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Abstract

This work explores the novel (as to our knowledge) formulation of procedural level gen-
eration (PLG) as a task of learning a mapping from the difficulty to the level embedding
space. Our level generator takes a difficulty input in a [0, 1] range and outputs a level
embedding of that difficulty. Further on, we extend the task to generate a variety of
different levels within the same difficulty. We solve the problem using an N-dimensional
seeded generator, that searches for the correct (having the required difficulty) embedding
in a close proximity to the specified (seed) embedding.

We explore the meaning of difficulty, possible definitions and interpretations. We
then introduce several possible ways of evaluating the difficulty of a level using agents
that sample trajectories in a resettable environment. For simplicity, in this work we use
Q-learning agents and policy gradient agents.

The work presents a general framework that is simple to understand and use. Different
parts of the framework (e.g. difficulty evaluation) can be extended by more sophisticated
algorithms, that could increase the overall quality of the generated levels, as well as
improve the computational efficiency. Thus, this work represents a foundation for further
research in game level generation, difficulty evaluation, comparison of different difficulty
evaluation methods, and how does evaluation influence level generation.

Keywords: Procedural level generation, game level difficulty estimation.

Tato práce zkoumá novou (podle naš́ıch znalost́ı) formulaci procedurálńı generováńı
úrovńı ve smyslu mapováńı z prostoru obt́ıžnosti do prostoru úrovně. Náš generátor na vs-
tupu dostává obt́ıžnost v rozsahu [0, 1] a vydává embedding této obt́ıžnosti. Dále rozš́ı̌ŕıme
úkol tak, aby generator generoval r̊uzné úrovně v rámci stejné obt́ıžnosti. Problém
vyřeš́ıme pomoćı N-dimenzionálńıho generátoru, který hledá správný (s požadovanou
obt́ıžnost́ı) embedding v těsné bĺızkosti zadaného embeddingu.

Zkoumáme význam obt́ıžnosti, možné definice a interpretace. Poté představ́ıme několik
možných zp̊usob̊u vyhodnoceńı obt́ıžnosti úrovně pomoćı agent̊u, kteř́ı vyhodnocuj́ı tra-
jektorie v resetovatelném prostřed́ı. Pro jednoduchost v této práci použ́ıváme Q-learning
a policy gradient agenty.

Práce představuje obecný framework, který je snadno pochopitelný a použitelný.
Různé části rámce (např. vyhodnoceńı obt́ıžnosti) lze rozš́ı̌rit o sofistikovaněǰśı algoritmy,
které by mohly zvýšit celkovou kvalitu generovaných úrovńı a také zlepšit výpočetńı efek-
tivitu. Tato práce tedy představuje základ pro daľśı výzkum generováńı herńıch úrovně,
vyhodnoceńı obt́ıžnosti, srovnáńı r̊uzných metod vyhodnoceńı obt́ıžnosti a jak vyhodno-
ceńı ovlivňuje generováńı úrovně.

Keywords: Procedurálńı generováńı úrovně, odhad obt́ıžnosti herńı úrovně.
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Chapter 1

Introduction

In the last years, procedural content generation (PCG) has been receiving more and more

attention as a means to reduce the production cost, make games re-playable, and create a

possibly infinite amount of playable content. In this work we focus on the specific branch

of the PCG, that is concerned with the level/environment generation - PLG.

PLG is mostly used in Rogue-like 1 games: Bindings Of Isaac 2, Spelunky 3, Dead

Cells 4, etc., to create a possibly infinite amount of playable game levels, without having

to spend hours designing each one individually.

Usually, the generation is guided by a grammar: the program is given a set of rules

and a set of starting building blocks, the levels are then generated by applying those rules

(usually in a random or pseudo-random way). Sometimes, a mix of hand-crafted and

procedurally generation elements is used.

The power of PLG comes at a cost of authenticity when the generated levels look

very similar to each other. We hypothesize that using a deep learning generator as an

approximation to the human designer will result in a human-like level of creativity while

keeping a low production cost - generating a level would mean executing a single forward

pass on the NN.

Ideally, we would like our network to have an understanding of the level’s difficulty,

level diversity, and game style - to match the overall style of the game. In addition, in

more complex games, the narrative may be taken into account - for example, the generator

would read a script, from which it would create an interactive environment for the player to

act in 5. However, combining all of these tasks into a complex level-generative AI seems

a bit unrealistic at the moment. Thus, in this thesis, we focus on two small aspects:

1https://en.wikipedia.org/wiki/Rogue (video game)
2https://en.wikipedia.org/wiki/The Binding of Isaac (video game)
3https://en.wikipedia.org/wiki/Spelunky
4https://en.wikipedia.org/wiki/Dead Cells
5This idea is inspired by the Generative Pre-trained Transformer 3 (GPT-3) [1] being able to generate

web-pages, being provided with their textual description

1

https://en.wikipedia.org/wiki/Rogue_(video_game)
https://en.wikipedia.org/wiki/The_Binding_of_Isaac_(video_game)
https://en.wikipedia.org/wiki/Spelunky
https://en.wikipedia.org/wiki/Dead_Cells


CHAPTER 1. INTRODUCTION 2

teaching our NN to learn and understand the level’s difficulty, as well as requiring it to

generate a diversity of different ones.

For simplicity, we will focus on action games with simple mechanics (e.g. Flappy

Bird 6), where the challenge is generally to perform the correct action at the correct

moment. These games manage to entertain the player through the challenge by gradually

increasing the difficulty by changing the level configuration: e.g., placement of various

in-game elements (blocks, enemies, switches, etc.). The game is generally thought to

be designed successfully if the difficulty of the game matches the player’s skill, so that

they feel challenged, but not overwhelmed [2]. This is done in two steps: evaluating the

player’s skill, and generating the level of the appropriate difficulty. This paper focuses on

the latter.

6https://en.wikipedia.org/wiki/Flappy Bird

https://en.wikipedia.org/wiki/Flappy_Bird


Chapter 2

Related work

A lot of research and progress has been recently been made in the field of PCG using

machine learning (ML) [3], [4]. Here we review the ones most relative to our work, as well

as the ones that we drew the most inspiration from.

2.1 With prior data

We start by reviewing supervised learning approaches to game level generation. All of

these require previous data of some sort, and, thus, are not suitable for generating a

completely new game from scratch. However, we review these techniques as nevertheless

being related to the game level generation and the ones that can be used to potentially

enrichen the set of generated levels, once the one has been produced.

[5] discussed how to combine various design patterns and procedural content generation

to dynamically create game levels for Super Mario Bros. (SMB). Authors explore the usage

of patterns as training objectives in [6], utilizing a simple evolutionary algorithm with a

fitness function rewarding more interesting (and playable) patterns. Authors continue

their work in [7], where single-column micro-patterns are combined into several-columns

meso-patterns (requiring or affording some player action - e.g. jumping). Meso-patterns

are then combined into bigger macro-patterns - complete level sections of connected meso-

patterns. Later, in [8], authors use n-grams of vertical slices the authors construct a table

of n-grams and their occurrences. Each n-gram is a sequence of vertical slices of a length n.

For each n-gram, the number of occurrences is tracked and then turned into a probability

that is used for sampling new levels.

The approach using Markov Chains alongside the Monte Carlo tree search (MCTS)

was explored in [9]. The authors used a reward function containing level solvability (playa-

bility), the number of gaps, enemies, and collectibles (coins or power-ups) to calculate the

3
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score of a node in a tree and apply it in a backpropagation manner. The Markov chain

is supplying transmission probabilities that guide the search in more probable directions.

MCTS is then pruning those selections, removing the ones that lead to unplayable or

otherwise undesirable levels.

[10] uses long short-term memorys (LSTMs) to generate SMB levels. The authors use

the individual tiles as the string characters, opposed to the whole vertical slices. The used

snaking representation of the level (meaning that the tiles first go from bottom to the top,

and the next column has the tiles going from the top to the bottom - or vice versa). The

tracking of the player path (using A*) was used to ensure solvability, and tracking the

column depth (how far are into a level are we) made LSTM understand the macro-level

progression.

An approach of generating game levels from gameplay videos has been explored in

[11]. The authors claim that the approach may theoretically learn a genre of games and

can be extended to different genres. This needs some footage of the game to be trained

from, although once the inner representation is learned, new games may theoretically be

created from scratch.

