

Bachelor’s thesis

UNIFIED SDK FOR
INTEGRATION WITH
ERSTE GROUP PSD2 API

Artem Kravchenko

Faculty of Information Technology, CTU in Prague
Department of Software Engineering
Supervisor: Ing. Nikolay Barbariyskiy
June 27, 2021

České vysoké učeńı technické v Praze
Fakulta informačńıch technologíı
© 2021 Artem Kravchenko. Všechna práva vyhrazena.
Tato práce vznikla jako školńı d́ılo na Českém vysokém učeńı technickém v Praze, Fakultě informačńıch
technologíı. Práce je chráněna právńımi předpisy a mezinárodńımi úmluvami o právu autorském a
právech souvisej́ıćıch s právem autorským. K jej́ımu užit́ı, s výjimkou bez uplatněných zákonných li-
cenćı nad rámec oprávněńı uvedených v Prohlášeńı, je nezbytný souhlas autora.

Odkaz na tuto práci: Artem Kravchenko. Unified SDK for integration with Erste group PSD2 API.
Bachelor’s thesis. České vysoké učeńı technické v Praze, Fakulta informačńıch technologíı, 2021.

Contents

Acknowledgements vii

Declaration viii

Abstract ix

Acronyms x

1 Introduction 1
1.1 Thesis Structure . 1

2 Revised Payment Services Directive (PSD2) 3
2.1 Introduction . 3
2.2 History . 3

2.2.1 Payment Service Directive (PSD) . 4
2.2.2 Single Euro Payments Area (SEPA) . 4

2.3 Technical Documents . 4
2.3.1 Regulatory Technical Standards (RTS) . 4
2.3.2 Electronic Identification, Authentication & Trust Services Regulation (eI-

DAS) . 5
2.4 PSD2 Implementations . 5

2.4.1 Berlin Group Standard - NextGenPSD2 6
2.4.2 Open Banking (United Kingdom) . 6
2.4.3 Czech Open Banking Standard - ČOBS 6

2.5 PSD2 API . 6
2.5.1 Account Information Service (AIS) . 6
2.5.2 Payment Initiation Service (PIS) . 6
2.5.3 Confirmation of Funds - Card Issuing Service (CIS) 6

3 Erste Group 7

4 Erste SDK 9
4.1 Goals . 9
4.2 Differences between SDK and Library . 9
4.3 User-centric interface . 10
4.4 Implementation . 10

4.4.1 Technology . 10
4.4.2 Dependencies . 11

5 Overview 13
5.1 Erste SDK . 14

5.1.1 Authorization Grant . 14
5.1.2 Authorization Implicit Grant . 16
5.1.3 Authorization Code Grant . 16

iii

iv Contents

5.1.4 Consent Provider . 18
5.1.5 AIS Provider . 18
5.1.6 PIS Provider . 19
5.1.7 CIS Provider . 19

5.2 HTTP Wrapper . 20
5.2.1 Erste SDK HTTP Request . 20
5.2.2 Erste SDK HTTP Response . 20

5.3 Erste SDK Builder . 21
5.3.1 Erste SDK Configuration . 22

5.4 Exceptions . 24
5.5 Base API Provider . 25

6 Authorization Flow unification 27
6.1 OAuth 2.0 . 27

6.1.1 Authorization Code Grant . 27
6.1.2 Authorization Implicit Grant . 28

6.2 Cross bank Authorization flow analysis . 28
6.2.1 Consent Id . 28
6.2.2 PKCE . 29
6.2.3 Request Signing . 29

6.3 Cross bank Authorization flow solution architecture 29
6.3.1 Authorization Code Grant . 29
6.3.2 Authorization Implicit Grant . 29
6.3.3 Consent Routine . 29

6.4 Cross bank Authorization solution architecture 29
6.4.1 . 32
6.4.2 Tokens . 32

7 Account Information Service unification 35
7.1 Erste AIS APIs . 35
7.2 Unified and Specific Model Architecture . 35

7.2.1 Account . 36
7.2.2 Balance . 36
7.2.3 Transaction . 39

7.3 AIS Mapper . 39
7.4 Sandbox limitations . 41

8 Examples 43
8.1 Example Usage . 43

8.1.1 Instantiating the SDK . 43
8.1.2 Obtaining an Access Token using Authorization Code Grant 43
8.1.3 Accessing the AIS API . 44

8.2 Example Project . 44

9 Conclusion 47
9.1 Impact of the project . 47
9.2 Impact of the thesis . 47
9.3 Final words . 47

Contents of enclosed SD card 53

List of Figures

3.1 Map of Erste Group activities in Europe[19] . 8

5.1 Base architecture overview . 14
5.2 Erste SDK Architecture . 15
5.3 Authorization Grant overview . 15
5.4 Authorization Implicit Grant overview . 16
5.5 Authorization Code Grant overview . 17
5.6 Consent Provider overview . 18
5.7 AIS Provider overview . 19
5.8 HTTP Wrapper Overview . 20
5.9 Erste SDK HTTP Request overview . 21
5.10 Erste SDK HTTP Response overview . 21
5.11 Erste SDK Builder overview . 22
5.12 Erste SDK Configuration overview . 23
5.13 Erste SDK URI Configuration overview . 24
5.14 Excpetion architecture overview . 25
5.15 Base API Provider . 26

6.1 OAuth Authorization Code Grant Flow . 30
6.2 OAuth Authorization Implicit Grant Flow . 31
6.3 Consent Routine . 32
6.4 Tokens . 33

7.1 Unified and Specific Model Architecture . 37
7.2 Unified Account Model . 38
7.3 Unified Balance Model . 39
7.4 Unified Transaction Model . 40
7.5 Mapper Architecture . 42

List of Tables

v

vi Seznam výpis̊u kódu

Seznam výpis̊u kódu

I would like to thank my thesis supervisor Ing. Nikolay Barbariyskiy
for proposing this topic and always providing helpful advice no mat-
ter if we were discussing the thesis or programming. I would also like
to thank BcA. Pavel Michaĺık for sharing his expertise with finan-
cial technology and especially PSD2. Finally my heartfelt thank you
to Andrea Švancarová for supporting and motivating me throughout
difficult times.

vii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act
No. 121/2000 Coll., the Copyright Act, as amended. In accordance with Article 46(6) of the
Act, I hereby grant a nonexclusive authorization (license) to utilize this thesis, including any
and all computer programs incorporated therein or attached thereto and all corresponding doc-
umentation (hereinafter collectively referred to as the “Work”), to any and all persons that wish
to utilize the Work. Such persons are entitled to use the Work in any way (including for-profit
purposes) that does not detract from its value. This authorization is not limited in terms of
time, location and quantity.

Done in Prague, 27 June 2021 .

viii

Abstrakt

Hlavńım ćılem práce je představit projekt Erste SDK na integraci PSD2 API Erste Group a
uvést legislativu PSD2 a PSD2 API v rozsahu potřebném pro pochopeńı projektu. Kromě
jádra projektu je ještě podrobněji vysvětlena autorizace a AIS API. Práce představ́ı ke každému
API vybranou architekturu pro sjednoceńı, poṕı̌se řešeńı nastalých problémů a poṕı̌se výsledné
unifikované modely a procesy. Následně se zhodnot́ı př́ınos projektu oproti manuálńı integraci
bankovńıch API bez použit́ı SDK.

Kĺıčová slova PSD2, PSD, FinTech, Unifikace API, SDK, Bankovńı aplikace, Erste Group,
Erste, Analýza API, OAuth

Abstract

The main goal of this work is to introduce the Erste SDK project for unifying the PSD2 API
of Erste Group, and provide an overview of PSD2 and PSD2 API to better understand the
SDK project. Along with project core, authorization and AIS API will be explained in detail.
A solution architecture will be introduced for every API along with describing encountered
unification discrepancies and an explanation of the unified models and flows. Finally the benefits
of the project will be examined and compared to manual integration of bank APIs without using
the SDK.

Keywords PSD2, PSD, FinTech, API unification, SDK, Banking application, Erste Group,
Erste, API Analysis, OAuth

ix

Acronyms

PSD2 Revised Payment Services Directive
RTS Regulatory Technical Standards
AIS Account Information Service
PIS Payment Initiation Service
CIS Card Issuing Service

AISP Account Information Service Provider
PISP Payment Initiation Service Provider
CISP Card Issuing Service Provider

ASPSP Account Servicing Payment Service Providers
TPP Third Party Provider

TPPSP Third Party Payment Service Providers
IDP Identity Provider
PSU Payment Service User
SCA Strong Customer Authorization
CSC Common and Secure Communication

QWAC Qualified website authentication certificate
CSAS Česká spořitelna a.s., Czechia
SLSP Slovenská sporitélňa, a.s., Slovakia
BCR Banka Comerciala Romana, Romania
EBH Erste Bank Hungary Zrt., Hungary
EBC Erste&Steiermärkische Bank d.d., Croatia

EBOE Erste Bank and Sparkassen, Austria
EGB Erste Group

x

Chapter 1

Introduction

This thesis will introduce the Erste SDK project for integration of Erste Group PSD2 API. The
Erste SDK project aims to provide an open source unified interface for third party developers
meaning to use the PSD2 APIs of the different banks of the Erste Group. Even though the
banks belong to the same banking group, the standards and needs specific to their local regions
mean their PSD2 implementation differs in small and big details alike. The differences will be
examined in detail in chapters focusing on specific parts of the API.

