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Abstrakt

Zkoumání způsobů pro ovládání virtuálního prostředí je populárním cílem
mnoha výzkumných prací v odvětví interakce člověka s počítačem. Jeden ze
způsobů je použití Leap Motion optického senzoru, vyvíjeného specificky pro
rozpoznávání pohybu ruky a prstů. Tato bakalářská práce se zaměřuje na
využití Leap Motion senzorů k rozpoznávání gest v reálném čase za pomocí
neuronové sítě. Využili jsme architekturu dvouvrstvé obousměrné LSTM k
natrénování statických i dynamických gest. Neuronová síť byla otestovaná na
veřejně dostupném ASL datasetu s výsledkem 89.07% za použití 5-fold cross
validace s 200 iteracemi. Architektura byla ve finále natrénovaná využitím
našeho vlastního datasetu s 3861 vzorky pro rozpoznávání v reálném čase.
Demonstrovali jsme, že náš předtrénovaný model je vhodný pro použití v ji-
ných aplikacích a také jsme diskutovali aktuální stav MultiLeap knihovny,
vyvíjené pro detekci ruky pomocí více Leap Motion senzorů najednou. Po-
rovnali jsme výsledky více senzorů použitím MultiLeap knihovny s výsledky
naměřené jedním senzorem.

Klíčová slova rozpoznávání gest, dvouvrstvé obousměrné LSTM, Multi-
Leap, strojové učení, rekurentní neuronová síť, rozpoznávání v reálném čase
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Abstract

Exploring ways to control the virtual environment is a popular goal of many
human-computer interaction researchers. One of the approaches is using Leap
Motion optical sensors, developed specifically to track hand and finger move-
ments. The bachelor thesis focuses on utilizing Leap Motion sensors in real-
time gesture recognition using neural networks. We used two layered bidirec-
tional LSTM architecture to train static gestures along with dynamic gestures.
The neural network was benchmarked on a publicly available ASL dataset ac-
quiring 89.07% using 5-fold cross-validation on 200 epochs. The architecture
was ultimately trained using our dataset of 3861 samples for real-time de-
ployment. We demonstrated that the pre-trained model is sufficient to be
integrated into other applications, and we also discussed the current state of
the MultiLeap library, developed for hand detection using more than one Leap
Motion sensor at once. We compared results of using multiple sensors with
MultiLeap with results of using one sensor.

Keywords gesture recognition, two-layered bidirectional LSTM, MultiLeap,
machine learning, recurrent neural network, real-time recognition
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Introduction

Mouse and keyboard are considered to be default devices for human-computer
interaction nowadays. But with the maturity in technology, namely virtual
and extended reality, the computer’s need to understand human body lan-
guage is more and more present. Actions such as rotating or grabbing and
moving an object in three-dimensional space with a computer mouse are un-
intuitive. They require a little understanding of the controls to execute the
task. The movement is limited to the two-dimensional space of the mouse.
Oppose to performing the desired action by hands in our three-dimensional
space as we would in real life.

One of the proposed solutions for this issue is gesture recognition, where
the general idea is for computers to have the ability to recognize gestures
and perform actions based on them. Therefore, several tracking devices were
developed to process an image and yield valuable data for gesture recognition.

Our goal is to utilize these tracking devices, specifically Leap Motion con-
trollers, in combination with artificial neural networks, to creating a simple
library with a pre-trained model ready to be used and expanded by other
applications. We also want to use the pre-trained model to evaluate the per-
formance of the MultiLeap library base on the number of connected Leap
Motion sensors.

The structure of the thesis is as follows:

In Chapter Neural Networks, we introduce neural networks, explain basic
terminology and several exemplary network architectures.

In Chapter Gesture Recognition, we briefly explain gesture categories, dis-
cover hardware image processing devices, and what are some of the pro-
posed methods in the field of gesture recognition using machine learning
techniques.

In Chapter MultiLeap, we explore the MultiLeap library developed for uni-
fying the stream of data from multiple Leap Motion sensors.
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Introduction

In Chapter Implementation, we describe used methods and key implementa-
tion points of our work.

In Chapter Experiments, we discuss the performance of our work in a real-
time environment, explore several setups using multiple Leap Motion
sensors, and testing the capabilities of the MultiLeap library.

In Conclusion, we will evaluate the results of the work and suggest possibil-
ities for future research.
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Chapter 1
Neural Networks

An artificial neural network (ANN) is a mathematical model mimicking bio-
logical neural networks, namely their ability to learn and correct errors from
previous experience [1], [2].

The ANN subject was first introduced by Warren McCulloch and Walter
Pitts in ”A logical calculus of the ideas immanent in nervous activity” pub-
lished in 1943 [3]. But it was not until recent years when ANN has gained
popularity with still increasing advancements in technology and availability
of training data. ANN had become one of the default solutions for complex
tasks which were previously thought to be unsolvable by computers [4].

This chapter will briefly explore different types of neural units and their
activation functions, along with some exemplary network architectures.

1.1 Artificial Neuron

As previously mentioned, artificial neurons are units mimicking behavior of
biological neurons. Meaning, it can receive as well as pass information between
themselves.

1.1.1 Perceptron

Perceptron is the simplest class of artificial neurons developed by Frank Rosen-
blatt in 1958 [5].

Perceptron takes several binary inputs, vector x⃗ = (x1, x2, ..., xn), and
outputs a single binary number. To express the importance of respected input
edges, perceptron uses real numbers called weights, assigned to each edge,
vector w⃗ = (w1, w2, ..., wn).

A step function calculates the perceptron’s output. The function output
is either 0 or 1 determined by whether its weighted sum α =

∑
i xiwi is less

3



1. Neural Networks

or greater than its threshold value, a real number, usually represented as an
incoming edge with a negative weight -1 [6].

output =
{

1, if α ≥ threshold

0, if α < threshold
(1.1)

Figure 1.1: Perceptron [6]

1.1.2 Sigmoid Neuron
Sigmoid neuron, similarly to perceptron, has inputs x⃗ and weights. The key
difference comes in once we inspect the output value and its calculation. In-
stead of perceptron’s binary output 0 or 1, a sigmoid neuron outputs a real
number between 0 and 1 using a sigmoid function [7], [8], [6].

σ(α) = 1
1 + e−α

(1.2)

As shown in Figure 1.2, the sigmoid function (1.2b) is a smoothed-out
version of the step function (1.2a).

1.1.3 Activation Function
An artificial neuron’s activation function defines that neuron’s output value
for given inputs, commonly being f : R → R [9]. A significant trait of many
activation functions is their differentiability, which allows them to be used

4



1.1. Artificial Neuron

(a) Step function (b) Sigmoid function

Figure 1.2: Comparison between step function and sigmoid function

for Backpropagation, ANN algorithm for training weights. The activation
function needs to have a derivative that does not saturate by heading towards
0 or explode by heading towards inf [6].

For such reasons, the usage of step function or any linear function is un-
suitable for ANN.

1.1.3.1 Sigmoid Function

The sigmoid function is commonly used in ANN as an alternative to the step
function. A popular choice of the sigmoid function is a logistic sigmoid. Its
output value is in the range of 0 and 1.

σ(α) = 1
1 + e−α

= ex

1 + ex
(1.3)

One of the reasons for its popularity is the simplicity of its derivative
calculation:

d

dx
σ(α) = ex

(1 + ex)2 = σ(x)(1 − σ(x)) (1.4)

On the other hand, one of its disadvantages is the vanishing gradient. A
problem where for a given very high or very low input values, there would be
almost no change in its prediction. Possibly resulting in training complications
or performance issues [10], [6].

1.1.3.2 Hyperbolic Tangent

Hyperbolic tangent is similar to logistic sigmoid function with a key difference
in its output, ranging between -1 and 1.

tanh(x) = ex − e−x

ex + e−x
(1.5)

5



1. Neural Networks

Figure 1.3: Hyperbolic tangent [6]

It shares the sigmoid’s simple calculation of its derivative.

d

dx
tanh(x) = 1 − (ex − e−x)2

(ex + e−x)2 = 1 − tanh2(x) (1.6)

By being only moved and scaled version of the sigmoid function, hyperbolic
tangent shares not only sigmoid’s advantages but also its disadvantages [9],
[6].

