this, calibration information for
each camera (each device can have multiple) would be necessary. There are projects
like calibdb.net that even tried to collect this information and let users calibrate their
cameras or just read the parameters for their device in case it already was in their
database (they even wrote scientific papers23 about it). Later, with evaluation of some
of the solutions published with code and testing data (mentioned above), there came
an important realization - the calibration information is not required (at least not as
separate values or matrix) and all that is important is the projection matrix. There
are procedures how to extract the estimated calibration data (for example prof. Cyrill
Stachniss in his lectures for University of Bonn, published freely on YouTube explains
it in his lecture on Direct Linear Transformation), but for the purposes of merely
projecting virtual models to the scene, just the compound matrix produced by DLT is
enough.

Contrary to the initial assumptions, the exact geographical coordinates do not
matter for the purposes of this project. It probably has not much sense to display
buildings in locations further than several tens or hundreds of meters. According
to the Earth Curvature website4 at 1 kilometer distance, 8 centimeters of Earth’s
curvature can be observed. If one looked at a screen with height of 50 centimeters from
a distance of 50 centimeters, the tangent of this angle is 1. That means that (assuming
a non-scaling lense) at a distance, maximum height of an object to fit on the screen
would be equal to the distance, i.e. at 1000 meters a 1000 meters tall object would fit
the screen. 8 centimeters on such a distance does not translate to even a single pixel.
With a 4K display one pixel would mean about 26 centimeters. On a device with a Full
HD resolution of about 1080x1920 (in portrait mode), a single pixel at this distanc is
about 52 centimeters. As the typical sightseeing scenario considers even much shorter
distances, Earth can be safely assumed to be flat and GPS coordinates and compass
direction can be taken into account only as a guide to from which angular section of
the space in front of the device and for what distance it makes sense to return points

1 Review and Analysis of Solutions of the Three Point Perspective Pose Estimation Problem, (R. M.
Haralick, C. N. Lee, K. Ottenberg, and M. Nolle), International Journal of Computer Vision, Vol. 13, No.
3, 1994, pp. 331-356.
2 Rojtberg, Pavel, and Arjan Kuijper. Efficient pose selection for interactive camera calibration.
2018 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). IEEE, 2018.
3 Rojtberg, Pavel, and Felix Gorschlüter calibDB: enabling web based computer vision through on-the-fly camera calibration.
2019 Proceedings of the 24th International Conference on 3D Web Technology. ACM, 2019.
4 https://earthcurvature.com/

24

https://earthcurvature.com/

. 2.8 Pose estimation

with known coordinates to be matched with keypoints observed on the screen.

Each sightseeing location (a town or its part) can have assigned its own origin and
have structures positioned in respect to that origin. After matching GPS location of
the device with location of some sightseeing site and a spatial angle, i.e. where to the
device’s screen is oriented, a list of keypoints and its descriptors can be pre-selected
(location and distance with relation to keypoint’s zoom level pyramid location) and
returned to the device. As the locations of existing building and especially their
visually distinct features (corners, window and door corners, roof corners etc) and
the location of the virtual 3D models are expressed in respect to the same reference
coordinate system, projection matrix from observed points can be then used to project
also the virtual models that need to stored properly scaled.

It can be expected to observe a reprojection error, i.e. the projected virtuaal model
to be slightly shifted. This can be probably remedied with some iterative optimization
methods like Levenberg–Marquardt or by stochastic least squares gradient descent.

25

2. Analysis .

2.9 Parallel computation in the browser using GPU.js
Image processing requires lots of similar computations that differ only by a few pa-
rameters and are independent from each other. The computations themselves are not
necessarilly complex, but there may be many of them. Many independent computations
can be slow when done one by one in sequence (serial processing) and the process
can be sped up by parallel processing. CPUs are well able of parallel computation
using multiple processes and thread in one process. Even in modern browsers this is
possible using WebWorkers1 and soon even lower-level and more parallelized SIMD
computations will become available through SIMD support coming to WebAssembly2.

JavaScript is known to be single-threaded and delegating work to WebWorkers might
not be enough for high amounts of data. On the other hand, GPUs are well known
to be designed for exactly this kind of data processing. There is today ubiquitous
WebGL, the newer WebGL2 that is currently not supported by mobile browsers from
Apple (experimental support of some features can be enabled manually, but this is not
user-friendly) and at least partial support for WebGPU is starting to appear in the
newest browser versions. Conveniently, GPU.js provides an abstraction and a façade
to different versions of the WebGL API.

