
25. 6. 2021 ProjectsFIT

https://projects.fit.cvut.cz/theses/50/assignment-print 1/1

Instructions

Get acquainted with the Torus Fully Homomorphic Encryption (TFHE) scheme and its extension WTFHE 

(neural netWork-ready TFHE), which enables an evaluation of a neural network on encrypted input 

data. Design a parameterizable digital circuit that implements fundamental arithmetic operations in 

(W)TFHE. Compose the WTFHE bootstrapping operation out of these arithmetic operations. Implement 

the circuit in ZedBoard SoC platform (equipped with Xilinx Zynq-7000 chip). Explore the parameters' 

boundaries of the baby variant of WTFHE, s.t. the corresponding circuit fits into the target platform. 

Write a program implementing a simple neural network; the designed circuit shall serve as a hardware 

accelerator of the bootstrapping operation.

Electronically approved by doc. Ing. Hana Kubátová, CSc. on 10 February 2021 in Prague.

Assignment of master’s thesis

Title: FPGA Acceleration of the Baby Variant of the WTFHE Scheme

Student: Bc. Pavel Chytrý

Supervisor: Dr.-Ing. Martin Novotný

Study program: Informatics

Branch / specialization: Design and Programming of Embedded Systems

Department: Department of Digital Design

Validity: until the end of summer semester 2022/2023





Master’s thesis

FPGA Acceleration of the Baby Variant of
the WTFHE Scheme

Bc. Pavel Chytrý

Department of Digital Design
Supervisor: Dr.-Ing. Martin Novotný

June 27, 2021





Acknowledgements

I would like to thank my supervisor Dr.-Ing. Martin Novotný for a continued
guidance and support during writing of this thesis. I would also like to thank
Ing. Jakub Klemsa for his explanation of the WTFHE scheme. And lastly, to
my family for giving me space to fully fucus on finishing this thesis.





Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work for non-
profit purposes only, in any way that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on June 27, 2021 . . .. . .. . .. . .. . .. . .. . .



Czech Technical University in Prague
Faculty of Information Technology
© 2021 Pavel Chytrý. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Chytrý, Pavel. FPGA Acceleration of the Baby Variant of the WTFHE
Scheme. Master’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2021.



Abstrakt

S nárůstem cloudových výpočeních služeb je soukromí osobních údajů často
v otázce, jelikož k nim má poskytovatel služeb plný přístup. Tuto situaci dále
zhoršují zařízení, které mají přístup k soukromým datům uživatelů, ale po-
strádají výpočení sílu k provedení vlastního výzkumu - například nemocnice.

Jedním z řešení tohoto problému by mohlo být takzvané plně homomorfní
šifrování (FHE), které dokáže vyhodnotit libovolnou funkci na šifrovaných
datech bez nutnosti dešifrování na straně poskytovatele cloudových služeb.
Oblast tohoto výzkumu je aktuálně velmi aktivní, s průlomem Gentryho et
al. v roce 2009 a následným představením šifry TFHE od Chilloti et al.

Ukázalo se, že TFHE schéma je zvláště vhodné pro zabezpečení strojového
učení jako služby (MLaaS). TFHE ve své původní podobě pracuje pouze s jed-
nobitovým prostorem, avšak několik vylepšení umožňuje využití více hodnot.
Tuto aktuální verzi jsme pracovně nazvali netWork-ready TFHE (WTFHE).

Obecně platí, že (W)TFHE šifry jsou o několik řádů pomalejší, než běžná
šifrovací schéma. Tato práce je případová studie k určení urychlení výpočtu
WTFHE za použití FPGA zařízení. Náš přínos spočívá v návrhu FPGA akce-
lerátoru schopného vyhodnotit jednoduchou neuronovou síť, změření jeho vý-
konu ve srovnání s softwarovým řešením, zjištěním hardwarových požadavků
a jeho potenciál ve škálovatelnosti.

Klíčová slova WTFHE, TFHE, FPGA, VHDL, Kryptografie, Číslicový ná-
vrh, Plně homomorfní šifrování, Neuronové sítě

vii



Abstract

With the rise of cloud compute services, the privacy of user’s data is often
put into question, as the service provider has full access to it. This is further
exacerbated by facilities that hold private data, but lack the computational
power to run their own research – namely hospitals.

A Fully Homomorphic Encryption (FHE) could be a solution to this prob-
lem as it can evaluate arbitrary functions over encrypted data without the
need for decryption on the Cloud service provider’s side. Since the break-
through by Gentry et al. in 2009, this field is very active with Chilloti et al.
recently introducing the scheme called TFHE.

TFHE scheme has been shown to be suitable for securing Machine Learning
as a Service (MLaaS). TFHE in its original form only works with one-bit
plaintext space, however, several improvements allow the usage of multivalue
plaintext space. This improved version was codenamed netWork-ready TFHE
(WTHE).

In general, (W)TFHE Schemes implemented in software are several or-
ders of magnitude slower than the commonly used encryption schemes. This
thesis serves as a case study to determine the feasibility of accelerating the
WTFHE Scheme with an FPGA. Our contributions consist of designing an
FPGA accelerator capable of simple Neural Network evaluation, measuring
its performance compared to the software setup, discovering resource require-
ments, and the potential of scalability.

Keywords WTFHE, TFHE, FPGA, VHDL, Cryptography, Digital Design,
Fully Homomorphic Encryption, Neural Network

viii



Contents

Introduction 1

1 Preliminaries 3
1.1 Introduction to TFHE . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 (W)TFHE Samples . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 T(R)LWE . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 TRGSW . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.3.1 Blind Rotate . . . . . . . . . . . . . . . . . . . 7
1.2.3.2 Sample Extract . . . . . . . . . . . . . . . . . 8
1.2.3.3 WTFHE Bootstrapping . . . . . . . . . . . . . 9

1.2.4 DNN in WTFHE . . . . . . . . . . . . . . . . . . . . . . 9

2 Analysis and Design 11
2.1 Parameters of WTFHE . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Target Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 HW/SW Split . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Detailed Breakdown of HW/SW Splits . . . . . . . . . . 15

3 FPGA Accelerator 17
3.1 Parameters and Datatypes . . . . . . . . . . . . . . . . . . . . . 17
3.2 Version Timeline . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Polynomial Multiplication . . . . . . . . . . . . . . . . . . . . . 21

3.3.1 Negacyclic Memory . . . . . . . . . . . . . . . . . . . . . 23
3.3.2 Linear Shift Memory . . . . . . . . . . . . . . . . . . . . 23
3.3.3 MAC Unit . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.3.1 Version Evolution . . . . . . . . . . . . . . . . 24
3.4 Vector-Matrix Multiplication . . . . . . . . . . . . . . . . . . . 25
3.5 External Product . . . . . . . . . . . . . . . . . . . . . . . . . . 28

ix



3.5.1 Polynomial Split . . . . . . . . . . . . . . . . . . . . . . 29
3.6 Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6.1 TLWE Rounding . . . . . . . . . . . . . . . . . . . . . . 30
3.6.2 Polynomial Multiplication by a Monomial (POLY_EXP) 32
3.6.3 Matrix Accumulator . . . . . . . . . . . . . . . . . . . . 34
3.6.4 External Product . . . . . . . . . . . . . . . . . . . . . . 37
3.6.5 Poly ADD . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6.6 Sample Extract . . . . . . . . . . . . . . . . . . . . . . . 38
3.6.7 BlockRAM Organization . . . . . . . . . . . . . . . . . . 38
3.6.8 Pipelining . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.7 Main . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.7.1 RS232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.7.2 Splitter and Merger . . . . . . . . . . . . . . . . . . . . 41
3.7.3 Communication Protocol . . . . . . . . . . . . . . . . . 41
3.7.4 PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Demo Application 43
4.1 Neural Network Demo . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.1 Encryption and Decryption . . . . . . . . . . . . . . . . 45
4.1.2 Function Encryption . . . . . . . . . . . . . . . . . . . . 47
4.1.3 Generation of Bootstrapping Matrices . . . . . . . . . . 47
4.1.4 Communication Protocol . . . . . . . . . . . . . . . . . 49

5 Simulation and Verification 51
5.1 Testbench Flowchart . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Version 0.8 with Nexys3 and ISE . . . . . . . . . . . . . . . . . 51
5.3 Version 0.9 with Vivado and ZedBoard FPGA . . . . . . . . . . 53
5.4 Version 1.0 onwards . . . . . . . . . . . . . . . . . . . . . . . . 53
5.5 Demo Verification . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 Measurements and Results 57
6.1 Resource Requirements . . . . . . . . . . . . . . . . . . . . . . 57

6.1.1 Detailed Breakdown . . . . . . . . . . . . . . . . . . . . 59
6.2 Time Measurements . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2.1 Bootstrapping Time on FPGA . . . . . . . . . . . . . . 60
6.2.2 Deployed Neural Network Demo Measurements . . . . . 60

7 Future Work 63
7.1 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.2 ARM Integration . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.3 GPU Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . 64

Conclusion 65

Bibliography 67

x



A Acronyms 69

B Contents of enclosed storage media 71

xi





List of Figures

2.1 Hierarchy of Operations . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Polynomial multiplication . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Initial implementation . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Optimization with DSP48 block . . . . . . . . . . . . . . . . . . . . 25
3.4 Final usage of DSP48 block . . . . . . . . . . . . . . . . . . . . . . 26
3.5 Vector–matrix multiplication . . . . . . . . . . . . . . . . . . . . . 27
3.6 External product . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.7 Bootstrapping datapath – Version 1.0 . . . . . . . . . . . . . . . . 31
3.8 Bootstrapping with integrated BlockRAM – Version 1.1 onwards . 32
3.9 Detail of MATRIX_ACC in version 1.0 . . . . . . . . . . . . . . . 35
3.10 Top level MAIN entity . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Demo flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Perceptron in WTFHE scheme . . . . . . . . . . . . . . . . . . . . 45

5.1 Testbench flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . 52

xiii





List of Tables

2.1 List of WTFHE Parameters . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Volumes of Transmitted Data . . . . . . . . . . . . . . . . . . . . . 13

3.1 Set Values of Parameters . . . . . . . . . . . . . . . . . . . . . . . 18

6.1 Zynq-7000 FPGA Resource Usage . . . . . . . . . . . . . . . . . . 58
6.2 Simulated Bootstrapping Duration in FPGA . . . . . . . . . . . . 58
6.3 Entity Resource Usage . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.4 Real-world Time Measurements . . . . . . . . . . . . . . . . . . . . 60

xv





Introduction

Currently, there are many Cloud service providers offering Machine Learning
as a Service (MLaaS) as a commercial service – Google [3], Microsoft [4], and
IBM [5] to name a few.

However, concerns were raised towards data privacy in respect to MLaaS.
MLaaS providers not only have access to user’s data and their prediction
models, but can even train their prediction models with the provided data
without the users being aware of it.

Recently, few cryptographic schemes employing homomorphic encryption
have emerged. Homomorphic schemes can evaluate an arbitrary function on
the encrypted data without the need of decryption. Approaches by Graepel et
al. [6] or Xie et al. [7] build on the so-called Leveled Homomorphic Encryption
(LHE) – but those schemes limit the depth of non-linear operations, which
would be detrimental to Deep Neural Network evaluation.

This issue was addressed by Bourse et al. [8] by improving upon the TFHE
scheme by Chilloti et al. [2]. The TFHE scheme was chosen as a basis for
a modified version codenamed the neural netWork-ready TFHE (WTFHE).
WTFHE can evaluate addition and arbitrary function over a multivalue plain-
text space.

In general, (W)TFHE Schemes implemented in software are several orders
of magnitude slower than the commonly used encryption schemes. This thesis
serves as a case study to determine the feasibility of accelerating the WTFHE
Scheme on an FPGA. Our contributions consist of designing an FPGA accel-
erator capable of simple Neural Network evaluation. We will measure the per-
formance of the implemented design compared to a similar software setup and
explore the limits of scalability of FPGA acceleration.

This thesis is split into several chapters. In Chapter 1, I will introduce
the WTFHE scheme and all relevant definitions and algorithms. In Chapter
2, I will discuss possible approaches to hardware acceleration of the WTFHE
scheme. In Chapter 3, I will describe the implementation steps of the hardware
accelerator on an FPGA, while Chapter 4 will cover demo application written

1



Introduction

in C language running a simple Neural Network evaluation using the FPGA
to accelerate a Bootstrapping operation. In Chapter 5, I will explain the
methodology used to verify the functionality of the design. In Chapter 6,
I will discuss the measured performance and resource requirements of the
hardware accelerator. In Chapter 7, I will describe the direction of possible
future work improving the usability of the WTFHE scheme. And finally, in
the last Chapter I will summarize this work.

2



Chapter 1
Preliminaries

In this section, I will describe the building blocks of the WTFHE encryption
scheme. The definitions, algorithms, and excerpts in this section were provided
by Jakub Klemsa. For a more detailed explanation I will refer readers to his
publication [9] on modifications done to the TFHE or to Chilloti et al.[2] for
the original proposition of the TFHE. Note that I modified some parts to keep
consistent notation across this thesis and reflect the actual form of algorithms
used for implementation.

Symbols & Notation

As this thesis contains a lot of technical content, I adopted symbols and no-
tation from Klemsa’s paper[9].

• B the binary Galois Field GF2,

• Z the set of Integers,

• T the set R/Z, also known as the Torus,

• p(X) = p(N−1)XN−1 + p(N−2)X(N−2) + . . . + p(1)X1 + p(0) a polynomial,
coeffs(p) = (p(0), p(1), . . . , p(N−1)),

• M (N)[X]k the set of polynomials modulo XN + 1, for a set M of dimen-
sion k and polynomial order of N ,

• T(n) vector of Torus members of length n,

• For a vector(matrix) of polynomials w = (w(N−1)
0 XN−1+w

(N−2)
0 XN−2+

. . .+w
(0)
0 X0, . . . , w

(N−1)
n−1 XN−1 +w

(N−2)
n−1 XN−2 + . . .+w

(0)
n−1X0), I denote:

– wi = w
(N−1)
i XN−1 + w

(N−2)
i XN−2 + . . . + w

(0)
i X0, and

– w
(k)
i = w

(k)
i Xk

3



1. Preliminaries

• a
$←M and a

α←M the uniform and the zero-centered α-deviated draw,
respectively, of a random variable a from M .

The Torus The set T = R/Z (i.e. real numbers modulo 1) with standard
operation addition is called the Torus. Torus is a module over Z, meaning its
elements can be multiplied by an integer. These operations can be extended
to Integer-Torus polynomials.

