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Abstract

One of the consequences of nature protection is the electrification of the vehicle. Electric
vehicles replace vehicles with combustion engines within the company fleet. Companies
then have to set up their charging infrastructure.

This bachelor thesis offers a tool that will help to determine the charging demand
within the corporate area. The thesis contains a solution to creating profiles of vehicles
based on the parameters. The vehicle profiles are determined from the original data,
which are examined by aggregation functions. Processed data by clustering then creates
outputs profiles of vehicles. From the vehicle profile, it is possible to create a fleet of cars
that corresponds to the fleet of a company that needs to electrify its fleet.

Subsequently, the work describes two approaches to generating vehicle management
from the created fleet. The outputs of both approaches are the demand for charging and
driving vehicles. These two approaches are based on the simulation of car driving based
on the decision of Markov chains. There is an added approach where a general demand
for charging is created. In our thesis, we do also research on related publications. We
have compared the outputs of models on their basis.

Keywords: electric vehicle, EV, forecast model, charging demand, clustering fleet, mod-
eling fleet, simulation of fleet
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Abstrakt

Jedńım z d̊usledk̊u ochrany př́ırody je elektrifikace vozidel. Elektrická vozidla nahrazuj́ı
vozidla se spalovaćımi motory v rámci firemńıho vozového parku. Společnosti pak muśı
navrhnout svou nab́ıjećı infrastrukturu.

Tato bakalářská práce nab́ıźı nástroj, který pomůže určit poptávku po nab́ıjeńı v pod-
nikové oblasti. Bakalářská práce obsahuje řešeńı pro vytvářeńı profil̊u vozidel na základě
parametr̊u. Profily vozidel jsou určeny z p̊uvodńıch dat, která jsou zkoumána agregačńımi
funkcemi. Pak zpracovaná data klastrováńım vytvoř́ı výstupńı profily vozidel. Z profilu
vozidla je možné vytvořit vozový park, který odpov́ıdá vozovému parku společnosti, která
potřebuje sv̊uj vozový park elektrifikovat.

Následně práce popisuje dva př́ıstupy ke generováńı chováńı vozidel z vytvořeného vo-
zového parku. Výstupy obou př́ıstup̊u jsou poptávka po nab́ıjeńı a ř́ızeńı vozidel. Tyto dva
př́ıstupy jsou založeny na simulaci ř́ızeńı automobilu na základě rozhodnut́ı Markovových
řetězc̊u. V této práci pojednáváme i o daľśı př́ıstup, kde je vytvořena obecná poptávka po
nab́ıjeńı. V této práci provád́ıme také pr̊uzkum souvisej́ıćıch publikaćı, na jejichž základě
byli porovnány výstupy model̊u.

Kĺıčová slova: elektrické vozidlo, EV, model predpovědi, nab́ıjećı stanice, zhlukováńı,
modelováńı flotily, simulace flotily

Překlad názvu: Modely poptávky nab́ıjeńı pro elektrifikovanou flotilu
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Chapter 1

Introduction

Nowadays, when non-renewable resources are running down, nature protection is more

emphasised, we gradually move to environmentally friendly technologies. One of the

current trends is that vehicles with combustion engines are supplanted by electric vehicles.

This trend is followed even by corporations that own a fleet of cars.

The companies that are considering electrification of their fleet decide which vehicles

to be electric and how the charging infrastructure should be built. The modelling of

the charging demand is important to evaluate the investment into the transition to EV.

Charging demand should not be based on the behaviour of any general type of vehicle.

Therefore in the work there is a charging demand model proposed which is parametrized

by the expected fleet profiles composition.

1.1 Motivation

Generally, the reason for modelling charging demand is that electric cars have a different

range in comparison with oil or gas-powered cars, which means that they need to power

more often. Also, EVs have different charging options than motor cars. Powering of EV

is slower, so they can be powered for several hours. Therefore, it is a possibility to leave

a car when it is powering. This possibility means that the driver’s behaviour will be,

to some extent, different. Based on this knowledge, we need to estimate the charging

demand of representative groups of the corporate fleet. Imagine a company that wants

to electrify its vehicle fleet. The simplest way to transform the fleet from combustion

engines to electric engines for a given company is to determine the parameters of every

vehicle.

One approach, how to model a vehicle’s charging demand, is direct simulation. It

means that the exact GPS locations from vehicles with combustion engines are used as

GPS locations for electrified vehicles. After electrification, rides are identical. Subse-

1



CHAPTER 1. INTRODUCTION 2

quently, the charging demand of EV is at the end of every trip. In the thesis[1], this

approach of electrification of the fleet was solved . We assume that if we do not simulate

exactly the vehicle’s rides, but approximately by parameters of the vehicles, so it will be

less prone to some extraordinary situations.

Moreover, it is possible that the corporation does not have the GPS data needed for

the direct simulation. Therefore, it is an advantage, to use data that we have already

obtained for the simulation of other corporations fleets.

1.2 Goal

In this thesis, we set four goals. The first is researching the area of charging demand

modelling. The second goal is to formulate the requirements for the desired models. The

third goal is to propose and implement several models. The last is to design experiments

to demonstrate the suitability of the considered models.

This work aims to propose a charging demand model for a given fleet. The fleet profile

composition is selected according to preset parameters. Moreover, to study and analyze

the charging demand of electric chargers. An essential aspect of the output is the demand

for charging within the corporate area because companies that want to electrify their fleet

also need to design charging infrastructure. Then the most likely prediction is based on

traffic data is chosen.

1.3 Thesis Structure

The rest of this thesis is organized as follows. Chapter 2 contains related works. There

is literature that deals with similar problems listed. There are approaches for solving the

problem in other literature sources described, as well as the results of these approaches. In

Chapter 3, methodology of the used solution is described. In addition, there is described

theoretical background of used methods. In Chapter 4 there are specifics of implemen-

tation and experiments described. Chapter 5 summarizes results of the thesis, suggests

improvements for future work.



Chapter 2

Related Work

Purchase of EV preferences has increased recently. As an example can be China. Nowa-

days in China, in six biggest Chinese cities, electric and hybrids represent about one-fifth

of new car sales on average, according to data from the China Passenger Car Association

[2].

Technologies associated with electric mobility have been changing exponentially. Di-

rectly, the academic field responded with a significant number of published articles devel-

oping around electric mobility. While writing the thesis, 38 242 results of research articles

about EV and charging demand have been found. Studies cover various dimensions of

EV adoption across countries, including charging infrastructure in [3], [4], policies and in-

centives in [5], [6], [7], business models in [8], [9], [10], among others. This chapter offers

a survey and a description of existing scientific publications that laid the foundation for

solving implementation problems used in the thesis (Chapter 4).