[12] are using the Video Game Level Corpus to generate SMB levels using generative

adversarial network (GAN) with Latent Variable Evolution, using Covariance Matrix

Adaptation Evolutionary Strategy to evolve the latent vector, obtaining interesting results

that have succeeded to capture the level detail from the corpus. While being domain-

agnostic, this approach also requires some level data to learn from (thus making it unusable

for creating game levels from scratch), and is quality-dependent on the quality of the

corpus used. Moreover, the fitness function must make sense and should be carefully

designed (the work assumes the correlation between the number of jumps and difficulty).

[13] generates a set of environments using a Conditional Embedding Self-Attention

Generative Adversarial Network (CESAGAN). The generated levels that pass the playa-

bility check are added back into the training set to generate new playable levels. This

allows to achieve good results on a small (∼ 5) number of pre-generated levels, and also

significantly reduces the number of duplicated levels.
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2.2 No prior data

2.2.1 Open-ended approaches

These approaches do not optimize a reward function. Instead, they are aimed at maximiz-

ing diversity - generating new, different environments. The agents are usually intrinsically

motivated, meaning that they are not given a direct reward from the environment, but

instead develop a new skill while trying to explore their environment [14].

Minimal Criterion Coevolution (MCC) [15] simultaneously evolves a population of

mazes and a population of agents that try to solve these mazes. The goal of this open-

ended search is to produce a diverse set of different mazes and agents that would solve

them. The process of maze evolution may be viewed as a level generation process, but

its unclear how to evaluate the difficulty of the given level, as the algorithm sidesteps

the usage of a fitness function, which is an advantage in the open-ended search, but a

disadvantage in our case.

Drawing great inspiration from MCC, Paired Open-Ended Trailblazer (POET) [16]

also maintains a set of environments and agents that co-evolve. However, differently

from MCC, which only specifies the lower bound for the reproduction of agents and

mazes, POET also strives for better performance by optimizing the agents within the

corresponding environments. The POET keeps agents and environments in pairs, but

regularly performs checks if the skills learned from one agent may prove useful inside a

different environment. The paper presents fascinating results, being able to efficiently

generate a curriculum that allows training the agents to the high level of performance -

unreachable without the introduced transfer technique. From the generative point of view,

we can see that, similarly to other approaches, the technique produces a set of different

environments of gradually increasing difficulty. Similar to the previous approach, we may

store the environments during training and later use them on their own. The pleasant

thing about open-ended co-evolving approaches is that they produce diverse environments.

In [17] a single agent with two separate ”minds”, namely Alice and Bob, plays a game

with itself that allows it to learn the rules of the environment. Alice performs a sequence

of actions that modify an environment, and Bob is then tasked with either resetting

an environment to the starting state (for reversible environments) or repeating Alice’s

actions as closely as possible. Although the level generation is not the main focus of the

paper, we can see how Alice is trained to be a goal generator for Bob - producing goals

of appropriate difficulty. By saving Alice’s state throughout the training, we can obtain

a goal generator that generates goals of gradually increasing difficulty. By taking into
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account the fact that after her action sequence, Alice effectively generates a new state,

we can actually view her as a level generator.

2.2.2 (More like) Self-play

A particularly interesting approach, that is very similar to ours has been introduced by

[18]. It discusses a Generative Playing Network that consists of a generator and an agent

playing a minimax game, similar to that from GAN [19]. The generator takes a noise

input and creates a level, that is evaluated by an actor-critic agent, that returns the

utility value U . Generator then minimizes E
[
U
]
, while the agent maximizes E

[
U
]
. In the

beginning, the generator will try to generate simpler environments to be solved by the

agent, and as the agent learns to solve more difficult environments, the generator will try

to generate more difficult environments. We can then stop the training at the state when

the environments will become interesting for the human players.

To obtain the target for the generator, the generated state is evaluated by the critic Q,

providing the target utility U . The simulation of the generated state is thus not required,

and the whole setup is thus fully differentiable. However, the formulation obliges to

restrain from the natural environment rewards, constraining them instead to 1 for the

won state, −1 for the lost state, and 0 for the unsolvable environment and unfinished

state.

The method requires very little data nor domain knowledge, however, it has a high

computational cost, and the dependency between the agent and the generator may lead to

mutual exploitation (as shown in the experiments, the actual results actually generated

complex, unsolvable environments at the beginning, then simple, and finally very easy

environments). We hypothesize that an unluckily initialized critic, that produces wrong

utility function estimates will also cause the generator to generate incorrect targets, which,

in turn, will produce the incorrect training of an agent.

Another great idea, presented in [20] is based on regret. The setup contains two agents

acting in the environment: the protagonist and antagonist, as well as an adversary that

controls the environment. The algorithm is as follows: first, the adversary generates an

environment, in which several trajectories for both the protagonist and the antagonist

are collected. Regret is then computed as the difference between the maximum total

discounted rewards of the antagonist’s and the protagonist’s trajectories. The protagonist

then receives a reinforcement signal −Regret, while the antagonist and the adversary

both receive Regret reinforcement signal. Thus, the adversary is motivated to generate

environments beyond the protagonist’s abilities, but the regret incentivizes the tasks, on

which the protagonist fails but the antagonist succeeds. As in previous methods, we may
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stop learning once we’re satisfied with the difficulty of the generated environments, and

use the adversary as a generator.

2.3 Tangent works

Several papers explore level generation rather indirectly:

• For example, [21] trains fractal neural networks to play SimCity, where Advantage

Actor Critic (A2C) [22] an agent learns to design cities. Although this does not

directly focus on creating an environment for the player to play in, this might be

viewed as a step towards game level generation, where the mechanics of the SimCity

game itself are used to evaluate the created environment.

• When generating game levels, the question of playability comes naturally. We gen-

erally need to deal with this and other possible constraints. [23] comes up with a

Constrained GAN (CAN) approach, that uses a semantic loss (SL) [24], evaluated

with using the Knowledge Compilation [25] to penalize the network proportionally

to the mass it allocated to invalid structures. CAN succeeds in generating natu-

ral, valid (in terms of pipes) and playable levels. We can also utilize SL with the

knowledge map to induce validness into our generator.



Chapter 3

Proposed method

3.1 Problem setting: levels, embeddings, environ-

ments, transition functions

Figure 3.1: Our pendulum environment and its parameters. Colored gray is the parame-
ters that are fixed per environment and essentially ”hard-coded” in a transition function.
These are not part of a state. Colored green in orange are the components of the state,
where green are the components, that are generated (embedding), and orange is the com-
ponents, that are not a part of embedding.

8
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Environment

Formally, our environment is a tuple (S,A, T, S0, ST ), where:

• S is a set of states.

• A is a set of actions.

• T : S ×A→ S ×R is a transition function, which takes a state and an action, and

returns the next state and reward.

• S0 ∈ S is a set of starting states.

• ST ∈ S is a set of terminal states.

A trajectory τ is a tuple ((s0, a0), (s1, a1), ..., (si, ai)..., (st)), where:

• si ∈ S are the visited states

• s0 ∈ S0 is a starting state

• sT ∈ ST is a terminal state

• ai ∈ A are the actions taken

At each transition, the next state and reward are calculated using the transition function:

T (si, ai) = (si+1, ri)

Informally, our environment defines the mechanics of the game (transition function)

- defining how the player’s actions lead to the next states and whether those states are

terminal. Additionally, it specifies the set of starting states.

Game level

We define game level simply as a starting state s0 ∈ S0. Although different formulations

are possible - for example, one may define a game level as also having a specific transition

function - we will use this definition in our work further on. Generating a game level is

then interchangeable with generating a starting state.

Level embedding

Level embedding is a vector ρ ∈ Rn that specifies some parameters of a starting state,

restricting the starting states’ space to a subset Sρ ⊂ S0. We denote a starting state that

has its parameters specified by an embedding ρ as sρ.
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Figure 3.2: An example starting state with the ”blue part” specified by the embedding

For example, in our experiments we use an environment with k different enemies placed

in it (Figure 3.1). Thus, our embedding vector is k-dimensional, where each dimension

specifies the x coordinate of the k-th enemy. The whole state, however, also includes the

enemies’ y coordinates, radii, angles, and others. If all of those remaining parameters

can be ”hard-coded” into the environment’s transition function, then the embedding

vector fully specifies a starting state. In other cases, though, those parameters may differ

between different starting states sρ ∈ Sρ. This is also the case in our environment, where

the starting angle and the angular speed are part of the starting state, but not specified

by embedding.

