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1 Introduction

Nowadays, robots are quickly moving from the laboratories and factories into households,
offices, and streets. Therefore, the aim of this thesis is to allow a mobile robot to operate
autonomously in large every-day environment. To achieve this, the robot has to sense
the environment, construct a representation of the environment, store it in an appropriate
data structure, reason over stored spatial knowledge, and perform the actions to fulfill
given goals. Therefore the thesis focuses on finding the suitable representation of the
spatial knowledge about the surrounding environment. Two sources of inspiration are
used: the cognitive theories, how the humans and animals represent the spatial knowledge,
and existing implementations of robotic maps, which are the robotic representation of the
spatial knowledge.

The robot needs the mechanism, how to build the map (inner representation of the
knowledge about the environment) autonomously. Therefore, the algorithm for autono-
mous exploration of the unknown environment will be proposed in the thesis.

As the information gathered during the exploration are subject to errors, the mechanism
for handling the uncertain information is requested. The reasoning algorithm will be pro-
posed in the thesis. It has to process the uncertain information with the aim to diminish
the uncertainty and to deduce the new information for the actual knowledge.

The main goals of this thesis are :

1. To perform a study of the currently used representations of the spatial knowledge.

2. To propose a scalable probabilistic representation of the space - a map which is able
to represent diverse types of environments, indoor as well as outdoor and deal with
the uncertainty.

3. To propose a method of an autonomous exploration without necessity of the environ-
ment modification.

4. To propose a method for reasoning about uncertain spatial knowledge.

5. To implement and integrate the proposed methods into a unified mapping frame-
work.

6. To verify the proposed methods in realistic environments and conditions.

2 Related works

The spatial knowledge representation proposed in this thesis takes inspiration from two
sources. First source are cognitive theories of humans or animals mental representation
of the environment, which was called cognitive maps by E. Tolman in [40]. All evidence
suggests, that the human cognitive map represents a space quite differently from a printed
map, which has a single global frame of reference. The widely used developmental theory
of cognitive maps is based on children’s cognitive maps development, mainly build on
Piaget theory [32], and recognizes three stages of the development: (1) landmarks, (2)
route map and (3) survey map.

The first comprehensive computational model of the human cognitive map is a TOUR
model introduced by Kuipers in his PhD thesis [18]. The TOUR model [19] was strongly
inspired by Kevin Lynch’s seminal book, The Image of the City [25], and by studies of the
development of children’s spatial knowledge [32]. The computational model called PLAN



(Prototypes, Locations and Associative Networks) [6] is also build on the top of the de-
velopmental theory. This model treats the landmarks as the category of the objects, called
prototypes, rather than a single unique object. Then stores these in associative networks,
which provides the route map. The prototypes are grouped into the locations, which are
connected again into the network which represents the survey map. Yeap, in his com-
putational model [43], focuses on a problem how the information perceived directly from
sensors are used to compute a cognitive map. Yeap builds his computational model on the
Marr’s theory [28] of vision.

The robotic map representations are the second source of inspiration. The metric and
topological maps are two main paradigms in robotics. A metric map represents the envi-
ronment as collected positions of relevant landmarks, features and object with respect to
a single metric frame of reference i.e. a global coordinate system [39], [23], [33]. During
the process of building a metric map is necessary to determine the position of a robot in a
global frame of reference. When the environment is a large-scale space, then a localization
becomes an important issue. Therefore the localization and map building is tightly coupled
and solved simultaneously as problem of Simultaneous localisation and mapping (SLAM)
or concurrent mapping and localisation (CLM) [36], [38], [30], [5].

Metric maps excel in solving of some low-level problems encountered in robotics [21],
[22], reduce a pose error in small-scale space, but the drift in the odometry makes the global
consistency of the map difficult to maintain in large environments.

As a consequence, metric maps can not easily handle large cyclical environments once
the position has drifted excessively. Mapping and planning in very large metric maps
can be time consuming. Metrical maps also suffer from the lack of a good interface for
higher-level symbolic problem solvers.