This project is composed of two parts. The Java SDK and the functionally identical Node.js
SDK. This thesis will focus exclusively on the Java project. The project is still in active develop-
ment and not officially released yet. It will be available on Maven Central and on Github later
this year. Given that the Java project needs to be as close as possible to the Node.js project, the
full documentation is yet to be done as it should be unified across both parts. The introduction
in this thesis, existing documentation in the project and on the Erste developer portal should
provide enough context and information for the SDK to be usable now. However using it in real
projects should be postponed until official release.

1.1 Thesis Structure
The thesis will cover the basics of PSD2 required for the purposes of the project and give a
quick overview of the Erste Group. Choice of programming language, dependencies and specific
goals of the project will be explained before delving deeper into architectural choices. Basic
overview of the project and its core parts is then followed by chapters focusing on the solution
architecture of the specific parts. The challenges encountered during unification of the APIs of
different Erste banks, such as business model and flow discrepancies, will be explained in their
respective chapters.

Authorization - covering the basics of OAuth, consents and the unified flows.

AIS - focusing on the issues such as differing models and mocking non existing endpoints.

The thesis is then concluded by showing examples of the SDK in use, explaining possible
benefits and summarizing personal experience with the project.

1

Chapter 2

Revised Payment Services
Directive (PSD2)

This legislation is a step towards a
digital single market; it will benefit
consumers and businesses, and help the
economy grow.

Jonathan Hill, former European
Commissioner

This chapter will cover the basics of PSD2 needed to better understand the context of what
the Erste SDK project is based on. It will introduce the history of PSD2, its predecessors and
alternatives. It will explain what the different technical documents surrounding the regulation
are.

2.1 Introduction

The main goal of PSD2 is to simplify and secure online payments by requiring strong customer
authentication (SCA), which will be explained in a later section; and to facilitate innovation [4]
and competition by making it easier for third party providers (TPPs) to enter the online financial
market in Europe. In this effect it overwrites the existing Payment Services Directive effective
from 2007.

PSD2 was proposed in the European Parliament and passed by the Council of the European
Union in 2015 and came into effect in 2019, but the requirements for SCA were extended until
31 December 2020 [3].

2.2 History

PSD2 builds on the existing Payment Services Directive and the Single Euro Payments Area
initiatives of the EU.

3

4 Revised Payment Services Directive (PSD2)

2.2.1 Payment Service Directive (PSD)
The original PSD paved way for a new category of financial services called payment service
providers [24]. This required a regulatory framework allowing new organizations to provide
payment services that previously only banks, central banks and governments could. Those com-
panies, commonly referred to as fintech (financial technology), could apply for a so-called pass-
port certificate in one EU country to provide payment services all over Europe. The regulation
also helped the adoption of SEPA, brought more transparency and information to consumers,
set more strict limits on maximum payment processing time and fees, and strengthened refund
rights among other things [5].

2.2.2 Single Euro Payments Area (SEPA)
Since 2008 the aim of SEPA was to speed up and simplify bank transfers in euro currency. It
unified the different payment rules and standards, which allowed easy payments all over the
eurozone just like national payments, therefore bypass costly and timely international payment
fees [2, 21]. It introduced guaranteed one day and instant transfers with SEPA Instant Credit
Transfer [7]. This was expected to reduce the total cost of banking and processing payments
by up to €100bn a year [34]. As SEPA only covered euro transactions, European transactions
between countries not in the eurozone were not affected and remained as complicated as before.

2.3 Technical Documents

2.3.1 Regulatory Technical Standards (RTS)
In order to codify the requirements of PSD2 RTS was adopted based on a draft submitted by the
European Banking Authority [4]. RTS introduces two key security measures that TPPs and banks
must observe when providing their services. The first of those is Strong Customer Authentication
regulating user authentication and the second one is Common Secure Communication establishing
different PSD2 actors and methods of their interactions [10].

2.3.1.1 Strong customer authentication (SCA)
To prove their identity users will need to provide at least two separate elements out of these
three [4]:

Something they know - a password, a PIN.

Something they own - a card, a mobile phone.

Something they are - biometrics (a fingerprint).

RTS codifies that SCA must be used when initiating payments.

2.3.1.2 Common Secure Communication
Establishes terminology, hierarchy and interactions between clients, banks and applications [15].
Introduces the following terms:

Third Party Payment Service Providers (TPPSP) - Third parties (TPP) which do not own
the client’s accounts, but can provide services.

Account Information Service Provider (AISP) - TPP providing an overview of client’s bank
accounts.

PSD2 Implementations 5

Payment Initiation Service Provider (PISP) - TPP able to initiate payments on client’s
behalf. The payment still needs to be confirmed by the client using SCA before it is
accepted by the bank.

Account Servicing Payment Service Provider (ASPSP) - the providers of the payment ac-
counts for customers, including banks and other payment institutions.

Customer Consent - clients must give ASPSPs explicit consent for TPPs to use the API.
It’s not possible for AISP to access data or PISP to initiate payment from accounts where
consent to do so was not given.

Common communication - ASPSPs must allow TPPs to access their PSD2 API without
difficulty to prevent insecure screen scraping. Screen scraping is a method where the client
gives TPPs their account login information and TPPs automatically extract data or initiate
payments from client’s mobile banking application. With PSD2 the European Commission
effectively prohibited screen scraping and enforced PSD2 APIs for such communication [38].

Secure communication - ASPSPs must communicate with TPPs using secure messaging when
accessing client’s data at all times. This secure channel will also enable the parties to identify
each other using certificates [6]. The certificates will be explained in the next section covering
eIDAS.

2.3.2 Electronic Identification, Authentication & Trust Ser-
vices Regulation (eIDAS)

While not a part of PSD2, eIDAS is an important regulation for the concept of Secure com-
munication of the PSD2 RTS. It was announced in July 2014 as a regulation on electronic
identifications, signatures and safe electronic transactions in the internal EU market [33, 9].

For the purposes of this thesis the most important concept is the Qualified website authen-
tication certificate (QWAC). This type of certificate is meant for use in payment systems in
accordance with the PSD2 guidelines to prove the identity of the holder. Unlike commonly used
SSL/TLS certificates QWAC is a qualified certificate [28]. A qualified certificate is issued by a
qualified trust service provider, which is a legal entity creating and validating electronic certifi-
cates and signatures. It is recognized as a trusted identification by public administrations across
the EU. Therefore a qualified electronic signature and certificate hold the samme weight as a
paper signature or identification [8].

2.4 PSD2 Implementations
Even though the RTS helped answer some uncertainties about PSD2 implementations, the reg-
ulation is still a long way away from being a guide for banks to know exactly which endpoints
accepting which parameters to implement for their PSD2 API since the regulation only specifies
which data should be made available by the API. The end result is that there could be potentially
limitless different APIs which are all PSD2 compliant [27].

This is especially pronounced as PSD2 allows some leeway for different banks to not provide
or accept information that is not already present in their business flows. This will become very
apparent when examining different Erste banks’ PSD2 implementations further in this work.

In order to mitigate this issue different banking groups have proposed how PSD2 implemen-
tations might look in practice. The following sections will introduce three of those proposals.

6 Revised Payment Services Directive (PSD2)

2.4.1 Berlin Group Standard - NextGenPSD2
Berlin Group first formed in 2004 surrounding the creation of SEPA. Berlin Group believes that
the national banking scheme differences are not just a nuisance to be dealt with by unification,
but that those differences allow for the highest level of efficiency in the banking space for those
countries. Therefore any unification effort should be made with this in mind [17].

NextGenPSD2 is a detailed technical implementation guideline that allows implementation
of a PSD2 compliant banking interface. The majority of Erste PSD2 implementations are based
on this proposal.

2.4.2 Open Banking (United Kingdom)
The UK specific PSD2 standard was adopted by over 90% of their market even though the UK
is no longer a member of the EU or the European Economic Area and therefore exempt from
the regulation [11].

2.4.3 Czech Open Banking Standard - ČOBS
The Czech national standard proposed by the Czech banking association, currently on version
4.1 from 25 May 2020. A 449 page document proposing different endpoints, entity models and
possible error codes in great detail [12]. Erste CSAS PSD2 implementation is based on this
document.

2.5 PSD2 API
PSD2 defines three distinct APIs each serving a different need [29]. The following section will
briefly examine every API defined.

2.5.1 Account Information Service (AIS)
AIS enables TPPs to access account information such as the IBAN, transaction history, and
balance of a client’s account.

2.5.2 Payment Initiation Service (PIS)
The PIS API enables TPPs to initiate a payment from the client’s accounts. Each payment must
still be confirmed by the client using SCA to avoid misuse.

2.5.3 Confirmation of Funds - Card Issuing Service (CIS)
The functionally simplest API defined by PSD2, CIS is used only for confirmation of funds on a
payment card. TPP sends a request asking if the client has sufficient funds for a transaction of
specified amount and the ASPSP either confirms or denies.