3.2 Goal (broadly): generate game levels automati-

cally

Now we continue with the problem formulation. We want to generate the game levels

automatically. As mentioned above, this is interchangeable with generating an embedding

vector. Thus, picking any real numbers that form an embedding vector formally completes

the task.

However, we may end up with levels, which are either unplayable, present too little or

too much challenge to the player, are boring, repetitive, etc. Generally, the embedding

vector should conform to a type of constraint. If a game designer could fully specify all

of those constraints, then the task becomes trivial. However, it’s practically impossible

to know how embeddings result in a gameplay experience. In other words, it’s almost

impossible to specify those constraints perfectly.

When [human] game designers design a level, they cannot know in advance where to

place the player, enemies, etc. They cannot tell how difficult or entertaining a level will

be, yet they come up with sensible approximations, that can later be adjusted during

the game testing phase. Formally, game designers have some underlying understanding
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of those embedding constraints - coming from the ”outside” experience (e.g. you may

have a good understand of the game even before playing it - perhaps due to its similarity

with other games). The constraints may be imperfect, but its a generally a good starting

point.

In the conventional PLG, one may specify constraints, for example, via a set of rules,

grammar, or something similar. Generated levels thus always conform to the constraints.

However, this approach is usually limited in two ways, obvious from the approach itself:

• Levels are usually similar and repetitive - at some time the player usually infers

the rules, that were used to define the constraints, and thus the element of novelty

disappears as the game becomes predictable.

• This approach is impossible to use for very complex games, where, by definition,

there is a large number of complex rules, specifying how does the player interact

with the environment, how does it change over time, etc.

Thus, we aim to mimic the process of finding reasonable (closer to the the human-

designed) constraints using machine learning methods. We hypothesize that this will

keep the levels interesting and creatively designed, while introducing the automation of

the process.

The only limitation is that the embedding space should be bounded from both below

and above. Thus, it represents an n-dimensional hypercube, in which we are searching

for the tighter constraints, which specify valid levels only. In our particular environment,

this corresponds to limiting the enemies’ x coordinates to be between xmin and xmax.

3.2.1 Evaluating the quality of a level

How do we know if the generated level was good or bad? In a real-world scenario, we

perform game testing, collect feedback, and adjust if needed. Testers (which would ideally

resemble the game’s target audience) would play the game and describe their playthrough

as either challenging or easy, diverse and interesting, or repetitive and boring. We may use

factors, such as fantasy, curiosity, player control, and challenge to evaluate how much fun

do our players experience in our game. Our ultimate goal is to maximize the experienced

fun [2].

It is rather challenging to train our machine-learning-based generator solely from

the player’s feedback. Perhaps it’s possible to fine-tune it once it confidently generates

playable and engaging levels. But at the beginning, an untrained NN, will likely produce

nothing but garbage.
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To evaluate the quality of a level, we are doing something similar to playtesting, but

with AI agents instead of humans. These AI agents play the generated levels and report

their experience. This produces the feedback for the generator, which then adjusts to

produce better levels. This is explored in a greater depth in the subsection 3.5.2.

3.3 Goal (more specific): generate game levels of a

specific difficulty

There are multiple components to players’ game experience, most of which are tricky

to quantify accurately. As mentioned before, our idea of a level’s quality is based on

the level’s difficulty. Generally, when the difficulty reasonably matches the player’s skill

level, it produces the most engagement and joy for the player. Overshoot and players

feel frustrated, have too low of difficulty, and they feel bored. If we know what difficulty

is required, as well as being able to accurately produce the level of that difficulty, then,

theoretically, we can create the best experience for the player. We focus on the latter

part, which leads us to the formulation of the problem as a search of the level of a given

difficulty.

While focusing on the difficulty, it is also important to generate a diversity of different

levels. If our generator is only able to produce a single level of a given difficulty, we can

generate only a single level progression. This would feel repetitive. That is why in the

section 3.6 we extend the formulation of the problem to account for level diversity

In this work, we have limited ourselves to a set of arcade games that all usually feature

relatively simple gameplay mechanics and have a similar goal of scoring as high as you can.

More modern and complex games can focus on different things: experience the game’s

world, story, characters, etc. These games are effectively beyond the scope of this work.

However, they may also benefit from the proposed method of game level generation in

some way (e.g. improved enemy AI programming).

However, what is difficulty to begin with? How can we formalize its definition?

3.3.1 Difficulty

We define the difficulty as a real number d, that lies in a closed interval [0, 1]. It is a

highly arbitrary measure, we only require it to have the following property: the higher

the number, the more challenging it is to perform. Zero difficulties would mean the easiest

possible environment, while 1 would mean the most difficult one.
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3.4 Solution: framework: generator, evaluators, ora-

cles, and differentiability

Generator

Harking back to the search of constraints in the embedding space, we want to find a set

of constraints that would limit the space to valid ”high-quality” levels. Formally, we can

reformulate this as a search of constraints that would limit the space to the embeddings,

which result only in the levels of a given difficulty.

Practically, we express this as a function that maps a difficulty to a particular embed-

ding (or embeddings, section 3.6). Thus, our generator G : [0, 1] → Rn maps a difficulty

din to an n-dimensional embedding vector ρ.

G(din) = ρ

Our generator is parametrized by parameter vector θ and is a simple feed-forward

NN, that we have chosen to train via stochastic gradient descent (SGD). Although other

optimization methods, such as evolutionary algorithms can be used, back-propagation has

become predominant in the last years, and thus it has become our method of choice.

Evaluator

D(ρ) = dout

The target for the generator is provided by an evaluator. Evaluator D : Rn → [0, 1]

is a function, that takes an embedding vector ρ as its input and returns an evaluated

difficulty dout. We then compare the input difficulty din that was used as an input to

the generator to generate a level with the evaluated difficulty dout and minimize their

difference |din − dout|.

Figure 3.3: Generator/evaluator setup

Note that, at this point, the evaluator is just a function that maps an embedding to

a difficulty - not necessarily a NN. For the setup to work, however, the gradients should
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flow through the evaluator. Depending on the particular choice of one, this may or may

not be the case.

3.4.1 Attempt 1: training directly from evaluator

Suppose we have an evaluator D, that can evaluate the difficulty of a state s, and its

evaluation is differentiable w.r.t. to the state. Then, the setup looks like the following:

1. The generator generates an embedding ρθ, that specifies a subset of starting states

Sρ ⊂ S0.

2. Starting state s0|ρθ ∈ Sρθ is sampled.

3. The trajectory is sampled starting from s0|ρθ with transition function, using actions

sampled from policy ai ∼ π. From the trajectory we select states si|ρθ

4. Each state’s difficulty Dstate(si|ρθ) = dsi|ρθ is evaluated using a state difficulty eval-

uator.

5. Individual states’ difficulties dsi|ρθ are aggregated (e.g. averaged) into a single mea-

sure for the trajectory difficulty, which is used as an approximation for the difficulty

of a starting state ds0|ρθ , and thus, the difficulty of the embedding dρθ .

6. By sampling many trajectories (t → ∞), we approach a better estimate or a diffi-

culty of the embedding dρθ = Et
[
dtρθ

]
.

Differentiability problem

For this to work, however, the gradients ∂si+1

∂si
= ∂T (si,ai)

∂si
, and ∂D(s))

∂s
should exist. The

latter usually isn’t a problem, but the former is. Usually, the transition function contains

‘if‘ statements, that produce non-differentiability. This is also the case with our environ-

ment, where the player can either perform an action that would change the direction of

oscillation, or do nothing.

It is also worth noting that this back-propagation through the entire trajectory is

extremely slow, is likely to cause exploding/vanishing gradients, and introduce instability

in training - in a similar fashion as in the recurrent neural networks (RNNs).

3.4.2 Attempt 2: REINFORCE [26]

The idea is to change our generator from outputting an embedding ρθ to outputting a

multivariate probability distribution Pθ, from which we then sample several ρθ ∼ Pθ. The

difficulty evaluation of an embedding can then occur in a non-differentiable manner (e.g.,
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as described in subsection 3.4.1). This also saves plenty of computational resources, as

we sidestep the computing of the operations’ tree and storing intermediate results.