2.1 Generating electric vehicle load profiles

Before presenting our modelling charging profiles of electric vehicles, we give an overview of

EV charge studies. First, we discuss other articles focused on EV and their characteristics

of modelling fleet. Subsequently, we look into approaches of how to simulate EV loads at

different aggregation levels. Finally, we give an overview of results that simulate EV fleet

and given charging demand.

2.1.1 Schauble’s approach

In the publication, [11] there is processed analysis of charging behaviour patterns of EV.

As data sources there are used three electric mobility studies in Germany’s southwestern

region (CROME, Get eReady and iZEUS) which deliver comprehensive data of EV. This

3



CHAPTER 2. RELATED WORK 4

article analyzes and discusses the mobility and following charging demand characteristics.

The model of generated EV fleet is based on statistical characteristics.

Figure 2.1 is showing weekly distribution of source data for charging demand. It is

showing an approximately higher charging demand level, which is about it 15–20 % for

all the studies during the weekdays. Subsequently, the charging demand of EV at the

weekend is significantly lower. This plot Figure 2.1 validate our base data described in

Section 4.4.1 obtained from charging stations.

Figure 2.1: Percentage of charging processes per weekdays [11]

In publication [11] there is a direct and an indirect method used to create fleet profiles.

Load profiles for any given time frame can be produced by both ways. The direct method

uses all data of each charging process. However, data may originate from different sources

like time-dependent state of charge (SOC). The indirect method requires information on

the start and the end time of charging events and the corresponding (initial and final)

SOC. The direct method is used to validate the quality of generated data of the indirect

way. In Section 3.3.4 we used a combination of the direct and the indirect method for

creating charging demand of fleet profiles.

Figure 2.2: ”Three simulated load profiles over a week, starting on Monday, for 100 EV
that charge at least once every day with pmax = 3.6kW using the mean number of charging
events per vehicle and per weekday.” [11]

One of the results of Schauble simulation is on Figure 2.2. This plot is used for
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comparison with our result of simulation the same composition of the fleet in Section 4.6.

2.1.2 Brandy’s approach

,

This approach solving generating EV load profiles use a stochastic simulation method-

ology. It is published in the article [12] and similar to the article [11] GPS travel data of

EV are used as the basis for a fleet generation. Approaches in the data processing are

different. Brandy’s simulation use variables in function to distribute types of behaviour of

EV driver. They used copula function, subsequently by Bayesian inference generate travel

patterns. Parameters for patterns are departure time from home, the number of journeys

taken during day, total distance travelled in a day. These parameters are taken during

two days in a row and from them the movement of vehicles is generated. This approach

serves as an inspiration in Section 3.1, there is not used copula function for distribution,

although mentioned parameters for clustering fleet are used.

”Figure 2.3 illustrates the travel profiles for 20 days. The basic principle of a Monte

Carlo simulation, uncertainty propagation, is evident in the resulting shapes of the travel

profiles. The trend of a daily travel profile is reproduced for each day.” [12] This result

of simulation is used for comparison with our result of simulation the same composition

of the simulation in Section 4.6.

Figure 2.3: A 20 day simulation of the percentage of EVs driving per hour [12]
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2.2 Charge timing choice estimation

Similar to the previous section, we give an overview of EV charge studies. First, we

discuss other articles focused on EV and their charge timing choice estimation of the

fleet. Subsequently, we look into approaches of how to simulate EV behaviour at different

aggregation levels. In Section 4.6, we give an overview of results that simulate rides of

EV fleet and given charging demand, if they have any.

2.2.1 Franke’s approach

In the publication, [13] there is charging behaviour of EV users analysed. They attempted

to understand the psychological dynamics underlying charging behaviour. Among other

things, it is interesting how they research charging style among mobile phone users, and

subsequently, they have a hypothesis that battery interaction style (UBIS) is similar to

the charging behaviour of EV users.

Figure 2.4 depicts the model from the perspective of simulation behaviour of one EV

user. To clarify wind to vehicle (W2V) means incorporated an algorithm that regulated

energy input during charging to optimize the use of excess energy from the wind.

Figure 2.4: Simulation model [13]

W2V and UBIS are interesting, but from this study, we deal with the idea about limited

energy resources. This issue is also addressed in [1]. The issue is called range-anxiety

and it occurs when the remaining range is low or charging infrastructure is infrequent.

Subsequently, it appears in a change of trips. We also solve this problem in Section 3.3,

where vehicles need to change their rides because the remaining range is low.

2.2.2 Sun’s approach

Publication [14] examines preference of behaviour of EV users in respect of the time when

they charge their vehicles. In research, after a long journey they have opportunities to

stay (no charging), charging immediately after arrival, nighttime charging, and charging

other time. An important part of this research is that they examine the difference between

commercial and private vehicles.
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Model of charging behaviour suggest that SOC, from previous days before the travel

day, and distance of kilometres which need to be travelled are the main predictors for

the decision of EV driver whether choosing charging the vehicle or not. Probability of

the decision of charging they can be different for commercial and private vehicles. This

examined result is displayed on Figure 2.5.

Figure 2.5: ”Distributions of arrivals, start of normal charging, and start of delayed normal
charging.” [14]

We would like to remind the reader that in our study we focus only on commercial

vehicles because we model company fleet. Thus, the previous Figure 2.5 serves only to

show the study area of the left part of the plot which is aimed at commercial vehicles.



Chapter 3

Methodology

In this chapter, the methods used to obtain the research results in this thesis are presented.

Here we introduce the theoretical approaches which we use to solve the thesis problem.

Sections are divided into theoretical fields for a better understanding of each step of the

following implementation schema.

Firstly, we present a method of modelling fleet profiles. It consists of two parts,

namely clustering and fleet composition. In clustering, it is about creating clusters of

vehicles which are described by parameters. This allows us to simulate the rides of a

vehicle by entering only the vehicle’s parameters. Based on the parameters, the cluster to

which the vehicle belongs is determined, and to it are added other properties of behaviour

of vehicle from the given cluster. The fleet composition consists of profiles of vehicles

created by us based on our parameters. The whole clustering makes it easier to create

vehicles with driving parameters for someone who wants to electrify their fleet because it

is easier to enter the general driving characteristics of the vehicles, which we then assign

to the cluster than to solve each vehicle individually.