1.1.3.3 Rectified Linear Unit

The output of the Rectified Linear Unit (ReLU) is defined as:

f(x) = max(0, x)
{

x, if x ≥ 0
0, if x < 0

(1.7)

Figure 1.4: Rectified Linear Unit [6]

ReLU’s popularity is mainly due to its computational efficiency [10]. Its
disadvantages appear when inputs approach zero or to a negative number.

6



1.2. Types of Neural Networks

Causing the so-called dying ReLu problem, where the network is unable to
learn. There are many variations of ReLu to this date, e.g., Leaky ReLU,
Parametric ReLU, ELU, ...

1.1.3.4 Softmax

Softmax separates itself from all the previously mentioned functions by its abil-
ity to handle multiple input values in the form of a vector x⃗ = (x1, x2, ..., xn)
and output for each xi defined as:

σ(xi) = ex
i∑n

j=1 ex
j

(1.8)

Because output is being normalized probablty distribution, which ensures∑
i σ(xi) = 1 [11]. It is being used as the last activation function of ANN to

normalize the network’s output into n probability groups.

1.2 Types of Neural Networks
To this day, there are many types and variations of ANN, each with its struc-
ture and use cases. Here we will briefly introduce the most common ones, such
as feed-forward networks, convolutional neural networks, or recurrent neural
networks.

1.2.1 Feed-forward Networks
Feed-forward network (FFN) was the first ANN to be invented and the sim-
plest form of ANN. Its name comes from the way how information flows
through the network. Its data travels in one direction, oriented from the
input layer to the output layer, without cycles. The input layer takes input
data, vector x⃗, producing ŷ at the output layer [12].

FFN can contain several hidden layers of various widths but does not have
to. By having no back-loops, FFN generally minimizes error, computed by cost
function, in its prediction by using the backpropagation algorithm to update
its weight values [13], [11].

1.2.1.1 Cost Function

Cost function C(w⃗) is used in ANN’s training process. It takes all weights
and biases of an ANN as its input, in the form of a vector w⃗ and calculates a
single real number expressing ANN’s incorrectness [14]. The number is high
when the ANN performs poorly and gets lower when the ANN’s output gets
closer to the correct result. The main goal of training is then to minimize the
cost function.

7



1. Neural Networks

Figure 1.5: Fully connected Feed-forward Neural Network [6]

1.2.1.2 Backpropagation

Backpropagation, short of backward propagation of errors, is a widely used
algorithm in training FFN using gradient descent to find a local minimum of
a cost function and update ANN’s weights [15].

A gradient of a function with multiple variables gives us the direction of the
steepest gradient ascent, where we should step to rapidly increase the output
and find the local maximum. Naturally, its negative will point towards a local
minimum.

The usual practice is to divide training samples into small batches of size
n. We will calculate a gradient descent for each sample in the batch and use
their average gradient descent to update the network’s weights. The average
gradient descent tells us which weights should be adjusted for the ANN to get
closer to the correct results [15].

−γ∇C(w⃗i) + w⃗i → w⃗i+1 (1.9)

Here, w⃗i is weights of the network at the current state (batch), ⃗wi+1 is
updated weights, γ is the learning rate and −∇C(w⃗i) is the gradient descent.

1.2.2 Convolutional Neural Networks
Convolutional Neural network’s (CNN) main goal is to make a computer recog-
nize images and objects. For such, it is primarily used for image classification
or object recognition.

8



1.2. Types of Neural Networks

CNN was inspired by the biological processes of the human brain. Its
connectivity patterns resemble those of the human visual cortex, but an image
is perceived differently by a human brain than by a computer. To a computer,
an image is interpreted as an array of numbers. Thus CNN is designed to work
with two-dimensional image arrays, although it is possible to work with one-
dimensional or three-dimensional arrays too [16].

CNN is a variation of FNN [14]. It usually consists of the input layer
followed by multiple hidden layers, typically several convolutional layers with
standard pooling layers, and ending with the output layer.

1.2.2.1 Convolutional Layer

The convolutional layer’s objective is to extract key features from the input
image by passing a matrix known as a kernel over the input image abstracted
into a matrix [17].

Figure 1.6: Convolution of an 5x5x1 image with 3x3x1 kernel [18]

The convolution result can be of two types depending on their size. One
is the convoluted feature, which gets reduced in dimensions compared to the
input. It is called valid padding. For example, an input image of dimensions
8x8 is reduced to 6x6 after convolution operation, and the other type is where
dimensions are either increased or remain the same, which is called same
padding [18].

9



1. Neural Networks

1.2.2.2 Pooling Layer

Similar to the previously mentioned convolutional layer, the pooling layer
reduces the convolved feature’s spatial size to decrease the computational
power required for data processing. In addition, the pooling layer is also
useful for extracting dominant features, which are rotational and positional
invariant, thus effectively training the model [18].

There are two types of pooling: max pooling and average pooling. Max
pooling returns the maximum value from the portion of the image covered
by the kernel. It performs as a noise suppressant, discarding the noisy ac-
tivations altogether and performing de-noising and dimensionality reduction.
Where average pooling returns the average of all the values from the same
covered portion, performing dimensionality reduction as a noise suppressing
mechanism. Hence, it is possible to note that max-pooling performs better
[18].

Figure 1.7: Types of pooling [18]

1.2.3 Recurrent Neural Networks
Recurrent Neural Network (RNN) is distinguished by its memory, which takes
input sequence with no predetermined size. Its past predictions influence
currently generated output. Thus for the same input, RNN could produce
different results depending on previous inputs in the sequence [19].

RNNs features make it commonly used in fields such as speech recognition,
image captioning, natural language processing, or language translation. Some
of the popular being, for example, Siri, Google Translate, or Google Voice
search [20].

As previously mentioned, RNN takes into consideration information from
previous inputs. Let us look at the idiom ”feeling under the weather”, where
for it to make sense, words have to be in a specific order. RNN needs to

10



1.2. Types of Neural Networks

account for each word’s positions and use its information to predict the next
word in the sequence. Each timestep represents a single word. In our case, the
third timestep represents ”the”. Its hidden state holds information of previous
inputs, ”feeling” and ”under” [20].

Figure 1.8: Unrolled structure of RNN [6]

Figure 1.8 shows the network for each timestep, i.e., at time t, the input
x⃗t goes into the network to produce output ŷt, the next timestep of the input
is xt+1 with additional input from the previous time step from the hidden
state ht. This way, the neural network looks at the current input and has the
context from the previous inputs. With this structure, recurrent units hold
the past values, referred to as memory. Making it possible to work with a
context in the data [21].

The recurrent unit is calculated as follows:

ht = f(Wxxt + Whht−1 + b⃗h) (1.10)

f is the activation function, Wx, Wh are weight matrixes, xt is the input,
and b⃗h is the vector of bias parameters. The hiddent stat ht at time step t = 0
is initialized to (0, 0, ..., 0). The output ŷt is then calculated as:

ŷt = g(Wyht + b⃗y) (1.11)

g is also an activation function, usually is softmax, to ensure the output
is in the desired class range. Wy is the weight matrix, and b⃗y is a vector of
biases determined during the learning process.

Training RNNs uses a modified version of the backpropagation algorithm
called backpropagation through time (BPTT), which works by unrolling the
RNN [14], calculating the losses across time steps, then updating the weights
with the backpropagation algorithm. More on RNN in [11] by Lipton et al.
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1. Neural Networks

1.2.3.1 Bidirection Recurrent Neural Networks

Bidirectional Recurrent Neural Networks (BRNN) allow training the network
using all available input information in the past and future of a specific time
frame. Oppose to regular RNN, where its hidden state is determined only
by the prior states. The idea behind BRNN is to split the hidden state into
two. One is responsible for the positive time direction, forward states, and the
other for the negative time direction, backward states.

BRNN’s training generally starts with processing forward and backward
states before output neurons are passed, forward pass. Following with back-
ward pass, where output neurons are processed first, and forward and back-
ward states after. Weights are then updated after completing forward pass,
and backward pass [22].