Each sampled embedding ρθ is assigned a score w (characteristic eligibility), that is a

difference between the input difficulty din, and the evaluated difficulty of that embedding

dρθ , i.e. w = |din − dρθ |. And then we maximize the log probability of the embeddings

that resulted in a higher w.

θt+1 ← θt + α E
[
w∇θ log p(ρθ)

]
This works. However, it comes with a drawback of evaluating many ρθ to achieve a

reasonable difficulty estimate. This brings the computation cost problem right back, as

sampling trajectories also usually cannot be GPU-parallelized.

There is also a flaw in the meaning behind the method itself. When our generator

assigns a particular probability to an embedding ρθ means that the embedding ρθ will

have a difficulty din with a probability pρθ . However, this is not what we want our

generator to output 1. We want the generator to output a single embedding, which would

always result in the difficulty din. Thus, our perfect generator would output a Dirac delta

function probability distribution, that would have an infinite probability for a single valid

embedding, and zero probability everywhere else.

Practically, this causes the training to break the generator at some point, as the log

probabilities will approach infinity, and the gradients will either explode or become NaN.

3.4.3 Attempt 3 (and the final solution): NN Evaluator and

oracles

These problems led us to search for an alternative solution. The core idea is to use another

feed-forward NN to evaluate the difficulty of an embedding ρθ. Thus, the gradients
∂dρθ
∂ρθ

exist, and thus, also the gradients ∂dρ
∂θ

.

Oracle

NN evaluator needs to be trained to evaluate the embedding’s difficulty dout = dρ accu-

rately. For this we will use another difficulty evaluator that does not have to be differen-

tiable. To avoid ambiguity, we will refer to it as an oracle. An oracle takes an embedding

ρ, and outputs a difficulty of that embedding dρ. We trust it to produce an accurate

difficulty estimation, making it perhaps the most important part of the framework.

Evaluating the actual difficulty of the produced level now does not pose a problem.

Additionally, the generator now produces an embedding of the required difficulty, that

1the agent/environment stochasticity is non-essential here
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Figure 3.4: Generator/evaluator/oracle setup, that extends the previous setup

makes sense definition-wise.

The structure may resemble that of the GAN [19]. However, here the generator and

the evaluator do not compete in a minimax game. Rather, they cooperate. Evaluator’s

role is to merely map an embedding to its difficulty in a differentiable way.

With this setup, it is simple to use different oracles - there is essentially no constraint

on how it should work. The next part will explore different oracles and compare their

evaluations. Its worth noting that this setup can be easily extended to examine the

multifactorial quality of the levels, however, for simplicity, we will stick to examining the

difficulty only.

3.5 Different oracles

This section compares different oracles. We start with a simple heuristic oracle that

uses a hand-crafted function to estimate the difficulty. Then we continue with the more

advanced oracles, which use agents. We will start by calculating the difficulty from the

trajectory rewards - a purely extrinsic measurement. Then we’ll move on to the Q-values

and action probabilities, which represent intrinsic measurements. Lastly, we’ll briefly

discuss the problem of subjectivity/objectivity, and the challenge of training the agents

without a reliable level generator.

3.5.1 Warming-up example: heuristic

Firstly, to test the proposed framework, we have created a simple oracle that calculates

the difficulty directly from the embedding ρ.

There are several possible ways to train the generator and evaluator. The first one is

to update the generator and evaluator both at the same time. Then we can also do one

generator/evaluator update per several updates of the other one. One other possibility

is to first train the evaluator to a sufficient accuracy, and then omit the actual level
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evaluation with the oracle completely. Finally, one might use a technique somewhat in

between, e.g. pre-train the evaluator and then invoke the oracle once per several training

iterations. This, again, can resemble the generator-discriminator training of the GANs.

Here we have chosen to train the NN evaluator first and then use it to train the

generator. In our pendulum environment with a single enemy, where embedding ρ is

a one-dimensional vector that contains the enemy’s x coordinate, the heuristic oracle

produces the following difficulty evaluation:

(a) Difficulty evaluation of the single-enemy
pendulum environment by a heuristic oracle and
the learned approximation by the NN

(b) Generator learning from the evaluator

The x axis represents the enemy x position. Logically, when the enemy is very far

off to the side, the difficulty is close to zero. As the enemy gets closer to the center, the

amount of free space decreases, and thus it becomes more difficult to perform a successful

evasive maneuver. We can see that our heuristic estimation does not cover the full [0, 1]

range. This does not contradict the definition of difficulty that we have introduced, as

not every environment will have the full range of difficulties.

The yellow curve shows the approximation of the NN evaluator. For such a simple

function, training a NN is trivial.

Then the next step is to use the trained evaluator to train the generator. Essentially, we

are searching for an inverse of the evaluator function. In a sense, when we have trained

an evaluator, we already have a way to generate a required level: just pick whichever

embedding corresponds to the desired difficulty by looking at the graph. Practically

speaking, we would have a data table, that for each point in an embedding space would

store its difficulty. Then we would sort the table by the difficulties and could pick a

satisfying embedding. There are two problems, though

1. Embedding space is usually continuous, and we would have to discretize and inter-

polate between the points. This introduces imprecision, as well as a high spatial

complexity - a need to store each embedding and its corresponding difficulty.
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2. With a growing number of dimensions, the spatial complexity grows exponentially

(curse of dimensionality). Our data table thus grows exponentially large.

That is why we argue that it’s reasonable to have another NN approximator (gener-

ator), that would perform the inverse mapping. However, from the Figure 3.5b we can

see the obvious limitation: the generator cannot find multiple embeddings of the same

difficulty. This makes sense, as a function cannot produce two different outputs for the

same input. However, we would like the generator to be capable of generating multiple

levels within the same difficulty. This would correspond with the generator finding both

the x and −x, on the graph. We will tackle this problem in the section 3.6. Also, for the

part where the difficulty is too high, the generator can essentially produce anything, as

the environment (judging from the oracle’s evaluation) does not grant the possibility for

difficult levels to exist. Depending on what we want, we may simply discard these levels

completely, or use them, acknowledging their real difficulty.

Nevertheless, we see that the setup works at least with a simple evaluator and a

simple 1-dimensional embedding space environment. Before moving to more sophisticated

oracles, we should note the issue of subjectivity.

3.5.2 Oracles that use agents. Objectivity/Subjectivity

Next, we will review more advanced methods of difficulty estimation. All of them resemble

the [human] playtesting by having a group of agents which sample trajectories in an

environment starting from the embedding-parametrized state.

Subjectivity

Such evaluation would obviously be conditioned on the individual players. Each player is

always a little different, has a different skill level, pays attention to different things, and

then is also subjected to their own playing experience. The same level may be classified

as difficult by an unskilled player and trivial by a skilled one. Thus, the measurement is

highly subjective.

One good approach to account for everyone is to adapt the game to each player. This

may happen, for example, by tracking the player’s performance throughout the game, and

then tweaking game parameters to make the game more or less difficult.

Sometimes, however, this is either infeasible or not possible at all (perhaps by the

game design, e.g. Dark Souls 2). Then, the game provides either several difficulty levels

to choose from, or a single fixed difficulty. The former relies on the player’s ability to

report their own skill level accurately, which may often not be the case.

2https://en.wikipedia.org/wiki/Dark Souls

https://en.wikipedia.org/wiki/Dark_Souls
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If we reformulate the problem to generating the levels for a given player, then we’d

have to fine-tune our generator somehow to that specific player (either by some evaluation

of the player’s performance in the actual game or by conducting some skill tests before

the actual game). In both cases we normally want the generator to generate at the very

least playable and somewhat challenging levels initially. In other words, we want the

generator to be useful for each different player, despite their individual differences. We

want our generator to be objective in a sense that produced levels are what the whole

player’s population on average would expect them to be.

Thus, we use multiple agents, where each one returns their own evaluation, and then

we average them. Doing so, we obtain a single measurement that we consider objective.

Skill Distribution

However, usually, it makes more sense to assign nonuniform weights to the players’ mea-

surements. In our setup, we attribute the weight based on a player’s skill level. Extensions

to this method may consider, for example, the time spent playing the game (in our ex-

periments all AI agents spend equal time playing the game). Depending on the game

we aim to create (casual, challenging, hardcore), we may assign different weights to the

measurements obtained by a different skill. For example, we may not care as much about

what do low-skilled players think, as what do high-skilled ones.