Secondly, we solve the charging behaviour of modelled fleet composition. The charging

behaviour is solved on the basis of simulations. The input of simulations is fleet profiles,

and this means labels of clusters corresponding to the vehicle we want to simulate. We

also formulate the requirements on the desired models of charging behaviour. At the end

of this chapter, we describe how we generate a stochastic model also used for generating

of charging demand of EV. These approaches will be used in the next chapter in the

implementation of several models.

3.1 Clustering

The first topic that must be solved before proposing a charging demand model generated

from the fleet is composing fleet profiles. Considering we had access to the database of

8
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one corporation, which contains the vehicle fleet business rides, we decide to generate

whatever corporation fleet from this input set. Of course, input sets can be different. The

generation of the fleet is independent from the input data.

3.1.1 What is clustering?

Clustering is one technique of unsupervised learning method of machine learning. An

unsupervised learning method is a method in which we pull input data from datasets

without labelled responses. It is an exploratory data analysis technique that makes it

possible to analyze multivariate datasets.

The clustering method is used for dividing the datasets into a specific number of

clusters. That is used in a way that data points belonging to any cluster have similar

properties. Thus, every cluster is only a group of data points with similar properties. On

Figure 3.1 we can see that the distance between the data points within the clusters is

minimal.

Figure 3.1: Example of merging data to clusters [15]

In other words, the clusters are areas with a higher density of similar data points.

Clustering is a method of dividing the data points into a pre-selected number of groups

such that data points in the same cluster are more similar to other data points in the

same cluster and not so much similar to the data points in other clusters [16].

It depends on the type of algorithm selected for clustering how the clusters will be

created. Types of clustering methods are following:

Density-based method states that the clusters are based on a presumption that area

with the higher density has some similarities and differences are from the lower density

area.

Hierarchical-based method, in this one, clusters are formed in this method by a hi-

erarchy based on tree-type structure. New clusters are formed by the previously formed

cluster. So it is formed from root to leaves.



CHAPTER 3. METHODOLOGY 10

The grid-based method is a method that divides the whole data space into form a

grid-like structure. Of course, it is a finite number of cells that can be merged into the

whole data space backwards.

The last one is a partitioning method. The partitioning method divides given input

data into k clusters and each partition forms one cluster. This method is used when

parameters corresponding to the point for division are objective so the function can classify

points by distance [15]. To this clustering, method family belongs K-means algorithm,

which is used in the implementation.

3.1.2 K-means

K-means clustering is one of the most widely used algorithms. As mentioned above

data points divide into k clusters based upon the distance metric used for the clustering.

The value of k is to be defined by the user and in the Section 3.1.4 it is described how

to choose the optimal k. The distance is calculated between the data points and the

centroids of the clusters. In our implementation we choose for simplification of writing

code pre-programmed algorithm from Scikit library [17].

The K-means algorithm aims to choose centroids that minimize the inertia, or within-

cluster sum-of-squares criterion:

∞∑
i=0

min
µj∈C

(||xi − µj||2) (1)

Inertia makes the assumption that clusters are convex and isotropic, so it tries to form

clusters to hyperspheres.

In our methodology approach we used MiniBatchKMeans from Scikit library [17]. It

is a variant of the KMeans algorithm which uses mini-batches, this decision was made on

reference [17]. They recommend using this variant for the small dataset size which we

have.

The concept of how we solve clustering of vehicles corporate fleet is that we use some

properties of every vehicle of fleet. Thus, every property is one dimension in space and

by the clustering algorithm, we divide it into the clusters by mentioned sum-of-squares

criterion (1). Subsequently, every cluster has its centroid with specifications.

3.1.3 Aggregation

For solving the problem with properties of fleet load we decide to use aggregation prop-

erties of each one vehicle. We presume that information about trips of cars can offer us

the determination of profile vehicle of fleet. For clustering as the best choice appeared to
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choose as parameters length of trips vehicles. We have chosen more parameters for the

most accurate classification. We studied the length of trips and time of trips. Because

in every input data some errors can appear and it is better to have similar properties

to prevent the transmission of the error to the results. Aggregation functions chosen for

modelling are a means of trips, the 25th percentile is also known as the first quartile, the

50th percentile as the median and the 75th percentile as the third quartile. All mentioned

aggregation function, based on SQL queries, they extract data from driving distance and

duration from the original dataset. The longest car ride is also selected as the SQL query.

This parameter in clustering helps to better differentiate cars to cluster with vehicles that

are used for trips mainly abroad. In the implementation, it is called ”vehicles planned for

foreign trips”.
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3.1.4 Elbow method

As already mentioned, the K-means algorithm uses a pre-defined number of clusters from

the user. The elbow method is the most efficient way to choose the number k of clusters

effectively. This is a heuristic used in determining the number of clusters in a data set.

Thus, this method iterates the values of k, calculates the distortions values for each value

of k, and calculates the distortion or inertia for each value of k. This approach is highly

inspired by the article [18].

To determine the optimal number of clusters, we have to select the value of k at the

”elbow” or ”knee of a curve”, which is the point where diminishing returns are no longer

worth the additional cost. Thus, for Figure 3.2, we conclude that the optimal number of

clusters is 3.

Figure 3.2: Example of elbow method [18]

3.2 Fleet composition

The fleet composition consists of profiles of vehicles that we want to create based on our

parameters. The parameters indicate the driving characteristics of the vehicles for which

we then want to generate the rides and charging demands. Then the vehicle is labelled to

the clusters based on the parameters. Clusters are formed according to the criteria and

algorithms described in the previous section. Our created fleet of profiles is an input to

simulation, which finally generates the rides and charging demands. This part is described

in the next section.

The fleet of vehicles is created according to clusters and their characteristics, how was
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mentioned. In addition, there is one more cluster that contains vehicles that run only

within the factory areas. Because the additional cluster has particular properties, it was

not possible to separate it from the rest of the data by the K-means algorithm. Thus, the

data of this cluster was picked from input data before the K-means algorithm was run.

Description of fleet composition is as simple as possible. In the attached file code, there

is the modelling of own fleet of vehicles programmed. The description is also included for

clarification. So a potential fleet builder has as clear overview as possible. Thus, he does

not have to do his own research among the vehicles he needs to include in the fleet.

To compose the fleet, we can use 2 approaches. Moreover, approaches can be mixed.

The first approach is to choose the number of vehicles and corresponding cluster based on

an approximate description of the cluster. Descriptions are listed in the implementation

of clustering (Section 4.1.3). Subsequently, the number of vehicles and the label of the

corresponding cluster is directly assigned to the generated fleet.