Chapter 3

Erste Group

Erste Group is one of the largest financial providers in Central and Eastern Europe with around
16.2 million clients in 7 countries.[18, 20] It was originally founded in 1819 in Austria as a
savings bank. In 1997 the Erste Group went public and started expansion beyond Austria to
other countries. To list a few countries of interest:

Hungary (EBH) - Erste Bank Hungary Zrt.

Slovakia (SLSP) - Slovenská sporitélňa, a.s.

Romania (BCR) - Banca Comercială Română.

Croatia (EBC) - Erste&Steiermärkische Bank d.d.

Czech Republic (CSAS) - Česká spořitelna a.s. is a bank with the largest amount of clients in
the Czech Republic with around 4.5 million customers. Among other services it also provides
the biggest ATM network in the Czech Republic.[13]

Serbia - as a non EU member state it is exempt from the PSD2 regulation, therefore not a
part of the project.

The Group focuses on both retail and corporate banking with offerings such as mortgages,
loans, advisory services and access to capital markets.

7

8 Erste Group

Figure 3.1 Map of Erste Group activities in Europe[19]

Chapter 4

Erste SDK

4.1 Goals

The goal of the project is to mitigate the differences between banks so that developers wanting to
communicate with Erste banks would ideally only need to learn to use the SDK without studying
the developer portal documentation for every bank they interact with. The Erste SDK should
be very light on dependencies as to minimize the adoption friction as much as possible, and be
created with the idea of user-centered interfaces in mind. The project should adhere to open
source standards, be thoroughly tested and testable.

Analysis in further chapters proved that the goal of completely erasing the differences between
the banks is impossible at the very least because of the different authorization flows among many
other reasons. In short all banks support authorization via the OAuth Authorization Code Grant,
but only some banks support the OAuth Implicit Grant as well. Aside from that three of the
seven banks also deal with Consents for interaction with specific accounts as a part of this flow,
while the rest have the consent mechanic integrated in the login flow, as the bank shows a message
that logging in gives the TPP consent to access the account information of their accounts.

The majority of the added value of this project is in unifying the endpoints, methods, models
and error handling across the domain as much as possible. Developers still need to reference
the Erste developer portal or the project documentation to confirm which specific arguments
are required for requests, or conversely which attributes are always included in the response
model and which are optional. However all of the busywork of configuring endpoints, enforcing
arguments, converting responses and handling different error mappings across banks is done for
them.

4.2 Differences between SDK and Library

The main difference between a library and an SDK is that a library aims to provide functionality
in one area or for one task. On the other hand an SDK contains all necessary tools required for
development in a specific area such as a hardware platform, operating system or programming
language [23, 36, 35]. Given that there isn’t a concrete definition that draws a clear line between
the two it could be just as successfully argued that this project is a library similar to Google API
Client Library that allows users to interact with Google services such as listing calendar events
or uploading files to Google Drive [16]. Same as it could be said that this is an SDK similar

9

10 Erste SDK

to Facebook SDK that provides functionality such as wrapping API calls or enabling to use the
Like Button on a website [14].

While this definition looks good in theory in practice it is not concrete enough. Therefore
where exactly the Erste SDK project is a question without a concrete answer. Arguments could
be made for both sides and the project self labels as an SDK containing everything needed to
develop an Erste PSD2 application.

4.3 User-centric interface

User-Centered Design (UCD) is a user
interface design process that focuses on
usability goals, user characteristics,
environment, tasks, and workflow in the
design of an interface. UCD follows a
series of well-defined methods and
techniques for analysis, design, and
evaluation of mainstream hardware,
software, and web interfaces. The UCD
process is an iterative process, where
design and evaluation steps are built in
from the first stage of projects, through
implementation.

Shawn Lawton Henry and Mary
Martinson, Accessibility in

User-Centered Design

User-centered interface is an important value to the Erste SDK project. It is based on the
term user-centered design and aims to extract the benefits of this approach in the programming
context.

User-centered design is based on the principle of adapting the product to what the user wants,
expects, and is used to. The product should be designed with frequent feedback from the user
from start to finish [37].

The main takeaway for the Erste SDK Project is abstraction of implementational details of
all the different banks and unification of business models. The ideal outcome is to enable the
end user to focus on delivering business value as much as possible instead of working around
API differences. In this sense it should aim to complement the current Erste developer portal
documentation for each bank. The end user of the SDK should only spend time integrating and
learning the SDK for a bank once, and then have access to all the other banks with minimal
effort.

4.4 Implementation

4.4.1 Technology
The project was contracted in Java, the specific version was left up to our discretion. The
programming language used for this project is Java 8. To this day Java is one of the leading
enterprise programming languages [25]. Java 8 released in March 2014 [30] is still the most widely
used Java version. 75% of Java developers reported using Java 8 regularly and 44% used Java

Implementation 11

EE 8 regularly in an enterprise context [26]. In both metrics Java 8 was the clear winner and was
therefore chosen as the version for the Java. Seeing as Java is backwards compatible there was
no question of the cost versus benefit ratio of having new language features against the missed
target audience that would not be able to use the SDK written on a newer version.

The question of a package manager came down only to personal preferences, as that has
minimal, if any, effect on the end user. In the end Maven was chosen as it was proven on
countless projects, and we had ample experience with it.

4.4.2 Dependencies
One of the other goals of the project was to also keep the dependency list as light as possible as to
minimize the risk of version conflicts and forcing users to use libraries they do not want or need.
This was sometimes done at a cost to ease of development, for example the Apache HTTP client
is somewhat minimalistic and lacks certain usability features compared to the Spring HTTP
solution. This will be covered in more detail in the chapter pertaining to the HttpWrapper class.

Dependencies thus far only include Jackson databind for conversion to and from JSON, and
Apache HTTP Client. Java 8 is lacking easy to use native support in these two areas, which was
addressed in newer versions of Java. For testing TestNG, Mockito and PowerMock were used,
however only in Maven testing scope, therefore they are not included in the runtime classpath
but only in compilation and testing.

Chapter 5

Overview

This chapter will go into more detail about the different components of Erste SDK. It will
explain the rationale between the architecture of the project and provide a basis for all parts of
the project.

Once concept that the architecture of Erste SDK project is based upon is that all the banks
aim to provide the same business service. The differences between them being mainly implemen-
tational. While one bank’s OAuth flow requires PKCE and anoter one’s does not, the OAuth
logic does not change between them. The same logic applies to the rest of the provided APIs or
even the entity models of the banks. An account returned by CSAS is the same business entity
returned by SLSP, even if both of them are represented with different attributes.

The main solution chosen for the majority of the unification challenges was therefore composed
of three parts:

Business interface - an interface representing the business meaning of the API or model. This
is the only part of the implementation relevant to the end user of the SDK project. To have
a concrete example: When the end user wants to obtain an access token from a new bank,
it’s not relevant for them that their bank uses a different representation of an access token
response, or that it has a different endpoint. They only need to instantiate a new SDK for
their bank.

Base implementation - an abstract class representing the main implementational logic of the
problem. It implements the business interface. This is the main class for the given challenge
domain. It contains the driving logic that is common amongs all (or most) banks. Most
often this is the class that will initiate communication with Erste API. The interchangeable
specific attributes such as the concrete endpoint used for an API call is usually passed to the
base class via constructors using configuration classes or plain values.
To summarize, base implementation contains the core implementation for the interface. It
parses data passed by the user. Fills in headers, parameters and body of the request and sends
it via HttpWrapper to the correct API endpoint. Then it will parse and map the responses
to then end user models and returns them.

Bank implementation - Concrete bank implementation dealing with specific challenges of
a given bank It extends the base implementation class. The specific challenges are usually
solved in the form of overriding methods from the base implementation class. An example for
that is BCR using HTTP POST method instead of GET like other banks when exchanging
the authorization code.

13

14 Overview

Figure 5.1 Base architecture overview

5.1 Erste SDK

ErsteSDK The main interface that is used by the end user is the ErsteSDK interface. It is a wrap-
per object containing specific domain focused interfaces, such as the AuthorizationCodeGrant
for OAuth Authorization Code Grant flow, or AISProvider for interacting with AIS API. It
should not be instantiated with a new keyword, instead ErsteSDKBuilder using builder pattern
was created for instantiating and configuring the SDK.

It also contains ErsteSDKConfiguration object representing the configuration of the SDK.
It enables the user to quickly check or change the configuration. It will be explained in more
detail in ErsteSDKBuilder section.

5.1.1 Authorization Grant
Authorization flows is explained in detail in the Authorization unification chapter. This section
will provide a simple overview.

AuthorizationGrant is the base business interface for authorization. It contains the
generateAuthorizationUri method responsible for creating the authorziation URL the bank
client is redirected to in OAuth flow. This method is used in both the Implicit Grant and the
Code Grant flows, therefore both implementations implement this method. The logic is con-
tained in the BaseAuthorizationGrant abstract class. Each implementation calls this method
with different parameters necessary for the respective flows.