Concentrated Distribution Unlike multiplication, the division of a Torus
by an integer cannot be defined without ambiguity, the same holds for the ex-
pectation of a distribution over the Torus. However, this can be fixed for
a concentrated distribution [2], which is a distribution with support limited
to a ball of radius 1/4, up to a negligible subset. For further details, we refer
to [2].

1.1 Introduction to TFHE
TFHE by Chillotti et al. [2] is a recent fully homomorphic scheme building
upon Learning with Errors (LWE) problem [10]. TFHE in the original form
encrypts a single bit, but improvements by Carpov et al. [11] and Bourse et
al. [8] allow usage of multivalue plaintext space and DNN evaluation on the en-
crypted data. This improved version of TFHE was used as a basis of this
thesis. I will refer to this improved version as neural netWork-ready TFHE
(WTFHE in short).

The homomorphic properties of (W)TFHE can be written as follows:

TFHE(a)⊕ TFHE(b) ≈ TFHE(a + b), and (1.1)
evalf

(
TFHE(a)

)
≈ TFHE

(
f(a)

)
(1.2)

where ≈ means “encrypts the same”, and ⊕ and evalf stand for homomorphic
addition and evaluation of arbitrary function. As the TFHE has a randomized
encryption scheme, each encryption will result in a different cipher text.

TFHE uses noise to mask plaintext values and guarantee cryptographic
safety. Each ⊕ operation increases the internal noise up to a point, where
correct decryption may not be guaranteed.

1.2 (W)TFHE Samples
WTFHE is a fully homomorphic cipher employing two encryption schemes:
T(R)LWE and TRGSW. TLWE is used to encrypt plaintext, while TRGSW and
TRLWE are used internally within the Bootstrapping procedure. Note that
WTFHE (and TFHE) is a subject of still ongoing research and the algorithms
used can be subject to future changes.

4



1.2. (W)TFHE Samples

1.2.1 T(R)LWE

Definition 1 (T(R)LWE Sample [9]). Let n ∈ N be the dimension, N ∈
N, N = 2ν for some ν ∈ N0 be the degree, α ∈ R+

0 standard deviation
and let the plaintext space P = T(N)[X], the ciphertext (Sample) space
C = T(N)[X](n+1) and the key space K = B(N)[X](n). For m ∈ P, we call
c = (a, b) ∈ C the TRLWE Sample of message m ∈ with key k ∈ K if

b = m + k · a + e, (1.3)

where a $← T(N)[X](n) and e
α← T(N)[X]. Further, for a = 0, we call the Sam-

ple trivial, for m = 0, we call the Sample homogeneous, and for N = 1, we
call the Sample the TLWE Sample.

Note that TRLWE sampling is actually encryption. For decryption, we
apply TRLWE phase function (followed by rounding if applicable), definition
follows.

Definition 2 ((T(R)LWE) phase [9]). Let n, N and α be the TRLWE param-
eters as per Definition 1, and let c = (a, b) be a T(R)LWE Sample of m under
a T(R)LWE key k. We call the function ϕk : T(N)[X](n)×T(N)[X]→ T(N)[X],

ϕk(a, b) = b− k · a, (1.4)

the T(R)LWE phase. Next, we call the Sample (a, b) valid iff the distribution
of ϕk(a, b) is concentrated.

In general, the TRLWE phase function returns m + e, i.e., the plaintext
with a (zero-centered) noise. The noise e (if sufficiently small) can be removed
by appropriate rounding.

1.2.2 TRGSW

Unlike Torus polynomials in TRLWE, TRGSW encrypts integer polynomi-
als. For the purposes of Bootstrapping, it defines so called External Product,
⊡ : TRGSW × TRLWE → TRLWE, which is multiplicatively homomorphic on
TRGSW× TRLWE Samples. Definitions follow.

Definition 3 (Gadget Matrix [9, 2]). Let Bg = 2γ for some γ ∈ N and l ∈ N be
decomposition parameters and let N and n be TRLWE degree and dimension,

5



1. Preliminaries

respectively. We call

H =



1/Bg . . . 0
... . . . ...

1/Bl
g . . . 0

... . . . ...
0 . . . 1/Bg

... . . . ...
0 . . . 1/Bl

g


, (1.5)

H ∈ T(N)[X](n+1)l,n+1, the gadget matrix.

Next, we recall the Gadget Decomposition Algorithm as Algorithm 1, which
is—in this particular form—entangled with the gadget matrix H.

Algorithm 1 Gadget Decomposition of a TRLWE Sample [9, 2]
Input: TRLWE Sample (a, b) =

(
a1(X), . . . , ak(X), b = an+1(X)

)
∈

T(N)[X]n+1,
Input: decomposition parameters Bg, l.
Output: Vector of integer polynomials d ∈ Z(N)[X](n+1)l.

1: for all ai(X) =
∑N−1

j=0 a
(j)
i Xj , a

(j)
i ∈ T, do

2: ā
(j)
i ← ⌊Bl

g · a
(j)
i ⌉

3: let [ā(j)
i,1 , . . . ā

(j)
i,l ] be a Bg-ary representation of ā

(j)
i s.t. ā

(j)
i =∑l

p=1 ā
(j)
i,p Bl−p

g

4: for i = 1 . . . n + 1 and p = 1 . . . l do
5: d(i−1)l+p(X) =

∑N−1
j=0 ā

(j)
i,p Xj

6: return d

Note, for the gadget matrix H, quality β = Bg/2 and precision ϵ = 1/2Bl
g,

we denote the gadget decomposition algorithm as DecH,β,ϵ(a, b).

Definition 4 (TRGSW Sample [9, 2]). Let n, N and α be the parameters of
TRLWE with key k. We call C = Z+m·H the TRGSW Sample of m ∈ Z(N)[X]
if each row of Z is an independent homogeneous TRLWE Sample under key k,
and we call m the message of C, denoted msg(C). The phase of C is defined
as the vector of the (n + 1)l TRLWE phases, denoted ϕk(C), and the error of
C is defined as the vector of the (n + 1)l TRLWE errors, denoted Err(C). We
call C ∈ T(N)[X](n+1)l,n+1 a valid TRGSW Sample under key k iff there exists
m ∈ Z(N)[X] such that each row of C−m ·H is a valid homogeneous TRLWE
Sample under key k.

6



1.2. (W)TFHE Samples

Definition 5 (External Product [9, 2]). For decomposition parameters β and
ϵ, we define the External Product, ⊡ : TRGSW× TRLWE→ TRLWE, as

A ⊡ b = DecH,β,ϵ(b)T ·A, (1.6)

where TRLWE is the underlying cipher of TRGSW.

1.2.3 Bootstrapping
The procedure named Bootstrapping aims at reducing the internal noise of
a TLWE Sample to a fixed level. As originally devised by Gentry[1] in 2009,
Bootstrapping internally runs decryption procedure with encrypted key bits
referred to as the Bootstrapping keys. In addition, it is capable of function
evaluation at no extra cost.

TFHE Bootstrapping consists of three algorithms: BlindRotate, SampleExtract
and KeySwitch. I will list only their variants relevant to the implementation
part of this thesis. As such, the TRGSW dimension (n) was fixed to a perma-
nent value of 1.

The general evaluation of Bootstrapping is as follows. First, BlindRotate
takes the Bootstrapped TLWE Sample and runs homomorphically a decryption-
like procedure with encrypted key bits (referred to as the Bootstrapping keys).
This way, it “blindly rotates” the second input – a TRLWE Sample, which
encodes (and encrypts) the Bootstrapping function in a form of a Torus poly-
nomial.

Next, SampleExtract is used to extract the constant term of TRLWE-
encrypted polynomial back into a TLWE Sample. At this point, the Sample
is usually encrypted with a different key, thus KeySwitch procedure should be
called. The keys in this proof-of-concept demo were chosen such that the pro-
cedure was not needed, and so KeySwitch was omitted.

1.2.3.1 Blind Rotate

BlindRotate is the cornerstone of Bootstrapping since this is where homo-
morphic decryption takes place, i.e., where the noise is refreshed. It inputs
the Bootstrapped TLWE Sample (a, b) in a scaled and rounded integer form
(ā, b̄) ∈ Zn+1 (details to come later). In accordance with TLWE decryption
(phase function, cf. Definition 2), BlindRotate internally calculates

−m̄ = −b̄ +
∑

ki · āi, (1.7)

where ki’s are TRGSW-encrypted under key k′(X), referred to as the Boot-
strapping keys and denoted by BKi or BKk→k′ . In BlindRotate, the (hidden)
value −m̄ emerges as a power of X, by which the other input—a TRLWE
Sample (u, v) ∈ T(N)[X]2—is multiplied. The multiplicative homomorphic
property is applied, hence (u, v) gets blindly rotated.

7



1. Preliminaries

The (possibly trivial) TRLWE Sample (u, v) encrypts a Torus polynomial
tv(X), referred to as the test vector. Its Torus coefficients encode the (rescaled)
Bootstrapping function f : ZN → T, for now and for simplicity, as

tv(k) = f(k), k ∈ [0, N − 1]. (1.8)

Enhancement of BlindRotate Zhou et al. [12] suggest to unfold the origi-
nal BlindRotate loop, which multiplies the TRLWE Sample (u, v) one by one by
Xkiāi , cf. (1.7), and group the terms by two. Bourse et al. [8] further improve
the technique by Zhou et al. by reducing the number of required encryptions
of Bootstrapping keys from 4 to 3 (per pair of key bits).

For pairs (k, k′) and (a, a′) of consecutive elements of vectors k and a,
respectively, they write

Xka+k′a′ = kk′(Xa+a′ − 1) + k(1− k′)(Xa− 1) + (1− k)k′(Xa′ − 1) + 1. (1.9)

I.e., their Bootstrapping keys consist of TRGSW encryptions of kk′, k(1− k′)
and (1 − k)k′ for each pair of bits of the global TLWE key k. The improved
algorithm is listed as Algorithm 2.

Algorithm 2 Blind Rotate Improved [2], improved by [9, 8, 12]
Input: TLWE Sample (a, b) ∈ T(n+1),
Input: TRLWE Sample P ∈ T(N)[X]2,
Input: TRGSW Samples BKi ∈ T(N)[X](2·l),2, i ∈ [1, 3/2 · n],
Output: TRLWE Sample ACC ∈ T(N)[X]2.

1: āi ← ⌊2Nai⌉ for i ∈ [1, n], b̄← ⌊2Nb⌉
2: ACC← X−b̄ · P
3: for i ∈ [1, n/2] do
4: ACC ←

(
(X ā2i−1+ā2i − 1)BK3i−2 + (X ā2i−1 − 1)BK3i−1 + (X ā2i −

1)BK3i
)
⊡ ACC + ACC

5: return ACC

1.2.3.2 Sample Extract

SampleExtract algorithm inputs the output of BlindRotate, which is a TRLWE
Sample – let us denote it (r, s) (previously ACC). Recall that (r, s) encrypts
the desired value at the constant term of its message under the key k′(X) ∈
B(N)[X]. As outlined, the goal of SampleExtract it to extract the constant
term in a form of a TLWE Sample.

First, let us write down the constant term of the message of (r, s). After
some rearrangements we get

m(0) = s(0) −
(
k(0), k(1), . . . , k(N−1))︸ ︷︷ ︸

new TLWE key k′=coeffs(k′)

·
(
r(0),−r(N−1), . . . ,−r(1)). (1.10)

8



1.2. (W)TFHE Samples

It follows that
(
(r(0),−r(n−1), . . . ,−r(1)), s(0)) is a TLWE Sample, which en-

crypts m(0) under the key k′ = coeffs(k′). SampleExtract algorithm follows
as Algorithm 3 (a slightly modified version of [2]).

Algorithm 3 Sample Extract [9]
Input: TRLWE Sample (r, s) ∈ T(N)[X]2,
Output: TLWE Sample (a0, . . . , an−1, b) ∈ T(n+1).

1: return (a, b) =
(
(r(0),−r(n−1), . . . ,−r(1)), s(0))

1.2.3.3 WTFHE Bootstrapping

Previously described procedures allow us to properly define Bootstrapping in
a form relevant to WTFHE scheme as Algorithm 4.

Algorithm 4 WTFHE Bootstrapping [9]
Input: TLWE Sample (a, b) ∈ T(n+1),
Input: TRLWE Sample P_IN ∈ T(N)[X]2,
Input: TRGSW Samples BKi ∈ T(N)[X](2·L),2, i ∈ [1, 3/2 · n],
Output: TLWE Sample (a′, b′) ∈ T(n+1).

1: P_OUT← BlindRotateIm((a, b), P_IN, BK)
2: return SampleExtract(P_OUT)

1.2.4 DNN in WTFHE
In this section, I will outline the evaluation of Neural Networks in the WTFHE
scheme. An (Artificial) Neural Network (NN) is a series of elementary building
blocks referred to as perceptrons organized in a net structure. For this thesis,
only the simplest structure of NN’s organized in layers is considered.

A perceptron P on certain layer inputs kP values from perceptrons on the
preceding layer (or NN inputs) and outputs a single value. A weight w

(P )
i is

assigned to each (i-th) input of the perceptron P . These weights, together
with the structure, define the Neural Network. The perceptron P evaluates
its kP input values (vi)kP

i=1 as follows:

evalP (vi)kP
i=1 = f

( kP∑
i=1

w
(P )
i vi

)
, (1.11)

where f is referred to as the activation function.
In WTFHE, the activation function f represents Bootstrapping with signum

function encrypted in a TRLWE Sample.

9





Chapter 2
Analysis and Design

In this chapter I will describe chosen sets of WTFHE parameters. I will also
analyze possible approaches to hardware acceleration of the WTFHE scheme –
mainly the hardware/software split in regards to volume of transmitted data.

2.1 Parameters of WTFHE
To evaluate the feasibility of WTFHE acceleration on an FPGA, a few sets
of parameters devised by Ing. Jakub Klemsa were provided to me (see Ta-
ble 2.1). The “Infant” set was used for verification only, the “Baby” set was
created afterwards for a proof-of-concept demo (see section 4) evaluating a
set of neural networks using the FPGA as an accelerator. “PI=4 Test” set
was created at the end of development to test scalability of the implemented
design. Finally, the set “Full” represents values that could be used in the
real-world deployment of WTFHE with sufficient cryptographic security.

Note that these values are subject to the current understanding of the
WTFHE scheme and are expected to change with breakthroughs in research.

2.2 Target Platform
Due to the expected amount of data processed, we decided to use the biggest
FPGA accessible to us – the Zynq-7000 SOC (part identification number is
xc7z020clg484-3, [13]). Another benefit of using Zynq SOC is in-build ARM
Core and 1GB of DDR3 memory.