One, two or three levels of for-loops can be hidden by creating functions that
process each of the iterations independently and ideally in parallel. These functions
are referred to as kernels - like the convolution kernels, these are called on each of the
processed elements. There is a list3 of mathematical functions known from JavaScript
that can be used in these kernel functions. The only noticable complication is that
the kernel functions are transpiled (transparently to the user/programmer) to GLSL
and thus standard browser debugging tools are not usable. Partial support is available
with GPU.js instace created with parameter mode set to ’cpu’, but it was not exactly
straightforward (different error messages in different places, result objects seem to have
different APIs etc.).

There also is support for Node.js that could help with some computations on the
backend part, but that is beyond the scope of this thesis.

A simple example would be conversion to grayscale where red, green and blue color
components are combined with certain weights into a single value expressing color
intensity typically displayed as a level of gray somewhere between black and white.

const gpu = new GPU();

const grayscaleKernel = gpu.createKernel(function(image) {
const pixel = image[this.thread.y][this.thread.x];
return 0.299 * pixel[0] + 0.587 * pixel[1] + 0.114 * pixel[2];

}, {
output: [width, height],

});

const grayscaleImage = grayscaleKernel(canvas);

1 https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
2 https://v8.dev/features/simd
3 https://github.com/gpujs/gpu.js/#supported-math-functions

26

https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
https://v8.dev/features/simd

. 2.9 Parallel computation in the browser using GPU.js

This function parsed and transpiled to GLSL and called on all pixels between [0,
0] and [widht, height] and its result is written in the same position to the output
array/texture.

Kernel functions take arguments of various types1 like numbers, arrays, images, can-
vas elements or even video element (although this option was not successfully managed
by the author to work and had to be worked around through copying video frames to
a canvas). Although each of these functions (or, rather, a single run of this function)
only returns a single value or a tuple (or sets a pixel color for kernels with graphical
output to a canvas), these are then arranged as an one-, two- or three-dimensional
array. This result can then be processed in JavaScript or used as input for parallel
processing by another kernel function.

The bottleneck to computation speed is sending API calls to the GPU and data
transfer between the CPU memory and the GPU memory. To avoid the data transfer
penalty, GPU.js provides the pipelining feature where one kernel’s result is stored in a
texture and passed directly to another kernel as its input, keeping the data in the GPU
memory.

1 https://github.com/gpujs/gpu.js/#argument-types

27

Chapter 3
Design

The resulting prototype should be able to start and stop displaying device camera’s
video stream and display a given variant of given structure loaded from the Dowry
Town’s API. Communication with the backend API requires sending a token with
every request as one of the request’s headers, but not keeping an authenticated session
with login/logout as in the application for accepting the 3D models.

The user interface of this widget is imagined as very simple and minimalistic: a
simple image placeholder that would open full-screen (depending on runtime platform’s
support) with video stream and a specified 3D model loaded from the backend that
would display with the video stream in the background.

3.1 Requirements

3.1.1 Functional requirements

. FR 3D model listing - viewer lists available modles and their variants.. FR Displaying 3D model - 3D models will be rendered in web browser window.. FR 3D model variants switching - viewer allows user to switch between available
model variants.. FR Loading models over network - viewre will be able to load 3D models and their
assets over network using HTTP RESTful API.. FR Loading progress indicator - while loading model and referenced assets, there will
be a visual indicator showing how much has already been downloaded and how much
is still remaining before model can be displayed.. FR Model scaling, rotation and translation - viewer will support standard operations
like displayed object rotation, scaling and panning.. FR Fullscreen support - model viewer will be switchable between in-page widget and
fullscreen modes.. FR Displaying model metadata - user will be able to display model information like
file format, file size, vertex count, textures count, assets list, author name and cre-
ation/modification date.