Erste SDK 15

Figure 5.2 Erste SDK Architecture

Figure 5.3 Authorization Grant overview

16 Overview

Figure 5.4 Authorization Implicit Grant overview

5.1.2 Authorization Implicit Grant
AuthorizationImplicitGrant is only used for clear naming. It does not provide any new
functions from the base AuthorizationGrant interface. The main purpose behind moving the
logic one level up is to prevent confusion that would arise from having AuthorizationCodeGrant
inherit from AuthorizationImplicitGrant directly. Or having Implicit grant chosen as default,
if only the abstraction one level up existed.

5.1.3 Authorization Code Grant
AuthorizationCodeGrant contains methods specific for the Authorization Code Grant flow -
namely authorization used to exchange the authorization code for the access token and refresh
token. And refresh to exchange the refresh token for a new access token.

Erste SDK 17

Figure 5.5 Authorization Code Grant overview

18 Overview

Figure 5.6 Consent Provider overview

5.1.4 Consent Provider
ConsentProvider is used for obtaining consent from the bank client. Obtaining consent is a
part of the authorization flow for several banks the rest have implicit consent displayed by the
ASPSP during normal login. For some banks it is obtained before authorization, for others after.
Consent is used as another layer of confirmation that the bank client authorizes actions of the
TPP.

5.1.5 AIS Provider
AIS API is explained in detail in the AIS unification chapter. This section will provide a simple
overview.

AISProvider is used to obtain the following information from the bank.

Basic account information, such as the iban, owner name or the currency.

Current balances of the accounts.

Transaction history of the accounts.

This is where most of the challenges with unification were present, as the bank differences
were most pronounced in this API. For example, several banks include balances in their accounts
response. So in order for the end result to be as unified as possible it was decided that for banks

Erste SDK 19

Figure 5.7 AIS Provider overview

without this a balance request will be made and added to the returned Account models. Other
example is that not all banks support oneAccount api call. Therefore to mock this functionality
an allAccounts request is sent and filtered for the searched for account.

From experience we know that the end users sometimes need to only know the list of account
IDs, and do not need the full object. The banks however do not provide this endpoint, so an
allAccounts request is made, and the end result is mapped into an array of IDs.

5.1.6 PIS Provider
PIS implementation is out of scope of this thesis. For now, it is assumed it will use the same
basic architecture as AISProvider.

5.1.7 CIS Provider
CIS implementation is out of scope of this thesis. For now, it is assumed it will use the same
basic architecture as AISProvider.

20 Overview

Figure 5.8 HTTP Wrapper Overview

5.2 HTTP Wrapper
HTTPWrapper is a custom HTTP solution for the Erste SDK project. A default implementation
in the form of DefaultHTTPWrapper is provided using Apache HTTP implementation. However
if the end user is not satisfied with the default implementation. Be it because their infrastrucutre
requires special routing, headers, etc. for outgoing requests or because they do not wish to use
the Apache library for any reason. It is possible to implement this interface with a custom version
and provide it while building the SDK in ErsteSDKBuilder

The main purpose is to accept a configured ErsteSDKHttpRequest. Send a HTTP GET or
POST request to the specified URL with provided headers, parameters and body. And then
map the recieved response to a response class provided by the request either by using the default
JSON Jackson ObjectMapper, or an optional mapper function contained in the request. This
achieved via generics. All response classes are expected to implement the ErsteSDKHttpResponse
interface so that original API response can be included for every request.

5.2.1 Erste SDK HTTP Request
ErsteSDKHttpRequest is a wrapper class for a HTTP request. It contains, the URL, headers,
parameters and body. The headers implicity contain a Content type header set to value of
application/json representing that the body will be sent in the JSON format. It also contains
a generic Class that the recieved response should be mapped into. If the mapping requires special
care and cannot be done by the Jackson ObjectMapper a custom mapping can be provided.

5.2.2 Erste SDK HTTP Response
ErsteSDKHttpResponse is an interface that all request response classes should implement. It is
used to set the original response message for every request, so that the end user can use it if
needed. For example transactions are probably the most differing object across the banks, and
if the end user needs to access an original field that was transformed during mapping they have
the ability to do so.

Erste SDK Builder 21

Figure 5.9 Erste SDK HTTP Request overview

Figure 5.10 Erste SDK HTTP Response overview

An interface and a base class is provided. The response object can either extend the base
class, or if it is not able to (because it already inehrits from another class) it can simply implement
the interface.

5.3 Erste SDK Builder
ErsteSDKBuilder is responsible for instantiating the correct ErsteSDK from the passed param-
eters, which are then stored in a ErsteSDKConfiguraiton and accessible form the SDK. The
following parameters are mandatory:

bankType - enum representing the bank type of the SDK.

webApiKey - application API key. Obtained from the developer portal.

clientId - application client ID for the given bank. Obtained from the developer portal.

22 Overview

Figure 5.11 Erste SDK Builder overview

clientSecret - application client secret for the given bank. Obtained from the developer
portal.

The following parameters are optional:

certificateLocation and certificatePassword - QWAC certificate location certificate
location and password for access. The developer portal provides certificates for the sandbox
environment, but not all banks require sandbox signing. The certificate is expected to have
the public and private key combined into a file in the .jks format. If one parameter is
given the other is expected as well or an exception is thrown. If parameters are provided
and a custom HttpWrapper is not provided a DefaultHttpWrapper is created with Apache
HttpClient using certificate signing.

isProduction - true if production, false if sandbox. Defaults to true.

httpWrapper - a custom HttpWrapper to be used. Defaults to DefaultHttpWrapper with a
default Apache HttpClient otherwise.

After passing the parameters the build() method is called by the end user. It validates that
all required parameters are present and if certificate location was provided the password was
provided as well. It then creates an ErsteSDKConfiguration from the parameters and

5.3.1 Erste SDK Configuration
ErsteSDKConfiguration is the main class containing SDK settings. It is created when building
the SDK with the ErsteSDKBuilder and then used as an attribute of the built ErsteSDK. The

Erste SDK Builder 23

Figure 5.12 Erste SDK Configuration overview

configuration is then accessed by the API providers when creating the requests. Most configura-
tion attributes are modifiable with the change being proliferated to the API providers. Certain
attributes however do not affect the existing SDK.

bankType - to change the bank of the SDK it has to be rebuilt as the bank specific logic is
contained in the bank specific classes.

certificateLocation and certificatePassword - since the HTTP client of the httpWrapper
is already using the supplied ceritificate it is possible to only change the wrapper itself to one
using the new certificate.

ersteSDKURIConfiguration - base bank endpoints do not dynamically change between re-
quests. If a bank modifies its endpoint it is likely to come with an API change that would
need to be reflected in the SDK as well. This issue would then need to be resolved in an SDK
update anyway without users needing to manually modify endpoints.

5.3.1.1 Erste SDK URI Configuration
ErsteSDKURIConfiguration is the class responsible for holding URI information for Erste end-
points. For each endpoint a BCR example value will be presented.

schema represents the type of HTTP protocol used. For most banks it has the value of https.

baseURL - the base URI for all API: bcr.ro.

24 Overview

Figure 5.13 Erste SDK URI Configuration overview

idpURL - some banks use a different base URI for their identity provider (endpoint used for
OAuth). login.bcr.ro

authPath - endpoint for the login page to redirect the client to.

tokenPath - endpoint for OAuth code to access token exchange. Also used for OAuth refresh.

consentPath - endpoint for consent creation and access.

accountsPath - endpoint for retrieving account information. It is the base endpoint for all
AIS API endpoints.

balancesPath - endpoint for retrieving account balances.

transactionsPath - endpoint for retrieving account transactions.

AIS endpoints are accessed in the format of ${accountsPath}/${accountId}${balancesPath}.

5.4 Exceptions

The base exception class of the SDK is ErsteSDKException. It is a runtime exception, therefore
it is not necessary to surround every SDK call with a try...catch block. Every other exception
extends from it, so it is possible to only catch the main exception and simplify exception handling.
It contains an errorMessage attribute containing the custom error message provided by the SDK.
There are three other main specific exceptions:

ErsteSDKOperationNotSupportedException - thrown when the end user tries to call a
method that the SDK for that specific bank does not support. For example calling the
athorization method in a bank that requires additional consent and PKCE without providing
them.

ErsteSDKBuilderException - thrown on a failed build of the SDK by the ErsteSDKBuilder.
Examples include not providing mandatory attributes or passing a corrupted certificate.

Base API Provider 25

Figure 5.14 Excpetion architecture overview

ErsteSDKHTTPException - a wrapper class for any failed HTTP call. It Contains two at-
tributes. statusCode integer representing the status code of the failed HTTP request.
originalError is the unmodified error response from the API. The end user should never
receive a raw HTTP Exception. Instead it should be mapped to a specific API exception as
shown below.

ErsteSDKOAuthException - thrown if an OAuth flow API call fails.
ErsteSDKAISException - thrown on failed AIS call.
ErsteSDKConsentException - thrown on failed Consent API call.