The second approach is to choose the number of vehicles and the approximate driving

characteristics of the vehicles.

This approach, based on sum-of-squares criterion (1), selects the nearest centroid of

the whole set of clusters and then assigns the selected number of cars to the resulting

label of the cluster. Approximate driving characteristics of the vehicles can be chosen

max-length-majority, min-length-majority, gen-length-majority.

Max-length-majority means that the majority of vehicle trips is less than a given value.

It is the 75th percentile of the length of vehicle trips. Min-length-majority means that

the majority of vehicle trips is greater than a given value. It is the 25th percentile of the

length of vehicle trips. In the end, gen-length-majority means that the majority vehicle

trip is about a given value. It is the median of the length of vehicle trips. In the case that

characteristics are not complete, the label of the cluster is assigned based on rest values.

For the summary, the fleet contains numbers of vehicles of each assigned cluster and

labels of clusters assigned to vehicles which we want to know charging demand. Chapter 4

compares the different compositions of the fleets if they consist of vehicles by description.

Moreover, it examines how the rides and charging demands for these different fleets change.

3.3 Simulation model

This section has described the methodology of simulation and its theoretical background.

Input is the fleet created according to previous Section 3.2 and output of the simulation

is the charging demand of the fleet. Simulation of every vehicle of the fleet is one of the

most used approaches in the given issue.
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3.3.1 Goal

The aim is to model the most accurate vehicle management of a given fleet. From the

output of the simulation, we can determine the behaviour of EV. Thus, the fleet builder,

who forms a fleet of EV, based on his requirements, will be able to determine at what

times and in which places his fleet requires charging of the vehicle. Moreover, he will

know if any vehicle he entered when creating the fleet has a demand for charging outside

corporate areas or which vehicles have to adjust their driving due to insufficient battery

capacity.

3.3.2 The base simulation description

Description of this approach of modelling charging demand of fleet contains an explanation

of used algorithm and explanation of selected input values. Description belongs to the

algorithm represented in the pseudo-code below.

How was mentioned the created fleet of vehicles enters as an input to the algorithm

described in pseudo-code. It means that each vehicle of each cluster forms fleet, and it is

needed to model its behaviour. Then, parameters are entered on input, namely the time

period for which we want to model the behaviour of the vehicles, the initial date and time

of modelling the simulation, then the initial location of the vehicle, and the SOC. Finally,

optional constants enter the algorithm on input. These are the characteristics of EV which

we want to model. Namely, the capacity of the battery and average consumption of EV.

Concrete values are from [19]. According to the driving characteristics of any vehicle from

[19] fleet can be model specifies for the selected vehicle.

The output of basic algorithm is set of actions of every EV from the fleet. Actions

are charging, stay (non-charging), and movement. Moreover, a location is added to each

action. The locations are not including exact GPS coordinates because we want to model

general charging demand. Simulation of a corporate fleet distinguish whether the vehicle

is located in factory areas or outside the factory. If several factory areas from input data

can be distinguish, we can also distinguish between them.



CHAPTER 3. METHODOLOGY 15

Algorithm 1: Base simulation

Result: set of actions

initialization of constants;

while stateTime ≤ limitTime do

action set by prob if moving;

if moving then

action set by prob where moving;

else

action set if charging is needed;

end

update state;

append action to set of actions;

end
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In the first step, the algorithm decides based on the probability (2) of whether the EV

decide to move or stay. A specific probability formation is described in Section 3.3.3.

P (Moving | cluster, day of the week, hour) (2)

The second step is divided into two parts. The first part is when the algorithm

decides that vehicle at that moment is moving. In pseudo-code, it is the ”if” clause.

The probability (3) determine the location where the vehicle is moved. There is one

more feature under this clause. It is called forced-charging. This happens when the SOC

battery is insufficient to reach the target location. The proposed solution is stopped when

the vehicle is charged. Subsequently, the time required for movement to the determined

location is updated.

P (Location | cluster, location) (3)

The second part of the second step occur when the algorithm decides that vehicle is

not moving. In pseudo-code it is ”else” clause. In this clause it is decided whether the

vehicle will be charged or not. As the generated charging demand is proposed for the

corporate fleet, we try to ensure , that vehicles are charged mainly in the corporate areas.

There are two reasons for this approach. The first is that the corporations usually want

to design their own vehicle-charger location in their areas. The second reason is that it

is not known where are the locations of vehicle-charger outside the area. Thus, it is not

known if the EV of fleet can charge in a given location. At present, although great efforts

are being made to electrify vehicles, the charging infrastructure is still infrequent.

According to the study [12], most vehicles charge immediately upon arrival, so the

charging demand is just at the time when EV park in a corporate area. In the same study

[12], it is mentioned that their simulation for the behaviour of EVs is generated every 5

minutes. Because of probabilities (2), (3) which are generated at hour intervals, it is not

possible to generate such frequent updates. The result would be that demands of rides

would be generated much more often than in reality vehicles from clusters drove. Thus,

it is chosen a 15 minute interval of charging or eventual non-charging. In case the SOC

battery is almost full and so less time is needed to charge for full SOC. In this case, it

is less than 15 minutes. Naturally, it also occurs situations when the EV is needed to

be charged outside the corporate areas. For example, when the SOC battery is too low

and it leads to range-anxiety, as it is mentioned in [1]. It should not occur often and any

generated charging demand outside the area is also included in forced-charging. Finally,

we assume that the vehicles always had access to charging facilities whenever parked.
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3.3.3 Theory behind used probabilities

The studies presented in Chapter 2, as well as the initial data analysis, as well as the sub-

sequent results in Section 3.4.2, show that the vehicles have a similar pattern of behaviour

within days of the week. There is also a certain pattern of actions during hours within a

day. Based on this fact, the probability of moving (2) is computed within the cluster per

hour of days of the week. Probability (3) is derived from the typological behaviour of the

vehicle within the cluster. The probabilities are shown here once again:

P (Moving | cluster, day of the week, hour) (2)

P (Location | cluster, location) (3)

Theoretically, we can write that the simulation is stochastic modelling of EV and

charging profiles. The main decision probability (2) and also location probability (3) are

based on the Markov chain. The Markov chain is a stochastic model defining a sequence

of possible events in which the probability of each event is to continue from the current

state.

The changes of state are called transitions. A transition matrix describes the probabil-

ities of a particular every possible transition. In Section 4.1.4 there is the exact transition

matrix for location probabilities shown.

Stochastic modelling of EV by Markov chain is also used and more described in [12]

and [20].