Figure 1.9: Unrolled structure of BRNN [6]

Both hidden states are updated identically as the hidden state in RNN.

h
(0)
t = f(W (0)

x xt + W
(0)
h ht−1 + ⃗bh(0)) (1.12)

h
(1)
t = f(W (1)

x xt + W
(1)
h ht−1 + ⃗bh(1)) (1.13)

The output is then computed in the combination of both hidden states.

ŷt = g(W (0)
y h

(0)
t + W (1)

y h
(1)
t + b⃗y) (1.14)

All the activation functions and parameters remain the same as they were
in RNN.

1.2.4 Long Short-Term Memory
Consider a task where we try to predict the last word in ”The clouds are in
the sky”. It is fairly obvious the last word is meant to be ”sky”. The gap
between the relevant information and the prediction place is small, and RNN
can learn to utilize past information and predict the last word. However, if
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we consider ”I grew up in Spain... I speak fluent Spanish”, the gap between
the relevant information and predicting word can become large. As the gap
grows, RNNs are unable to handle the task. Such problem is called long-term
dependencies [23].

Long Short Term Memory networks (LSTM) are RNN architecture first
introduced by Hochreiter S. and Schmidhuber J. [24] with the ability to handle
long-term dependencies. Its core idea is to replace RNN’s hidden states with
so-called LSTM Cells and add connections between cells, called cell states or
ct. Each LSTM Cell consists of three gates, regulating the input and output
of the cell. The calculation in each cell runs as follows:

1. Forget Gate: Controls which information should be discarded and
which kept. Sigmoid function outputs a value between 0 and 1 base on the
information from the previous hidden state and from the current input. The
value closer to 0 means discard, and closer to 1 means keep.

ft = σ(Wxf
xt + Whf

ht−1 + b⃗f ) (1.15)

2. Input Gate: Decides which information should be updated. The
sigmoid function outputs a value between 0 and 1 base on the previous hidden
state and current input state. Closer to 0 means not important, and closer to
1 means important.

it = σ(Wxixt + Whi
ht−1 + b⃗i) (1.16)

The information from the previous hidden state and current input state is
also passed into a tanh function, getting values between -1 and 1.

gt = tanh(Wxg xt + Whg ht−1 + b⃗g) (1.17)

The decision on how to update the cell is obtained by multiplying sigmoid
output and tanh output. With all the required values available, we can now
calculate the cell state as follows:

ct = it ⊙ gt + ft ⊙ ct−1 (1.18)

3. Output Gate: Determines what information should the next hidden
state contain. The previous hidden state and the current input are passed
into a sigmoid function.

ot = σ(Wxoxt + Whoht−1 + b⃗o) (1.19)

Then passing the newly modified cell state into a tanh function and mul-
tiplying its output with the sigmoid output, we get the hidden state [25].

ht = ot ⊙ tanh(ct) (1.20)

13
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The computation of the output ŷt proceeds the same way as regular RNN
[6].

ŷt = g(Wyht + b⃗y) (1.21)

Figure 1.10: LSTM cell [26]

1.2.4.1 Bidirectional Long Short-Term Memory

Similarly, as previously described in BRNN (1.2.3.1), Bidirectional Long Short-
Term Memory (BLSTM) has its hidden state split into two, forward states and
backward states. Such modification allows the network to gain context from
past and future alike. As a result, BLSTM, in comparison with BRNN, han-
dles better the information storage across the timeline with large time gaps
from either past or future.

1.2.4.2 Deep Long Short-Term Memory

Deep Long Short-Term Memory (DLSTM), or stacked LSTM, is now con-
sidered a stable technique for challenging sequence prediction tasks. It was
first introduced by Graves et al. [27], where it was found that the depth of
the network has greater importance than the number of memory cells in a
given layer. Thus, DLSTM architecture can be described as an LSTM model
consisting of multiple LSTM layers.
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Figure 1.11: Unrolled structure of BLSTM [6]

Figure 1.12: Deep Long Short-Term memory architecture [28]

The LSTM layer above outputs a sequence rather than a single value for
the LSTM layer below [28].
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Chapter 2
Gesture Recognition

2.1 Gesture Categories
Gestures are categorized into static gestures and dynamic gestures. A group of
static gestures consists of fixed gestures, where they are not relative to time. A
group of dynamic gestures, on the other hand, are time-varying. These classes
can be further subdivided into a set of gestures distinct by their purpose.

• Deictic gestures involve pointing to establish the identity or spatial
location of an object within the context of the application domain [29].

• Manipulative gestures mimic manipulation of a physical object, such
as scaling, moving, or rotating.

• Gesticulation is commonly used along with the language group. These
hand gestures are difficult to analyze.

• Language group of hand gestures form a grammatical structure for
conversational style interfaces.

• Semaphoric hand gestures also may be referred to as communica-
tive gestures, are a group of hand gestures serving as a set of sym-
bols/commands used to interact with machines. The group consists of
static hand gestures as well as dynamic hand gestures.

2.2 Tracking devices
Hand and body gesture recognition had followed a conventional scheme of
extracting key features via one or multiple preprocessing sensors and applying
machine learning techniques on them [30]. The field of gesture recognition
gave birth to several image processing devices yielding useful data. We will
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only cover optical devices, but there are also controllers in the form of a stick
with buttons, like HTC Vive, or others in the form of gloves.

2.2.1 Microsoft Kinect

One of the tracking devices is Microsoft Kinect, a device first released in
2010. Originally developed for gaming but eventually finding more success
in academic and commercial applications, such as robotics, medicine, and
health care. Microsoft discontinued production of its Xbox version in 2018
and released Azure Kinect in March 2020, incorporating Microsoft Azure cloud
computing functionalities.

Figure 2.1: Azure Kinect [31]

Azure Kinect contains a depth sensor, spatial microphone array with a
video camera, and orientation sensor as a small all-in-one device with multiple
modes, options, and software development kits [32].

With all that said, the primary purpose of the Kinect device overall is to
interpret whole-body movement. For such, it lacks in required accuracy for
hand gesture recognition, thus making it insufficient for our uses.

2.2.2 Leap Motion Controller

Another option would be using a Leap Motion Controller (LMC), developed
specifically to track hand movements and extract its features, such as positions
of fingers, hand rotation, and others.

LMC consists of two monochromatic IR cameras and three IR LEDs (emit-
ters).
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Figure 2.2: Schematic View of Leap Motion Controller [33]

The LMC’s current API, Leap Motion Service, yields positions of extracted
hand features. All the positional data about the hand and its features are
represented in the coordinate system relative to the LMC’s center point, po-
sitioned at the top of the controller [33]. The x- and z-axes lie in the camera
sensors plane, with the x-axis running along the camera baseline. The y-axis
is vertical, with positive values increasing upwards (in contrast to the down-
ward orientation of most computer graphics coordinate systems). The z-axis
has positive values increasing toward the user [34].

Figure 2.3: Leap Motion Controller Axes [34]

2.2.3 Ultraleap Stereo IR 170

Ultraleap Stereo IR 170, formerly known as the Leap Motion Rigel, is the
successor to the Leap Motion controller.

The Stereo IR inherits Leap Motions key features but improves with a
wider 170-degree field of view, more powerful LED illuminators providing
more extended tracking range, and a higher framerate when used with USB
3.0. The Stereo IR also shares with original LMC its API [35], [36].
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Figure 2.4: Schematic View of Ultraleap Stereo IR 170 [35]

Unfortunately, Leap Motion Controller, as well as Ultraleap Stereo IR
170, has no official library for gesture recognition, limiting developers from
utilizing the controller for its key features. Leap Motion provided tracking
software built for virtual reality, used to have a gesture detector with its 3.0
version, but the detector is absent with the release of more accurate version
4.0.

2.3 Gesture Recognition Methods

Gestures group classification should be taken into account when choosing ap-
propriate methods due to their time-varying properties. As previously men-
tioned, gestures are classified into static and dynamic groups.

2.3.1 Static Gesture Recognition

One of the commonly used methods for static gesture recognition is Support
Vector Machine (SVM), an algorithm used for both regression and classifi-
cation tasks. But overall, it is widely used in classifications. SVM’s goal is
to find a hyperplane in N-dimension space, N being the number of features,
that distinctively classifies data points [37]. Hyperplanes are decision bound-
aries between data points and hyperplane with maximal separation, margin,
between classes is called optimal hyperplane [38].

