
Instructions

Guaranteed advertisement is a system of orders for the required sum of impressions over time for

multiple clients.

1) Describe how existing guaranteed advertisement system works and what are its advantages and

disadvantages of using a primitive selective algorithm.

2) Improve strategy of advertisement distribution and fulfilling orders over the existing solution and

prove the choice on a prototype.

3) Analyze advertisement selecting algorithms based on predicted requests (i.e. Shale [1]) and

algorithms working only with feedback in real-time (i.e. Prop-alloc [2]). Specific algorithms are only

suggested.

4) Implement proofs-of-concept of given algorithms. It is not necessary to implement the whole

system for advertisement delivery. The programming language is not restricted.

5) Test the chosen solution performance in context with the existing system by simulating on artificial

data. Evaluate the results of testing and recommend how to improve the existing system.

 

[1] https://arxiv.org/pdf/1203.3619.pdf

[2] https://storage.googleapis.com/pub-tools-public-publication-data/pdf

/942f3ec628f9d40b289a5ccf9b750e4...

Electronically approved by Ing. Michal Valenta, Ph.D. on 31 January 2020 in Prague.

Assignment of bachelor’s thesis

Title: Analysis and implementation of planning strategies for guaranteed

advertisement selection

Student: Jakub Dvořák

Supervisor: Ing. Josef Bouška

Study program: Informatics

Branch / specialization: Web and Software Engineering, specialization Software Engineering

Department: Department of Software Engineering

Validity: until the end of summer semester 2020/2021

Bachelor’s thesis

ANALYSIS AND
IMPLEMENTATION OF
PLANNING STRATEGIES
FOR GUARANTEED
ADVERTISEMENT
SELECTION

Jakub Dvořák

Fakulta informačních technologií ČVUT v Praze
Department of Software Engineering
Vedoucí: Ing. Josef Bouška
June 27, 2021

České vysoké učení technické v Praze
Fakulta informačních technologií
© 2020 Jakub Dvořák. Všechna práva vyhrazena.
Tato práce vznikla jako školní díla na Českém vysokém učení technické v Praze, Fakultě informačních
technologií. Práce je chráněna právními předpisy a mezinárodními úmluvami o právu autorském a
právech souvisejících s právem autorským. K jejímu užití, s výjimkou bez uplatněných zákonných licencí
nad rámec oprávnění uvedených v Prohlášení je nezbytný souhlas autora.

Odkaz na tuto práci: Jakub Dvořák. Analysis and implementation of planning strategies for guaranteed
advertisement selection. Bachelor’s thesis. České vysoké učení technické v Praze, Fakulta informačních
technologií, 2021.

Contents

Acknowledgements vii

Declaration viii

Abstract ix

Acronyms x

1 Introduction 1
1.1 Motivation . 1
1.2 Aim of the Thesis . 2
1.3 Structure of the Thesis . 2

2 Algorithm for choosing advertisement 3
2.1 Introduction to guaranteed advertisement selection 3
2.2 SHALE . 5

2.2.1 Glossary . 5
2.2.2 First phase . 6
2.2.3 Second phase . 7
2.2.4 Online phase . 7

2.3 PropAlloc . 7
2.3.1 Glossary . 7
2.3.2 Algorithm . 8

2.4 Legacy Seznam.cz solution - Advert . 8
2.4.1 Offline phase . 8
2.4.2 Online phase . 9

3 Framework for algorithm comparison 13
3.1 Choosing language . 13
3.2 Server and offline process . 15

3.2.1 Prediction generation . 15
3.2.2 Requests generation . 16
3.2.3 Server mock implementation . 18

3.3 Graph statistics . 20
3.4 Summary . 20

4 Benchmarks 23
4.1 Business requirements . 23
4.2 Benchmark variants . 23
4.3 Benchmark 1 - a single advertisement . 24

4.3.1 Description . 24
4.3.2 Results . 24

4.4 Benchmark 2 - a single advertisement . 25
4.4.1 Description . 25

iii

iv Contents

4.4.2 Results . 27
4.5 Benchmark 3 - three advertisements with overlapping targetings 27

4.5.1 Description . 27
4.5.2 Results . 29

4.6 Benchmark 4 - a single advertisement switching targeting 29
4.6.1 Description . 29
4.6.2 Results . 29

4.7 Summary . 32

5 Conclusion 35
5.1 Further work . 35

Contents of attached medium 39

List of Figures

2.1 Transformation of the example orfer from Table 2.1 to bipartite graph. 4

3.1 High level look at the production architecture. 14
3.2 One week of traffic in real production environment. 14
3.3 One week of traffic generated by the simulation. 20
3.4 Diagram illustrating the data flow through the implemented system. 21