A topological maps [35], [29], [5] are connected with the cognitive maps theories and
generally represent spatial knowledge as a graph, describing locations and object of in-
terest as vertices and their spatial relations as edges. The basic concept outlined in the
TOUR model has been refined into the Spatial Semantic Hierarchy (SSH)[20]. The SSH
treats observations gathered during exploration as the fundamental source of experience
for building a cognitive map of large-scale space. Kortenkamp in [16] implements cognitive
map theory PLAN (Prototypes, Location and Associative Networks) and calls his imple-
mentation RPLAN - Robot PLAN. RPLAN uses the integration of sonar and vision through
two theoretical concepts, gateways and scenes.

Hybrid maps [17], [41], [3], [7] combine metric and topological approaches to support
advantages and suppress disadvantages of both. The known hybrid approaches combine
the metric and topological approaches in three ways: (1) Single global metrical map is
augmented with the topological structures. (2) Vertices of the global topological map are
augmented with local metric maps. (3) Global metric map is divided into parts and this
parts are connected in graph-like structure. Regarding the approaches, it seems suitable
to have a hybrid approach based on a global topological map for the representation of the
environment.

The process of exploration can be understood as a process of autonomous navigation of
a mobile robot in an unknown environment in order to build a model of the environment.
An exploration algorithm can be defined as an iterative procedure consisting of a selection
of a new goal (exploration strategy) and a navigation to this goal. Such an algorithm is
terminated whenever the defined condition (mission objective) is fulfilled.

The frontier-based exploration [42] is widely used for metric maps.
The topological exploration of the environment can be seen as the graph search. Many of

the graph exploration algorithms rely on the unique labeling of the vertices or edges. These
approaches are not suitable for the robotic exploration at all, or require to put the artificial



landmarks into the environment to produce such a labeling. Second group of algorithms
use movable markers [10], [34], [1] to allow robot distinguish the vertices from each other.
It puts the hard requirements on the robot hardware which must be able to put the marker
into the environment, recognize it and recollect it later back. The approaches not using
the markers [27] rely on the keeping the collection of possible hypotheses about the world
consistent with the experienced data.

The uncertainty can be handled in different manners. The symbolic approaches are fo-
cused in this thesis and different extensions of symbolic logic are discussed. The term
probabilistic logic was firstly used in [31] by Nils Nilsson and describes a semantic gen-
eralization of a logic in which the truth values of sentences are probability values. The
possibilistic logic [8], [9] handles propositional or first-order logic sentences weighted by a
real number, which is a lower bound of a necessity or possibility measure as used by Zadeh
[45]. The fuzzy logic [2] is based on fuzzy sets introduced by Zadeh in [44]. The subjective
logic [11] operates on the base of Dempster-Shafer belief theory [37] and contains standard
logical operators extended with some non-standard operators [12], [15], [14], [13] which
specifically depend on belief ownership.

The applicability of the aforementioned logic approaches are compared with respect to
the application in the robotic mapping. The propositions about the world are typically
evaluated as true or false and the uncertainty arises from the errors of the measurements
and sensing. Therefore, the advantage of the fuzzy logic, the ability to express vague propo-
sition, is not crucial for this work .

It is assumed, the knowledge about the real world can be logically inconsistent, as the
knowledge is build from the uncertain data. Therefore, this assumption excludes the prob-
abilistic logic from the selection as this supposes the logically consistent set of propositions.

The choice can be done between the possibilistic logic and the subjective logic. As the sub-
jective logic provides richer representation of uncertainty and new operators, the subjective
logic is used in the thesis.

3 Proposed Spatial Representation

The spatial representation proposed in this thesis is based on the cognitive theories of the
human spatial knowledge. The main structure is a topological map, a directed graph G =
(V, E) which consists of vertices V and edges E, likewise existing robotic implementation
of topological maps. The vertices stand for places in the environment whereas the edges
represents navigation paths. The vertex represent the point of interest or the significant
place in the environment. Typically vertices are placed to the points, where robot can take
a decision.

This classical representation is extended by explicit association of the procedural knowl-
edge with the graph elements, where the procedural knowledge is that information, which
is necessary to know how to get from one place to another or how to distinguish one place
from another.