Chen and Tseng [39] presented an SVM solution for multi-angle hand
gesture recognition for rock paper scissors using images from a web camera.
The training dataset consisted of 420 images and a testing set of 120 images.
Datasets were collected from 5 different people for the right hand only and
achieving 95% accuracy. The classifier still managed to recognize left-hand
gestures with 90% accuracy.
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(a) Hyperplane in R2 (b) Hyperplane in R3

Figure 2.5: Hyperplane examples seperating classes in different dimesions [40]

Domino et al. [41] utilized SVM with Microsoft Kinect sensors, extracting
hand features, fingertips, and center of the hand, from the depth map and
feeding the data into SVM. As a result, achieving 99.5% recognition rate on
the dataset provided by Ren et al. [42]. The dataset consists of 10 different
gestures performed by ten different people repeatedly, each ten times, a total
of 1000 different depth maps.

Mapari and Kharat [43] on the other hand, proposed a method to rec-
ognize American Sign Language (ASL) with an Feed-forward network using
Multilayer Perceptron (MLP), extracting data from LMC and computing 48
features (18 positional values, 15 distance values, and 15 angle values) for 4672
collected signs (146 users for 32 signs). The average classification accuracy is
90%.

2.3.2 Dynamic Gesture Recognition

Katia et al. [44] proposed a method classifying dynamic gestures acquired
through LMC with a CNN, adopting a modified version of ResNet-50 archi-
tecture, a 50 layers deep CNN, removing the last fully connected layer, and
adding a new layer with as many neurons as the considered collection of gesture
classes. The acquired gesture information is converted into hand joints color
images. The variation of hand joint positions during the gesture is projected
on a plane, and temporal information is represented with the color intensity of
the projected points. The trained model achieved 91% classification accuracy
on the LMDHG dataset [45].

Ameur et al. [46] presented a solution using an SVM classifier used with
LMC acquired data, (X, Y, Z) coordinates of fingertips and palm center. The
experimental results show an accuracy of 81% on a dataset containing 11
actions performed by ten different subjects, having in total 550 samples.
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Yang L., Chen J., and Zhu W. [47] used two-layer Bidirectional RNN in
combination with an LMC to classify dynamic hand gestures represented by
sets of feature vectors (fingertip distance, angle, height, the angle of adjacent
fingertips, and the coordinates of the palm). The proposed method has been
tested on modified American Sign Language (ASL) datasets with 360 samples
and the Handicraft‐Gesture dataset with 480 samples, both containing only
dynamic gestures and achieving 90%, 92% accuracy, respectively. The LMC
was used only for data acquisition. The architecture was not further tested
in a real-time environment, and also the performance on static gestures is
unclear since both benchmarked datasets were stripped of any static gesture.
[47]

2.3.3 Proposed LSTM solution

Many of the proposed methods focus either on static gesture recognition or
dynamic gesture recognition, but very few of them are actually utilized for
both types simultaneously.

Avola D., Bernardi M. et al. proposed a method in [30] using LSTM,
specifically Deep LSTM (DLSTM), and LMC to recognize sign language and
semaphoric hand gestures. It uses a hand skeleton extracted by an LMC and
considers angles formed by a specific subset of hand joints. The presented
method reached 96% accuracy in its predictions.

The LMC was used only to collect data for training. The method was not
tested in a real-time environment, and it is yet to be explored whether it will.

Consider each hand gesture to be represtend as set X = {x0, x1, ..., xT −1}
of feature vectors, in predetermined interval Θ size T, T is the number of
time instances, in which features are extraxted by LMC. DLSTM is applied
to obtain series of output probability vectors Y = {y0, y1, ..., yT −1}. At last
the gesture classification is performed by a softmax layer using n = |C|, where
C is the set of considered hand gestures [30].

Figure 2.6: Logical structure of the proposed method [30]
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2.3.3.1 Feature Extraction

A hand gesture can be considered to be composed of different poses, where
particular angles characterize each pose. Each feature vector xt ∈ X con-
sists mainly of internal angles, finger segments, palm position, and fingertip
positions.

Figure 2.7: Internal angles of hand joints [30]

As seen in Figure 2.7, each finger can be represented as set of segments:

• AB, proximal phalax, or metacarpal in case of thumb

• BC, intermediate phalanx, or proximal phalanx in case of thumb

• CD, distal phalanx

These set of segments are then used to calculate internal angles of the
considered finger:

• internal angles ω1, ω2, ω3, ω4 between distal phalanges and intermediate
phalanges. Internal angle ω0 of the thumb is calculated between distal
phalanx and proximal phalanx.

ωj∈{0,...,4} = BC · CD

|BC| · |CD|
(2.1)

• internal angles β1, β2, β3, β4 between intermediate phalanges and prox-
imal phalanges. Internal angle β0 of the thumb is calculated between
proximal phalanx and metacarpal.

βj∈{0,...,4} = AB · BC

|AB| · |BC|
(2.2)
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• intra-finger angles γ1, γ2, γ3 are angles between two neighboring fingers,
where considered fingers are: the pointer finger between middle finger,
the middle finger and the ring finger, and the ring finger with a pinky
finger. The intfra-finger angles are used to handle special static gestures,
for example, an open palm and a pop culture ”Spock” greeting.

3D displacements of palm and fingertip positions help classify dynamic
hand gestures, where the movement is performed in 3D space.

• palm central point coordinates Ph = (u5, v5, z5) help to track the hand
transition in the 3D space.

• finger tip positions ul, vl, zl, l ∈ 0, ..., 4 help to track the hand rotation
in 3D space.

All above features form the input vector xt passed to DLSTM at time t.

xt = {ω0, ..., ω4, β0, ..., β4, u0, v0, z0, ..., u5, v5, z5, γ1, γ2, γ3} (2.3)

2.3.3.2 Optimal Number of Stacked LSTMs

Several tests were performed to find the optimal number of stacked LSTMs.
The results showed that having 4 LSTM layers proved to achieve the best
accuracy by using 800 epochs, the number of times the learning algorithm
goes through the complete training dataset. Although it was possible to get
the same results with 5 or 6 stacked LSTM layers, only due to using 1600 and
1800 epochs, thus increasing the training time [30].

Figure 2.8: Model accuracy by using 800 epochs [30]

The learning rate was set to 0.0001 after large empirical tests. The learning
rate determines how much the newly acquired information about the weights
will influence their updating. If the learning rate is too low, it will require
more time to converge towards the local minimum, while if the rate is too
large, it may overstep the local minimum [30].
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Figure 2.9: Model accuracy by using 1600 epochs for 5 LSTM layers and 1800
epochs for 6 LSTM layers [30]

2.3.3.3 Sampling Process

One gesture can be performed differently by each person, and all collected
frame sequences must be composed of the same number of T samples. The
proposed solution would collect data only in most significant T time instances,
t ∈ Θ is considered significant if the joint angle and the central palm point
coordinate Ph differs substantially between t and t + 1.

To explain more specifically, let fωi(t), fβi
(t), fγj (t) be functions repre-

senting values of ωi, βi, γj angles at time t, where 0 ≤ i ≤ 4 and 1 ≤ j ≤ 3.
Coordinates of Ph may be ϕ and coordinates at time t may be represented
as fϕ(t). Then the Savitzky-Golay filter [48] is applied on each of the named
functions, fg(t), g ∈ G = {ωi, βi, γj , ϕ}. Svaitzky-Golay is a digital filter used
to smooth a set of digital data in order to increase the signal-to-noise ratio
without distorting the signal itself. Local extremes of each fg(t) are to be
indentified as significant time variations and all time instances t, associated
with at least one of these local maximum and minimum of feature g, form a
new set Θ∗, representing candidates of possible important time instances to
be sampled.