In our work, to determine the weight, attributed to the measurement of an agent, we

use the skill distribution. This distribution should specify how important each skill level

is, and should, ideally, reflect the game’s target audience’s players’ skill distribution. We

hypothesize that truncated skew-normal distribution [27] is well-suited for this task. The

distribution is truncated at [0, 1] interval and is controlled by three parameters: mean µ,

standard deviation σ, and skewness α. For example, if we want to design a difficult game,

we could specify the mean µ closer to 1, and skewness α < 0.

This distribution is arbitrary - proposed by the game designer and should theoretically

come from knowing your target audience (e.g., by conducting market research and/or

collecting player’s data from the other games).

Using trajectory rewards

Our first sophisticated oracle is based on the simple comparison of the trajectory rewards.

Here, each agent computes their difficulty based on the rewards that the player/agent is

given during their playthrough. For simplicity, although, let us start with the binary

formulation, where only two scenarios are possible (similarly to [28]). Let T denote the

space of all the trajectories, which we can split into two disjunctive subsets:
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Figure 3.6: Examples of truncated skew-normal distributions

1. Trajectories, which end with a win T W

2. Trajectories, which end with a loss: T L

We will examine trajectories, parametrized by some embedding ρ. This determines a

subset of starting states Sρ. We’ll denote the set of trajectories, which start from the states

sρ ∈ Sρ as Tρ. Then if we knew the full space of all possible trajectories Tρ = T Wρ ∪ T Lρ ,

we could define the difficulty of the embedding ρ as a ratio of the number of the lost

trajectories |T Lρ |, to the number of all trajectories |Tρ|:

dρ =
|T Lρ |
|Tρ|

The problem with this approach is that the number of all possible trajectories in the

environment is generally infinitely high. However, we can approximate by sampling the

Sρ and counting the wins and losses of that sample. As our sample size grows, the better

will our approximation become. Another obvious limitation to this win/loss approach is

a requirement for an environment with a clear definition of win and loss. When there is

no such binary definition, but instead a scalar reward is given, we may place an arbitrary

threshold and classify the trajectories with the rewards higher than that threshold as

winning trajectories, and others as losing.

Generally, though, when step rewards are provided and there is an opportunity to

compute a trajectory reward, there is a better way of computing the difficulty. Let’s note

the sum of step rewards Rt, obtained at each step of the trajectory τ as Rτ =
∑
t

Rt.

Assuming we know the highest and lowest possible rewards for our environment: Rbest =
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min
τ∈T

Rτ and Rworst = max
τ∈T

Rτ , respectively, we can define difficulty of a trajectory dτ as a

measure of how close its reward is to the worst reward:

dτ =
Rbest −Rτ

Rbest −Rworst

Note that when Rworst = Rbest, then for any trajectory ∀τ, Rτ = Rworst = Rbest, and

the difficulty is undefined dτ = 0
0
. This intuitively makes sense, as the difficulty is relative,

we can only compare how good or bad are we doing with respect to some other result.

Again, in practice, we do not generally know the maximal and the minimal trajectory

rewards, but we use the sampling approximations to compute R̂best and R̂worst, which are

used to approximate d̂ρ. From now on we will refer to the approximations without the

”hat”, namely Rbest, Rworst, and dρ

Intrinsic/Extrinsic measurement

The question arises that concerns the ”visibility” of the Rbest and Rworst. Should they

be ”private” to each agent, or should they be ”publicly” visible to all the agents? The

first option makes the measurement more intrinsic and self-reported in its nature, as the

agent only observers their own performance and does not know what outcomes may be

possible (achieved by other agents). The second option is more objective, as the scores

are shared. We may mix this with the agents weighting by the skill distribution, thus

giving four possibilities:

Figure 3.7: Matrix of possible weighting and normalization of the agent’s measurements

Which one should be used? This question goes beyond the scope of the current

work, however, we propose some general thoughts about this problem and the problem of
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selecting the correct oracle in the subsection 3.5.6.

3.5.3 Using Q-values

Using trajectory rewards for estimating difficulties is great in its simplicity. However, in

its essence, it’s oblivious to the underlying game mechanics. It is somewhat similar to

the REINFORCE in a way, that it merely observes the correlation of the rewards with

the generated levels. This is analogous to only collecting players’ scores during the game

testing, and discarding everything else - the self-reported feeling of the game, finer insight

into which parts of the level resulted in the overall difficulty, etc.

In Q-learning, the task is to learn a Q-value function, that maps state-action pairs to

the expected return of the trajectory, taking the action in a state, and acting optimally

further on [29]. The Q-value function gives insight into the differences between the indi-

vidual actions. This is how we’ll determine the difficulty of a state, and then the difficulty

of an embedding.

The intuition behind the method is as follows: if all actions have similar Q-values,

then we can essentially pick a random action and achieve a similar outcome. However,

if there are only a few actions that lead to a good outcome, and the majority of actions

lead to a bad outcome, then the difficulty is high. In other words, we have to be accurate

and perform the correct action. Mathematically this can be expressed as the difference

between the maximum and the average Q-values in a state over the available actions:

d′s = max
aj∼s

Q(s, aj) − E
aj∼s

Q(s, aj)

However, d′s is not normalized to the range [0, 1]. To obtain the normalized values, we

do something similar to the trajectory rewards method:

ds = max
aj∼s

[Q(s, aj)−Qmin

Qmax −Qmin

]
− E

aj∼s

[Q(s, aj)−Qmin

Qmax −Qmin

]
=

d′s
Qmax −Qmin

(3.1)

The normalization can occur either before or after calculating the difficulty as shown

in Appendix A. We use Qmin and Qmax publicly to the whole population of agents. Thus

our oracle knows the possible outcomes across all agents.

To obtain the difficulty of a trajectory, we aggregate the individual difficulties of the

states. There are several possibilities here. The most straightforward one is to compute

the average difficulty over the states. Another option might be to use the maximum value

- it could make more sense in estimating the difficulty of a trajectory, for example, with

an unexpected difficulty spike in the end. Finally, more sophisticated methods can be

used, that analyze the difficulty progression over the trajectory more closely.
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Figure 3.8: Difficulty evaluations of the pendulum environment by different oracles

We can see from the Figure 3.8 that the Q-values oracle produces a very different

difficulty estimate from both heuristic and trajectory rewards oracles. We hypothesize

that some extension to the proposed algorithm is required to make this oracle useful.

3.5.4 Using action probabilities

Sometimes our AI agent selects actions by a probabilistic policy, i.e., that outputs the

probability distribution over the possible actions in a given state p(a|s). This is usually

the case in the policy gradient methods, for example, REINFORCE or A2C/A3C [22].

This allows for another way of measuring the difficulty.

The first idea is to treat the action probabilities the same way as the normalized Q-

values and compute the state difficulty as a difference between the maximum and the

average probability over the actions. Another possibility is to compute the normalized

entropy of that distribution, that is:

ds = −
∑
a∼s

p(a|s) logNactions p(a|s)

Then the individual difficulties of the states may be aggregated in a similar fashion as

the normalized Q-values. We should note that this measurement is purely intrinsic and

self-reported in nature, i.e. the action probabilities are not getting normalized w.r.t. to

the max
s

max
a∼s

p(a|s) and min
s

min
a∼s

p(a|s).
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AI Agents

All oracles that run environment simulations with AI agents obviously need those agents

to come from somewhere. In our experiments, we used a simple heuristic agent, that uses

a hard-coded policy for trajectory rewards oracle and a DQN agent for Q-values oracle.

Trajectory rewards oracle essentially imposes no constraints on the agents whatsoever, so

any agent may be used. Q-values oracle requires a way to estimate Q-values. However,

the agents may use a different policy, then the greedy (w.r.t. Q-values from the network),

or ε-greedy policy. One may use, for example, an A2C agent, with a slight modification

to output Q-values instead of V-values.

The quality of the oracle depends on the quality of the agents, which are trained in

tandem with the generator. This produces a potential problem: poorly trained agents may

give incorrect evaluations to the generator, which in turn, makes the generator produce

garbage levels, which, in turn, makes the agents converge to even worse policies. A possible

solution is to use more simple hard-coded agents from the beginning, let the generator

learn to generate decent levels, and then switch to more complex AI agents further on

after the process has reached some degree of stability.