28

. 3.1 Requirements

3.1.2 Non-functional requirements

. NFR Platform - model viewer will be a JavaScript web application running in a web
browser, meaning both desktop and mobile versions of Chrome, Firefox and Safari
browsers current at the time of thesis completion. APIs tend to change sometimes, so
no guarantee can be made that the app will be runnable in future browser versions.. NFR Reliability and stability - stability will depend on the host platform and correct
input. Effort will be made to avoid only obvious crashes in typical cases, the aim of
this prototype is not to be bulletproof.. NFR Model rendering performance - speed will be limited by used platform, browser
vendors keep competing in improving JavaScript engine performance, but are still
limited by single thread. Only the rendering itself (offloaded to used framework) will
take advantage of GPU calculations. Optimizations as calculations on GPU are left
for possible future improvements.. NFR Dowry Towns backend API support - widget will support Dowry Towns project
API for loading 3D models and their versions for different levels of detail of meshes
and textures. NFR Mouse, touch and keyboard control - focused widget will be able to accept
commands by mouse, touch controls and keyboard.. NFR Comfortable and easy use - model viewer will use controls that are intuitive for
users of other 3D software for basic rotation, scaling and rotation using mouse and
touch controls. Keyboard controls usage help will be easily accessible.

29

3. Design .

3.2 Wireframe
The viewer itself is envisioned to be used as a widget on a web page. In a basic form,
it should be a clear affordance inviting the user to activate the immersion into the AR
experience.

AR Widget

Text title

Article text, text text text, more and more text….
Article text, text text text, more and more text….
Article text, text text text, more and more text….

Continuing article text, text text text, more text….
Article text, text text text, more and more text….
Article text, text text text, more and more text….

Figure 3.1. AR Widget Wireframe

Several variants were considered - AR Widget being a static placeholder (as seen in
the wireframe above) that would either change to a video element with user’s real-time
camera stream, or toggle fullscreen with the video stream, or contain the video stream
immediately, without requiring user interaction.

The version with no require user interaction was abandoned immediately as dis-
turbing and intrusive on one side, and technically impossible on the other as at least
Apple’s Safari browser requires user interaction leading to video playback. Displaying
video stream in the small area of the widget would make sense performance-wise as
smaller image requires less computing power, on the other hand it would leave the pos-
sibility of unwanted with links and other elements on the web page - and most users
would pinch-zoom the element anyway. That leaves the fullscreen switch regime - user
reading the text can - should they be interested in more information and ideally with
their attention attracted by a placeholder informational image - toggle the immersive
fullscreen video with rendered 3D model, fixed to the correct location.

30

. 3.3 Model displaying activity diagram

3.3 Model displaying activity diagram
The process of structure model loading from the initiation by user interaction, through
loading the 3D geometry mesh and textures, including loading progress indicator, is
visible in this image. For the case of simplicity, model URL composition from model’s
id of the selected structure’s variant was left out.

load mesh

show error
message

show texture loading
error message

loaded
successfully?

loaded
successfully?

no

no
no

yes

yes

yes

models
has textures?

draw colored
(and textured)

elements

transform
model

show proogress
indicator

hide proogress
indicator

model
selected

user input requesting
transformation

model url

model
data

:loading progress
indicator
[visible]

:loading progress
indicator
[hidden]

vertice coordinates and colors,
elements (triangles, polygons)

and
textures

load textures

Figure 3.2. Activity diagram of displaying a model in the app

31

3. Design .

3.4 Components
The AR Widget is planned as a compound component. In the prototype, it should
allow selecting from the whole database of structures and their variants, in the ideal
final version the structure selection should be automatic, based on user’s geographic
location and current weather conditions at the location, structure variant should be
selectable only where it makes sense - e.g. in case the building substantially changed
it looks and is displayed using different geometry.

Components the AR Widget is composed of are planned as follows:

Viewport

ARWidget

Placeholder Canvas StructuresList

ListItem

StructureVariantsList

ModelViewer WebCam

Lists

Figure 3.3. Class diagram

32

Chapter 4
Implementation

The viewer is a JavaScript project bundled by Webpack bundler and using yarn for
dependencies management. Webpack bundler allows the developer to focus on the
development and not care about paths of projects dependencies. The main HTML
file only references the application entry script and Webpack takes care of the rest.
Webpack’s output is a single (for the sake of simplicity - it be configured for multiple
files) where all project files and dependencies are bundled into a single JavaScript files
glued together as function bodies.

Technologies except for Three.js were chosen by the author due to at least partial
familiarity as the deadline was too close for better analysis.