Depending on the cardinality of the newly acquired set Θ∗, the following
cases must be considered:

• |Θ∗| < T , the remaining samples (|Θ∗| − T ) are picked randomly from
the original set Θ

• |Θ∗| > T , only some of significant time instances for each g feature are
picked to be sampled. Let Θg ⊆ Θ∗ be a set of significant time instances
for feature g. The number of instances Tg to be sampled is chosen
according to the ratio |Θg| : |Θ∗| = Tg : T , where the sum ∑

g∈G Tg = T
must be preserved [30].
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Chapter 3
MultiLeap

In 2018, developers from UltraLeap had released an experimental build for
Leap Motion tracking software, which provided data from all connected LMCs
at once. Despite having this feature, the provided tracking information for the
same hand was different from each sensor due to different points of origin. This
problem was solved by the MultiLeap library created by Tomáš Nováček et al.
in [34], which merges the information from all sensors and returns a unified
stream of data. The library works with the same data structures as Leap
Motion’s API.

3.1 Alignment of the tracking data
To align tracking data, we must first determine the position of LMCs to place
them in the virtual world. This can be achieved by computing the sensor’s
positions, and rotations in relation to other LMCs [34].

3.1.1 Data sampling
The MultiLeap library allows a user to sample data using a semi-automatic
sampling process. Each sample consists of 20 points from the hand –– the
points represent the center of each finger joint.

The sampling is enabled manually, but data are sampled automatically per
every Leap Motion frame, approximately 90 times per second. The general
idea of automatic sampling is to calibrate sensors using data from already
calibrated devices.

First, one sensor is marked as calibrated. The first marked sensor is either
the first connected sensor or one selected by the user. Uncalibrated sensors
start acquiring samples if the presented hand is in their field of view and at the
same time in the field of view of any calibrated sensor. The pair of samples
consists of the uncalibrated sensor’s original data and fused data from all
calibrated sensors, to which is the hand visible. Once the sensor collects
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enough samples, it begins to compute the optimal translation and rotation of
the device. The sensor is then marked as calibrated. The process is repeated
until all sensors are calibrated [34].

Hands will then align automatically, but it is up to the user, performing
the calibration, to cover enough space of the tracking area. Therefore, it is
best to have diverse samples for more accurate alignment [34].

Considering the tracking data, where the hand is completely still, it will
not have the necessary diversity in its samples. The deviation between col-
lected tracking data is too insignificant. If we were to move the hand across
the tracking area, having it rotated in various ways in various positions, the
deviation of rotations and positions will be more evident, and the calculation
of the alignment more precise [34].

Another option for calibration is a fully manual setting, allowing a user
to set the position and rotation of sensors. Values need to be calculated
accurately for the alignment to have any use. The main advantage of this
approach is having the possibility of tracking different parts of the tracked
space with the sensors, for example, LMCs being back to each other [34].

The combined approach is also possible. First, making a rough calibration
manually and eventually improved by the semi-automatic.

3.1.2 Kabsch algorithm
Kabsch algorithm [49] also known as Procrustes superimposition, was used
to determine the rotation of sensors by calculating optimal rotation matrix
minimizing the root mean squared deviation between two paired sets of points.
The first set of points consists of merged tracking information from calibrated
sensors. The second set of points consists of the tracking information from
any other sensor. [34]

The goal of the Kabsch algorithm is to compute the optimal translation
rotation of P onto Q, where P and Q are sets of pair points that minimize
the distance between the two sets. Both P and Q are represented as N × 3
matrix. Each row consists of coordinates of every point [34].

x1 y1 z1
x2 y2 z2
...

...
...

xN yN zN

 (3.1)

Coordinates of the first point are in the first row, the second point in the
second row, and the Nth point in the Nth row.

The algorithm has two main steps, computing the optimal translation and
computation of the optimal matrix.

The optimal translation can be easily found by being the offset between the
averages of two sets of points. As for optimal rotation, we must first calculate
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the mean center of the points by subtracting the coordinates of the respective
centroid from the point coordinates. The centroid CP for P is computed as
follows:

CP =
∑N

i=1 Pi

N
(3.2)

The mean-center calculation of all points in P:

Pi = Pi − CP (3.3)
Then, the 3×3 cross-variance matrix between the points must be calculated

as follows in matrix notation:

H = P T Q (3.4)
At last, we will extract the rotation from the covariance matrix using polar

decomposition. The extraction can be done in more iterations, resulting in
more accurate rotation calculation but requiring higher computation time in
return.

Algorithm 1 Kabsch algorithm
Input:

• sensors: List of N collections of samples for N sensors

• iterations: The number of iterations of the Kabsch algorithm

1: for sensor = 2, . . . , N do
2: optimalTranslation = getAverage(referenceMatrix) - getAver-

age(sensorMatrix);
3: covarianceMatrix = transpose(sensorMatrix) - referenceMatrix
4: for i = 1, . . . , iterations do
5: extractRotation(covarianceMatrix)
6: end for
7: Translation and rotation of the sensor in the Unity scene
8: end for

3.2 Data fusion
If multiple sensors detect the hand, the fusion algorithm is used. In most
cases, not all sensors detect the hands properly. One of the yield information
provided by MultiLeap library is a confidence, a float value ranging from 0.3
to 1, which denotes the confidence level of the tracking data corresponding
Leap Motion frame. The purpose of confidence level is to give more weight
to tracking data from the sensor, which detects the hand better, making the
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tracking more accurate even if two out of three sensors would send inaccurate
tracking data. The confidence level is of value 0.3 when the palm normal
is in a 90° and 1 when in 0° or 180° angle to Y-axis. MultiLeap does not
use the confidence of 0 because even with the occlusion of fingers and hand,
the tracking data still carries some information about the hand. After few
experiments, the value 0.3 was determined to be the most suitable confidence
level for minimal tracking data when the palm normal is in 90° angle to the
Y-axis of the sensor. The mentioned approach resulted in following equation
for confidence computation:

confidence = (0.283699 × angle2) − (0.891268 × angle) + 1 (3.5)

The function transfers the angle, in radians, between the palm normal and
the sensor’s normal to the corresponding confidence level [34].

The confidence level is used to give weight to data from the sensor, which
detects the hand better, making the tracking more precise despite faulty data
coming from other sensors.
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Chapter 4
Implementation

As briefly mentioned in the Introduction chapter, our goal is to utilize Leap
Motion controllers combined with the pre-trained ANN model. The following
chapter will explore datasets used for our training and the obstacles that came
along with them. Then we will discuss the model training itself and its results.
At last, we will deploy the trained model for real-time recognition in a C++
environment.

4.1 Dataset Description
Among many publicly available datasets for gesture recognition are only a
few containing necessary skeletal information similar to those yield by Leap
Motion controllers. We have selected ASL Dataset, and SHREC 2017 Dataset
created in conjunction with [30] and [50] respectively, often used as benchmark
measurement for trained model accuracy.

4.1.1 SHREC 2017 Dataset
The SHREC dataset contains sequences of 14 dynamic hand gestures. Each
gesture was performed between 1 and 10 times by 28 participants in two ways,
using one finger and the whole hand. All participants were right-handed. The
length of sample gestures varies between 20 to 170 frames. The variation of
frames makes it too inconsistent for our usage in real-time deployment and, as
such, deemed unsuitable. Some samples can be too short and must be thrown
away. Some can be too long, and if we were to shorten it, we might lose the
gesture’s key features.

4.1.2 ASL Dataset
ASL Dataset consists of 30 hand gestures - 18 static gestures and 12 dynamic
gestures. Gestures were collected from 20 different people. 13 were used to
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form the training set, while the remaining 7 formed a test set. Each person
performed 30 hand gestures twice, once for each hand, and each gesture is
composed of fixed 200 frames as oppose to frame varying SHREC dataset
[30].

After further inspection of the ASL dataset, we have discovered possible
mislabeling of features. Specifically, taking a look at internal angles of ges-
ture for number 1, we can see that 1 requires the ring finger to straighten
out instead of the index finger. The same can be said about the gesture of
number 2, where it appears to have the ring finger and middle finger straight
out instead of the index finger and middle finger. It is unclear whether there
is other mislabeling among the features. The mislabeling in itself is not an
obstacle for training because the features are independent of each other, and
the ANN can still learn on them, but the issue will arise in real-time classifi-
cation, where raw data must be preprocessed identically as the training data.
We decided not to use ASL Dataset for our purposes but only to benchmark
model architecture.