The edge procedural knowledge is an input for one of the navigating algorithms, describ-
ing how to traverse along edge e = (vs, vt) from the starting place vs to the target place vt.
It is expected, the procedural knowledge describes a deterministic behavior.

The information stored in the vertex descriptors are used to localize the robot inside the
local frame of reference and to distinguish the vertices from each other. The vertex is not
requested to be uniquely distinguish by its description from others. The pairwise similarity
sA(vi, vj) of two vertices is computed by a matching algorithm A from the set of matching
algorithms, which compares a specific descriptors of the involved vertices.



The metric maps can be joined to the vertex and/or edge as an additional information.
Each vertex or edge can carry multiple different descriptors with further additional infor-
mation as area, length, curvature, relative position, and so on.

All the knowledge can be augmented by the measure representing the uncertainty of the
knowledge. Stored information is transformable in human understandable form and can
be used in communication with human.

The advantages of the proposed map in the form of the annotated graph are summarized
in this section.

The main advantage over a current topological approaches is the rich descriptor of the
edge in contrast to the simple link representing only the connection between the places.
It allows to use a complex navigating algorithms, which needs the detailed description of
the path. This description is learned during the traverse along the edge first time and then
reused.

Next advantage of the proposed approach over the current hybrid approaches is the
possibility to have multiple metric maps related to one place. The different maps produced
by different sensors or different algorithms are assigned to the same vertex, and represent
the same physical location. For example, one place is represented by an occupancy grid
from sonars, and a feature map generated from camera and a point map from a laser
scanner, all at hand and aligned.

The proposed rich representation allows to have a one map for an environment with a
parts of a different type. For example, it is possible to have a map a university campus,
where the areal of the campus with insides of the building is stored in one representation.
It is not necessary to split it to different maps for each building and then switching between
them. The robot is able to navigate fluently from indoor to outdoor and back.

Also it is possible to have a one map for different types of robots. The robot equipped
with the camera share the map with the robot equipped with the laser range-finder. The
same definition of the vertices and edges, representing the same physical places and paths,
but different algorithms for navigation and localization. This is not possible in the classical
metric representation.

The representation with the incorporated uncertainty in form of opinions from subjective
logic increase the robustness and reliability of the representation. As the representation is
augmented with the reasoning procedure, the missing information is deduce from the cur-
rent uncertain information. The resulting uncertainty indicates if the current information
is convenient enough to make the required conclusion, or, it is necessary to gain more
information.

4 Reasoning

The map can be understood as a knowledge base, the set of proposition about the environ-
ment, and robot-environment interaction. The reasoning module takes uncertain knowl-
edge stored in the map and infers the new information based on predefined set of rules. It
is also capable to generate the most consistent hypothesis explaining given set of observa-
tion.

Suppose, there is a propositional language L describing the environment, supplemented
by the tautology > and contradiction ⊥. The set of propositions will be finite, as the world
is assumed to be limited and closed. Let ΩL denotes the set of worlds that corresponds
the interpretations of L. Let consider an actual world, denoted as ω0, i.e., a world that



corresponds to the actual state of environment. The robot does not know which world in a
set of possible worlds is the actual world.

The robot’s actual knowledge about the actual world can be encoded in set of propo-
sitions K. The set ΩK is set of worlds considered as possible by the robot in the actual
situation. If the robot knows the truth status of every propositions of interest, then it
would know, which world is ω0.

The subjective logic is used, as the information gathered from the environment is uncer-
tain and cannot be expressed by classical logic propositions. The true value of the propo-
sition p is expressed by an opinion O(p). The opinion O has four components: believe b,
disbelieve d, uncertainty u and atomicity a.

Used algorithms provide the propositions with values from interval [0, 1] or [0, ∞]. The
value is converted into the form of an opinion with assumption that the value expresses
the probability expectation. As there is no evidence to prefer to belief or disbelief, the
uncertainty will be maximized during the conversion. The parameters for the conversion
are acquired using machine learning techniques from training sets of annotated vertices.