3.5.5 The difficulty as a measure of time required to reach a

level of performance

A very different approach to measure difficulty is to track the time, that was required

to reach a good level of performance in the environment. The most straightforward way

to measure performance is by using trajectory rewards. Another one might be to use

the intrinsic measurements of the agent’s difficulty - as we introduced above - e.g., by

Q-values, actions probabilities.

The drawback of this method is its extremely low speed. After each iteration, once

the level is generated, we would have to train new agents and observe how much time

they needed to master the level. The method is also very demanding to the agents them-

selves. In simple games, it’s rather simple to reach the super-human level of performance.

However, in complex games with sparse rewards and unclear reward functions, this may

present considerable difficulties.

We hypothesize that this method may be used at the latest stages of the generator

training to fine-tune it - perhaps in tandem with another difficulty estimation method.

3.5.6 Choosing the right oracle

Which oracle should we choose and use? If we aim to automate a real game development

and maximize players’ fun, then we argue that the most important aspect is how close
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the oracle’s evaluation is to the real human players’ evaluation. Thus, almost always we’d

choose an oracle that uses AI agents to sample trajectories and observe both intrinsic and

extrinsic data of their playthrough. In a real-world scenario, many aspects are weighted

together in producing a single difficulty measurement. An improvement over this work

might also introduce multi-dimensional measurement as a target to the generator, instead

of a single difficulty measure. While using the oracles with AI agents, the agents must

resemble the human players as closely as possible. [30] focuses on a player’s style in

addition to the skill to produce more human-like agents. Moreover, creating more human-

like agents is explored in [31] where both synthetic and human-like agents were introduced

to find defects, examine unintended game transitions, etc. Perhaps, mixing reinforcement

learning agents with agents trained in a supervised way from the player’s data is required

in the later stages of development to fine-tune the generator. Lastly, from the computation

cost standpoint, it is likely efficient to begin with the simpler oracles (e.g. hard-coded

heuristics), and slowly transition to more sophisticated ones.

3.6 Extension to the task: generate diverse levels

As we have seen from the Figure 3.5b, currently our generator is incapable of generating

several different levels with the same difficulty. Instead, we want to be able to generate

different, distinct levels, while having them all evaluate to the same difficulty.

Diversity (in terms of embeddings)

A rather straightforward way to compute diversity is to compare embeddings. If our

generator produces N different embeddings ρ1, ρ2, ..., ρN , then the diversity D may be

computed as the average norm of all the difference of the embeddings:

D =
1

N2

N∑
i=1

N∑
j=1

||ρi − ρj||p

Diversity in terms of trajectories

However, a more sophisticated way to compute diversity is to compare the trajectories

that stem from different embeddings [15]. To do this, we would have to compute the

differences between the states in the same step in all trajectories. This, however, is

extremely costly, as well as conditioned on the agents. Thus, this method may probably

be used in the latter stages of the game to refine already decent results.
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3.7 Solution: seeds

In our work, we are focusing on the difficulties in terms of embeddings. Thus, we want to

generate multiple different embeddings for a single difficulty input, so that their difference

is maximized while ensuring that they all evaluate to the same difficulty. With the current

setup, there is no possibility to generate multiple embeddings, simply because it is not

possible to have a function (generator) that produces two different outputs for a single

input. However, it is possible to slightly change the setup and be able to achieve our goal.

Attempt 1: seed as a degree of freedom

The idea is as follows:

1. Extend our generator to accept one more input. We will call that second input

the seed. The seed ranges from 0 to 1 and essentially acts as an added degree

of freedom: while fixing the difficulty, we can change the seed, and the generator

should select one of the embeddings from the possible set of ones, that conform to

the input difficulty.

2. We then have to somehow teach the generator to associate different levels with

different seeds. To do that we add the negative diversity D term to the generator’s

difficulty loss (|din− dout|) so that our generator maximizes the diversity during the

and minimization the difficulty loss.

In practice, however, this does not seem to work. Diversity and difficulty losses act in

opposite directions: minimizing the difficulty loss makes the generator generate more

similar embeddings, while diversity ”pushes them away” from each other.

Attempt 2: generating offsets to an N-dimensional seed point

With this approach, we change our seed to be N -dimensional, where the dimensionality is

the same as the dimensionality of the embedding space. In other words, our generator will

now receive a point in embedding space ρseed additionally to the difficulty input. Then,

the NN will output the offset vector ~ν, which is added to the ρseed to produce the final

output ρ = ρseed + ~ν. The Figure 3.9a demonstrates how that looks in our environment

with a 1-dimensional embedding space. Depending on the chosen ρseed we thus may end

up with different ρ.

The Figure 3.9b demonstrates how that may look in a higher-dimensional space. The

vertical axis of the figure is the difficulty of a particular embedding. Other axes specify

each dimension of the embedding space. The generated offset ~ν from the seed point ρseed

specifies the closest point ρ that evaluates to the required difficulty.
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(a) 1-dimensional embedding space (b) 2-dimensional embedding space

Figure 3.9: Generator generating different offsets depending on the ρseed

To emphasize the ”closest” part we add the ||~ν||2 regularization term to the generator

loss, requiring the generator to produce smaller offsets. In our experiments, we found

it crucially important. Otherwise, the generator might as well generate big offsets and

converge to output the same ρ for different ρseed.

(a) Different curves correspond to different
seeds, each curve learns a difficulty mapping
from it’s own seed point ρseed

(b) Decreasing the weight of the offsets loss
later during the training allows the generator
to converge to better results

Figure 3.10: Embeddings, generated by the seeded generator

It is a bit tricky to clearly visualize the outputs of the seeded generator. The Fig-

ure 3.10a shows the seeded generator in the process of converging. The heuristic oracle is

used to produce a target for the generator. Different curves show different seeds. We can

see that for some seeds the generator generates the embeddings on one side, and for some

- on the other. This essentially completes our task. First, we pick the difficulty, and then

by selecting a different seed point we will pick one of the available options.

We have observed that to reach better results, it is important to decrease the weight
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(a) Difficulty loss and the offset loss reaching
an equilibrium

(b) Decreasing the weight of the offsets loss
later during the training allows the difficulty
loss to decrease.

Figure 3.11: Difficulty loss and the weight loss progression during the training

of the offsets loss further on during the process of training, as well as the learning rate of

the generator. Figure 3.10b shows how different seeds converge to either one or the other

side. Figure 3.11b shows how different losses change. We have decreased the learning rate

and the weight of the offsets loss by the factors 0.75 and 0.1 respectively on every 1000

steps.

One of the advantages of this method is the potential ability to find all different

embeddings of the same difficulty. However, this method is somewhat difficult to use

practically. It would be nice to somehow pick only the relevant distinct embeddings,

ideally compressing the N-dimensional seed to a single [0, 1] interval.

Alternative approaches

We briefly note other possible solutions to the diversity problem:

1. The generator may output a fixed amount of embeddings ρj, and maximize their

difference. However, this approach is not as flexible as we would like. Each new

output produces a bigger NN. Then there may be a potentially infinite number of

different levels of the same difficulties, however, we’d constrain the generator to only

generate a fixed number of them.

2. With a probabilistic generator, we might output a multi-modal probability distri-

bution, similarly to that of GAN. In that case, there is a danger of a mode collapse,

but we hypothesize that simply rewarding embedding diversity may be enough to

combat the problem. However, we have discarded the probabilistic approach as

being too costly.



Chapter 4

Practical results

4.1 Pendulum environment

To test our framework, we have implemented a pendulum environment that consists of

a swinging pendulum, that constantly moves upwards. At each point in time, there are

two possible actions - either do nothing or change the direction of the swing. The goal

is to move as far as possible without the bob (grey circle) colliding with the enemy (red

circle).