3.3.4 Combined simulation

In this subsection, it is described a combined simulator which consists of base simula-

tion described in Section 3.3.2 and probabilities of charging. Probabilities of charging

drawn from the approach described in the next section (Section 3.4.2). The difference

between base simulation and combined simulation is marked in pseudo-code below with

red text. Thus, algorithm does not decide to charge whenever it is possible, but on given

probabilities.
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Algorithm 2: Combined simulation

Result: set of actions

initialization of constants;

while stateTime ≤ limitTime do

action set by prob if moving;

if moving then

action set by prob where moving;

else

action set by prob charging;

end

update state;

append action to set of actions;

end

3.4 Forecast model

In this section we describe methodology of generating of charging demand based on his-

torical charging data obtained from charging stations. This approach in reality generates

a forecast model. This method, in contrast with the method used in simulation mentioned

in previous section, does not generate charging demand on the basis of a given fleet of

vehicles. Therefore, the output of this approach is just a general summary of the charging

demand.

3.4.1 Goal

A general charging demand is set as a goal on output. The general charging demand

contains the number of charges in a selected time period when the charging starts, con-

sumption how much energy is consumed during charging, and time period how long the

car is standing on the charging station.

3.4.2 Prophet

Every approach or output of the approach marked as forecast in this thesis is modelled by

the tool developed by Facebook and called the Prophet. Detailed description of this tool

is in [21]. In simplicity, Prophet is a forecasting tool based on an additive model where

non-linear trends fit with seasonality. Seasonality is based on the Fourier series. Default

settings are yearly, weekly and daily seasonality. Simply written form:



CHAPTER 3. METHODOLOGY 19

y(t) = g(t) + s(t) + h(t) + e(t) (4)

where:

g(t) - trend (non-periodic changes)

s(t) - seasonality (periodic changes)

h(t) - holiday effect

e(t) - noise

3.4.3 Theory behind Prophet

The initial data analysis of charging stations showed that the vehicles have a similar

pattern of behaviour within days of the week. According to this fact, it was decided

to use for modelling charging demand based on the periodicity of actions. The own

implementation did not work so precisely. Thus, we decided to use the Prophet, mainly

due to the seasonality function included in the formula (4). A Fourier series is a technique

how to represent a periodic function as a sum of sine and cosine functions, an example is

shown on Figure 3.3.

Figure 3.3: Fourier series: sin(x) + sin(2x) [22]

The seasonality function is simply a Fourier series as a function of time. It is the sum

of sines and cosines, each multiplied by some coefficient. A Fourier series is a technique

how to represent a periodic function as a sum of sine and cosine functions. Constant P is

the regular period we expect the time series to have. Thus, for yearly seasonality P = 365

and for week P = 7. Seasonality formula (5) is described in [21].

s(t) =
N∑
n=1

(
ancos

(
2πnt

P

)
+ bnsin

(
2πnt

P

))
(5)



Chapter 4

Experiments

This chapter contains a description of our solution based on the theory in Methodology

(Chapter 3). We are explaining how approaches work on exact input data. What exactly

our input data looks like. If any optional values are used, we describe our selection. At the

end of each approach, we summarize the results. We compare different approaches to each

other. Finally, we evaluate each modelled charging demand which different approaches

generated.

4.1 Representative models of vehicles

The first step in creating a charging demand for some optional composition of EV fleet

is to create representative models of vehicles. The methodology is described in Section

3.1. In this section, there are listed all operations that take place at the level of cluster

processing.

4.1.1 Input data

The input data from the data set processed according to Section 3.1.3 enter the clustering

algorithm. In short, it is the data of the vehicle drives of the already existing fleet, and

subsequently, their characteristics are processed by aggregation functions in SQL.

Data set

All data are from private data sets. Because of the data provider’s policy, we provide

only processed data that does not contain private data of the vehicle user. Contact thesis

supervisor Ing. Martin Schaefer for complete input data.

The input table contains rides from the company’s fleet. Provided data contains

records of six months. Trajectories are recorded by GPS location. The table contains

20
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only business rides, so there is no driving to work, driving from work or private driving

included. Every mentioned trajectory contains the start of the ride, end of the ride and

identification number of the car. All rides are from gasoline-powered cars.

4.1.2 Implementation of clustering

Processed data from input by the aggregation functions are only vehicles with their char-

acteristics. These characteristics of vehicles enter the Minibatch algorithm from Scikit

library [17].

Then, the elbow method to find the optimal number of clusters is used. The output of

the elbow method of our input and aggregation parametrization is shown in the Figure 4.1

and the Figure 4.2.

Figure 4.1: Elbow method for Distortions

Figure 4.2: Elbow method for Inertias
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We model 7 clusters for given input data according to elbow method (Section 3.1.4)

as shown in the Figure 4.1 and Figure 4.2. We offer an overview of the centroids of the

given clusters with the properties according to which clusters were modelled and in the

Table 4.1. In the table, all values of length are in kilometres, and it contains processed

all rides of vehicles. For clarification, Q1 means the first quartile (25th percentile), Q2

means the second quartile (median), and Q3 means the third quartile (75th percentile).

The clustering classification can also be seen on the Figure 4.3, Figure 4.4 and Fig-

ure 4.5. Because only 2 dimensions can be shown on the plot, it represents the only

sample of characteristics of vehicles of clusters.

Table 4.1: Centroids of clusters
avg length Q2 length Q3 length Q1 length avg time max time Q2 time Q3 time Q1 time num of cars

0 5.9 2.7 4.3 1.9 00:12:09 01:27:20 00:08:12 00:13:23 00:05:34 1841
1 88.1 67.2 130.9 24.2 01:12:16 03:26:27 01:00:09 01:44:53 00:27:38 139
2 178.6 135.6 300.2 48.0 01:54:49 04:43:22 01:31:19 02:58:59 00:40:37 41
3 20.0 2.9 6.2 1.8 00:21:57 04:02:56 00:08:40 00:18:16 00:05:13 535
4 31.9 6.8 26.5 3.4 00:30:56 03:05:17 00:14:41 00:33:05 00:08:14 285
5 48.0 12.3 71.4 4.0 00:42:31 03:14:13 00:21:57 01:01:14 00:10:00 290
6 55.3 56.9 70.8 22.2 00:50:17 02:29:20 00:48:45 01:04:46 00:26:05 191

Figure 4.3: Comparing of the first quar-
tile and the third quartile of trips length

Figure 4.4: Comparing of average and
the median of trips length

Figure 4.5: Comparing of average and the maximum of trips

Finally, we add to the generated clusters from the Minibatch algorithm one more

cluster of vehicles separated from the original set because vehicles have more than 90%
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of trips inside of corporation areas. This cluster is separated based on SQL query. This

cluster is not shown in Figure 4.3, Figure 4.4, Figure 4.5 and Table 4.1.