Both of these features could be used in the WTFHE scheme – the ARM
core for procedures that are not worth to accelerate on hardware and the DDR3
memory to store TRGSW Samples, which are expected to be quite large.
The FPGA part also boasts 220 DPS48 modules beneficial to hardware accel-
eration as multiplication is a base operation within WTFHE.

11



2.
A

nalysis
and

D
esign

Parameters
Name “Infant” “Baby” “PI=4 Test” “Full” Description

K 1 1 1 1 Dimension of TRLWE/TRGSW
L 4 5 17 2 Depth of decomposition of TRLWE/TRGSW

GAMMA 3 3 1 9 Width of decompositon of TRLWE/TRGSW
TAU 20 22 24 28 Torus floating point precision
PI 2 3 4 4 Plain text bit size

DIM 4 4 4 860 Cipher key bit size
Derived parameters

Bg = 2GAMMA 8 8 2 512 Basis of decomposition in TRLWE/TRGSW
IOTA = GAMMA · L 12 15 17 18 Rounded Torus floating point precision

N ≥
√

(6 · (n + 1)) · 2P I−1 16 32 64 1024 Order of polynomials
NU = log2(N) 4 5 6 10 Number of bits of N

Calculated values
K + 1 2 2 2 2 Number of columns of TRGSW

(K + 1) · L 8 10 34 4 Number of rows of TRGSW
NU · TAU 80 110 144 280 TLWE size in bits

(K + 1) ·N · TAU 640 1 408 3 072 ∼57 Kb TRLWE size in bits
3
2 ·DIM · 2 · (K + 1) · L ·N · TAU ∼30 Kb ∼83 Kb ∼612 Kb ∼282 Mb TRGSW size in bits

Table 2.1: List of WTFHE Parameters

12



2.3. HW/SW Split

2.3 HW/SW Split
One of the main considerations of implementing WTFHE on the FPGA is
hardware/software split – i.e. for which parts of the scheme it is more bene-
ficial to be implemented on the FPGA (parallelizable operations) or in soft-
ware on ARM/external PC (sequential operations or parts, which do not have
a static form).

Figure 2.1 visualizes the hierarchy of operations based on their complexity
and continuity (i.e. the superior operation contains the whole inferior opera-
tion and adds additional computation). Operations listed in Figure 2.1 create
complete functional units and signify major steps in Bootstrapping evaluation.

There are two factors when deciding where to split the design. The main
one is the bandwidth requirements on the interconnect between FPGA and
ARM/CPU – AXI bus and UART/USB connection – as those are expected to
be in the order of magnitude slower than cache–core communication and slice
LUT–register–BlockRAM connection. The second factor is parallelizability as
any sequential load is expected to run faster in ARM/CPU due to the low
frequency of FPGA core.

The Table 2.2 shows the volume of data required to send over AXI/USB
connection in a hypothetical situation, that the listed operation would be ac-
celerated on FPGA, while everything hierarchically above (in the Figure 3.9)
would run in software. The first column lists the combined volume of inputs
and outputs required to run one evaluation of the listed operation. The second
column shows how many times the operation would be run in one Bootstrap-
ping operation, and the last column is the total amount of data sent. All
figures are calculated for the “Baby” set of parameters.

Note “Bootstrapping without TRGSW transmission” means that TRGSW
Samples would be saved in a local memory easily accessible from FPGA, thus
the only transmission needed is TLWE and TRLWE Samples.

Operation Volume of Number of Total volume
function data function calls for “Baby” set

[bits] [bits]
Polynomial Mult. 1 504 40 60 160
Vector-Matrix Mult. 16 448 2 32 896
External Product 16 896 2 33 792
Bootstrapping 86 108 1 86 108
Bootstrapping without 1 430 1 1 430
TRGSW transmission

Table 2.2: Volumes of Transmitted Data

Based on the volume of transmitted data, accelerating External Product,

13



2. Analysis and Design

Figure 2.1: Hierarchy of Operations

14



2.3. HW/SW Split

or Bootstrapping (without TRGSW transmission) seems like the best option.
Do note that these assumptions do not take into consideration the actual
computational time of each operation as I have no suitable method to predict
the duration of each operation.

For reference, the “hardware” and “software” denominated arrows in Fig-
ure 2.1 show the split used in final implemented version.

2.3.1 Detailed Breakdown of HW/SW Splits
The following list discusses the pros and cons of the hardware/software split at
different levels. The first term in the heading signifies everything below with
the listed entity included would be implemented in hardware, while the second
term (and everything above) would be done in software.

Polynomial Multiplication / Vector-Matrix Multiplication Polyno-
mial Multiplication (of integer and Torus polynomials, see Algorithm 5 for
more details) is an elementary operation within WTFHE scheme and as such
would be called very frequently. This highlights the advantage of FPGA as
several multiplications of coefficients can be done in parallel with the usage of
DPS48 blocks.

As in each Vector-Matrix Multiplication, there are (K + 1) · (K + 1) · L
Polynomial Multiplications, which also can be done in parallel, there are no
benefits to split Vector-Matrix and Polynomial multiplication onto different
platforms as the latency of data transmission is expected to overshadow the in-
crease in performance gained by accelerating Polynomial multiplication only.

Vector-Matrix Multiplication / External Product Vector-Matrix Mul-
tiplication is a major subset of External Product. External Product only adds
Gadget Decomposition to convert TRLWE Sample into a vector of integer
polynomials (see Algorithm 1). Gadget decomposition consists of reorder-
ing data arrays and rounding (trivial both in hardware and software) and so
both Vector-Matrix Multiplication and External Product should be done on
the same platform.

External Product / Bootstrapping During each Bootstrapping opera-
tion, a total of DIM

2 evaluations of External Product is done. For each of
those evaluations, TRGSW and TRLWE Samples are needed as inputs.

When split in such a way, that External Product is accelerated in hardware
and the rest of Bootstrapping is done in software, each call of External Product
requires to send a new TRGSW Sample as it cannot be precalculated due to
dependency on values of the current TRWE Sample (see Algorithm 2).

If both External Product and Bootstrapping are accelerated in hardware,
3·DIM

2 TRGSW Samples are needed to be sent over to FPGA and stored locally

15



2. Analysis and Design

– they cannot be generated locally on FPGA side since they encrypt the Boot-
strapping key, which is the identical to the private key due to KeySwitch pro-
cedure being omitted in this thesis. For one run of Bootstrapping this would
be slower than sending one TRGSW Sample for each External Product. But
the TRGSW Samples are static during the whole session of one user (due to
KeySwitch procedure being omitted), so as long as all 3·DIM

2 TRGSW Samples
can fit into the FPGA-accessible memory and the evaluation of the expression
on line 4 in Algorithm 2 (multiplication and summation of TRGSW Samples)
can be done with reasonable usage of FPGA resources, it is beneficial to run
Bootstrapping in hardware.

The huge decrease in transmitted data of subsequent Bootstrapping runs
while sharing TRGSW Samples can be observed in the last two rows of Ta-
ble 2.2.

Bootstrapping / Cipher Setup and Neural Network Evaluation Any
hierarchically superior operations should not be evaluated on FPGA as these
operations are private to the end-user. This consists of the encryption of
plaintext and evaluated function over said plaintext, and definitions of the
Neural Networks.

16



Chapter 3
FPGA Accelerator

In this chapter, I will describe steps taken during the implementation of
the WTFHE scheme. The whole process was iterative, starting from ele-
mentary blocks with verification after each major version and any change due
to updates in specification and improvements to underlying cipher algorithms.
In this chapter, I focus solely on implementation of the hardware part, i.e.,
Bootstrapping accelerator on an FPGA.

I have chosen VHDL language over Verilog simply by a matter of prefer-
ence. I decided to start implementation in ISE 14.7 with Nexys3 board due
to previous on-hand experience with those development tools. Nexys3 was
later exchanged for ZedBoard FPGA when it was apparent that the design
will have considerable resource requirements and also the onboard ARM chip
could be employed with encryption and process control. In addition with
the FPGA swap, I had to port the project to Vivado 2020.1 since ZedBoard
is not supported in ISE.

3.1 Parameters and Datatypes
Due to the fact, that VHDL does not have any complex data types I had to
define my own variables to represent used structures. Values of parameters
can be seen in Table 3.1 and are current as of the latest deployed version
(versions are elaborated upon in the following section).

17



3.
F

P
G

A
A

ccelerator

Fundamental data types
Torus decimal with a fixed-point presicion TAU bit wide variable of type UNSIGNED

Integer GAMMA bit wide variable of type UNSIGNED
Parameters

Name “Infant” values “Baby” values Description
NU 4 5 Number of bits of N
N 16 32 Order of polynomials

GAMMA 3 3 Width of decompositon of TRLWE/TRGSW
K 1 1 Dimension of TRLWE/TRGSW,

K + 1 is the number of columns of Bootstrapping matrices
L 4 5 Depth of decomposition of TRLWE/TRGSW,

also number of rows of Bootstrapping matrices
DIM 4 4 Cipher key bit size, n in the TFHE paper
TAU 20 22 Torus floating point precision
IOTA 12 15 Rounded Torus floating point precision

Variables
Name Implementation Description

TORUS_POLY array[N ] of Torus coefficients Torus polynomial
INT_POLY array[N ] of integer coefficients Integer polynomial

INT_POLY_SPLIT array[L] of INT_POLY Vector of integer polynomials
TORUS_POLYS array[(K + 1)] of TORUS_POLY TRLWE Sample - two Torus polynomials

TORUS_VECTOR array[((K + 1) · L)] of TORUS_POLY Vector of Torus polynomials
TORUS_MATRIX K + 1 long array of TORUS_VECTOR TRGSW Sample - Bootstrapping matrix

TLWE array[N ] of TAU bit UNSIGNED TLWE Sample
TLWE_R array[N ] of NU + 1 bit UNSIGNED Rounded down version of TLWE

Table 3.1: Set Values of Parameters

18



3.2. Version Timeline

3.2 Version Timeline
For ease of orientation, I decided to codename each step with a version number.
Below follows a brief summary of what was added/changed in each version.

v0.8 : Polynomial Multiplication

Experiments with polynomial multiplication and DSPs on Nexys3. RS232 was
chosen and tested as the communication interface.

v0.9 : Vector-Matrix Multiplication

The project was ported to Vivado and ZedBoard FPGA. Vector-Matrix mul-
tiplication was successfully synthesized and tested, although with wrong pa-
rameters due to a misunderstanding of the underlying algorithm.

v1.0 : Register based Bootstrapping

First major milestone. The Bootstrapping operation was successfully simu-
lated against reference Ruby code, but could not be synthesized due to the high
LUT/FF requirements of the design. Values of Parameters correspond to
the ”Infant” version of Bootstrapping.

v1.1 : BRAM based Bootstrapping

Previous space violations were fixed by saving input matrices into BlockRAM
and optimizing matrix storage in registers.

v1.2 : Added DSPs to Bootstrapping

Forced DSP48 instantiation which resulted in lowering resource requirements
as DSP Blocks implement multiplication internally. Fixed previously incorrect
value of TAU from 18 to 20.

v1.3 : Optimized usage of DSPs in Bootstrapping

Started using internal accumulator inside DSP48 blocks (now employing Multiply-
and-Accumulate instruction). As external accumulators are omitted, resource
requirements are further reduced.

v1.4 : Design scaled to new set of “Baby” parameters

Bug-fixing and rewriting code to be scaleable with different parameters.

19



3. FPGA Accelerator

v1.5 : Neural Network Demo

Fixed BOOTSTRAPPING entity output. Implemented C code counterpart
which used the FPGA as an accelerator for Bootstrapping function. First
Neural Network demo.

v1.6 : Communication data flow improvements

Improvements to the communication protocol, which hugely lessened the amount
of data sent over RS232 interface.

v1.7 : Pipelining

Pipelining of some datapaths to meet timing requirements for 100 MHz syn-
thesis.

20



3.3. Polynomial Multiplication

3.3 Polynomial Multiplication

Figure 3.1: Polynomial multiplication

Polynomial multiplication (Algorithm 5, entity name POLY_MULT) is
the baseline operation in Bootstrapping. Its inputs are two polynomials –
the first polynomial has coefficients from the Torus (T) and the second poly-
nomial from integers (Z). Both polynomials are of the order of N = 32. Torus
coefficients of the first polynomial are TAU = 22 bits wide and the integer
coefficients of the second polynomial are GAMMA = 3 bits wide. The out-
put is a Torus polynomial of the same order (32) and again TAU bit wide
coefficients.

The implemented design is based on the least-significant-bit binary mul-
tiplier. Figure 3.1 illustrates datapath of the implementation. As opposed
to the binary multiplier, this design has a few, but significant modifications.
Primarily, every operation is done over arrays of bits as opposed to single

21



3. FPGA Accelerator

Algorithm 5 POLY_MULT.vhd
Input: Torus polynomial T =

(
T (N−1), . . . , T (0)) ∈ T(N)[X],

Input: Integer polynomial I =
(
I(N−1), . . . , I(0)) ∈ Z(N)[X],

Input: Control signals RST and START,
Output: Torus polynomial Y =

(
Y (N−1), . . . , Y (0)) ∈ T(N)[X].

1: for i ∈ [0, N − 1] do
2: for j ∈ [0, N − 1] do
3: Y (j) ← Y (j) + (T (j) · I(i))
4: T ← NegacyclicRotate(T )
5: return Y

bits. Secondly, the bit-shifter on primary input is replaced with a negacyclic
register field. Outlined in the dashed red line is the Multiply-and-Accumulate
unit; while in case of binary multiplier a single AND gate is sufficient, in our
case we need TAU × GAMMA multiplier. MAC unit was redesigned sev-
eral times during development and I will describe it more accurately in the
following subsection.

When START signal is sent, inputs are loaded into their respective register
fields, the accumulator is reset and the internal counter is set to N−1 = 31. In
each step, Torus polynomial inside NEGACYCLIC_MEM is multiplied by a
constant coefficient of the integer polynomial (output of LSM) and the result
is added to the partial result (stored in accumulator). At the end of each
step, Torus polynomial is negacyclicaly rotated (Algorithm 6) and integer
polynomial shifted to the right (Algorithm 7). Carry bit during any operation
are discarded as the output is from the Torus field – the result is reduced
modulo 1.

In the latest implemented version, negacyclic rotation, multiplication, and
addition is calculated in one cycle (lines 3 and 4 in Algorithm 5), thus the delay
between START and DONE signals is N + 2 = 34 clock cycles – N cycles for
the multiplication, and 2 cycles of setup delay caused by the controller.

When synthesizing this design with a clock frequency exceeding beyond
100 MHz, negacyclic rotation, multiplication, and addition should be split to
separate pipeline stages to meet timing requirements.