Figure 4.1: Pendulum environment, implemented in python using OpenGL

The number of enemies can be different. In our experiments, we have mostly used a

single enemy and then extended the setup to two and three enemies later on. The state

is described by 3 +Nenemies numbers:

29
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1. Vertical position (yp coordinate of the black circle on the line)

2. Angle α, that the pendulum currently makes with the y axis

3. Angular speed vα - determines how much the angle α changes over time. Can be

either vα = ± vmaxα

4. Enemies’ xei coordinates. It stays constant within the trajectory, however, we in-

clude it in the state to be consistent with our problem formulation, but it is of course

possible to parametrize the environment and ”fix it” onto the transition function

Then, there are environment’s parameters that stay constant in all trajectories:

1. Length of the pendulum’s rod l

2. The vertical speed with which the vertical position changes vyp

3. The maximum angular speed of the swing vmaxα , that determines the possible values

of angular speed

4. Enemies’ yei coordinates

5. Pendulum’s bob radius rp

6. Enemies’ radii rei

At each given step, if the collision did not occur, the agent received a small positive reward

1. If the collision did occur, then a large negative reward −100 was given. Also whenever

the agent decided to change the swing direction, a tiny negative reward −0.1 was added

to whichever reward the agent received. Thus the goal was to evade a collision, as well as

to minimize the number of actions taken. This rewards weighting produced agents that

behaved as we would expect. At first, however, we did not give a large negative reward

for the collision, but instead simply ended the episode. In the limit, this does not make a

huge difference, but in practice, this seemed to be one of the main reasons that our DQN

algorithm had troubles converging.

4.2 Framework implementation

4.2.1 Generator, Evaluator

In our experiments, for both generator and evaluator, we have used simple feed-forward

NN with two hidden layers, 8 neurons. We have used Leaky ReLU (LReLU) [32] to

combat the dead neurons problem.
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Figure 4.2: Architecture of the seeded generator

Figure 4.3: Architecture of the evaluator

On each training step, we have generated a batch of random difficulties din and seed

points ρseed, from which the generator has generated the offsets ~ν, and then the embed-

dings ρ. Those embeddings were then evaluated by both the oracle, and the evaluator,

which output the difficulty dout, and its approximation d̂out, respectively. The evaluator

was then trained to minimize the difference |dout− d̂out|, and the generator was trained to

minimize the |din − d̂out|. We used the Adam optimizer [33] with a starting learning rate

of 0.01. We then decreased the learning rate on the generator, as well as decreased the

weights of the offsets loss every 1000 steps to converge to the better results (Figure 4.4b).

(a) NN Evaluator approximating the trajectory
rewards oracle

(b) Generator training form the evaluator,
which is trained from the trajectory rewards
oracle. Decaying offsets loss and learning rate
was used to achieve these results.

4.2.2 Oracles

Heuristic oracle

To have a reasonable baseline, we have implemented a heuristic oracle (which uses a hand-

crafted function) to evaluate the difficulty of a single enemy environment. This function
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essentially compares how much space is available on either side of the enemy and whether

it is enough for the pendulum to pass past it without colliding. It is simplistic in the

sense that it completely disregarded things like the enemy’s y coordinate, various speeds,

starting angle of the pendulum. However, it has served its purpose well in being the

simplest way of difficulty evaluation, to which we could compare the other methods.

Trajectory rewards oracle using heuristic agents

To be used in the trajectory rewards oracle, we implemented a heuristic agent that used a

hand-crafted policy. This agent can be used within an environment with multiple enemies.

In essence, the agent looked at the distance to the closest enemy:

• If the distance was larger than a threshold, the agent did nothing

• If the distance was below the threshold and would become smaller in the next step

(depending on the current angular and vertical speeds), then the agent changed the

swing direction

• Otherwise, if the distance would become larger, the agent would do nothing

This simple agent has also proven to be very useful - both as a baseline for comparing RL

agents and also as an agent that was later used in the difficulty evaluation by the trajectory

rewards. It is also simple to change the skill of the agent by inducing randomness in its

actions. With an agent’s skill ranging from 0 to 1, the agent’s randomness is 1 − skill.
Thus with the probability 1 − skill, the random action is taken. And otherwise, the

action is taken w.r.t. the policy described above. We used 3 different agents - with skills

1.0, 0.5, 0.0, and weighting 0.5, 0.25, 0.25, respectively - in the trajectory rewards oracle.

Figure 4.5 shows the generated levels using this technique.

Speeding up

Using the trajectory rewards oracle means sampling a large number of trajectories:

• Several evaluations for the same agent, due to the possible stochasticity in the

environment and/or the agent’s policy

• Each state had also to be evaluated by several different levels of the different skills

• With the probabilistic generator, we also need to evaluate multiple (Nembeddings)

embeddings
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This produces Nagents · Nevaluations (or Nembeddings · Nagents · Nevaluations with the REIN-

FORCE) number of trajectories to evaluate, where each trajectory evaluation is also

relatively costly - even with the usage of heuristic agents. Practically, on our machine, it

took about 15 minutes for an epoch to complete, where the sample size and number of

evaluations were set as low as possible to still be able to converge.

We used numba 1 to compile our Python code into a high-performant one. With

parallelization, it resulted in an x500 speedup in our environment, or 1.8 seconds per

epoch.

4.2.3 Q-values oracle and Deep Q-learning

The next step was to use a more sophisticated difficulty evaluation method using Q-values.

To do this, we required DQN agents. We have found it crucial to reduce the sparsity of

meaningful episodes - essentially by increasing the delta time between the transitions (this

resembles the effect of dropping several frames) - to successfully train our agents. The rest

of the DQN algorithm was pretty trivial: we have used a memory buffer for experience

replay with a capacity for 10000 transitions, and a target network that we have kept in

sync using the polyak averaging with a factor of λ = 0.95 for stability [34]:

θtarget = λ θtarget + (1− λ) θ

Then we have plugged the agents into our evaluator, but it seemed to have produced

non-comparable results (see Figure 3.8). The normalization of the Q-values squashed all

Q-values to be very close to each other, and thus the difficulty was almost always near

zero. Sadly, we did not manage to come up with a solution for this problem, however, we

hypothesize that perhaps a different normalization of Q-values should be used. Perhaps,

for example, the Q-values, obtained from the agents with lower weighting should be

discarded or weighted less.

4.3 Increasing the environment’s complexity

Lastly, we have examined the scalability of our solution. We have increased the number

of enemies in the pendulum environment to make our embedding space 2-, and then 3-

dimensional. Figure 4.6 shows the losses during the training for the 2-enemies pendulum

environment, where the trajectory rewards oracle was used to train the NN evaluator.

We conducted the experiments using the trajectory rewards oracle. Unfortunately, with

the higher-dimensional embedding space, it becomes extremely challenging to make sense

1https://numba.pydata.org/

https://numba.pydata.org/


CHAPTER 4. PRACTICAL RESULTS 34

of the results, it is difficult to determine the quality from the loss alone. This leads us

to the already mentioned problem of searching for a type of meaningful compression of

seeds into the [0, 1] interval. We include the images of the generated levels as an appendix

to the work. There are essentially a 1000 generated levels of 2-enemies pendulum level,

split into 10 images. Each separate image has a fixed 1st dimension of the seed, where an

image itself contains images like the Figure 4.5.
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Figure 4.5: Generated levels with a single enemy, using the trajectory rewards oracle.
Each row represents levels, generated with the same difficulty, but different seeds. We
can see that with the lower difficulty the enemy gets placed more off to the side (top
rows), but the seed can determine whether it gets placed on the left, of the right side. As
the difficulty increases (bottom rows), the enemy gets placed more in the middle. This
corresponds with the difficulty, provided by our oracle.
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Figure 4.6: Decaying difficulty and offsets loss while training the generator to produce
multi-level pendulum levels



Chapter 5

Conclusions

5.0.1 Theoretically

We introduced the novel formulation of generating game levels as a search of a mapping

from difficulty to a game level. We proposed a general framework to solve the formulated

task, consisting of a generator network, an evaluator network, and an oracle. We explored

the meaning of difficulty, we have proposed several ways of domain-free difficulty evalu-

ation methods using AI agents: using trajectory rewards, Q-values, action probabilities,

and entropy. We have introduced a problem of diversity - searching for many different

levels with the same difficulty. We have proposed an (N-dimensional) seeded generator

as a solution to the diversity problem. By integrating the level generation into a system

with a dynamic difficulty evaluation of the player’s skill, and thus, required difficulty, we

can potentially generate much more entertaining games via dynamic difficulty adjustment

(DDA) [2], [35].

5.0.2 Practically

We have shown the proposed framework in action on our test environment using the

heuristic oracle, and trajectory rewards oracle. We were also able to accomplish the goal

of diversity - generating several different levels of the same difficulty. This introduces a

baseline for future work and improvements.