4.1 Git

Git has been used as the version control as today’s de facto standard (not only) in
the open source world. There are free services available like for example GitHub or
BitBucket on the web where developers can freely host their project’s source code and
also open source projects like GitLab that let anybody with relevant skill set host a
similar service on their (be it virtual or physical) hardware.

Initializing a version control repository in the project’s directory is done by running:

git init .

Very useful feature of distributed version control systems is the possibility to keep
project’s sources in several separate repositories and exchange code between them.
These separate repositories are called remotes in Git and having created a repository,
one can add its URL to local project’s configuration as:

git remote add origin \
git+ssh://git@github.com/martinpucala/vmck-viewer.git

The simplest and ideal workflow would be just committing change sets to the repos-
itory and pushing them to the remote repository as a backup:

git add file1 file2 file3
git commit -m ’Add new files x.js and y.js providing feature XYZ’
git push origin HEAD

Git also supports (several types of) branching, allows reordering commits, copying
commits between branches, editing new and even older commits, reordering them and
so on. Description of these features is beyond the scope of this thesis and thankfully
there is great documentation, free and paid courses online or taught at the university.

33

4. Implementation .

4.2 Yarn
Yarn is a faster alternative to NPM as a dependencies manager for JavaScript and
TypeScript projects.

Adding and removing dependencies to project is quite straightforward:
yarn add webpack
yarn remove webpack

Dependencies used only during the development (like the dev server watching and
reloading code as necessary, linters watching syntax and project’s coding style) are
installed with the -D switch:

yarn add -D webpack webpack-cli webpack-dev-server

There is also the option of configuring script aliases where running a simple command
like:

yarn start

runs a command specified in projects configuration file named package.json. This
is typically used for monitoring changes in project’s directory to trigger re-bundling
the code and reloading page in the browser to save the developer from dull repetitive
steps of doing this manually after each change. Another benefit is that especially
with bigger projects his allows the bundler to re-process only the files that changed
since previous processing. This is similar to the make command, but it also saves
the time of re-running the bundler (which itself is interpreted code), re-building the
dependency graph, loading the files etc. - because they are still loaded im memory in
their processed form.

Yarn creates and manages a file with the versions of currently installed dependen-
cies, this is called yarn.lock and it should not be changed manually, yet it should be
committed as to keep the same package versions everywhere across different project
members and computers (developers, production, testing environment etc.).

4.3 Webpack
The JavaScript ecosystem is evolving fast. From the times where the purpose of scripts
on web pages was to open and close menus on hover it situation has matured to today’s
state of complex projects running both on backend and in web browsers. Complex
projects are typically built on top of frameworks and multiple utility libraries. During
the years, several bundlers and standards for JavaScript modules have evolved (e.g.
AMD, CommonJS)1. Instead of adding a <script> HTML tag or even several of them
every time a new dependency is added to the project, bundlers allow specifying how
project’s code should be bundled with its dependencies - it takes project’s entry point
script and recursively its imported dependencies, wraps them into functions, assigns
them unique identifiers and combines them into a single bundle file that contains all
the code and can be loaded by the page as a single file.

Building project into a bundle is done using command:
webpack --mode=development

1 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules

34

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules

. 4.4 Babel

Project’s code base directory can be watched for changes and rebuilt after each save
using the --watch switch:

webpack --watch --mode=development

Webpack also provides a built-in development web server:

webpack server --mode=development

All these commands typically are saved with script aliases like build, watch or start
in the project’s package.json.

4.4 Babel
Babel is a tool used to transpile latest EcmaScript and JSX language features into plain
JavaScript to make the bleeding edge available to developers as soon as possible and
still keep it runnable in older browsers. The configuration used was adopted from a
tutorial article1 about minimal Webpack+Babel configuration for React.

4.5 React.js
React is probably today’s most widespread frontend framework. Released in 2013 by
Facebook, it is today quite mature, yet still evolving. Maybe the biggest change in
recent years is the move from class components to functional components with hooks.
Probably its main goal and benefit for developers is the declarative description of com-
ponents as projects clearly divided into components are typically easier to maintain and
especially navigate even for programmers new to a project, where one can expect at
least some known structure. The workflow in React projects is simple - a component is
given some initial properties and is expected to render itself i.e. put together a markup
written in JSX markup language which is a HTML-like markup language for describing
component’s output. More complex components typically inside use other components,
keeping the code complexity from growing too much. In functional components, hooks
are a mechanism for handling asynchronous data updates. React has a very good and
quite verbose documentation explaining its concepts on its website2.