5.5 Base API Provider
The BaseAPIProvider class is another layer of abstraction and simplification for the BaseImplementation
classes providing API logic. It is a generic class which expects a type extending the ErsteSDKHttpException
and serves as the specific API exception for the BaseImplementation. It also serves as a conve-
nient holder for the configuration and the URI Configuration used by every API. Its main purpose
however is exception mapping. It contains the exceptionMessagesByStatusCode map contain-
ing custom error messages for every returned error status code. The fillInExceptionMessagesMap

26 Overview

Figure 5.15 Base API Provider

method maps the most common errors to their messages, but it is possible to override this method
for banks returning unique or different error codes.

When an HTTP Exception is caught within an API Provider after making an unsucess-
ful API call it should call the mapToConcreteException method. This method gets the ap-
propriate custom error message from the map and instantiates the correct exception using the
exceptionConstructor bifunction passed in the mandatory constructor of the BaseAPIProvider
class. The return value is an API exception (e.g., ErsteSDKAISException) with the returned
status code and original error of the failed call as well as a custom error message provided by
the SDK.

Chapter 6

Authorization Flow unification

This chapter will focus on authorization flows of different banks. In order to access the PSD2
API an OAuth access token must be obtained. Additionally some banks also require the client to
specifically grant consent to the application to access specific data with specific frequency. For
example a client may only choose to grant consent to only check the balances of their account
in euros once per day, but keep their domestic Czech crown account private.

This chapter will use some OAuth specific terminology and will focus on unification of OAuth
flows. Therefore a section devoted to OAuth basics follows next, but can be safely skipped if one
is familiar with OAuth.

6.1 OAuth 2.0
OAuth standard as published in RFC 6749 defines four roles:[32]

Resource owner (Erste Bank Client)

Resource server (the API - Erste ASPSP)

Authorization server (can be the same server as the API - Erste IDP)

Client (the third-party app - TPP)

Notice the different meaning of the word client in the OAuth flow and in a bank business
sense.

The OAuth 2.0 framework enables clients to access resource owner’s resources (both data
and API endpoints) on the resource server without resource owner’s direct involvement. Instead
the owner authorizes the client only once using the authorization server and the client receives
a time limited access token which enables them to access those resources.[22]

The OAuth framework defines two ways of obtaining the access token - the Implicit grant
and the Code grant.

6.1.1 Authorization Code Grant
The client redirects the resource owner to an authorization server where the server authenticates
the owner and obtains authorization. The authorization server redirects the owner back to the

27

28 Authorization Flow unification

client with the authorization code, which the client then exchanges for the access and optionally
refresh tokens.

While the refresh token is still valid the client may present it to the authorization server to
obtain a new access token, validity of which is usually much shorter - In case of CSAS the access
token has a validity of 5 minutes, whereas the refresh token can be valid for up to 90 days.

All Erste banks support Authorization Code Grant, however EBH does not support refresh
tokens.

6.1.1.1 The Proof Key for Code Exchange (PKCE)
The Proof Key for Code Exchange (PKCE, pronounced pixie) is an additional security measure
for OAuth Code Grant flow. The client creates a secret and encrypts it using a method known
to the server (e.g., SHA-256). The plain secret is called a code verifier and the encrypted secret
is called code challenge. [31]

The application sends the code challenge along with the first login request. The server returns
the authorization code as usual. However, when the application exchanges the code for an access
token it also needs to send the code verifier. The server then encrypts the code verifier with the
same agreed upon encryption method and checks whether it is equal to the code challenge the
application sent in the first request. Access (and refresh) tokens are only returned if the codes
match. [1]

6.1.2 Authorization Implicit Grant
The Authorization Implicit Grant is the simpler, but arguably less secure of the two. Instead of
issuing the client an authorization code, the client is issued with an access token directly. This
method is optimized for clients implemented in a browser, since it reduces the number of round
trips required to obtain an access token.

6.2 Cross bank Authorization flow analysis
Unlike other APIs the Authorization flow is fairly unified from the beginning. The main differ-
ence between the banks is the presence or lack thereof of a Consent ID creation step either as
an authorization pre-step or a post-step. Other differences are the requirement of PKCE and
certificate request signing, or both.

6.2.1 Consent Id
The Consent mechanic was explained in a chapter focusing on PSD2. In short all API actions
must have backing of a customer consent. Some banks implicitly create consent when logging
in by showing a warning that the user consents by logging in, while other banks require manual
consent creation. For authorization it is only relevant for certain banks as a sort of a secondary
access token. Aside from authorizing the TPP to access their Erste bank accounts as a whole
the Client has a choice of only authorizing specific bank accounts. The issued Access Token is
then only valid when presented with the Consent ID it was issued with.

The pre-step and post-step differ only in whether a Consent ID is needed to obtain the Access
Token in case of pre-step, or the Access Token is needed to obtain the Consent ID in case of
post-step.

Cross bank Authorization flow solution architecture 29

Only three banks support Consents. EBC as pre-step, EBOE and SLSP as post-step.

6.2.2 PKCE
PKCE was explained in detail in section pertaining to OAuth. PKCE is only used by EBC
and EBH Retail banks. In addition the application can choose the encryption method via a
code challenge method parameter.

6.2.3 Request Signing
The Certificate technology used is Qualified website authentication certificate (QWAC). All banks
support certificate request signing, but only EBC requires it. The certificate is obtained from
the developer portal.

6.3 Cross bank Authorization flow solution architecture

The following diagrams illustrate the complete authorization flow from the end user making a
login request in a TPP application to the backend server obtaining the access token in case of the
Authorization Code Grant, or the client application in case of Authorization Implicit Grant. In
both flows an optional Consent routine is present illustrating when it should occur as a pre-step
or post-step. The flow of the consent routine is then illustrated in detail in the third diagram.

6.3.1 Authorization Code Grant
The user tries to log in on the TPP application, which sends the login request to the backend
server. The server initializes the SDK and if the user is from the EBC bank the server initiates
the consent routine. The SDK then generates the redirect URL for the client which is then
redirected to the bank’s IDP server and logs in. The returned authorization code is exchanged
for the access token and if necessary the server initiates the consent routine.

6.3.2 Authorization Implicit Grant
The user tries to log in on the TPP application. The application initializes the SDK and goes
through the consent routine if necessary. The SDK then generates the redirect URL and the
client is redirected to the bank’s IDP server and logs in. The application then receives the access
token and initiates the consent routine if necessary.

6.3.3 Consent Routine
The initiator (TPP application or server) gets account identification and consent settings (e.g.,
number requests per day) from the user and passes it to the SDK. The SDK creates a request
according to the settings and sends it to the ASPSP (Erste bank), and then parses and returns
the response.

6.4 Cross bank Authorization solution architecture

30 Authorization Flow unification

Figure 6.1 OAuth Authorization Code Grant Flow

Cross bank Authorization solution architecture 31

Figure 6.2 OAuth Authorization Implicit Grant Flow

32 Authorization Flow unification

Figure 6.3 Consent Routine

6.4.1
The final implementation of interfaces was designed around a main AuthorizationGrant inter-
face, which the interfaces for Authorization Code Grant and Implicit Grant extend from. The
many overloaded methods correspond to different requirements of banks. For Example EBC
requires both PKCE and Consent arguments, whereas EBH only requires PKCE arguments.

6.4.2 Tokens
The main Authorization object returned by the Authorization flow is the OAuthToken represent-
ing an access or refresh token depending on the type attribute. The token string is the actual
token string to be used in requests, the expiresIn integer represents the number of seconds the
token is valid for, and finally the scope is the API scope the token is valid for (AIS, PIS or CIS).

Authorization Code Grant flow returns an OAuthTokens wrapper containing access and re-
fresh tokens from the code exchange.

Cross bank Authorization solution architecture 33

Figure 6.4 Tokens

Chapter 7

Account Information Service
unification

This chapter will cover the unification efforts for the PSD2 AIS API. It will first cover the
available Erste AIS API endpoints and how they were unified. Then it will present a description
of unified and bank specific models and then present how the models were unified.

7.1 Erste AIS APIs
There are 5 main methods for accessing the AIS API provided by Erste:

All accounts - returns a basic overview of all available bank accounts. Available to all banks.

One account - selects a specific account Not available to all banks, the functionality is mocked
by calling all accounts and filtering.

All balances - returns a balance list for the specified account. Available to all banks.

All transactions - returns a list of pending and booked transactions for the account. Available
to all banks.

One transaction - select a specific transaction for account. Not available to all banks, the
functionality is mocked by calling all transactions and filtering.

A new method was created for the SDK based on experience with fintech apps: allAccountIDs,
which makes an all account request and transforms the response into a list of strings of account
IDs.

7.2 Unified and Specific Model Architecture
The general principle behind the unification architecture is that all banks represent the same
business object, albeit in different ways. The concept will be explained on the account model, but
it applies to balances and transactions in the same way. This abstract business object is repre-
sented by the BaseAccount interface which has a toAccount method, which converts the concrete
bank specific representation to an end user object Account (called EndUserAccountModel in the
UML for clarity). This end user object also implements the ErsteSDKHttpResponse interface
explained in previous chapters, which allows the end user to access the original bank response
in the form of a string if needed.