Multiple algorithms can provide opinions about the single proposition. The consensus
operator ⊕ is used for the fusion of the algorithms’ results.

In subjective logic, Jøsang defines the conditional deduction in conformity with the prob-
ability calculus. It means, the conditional probabilities are necessary to know to deduce
the consequent Q. As these conditional probabilities are not known, there is given a novel
definition of the Modus Ponens in the thesis. It can be expressed as discounting the opinion
about the rule P→ Q by the opinion about the antecedent P:

O(Q) = O(P)⊗O(P→ Q),

where ⊗ is a operator discounting.
Moreover, a loop closing procedure is proposed in the thesis. The loop closing is a

process of finding the correct correspondences in a experienced set of observations gathered
during the exploration. The observations are converted into the list of propositions about
the environment with the opinions KE. This propositions are in a form of similarity of
the vertices and edges. The algorithm deduced the knowledge about the loop-closing
KE, R ` KC from the experienced knowledge KE and the set of rules R, where the set of the
rules is the knowledge about the properties of the environment converted into the form of
the logical proposition with the opinions about the validity for a given environment.

5 Exploration

During the exploration, the robot gains the information about the actual world, adds the
propositions to K, and reduces the size of ΩK. In the case when |ΩK| = 1, the robot knows
the actual world and the exploration ends.

There are two algorithms proposed in the thesis: First algorithm uses one not-movable
marker placed at the starting place, called base vertex, and second algorithm uses the rea-
soning procedure to close the loops in the environment instead of the marker.

The algorithm consists of two phases: exploration and merging.
In the exploration phase, the robot moves through the environment and makes its own

map GM = (VM, EM) of the world. As the robot cannot distinguish particular vertices
from each other, it is unable to close loops in environment and every visited vertex must
be handled as unvisited one until the robot proves the contrary. During the exploration
phase, one place in the environment might be represented by more vertices in the map.
This inconsistency is reduced in the merging phase.



The first algorithm uses the marked base vertex for the loop closing detection. When the
robot revisits the base vertex, the actual vertex is merged with the base vertex and all edges
incident with the them are checked. If there are two or more same edges, they are merged
and their ends vertices are merged as well. The information propagates through the whole
map.

The marker-less exploration strategy relies on the loop-closing algorithm. Whenever the
algorithm enters the vertex, checks if this vertex is already stored in the map. The loop-
closing algorithm is called and the information about the environment stored in knowledge
base is refined on. If there exist pairs of vertices with similarity higher than given threshold,
the merging phase is called. The edges with the similarity higher than the threshold are
also merged.

The exploration algorithm ends, when the map contains no unexplored edge.

6 Framework Integration

The proposed spatial knowledge representation introduces the procedural knowledge as
a crucial property. The procedural knowledge is split into two parts, the algorithms and
the data. The data are stored directly in the map. The algorithms are stored as libraries or
executable programs separately.

These algorithms work with different sensors and robotic platforms, but all of them are
used with a single environment representation. The unified approach to handle them and
communicate with them is necessary. Therefore, all the algorithms for localization, navi-
gation along with reasoning and map representation are incorporated into one framework
called Large Maps Framework (LaMa).

The LaMa framework is build as a modular system and therefore allows to easily in-
corporate new algorithms into it. Mechanisms for modules coordination and cooperation
are incorporated into the LaMa framework and therefore the individual modules need no
specific mechanism for these interactions.

The framework consists of several backbone parts: Map, Executor and Jockeys. The Map
holds gathered information about the environment and provides interfaces for writing,
modifying and reading data.

6.1 Executor

The Executor module provides abstraction for higher level planning, hides the implemen-
tation details, and enables handling all types of map elements in unified way. Also, it
enables coordination and cooperation of navigating, learning and localizing algorithms
encapsulated as modules called Jockeys.

According to requested action, the Executor calls a specific Jockey. If there are more
suitable Jockeys, the one with the best expected performance is chosen. The Executor
supervises the behavior of the executed Jockey and if the Jockey fails, tries to substitute the
requested behavior by executing another Jockey with similar functionality.