4.6 Three.js
Three.js has been the most popular 3D graphics framework on the web for several years
already. It has loaders for various 3D formats and provides very useful abstractions to
the low level WebGL API. This helps creating simple projects using 3D graphics on
the web in just a few lines.

Integrating Three.js and React code is well described in two articles34 by Alexander
Solovyev. Written in 2019, however, some adjustments were necessary to make the
ideas work with functional React components and hooks.

1 https://www.robinwieruch.de/minimal-react-webpack-babel-setup
2 https://reactjs.org/docs/
3 https://codeburst.io/react-16-three-js-integration-tips-2019-b6afe19c0b83
4 https://blog.bitsrc.io/starting-with-react-16-and-three-js-in-5-minutes-3079b8829817

35

https://www.robinwieruch.de/minimal-react-webpack-babel-setup
https://reactjs.org/docs/
https://codeburst.io/react-16-three-js-integration-tips-2019-b6afe19c0b83
https://blog.bitsrc.io/starting-with-react-16-and-three-js-in-5-minutes-3079b8829817

4. Implementation .
Endless loops in JavaScript cause the page they are running on become unresponsive.

Furthermore, there’s no point in re-rendering animated scene on a page that is not
visible (tab begin in the background, for example). Rendering in loop is therefore done
using the requestAnimationFrame1 function that schedules the function it is given as
its argument to be called only just before the frame needs to be rendered and pauses
when the tab with the page it is running in gets into background (different tab in the
same window is activated).

4.7 Web camera

react-webcam provides web camera access to React applications. It supports video
constraints for specifying camera and desired resolution and enabling and disabling
camera.

4.8 Full-screen toggle

Full-screen toggling is handled using the react-fulls-screen’ package. It allows
hooking to other components’ events and switch a chosen component to to full-screen
mode and notify whenever the fulls-screen mode is entered or exited.

4.9 OrbitControls

Three.js package contains an example with intuitive controls. After pressing a mouse
button or touching device’s touch screen, dragging causes rotation around the axis
perpendicular to the lines running from OrbitControls’ target point and the points
of previous and current contact of the pointer. Rotation direction matches the pointer
direction, at least on shorter distances (meaning it does not work like rotating with a
handle).

The constructor takes reference to the camera and the element on which it is supposed
to hook its event handlers.

setControls(new OrbitControls(camera, element))

Storing the instance in a component state variable ensures is remembered at initializa-
tion time and reused on subsequent renders of the component and not re-created on
every re-draw.

4.10 TrackballControls

Same as the OrbitControls package, but seems more intuitive.

1 https://developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame

36

https://developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame

. 4.11 Model loader

4.11 Model loader
Three.js tool set provides 3D model loaders for several formats. Having the database
of projects backend server full of .OBJ models, the OBJLoader is the ideal. Unfortu-
nately, the .OBJ format needs its accompanying .MTL files with material descriptions
containing values like material’s ambient, diffuse and specular coefficients and, more
importantly, texture file names. Testing database only contained .OBJ files and after
randomly picking several, all of them had textures assigned in the database, but none
of them had .MTL files assigned (not even texture coordinates were found in the few
models examined). Had this been discovered earlier by the author, measures could
have be taken like preparing and uploading models with textures.

There was a slight complication with the authentication and loading resources from
through REST API in combination with the OBJLoader: the API needs each request
to be accompanied by the Authentication header set to a valid token, otherwise the
server responds with 401 Unauthorized response. To mitigate this, objects had to be
loaded manually, response read as a Blob1, converted to object URLs using window’s
createObjectURL()2 method and only then passed to OBJLoader.

With models referencing textures this will get complicated further by the fact that
the OBJLoader loads model’s dependencies automatically - and those requests will be
missing the Authentication header. This can be fixed using Three’ LoadingManager3

with a good example of this in the documentation.

4.11.1 Loading progress indicator
A simple component for displaying the progress of model loading has been implemented,
taking an input of 0 to 1. Numeric value renders a simple loading progress bar.