4.1.3 Data sampling
By not using ASL Dataset, we have lost a set of static gestures. Also, we want
to have the ability to provide the training with our own sets of gestures and
not to be bound only to those publicly available. For such purposes, we had
created a simple interactive data sampler in the form of a console application.

The sampler saves each sample in .txt format, one line per timestep T ,
frame yield by LMC. Each line contains a set of features. Features were
selected and computed as previously described in section 2.3.3.1. The order
of features in a line xt, at time t is as follows:

xt = {ω0, ..., ω4, β0, ..., β4, u0, v0, z0, ..., u5, v5, z5, γ1, γ2, γ3} (4.1)

All samples contain the same number of timesteps, specified at the begin-
ning by the user or using the default value of T = 60. The number of timesteps
should be further analyzed in order to find the optimal value. The value of
timestep mostly affects the delay rate between the presented gesture and its
prediction in a real-time environment, higher creates greater delay. Also, if
the value is too high, the dynamic gesture may have a minimal role in the
sample, and we will not get desired behavior from our ANN. If the number is
too low, the dynamic gesture may not be captured completely, and the rate
of performed predictions increases, creating greater demand on hardware.

The recording is initiated by key command, but the data collection does
not start until the user’s hand is in LMC’s field of view. Data collection stops
once the set of collected frames Θ matches T or if the hand falls out of LMC’s
view. Features of missing timesteps are then set to zeroes. The sampling can
be subdivided into 3 types:

32



4.1. Dataset Description

1. Single recording records and saves a single sample. The next recording
must be initiated by the user.

2. Open recording records and saves samples continuously. We recom-
mend using the method only for static gestures. It is best to have full
control over recording a dynamic gesture, its beginning, and its end,
along with its most significant sequence.

3. Recording significant frames records and saves a single sample. The
next recording must be initiated by the user. The number of collected
frames Θ∗ is greater than the required number of timesteps |Θ∗| > T .
The last frame is excluded if |Θ∗| is not even. We will then calculate
a significance between xt and xt+1. The significance of an interval is
calculated as average euclidean distances of palm and finger tip positions
P between xt and xt+1.

s(t,t+1) = d(Pt, Pt+1) (4.2)

S = {s(0,1), ..., s(t,t+1)} (4.3)

Frames are then selected into Θ by most significant to least significant
till |Θ| = T . The following cases must be considered:

• |Θ| + 2 ≤ T ∧ xt and xt+1 /∈ Θ, both frames xt and xt+1 will be
added to Θ.

• |Θ| + 1 = T ∧ xt and xt+1 /∈ Θ, both xt and xt+1 are possible
candidates for Θ but only one can be added due to the size |Θ|
which would reach the limit after addition of one. In order to
decide which to pick we will compare the significance s(t−1,t) and
s(t+1,t+2), and pick greater of the two.
It is possible that xt is the first frame of Θ∗, in which case we will
pick xt+1 to be included in Θ. On the other hand, if xt+1 is the
last frame of Θ∗, we will pick xt.

• xt /∈ Θ ∧ xt+1 ∈ Θ, frame xt is picked
• xt ∈ Θ ∧ xt+1 /∈ Θ, frame xt+1 is picked

The method is recommended for sampling dynamic gestures. We at-
tempt to capture the most important part of a dynamic gesture, its
movement.
The most challenging part of creating a dataset is when we do the sam-
pling itself. We want to keep in mind the variety of samples, meaning
angles, positions, and additionally regarding dynamic gestures, various
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speeds, and starting positions. Also, the factor of overlapping character-
istics of gestures must be taken into consideration. For example, an open
hand and open-handed swipe right may share some similar sequence of
frames. Despite introducing sampling specifically for dynamic gestures,
it can still be challenging to create a dataset, which is diverse enough
to hold key properties of the gesture and will enforce the model to learn
its characteristics.
We created a dataset, which consists of 7 static gestures (fist, number
1-pointing, number 2-peace sign, number 3, number 4, number 5-open
fist, pinch) and 2 dynamic gestures (swipe right, swipe left), each of
average 429 samples performed by both hands, a total of 3861 samples.

(a) 0-fist (b) 1-pointing (c) 2-peace
sign

(d) 3

(e) 4 (f) 5-open
hand

(g) 6-pinch

Figure 4.1: Set of static gestures

Swipe can be performed two different ways, one possibility is using whole
hand and other is using only the wrist.

(a) 7-swipe
right (using
the whole

hand)

(b) 7-swipe
right (using
the wrist)

(c) 8-swipe
left (using the
whole hand)

(d) 8-swipe
left (using the

wrist)

Figure 4.2: Set of dynamic gestures

All gestures were sampled by one LMC sensor, which meets its limitation
and is unable to create correct hand joint alignments at some specific
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angles, as an example number 1 pointing towards the sensor. Due to this
fact, some gestures can be lacking in samples with more intricate angles.
We do not recommend using our dataset for any benchmarking as the
gesture set is not complex enough for any model performance evaluation.
Another factor is that it was sampled only by one user, which should be
further expanded in future works. Its sole purpose is to have a working
gesture set for real-time recognition.

4.2 Model Training
We selected Python to be our primary language for training the ANN mode
along with the web-based interactive development environment Jupyter Note-
book. One of the main reasons to pick Python over other available languages
was its wide range of libraries and scientific packages supporting machine
learning tasks. Most importantly, Keras, a high-level deep learning API inte-
grated with TensorFlow, enables the user to create and train model structures
in very few steps.

ASL Dataset was used to benchmark the model and further analyzing
optimal parameters. For the purpose of real-time recognition, we trained the
model on our original dataset described at the end of section 4.1.3.

ASL dataset was split into 80% for the training set and 20% for the testing
set, where 10% of the training set was used for validation. Each feature was
then normalized via min-max scaler formula:

x′ = x − Min(X)
Max(X) − Min(X)

x ∈ X (4.4)

4.2.1 DLSTM architecture
At first, we followed the proposed architecture of 4 layers stacked LSTM by
Avola D., Bernardi M. et al. [30]. We trained the model using 800 epochs
and 0.0001 learning rate, which were proved to be optimal hyperparameters
as described in section 2.3.3.2.

Benchmarking the model on ASL Dataset resulted in similar accuracies as
in [30]. Our original dataset had also achieved high results.

Despite achieving high accuracies on the ASL dataset and our original
dataset, the model itself did not perform well in a real-time environment.
More specifically, the 4 layered LSTM architecture struggled with dynamic
gestures. The model did not learn the gesture in relation to the movement
but rather on its most occurring position in the recorded sequence, which in
the case of swipe right was the palm’s final position. The model successfully
classified test samples because all gestures swipe right contained some frames
where the palm position was on the right. Once we presented the model in
a real-time environment with an open palm on the right, without the swipe
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movement, it classifies such gesture as swipe right, which is an undesired
behavior.

It is unclear whether the model would perform better with more stacked
LSTM layers or not. Another possibility would be having an insufficient
dataset, but later we were able to utilize the same dataset on different ar-
chitecture in a real-time environment. Hence we concluded that the DLSTM
architecture was not suitable for our purposes.

4.2.2 Two-Layered Bidirectional LSTM architecture
After an unsuccessful attempt to utilize DLSTM, we turned over to the two-
layered bidirectional LSTM architecture proposed in [47]. The proposed ar-
chitecture was meant and trained on dynamic gestures only, not knowing how
it will perform on static gestures. On the other hand, static gestures can be
treated as a special type of dynamic gesture, having one frame stretched out to
the desired number of timesteps. Not to mention our dataset was constructed
in a way where static gestures have a slight difference in coordinates between
t and t+1, which makes it possible to look at the static gesture as a very slow
type of dynamic gesture.

4.2.2.1 Selection of the Optimal Dropout Rate

To avoid the problem of overfitting, we used dropout regularization. A tech-
nique, that during training, randomly drops out a number of neurons in layers,
thus ignoring their connections in the network. This creates a new smaller net-
work and, in essence, simulates model ensembling without creating multiple
networks.