6.2 Jockeys

It is necessary to have the unified access to all the algorithmic parts of procedural knowl-
edge, which need direct access to the robot hardware or work with raw data gathered
from the robot hardware. Therefore, these algorithms were designed as an independent
modules called Jockeys as they are ’riding’ the robot. According these functionalities of



the algorithms, three different types of modules are defined : Navigating Jockey, Learning
Jockey and Localizing Jockey. For each type of Jockey is defined the specific interface in
form of communication protocol.

The Navigating Jockey guides the robot along the edges of the specific type and has two
different subtypes: Memory-less and Memory-based.

The Memory-less Jockey uses a reactive navigating strategy, which computes the control
commands directly from the sensory input. Main advantage of reactive navigating is the
ability to traverse an unknown edges and discovery new vertices, therefore it is used mainly
during the exploration of the environment.

The Memory-based Jockey needs the data part of the procedural knowledge related to the
edge in advance. This information (edge descriptor) is acquired by the coupled Learning
Jockey. The Memory-based navigation can be more precise and repeatable than the reactive
one, can determine the failure of the navigation, and can provide the measure of similarity
of the appropriate edges.

The Learning Jockey creates new possibility to traverse the edge with different navigat-
ing strategy alongside to the actually used. This Jockey gathers information while a robot
is driven by a Navigating Jockey and the gathered procedural knowledge is stored in the
edge descriptor. The edge descriptor is utilized by Memory-based Navigating Jockey later
on.

The Localizing Jockey is able to distinguish vertices of the specific type from each other
and compare the actual vertex with other vertices stored already in the map. It gives
the results in form of probabilities to be in some of the previously visited vertices. This
behavior is used for global localization and loop-closing. In addition, the robot position in
the vertex local frame of reference can be estimated, if the descriptor is in the form of the
metric map.

7 Experiments

The set of experiments were performed to verify the functionality and performance of
the proposed mapping framework. The experiments were performed in three types of
environments: Simulated, Indoor and Outdoor. The selected results are described here.

The results of the marker-less exploration in the simulated environment are depicted in
Figure 1. The simulated environment (Fig. 1a) and resulting map with closed loops (Fig. 1c)
are shown. The map (Fig 1d) was produced with the exploration algorithm, when only the
similarity of the vertices was used, instead of the reasoning loop-closing procedure which
incorporates the knowledge contained in the edges.

The localization results are shown (in Fig. 1b) in form of the receiver operating charac-
teristic (ROC), which is a graphical plot of the sensitivity, or true positive rate, vs. false
positive rate for a binary classifier system as its discrimination threshold is varied. The lo-
calization is here seen as a classification of the pairs of the vertices into two classes, positive,
if the two vertices represents the same physical place, and negative otherwise.

The results of localization algorithms based on Fast Fourier transformation (FFT), nor-
malized cross-correlation (NCC), integral invariants [26], tangent space [24], and scan
line [4] are depicted in the figure. Notice the algorithm denoted as consensus. It is a
localization algorithm computed from localizing algorithms FFT and NCC converted into
the form of opinions and fused using the consensus operator from the subjective logic. The



classification of this consensus classifier is better, as it combines the localizing algorithms
sensitive to different errors in sensory data and these errors are compensated.
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Figure 1: Simulated environment Cave (a). Results of localizing algorithms (ROC) (b). Map
gathered with loop closed using reasoning algorithm (c) and not using reasoning
algorithm (d).

The map of the botanical garden Albertov can be seen on Figure 2. Position of the vertices
where taken from GPS receiver, nevertheless GPS data was not used by the algorithm at
all. The size of the working environment of the robot was reduced by blocking some of the
paths and robot considers these blocked paths as dead-ends and in the map are represents
as self-loop. The marker-less exploration strategy was used. It has to be pointed out, that
the used environment contains vertices almost undistinguishable and whole loop-closing
algorithm must rely only on similarity of edges only. Note, that all existing loops were
correctly closed.