4.1.3 Result

Classification of vehicle types and the following description of the category is the output

of the whole clustering. Characteristics are derived from the analysis of clusters outlined

above in Table 4.1. This output enables us to create our own fleet very clearly.

Approximate characteristics of clusters are following:

0. Vehicles ride only in the factory and near the factory.

1. Vehicles ride mainly longer business trips (ca. 90 km).

2. Vehicles planned for foreign trips (the longest trips within the clusters).

3. Vehicles ride mainly in the factory and near the factory but can occur longer trips

(for example, business trips abroad).

4. Vehicles ride mostly regular rides within the district.

5. Vehicles ride around factories or not too long business trips (ca. 70 km).

6. Vehicles ride mainly business trips (ca. 55 km).

7. Factory vehicle (rides only in the factory).

Category number 7 is generated directly from the database. The others are classified by

the K-means method.

*Once again we remind you that the characteristics are approximate and in case it

is not able to classify the car according to the given characteristics it can be classified

according to the driving characteristics.

4.1.4 Probabilities within the clusters

As it is mentioned in Section 3.3.3, we use probabilities based on clusters to generate a

motion of EV in simulation. As a result of this substep, we gave an overview of probabil-

ities within two clusters. The cluster shown on the left side of Table 4.2 contains vehicles

that ride only in the factory and near the factory. The cluster shown on the right side of

Table 4.2 contains a factory vehicle that rides mainly in the factory.

The probabilities are shown in transitions matrices. The Table 4.2 shows the per-

centage probability of transition from one state to another. It is a transition between

numbered factories and the surroundings outside the factory labelled as ”other”.
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Table 4.2: Transition matrices

Table 4.3: Cluster 0
to other to f1 to f2 to f3

from other 63.1 36.4 0.5 0.1
from f1 36.5 63.4 0.1 0.0
from f2 16.4 3.3 80.3 0.0
from f3 40.6 22.0 0.0 37.4

Table 4.4: Cluster 7
to other to f1 to f2 to f3

from other 15.0 59.1 22.7 3.2
from f1 2.8 97.2 0.0 0.0
from f2 2.2 0.2 97.7 0.0
from f3 0.3 0.0 0.0 99.7

4.2 Fleet composition

In this section we examine fleet composition approaches. Methodology is described in

Section 3.2. There are two approaches to fleet composition. The first approach is to

choose the number of vehicles and the corresponding cluster based on an approximate

cluster description. This approach is not necessary to test because of triviality.

We test only the second approach. The second approach is to choose the number of

vehicles and the approximate driving characteristics of the vehicles. Subsequently, by the

driving characteristics of the vehicles, the vehicle is assigned by the label of corresponding

cluster.

We validate input shown in Table 4.5 of the second approach with the description of the

cluster mentioned in Section 4.1.3. In the table, all values of length are in kilometres. For

clarification, Q1 means the first quartile (25th percentile), Q2 means the second quartile

(median), and Q3 means the third quartile (75th percentile).

Table 4.5: Input of parameters of fleet
Q3 length Q1 length Q2 length num of cars

’None’ 1 2 1
100 70 90 2
200 100 150 3
10 2 ’None’ 4
30 5 10 5

100 0.3 0.5 6
100 30 50 7

For simplicity for the reader, ’num of cars’ is set by the cluster where cars with driving

characteristics should belong according to the cluster description. So ’num of cars’ = 1

belongs to the first description of the cluster mentioned in Section 4.1.3 and so on.

The fleet is composed exactly according to our assumptions. We conclude that fleet

composing is successful because of this one experiment. Moreover, this composed fleet is

used in Section 4.7 to compare several fleets composition in simulation.
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4.3 Base simulation model

One of the approaches how to generate charging demand is to simulate the behaviour of

the fleet. In this section, there are listed settings of the parameters used in the simulation

and then the simulation result. The methodology is described in Section 3.3.2.

4.3.1 Implementation

The fleet’s composition according to the characteristics of the cluster from the previous

section is an input for the base simulation. Probabilities of car movement are used for

generating motion. Probabilities and fleet’s composition are outputs of processing data

by clustering. The input fleet consists of 13 vehicles of the first 4 clusters and 12 of

the rest of the clusters. Energy consumption set on 194Wh/km, battery capacity set

on 60.5kWh and average speed of vehicle set on 80km/h, are selected as an optional

simulation parameters in all experiments. Listed values are averages from [19].

4.3.2 Result

The demand for charging and the place and time assigned to it are the results of the sim-

ulation. An example of the experiment with set inputs of one day is shown in Figure 4.6.

The rides of vehicles of the experiment are shown in Figure 4.7.

Figure 4.6: Chargings by locations

Figure 4.7: EVs driving
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4.4 Forecast model

One of the approaches to generate charging demand is to predict future events based on

historical data. In this section, there are listed settings of the parameters used in the

model and then show results. The methodology of this approach is described in Section

3.4.

4.4.1 Input data

The input table contains publicly accessible charging stations in the factory area. This

table contains electricity consumption, the time when the car was plugged in, time of

disconnection of the car. Data are collected from three months in 2020. As example of

data is in Figure 4.8. It shows one random selected day from all given charger stations.

Figure 4.8: Day sample of charging station consumption

4.4.2 Implementation

We used a forecast based on historical data to determine the time of start vehicle charging.

For prediction we used Prophet [21], with parameter ”seasonality mode” set on ”multi-

plicative”. The prediction was set on every hour of one week, and as input was the sum

of chargings of every hour from historical data. Processing the prediction of this model

is in Figure 4.9.
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Figure 4.9: Prediction of number of chargings

4.4.3 Results

Prophet prediction of general charging demand can be used as a stochastical approach

to solving the thesis problem. Moreover, after modifications of the datatypes from the

Prophet output, we determine the probabilities of charging. The probability of charging

is shown in percentage per every hour on days of the week in the figure. We used this

probability in the combined model experiment described in the next chapter based on

week periodicity.
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Figure 4.10: Percentage probability of charging demand per weekdays
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4.5 Combined simulation model

By added the probability of charging to the base simulation model, we create a combined

simulation model. The methodology of combined simulation is described in Section 3.3.4.

Settings of the parameters used for the experiment are the same as in the base simulation

model.