1 https://developer.mozilla.org/en-US/docs/Web/API/Blob
2 https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
3 https://threejs.org/docs/index.html#api/en/loaders/managers/LoadingManager

37

https://developer.mozilla.org/en-US/docs/Web/API/Blob
https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://threejs.org/docs/index.html#api/en/loaders/managers/LoadingManager

Chapter 5
User Testing

There are several simple scenarios to be tested to find out whether the AR widget is
intuitive enough for general use. All of them should be ideally done with four or five
participants and in a location points in the environment that are recognized and stored
in the project’s database. All user are assumed to be keen on sightseeing tourism
and be routine smartphone users. There should be ideally two people besides the
participant. First, a facilitator guiding the user through the process and instructing
him according the testing scenario, but avoiding other interaction or helping (unless
the user gets completely stuck - which would be a good indicator of a usability problem
and the facilitator should intervene only to get to the next point). Second person
(could be replaced by a camera recording user’s interactions and maybe facial expres-
sions to catch confusion - testing participant must be informed that he/she is being
recorded and agree with it) is only a silent observer, taking notes during the process
to prevent the need of re-watching the video recording for evaluation purposes (nec-
essary in case of only a facilitator is present or when a closer look at some issues is need).

Test scenarios:

. entering AR visualization. leaving AR visualization. selecting structure variant from the list. rotating structure. zooming structure

38

. .
5.0.1 Entering AR visualization

Estimated duration time:
less than 1 minute

Test reason:
Testing the affordance - whether it is obvious to users and really invites them to open
it.

Starting point:
Page is scrolled so that the clickable placeholder is visible.

Ending point:
ARWidget is open in fullscreen mode.

Test participant instructions:

. Could you find a way to start the structure visualization?

Expectation
Potentially after some up and down scrolling, the user should find and tap or click the
widget’s trigger.

39

5. User Testing .
5.0.2 Leaving AR visualization

Estimated duration time:
less than 1 minute

Test reason:
Testing fullscreen mode closing - whether users can find a way to get out of the
fullscreen mode back to visited site.

Starting point:
Fullscreen mode is open, video stream is displaying the camera video feed.

Ending point:
User exits the fullscreen mode and is back on the visited page.

Test participant instructions:

. Could you now exit back to the page ?

Expectation
User finds how to close the fullscreen mode within a few seconds.

40

. .
5.0.3 Selecting structure variant from the list

Estimated duration time:
1 minute

Test reason:
Testing whether different structure variant is easy to find for users.

Starting point:
Fullscreen mode is open with structure that has multiple variants available.

Ending point:
User opens structure variants list and selects a structure.

Test participant instructions:

. Could you try to select different version of this structure?

Expectation
User notices structure variants list and after a few seconds selects one of the variants.

41

5. User Testing .
5.0.4 Rotating structure

Estimated duration time:
less than 1 minute

Test reason:
Testing controls intuitivity. It should be easy to find out how to rotate the displayed
structure.

Starting point:
Fullscreen mode is open, structure is displayed.

Ending point:
User presses mouse button or touches the screen and drags in the direction they want
the structure to be rotated.

Test participant instructions:

. Would you know how to rotate the structure if you wanted to see it from the side?

Expectation
It should not take more than a few seconds of thinking for the user to try rotating the
displayed structure.

42

. .
5.0.5 Zooming structure

Estimated duration time:
less than 1 minute

Test reason:
Testing controls intuitivity. It should be easy to find out how to scale/zoom the dis-
played structure.

Starting point:
Fullscreen mode is open, structure is displayed.

Ending point:
User presses mouse button or touches the screen witch two fingers and pinch-zooms to
change the scale of the displayed structure.

Test participant instructions:

. How would you zoom in or out the structure you see?

Expectation
This can be potentially tricky in case the user is not an advanced user. For frequent
smartphone users this should be a familiar gesture.

43

Chapter 6
Conclusion

Leaving aside the fact that the code is only partially complete and far from was
envisioned by the author when starting working on this project, it got much further
than originally expected or imagined - and yet, it still didn’t get as far as it was hoped
for. Having to collect and sort out relevant information with only a very superficial
overview made the estimates and planning rather challenging. Even with the great
advantage of prior works on this project, each steps forward was preceded by many
leading nowhere - not even into this text (real-time Canny and Sobel edge detectors
and hours of computer vision lectures, for example) - on the hand because was not
deemed directly useful (or simply not understood enough to be of any use), on the
other hand because the effort to save time and eventually find a path that would lead
in the next steps that can be seen towards the goal.