35

36 Account Information Service unification

The end user object was created as a sort of an intersection of the bank specific models. To
have a couple of concrete examples:

All models of an account have an id, some banks call this attribute resourceId, others
simply id but they represent the identification of an account, and therefore the end user
object has an id attribute.

All balances have a represenation of an Amount. Half of the banks represent the amount
(e.g., 3.14) as a string (”3.14”), others as two integers - one for full value (314), the other for
scale (2 - amount of numbers after the decimal point). For the end user model the second
approach was chosen and the banks using the string representation converted their amount
to two integers in the toBalance method of the BaseBalance interface.

CSAS transaction model has a vast amount of extra information compared to other banks.
If all the bank specific attributes from all the banks were included in the end user object it
would massively grow in size. Those attributes would also always be null unless the endpoint
was called with the SDK of that bank. Therefore if users require a bank specific attribute
they need to call the getOriginalResponse and extract it from the original JSON string.

This is the basic principle under which the end user objects were unified. Of course there are
exceptions to this rule - if there is an attribute that only a couple of banks do not have, but the
rest do, it will be included in the end user object anyway even if it will be null for those banks.

The abstract model class (BaseAccountModel in the example) was used for unifying all models
of BCR, EBC, EBOE and SLSP. Those banks were the most unified out of the box, being inspired
by the NextGenPSD2. CSAS (inspired by ČOBS) and EBH use their own models for most
models.

7.2.1 Account
Even as the most extensive of the unified models, most of the attributes shold be self explanatory.
This model was fairly unified across the banks.

7.2.2 Balance
There were two main challenges when unifying balances. Represenation of amount and timezones.

For amount the two options were repsenting the amount as a string or two integers - one
for the full value as an integer without the decimal point, and the other representing amount of
numbers after the decimal point. In Java there was also a possibility to use the BigDecimal class,
which internally stores the number as two integers, but provides methods that allow treating it
as one number, while avoiding the dangers of arithmetic errors that come with float or double.
However Node.js does not provide such a class natively, and to keep the dependency list light
and two SDKs unified the two integer apporach was chosen. This approach also has the benefit
of no ambiguousness of what character is used for the decimal point as in the string. While at
the same time still allowing for relatively easy calculations unlike the string.

The timezone issue is related to the lastChangeDateTime and referenceDate attributes.
For some banks, the date time is in the local timezone, while others use UTC. It was decided
that all date times will be converted to UTC, but the dates will remain in the local time zone,
even if it will sometime cause conflicts. For example local datetime is 1 hour after midnight in
the UTC + 2 timezone. When converted to utc, the datetime is 11 PM of the previous day,

Unified and Specific Model Architecture 37

Figure 7.1 Unified and Specific Model Architecture

38 Account Information Service unification

Figure 7.2 Unified Account Model

AIS Mapper 39

Figure 7.3 Unified Balance Model

but the date attribute is still the original day. This date issue was left unadressed, because in
the Transaction API there is a possibility to filter the transactions according to dates, and a
situation could arise where the desired transaction would not be included in the filter because
of the date change. Timezone however were still converted to UTC for unification and allowing
easier operations without checking for timezone everytime.

7.2.3 Transaction
Transaction was the hardest model to unify as most banks (even among the fairly unified
NextGenPSD2 group) had differing models. In the end a different approach was chosen inspired
by the Erste George online banking application. In the transaction overview of the application
only the most crucial information is displayed, and the model is fairly small. It is believed that
for most use cases this model is enough, and for special use cases the original response is always
available with the getOriginalResponse method.

Unlike other models the TransactionList is a part of the end user model inspired by the
NextGenPSD2 transactions response which also returns an object containing arrays of pending
and booked transactions.

7.3 AIS Mapper
The main class responsible for mapping the raw JSON response to the end user objects with the
help of generics. It does so by first mapping the raw JSON to a bank specific model (passed
as a generic type in the constructor), which can be trivially accomplished using the Jackson
ObjectMapper. The bank specific models are expected to extend the base model interface (e.g.,
BaseAccount) therefore they have the method, which returns an end user object with the data
from this bank specific object (toAccount) with filled in originalResponse attribute containing
only data relevant to that specific object. This is accomplished in the protected mapSingle...
methods.

The public methods from the mapper interface operate with the raw json response. Their
responsibility is to extract parts of JSON representing the business object and pass them to the

40 Account Information Service unification

Figure 7.4 Unified Transaction Model

Sandbox limitations 41

mapSingle... methods which return the desired end user object.

The Mapper returns a custom List wrapper object (AccountList). While transactions are
returned by the AIS Provider in that same wrapper object, for accounts and balances the provider
returns the actual list of objects (List<Account>). This wrapper object is used to store the
original response of the whole request in case it will be needed in the wrapper. If not the
provider simply extracts the list and returns it.

7.4 Sandbox limitations
Unfortunately some unification efforts were hindered by the issues in the sandbox environment
on the Erste developer portal. To list the two most important ones:

The sandbox APIs ignored all query parameters for the /transactions endpoint, which
meant that pagination of the results or filtering of results were not implemented properly.
Additionally EBOE transactions could not be tested as they had a required query parameter.

EBC not returning any accounts in the /accounts endpoint which means that the whole API
is untestable, as other endpoints depend on accessing a single account.

42 Account Information Service unification

Figure 7.5 Mapper Architecture

Chapter 8

Examples

This chapter will first show and descripe a couple of SDK examples from instantiating the SDK
to calling AIS API with a received access token. The following section will then explain how to
setup the included example project for testing.

8.1 Example Usage

8.1.1 Instantiating the SDK
The following code sample provides a configured instance of a CSAS SDK.

ErsteSDK sdk = new DefaultErsteSDKBuilder ()
. bankType (BankType .CSAS)
. webApiKey (" someWebApiKey ")
. clientId (" someClientId ")
. clientSecret (" someClientSecret ")
. certificateLocation ("c:\ example \ certificate .jks ")
. certificatePassword ("123456")
. isProduction (false)
.build ();

8.1.2 Obtaining an Access Token using Authorization Code
Grant

This sample generates a redirect URI using PKCE with S256 encryption method. The user will
be asked to consent to use of AIS API access as per the passed AuthorizationScopeType

AuthorizationCodeGrant grant = sdk. getAuthorizationCodeGrant ();
URI redirectUri = grant. generateAuthorizationUri (" callbackURL ",

" someState ",
Collections . singleton (AuthorizationScopeType .AIS),
"S256",
" codeChallenge ");

// redirect user to the URI

After the user logs in, ErsteIDP will call the passed callbackURL with the authorization code
and the passed state for identifying the user. The code can then be exchanged for a token using
the SDK.

43

44 Examples

AuthorizationCodeGrant grant = sdk. getAuthorizationCodeGrant ();
OAuthTokens tokens = grant. authorize (" returnedCode ",

Constants . REDIRECT_URL ,
" codeVerifier ");

8.1.3 Accessing the AIS API
This part will show three AIS calls.

The first is an all accounts call.

AISProvider aisp = sdk. getAISProvider ();
List <Account > accounts = aisp. allAccounts (" accessToken ",

" someRequestId ");

An all balances call.

AISProvider aisp = sdk. getAISProvider ();
List <Balance > balances = aisp. allBalancesForAccount (" accessToken ",

" someRequestId ",
" accountId ");

Finally a one transaction call.

AISProvider aisp = sdk. getAISProvider ();
Transaction transaction = aisp. oneTransactionForAccount (" accessTok ",

" someRequestId ",
" accountId ",
" transactionId ");

8.2 Example Project
A simple example project in the form of a Spring application is included as an attachment to
this thesis. However since the project is not yet officially released on maven, the only way to
currently get it working is to install the SDK locally from the sources in the attachment using
mvn clean install. This installs it in the local .m2 maven repository and the build of the
example project will not fail then.

After that an account must be created on the Erste Developer Portal on
https://developers.erstegroup.com/ . After creating an account with a personal organi-
zation, you can create an application and add banks to it. It is recommended to have only one
application with all the banks for testing, as it allows you to use a single certificate for all of them.
When connecting banks make sure to connect the PSD2 AIS API, with EBH take special care
to connect the retail API, not the corporate one. Also remember to configure the OAuth callback
URI with the one configured in the example application
http://localhost:3000/api/v1/auth/callback .

After that the credentials.properties file must be filled in with the credentials obtained
in the developer portal. Then the .key and .pem certificate files must be combined into a Java
KeyStore .jks file. There are guides how to accomplish that online, but the general process is
to convert the .key file into a .pem file, which you can do simply by renaming the file. And then
finally running these commands in the terminal

Example Project 45

openssl pkcs12 -export -in [path to certificate] \
-inkey [path to private key] -certfile [path to certificate] \
-out testkeystore .p12

keytool -importkeystore -srckeystore testkeystore .p12 \
-srcstoretype pkcs12 -destkeystore wso2carbon .jks \
-deststoretype JKS

Chapter 9

Conclusion

9.1 Impact of the project
To summarize the main benefit of the project is abstraction of the implementational differences
between the PSD2 API of the Erste Group. While all being under the same banking group,
the differences between the banks were sometimes immense, and they give some context to the
benefits of PSD2 unification efforts such as the Berlin Group’s NextGenPSD2. What previously
required hours of studying the developer portal, and building models and flows for every new
bank, is now one SDK integration away.