This design is usable in this proof-of-concept demo while using relatively
small parameters of the “Baby” variant, but would quickly use up all of FPGA
resources when N is scaled beyond 64 (ZedBoard has 220 DSPs and the whole
accelerator is using 2 ·N of them – assuming one multiplication still uses only
one DSP).

22



3.3. Polynomial Multiplication

Algorithm 6 NEGACYCLIC_MEM.vhd
Input: Torus polynomial T =

(
T (N−1), . . . , T (0)) ∈ T(N)[X],

Input: Control signals RST, LOAD and PULSE, optional DIR,
Output: Torus polynomial Y =

(
Y (N−1), . . . , Y (0)) ∈ T(N)[X].

1: if LOAD = 1 then
2: Y ← T
3: else
4: if PULSE = 1 then
5:

(
Y (N−1), . . . , Y (0))← (

Y (N−2), . . . , Y (0),−Y (N−1))
6: return Y

3.3.1 Negacyclic Memory

Negacyclic Memory (Algorithm 6, entity NEGACYCLIC_MEM) holds Torus
polynomial, i.e. the first operand of polynomial multiplication. It is a series
of cyclically linked registers; each register holds one coefficient. On the clock
rising edge, the polynomial is cyclically shifted to the left. The uppermost
coefficient (xN−1) which overflows to the position of constant coefficient (x0)
is multiplied by −1 (not(x)+1 in VHDL code) – and vice versa when rotating
in the reverse direction.

This operation is equal to multiplying the whole polynomial by x1 in ne-
gacyclic set T(N)[X]. The implemented entity has an optional direction of
the shift (thus allowing to multiply by x−1), which was used during early
versions of Bootstrapping, but was deemed unnecessary later on.

3.3.2 Linear Shift Memory

Linear Shift Memory (LSM – Algorithm 7) holds the second operand – integer
polynomial. When PULSE signal is set to high, the polynomial is logically
shifted to the right (the highest coefficients are padded with zeros).

Algorithm 7 LSM.vhd
Input: Integer polynomial I =

(
I(N−1), . . . , I(0)) ∈ Z(N)[X],

Input: Control signals RST, LOAD and PULSE,
Output: Integer coefficient Y ∈ Z.

1: if LOAD = 1 then
2: Y ← I
3: else
4: if PULSE = 1 then
5:

(
Y (N−1), . . . , Y (0))← (

0, Y (N−2), . . . , Y (1))
6: return Y (0)

23



3. FPGA Accelerator

Figure 3.2: Initial implementation

3.3.3 MAC Unit

MAC Unit inside POLY_MULT entity calculates and stores the result of
line 3 in Algorithm 5. Each coefficient Y j is evaluated separately using the
parallelism of the FPGA.

3.3.3.1 Version Evolution

The design of the MAC unit saw a few changes over its lifetime. Those changes
were facilitated by a need to reduce the usage of FPGA logic cells and did not
change the functionality of the design.

Versions 0.8 – 1.1

In these versions (see Figure 3.2) I implemented the multiplication with a mul-
tiplication sign (∗) inside TORUS_MULT entity. For GAMMA = 12 and
TAU = 18 (preliminary values), the synthesis tool inferred DSP block, but
when I fixed GAMMA to correct value of 3, the synthesis tool inferred LUTs
instead. ACCUMULATOR entity was used to store the output (see Algo-
rithm 8).

Version 1.2

In this version (see Figure 3.3) I replaced multiplication sign (∗) inside TORUS_MULT
with forced instantiation of DSP48 block. The most significant bit of each in-
put had to be padded with zero bit since DSP uses signed multiplication
on its operands. This solution also limits parameters to TAU ≤ 24 and
GAMMA ≤ 17, due to DSP input size.

24



3.4. Vector-Matrix Multiplication

Figure 3.3: Optimization with DSP48 block

Version 1.3 onwards

Since version 1.3 (see Figure 3.4) I replaced both TORUS_MULT and AC-
CUMULATOR entities with an instance of DSP48 IP Core running multiply-
and-accumulate instruction. This is functionally equal to version 1.2 but saves
additional resources as the accumulator is already present inside the DSP48
unit.

3.4 Vector-Matrix Multiplication

Vector-matrix multiplication (Algorithm 9) is the next major step towards
Bootstrapping. Its inputs are a matrix of Torus polynomials (TORUS_MATRIX
– dimensions of (K + 1) · L × (K + 1) = 20) and vector of integer polynomi-
als (INT_VECTOR – dimensions of (K + 1) · L = 10). The vector-matrix
multiplicator outputs K + 1 Torus polynomials (TORUS_POLYS).

Current design is based on standard vector–matrix multiplication imple-

Algorithm 8 ACCUMULATOR.vhd
Input: Torus polynomial A =

(
A(N−1), . . . , A(0)) ∈ T(N)[X],

Input: Control signals RST and PULSE,
Output: Torus polynomial Y =

(
Y (N−1), . . . , Y (0)) ∈ T(N)[X].

1: if PULSE = 1 then
2: Y ← Y + A

3: return Y

25



3. FPGA Accelerator

Figure 3.4: Final usage of DSP48 block

Algorithm 9 Vector-Matrix multiplication
Input: Vector of integer polynomials I =

(
I(K+1)·L−1, . . . , I0

)
∈

Z(N)[X](K+1)L,
Input: Matrix of Torus polynomials T =

(
T((K+1)·L−1,K), . . . , T(0,0)

)
∈

T(N)[X]((K+1)·L),(K+1),
Input: Control signals RST and START,
Output: Vector of Torus polynomials Y =

(
YK , . . . , Y0

)
∈ T(N)[X](K+1).

1: for i ∈ [0, K] do
2: for j ∈ [0, (K + 1) · L− 1] do
3: T_OUTi ← Ij · T(i,j)

4: Yi ← Yi + T_OUTi

5: return Y

menting the equation 3.1 (also lines 3 and 4 in Algorithm 9):

∀j ∈ {0, K} : Yj =
(K+1)·L−1∑

k=0
Ik · Tk,j (3.1)

Since parameter K was permanently set to 1, thus the matrix has always
two columns and the output is always two Torus polynomials which are calcu-
lated independently, I decided to use innate parallelism of the FPGA to split
the design into two halves, each processing one column of the matrix and out-
putting one Torus polynomial (see Figure 3.5). Both halves have their own

26



3.4. Vector-Matrix Multiplication

Figure 3.5: Vector–matrix multiplication

independent counter to multiplex the inputs into single polynomials, which
are fed into an instance of POLY_MULT entity (described in subsection 3.3])
and this result is accumulated (line 4 in Algorithm 9) in a register accumulator
(I reused the same entity from Algorithm 8).

As a precaution, I added barrier synchronization consisting of simple syn-
chronous flag registers waiting for both sides to complete. This was found to
be superfluous later on as polynomial multiplication always takes the same
amount of clock cycles independent of input data. For the “Infant” set of
parameters the minimal processing time of vector-matrix multiplication is
(K +1) ·L ·34 = 340 clock cycles. Due to setup delays in controller, the overall
latency between START and DONE control signals is 352 clock cycles.

Vector-Matrix multiplication has not seen any significant implementation

27



3. FPGA Accelerator

changes throughout its development.

3.5 External Product

Figure 3.6: External product

External product (entity EXT_PROD) is an extension to the vector–
matrix multiplication. It serves as an interface between MATRIX_MULT

28



3.5. External Product

(see Algorithm 9, see also Figure 3.5) and variables calculated in Bootstrap-
ping (see Algorithm 11) where it is denoted by a ⊡ symbol.

External Product has two inputs: TRGSW Sample (a matrix) and TRLWE
Sample (two polynomials) Sample. Both are simply hooked up to the MA-
TRIX_MULT entity. The second input, TRLWE Sample is split inside POLY_SPLIT
(Algorithm 10) into a vector of smaller integer polynomials. Implemented dat-
apath can be seen in Figure 3.6.

3.5.1 Polynomial Split
Polynomial splitter (POLY_SPLIT) splits input Torus polynomial into a vec-
tor of L integer polynomials. Both input and output polynomials have an or-
der of N . Torus coefficients are TAU = 22 bit wide, while integer coefficients
are being only GAMMA = 3 bits wide.

Algorithm 10 Polynomial split
Input: Torus polynomial T =

(
T (N−1), . . . , T (0)) ∈ T(N)[X],

Output: Vector of integer polynomials I =
(
YL−1, . . . , Y0

)
∈ Z(N)[X]L.

1: T̄ (i) ← ⌊2IOT A · T (i)⌉ for i ∈ [0, N − 1]
2: for i ∈ [0, N − 1] do
3: for j ∈ [0, L− 1] do
4: I

(i)
L−1−j ← T̄ (i)[(GAMMA + 1) · j − 1 downto GAMMA · j]

5: return I

Firstly, every coefficient of the Torus polynomial is converted to a IOTA
wide integer. Conversion is done by multiplying the coefficient by 2IOT A and
rounding the decimals to the nearest integer (line 1 in Algorithm 10). In
VHDL, I simply extracted IOTA most significant bits and the result summed
with (IOTA + 1)th bit.

Next, each IOTA bit integer was split into L parts, each having GAMMA
consecutive bits. The first part held GAMMA most significant bits, the sec-
ond part held next GAMMA bits etc.

Those parts were then rearranged into the output vector. J th part of ith

coefficient of the integer polynomial was saved into ith coefficient of (L−1−j)th

polynomial in the vector (line 4 in Algorithm 10).
So, the 0th polynomial in the vector now holds GAMMA most significant

bits of the integer polynomial (which are original Torus coefficients modulo
1
8), the 1st polynomial holds next GAMMA most significant bits (so modulo
1
82 on the remainder of the previous operation) and so on.

Since each entity POLY_SPLIT takes only one polynomial, I used two
parallel instances of them for both polynomials in EXT_PROD and merged
their outputs to a single INT_VECTOR datatype.

29



3. FPGA Accelerator

3.6 Bootstrapping
The aim of this work was to implement operation Bootstrapping on an FPGA.
I denoted the first implementation, which was successfully verified in simula-
tion, as version 1.0. The generalized block schema of the implementation can
be seen in Figure 3.7. Version 1.0 could not be synthesized into real hardware
due to high resource usage and had to be improved with subsequent versions.

I will explain the implementation of each step of the Bootstrapping Algo-
rithm in the following subsections. For simplification and clarification I have
rewritten the Algorithm 4 into the version depicted as Algorithm 11.

Algorithm 11 Bootstrapping
Input: TLWE Sample (a0, . . . , aDIM−1, b) ∈ T(DIM+1),
Input: TRLWE Sample P_IN ∈ T(N)[X](K+1),
Input: DIM · 3/2 TRGSW Samples BK ∈ T(N)[X]((K+1)·L),(K+1),
Input: Control signals RST, START and BRAM Interface,
Output: TLWE Sample (a0, . . . , aDIM−1, b) ∈ T(DIM+1).

1: āi ← ⌊2NU+1 · ai⌉ for i ∈ [0, DIM − 1], b̄← ⌊2NU+1 · b⌉
2: ACC ← X−b̄ · P_IN
3: for i ∈ [0, (DIM

2 )− 1] do
4: MAT ← (

(
(X ā2i−1+ā2i − 1)BK3i−2 + (X ā2i−1 − 1)BK3i−1 +

(X ā2i − 1) BK3i
)

5: EXT_PROD ←MAT ⊡ ACC
6: ACC ← EXT_PROD + ACC

7: return SampleExtract(ACC)

In version, 1.1, I redesigned BOOTSTRAPPING entity to employ Block-
RAM IP Core to store input TRGSW and TRLWE Samples. I also renamed
the entity to BOOTSTRAPPING_RAM to signify significant changes done
to the design. Updated schema can be seen on Figure 3.8.

In the following text, I will describe every sub-unit of the Bootstrapping
entity.

3.6.1 TLWE Rounding
Entity TLWE_ROUNDING evaluates the line 1 of Algorithm 11:

āi ← ⌊2NU+1 · ai⌉ for i ∈ [0, DIM − 1], b̄← ⌊2NU+1 · b⌉ (3.2)

For simplification, the datatype of TLWE (input) and TLWE_R (output)
both hold all ai and b variables in a single array. Similarly as the multiplication
and rounding in POLY_SPLIT (Algorithm 10), I implemented this operation
by extracting NU + 1 most significant bits of each operand and summed with
(NU + 2)th bit. This rounding gives an upper bound on the value of each

30



3.6. Bootstrapping

operand of 2NU+1−1. This is beneficial, as rotating the polynomial by 2NU+1

steps would result in an identity.

Figure 3.7: Bootstrapping datapath – Version 1.0

31



3. FPGA Accelerator

Figure 3.8: Bootstrapping with integrated BlockRAM – Version 1.1 onwards

3.6.2 Polynomial Multiplication by a Monomial
(POLY_EXP)

Polynomial multiplication by a monomial (entity name POLY_EXP) serves
the purpose of storing TRLWE Sample (two Torus polynomials) multiplied
by a monomial with exponent given as a parameter – operation on line 2 in

32



3.6. Bootstrapping

Algorithm 11:

ACC ← X−b̄ · P_IN (3.3)

Since we are working with negacyclic polynomials, multiplying the poly-
nomial by X−b̄ is done by negacyclic rotation of the polynomial by b̄ positions
to the right (when the coefficient of the highest order is on the left).

Version 1.0

In the first version, I reused entity NEGACYCLIC_MEM (see Algorithm 6)
to rotate both polynomials at once. The number of steps was controlled by
a counter which initialized to a value of b. The computational time was then
b+1 clock cycles. Since −b̄ is negative in this step, I used the optional control
signal DIR in NEGACYCLIC_MEM to rotate to the right.

This optional direction control was primarily for simplification as the same
result could be calculated by rotating the array by 2·N− b̄ positions to the left
instead.

Version 1.1 onwards

In version 1.1 I added BlockRAM to store TRLWE Sample P_IN (Figure 3.8).
With the BlockRAM I couldn’t access the whole polynomial at once and
a better approach was to sequentially process all coefficients and save them in
a correct “spot”. I came up with the following solution:

ACC
(k−b̄)(mod N)
i ← DATA (3.4)

Where ACC is a register array of TORUS_POLYS data-type, i is the index
of a polynomial in TRLWE, k is the degree of coefficient, b̄ is the value of
the exponent of a monomial and DATA is the current output from BlockRAM.

Coefficients of TRLWE Samples are read from addresses specified by a pa-
rameter POLY_START (0xF3F) decreasing down to MATRIX_HIGH+1 (0xF00)
– ((K +1) ·N) = 10 values in total (see subsection 3.6.7 for more info on RAM
organization).

Each input is passed along with the current value of counter decrementing
from (K + 1) ·N − 1 = 63 down to zero.