Figure 2: Outdoor environment - botanical garden, Albertov, Prague

8 Contribution

The following section recapitulates the contribution of the thesis. In comparison with exist-
ing topological maps, the proposed representation brings a following main achievements:

• Paths in an environment are represented as edges in a map. This representation con-
tains a procedural knowledge (how to traverse the edge) in contrast to previously
used simple edge representation in the sense of connection or existence of route. The
procedural knowledge representation is necessary to utilize various navigational al-
gorithms not only reactive ones, but also the algorithms relaying on the previously
learned information. The each edge can hold more than one procedure to navigate
from the starting point to the destination. It allows to select the most reliable naviga-
tional algorithm or the most suitable for current conditions, state of the environment
and the robot itself.

• The proposed modular concept of Jockeys - algorithms for navigation, learning and
localization allows to utilize multiple senors and algorithms concurrently. This ap-
proach allows to use a single map for representing heterogeneous environment con-
sisting from a wide range of vertex and edge types.

• The concept of Learning and Memory-base Navigating Jockey brings a qualitatively
improvement into the area of topological mapping. The flexibility and reactivity of
the navigation method is required during the exploration of the environment and
the map learning as the robot needs to move autonomously through the unknown
environment. On the other hand, the repeatability and rigidity is requested during
the navigation using the map.

It is not possible to fulfill this antagonistic requirements in nowadays topological
mapping system. To solve this problem in the proposed framework, the pairs of
Learning and Memory-based Navigating Jockeys are introduced. The classical re-
active navigation is used during the exploration of an unknown environment, but
simultaneously one or more Learning Jockeys are running. These Jockeys memorize
the trajectory, and store the data necessary for traverse of the edge - the procedural
knowledge. Whenever there is a request to traverse already learned edge, the ap-
propriate Memory-based Jockey is called. If there exists more than one procedural



knowledge, the best navigating algorithm can be chosen according to a-priori com-
puted or observed performance for a particular edge. The behavior of Memory-based
Jockeys is deterministic, also they are able to recognize and report the failure in con-
trast to reactive Memory-less Navigating Jockeys.

• The uncertainty representation using the subjective logic brings the power of the sym-
bolic reasoning with the uncertain propositions. The advantage of the subjective logic
is shown in the combining the information from different localizing modules into one
opinion about the position of the robot. Also the proposed symbolic description of
the environment properties and usage of this feature is shown in the loop-closing
during the exploration. The used representation of uncertainty allows the extension
of the representation by the non-deterministic behavior of navigation algorithms.

9 Conclusion

This work addresses the problem of robotic mapping of an unknown large-scale environ-
ment. The proposed map representation is based on the cognitive theories of the human
spatial knowledge. The methods for localization, navigation, reasoning and exploration
together with the map proposed representation are incorporated into modular framework
called Large Maps Framework (LaMa). This LaMa framework is considered as a knowl-
edge base allowing to handle and utilize spatial knowledge of various environment in a
unified way.

The experimental verification of the proposed methods shows, that the framework is able
to handle indoor as well as outdoor environments in the scale of hundreds of meters and
perfectly operate in them later on. The automated exploration of unknown environment
can be seamlessly extend with a human assisted exploration. The performance of naviga-
tion is improved using the pairs of Learning and Memory-based Navigating Jockeys.

The established principles proposed in the thesis are successfully exploited in the Eu-
ropean projects from Symbiotic Evolutionary Robot Organisms (Symbrion) founded by FET
Proactive Intiative: pervasive adaptation and Robotic Evolutionary Self-Programming and Self-
Assembling Organisms (Replicator) founded by Cognitive Systems, Interaction and Robotics.
The partial implementation of the LaMa framework was previously used in the Robotour
competition. Our team wins this competition in years 2008 and 2009.
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Resumé

Cílem této disertační práce je umožnit autonomní provoz mobilního robotu v běžném a roz-
lehlém prostředí. K tomu robot potřebuje vnitřní reprezentaci prostředí, schopnost uvažo-
vat o prostředí a akcích a provádět akce tak, aby byl schopen plnit zadané úkoly. Mimo
to, je nezbytné, aby robot byl schopen získávat informace o okolí samostatně. Robot musí
umět reprezentovat a pracovat s neurčitostí, nebot’ informace jsou pořízeny ze senzorů,
jejichž měření je zatíženo chybou, omezeným dosahem i rozlišením a tedy neurčité.