All this work, however, is not not visible at the time of writing this and is only
attached as work-in-progress code that is not used in the prototype, which, from user’s
standpoint looks very basic and trivial without the automatic positioning in the video
stream. One could really say the visible part is only the cap of and iceberg in this case.

Having to implement the algorithms from scratch without depending on computer
vision frameworks years in development proved to be even more time consuming
than expected. Still, the know-how amassed during the research invested lead to the
point where finishing the work-in-progress code submitted with this thesis (using the
overview and references collected herein) should lead to a working application and
open wide area of possibilities and projects that require nontrivial time and effort to
put together and grasp.

Both goals are partially fulfilled, the UI prototype, although with bugs, demonstrates
the vision where it is imagined should lead after the pose estimation part is finished -
opening an article at a sightseeing site and directly from there be able to see - be it
historical structures as in this case, or commercial information in a restaurant, or some
additional information in books, magazines, restaurant menus(!) etc.

If nothing else, then then merely the realization, that one can read and comprehend
published scientific papers was enlightening. What more, suddenly even the often
by-many-hated mathematical subjects suddenly found their use when reading how only
decades (years even) great minds used it to describe solutions to problems unimagin-
able to solve without (Moravec, Harris and Shi-Tomasi corner detectors, ORB feature
detection and description, projection, systems of linear equations...). Problems like,
especially with visual demonstrations, could certainly attract people scared off by the
raw and abstract ways of teaching in the mainstream today.

44

. .
It was certainly naive to expect to come from zero to a working application like

envisioned here. Still, the author believes it would be worth repeating. Taking risks,
failing, trying again and still pushing wild fantasies forward towards reality (with the
ever growing strength of amassed information and experience).

Even after finishing this prototype, there is still lots of work left for the future.
Be it already in the text mentioned lighting estimation (calculated from geographical
location, date and time and position of the Sun and current weather or maybe from the
gradients of smooth surfaces in the surrounding environment), shadows (both on the
projected model and cast by it, each for different light source types), estimating correct
occlusion of the projected and real-world structures, accuracy of the projection can
be worked on using various optimization techniques (Levenberg-Marquardt, probably
not-so-fast stochastic gradient descent) minimizing the reprojection error. Even just
measuring and evaluating the effectiveness of used algorithms under different lighting
and weather conditions could maybe be extended to be enough work for a standalone
thesis.

After finishing parallelized ORB and the, there is the challenge of implementing - now
its patent is expired and doors are open even for its commercial use - the SIFT algorithm
runnable on GPUs. For now, hoping it would still do some help with defending this
thesis, the next steps seem to be continuing work on features and fixing bugs here.

45

	TITLE
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/
	Introduction
	Analysis
	Breaking up the problem
	Web as a platform
	Web graphics
	Images
	SVG
	2D Canvas
	VRML
	X3D
	WebGL

	WebGL frameworks
	A-Frame
	Babylon.js
	Three.js
	Comparison results

	3D file formats
	Wavefront OBJ
	FBX (FilmBox)
	glTF (GL Transmission Format)
	Comparison results

	Backend server
	Resources
	Structure
	3DObject
	Model
	Texture
	Asset

	Augmented reality
	Camera
	Moravec corner detector
	Harris corner detector
	Shi-Tomasi (a.k.a. Kanade-Tomasi) corner detector
	FAST - Features from accelerated segment test
	ORB - Oriented FAST and rotated BRIEF

	Pose estimation
	Parallel computation in the browser using GPU.js

	Design
	Requirements
	Functional requirements
	Non-functional requirements

	Wireframe
	Model displaying activity diagram
	Components

	Implementation
	Git
	Yarn
	Webpack
	Babel
	React.js
	Three.js
	Web camera
	Full-screen toggle
	OrbitControls
	TrackballControls
	Model loader
	Loading progress indicator

	User Testing
	Entering AR visualization
	Leaving AR visualization
	Selecting structure variant from the list
	Rotating structure
	Zooming structure
	Conclusion