The calculated exponent ((k − b̄) in the equation 3.4) is used to index a
location within the output array (ACC) and is calculated as follows:

IDX ≡
(
CNTR(mod N)− b̄

)
(mod 2 ·N), (3.5)

where CNTR is the current value of the counter, and b is the exponent given
as a parameter.

33



3. FPGA Accelerator

(NU + 1)th least significant bits of IDX and b are used to detect over-
flow/underflow of coefficients during negacyclic rotation. When FLAG = 1,
DATA is multiplied by −1 (not(DATA)+1 in VHDL) before storing.

FLAG = BitXOR(IDX[NU ], b̄[NU ]) (3.6)

The final location within ACC array is determined by a bit extraction:

• D = IDX[NU-1 downto 0] : Degree of a coefficient

• P = CNTR[NU] : Index of the polynomial (one of two so one bit is suffi-
cient)

• ACC[P][D] = DATA : Storage of the input

The change from register fields in version 1.0 to sequential reading from
BlockRAM in version 1.1 prolonged computational time from b + 1 to (K +
1) ·N = 64 clock cycles.

3.6.3 Matrix Accumulator
Matrix accumulator (MATRIX_ACC) is an entity which accumulates the re-
sult of the equation 3.7 on the line 4 in Algorithm 11:

MAT ←
(
(Xa2i−1+a2i − 1)BK3i−2 + (Xa2i−1 − 1)BK3i−1 + (Xa2i − 1)BK3i

)
(3.7)

Matrix accumulator was during development very similar to the POLY_EXP
described in subsection 3.6.2.

Version 1.0

In the first implementation in version 1.0, MATRIX_ACC was split between
several entities as shown in Figure 3.9). I used the same approach to calculate
the result of Xai ·BKi by reusing NEGACYCLIC_MEM in a similar fashion
as in POLY_EXP – rotating each polynomial inside the matrix by ai steps
to the left. This operation was put into a separate entity called MAT_EXP
(×(Xai) blocks in Figure 3.9).

Entities MAT_ADD (Σ blocks in Figure 3.9) and MAT_SUB(− blocks in
Figure 3.9) calculated the addition and subtraction of the whole matrix data
structure. I used embedded parallel loops to iterate over every coefficient, with
addition and subtraction written in simple + and − signs respectively. Since
operands are again from the Torus field, overflow bits were discarded. The
output of those two entities was synchronous with the rising edge of the clock.
Detailed block schema of the datapath is visualized in Figure 3.9.

This version was quite fast, the total duration of the calculation was only
max(a2i−1 + a2i, a2i−1, a2i) + 3 cycles, but was extremely demanding on slice
usage in the FPGA as every matrix was stored in a separate register array.

34



3.6. Bootstrapping

Figure 3.9: Detail of MATRIX_ACC in version 1.0

Version 1.1 onwards

In version 1.1 I have removed previous entities MAT_EXP, MAT_ADD, and
MAT_SUB and merged them into one entity named MAT_ACC, which com-
bines functionality of the previous blocks.

MAT_ACC is based on the same principle as POLY_EXP in version
1.1 (see subsection 3.6.2). Since BlockRAM has two clock cycles read delay
between inputting an address and reading out the data, I decided to process
three matrices sequentially in each pass.

The coefficients of the three matrices used in each loop are saved se-
quentially on adresses from 0x000 to 0x77F (MATRIX_LOW) (BKi for i ∈
[0, 2]) and from 0x800 (MATRIX_LOW+1) to 0xEFF (MATRIX_HIGH)
(BKi for i ∈ [3, 5]) for a total of six TRGSW Samples (see subsection 3.6.7 for
more info on RAM organization).

The equation on line 4 in Algorithm 11 was split into two following phases.
The phases are controlled by EN_EXP (Phase 1) and EN_SUB (Phase 2)
control signals.

35



3. FPGA Accelerator

Phase 1 : Polynomial Multiplication by a Monomial

In the first phase I accumulated the result of the equation 3.8:

MAT ←
(
(Xa2i−1+a2i)BK3i−2 + (Xa2i−1)BK3i−1 + (Xa2i)BK3i

)
(3.8)

The equation is somewhat identical to the previous one used in POLY_EXP
(see subsection 3.6.2), only in this case the operands are matrices of polyno-
mials (TRGSW) and coefficients are summed instead of overwritten. Due to
this reason, this section of implementation is largely identical to version 1.1
implementation of POLY_EXP (see subsection 3.6.2).

The implementation of my design which implements the equation 3.8 can
be simplified as follows:

MAT
(k+a)(mod N)
i,j += DATA, (3.9)

where MAT is a register array of TORUS_MATRIX data-type, i and j are in-
dices of rows and columns respectively, k is the degree of coefficient, a the cur-
rent exponent of a monomial and DATA is the current output from Block-
RAM.

Total of 3·(K+1)·(K+1)·L·N−1 = 1919 inputs are read from BlockRAM
representing all coefficients of the three BK matrices in each loop iteration.
The location of the last coefficient in BlockRAM is specified by parameters
MATRIX_HIGH and MATRIX_LOW (see subsection 3.6.7 for more info on
RAM organization).

I reused the procedure from 1.1 version of POLY_EXP (see subsection 3.6.2)
to calculate the correct exponent:

IDX ≡
(
CNT_COEFF(mod N) + a

)
(mod 2 ·N) (3.10)

and to detect underflow/overflow in negacyclic rotation:

FLAG = BitXOR(IDX[NU ], b[NU ]) (3.11)

Since the value of parameter L is usually not a power of 2, I had to use
multiple additional counters to make the design scaleable.

• CNT_MAIN : Counting from 3 · (K + 1) · (K + 1) · L ·N − 1 = 1919 down
to 0; counting number of coefficients read from BlockRAM,

• CNT_DIM : Counting from DIM
2 −1 = 1 down to 0; number of blind rotate

loops,

• CNT_MAT : Counting from 2 down to 0; number of matrices processed in
each blind rotate loop,

36



3.6. Bootstrapping

• CNT_COEFF : Counting from (K + 1) · (K + 1) · L ·N − 1 = 639 down to
0; indexing coefficients of currently processed matrix.

The final location within MAT array is determined by a bit extraction:

• D = IDX[NU-1 downto 0] : The degree of a coefficient

• R = CNT_COEFF[NU+ROW_WIDTH downto NU+1] : The row index in the ma-
trix, 2ROW_WIDTH ≥ (K + 1) · L

• C = CNT_COEFF[NU] : The column index in the matrix

• MAT[C][R][D] += DATA : Storage of the input

Phase 2 : Matrix Subtraction

In the second phase I calculated the remainder of the expression 3.7:

MAT ←MAT −BK3i−2 −BK3i−1 −BK3i (3.12)

The algorithm of my design is as follows:

MAT k
i,j −= DATA (3.13)

This equation is a simplified form of Phase 1 without evaluation of a coeffi-
cient’s final degree. As such, there is no need to calculate any special index
and possibly invert DATA.

Thus I used only bit extraction to subtract the input in a given location
within MAT array:

• D = CNT_COEFF[NU-1 downto 0] : Degree of a coefficient

• R = CNT_COEFF[NU+ROW_WIDTH downto NU+1] : Row index in the ma-
trix, 2ROW_WIDTH ≥ (K + 1) · L(= 6)

• C = CNT_COEFF[NU] : Column index in the matrix

• MAT[C][R][D] -= DATA : Subtraction of the input

3.6.4 External Product
The TRGSW Sample calculated in the previous step MATRIX_ACC (see sub-
section 3.6.3) and TRLWE Sample held in the ACC block was passed along to
an instance of EXT_PROD entity to calculate line 5 in Algorithm 11. The
output is again TRLWE Sample.

EXT_PROD ←MAT ⊡ ACC (3.14)

Note that operation External product is denominated by the symbol ⊡.

37



3. FPGA Accelerator

3.6.5 Poly ADD

The last operation of one for the cycle is line 6 in Algorithm 11.

ACC ← EXT_PROD + ACC (3.15)

The sum is calculated inside entity POLY_ADD (marked with Σ symbol on
Figure 3.7). Both inputs and output are TRLWE Samples.

Parallel for loop iterates over all coefficients. Adders are again synchronous
with the rising edge of the clock.

3.6.6 Sample Extract

The last operation to obtain desired result from Bootstrapping is called Sample
Extract (line 7 in Algorithm 11). The Algorithm 12 was quite straightforward
to implement in VHDL as it consists only of extraction of several coefficients.
The whole entity consists of one generate loop extracting needed coefficients
and reorganizing them into the TLWE data structure.

Algorithm 12 SampleExtract
Input: TRLWE Sample T = (r, s) ∈ T(N)[X](K+1),
Output: TLWE Sample (a0, . . . , aDIM−1, b) ∈ T(DIM+1).

1: return (a, b) =
(
(r(0),−r(DIM−1), . . . ,−r(1)), s(0))

When I first implemented this Algorithm in version 1.0 I made en error
and returned (N + 1) total coefficients - (a′, b′) =

(
(−r(N−1), . . . ,−r(1)), s(0)).

I discovered and fixed this error in version 1.5 which lowered LUT and FF
usage by almost 2%.

3.6.7 BlockRAM Organization

BlockRAM was added in version 1.1 to store majority of input data. To
simplify the usage of BlockRAM I choose to organize the data in following
arrangement:
0x000 to 0x01F: N coefficients of the polynomial in the first column and
first row of the first TRGSW Sample – coefficients with higher degree are saved
to a higher adress
0x000 to 0x03F: first row of polynomials of the first TRGSW Sample
0x000 to 0x2F7: first TRGSW Sample
0x000 to 0x77F (MATRIX_LOW): lower three TRGSW Samples
0x800 to 0xEFF (MATRIX_HIGH): higher three TRGSW Samples
0xF00 to 0xF1F: N coefficients of the first polynomial of a TRLWE Sample
0xF00 to 0xF3F (POLY_START) : TRLWE Sample

38



3.7. Main

All the data is stored sequentially without any padding, i.e. the last co-
efficient of the first polynomial on address 0x01F, the constant coefficient of
the following polynomial is saved on address 0x020, etc.

The total amount of memory used is:

(
DIM · 3

2
· (K + 1) ·L · (K + 1) ·N + (K + 1) ·N

)
· TAU = 85888 bits (3.16)

In BlockRAM IP customizer I used a read/write width of 32 bits (≥ TAU)
and depth of 4092 (thus address has 12 bits). This gives memory size of
32 · 4096 = 131072 bits. Expected BlockRAM usage was four 36K BRAM
blocks, but during synthesis, the synthesis tool reduced the usage down to
three 36K BRAM blocks (as the real used read/write width is only 22 bits).

In the entity BOOTSTRAPPING, I brought out BlockRAM interface as
a set of ports so I could write into the memory from outside of the entity.

3.6.8 Pipelining
In version 1.7 I attempted to optimize the design to meet the timing re-
quirements of 100 MHz clock cycle frequency. In entity BOOTSTRAPPING
I added additional pipeline stages to two locations:
P_REG_DELAY: Added additional registers to store TRLWE Sample (TORUS_POLYS)
between the output of ACC registers and input to EXTERNAL_PRODUCT
entity. EXTERNAL_PRODUCT now starts one cycle later.
MATRIX_ACC Delay: Input data, all control signals, and index calcula-
tions inside MATRIX_ACC entity were delayed by one clock cycle.

This improvement added about 3% usage of slice registers, but decreased
LUT usage by around 1.5% compared to version 1.6 (see Table 6.1).

3.7 Main
Entity MAIN encompasses this whole project and is the top-level module that
is synthesized into a bitstream. The entity provides interface between external
UART connection and inner Bootstrapping (see Algorithm 11) accelerator.
Block schema of the implementation is shown in Figure 3.10.

3.7.1 RS232
RS232 standard was chosen as the communication protocol mainly for its
simplicity. This standard is implemented in the entity RS232, which was
provided to me by my supervisor.

Implemented RS232 uses two data wires RxD and TxD for external con-
nection. Internal input and output are 8 bit wide and parity bits were not
used. The interface runs at a baud rate of 115200 (parametrizable).

39



3. FPGA Accelerator

Figure 3.10: Top level MAIN entity

With Nexys3 FPGA, TxD, and RxD pins from RS232 were directly con-
nected to an onboard micro-B USB port. The ZedBoard FPGA has an built-in
UART controller, which is accessible from the ARM programming side. As
the ARM core was not used in this project, I extended TxD and RxD ports
to the Pmod connector, which was then wired to an external USB UART-to-
RS232 converter.

40



3.7. Main

3.7.2 Splitter and Merger

SPLITTER and MERGER are two entities that I created to simplify the con-
nection between RS232 and the currently verified entity.

On every data arrival from the receiver side in RS232, entity MERGER
concatenated 8 received bits into an array of 32 (NO_OF_INPUT_BITS)
bits – a value of parameter NO_OF_INPUT_BITS has to always be a mul-
tiple of RS232 data width. Signal DONE is set to high every time a total
of 32 bits are received. Formally output data are valid only for one cycle
as the data are rewritten each time receiver receives additional input. I set
NO_OF_INPUT_BITS to 32 bits as the input can now be easily repre-
sented with an integer data type and its hexadecimal representation is human-
readable.

Entity SPLITTER works the opposite way. When the control signal SEND
is high, NU ∗32 (NO_OF_OUTPUT_BITS) bits are loaded into the internal
array and subsequently sent in 8-bit chunks to the transmitter in RS232. Value
NU ∗32 is equal to the size of TLWE Sample with each coefficient padded to 32
bits. I did not bother to pre-parse the TLWE Sample to single coefficients in
MAIN as they would be split into 8-bit chunks in SPLITTER either way and
the functionality to split the array of bits was already built-in in the entity.

3.7.3 Communication Protocol

In this section, I will describe my communication protocol to control the op-
eration of the FPGA. I implemented this protocol in version 1.6.

I have created 3 control codes:
0x4D4F4F4E: set FPGA to receive all 6 TRGSW Samples and save them
into BlockRAM
0x594F4C4F: set FPGA to receive TRLWE and TLWE Samples, evaluate
operation Bootstrapping and return TLWE Sample
0x484F4C44: abort current operation and reset FPGA to default state (does
not clear contents of BlockRAM)

The values of those 3 control codes are completely arbitrary. Control codes
differentiate from normal input data by setting the most significant byte to
a non-zero value as every other input is only TAU = 22 bits wide and padded
with zeros to 32 bits.

Status LEDs indicate the current state of the embedded controller on the
lower 4 LEDs and the 4 least significant bits of counter on the 4 upper LEDs.
On startup, the device initialized to a STARTUP state (indicated by only
LED0 being on) and will not react to any input until switch SW0 is toggled
on and off (LED1 turns on, LED0 turns off).