Práce se zaměřuje na nalezení vhodné reprezentace prostorových znalostí o okolním
prostředí. Jako inspirace slouží kognitivní teorie lidské reprezentace prostředí a existující
přístupy k reprezentaci robotických map. Navržená reprezentace je rozšířením stávajících
topologických map, které prostředí reprezentují jako graf, kde vrcholy grafu popisují výz-
načná místa v prostředí a hrany cesty mezi nimi. Navržená reprezentace přidává k prvkům
grafu procedurální znalost, která uchovává popis jak rozpoznat jeden vrchol od druhého a
jak se navigovat podél hrany od počátečního vrcholu ke konečnému. Každý prvek grafu
může mít přiřazenou celou řadu různých popisů, může být popsán také lokálními met-
rickými mapami. Toto rozšíření umožňuje použít komplexní navigační a lokalizační algo-
ritmy, které v klasických topologických mapách není možné použít. Pro navigaci je možné
použít takové algoritmy, které vyžadují znalost celé cesty předem. V takovém případě se
pro nalezení popisu procedurální znalosti příslušné hrany použije učící algoritmus.

V této práci je navržený odvozovací mechanizmus (uvažování), který je schopen pracovat
s neurčitými znalostmi o prostředí. Jeho cílem je kombinovat neurčité znalosti tak, aby se
míra neurčitosti snížila, a vyvozovat nové znalosti ze znalostní báze a pravidel. Odvozo-
vací mechanizmus je postaven na subjektivní logice, která rozšiřuje vlastnosti symbolické
logiky o vyjádření a práci s neurčitostí a náhodností. Subjektivní logiku rozšiřuje o vlastní
návrh výpočtu Modus Ponens a tento výpočet je pak využit v nově navrženém algoritmu
uzavírání smyček.

Algoritmus autonomní explorace prostředí umožňuje robotu samostatně budovat model
prostředí. V práci jsou navrženy dva explorační algoritmy. První z nich vyžaduje pro
svou práci umístění značky na jedno místo v prostředí, nazývané základna. Tato značka
je použita pro uzavírání smyček. Druhý algoritmus nahrazuje značku použitím algoritmu
uzavírání smyček zmíněný výše.

Navržená reprezentace prostředí, explorační a uvažovací algoritmy jsou spolu se sadou
navigačních a lokalizačních algoritmů integrovány do jediného mapovacího modulárního
systému. Navržený modulární systém odděluje reprezentaci znalostí, spolu s uvažovacím
algoritmem, od konkrétních senzorů, aktuátorů a algoritmů pracujících s konkrétním robo-
tickým zařízením. Přístup vyšších, abstraktnějších vrstev k nižším vrstvám řídí výkonný
modul. Toto modulární řešení spolu se zmíněným oddělením umožňuje zároveň používat
více různých navigačních a lokalizačních algoritmů současně, i pokud používají různé sen-
zory. Přidání nového algoritmu nebo senzoru je snadné a neovlivní funkčnost stávajícího
systému ani použitelnost dříve vytvořených map.

Provedené experimenty ověřují funkčnost navržených přístupů. Mimo jiné ukazují, že
navržená reprezentace prostředí je schopna uchovávat informace o různých typech prostře-
dí (vnitřích i venkovních), bez potřeby jakékoliv úpravy a že robot je schopen získat tuto
reprezentaci samostatně.

Hlavní přínosy této práce jsou: zahrnutí procedurální znalosti do popisu prostředí, mod-
ulární přístup, který umožňuje získat detailní popis prostředí z různých pohledů současně,
koncept využití dvojice algoritmů, z nichž první vytvoří detailní popis hrany a druhý pak
zajišt’uje spolehlivou a opakovatelnou navigaci a využití subjektivní logiky k popisu neurči-
tosti spolu s algoritmy pro práci s neurčitými znalostmi a odvozování nových.