4.5.1 Result

The demand for charging and the place and time assigned to it are the results of the sim-

ulation. An example of the experiment with set inputs of one day is shown in Figure 4.11.

The rides of vehicles of the experiment are shown in Figure 4.17.

Figure 4.11: Chargings by locations, combined simulation

Figure 4.12: EVs driving, combined simulation
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4.6 Validation and comparing with literature

Firstly, we compare our input values and input values used in other research. In Section

2.1.1, research and Figure 4.13 are described. Both Figure 4.13 and Figure 4.14 shows an

average of percentual charges for week. Plots shown similar values.

Figure 4.13: Percentage of charging processes per weekdays [11]

Figure 4.14: Percentage of charging processes per weekdays, our data set.
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Secondly, we compare output of our simulations and output values from simulation

in other research. In Section 2.1.2, research and Figure 4.15 are described. Results from

Figure 4.16 and results from Figure 4.17 is about 5 times higher results from Figure 4.15.

Weattribute this difference to the fact that we generate rides for corporation fleets where

the probability of driving is generally higher than for private cars. The curve of values of

all figures are similar to general business hours.

Figure 4.15: A 20 day simulation of the percentage of EVs driving per hour [12]

Figure 4.16: A base simulation of the percentage of EVs driving per hour

Figure 4.17: A combined simulation of the percentage of EVs driving per hour
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Thirdly, we compare simulated charging demand over a week between our results of

simulations and simulation of related work described in Section 2.1.1. Set on the input pa-

rameters described in the Figure 4.18 is the same for Figure 4.19 and Figure 4.20. Results

of simulation in Figure 4.18 after comparing with our models (Figure 4.19, Figure 4.20)

are not as accurate as they seem. The reason for this conclusion is vehicles behaviour on

the weekends. Because both in our approach and the Schauble approach [11], input values

of charges are lower on the weekends. Additionally, vehicles have a lower percentage of

travel on the weekends, so the demand for charging should be lower.

Figure 4.18: ”Three simulated load profiles over a week, starting on Monday, for 100
EV that charge at least once every day with pmax = 3.6kW using the mean number of
charging events per vehicle and per weekday.” [11]

Figure 4.19: A base simulation for charging demand over a week.

Figure 4.20: A combined simulation for charging demand over a week.
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The result in Figure 4.20 is more structured. This problem occurred when each pause

is set to 15 minutes. In this period vehicle can be charged. This fact also contributes

that not always is vehicle charged whenever possible but based on probability charging.

So charging does not occur as often, and then there is a larger capacity of the discharged

battery, which is mentioned 15 minutes. However, the result of Figure 4.20 is more

accurate than fFigure 4.19, because it is closer to the real behaviour of EVs.

4.7 Validation and comparing different fleet compo-

sitions

In this section we compare different fleets compositions. We decided to simulate the be-

haviour of EVs of different fleet compositions and, based on this, determine how the rides

have changed and how the charging demand has changed when the fleets are differently

composed. The vehicles contents of the fleets we compare are shown in the Table 4.7.

Table 4.6: Input labels of EVs fleet
name of fleet 0 1 2 3 4 5 6 7
mixed fleet 1 2 3 4 5 6 7 0

fleet with long trip EVs 0 0 28 0 0 0 0 0
fleet with factory EVs 0 0 0 0 0 0 0 28

triple mixed fleet 3 6 9 12 15 18 21 0

The combined simulation is used for generating charging demands. The optional simu-

lation parameters are the same values set to the simulation as in the previous simulations.

Specifically, energy consumption set on 194Wh/km, battery capacity set on 60.5kWh and

average speed of vehicle set on 80km/h. In Table 4.7, there are simulated load profiles

shown over a week, starting on Monday. The first column of the Table 4.7 shows the total

number of charging demands. The second column shows the number of charging demands

inside the factory area. The last column shows the total number of rides.

Table 4.7: Summary output of different fleets
name of fleet num of chargings num of chargings inside of area num of trips
mixed fleet 122 106 335

fleet with long trip EVs 40 0 101
fleet with factory EVs 2565 2565 3399

triple mixed fleet 393 322 1012

According to Table 4.7 we conclude that simulations of different fleet compositions

generate different outputs. For comparison, the’ triple mixed fleet’ model is three times

greater than the ’mixed fleet’ model output. This is working correctly. The ’fleet with

factory EVs’ generates all charging demands inside of the factory area. The ’fleet with

long trip’ generates all charging demands outside the factory area. Therefore the car

is discharged outside the area and can not travel to the factory area for charging. We

conclude that simulation of the fleet is successful because of this experiment.
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Moreover, below there are chargings demands of these fleets shown on Figure 4.21,

Figure 4.22, Figure 4.23 and Figure 4.24.

Figure 4.21: A simulation of the fleet with factory EVs

Figure 4.22: A simulation of the mixed fleet.

Figure 4.23: A simulation of the fleet with long trip EVs.

Figure 4.24: A simulation of triple mixed fleet.
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Conclusion

We have investigated charging demand models for fleet electrification. Firstly, we ex-

amined literature that deals with related problems as we researched. We defined the

similarities and differences of the approaches solved in related literature. An appreciable

inspiration was generating rides and subsequently generating the demand for charging,

such as studying the behavior of EVs riders. After that, we designed a solution based

on knowledge from related publications. The solution consists of three approaches that

generate demand for charging EV.

Firstly, we would summarize the forecast model. It is stochastical model based on

historical data. Simplified, we take historical data of charging actions, and we generate

future by approximation functions. This model is suitable for any existing EV fleet, and

we only want to change it. Simply if we double the number of vehicles in the fleet, we

double the demand for charging. The problem with our data was that we did not know

the number of vehicles included in the historical data. So we just estimated the general

behavior of a given fleet of EVs.

Secondly, we would summarize the base simulation model. The approach is based on

generating action for fleet vehicles. Actions are generated based on probabilities that are

different for different groups of vehicles. This model has the advantage of simply choosing

a vehicle with some driving characteristics, and then its drivings are simulated. So it is not

a general vehicle. Related literature states, the most EVs will start charging immediately

after parking. Therefore this fact was included in the basic simulation model. We can

certainly say that a simulation model is more suitable than probabilistic for modelling a

new fleet of EVs.

Thirdly, we summarize the combined simulation model. The approach is based on

generating action for fleet vehicles. It is a combination of the basic simulation model

and forecast model. The main functionality is same as in the basic simulation model but

decision charging it is other. The charging decision is base on statistical probabilities of

35
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the general chargings. Output of this approach is the most precise in comparison with

other approaches. Because of charging probabilities from forecast model results are more

reliable.