41



3. FPGA Accelerator

3.7.4 PLL
In version 1.5 timing requirements of the clock frequency of 100 MHz could
no longer be met. I solved this by routing the CLK signal generated from
the onboard crystal oscillator into the PLL circuit. I have chosen to halve
the clock frequency down to 50 MHz as I was sure this would create enough
leeway for synthesis without excessively slowing down the circuit. In version
1.7 I improved the circuit by adding pipeline stages to strategic places and
raised the clock frequency back to 100 MHz. The increase in clock frequency
didn’t have much of an impact on the overall speed of the accelerator (see
Table 6.4).

42



Chapter 4
Demo Application

From the first version in ISE until Vivado version 1.4 I used the terminal.exe
application on my Windows 10 operating system to send and receive data
from the FPGA. Due to some fault (I believe some kind of buffering) I had
to manually paste input data into the application instead of reading the data
from an input file, as the FPGA would not receive all information and would
return unusable results. As expected, this approach was quite prone to errors.

In version 1.5 I have written an application in C code to handle the trans-
mission of data in and out of the FPGA (see enclosed file ./c_code/wtfhe.c).

The C language was chosen since I aimed to run the code related to
the WTFHE scheme on the built-in ARM core inside the ZedBoard SOC.
The transfer to the ARM core was not carried out due to time constraints.
Note that I renamed the names of variables in the snippets of the C code
shown below for clarity sake.

4.1 Neural Network Demo
A small-scale Artificial Neural Network using the WTFHE scheme was chosen
as a proof-of-concept demo. The flowchart on Figure 4.1 visualizes the se-
quence of implemented operations. I will elaborate upon each method below.
Note the method send_TRGSW() was called at different points during major
versions of the software, see section 4.1.4.

Evaluation of NN Matrices
I will explain how the WTFHE scheme is incorporated into the Neural Network
evaluation with the help of Figure 4.2.

I used identical Neural Networks as in Jakub Klemsa’s neural-baby-demo.rb (see
enclosed file in ./Ruby/app/demo/ directory), which also served for verifica-
tion. The Neural Network has three layers, the first layer with five perceptrons,
the second layer with two and the last third layer with three perceptrons. Each

43



4. Demo Application

Figure 4.1: Demo flowchart

perceptron uses Bootstrapping as its activation function, so this gives ten runs
of Bootstrapping operation on FPGA.

Weights of perceptrons are integers in range of [0, 2P I − 1] with the same
values as in neural-baby-demo.rb. The weights are stored in matrices with
dimensions given by a number of perceptrons in each layer and the number

44



4.1. Neural Network Demo

x1 · w1 Σ f

Bootstrapping
y

TLWE
Sample

x0 · w0

...

xn · wn

Weights

TLWE Sample

Figure 4.2: Perceptron in WTFHE scheme

of TLWE samples evaluated. The weights are arbitrary and only serve for
demonstration purposes.

Plain text has a length of three. After encryption into TLWE samples the
coefficients are represented as a matrix of Torus coefficients. This matrix is
multiplied by a corresponding weight matrix to evaluate the output of the
propagation function of every perceptron in a given layer at once. Since the
elements of the resulting matrix are Torus coefficients I modulate them back
into the 2T AU range.

A final step is evaluation of a activation function. For encrypted data this
is call of the Bootstrapping function on the FPGA, and for unencrypted it is
a signum function.

4.1.1 Encryption and Decryption

Functions encrypt() and decrypt() mediate the encryption (decryption) of
plain text into (from) TLWE Sample.

Encryption

Encryption is defined as follows:

b = m + k · a + e (4.1)

where m is plain text, k is a binary masking key, c = (a, b) is a TLWE sample
(i.e. TRLWE sample with polynomial degree N = 1) and e is random noise.

Plain text is an integer in the range of [0, 2P I − 1]. To convert a plain text
value into a Torus representation I shifted it to the left by TAU − PI bits.

Binary masking key k is a vector of length DIM = 4 generated (currently
static values for testing purposes) at the cipher setup. a is a vector of Torus
members of the same length (DIM) and is randomly generated with each
encryption.

45



4. Demo Application

Values of k and a are multiplied in a loop and summed to a shifted plaintext
value to calculate b – the result of the encryption. Note that the result is again
a Torus member, thus it is clamped back into range of [0, 2T AU − 1]

The final operation is adding the noise e. The noise is random value
in range [−1, 1] (Torus value represented as an integer – i.e. decimal value
of ± 1

2T AU ).
A snippet of my implementation in C is shown in Listing 4.1.

Listing 4.1: Encryption in C
1 // Init a_i with random values
2 for (int i = 0; i < DIM; i++) {
3 tlwe[i] = rand() % (1 << TAU);
4 }
5 // Init b to plain text value
6 tlwe[DIM] = pt << (TAU - PI);
7 // b += k_i * a_i
8 for (int i = 0; i < DIM; i++) {
9 tlwe[DIM] += key[i] * tlwe[i];

10 }
11 tlwe[DIM] += (rand() % 3) - 1; // Add noise <-1,0,1> (e)
12 tlwe[DIM] = tlwe[DIM] % (1 << TAU); // Clamp to <0, 2^TAU>

Decryption
Decryption is the reverse operation to encryption and is defined as follows:

m = b− k · a (4.2)

where m is plain text, k is a binary masking key and c = (a, b) is a TLWE
sample.

The order of operations is in reverse compared to encryption. After the
decryption, we are left with plain text with a non-zero amount of noise (i.e.
m + e). Thus, before converting decrypted plain text from its Torus represen-
tation back into an integer, I extracted (PI +1)th bit and used it for rounding
to the nearest integer.

Listing 4.2: Decryption in C
1 // Init m to b
2 unsigned int pt = tlwe[DIM];
3 // m -= k_i * a_i
4 for (int i = 0; i < DIM; i++) {
5 pt -= key[i] * tlwe[i];
6 }
7 pt = pt % (1 << TAU); // Clamp to <0, 2^TAU>
8 // Extract first decimal bit
9 unsigned int decimal = (pt >> (TAU - PI - 1)) & 1;

10 pt = pt >> (TAU - PI); // Convert from Torus to int
11 pt += decimal; // Round to a nearest integer
12 return pt % (1 << PI); // Clamp plain text to <0, 2^PI-1>

46



4.1. Neural Network Demo

A snippet of my implementation in C is shown in Listing 4.2.

4.1.2 Function Encryption
Method encrypt_fn() encrypts function selected for evaluation into a TRLWE
sample. Chosen function is encoded in a 2P I−1 long array of unsigned integers
in range [0, 2P I − 1]. Elements of this array hold result of function evaluation
at points 0, 1, . . . (i.e. f [0], f [1], . . .). In this demo application I use signum
function with values (0, 1, 1, 1), which is one of the possible Neural Network
activation functions.

Before usage in Bootstrapping the function, values have to be converted
into a TRLWE sample. Since the function is known at the start, the first
polynomial is zero-ed out. The second polynomial in TRLWE sample will hold
unencrypted values of the provided function.

Each element of the original array is duplicated N
2P I−1 times behind each

other to get N = 32 values. Those values are then negacyclically rotated to
the left by 2P I−1 positions. This operation is equal to centering the duplicated
values over the original set point.

Snippet of my implementation in C is shown in Listing 4.3.

Listing 4.3: Function encryption in C
1 // Extend the array
2 for (int i = 0; i < pow(2, PI - 1); i++) {
3 for (int j = 0; j < N / pow(2, PI - 1); j++) {
4 tmp[(i * N) / (int)pow(2, PI) + j] = signum[i] % (1 << PI);
5 }
6 }
7 // Center the array
8 for (int i = 0; i < N; i++) {
9 trlwe_inst[1][i] = // Line split

10 = tmp[(i + N / (int)pow(2, PI)) % N] << (TAU - PI);
11 trlwe_inst[0][i] = 0;
12 }

4.1.3 Generation of Bootstrapping Matrices
For security reasons, a new set of TRGSW samples (Bootstrapping matrices)
should be generated for every user session. For clarity reasons I decided to
split gen_TRGSW method into three parts.

The instantiation starts by preparing the keys. The private binary key of
length DIM is extended to a polynomial of the order of N . This is done by
padding the first N −DIM = 28 coefficients with a zero. The same private
key is also used to calculate Bootstrapping keys – by multiplying pairs of
the key to create triplets. A snippet of my implementation in C is shown in
Listing 4.4.

47



4. Demo Application

Listing 4.4: Initialization of TRGSW keys
1 // Extend the key
2 polynomial ext_key;
3 for (int i = 0; i < N - DIM; i++) {
4 ext_key.coeff[i] = 0;
5 }
6 for (int i = 0; i < DIM; i++) {
7 ext_key.coeff[N - DIM + i] = key[i];
8 }
9

10 // Create key tripplets
11 unsigned int b_keys[DIM * 3 / 2];
12 for (int i = 0; i < DIM / 2; i++) {
13 b_keys[i * 3] = key[i * 2] * key[i * 2 + 1];
14 b_keys[i * 3 + 1] = key[i * 2] * (1 - key[i * 2 + 1]);
15 b_keys[i * 3 + 2] = (1 - key[i * 2]) * key[i * 2 + 1];
16 }

After all the keys are initialized, the first column of the matrix is filled with
random noise. The second column is then filled row by row by multiplying
the polynomial in the first column by the extended key. The multiplication is
negacyclic and all coefficients are modulo 2T AU .

Again, a snippet of my implementation can be seen in Listing 4.5.

Listing 4.5: Initialization of TRGSW Samples
1 // Init first column to random noise
2 for (int il = 0; il < (DIM * 3 / 2); il++) {
3 for (int j = 0; j < (K + 1) * L; j++) {
4 for (int i = 0; i < N; i++) {
5 matrices[il].poly[0][j].coeff[i] = rand() % (1 << TAU);
6 matrices[il].poly[1][j].coeff[i] = 0;
7 }}}
8
9 // Calculate second column

10 for (int il = 0; il < (DIM * 3 / 2); il++) {
11 for (int j = 0; j < (K + 1) * L; j++) {
12 // Multiply 1st column with extended key
13 poly_multiply(matrices[il].poly[0][j], // Line split
14 ext_key, &matrices[il].poly[1][j]);
15 for (int i = 0; i < N; i++) {
16 // Add noise <-1,0,1>
17 matrices[il].poly[1][j].coeff[i] += (rand() % 3) - 1;
18 }
19 }}

The last step is adding the Gadget Matrix (see Algorithm 1) to the TRGSW
Samples. Since the key is binary, the Gadget matrix is added only to the
TRGSW Samples which have a non-zero Bootstrapping key. Snippets of the
code follows in Listing 4.6.

48



4.1. Neural Network Demo

Listing 4.6: Adding the Gadget Matrix
1 // Add gadget matrix
2 unsigned int gadget = 1 << (TAU - GAMMA * L);
3
4 for (int i = 0; i < L; i++) {
5 for (int j = 0; j < DIM * 3 / 2; j++) {
6 if (b_keys[j] != 0) {
7 for (int ii = 0; ii < K + 1; ii++) {
8 matrices[j].poly[ii][L-i-1+ii*L].coeff[0]
9 += gadget * b_keys[j];

10 }
11 }
12 }
13 gadget = gadget << GAMMA;
14 }

4.1.4 Communication Protocol

For the most part, communication with the FPGA consists of sending and re-
ceiving compute data. I haven’t used any status messages and FPGA does not
send any feedback except for the result of Bootstrapping operation. I added
three control signals to manage what data were sent in version 1.6. to lessen
communication overhead.

I have written three separate methods in the C code to send the data
over (send_TRGSW(), send_TRLWE(), send_TLWE()) and one to receive the
result (read_TLWE()). All these four methods iterate over every member of
its given data class. Torus members of TAU = 22 bits are represented in 32-
bit unsigned integers and since I use 8-bit data width in UART I split them
into four parts of 8 bits before sending (and receiving) them over.

Technically I needed to send/receive only 24 bits (the lowest whole multiple
of 8) instead of all 32. I choose to keep 32 bits simply because their hexadec-
imal representation is much more human-readable. Lowering the data size
to 24 bits would speed up transaction speed, but would require a new set of
control codes discussed in section 4.1.4.

Version 1.5

In the version 1.5 I called all three methods (send_TRGSW(), send_TRLWE(),
send_TLWE()) to send compute data over to FPGA to initialize the computa-
tion of each Bootstrapping operation.

This resulted in a huge communication overhead as the majority of the
data is in the TRGSW samples (∼ 15kB ouf of ∼ 16kB), which are static
during the evaluation of the whole Neural Network. I had to send TRGSW
samples, since FPGA expected TRGSW, TRLWE and TLWE samples in this
order to begin Bootstrapping.

49



4. Demo Application

Version 1.6 Onwards

To control dataflow over RS232 I created 3 control codes:
0x4D4F4F4E: set FPGA to receive all 6 TRGSW samples and save them

into BlockRAM
0x594F4C4F: set FPGA to receive TRLWE and TLWE samples, evaluate

operation Bootstrapping and return TLWE sample
0x484F4C44: abort current operation and reset FPGA to default state

(does not clear contents of BlockRAM)
The codes 0x4D4F4F4E and 0x594F4C4F are sent first in send_TRGSW()

and send_TRLWE() respectively. As the FPGA expects TRLWE and TLWE
samples right after each other I did not add any control signal into send_TLWE()
method.

Due to this change send_TRGSW() is called only once during cipher setup
and I need to call send_TRLWE(), send_TLWE() and read_TLWE() only once
for each Bootstrapping operation. This resulted in a significant speed-up (see
Table 6.4).

50



Chapter 5
Simulation and Verification

An integral part of the implementation was the verification of the design.
I used testbench files to check the validity of newly created entities and also
redesign changes in those entities in between each major version.

5.1 Testbench Flowchart

The verification was done against a reference implementation in Ruby provided
by Ing. Jakub Klemsa (see enclosed files in ./ruby/app/). I used his ruby
code was used to generate test data and the results were compared against the
output of my circuit. I used either assert instructions in simulation or visual
comparison to verify the correctness of the calculation.

All testbench files share one overarching structure visualized in Figure 5.1.
Firstly, all inputs are loaded from their respective files and brought to the input
of the currently verified entity. START signal is sent afterward. Blocking wait
until follows for signal DONE. When signal DONE is received, series of assert
signals compare the result against expected values.

5.2 Version 0.8 with Nexys3 and ISE

I started writing testbench files in the ISE project directly after the creation
of few first entities. Note that these files were not maintained, the original
files from the old ISE project were discarded and are no longer available.