The solution provided by the project should save TPP’s time and money and hopefully enable
easier access to leveraging the many benefits of open banking that PSD2 promised to bring to the
fintech space. The development on the project will continue and PIS will be the next unified API.
While PIS is arguably the most important API of PSD2, the project in its current state already
brings tangible value in providing a solution for authorization, consent creation and accessing
account information necessary for future payment creation.

9.2 Impact of the thesis
The main goals of this thesis were to introduce the PSD2 regulation for the purposes of the
Erste SDK project, and the project itself with focus on Authorization and Account Information
Service unification architecture. Those topics were covered in their own respective chapters.
Additionally, a chapter covering Erste to establish more context, a chapter dedicated to general
overview and internal technical workings of the project, and finally a chapter covering example
usage.

The thesis should provide enough context for both the business and technical perspectives.
Ideally, after reading it a software engineer should be able to not only use the SDK project in
their own financial applications (after consulting the project documentation as well), but also
have a better understanding of PSD2 and its requirements and possibilities.

9.3 Final words
My personal experiences with the project itself were very positive. This was my first time working
on a project of this scale from the beginning to the end, and I am looking forward to continuing

47

48 Conclusion

the work on polishing up AIS and moving on to the most complex part of the PSD2 API - PIS.
From the first analysis and proof of concept, to the final testing and improvements this was a
challenge for me and a space to use and refine what I learned in school in practice.

On a less cheery note, due to personal reasons this thesis is not as polished as it deserved to
be, as a year and a half in pandemic lockdown and burnout has taken a big toll on my mental well
being. As well as picking up the thesis in the second half of the final semester, as the thesis I was
working on the previous semester and a half slowly fell apart due to issues in scope and technical
difficulties. That’s why I would like to once again express my sincere gratitude to Ing. Nikolay
Barbariyskiy for suggesting this topic and helping immensly given the short time schedule and
my limited capabilities. But most importantly to Andrea Švancarová for always being there and
helping me carry on when I was so often and so close to quitting. Thank you both.

Bibliography

[1] auth0. Authorization code flow with proof key for code exchange
(pkce). Accessed: 2021-05-18. URL: https://auth0.com/docs/flows/
authorization-code-flow-with-proof-key-for-code-exchange-pkce.

[2] European Central Bank. Single euro payments area (sepa), 10 2020. Accessed: 2021-06-
25. URL: https://www.ecb.europa.eu/paym/integration/retail/sepa/html/index.
en.html.

[3] Pierre E. BERGER and Isabelle Van BIESEN. Strong customer authentication - new
deadline for completing sca implementation - 31 december 2020, 10 2019. Accessed: 2021-
06-01. URL: https://www.dlapiper.com/en/france/insights/publications/2019/10/
strong-customer-authentication-new-deadline-for-completing-sca-implementation-31-december-2020/.

[4] European Comission. Payment services directive (psd2): Regulatory technical standards
(rts) enabling consumers to benefit from safer and more innovative electronic payments,
11 2017. Accessed: 2021-06-01. URL: https://ec.europa.eu/commission/presscorner/
detail/en/MEMO_17_4961.

[5] European Comission. Payment services directive: frequently asked questions, 01 2018. Ac-
cessed: 2021-06-25. URL: https://ec.europa.eu/commission/presscorner/detail/fr/
MEMO_15_5793.

[6] European Comission. Frequently asked questions: Making electronic payments and online
banking safer and easier for consumers, 09 2019. Accessed: 2021-06-23. URL: https:
//ec.europa.eu/commission/presscorner/detail/en/qanda_19_5555.

[7] European Payments Council. Sepa instant credit transfer. Accessed:
2021-06-25. URL: https://www.europeanpaymentscouncil.eu/what-we-do/
sepa-instant-credit-transfer.

[8] Cryptomathic. What is a qualified certificate? Accessed: 2021-05-18. URL: https://www.
cryptomathic.com/products/authentication-signing/digital-signatures-faqs/
what-is-a-qualified-certificate.

[9] Turner M. DAWN. Understanding eidas, 01 2016. Accessed: 2021-06-23. URL: https:
//www.cryptomathic.com/news-events/blog/understanding-eidas.

[10] Deloitte. Psd2 finalised standard on sca and csc: the wait is over, but questions
remain. Accessed: 2021-06-01. URL: https://www2.deloitte.com/cy/en/pages/
financial-services/articles/psd2-finalised-standard-on-sca-and-csc.html.

49

https://auth0.com/docs/flows/authorization-code-flow-with-proof-key-for-code-exchange-pkce
https://auth0.com/docs/flows/authorization-code-flow-with-proof-key-for-code-exchange-pkce
https://www.ecb.europa.eu/paym/integration/retail/sepa/html/index.en.html
https://www.ecb.europa.eu/paym/integration/retail/sepa/html/index.en.html
https://www.dlapiper.com/en/france/insights/publications/2019/10/strong-customer-authentication-new-deadline-for-completing-sca-implementation-31-december-2020/
https://www.dlapiper.com/en/france/insights/publications/2019/10/strong-customer-authentication-new-deadline-for-completing-sca-implementation-31-december-2020/
https://ec.europa.eu/commission/presscorner/detail/en/MEMO_17_4961
https://ec.europa.eu/commission/presscorner/detail/en/MEMO_17_4961
https://ec.europa.eu/commission/presscorner/detail/fr/MEMO_15_5793
https://ec.europa.eu/commission/presscorner/detail/fr/MEMO_15_5793
https://ec.europa.eu/commission/presscorner/detail/en/qanda_19_5555
https://ec.europa.eu/commission/presscorner/detail/en/qanda_19_5555
https://www.europeanpaymentscouncil.eu/what-we-do/sepa-instant-credit-transfer
https://www.europeanpaymentscouncil.eu/what-we-do/sepa-instant-credit-transfer
https://www.cryptomathic.com/products/authentication-signing/digital-signatures-faqs/what-is-a-qualified-certificate
https://www.cryptomathic.com/products/authentication-signing/digital-signatures-faqs/what-is-a-qualified-certificate
https://www.cryptomathic.com/products/authentication-signing/digital-signatures-faqs/what-is-a-qualified-certificate
https://www.cryptomathic.com/news-events/blog/understanding-eidas
https://www.cryptomathic.com/news-events/blog/understanding-eidas
https://www2.deloitte.com/cy/en/pages/financial-services/articles/psd2-finalised-standard-on-sca-and-csc.html
https://www2.deloitte.com/cy/en/pages/financial-services/articles/psd2-finalised-standard-on-sca-and-csc.html

50 Bibliography

[11] Open Banking Implementation Entity. Welcome to the open banking standard. Accessed:
2021-06-01. URL: https://standards.openbanking.org.uk/.

[12] Česká bankovńı asociace. Český standard pro open banking, 09 2018. Accessed: 2021-06-01.
URL: https://cbaonline.cz/cesky-standard-pro-open-banking.

[13] Česká spořitelna. Kdo jsme. Accessed: 2021-06-24. URL: https://www.csas.cz/cs/
o-nas/kdo-jsme.

[14] Facebook. Quickstart: Facebook sdk for javascript. Accessed: 2021-06-25. URL: https:
//developers.facebook.com/docs/javascript/quickstart.

[15] SEPA for Corporates. Explained: Rts, sca and csc wrt psd2 [epc infographic], 02 2018.
Accessed: 2021-06-01. URL: https://www.sepaforcorporates.com/payments-news-2/
wtf-is-rts-sca-and-csc-wrt-psd2-by-the-epc-infographic/.

[16] Google. Easily access google apis from java. Accessed: 2021-06-25. URL: https:
//developers.google.com/api-client-library/java.

[17] Berlin Group. About. Accessed: 2021-06-01. URL: https://www.berlin-group.org/.

[18] Erste Group. About us. Accessed: 2021-06-24. URL: https://www.erstegroup.com/en/
about-us.

[19] Erste Group. Erste group annual report 2020. Accessed: 2021-06-23. URL:
https://cdn0.erstegroup.com/content/dam/at/eh/www_erstegroup_com/en/
Investor_Relations/2020/Reports/AR2020_FINAL_en.pdf?forceDownload=1.

[20] Erste Group. Erste group at a glance. Accessed: 2021-06-24. URL: https://www.
erstegroup.com/en/news-media/erstegroup-at-a-glance.

[21] Paysend Group. Sepa transfers: Streamlining euro payments, 07
2019. Accessed: 2021-06-25. URL: https://paysend.com/cs-eg/blog/
article-sepa-transfers-streamlining-euro-payments.

[22] Ed HARDT. The oauth 2.0 authorization framework, 10 2012. Accessed: 2021-05-18. URL:
https://datatracker.ietf.org/doc/html/rfc6749.

[23] Red Hat. What is an sdk? Accessed: 2021-06-25. URL: https://www.redhat.com/en/
topics/cloud-native-apps/what-is-SDK.