5.0.3 Further work

Our experiments were conducted in a simple testing environment. Thus, it’s essential

to explore how the method works on more complex ones. As we have slightly increased

the complexity of our environment by increasing the number of enemies (increasing the

embedding space dimensionality from 1 to 2, and later, 3), several problems have emerged:

37



CHAPTER 5. CONCLUSIONS 38

1. The number of trajectories, required to be evaluated by the oracle’s AI agents grows

exponentially. This leads to the problem of efficient embedding space exploration

to decrease the time of training.

2. Results visualization - in 2-dimensional embedding space it is already not clear how

to evaluate the generator’s results, aside from comparing the loss and evaluating the

levels empirically using the real human players.

Another important task is to train the AI agents correctly and efficiently during the

phase when the generator is not yet capable of producing valid levels. Then, we have

also observed that the seeded generator approach has difficulties producing valid results

where the generated offsets have to be large. Thus, further work in that direction is also

required. Lastly, the N -dimensional seeded generator is difficult to use in practice - we

should try to compress the important information into a [0, 1] interval that is easy to

sample from.



Appendix A

Extra 1

Here we provide short proof for the Equation 3.1. We have claimed that normalization

can occur after calculating the difficulty of the state. Let Ns be the number of actions

a1, a2, ..., aNs in the state s, then:

ds = max
aj∼s

[Q(s, aj)−Qmin

Qmax −Qmin

]
− E
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]
=

max
aj∼s

Q(s, aj)−Qmin

Qmax −Qmin

− 1

Ns

Ns∑
j=1

[Q(s, aj)−Qmin

Qmax −Qmin

]

=

max
aj∼s

Q(s, aj)−Qmin

Qmax −Qmin

−

1
Ns

( Ns∑
j=1

Q(s, aj)−NsQmin

)
Qmax −Qmin

=

max
aj∼s

Q(s, aj)−Qmin − 1
Ns

( Ns∑
j=1

[
Q(s, aj)

]
−NsQmin

)
Qmax −Qmin

=

max
aj∼s

Q(s, aj)−���Qmin − 1
Ns

Ns∑
j=1

[
Q(s, aj)

]
+ ���Qmin

Qmax −Qmin

=

max
aj∼s

Q(s, aj)− Eaj∼sQ(s, aj)

Qmax −Qmin

=
d′s

Qmax −Qmin

39



Bibliography

[1] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Nee-
lakantan, P. Shyam, G. Sastry, A. Askell, et al., “Language models are few-shot
learners”, arXiv preprint arXiv:2005.14165, 2020.

[2] G. K. Sepulveda, F. Besoain, and N. A. Barriga, “Exploring dynamic difficulty
adjustment in videogames”, 2019 IEEE CHILEAN Conference on Electrical, Elec-
tronics Engineering, Information and Communication Technologies (CHILECON),
2019. doi: 10.1109/chilecon47746.2019.8988068. [Online]. Available: http:
//dx.doi.org/10.1109/CHILECON47746.2019.8988068.

[3] A. Summerville, S. Snodgrass, M. Guzdial, C. Holmg̊ard, A. K. Hoover, A. Isaksen,
A. Nealen, and J. Togelius, Procedural content generation via machine learning
(pcgml), 2018. arXiv: 1702.00539 [cs.AI].

[4] S. Risi and J. Togelius, Increasing generality in machine learning through procedural
content generation, 2020. arXiv: 1911.13071 [cs.AI].

[5] S. Dahlskog and J. Togelius, “Patterns and procedural content generation: Revisit-
ing mario in world 1 level 1”, May 2012. doi: 10.1145/2427116.2427117.

[6] S. Dahlskog and J. Togelius, “Patterns as objectives for level generation”, 2013.

[7] S. Dahlskog and J. Togelius, “A multi-level level generator”, Aug. 2014. doi: 10.
1109/CIG.2014.6932909.

[8] S. Dahlskog, J. Togelius, and M. Nelson, “Linear levels through n-grams”, Nov.
2014. doi: 10.1145/2676467.2676506.

[9] A. Summerville, S. Philip, and M. Mateas, “Mcmcts pcg 4 smb : Monte carlo tree
search to guide platformer level generation”, 2015.

[10] A. Summerville and M. Mateas, Super mario as a string: Platformer level generation
via lstms, 2016. arXiv: 1603.00930 [cs.NE].

[11] M. Guzdial and M. Riedl, Toward game level generation from gameplay videos, 2016.
arXiv: 1602.07721 [cs.AI].

[12] V. Volz, J. Schrum, J. Liu, S. M. Lucas, A. Smith, and S. Risi, Evolving mario
levels in the latent space of a deep convolutional generative adversarial network,
2018. arXiv: 1805.00728 [cs.AI].

[13] R. R. Torrado, A. Khalifa, M. C. Green, N. Justesen, S. Risi, and J. Togelius,
Bootstrapping conditional gans for video game level generation, 2019. arXiv: 1910.
01603 [cs.NE].

[14] A. Aubret, L. Matignon, and S. Hassas, A survey on intrinsic motivation in rein-
forcement learning, 2019. arXiv: 1908.06976 [cs.LG].

40

https://doi.org/10.1109/chilecon47746.2019.8988068
http://dx.doi.org/10.1109/CHILECON47746.2019.8988068
http://dx.doi.org/10.1109/CHILECON47746.2019.8988068
https://arxiv.org/abs/1702.00539
https://arxiv.org/abs/1911.13071
https://doi.org/10.1145/2427116.2427117
https://doi.org/10.1109/CIG.2014.6932909
https://doi.org/10.1109/CIG.2014.6932909
https://doi.org/10.1145/2676467.2676506
https://arxiv.org/abs/1603.00930
https://arxiv.org/abs/1602.07721
https://arxiv.org/abs/1805.00728
https://arxiv.org/abs/1910.01603
https://arxiv.org/abs/1910.01603
https://arxiv.org/abs/1908.06976


BIBLIOGRAPHY 41

[15] J. Brant and K. Stanley, “Minimal criterion coevolution: A new approach to open-
ended search”, Jul. 2017, pp. 67–74. doi: 10.1145/3071178.3071186.

[16] R. Wang, J. Lehman, J. Clune, and K. O. Stanley, Paired open-ended trailblazer
(poet): Endlessly generating increasingly complex and diverse learning environments
and their solutions, 2019. arXiv: 1901.01753 [cs.NE].

[17] S. Sukhbaatar, Z. Lin, I. Kostrikov, G. Synnaeve, A. Szlam, and R. Fergus, Intrinsic
motivation and automatic curricula via asymmetric self-play, 2018. arXiv: 1703.
05407 [cs.LG].

[18] P. Bontrager and J. Togelius, Fully differentiable procedural content generation
through generative playing networks, 2020. arXiv: 2002.05259 [cs.AI].

[19] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio, Generative adversarial networks, 2014. arXiv: 1406.2661
[stat.ML].

[20] M. Dennis, N. Jaques, E. Vinitsky, A. Bayen, S. Russell, A. Critch, and S. Levine,
Emergent complexity and zero-shot transfer via unsupervised environment design,
2021. arXiv: 2012.02096 [cs.LG].

[21] S. Earle, Using fractal neural networks to play simcity 1 and conway’s game of life
at variable scales, 2020. arXiv: 2002.03896 [cs.LG].

[22] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu, Asynchronous methods for deep reinforcement learning, 2016.
arXiv: 1602.01783 [cs.LG].

[23] L. D. Liello, P. Ardino, J. Gobbi, P. Morettin, S. Teso, and A. Passerini, Efficient
generation of structured objects with constrained adversarial networks, 2020. arXiv:
2007.13197 [cs.LG].

[24] J. Xu, Z. Zhang, T. Friedman, Y. Liang, and G. V. den Broeck, A semantic loss func-
tion for deep learning with symbolic knowledge, 2018. arXiv: 1711.11157 [cs.AI].

[25] A. Darwiche and P. Marquis, “A knowledge compilation map”, Journal of Artificial
Intelligence Research, vol. 17, 229–264, 2002, issn: 1076-9757. doi: 10.1613/jair.
989. [Online]. Available: http://dx.doi.org/10.1613/jair.989.

[26] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist
reinforcement learning”, Machine Learning, vol. 8, pp. 229–256, 1992.

[27] A. O’Hagan and T. Leonard, “Bayes estimation subject to uncertainty about pa-
rameter constraints”, Biometrika, vol. 63, pp. 201–203, 1976.

[28] S. Roohi, A. Relas, J. Takatalo, H. Heiskanen, and P. Hämäläinen, “Predicting
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