TB_NEGA: Testbench file for NEGACYCLIC_MEM (see Algorithm 6).
Simple testbench where I checked the functionality of the NEGACYCLIC_MEM

entity. I created manual input and verified the functionality only visually as
it was sufficient.

51



5. Simulation and Verification

Figure 5.1: Testbench flowchart

TB_POLY: Testbench file for POLY_MULT (see Algorithm 5).
First testbench where I used input files to feed the data into the testbench.

I used Ruby code (see Listing 5.1) to generate custom inputs. At first, I created
basic polynomials with coefficients either being 1 or 0. For final verification,
I used randomly generated polynomials.

Shown below are snippets of the Ruby code I used to create the test vec-
tors (see enclosed file ./ruby/app/demo/polynomials-demo.rb). Note that
for clarity’s sake I have shortened the list of coefficients with three dots and
the instantiation of most of the polynomials is removed, as it was only re-
peating code. In this version, I was using a “Baby” set of parameters. The
number of coefficients is N = 16, I also used N = 4 for small-scale tests.
Number of polynomials used in both vectors is equal to (K + 1) · L = 8.
Finally, the binary precision of Torus coefficients is TAU = 18 and Integer
coefficients GAMMA = 12 (This value was wrong and fixed later in version
1.0, see Table [3.1] for correct values).

52



5.3. Version 0.9 with Vivado and ZedBoard FPGA

Listing 5.1: Generating test vectors in Ruby for POLY_MULT and MA-
TRIX_MULT

1 zz1 = PolyN.coeffs([0, ... ,0,1])
2 zz2 = ... # Integer polynomials
3 zzv = Vector[zz1, zz2, ... , zz8] # Vector of polynomials
4
5 t01 = PolyN.coeffs([TorusInt[1,TAU], ... ,TorusInt[1,TAU]])
6 t02 = ... # Torus polynomials
7 ttv0 = Vector[t01, t02, ... , t08] # Vector of polynomials
8 ttv1 = Vector[t11, ... , t18]
9

10 r = zz1 * t01 # POLY_MULT calculation
11 r0 = zzv.dot ttv0 # one half of MATRIX_MULT calculation
12 r1 = zzv.dot ttv1 # second half of MATRIX_MULT calculation
13 // result is one Torus polynomial
14
15 # Methods to generate random coefficients
16 zz1 = PolyN.rand(N, Integer, GAMMA)
17 t01 = PolyN.rand(N, TorusInt , TAU)

TB_MATRIX_MULT: Testbench file for MATRIX_MULT (see Algo-
rithm 9).

This testbench is similar to previous TB_POLY as the functionality of
verified entities is identical, only the data types at input/output are different.
I reused the ruby code from the previous section (Listing 5.1) to generate the
test vectors.

TB_MAIN: Testbench file for MAIN (subsection 3.7)
The main purpose of this testbench was to verify the functionality of

SPLITTER and MERGER(subsection 3.7.2) entities before syncretization of
the whole project. As the one-bit period is 8 680 ns the overall real-time sim-
ulation time is quite long and I used this testbench only for a few small-scale
tests.

5.3 Version 0.9 with Vivado and ZedBoard FPGA
In version 0.9 I ported the project over to Vivado. As the code remained un-
changed, I only re-ran previous test benches when converting std_logic_vectors
into UNSIGNED.

5.4 Version 1.0 onwards
TB_BOOTSTRAP: In version 1.0 I implemented operation Bootstrap-
ping (Algorithm 11) and added a corresponding testbench TB_BOOTSTRAP,

53



5. Simulation and Verification

which remains as the key testbench, since TB_MAIN is unusable due to its
excessive real-time simulation time.

I used Ruby code (see Listing 5.2, enclosed file ./Ruby/app/demo/ext-product.rb)
to generate test vectors. The code is an unrolled version of the Bootstrapping
procedure. I exported values of TRGSW, TRLWE, and TLWE samples into a
file and also saved the value of acc after the last operation (acc is a TLWE
sample). Note that I skipped creating testbench for External Product (see
subsection 3.5) as the operation is only an extension of matrix multiplica-
tion and a part of the blind rotate loop, thus I could visually check values of
variables before and after against expected values.

Listing 5.2: Generating test vectors in Ruby for BOOTSTRAPPING
1 # Cipher initialization
2 tg = TRGSW.new(tau, deg, k, gamma, l, alpha, key)
3 tr = tg.TRLWE
4
5 # Plaintexts for Integer and Torus Polynomial
6 p_int = 3
7 p_tpoly = PolyN.coeffs((1..deg).to_a.map{|p|TorusInt[p,prec]})
8
9 # TRLWE sample

10 p = tr.sample(p_tpoly)
11
12 # TRGSW samples
13 m1 = tg.sample(p_int)
14 m2 = tg.sample(p_int)
15 m3 = tg.sample(p_int)
16 m4 = tg.sample(p_int)
17 m5 = tg.sample(p_int)
18 m6 = tg.sample(p_int)
19
20 # TLWE sample (not random values)
21 xb1 = PolyN.x_to(3,deg)
22 xb2 = PolyN.x_to(6,deg)
23 xb12 = PolyN.x_to(3 + 6,deg)
24 xb3 = PolyN.x_to(5,deg)
25 xb4 = PolyN.x_to(8,deg)
26 xb34 = PolyN.x_to(5 + 8,deg)
27 xb5 = PolyN.x_to(-8,deg)
28
29 # Improved blind rotate
30 acc = xb5 * p
31 acc = (((xb12 - 1) * m1) + ((xb1 - 1) * m2) + ((xb2 - 1) * m3))
32 .ext(acc, gamma, l) + acc
33 acc = (((xb34 - 1) * m4) + ((xb3 - 1) * m5) + ((xb4 - 1) * m6))
34 .ext(acc, gamma, l) + acc

During versions 1.0 through 1.3 I used test vectors generated with param-
eters corresponding to “Infant” set (see Table 3.1) – although with a wrong
value of TAU = 18 – saved in files named matrix_in_18 (for input) and
tlwe_out_18 (for output). From version 1.4 onwards I re-generated test vec-

54



5.5. Demo Verification

tors with the “Baby” set of parameters and saved them in files matrix_in_22
and tlwe_out_22.

5.5 Demo Verification

Listing 5.3: Neural Network demo in Ruby
1 # Cipher Initialization
2 w = WTFHE.init_baby
3
4 # Input Vector
5 p_in = Vector[1,1,0]
6
7 # NN Initiazation (omitted for clarity)
8 nn = [ Matrix[ [4, 6, 3], [ ...
9

10 # Encryption
11 c_in = p_in.map{|p| w.encrypt(p) }
12
13 # Activation function - signum
14 def act_fn(w, v)
15 case v
16 when TrlweSample
17 w.bootstrap(v, [0,1,1,1])
18 when Numeric
19 [0,1,1,1,0,7,7,7][v % 8]
20 else
21 raise
22 end
23 end
24
25
26 # Evaluate one layer of NN
27 def eval_layer(w, input, synapses)
28 (synapses * input).map{|v| act_fn(w, v) }
29 end
30
31 nn_p = p_in.clone
32 nn_c = c_in.clone
33 # Evaluate NN
34 nn.each do |l_syn|
35 nn_p = eval_layer(w, nn_p, l_syn)
36 nn_c = eval_layer(w, nn_c, l_syn)
37 end
38
39 # Check Homomorphism
40 puts "NN#{p_in.to_a} = #{nn_p.to_a}"
41 puts "FHE^-1{ NN[ FHE(#{p_in.to_a.join('), FHE(')}) ] } =
42 #{nn_c.map{|c| w.decrypt(c) }.to_a}"

In version 1.5 I added a demo application, which also needed to be verified.
Verification of my application was done against Ing. Jakub Klemsa’s Ruby

55



5. Simulation and Verification

code shown in Listing 5.3 (see enclosed file ./Ruby/app/demo/neural-baby-demo.rb).
The Ruby code runs dual calculations, both for unencrypted and encrypted
data to check the validity of homomorphism.

Line w = WTFHE.init_baby initializes cipher with “Baby” set of parame-
ters (see Table 3.1). This line also creates TRGSW Samples, which are then
constant for the rest of the run.

Variable p_in holds plain text, and its TLWE encrypted form is saved in
variable c_in. Neural Networks stored in variable nn have arbitrary values
and have dimensions of 5 × 3, 2 × 5 and 3 × 2. Dimensions were chosen so
that three TLWE Samples, each with a length of five (DIM + 1), on the input
would at the end result in three TLWE Samples again.

Method act_fn defines activation function signum for both encrypted
(Bootstrapping operation) and unencrypted inputs (negacyclically extended
array of images of the signum function). This method is called for each TLWE
Sample of input in method eval_layer (i.e. each row after matrix multipli-
cation of “synapses · input”).

Method eval_layer is called in a loop for each defined neural matrix
both on encrypted and unencrypted data. The results of both evaluations
are printed at the end in a decrypted form to verify the correctness of the
calculation.

I saved variables of one run of Ruby code into a file to have static val-
ues to validate my code against. The saved variables are TRGSW Samples
(w.BK[k][l].sample[j,i].send(:coeffs).map{|t| t.numer}) prints one
polynomial of one TRGSW Sample), input TLWE Samples (c_in) and out-
put TLWE Samples (nn_c after evaluation).

56



Chapter 6
Measurements and Results

In this chapter, I will describe the performance and resource requirements of
the FPGA Bootstrapping accelerator.

6.1 Resource Requirements
The Table 6.1 lists usage of FPGA resources for each major version after the
implementation step in Vivado. All these measurements represent resource
usage on ZedBoard FPGA with Zynq-7000 SOC (part identification number
is xc7z020clg484-3, [13]). The previously used Nexys3 board was not bench-
marked.

Versions 0.9 through 1.3 represent FPGA usage corresponding to a “In-
fant” set (see Table 3.1) of parameters. The initial implementation of Boot-
strapping (see subsection 3.6) in version 1.0 could not be synthesized due
to excessive requirements. In version 1.1 I added BlockRAM to store input
operands, saw a significant drop in slice usage, and the design was successfully
implemented.

Versions 1.1 through 1.3 saw a steady decline in slice usage as more logic
was offloaded into DSP48 blocks. Due to the optimizations with DSP the
usage lessened even though TAU was raised to a correct value of 20 in version
1.2.

Versions 1.4 through 1.7 represent usage for “Baby” set (see Table 3.1) of
parameters. Compared to the “Infant” set, the “Baby” set uses considerably
more resources. Also, timing requirements started to be an issue with versions
1.5 and 1.6 unable to meet timings for 100 MHz clock frequency. The reduction
of usage between 1.4 and 1.5 versions is caused by a fix in the Sample Extract
algorithm (see Algorithm 3). As expected, pipelining added in version 1.7 (see
subsection 3.6.8) increased usage of slice registers, but reduced usage of slice
LUTs with final clock frequency back at 100 MHz.

57



6.
M

easurem
ents

and
R

esults

v0.9 v1.0 v1.1 v1.2 v1.3 v1.4 v1.5 v1.6 v1.7 v1.7
Slice LUTs [%] 7.8 109.2 15.5 14.4 13.2 31.8 29.9 30.0 28.6 148.8
Slice Registers [%] 7.9 51.9 8.8 9.1 8.5 21.1 20.5 20.5 23.7 120.4
DSP48s [%] 14.6 N/A 0 14.6 14.6 29.1 29.1 29.1 29.1 58.2
BlockRAM [%] 0 N/A 0.7 1.4 1.4 2.1 2.1 2.1 2.1 20.7
Min clock period [ns] 6.32 N/A 8.97 8.87 9.16 9.77 14.76 16.51 9.73 N/A
TAU 18 18 18 20 20 22 22 22 22 24
GAMMA 12 3 3 3 3 3 3 3 3 1
N 16 16 16 16 16 32 32 32 32 64
L N/A 4 4 4 4 5 5 5 5 17
NU N/A 4 4 4 4 5 5 5 5 6

Table 6.1: Zynq-7000 FPGA Resource Usage

Version v1.0 v1.1-v1.3 v1.4 v1.5-v1.6 v1.7
Parameter set “Infant” “Infant” “Baby” “Baby” “Baby”
Number of clock cycles 389 3 433 8 477 8 477 8 479
FPGA Clock frequency [MHz] 100 100 100 50 100
Real-time duration [ns] 3 890 34 330 84 770 169 540 84 790

Table 6.2: Simulated Bootstrapping Duration in FPGA

58



6.1. Resource Requirements

The record in the last column is for the ”PI=4” set of parameters. Those
parameters are experimental aiming to assess the scalability of the design.
The requirements proved to be out of bounds for used FPGA and devised
design. As the BlockRAM usage is still fairly low, there is a possibility to
store more internal variables in RAM instead of slice registers. The second
approach is to reduce implemented parallelism and convert selected parts to
a more sequential approach.

6.1.1 Detailed Breakdown

The Table 6.3 shows a detailed breakdown of resource usage of the most sig-
nificant entities. As expected, entity Bootstrapping takes the vast majority
of resources and the UART connection is comparably insignificant. One of
the more demanding entities in Bootstrapping is Mat_ACC, which stores one
whole TRGSW Sample. The TRGSW Sample is stored in a register field and
from a slice usage standpoint, it would be beneficial to store the temporary
variable in a BlockRAM. The register usage of Mat_Acc closely follows size of
one TRGSW Sample (14202 > 14080 = (K +1) · (K +1) ·L ·N ·TAU).The sec-
ond biggest entity is Ext_Prod, the main compute entity. Mat_Mult inside
Ext_Prod occupies most of LUTs as logic, while takes only about two-thirds
of registers, as the TRLWE Sample rounded down before passed to Mat_Mult.
Interestingly, Poly_Mult (multiplication of integer and Torus polynomial) en-
tity is lighter on resources than Poly_Add (sum of two Torus polynomials),
assumed due to integer polynomials being smaller and the usage of DSPs to
store the result. Register usage of Poly_Add and Poly_Reg directly correlates
to the size of polynomials (1408 = (K + 1) ·N · TAU).

Entity Name LUTs Registers DSP48s BRAMs
Available 53 200 106 400 220 140
Used Total 15 208 25 256 64 3
Bootstrapping 14 963 24 923 64 3

Ext_Prod 7 118 4 980 64 0
Mat_Mult 7 114 3 058 64 0

Poly_Mult [x2] 1 464 1 618 64 0
Mat_Acc 5 316 14 202 0 0
Poly_Add 1 408 1 408 0 0
Poly_Reg 0 1 408 0 0

Table 6.3: Entity Resource Usage

59



6. Measurements and Results

6.2 Time Measurements

In this section, I will elaborate upon time measurements either in a simulation
or real-world deployment.