We used ASL Dataset for its variety in samples and possible more complex-
ity over our own original dataset. However, despite its mislabeling of features,
it still serves well for model benchmarking and validation.

The optimal dropout rate was selected through several experiments using
dropout values in a range of 0.0 to 0.9. As seen below, not using dropout
regulation caused a visible difference between train and validation accuracies
through the course of training. The difference stayed poor, almost the same
up to the value of 0.4, which showed improved results but not necessarily
optimal. The difference was most promising when using dropout values of 0.5
and 0.6, where 0.6 performed better. However, the performance gets worse
from 0.7 and on. The overall results indicate that the optimal dropout value
is between 0.5 and 0.6. The value of 0.6 is satisfactory enough for our uses.

4.2.2.2 Optimal number of stacked layers

While searching for optimal dropout rate, we had performed the experiment
across different depths of the network, more precisely 1 to 5 layered bidirec-
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(a) No dropout regularisation applied (b) Dropout rate = 0.6

Figure 4.3: Train accuracies compared to validation accuracies through the
course of learning

tional LSTM networks. The dropout value appeared to have held the same
characteristics for the different number of stacked layers.

The additional testing of the network’s depth was to find out whether
using a different number of layers than proposed in [47] would make any
improvements in overall prediction performance.

To find the optimal depth of the network, we have adopted k-fold Cross-
validation. Cross-validation is often used to evaluate the performance of ma-
chine learning models on limited datasets. The entire data set is split ran-
domly into k folds, in our case k = 5, then train the model using k − 1 folds
and hold the remaining fold to measure the model’s accuracy. We will be re-
peating this process for each fold and then calculate the average performance
across all folds.

Table 4.1: Average recognition accuracies across different depths of bidirec-
tional lstm architectures using 5-fold on 200 epochs

Number of layers 5-fold (%)
1 88,14
2 89,07
3 87,48
4 86,31
5 87,98

The two-layered bidirectional LSTM architecture acquired the best per-
formance results compared to other depths. Increasing the number of epochs
would improve the results of architectures with more layers, but we would
suffer on the side of the training time required. In conclusion, choosing the
two-layered architecture is a good compromise between accuracy and training
time.

The two-layered bidirectional LSTM architecture successfully learned dy-
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namic gestures based on its characteristic movement, and it was also successful
in classifying static gestures, both in real-time recognition.

4.3 Real-time recognition
The demo application for real-time recognition is in the form of a simple
console application, supporting multiple LMCs using MultiLeap [34] library
described in chapter 3 and with key commands for LMC calibration. When a
hand gesture is presented, the application prints out the prediction, which is
considered a valid prediction if the value passes the threshold of 90% accuracy.
The application currently works with only one hand. When more than one
hand is presented, the user is notified, and no prediction is made. The demo
application served mainly for debugging and experimental purposes.

We chose C++ as our primary language for real-time recognition since
C++ and C# are widely used programming languages in graphic engines such
as Unity, PhyreEngine, or Unreal, which opens the possibility of integrating
our application into graphic engines in future works.

4.3.1 Cppflow 2
Our application uses the trained model from section 4.2 and deploys it in a
C++ environment. More specifically, we exported the model in .tf file format
and imported it into C++ using CppFlow 2.

Cppflow 2 is an API created by Sergio Izquierdo, allowing the user to
run TensorFlow in C++ without the necessity of installing and compiling
TensorFlow itself. CppFlow 2 serves as a Tensorflow C API wrapper providing
a simple C++ interface similar to TensorFlow callings in Python environment
[51].

4.3.2 Sliding window
The data collection, frame collection yield by LMC, starts once a hand is
presented in LMC’s field of view and stops if the hand falls out of the view.
Let us introduce a situation where during the stream of data yield by LMC, we
change our hand gesture from a ”fist” to a ”peace sign”. We want to classify
both of these gestures, but how do we determine where one gesture ends and
the other starts. To tackle the presented scenario, we adopted the concept of
sliding window.

The basic idea is to have a window of fixed size T , which slides through
our data stream and captures a certain portion of it. It is important to remain
the same T value as we chose to record our dataset. Otherwise, the shape of
the captured data would differ from the input shape of our trained model. It
is worth mentioning that using a wider window size creates a noticeable time
delay between a presented gesture and its prediction. On the other hand,
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using a size too small, there would be a possibility of not capturing a dynamic
gesture completely, leading to possible inaccurate predictions. In our case we
used T = 60. Considering a situation where the collected data is less than T ,
the missing data are then set to zeroes. If we present more than one hand, the
stream is invalidated, collected data are flushed, and the window will begin
sliding again once there is only one hand in the controller’s view. If we wanted
to have an additional feature of recognizing multiple hands, we would need to
implement as many sliding windows as there are hands. Not to mention, there
are dynamic gestures characterized by two hands. As an example, clapping
can be considered as one. This characterization would require modifying our
dataset structure and explore additional features. We leave this topic for
future works.

Figure 4.4: General idea of a sliding [52]

For each window, we then calculate features for classification and output
the prediction of the captured portion. Features must be preprocessed exactly
the same as they were for model training, in our case, same as described in
section 2.3.3.1.

The window slides by 10 frame, in other words, throws away the oldest
frames and adds in the newest acquired. The sliding rate should be further
tuned for optimal value. If we throw away too many frames, we risk leaving
some gestures unclassified. On the other hand, sliding by one frame can be
demanding on hardware, where weaker computer builds may not keep up, and
the prediction may stutter.
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Chapter 5
Experiments

One other goal of the thesis is to evaluate the recognition performance based
on a number of connected LMC sensors and test the capabilities of MultiLeap
library in the real-time environment using various layouts with a different
number of sensors. Results from one connected sensor served as the reference,
mostly whether having multiple LMC sensors does improve the recognition
of difficult angles or not. We also examined how effective was MultiLeap’s
merging for gestures presented in simple default angles.

We used the demo application and trained model as described in section
4.3. The model was trained on our original dataset from section 4.1.3.

5.1 Testing Method
For each gesture, we performed 1000 classifications. We did not exclude clas-
sifications with corrupt sequences, such as when the LMC sensor did not get a
correct hand skeletal alignment of the presented hand. We wanted to emulate
genuine user interaction with the LMC. Each gesture was held in various po-
sitions and angles in a certain span of time until the number of classification
was not satisfied.

Results of multiple LMC sensors are an average of 5 different automatic
calibrations. There is currently no telling how well sensors were calibrated.
Therefore, we want to avoid generalizing MultiLeap capabilities base on exper-
iments conducted on only one calibration. An experimental feature is being
currently worked on to recognize the calibration quality, but it was not de-
pendable enough in the time of our experiments.

Dynamic gestures were not tested, as it is hard to evaluate the percentage
of correct classifications in a continuous stream of data. If we test dynamic
gestures without any mix-up with static gestures, it will defeat the purpose of
testing in a real-time environment. We want to evaluate the performance when
a dynamic gesture is performed in the middle of the sequence of static ges-
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tures, as to whether the trained model is capable of recognizing the difference
between the static gesture of number 5 as oppose to having number 5 moving
quickly to one side, doing a swipe. Despite not dedicating any experiments to
dynamic gestures, we can still evaluate responsiveness and general correctness
when we perform it. We also want to keep track of times when a static gesture
gets misclassified for a dynamic gesture, and what is the percentage of valid
classification to determine whether the threshold for prediction probability
was not set too high.

5.1.1 One Leap Motion Sensor
Experiments for a single connected sensor were performed with LMC’s VRVi-
sualizer to understand better how the skeletal structure, which gets classified,
looks. It helps us distinguish whether misclassification is caused by our trained
model or by LMC’s hand joint misalignment.

Figure 5.1: VRVisualizer

Figure 5.2: Ilustrative field of view of 1 LMC sensor

The classification was responsive with every presented gesture, including
dynamic gestures. Still, the limitation of having only one sensor presents
itself when we perform a gesture of number 1 pointing towards the sensor.
The sensor struggles to recognize the pointing finger as being straight, and
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often times it misclassifies the gesture as a fist, or the prediction does not meet
the threshold requirement. It also struggles with the prediction of number 3
and number 4, wherein various angles, the thumb is not recognized by LMC
as bent and straighten correctly. Gestures then get confused with number 2,
and number 5 respectively. The pinch gesture was mostly misclassified due
to hand joint misalignment by the LMC sensor. We could be questioning
the trained model’s performance due to training on a not optimal dataset,
but when the hand joint was aligned correctly, the gestures also got classified
correctly without any further complications.