Simulations are not working as precisely as necessary. It is needed to work on this

problem in future. The idea for the future is to use proper simulation with more statistical

probabilities used in it.

Other problem was not complete information in vehicles rides. It would be a piece of

very useful information to know when the vehicle is at home, so we could determine the

night charging. Night charging is one of the important data when setting up an electric

vehicle simulation. Unfortunately, due to insufficient initial data, we had to omit this

approach.



Appendix A

User Guide

In this appendix is structure of attached files together with description of each part.

Cveckova thesis attachment

thesis text

code

input

output

analysis.ipynb

fleet simulation.ipynb

stochastic simulation.ipynb

thesis text PDF version of this thesis.

code Contains source files of our Python project

input Contains data used as input to Jupyter notebooks.

output Contains images used in thesis. Images are result of Jupyter notebooks.

analysis.ipynb Jupyter Notebook contains data analysis of clustering and experi-

ments. Notebook is fully run-able.

fleet simulation.ipynb Jupyter Notebook contains making a fleet and simulation of

the fleet. Notebook is fully run-able.
stochastic simulation.ipynb Jupyter Notebook contains data analysis of chargings.

Notebook is fully run-able.

37



Bibliography

[1] V. Jeřábek, Data-driven sizing of electric vehicle charging stations, Bachelor‘s thesis
FEE CTU, Prague, 2020.

[2] J. L. T. Ying. (2021). “In china’s biggest cities, one in five cars sold is now electric”,
[Online]. Available: https://www.bloomberg.com/news/articles/2021-05-
10/in-china-s-biggest-cities-one-in-five-cars-sold-is-now-electric

(visited on 05/12/2021).

[3] Z. Chen, W. Liu, and Y. Yin, “Deployment of stationary and dynamic charging
infrastructure for electric vehicles along traffic corridors”, Transportation Research
Part C: Emerging Technologies, vol. 77, pp. 185–206, 2017, issn: 0968-090X. doi:
https://doi.org/10.1016/j.trc.2017.01.021. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0968090X17300347.

[4] L. Dorcec, D. Pevec, H. Vdovic, J. Babic, and V. Podobnik, “How do people
value electric vehicle charging service? a gamified survey approach”, Journal of
Cleaner Production, vol. 210, pp. 887–897, 2019, issn: 0959-6526. doi: https :

//doi.org/10.1016/j.jclepro.2018.11.032. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/S0959652618334322.

[5] W. Sierzchula, S. Bakker, K. Maat, and B. van Wee, “The influence of financial
incentives and other socio-economic factors on electric vehicle adoption”, Energy
Policy, vol. 68, pp. 183–194, 2014, issn: 0301-4215. doi: https://doi.org/10.
1016/j.enpol.2014.01.043. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0301421514000822.

[6] K. Y. Bjerkan, T. E. Nørbech, and M. E. Nordtømme, “Incentives for promoting
battery electric vehicle (bev) adoption in norway”, Transportation Research Part
D: Transport and Environment, vol. 43, pp. 169–180, 2016, issn: 1361-9209. doi:
https://doi.org/10.1016/j.trd.2015.12.002. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1361920915002126.

[7] N. Melton, J. Axsen, and S. Goldberg, “Evaluating plug-in electric vehicle policies
in the context of long-term greenhouse gas reduction goals: Comparing 10 canadian
provinces using the “pev policy report card””, Energy Policy, vol. 107, pp. 381–393,
2017, issn: 0301-4215. doi: https://doi.org/10.1016/j.enpol.2017.04.052.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S030142151730277X.

[8] P. Wu, “Which battery-charging technology and insurance contract is preferred in
the electric vehicle sharing business?”, Transportation Research Part A: Policy and
Practice, vol. 124, pp. 537–548, 2019, issn: 0965-8564. doi: https://doi.org/10.
1016/j.tra.2018.04.010. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0965856417311746.

38

https://www.bloomberg.com/news/articles/2021-05-10/in-china-s-biggest-cities-one-in-five-cars-sold-is-now-electric
https://www.bloomberg.com/news/articles/2021-05-10/in-china-s-biggest-cities-one-in-five-cars-sold-is-now-electric
https://doi.org/https://doi.org/10.1016/j.trc.2017.01.021
https://www.sciencedirect.com/science/article/pii/S0968090X17300347
https://www.sciencedirect.com/science/article/pii/S0968090X17300347
https://doi.org/https://doi.org/10.1016/j.jclepro.2018.11.032
https://doi.org/https://doi.org/10.1016/j.jclepro.2018.11.032
https://www.sciencedirect.com/science/article/pii/S0959652618334322
https://www.sciencedirect.com/science/article/pii/S0959652618334322
https://doi.org/https://doi.org/10.1016/j.enpol.2014.01.043
https://doi.org/https://doi.org/10.1016/j.enpol.2014.01.043
https://www.sciencedirect.com/science/article/pii/S0301421514000822
https://www.sciencedirect.com/science/article/pii/S0301421514000822
https://doi.org/https://doi.org/10.1016/j.trd.2015.12.002
https://www.sciencedirect.com/science/article/pii/S1361920915002126
https://www.sciencedirect.com/science/article/pii/S1361920915002126
https://doi.org/https://doi.org/10.1016/j.enpol.2017.04.052
https://www.sciencedirect.com/science/article/pii/S030142151730277X
https://www.sciencedirect.com/science/article/pii/S030142151730277X
https://doi.org/https://doi.org/10.1016/j.tra.2018.04.010
https://doi.org/https://doi.org/10.1016/j.tra.2018.04.010
https://www.sciencedirect.com/science/article/pii/S0965856417311746
https://www.sciencedirect.com/science/article/pii/S0965856417311746


BIBLIOGRAPHY 39

[9] V. Nian, M. Hari, and J. Yuan, “A new business model for encouraging the adop-
tion of electric vehicles in the absence of policy support”, Applied Energy, vol. 235,
pp. 1106–1117, 2019, issn: 0306-2619. doi: https : / / doi . org / 10 . 1016 / j .

apenergy.2018.10.126. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0306261918316945.

[10] T. Yoon, C. R. Cherry, M. S. Ryerson, and J. E. Bell, “Carsharing demand es-
timation and fleet simulation with ev adoption”, Journal of Cleaner Production,
vol. 206, pp. 1051–1058, 2019, issn: 0959-6526. doi: https://doi.org/10.1016/
j.jclepro.2018.09.124. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0959652618328440.
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