6.2.1 Bootstrapping Time on FPGA

The Table 6.2 shows the number of clock cycles and calculated real-time du-
ration of Bootstrapping operation. The cycles measured are the difference
between raising control signal START and receiving control signal DONE
in the entity BOOTSTRAPPING (respective BOOTSTRAPPING_RAM for
version 1.1 onwards). In versions that contain BlockRAM, the loading times
are not considered, since the duration is heavily dependant on UART trans-
mission speed, which was unreasonable to simulate.

Register-based version 1.0 (see subsection 3.6) proved to be a very fast
theoretical solution taking just under 400 cycles to compute. This speed was
achieved by a parallel design at the cost of excessive resource requirements.

Designs using BlockRAM (v1.1 onwards) were discovered to be about ten
times slower than version 1.0 using the same set of parameters. The second
big duration increase was observed with raising parameters to the “Infant” set
of parameters (values of N and L having the greatest impact, see Table 6.1).
Improvements in any version after 1.1 did not considerably affect compute
time.

6.2.2 Deployed Neural Network Demo Measurements

The Table 6.4 shows measured times for either Bootstrapping or whole Neural
Network demo throughout different versions and systems. Due to issues with
the original Unix virtual guest OS (USB connectivity issues and disconnects),
I swapped to Ubuntu Mate virtual guest OS. The specific versions of both
systems were Ubuntu 18.04.5 LTS (”Ubuntu”) and Ubuntu Mate 20.04.5 LTS
(”Mate”).

Version v1.5 v1.5 v1.6 v1.7 Ruby
System Ubuntu Mate Mate Mate Mate
Bootstrapping 19 577.4 1 372.5 35.63 35.56 N/A
average time [ms]
NN evaluation 195 879.3 13 724.8 1 692.1 1 692.9 4 314
average time [ms]
Host system config Windows 10 CPU: R5 1600 Ruby v2.7.0

Table 6.4: Real-world Time Measurements

60



6.2. Time Measurements

Bootstrapping average time is the measured time it took for one operation
of Bootstrapping on FPGA along with the transmission of relevant data. This
includes transmission of input data – methods send_TRGSW(), send_TRLWE(),
send_TLWE() (or send_TRLWE(), send_TLWE() methods for versions 1.6 and
1.7 ) – and receiving data with read_TRLWE().

Measured Neural Network evaluation time spans over matrix multiplica-
tion of all three Neural Networks and one Bootstrapping operation for every
row in every matrix (i.e. ten Bootstrapping operations in total). Thus, method
send_TRGSW() is called ten times in version 1.5 and only once in 1.6 onwards
for each Neural Network evaluation.

The results are an average of 100 completed Neural Network runs (50 for
v1.5 on Ubuntu due to constant crashing) and 1000 Boostrapping runs.

The connectivity issues were so severe on the ”Ubuntu” system, that the
same version 1.5 runs more than ten times slower than on the ”Mate” system.
The change of communication protocol in version 1.6 (see subsection 4.1.4)
considerably improved the average time of Bootstrapping operation and the
overall run-time was reduced below the run-time of reference ruby implemen-
tation.

As the FPGA compute time is in order of hundreds of µs (see Table 6.4),
measured results in any version show a huge communication overhead.

Since the average times of the whole Neural Network, evaluation is similar
in both 1.6 and 1.7 versions, the observed speed-up of Bootstrapping operation
can not be attributed to the increase of FPGA frequency from 50 to 100 MHz.

61





Chapter 7
Future Work

In this chapter, I will describe steps that could be taken in the future to
improve the performance of the FPGA accelerator.

7.1 Optimization
The first steps taken could be a few simple optimizations.

Pre-calculate partial step of BlindRotate: The loop inside Blind Rotate
Algorithm 2 needs to calculate following expression 7.1 before the result is sent
to External Product entity:

MAT ←
(
(Xa2i−1+a2i − 1)BK3i−2 + (Xa2i−1 − 1)BK3i−1 + (Xa2i − 1)BK3i

)
(7.1)

In my implementation of Mat_ACC, which calculates the expression 7.1,
I decided to split the calculations into two phases (see subsection 3.6.3). The
second phase is relevant for this potential optimization:

MAT ←MAT −BK3i−2 −BK3i−1 −BK3i (7.2)

The expression 7.2 does not rely on the value of TLWE Sample, thus can be
pre-calculated at the start of the session and the result would be saved in the
FPGA BlockRAM. This optimization would reduce the usage of LUTs by a
few thousand (for the “Baby” version) and several hundreds of clock cycles.
The register usage of Mat_ACC is still directly linked to a size of one TRGSW
Sample, thus no savings would be done there.

Removing one instance of POLY_MULT : Currently, as TRGSW and
TRLWE Samples have two columns and two polynomial respectively, there
are two instances of POLY_MULT working in parallel. This puts the upper
bound on N to 64, as the design uses 2 ·N DSP48 blocks out of 220 available.

63



7. Future Work

Converting parallel designs to sequential: The biggest issue of scaling
the design is LUT/Register usage (see the last column of Table 6.1). There are
two approaches that could be implemented simultaneously. One is removing
parallelism and converting designs to a more sequential type, and the second
is offloading more temporary results into BlockRAM and even into onboard
DDR3. Those improvements are expected to be much more extensive and
would require a major overhaul of implemented entities.

7.2 ARM Integration
Originally, the idea of ARM core integration was to generate TRGSW Samples
locally and load them directly into BlockRAM as this would save a significant
part of data needed to be transmitted over a slow UART connection. This
was later rejected because the Bootstrapping keys are private and should not
be shared with the accelerator.

The current idea is to use FPGA as an accelerator of External Product
only. The External Product uses roughly half of LUTs and a fifth of Registers
compared to the whole Bootstrapping entity (see Table 6.3). As long as the
ARM core can compute the expression 7.1 and save the result into BlockRAM
in a comparable time to the Bootstrapping entity – which takes roughly 2 · 3·
TRGSW Sample size in clock cycles – the overall speed would be comparable,
but with much lower resource usage.

A side benefit of routing the data through the ARM core is an increased
bandwidth of USB connection over UART. As one of the main problems is
communication overhead, this change would increase the performance of the
accelerator without any major redesign.

7.3 GPU Acceleration
Overall, the current version of the WTFHE scheme in its full version is still
very resource-heavy. The degree of the polynomials is expected to be 1024
at minimum. The sheer size might make it prohibitive to FPGA-based ac-
celeration, but discrete GPUs have massive amounts of cores which can also
do multiplication in parallel. The amounts of VRAM are also usually higher
compared to what is available to FPGA, further benefiting the proposal.

64



Conclusion

In this thesis I presented the current version of the WTFHE scheme and
the possibility of using an FPGA as a hardware accelerator to increase the
performance of the cipher.

I implemented the hardware accelerator in VHDL language, running on
ZedBoard Zynq-7000 SOC. I connected the FPGA with UART over a USB
connection with a custom demo application written in C language running
a simple Neural Network Evaluation. The demo application runs the same
algorithm, but with no encryption, thus serving as a validator to the FPGA
computation.

During the implementation process, I created a number of testbench files
validating the functionality of the FPGA. A reference implementation in Ruby
provided by Ing. Jakub Klemsa served as a test vector generator for the
testbench files.

I tested several sets of WTFHE parameters intending to find the perfor-
mance of the design, possible scalability, and resource requirements. A test
set codenamed “Baby” with 3 = PI-bit plaintext, thus range of [0, 23], was
successfully implemented. The accelerator then evaluated a simple Neural
Network faster than the reference solution in Ruby. However, the design suf-
fers from a significant communication overhead due to the amount of data
sent over a slow UART connection. Routing the data through the built-in
ARM core and using a standard USB connection to PC could increase the
performance of the accelerator.

A test set of parameters codenamed “PI = 4” with 4-bit plaintext size
exceeded the available resources in FPGA and could not be synthesized. I
anticipate, that with a redesign of some components of the accelerator, the
“PI = 4” version could fit into the ZedBoard SOC. However, as the real-world
parameters are still significantly higher to guarantee encryption security, I
expect a GPU assisted acceleration might be a more promising direction.

65





Bibliography

[1] Craig Gentry and Dan Boneh, A fully homomorphic encryption scheme,
volume 20, Standford University, 2009.

[2] Ilaria Chilloti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène,
Tfhe: Fast fully homomorphic encryption over the torus, Journal of
Cryptology, 33(1):34-91, 2020.

[3] Google Cloud and Vertex AI. [Online]. Available: https : / / cloud .
google.com/vertex-ai.

[4] Microsoft and Azure Machine Learning. [Online]. Available: https://
azure.microsoft.com/en-us/services/machine-learning/.

[5] IBM and Watson OpenScale. [Online]. Available: https://www.ibm.
com/cloud/watson-openscale.

[6] Thore Graepel, Kristin Lauter, and Michael Naehrig, Machine learning
on encrypted data, International Conference on Information Security and
Cryptology, Springer, 2012.

[7] Pengtao Xie, Misha Bilenko, Tom Finley, Ran Gilad-Bachrach, Kristin
Lauter, and Michael Naehrig, Crypto-nets: Neural networks over en-
crypted data, arXiv preprint, arXiv:1412.6181, 2014.

[8] Florian Bourse, Michele Minelli, Matthias Minihold, and Pascal Pail-
lier, Fast homomorphic evaluation of deep discretized neural networks,
Annual International Cryptology Conference, Springer, 2018.

[9] Jakub Klemsa, Setting up efficient tfhe parameters for multivalue plain-
texts and multiple additions, Cryptology ePrint Archive, Report 2021/634,
https://eprint.iacr.org/2021/634, 2021.

[10] Oded Regev, On lattices, learning with errors, random linear codes, and
cryptography, Journal of the ACM (JACM), 56(6):1-40, 2009.

67

https://cloud.google.com/vertex-ai
https://cloud.google.com/vertex-ai
https://azure.microsoft.com/en-us/services/machine-learning/
https://azure.microsoft.com/en-us/services/machine-learning/
https://www.ibm.com/cloud/watson-openscale
https://www.ibm.com/cloud/watson-openscale
https://eprint.iacr.org/2021/634


Bibliography

[11] Sergiu Carpov, Malika Izabachène, and Victor Mollimard, New tech-
niques for multi-value input homomorphic evaluation and applications,
Cryptographer’s Track at the RSA Conference, Springer, 2009.

[12] Tanping Zhou, Xiaoyuan Yang, Longfei Liu, Wei Zhang, and Ningbo Li,
Faster bootstrapping with multiple addends, IEEE Access, 6:49868-49876,
2018.

[13] Xilinx, Zynq-7000 soc data sheet: Overview. [Online]. Available: https:
//www.xilinx.com/support/documentation/data_sheets/ds190-
Zynq-7000-Overview.pdf.

68

https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf


Appendix A
Acronyms

ANN Artificial Neural Network

ARM Advanced RISC Machine

AXI Advanced eXtensible Interface

BRAM Block RAM

CPU Central Processing Unit

DDR Double Data Rate

DSP Digital Signal Processor

FF Flip-Flop

FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

LHE Leveled Homomorphic Encryption

LWE Learning With Errors

LUT Look-Up Table

MAC Multiply-and-Accumulate

MLaaS Machine Learning as a Service

PC Personal Computer

PLL Phase-Locked Loop

RAM Random Access Memory

69



A. Acronyms

RISC Reduced Instruction Set Computer

SoC System on a Chip

TFHE Fast Fully Homomorphic Encryption over the Torus

TLWE Torus TLWE

TRGSW Torus-Ring Gentry-Sahai-Waters

TRLWE Torus-Ring LWE

UART Universal Asynchronous Receiver-Transmitter

USB Universal Serial Bus

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

WTFHE netWork-ready TFHE

70



Appendix B
Contents of enclosed storage

media

c_code............................................Directory with C code
wtfhe.c.......................................Demo application in C

data ................................. Input/Output data for testbenches
ruby..............reference Ruby implementation by Ing. Jakub Klemsa

app...................................................Ruby subfolder
bin.................................Directory with Ruby main file
demo................................Directory with Ruby test files

thesis............................................Thesis tex source files
v0_9_matrix_multiplication...................Vivado project for v0.9
v1_0_boots_registers..........................Vivado project for v1.0
v1_1_boots_bram_no_dsp_tau_18...............Vivado project for v1.1
v1_2_boots_bram_dsp_tau_20...................Vivado project for v1.2
v1_3_boots_bram_better_dsp...................Vivado project for v1.3
v1_4_boots_pi_3_scalable.....................Vivado project for v1.4
v1_5_neural_demo_50_mhz ...................... Vivado project for v1.5
v1_6_better_neural ............................ Vivado project for v1.6
v1_7_final..................................Final Vivado project - v1.7
v1_7_pi_4_test...................................Scalability test - v1.7
master_thesis_chytry.pdf .............. the thesis text in PDF format
master_thesis_chytry.zip....................the thesis text in zip file
WTFHE_v1_7.bit...........Synthetized v1.7 bistream for Zynq 7000 SoC
readme.mb........................read-me with file/directory description

71


	Introduction
	Preliminaries
	Introduction to TFHE
	(W)TFHE Samples
	T(R)LWE
	TRGSW
	Bootstrapping
	Blind Rotate
	Sample Extract
	WTFHE Bootstrapping

	DNN in WTFHE


	Analysis and Design
	Parameters of WTFHE
	Target Platform
	HW/SW Split
	Detailed Breakdown of HW/SW Splits


	FPGA Accelerator
	Parameters and Datatypes
	Version Timeline
	Polynomial Multiplication
	Negacyclic Memory
	Linear Shift Memory
	MAC Unit
	Version Evolution


	Vector-Matrix Multiplication
	External Product
	Polynomial Split

	Bootstrapping
	TLWE Rounding
	Polynomial Multiplication by a Monomial (POLY_EXP)
	Matrix Accumulator
	External Product
	Poly ADD
	Sample Extract
	BlockRAM Organization
	Pipelining

	Main
	RS232
	Splitter and Merger
	Communication Protocol
	PLL


	Demo Application
	Neural Network Demo
	Encryption and Decryption
	Function Encryption
	Generation of Bootstrapping Matrices
	Communication Protocol


	Simulation and Verification
	Testbench Flowchart
	Version 0.8 with Nexys3 and ISE
	Version 0.9 with Vivado and ZedBoard FPGA
	Version 1.0 onwards
	Demo Verification

	Measurements and Results
	Resource Requirements
	Detailed Breakdown

	Time Measurements
	Bootstrapping Time on FPGA
	Deployed Neural Network Demo Measurements


	Future Work
	Optimization
	ARM Integration
	GPU Acceleration

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed storage media