The percentage of invalidated gestures was also not too high as most of
the discarded predictions were of 0.8 probability and lower. We can assume
that our set threshold of 0.9 is not overly strict for the prediction.

Figure 5.3: Confusion matrix of prediction by using 1 LMC sensor

5.1.2 Two Leap Motion Sensors

For two sensors, we explored several layouts with different calibrations. We
could not utilize VRVisualizer as we did with one LMC sensor. The MultiLeap
library does not have a feature of visualizing the merged hand or any visual-
ization during calibration at the moment. Therefore, we could not accurately
evaluate how the merged hand structure looks like during classification or cal-
ibration. Thus, our experiments are limited in correction when evaluating the
accuracy of multiple LMC sensors. We recommend conducting experiments
again once the visualizing feature is implemented.
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5.1.2.1 Parallel Layout

The parallel layout, with sensors facing each other, could not be tested. LMC
sensors expect to receive its emitted IR signals to return from a hand. Instead,
the emitted IR signal is received by the other sensor and vice versa. The
behavior will confuse LMC recognition making the sensors think there is a
hand presented even when it is not. Thus we assume this parallel layout is
inappropriate to be a part of any setup with multiple LMC sensors.

Figure 5.4: Parallel placement layout for 2 LMC sensors

5.1.2.2 Non-parallel Layout

Sensors were placed next to each other at a slight angle facing inwards, avoid-
ing sensors to be disturbed by other’s emitted IR signals.

Figure 5.5: Non-parallel placement layout for 2 LMC sensors

Using MultiLeap [34] showed improvements in classifying gestures in dif-
ficult angles, which it struggled in previous experiments with one connected
sensor. The MultiLeap was able to capitalize on the advantage of having
multiple fields of view for capturing a presented hand.

Despite improved performance with various angles, the number of inval-
idated classifications had increased. The average prediction probability for
gesture was 0.697, which is most likely caused by misalignment when merg-
ing hands. The number of confusion between gestures had also increased.
Both could be caused by poor calibration, which there is currently no way to
identify the calibration quality in order to avoid this issue.
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Figure 5.6: Confusion matrix of prediction by using 2 LMC sensors

The calibration quality significantly affects the prediction accuracy. More
specifically, when we tested pinch gesture, the measured average accuracy
was mere 24.4%, but when tested again with a new calibration, the accuracy
improved up to 83%, which is already better than referential results of one
connected sensor. The calibration could also affect dynamic gestures. While
performing experiments, dynamic gestures were not responsive as they were
with only one connected sensor. Often times they were not recognized at all,
but their responsiveness varied with different calibrations.

The MultiLeap’s current most notable issue is an incorrect number of re-
ported hands. Our demo application does not make a prediction when there
is more than one hand presented. This feature is conflicting with the cur-
rent bug of MultiLeap, where it frequently returns two hands instead of one,
even though only one is present, which from a user’s point of view makes the
demo application almost unusable for any accurate consecutive recognition.
However, the issue is known, and its fix is currently in development.

5.1.3 Three Leap Motion Sensors

Sensors were carefully placed into a triangular layout so that LMC sensors
don’t emit IR signals to others, recreating a similar misrecognition issue as in
section 5.1.2.1.

Using three sensors shares similar behavior as using two sensors. The
improvement in recognition of difficult angles was improved upon additional
sensors in fewer cases of calibration. Most of the calibrations made did not
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Figure 5.7: Placement layout for 3 LMC sensors

capitalize properly on the advantage of having multiple sensors.
The setup suffered similarly, if not at times more, on the side of increased

invalidated classification. The average prediction probability for gesture was
0.6841. The issue with the incorrect number of reported hands still persists
in a similar frequency as it did with two connected sensors.

Figure 5.8: Confusion matrix of prediction by using 3 LMC sensors

The pinch alongside with number 4 gesture has low accuracy across all 5
different calibrations. They often got confused with the gesture of number
5. Dynamic gestures also suffered where the responsiveness seemingly did
not change with various calibrations. We can only assume that having more
sensors is harder to calibrate and more demanding on calibration quality.
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Chapter 6
Conclusion

The goal of the thesis was to utilize LeapMotion sensors in relation to gesture
recognition, create a pre-trained model and use it to evaluate the capabilities
of the MultiLeap library.

We explored publicly available ASL and SHREC datasets, discovered pos-
sible feature mislabeling in the ASL dataset, and discussed the dataset’s suit-
ability for our purposes. In relation to the discussion, we created a simple way
to sample our original dataset. The process features a simplified ability to de-
tect moving sequences while sampling dynamic gestures. We created a dataset
consisting of 7 static gestures (fist, 1-pointing, 2-peace sign, 3, 4, 5-open fist,
pinch) and 2 dynamic gestures (swipe left, swipe right). Our dataset served
the purpose but is not optimal for any benchmark evaluation. The dataset
lacks complexity as well as the number of users used for sampling. We sug-
gest expanding the dataset in future works with the engagement of more users,
increasing the gesture set as well as its complexity.

ASL dataset, despite its mislabeling, was used for benchmarking and per-
formance evaluation in the testing environment. Our dataset was then used
for real-time deployment. Both datasets applied on 4-layered LSTM as well
as 2-layered bidirectional LSTM. The 4-LSTM showed promising high results
in the testing environment but did not have the desired behavior in real-time
deployment due to the inability to learn dynamic gestures, while 2-layered
bidirectional LSTM performed well on both fronts.

We also explored the optimal number of layers and dropout rates for bidi-
rectional LSTMs, resulting in having 2 layers in combination with the 0.6
dropout rate, which is an optimal compromise between accuracy and required
training time. As a result, the 2-layered bidirectional LSTM achieved 89.07%
accuracy performing 5-fold cross-validation.

Using the pre-trained model, we created a demo application for debugging
and experimental purposes in the form of a simple console application, which
supports the connection of multiple Leap Motion sensors. Despite not hav-
ing an optimal dataset, we achieved to create a responsive classifier for static
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gestures and dynamic gestures, suitable to be integrated into other applica-
tions. However, the application can only classify one hand. Classification of
multiple hands would require a new feature structure of the dataset and an
improved sliding window solution for real-time recognition. We leave this for
future works.

We have conducted several experiments to evaluate the model’s perfor-
mance in the real-time environment and evaluate the performance of the Mul-
tiLeap library by using multiple Leap Motion sensors. We explored several
setups and the way they can affect Leap Motion detection. We have pointed
out issues with the current MultiLeap library alongside its promising results in
classifying hand gestures with challenging angles while using multiple sensors.
We did not explore all possible setups there are, but it was enough to have
a general idea of the current MultiLeap state. We will revisit our setups and
explore more in future works with improved MultiLeap.
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Appendix A
Acronyms

ANN Artificial Neural Network

RNN Recurrent Neural Network

BRNN Bidirectional Recurrent Neural Network

CNN Convolutional Neural Network

LSTM Long Short-Term Memory

BLSTM Bidirectional Long Short-Term Memory

DLSTM Deep Long Short-Tzerm Memory

ReLU Rectified Linear Unit

LMC Leap Motion Controller

LED Light Emitting Diode

SVM Support Vector Machine

MLP Multilayer Perceptron

ASL American Sign Language

SHREC Shape Retrieval Contest

API Application Programming Interface
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Appendix B
Contents of enclosed CD

README.md............................the Markdown file with description
executables..............................the directory with executables

Dataset..........................the directory of the original dataset
TrainedModel ......................... the directory of trained model
DataSampler.exe..........................data sampling application
model_trainig.py......................model training Python script
GestureApp.exe ................gesture recognition demo application

src.........................................the directory of source codes
text....................the directory of LATEX source codes of the thesis
environment.yml...............configuration file for conda environment
BP_Viet_Anh_Tran_2021.pdf............. the thesis text in PDF format
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