[24] iBanFirst. What do psd1 and psd2 mean and why are they important?,
10 2018. Accessed: 2021-06-25. URL: https://blog.ibanfirst.com/en/
what-are-psd1-and-psd2-and-why-are-they-important.

[25] IEEE. https://spectrum.ieee.org/static/interactive-the-top-programming-languages-
2020. Accessed: 2021-05-10. URL: https://spectrum.ieee.org/static/
interactive-the-top-programming-languages-2020.

[26] JetBrains. The state of developer ecosystem 2020 - java. Accessed: 2021-05-10. URL:
https://www.jetbrains.com/lp/devecosystem-2020/java/.

[27] Angelica MARI. Psd2 and the api challenge for open banking, 03 2018. Accessed: 2021-06-
27. URL: https://diginomica.com/psd2-and-the-api-challenge-for-open-banking.

[28] SSL Market. Qualified website authentication certificate (qwac) pro
psd2. Accessed: 2021-05-18. URL: https://www.sslmarket.cz/ssl/
quovadis-qualified-website-authentication-certificate-qwac-pro-psd2/.

https://standards.openbanking.org.uk/
https://cbaonline.cz/cesky-standard-pro-open-banking
https://www.csas.cz/cs/o-nas/kdo-jsme
https://www.csas.cz/cs/o-nas/kdo-jsme
https://developers.facebook.com/docs/javascript/quickstart
https://developers.facebook.com/docs/javascript/quickstart
https://www.sepaforcorporates.com/payments-news-2/wtf-is-rts-sca-and-csc-wrt-psd2-by-the-epc-infographic/
https://www.sepaforcorporates.com/payments-news-2/wtf-is-rts-sca-and-csc-wrt-psd2-by-the-epc-infographic/
https://developers.google.com/api-client-library/java
https://developers.google.com/api-client-library/java
https://www.berlin-group.org/
https://www.erstegroup.com/en/about-us
https://www.erstegroup.com/en/about-us
https://cdn0.erstegroup.com/content/dam/at/eh/www_erstegroup_com/en/Investor_Relations/2020/Reports/AR2020_FINAL_en.pdf?forceDownload=1
https://cdn0.erstegroup.com/content/dam/at/eh/www_erstegroup_com/en/Investor_Relations/2020/Reports/AR2020_FINAL_en.pdf?forceDownload=1
https://www.erstegroup.com/en/news-media/erstegroup-at-a-glance
https://www.erstegroup.com/en/news-media/erstegroup-at-a-glance
https://paysend.com/cs-eg/blog/article-sepa-transfers-streamlining-euro-payments
https://paysend.com/cs-eg/blog/article-sepa-transfers-streamlining-euro-payments
https://datatracker.ietf.org/doc/html/rfc6749
https://www.redhat.com/en/topics/cloud-native-apps/what-is-SDK
https://www.redhat.com/en/topics/cloud-native-apps/what-is-SDK
https://blog.ibanfirst.com/en/what-are-psd1-and-psd2-and-why-are-they-important
https://blog.ibanfirst.com/en/what-are-psd1-and-psd2-and-why-are-they-important
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2020
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2020
https://www.jetbrains.com/lp/devecosystem-2020/java/
https://diginomica.com/psd2-and-the-api-challenge-for-open-banking
https://www.sslmarket.cz/ssl/quovadis-qualified-website-authentication-certificate-qwac-pro-psd2/
https://www.sslmarket.cz/ssl/quovadis-qualified-website-authentication-certificate-qwac-pro-psd2/

Bibliography 51

[29] mBank. Psd2 - payment service directive 2 co pro klienty mbank znamená evropská
směrnice o platebńıch službách? Accessed: 2021-06-01. URL: https://www.mbank.cz/
informace-k-produktum/info/jine/psd2.html.

[30] Oracle. Java releases. Accessed: 2021-05-10. URL: https://java.com/en/download/help/
release_dates.html.

[31] Aaron PARECKI. Protecting mobile apps with pkce. Accessed: 2021-05-18. URL: https:
//www.oauth.com/oauth2-servers/pkce/.

[32] Aaron PARECKI. Terminology reference. Accessed: 2021-05-18. URL: https://www.
oauth.com/oauth2-servers/definitions/.

[33] European Parliament. Regulation (eu) no 910/2014 of the european parliament and of
the council of 23 july 2014 on electronic identification and trust services for electronic
transactions in the internal market and repealing directive 1999/93/ec, 01 2016. Accessed:
2021-06-23. URL: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:
OJ.L_.2014.257.01.0073.01.ENG.

[34] RTÉ. Agreement reached on cross-border banking, 03 2007. Accessed: 2021-06-25. URL:
https://www.rte.ie/news/2007/0327/87216-banking/.

[35] Kristopher SANDOVAL. What is the difference between an api and an
sdk?, 06 2016. Accessed: 2021-06-25. URL: https://nordicapis.com/
what-is-the-difference-between-an-api-and-an-sdk/.

[36] Shashvat SHUKLA. Framework vs library vs platform vs api vs sdk vs toolkits
vs ide, 06 2017. Accessed: 2021-05-10. URL: https://shashvatshukla.medium.com/
framework-vs-library-vs-platform-vs-api-vs-sdk-vs-toolkits-vs-ide-50a9473999db.

[37] W3C. Notes on user centered design process (ucd). Accessed: 2021-05-10. URL: https:
//www.w3.org/WAI/redesign/ucd.

[38] Yapily. Psd2: What you need to know about screen scraping and apis, 02 2018. Accessed:
2021-06-23. URL: https://www.yapily.com/blog/psd2-screenscraping-apis/.

https://www.mbank.cz/informace-k-produktum/info/jine/psd2.html
https://www.mbank.cz/informace-k-produktum/info/jine/psd2.html
https://java.com/en/download/help/release_dates.html
https://java.com/en/download/help/release_dates.html
https://www.oauth.com/oauth2-servers/pkce/
https://www.oauth.com/oauth2-servers/pkce/
https://www.oauth.com/oauth2-servers/definitions/
https://www.oauth.com/oauth2-servers/definitions/
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2014.257.01.0073.01.ENG
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2014.257.01.0073.01.ENG
https://www.rte.ie/news/2007/0327/87216-banking/
https://nordicapis.com/what-is-the-difference-between-an-api-and-an-sdk/
https://nordicapis.com/what-is-the-difference-between-an-api-and-an-sdk/
https://shashvatshukla.medium.com/framework-vs-library-vs-platform-vs-api-vs-sdk-vs-toolkits-vs-ide-50a9473999db
https://shashvatshukla.medium.com/framework-vs-library-vs-platform-vs-api-vs-sdk-vs-toolkits-vs-ide-50a9473999db
https://www.w3.org/WAI/redesign/ucd
https://www.w3.org/WAI/redesign/ucd
https://www.yapily.com/blog/psd2-screenscraping-apis/

Contents of enclosed SD card

readme.txt ... brief overview of SD card contents
src

example source code of the example project using the SDK
sdk.. source code of the SDK
thesis... source code of the thesis in LATEX

text
thesis.pdf..thesis in PDF

53

	Acknowledgements
	Declaration
	Abstract
	Acronyms
	Introduction
	Thesis Structure

	Revised Payment Services Directive (PSD2)
	Introduction
	History
	Payment Service Directive (PSD)
	Single Euro Payments Area (SEPA)

	Technical Documents
	Regulatory Technical Standards (RTS)
	Electronic Identification, Authentication & Trust Services Regulation (eIDAS)

	PSD2 Implementations
	Berlin Group Standard - NextGenPSD2
	Open Banking (United Kingdom)
	Czech Open Banking Standard - ČOBS

	PSD2 API
	Account Information Service (AIS)
	Payment Initiation Service (PIS)
	Confirmation of Funds - Card Issuing Service (CIS)

	Erste Group
	Erste SDK
	Goals
	Differences between SDK and Library
	User-centric interface
	Implementation
	Technology
	Dependencies

	Overview
	Erste SDK
	Authorization Grant
	Authorization Implicit Grant
	Authorization Code Grant
	Consent Provider
	AIS Provider
	PIS Provider
	CIS Provider

	HTTP Wrapper
	Erste SDK HTTP Request
	Erste SDK HTTP Response

	Erste SDK Builder
	Erste SDK Configuration

	Exceptions
	Base API Provider

	Authorization Flow unification
	OAuth 2.0
	Authorization Code Grant
	Authorization Implicit Grant

	Cross bank Authorization flow analysis
	Consent Id
	PKCE
	Request Signing

	Cross bank Authorization flow solution architecture
	Authorization Code Grant
	Authorization Implicit Grant
	Consent Routine

	Cross bank Authorization solution architecture
	
	Tokens

	Account Information Service unification
	Erste AIS APIs
	Unified and Specific Model Architecture
	Account
	Balance
	Transaction

	AIS Mapper
	Sandbox limitations

	Examples
	Example Usage
	Instantiating the SDK
	Obtaining an Access Token using Authorization Code Grant
	Accessing the AIS API

	Example Project

	Conclusion
	Impact of the project
	Impact of the thesis
	Final words

	Contents of enclosed SD card