4.1 Benchmark 1 results. 26
4.2 Benchmark 2 results. 28
4.3 Benchmark 3 order. 28
4.4 Benchmark 3 results. 31
4.5 Benchmark 4 results. 33

List of Tables

2.1 Order for three advertisements from Example 2.1. 4
2.2 Order of one advertisement for Example 2.2. 9
2.3 Calendar accompanying the order for Example 2.2. 9
2.4 Hourly coefficients accompanying the order for Example 2.2. 10
2.5 Resulting plan for Example 2.2. 11

3.1 Data structure of daily predictions file. 16
3.2 Data structure of daily curve file. 16
3.3 Data structure of hourly curve file. 16
3.4 Data structure of the hourly prediction file. 17
3.5 The resulting hourly coefficients created from produciton requests. 17
3.6 Description of Parquet file containing requests. 18
3.7 Data structure of ordered advertisements file. 19
3.8 Data structure of request log. 19

4.1 Benchmark 1 advertisement order. 24
4.2 Benchmark 1 daily predictions. 24
4.3 Benchmark 1 results. 25
4.4 Benchmark 2 advertisement order. 26
4.5 Benchmark 2 daily predictions. 26
4.6 Benchmark 2 results. 27
4.7 Benchmark 3 advertisement order. 27

v

vi List of Tables

4.8 Benchmark 3 daily predictions. 29
4.9 Benchmark 3 results. 30
4.10 Benchmark 4 advertisement order. 30
4.11 Benchmark 4 daily predictions. 30
4.12 Benchmark 4 results. 32

I would like to thank Seznam.cz a.s., and especially my supervisor
Ing. Josef Bouška for supporting me and allowing me to carry out a
part of my bachelor’s thesis research as my work assignment.

vii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act
No. 121/2000 Coll., the Copyright Act, as amended. In accordance with Article 46(6) of the
Act, I hereby grant a nonexclusive authorization (license) to utilize this thesis, including any
and all computer programs incorporated therein or attached thereto and all corresponding doc-
umentation (hereinafter collectively referred to as the “Work”), to any and all persons that wish
to utilize the Work. Such persons are entitled to use the Work in any way (including for-profit
purposes) that does not detract from its value. This authorization is not limited in terms of
time, location and quantity.

In Prague on 27th June 2021 .

viii

Abstrakt

Problém garantované reklamy je problém online stochastického výběru vhodného kandidáta v bi-
partitním grafu. Tato práce se zaměřuje na existující algoritmy řešící tento problém, konkrétně
SHALE, PropAlloc a Advert. V práci tyto algoritmy podrobně popíšeme a vysvětlíme, jak
u každého algoritmu proces výběru probíhá. V práci také implementujeme framework pro
porovnání algoritmů na výběr garantované reklamy ve srovnatelných podmínkách na nasimulo-
vaných datech. U implementace tohoto frameworku se zaměřujeme na možnost rozšíření o další
algoritmy a o možnost vývoje algoritmů. V této práci také implementujeme všechny výše uvedené
algoritmy do vytvořeného frameworku a porovnáme je v několika scénářích na základě obchod-
ních požadavků specifikovaných společností Seznam.cz. Z práce vyplývá, že celkově nejlepším
algoritmem je algoritmus Advert, ale v některých kategoriích vycházejí lépe ostatní algoritmy.

Klíčová slova garantovaná reklama, porovnávající framework, SHALE, PropAlloc, Seznam.cz,
Python

Abstract

Guaranteed display advertisement serving is a problem of online stochastic matching in bipartite
graphs. This thesis takes a closer look at existing algorithms solving this problem, namely
SHALE, PropAlloc, and Advert. We go on to describe these algorithms in detail, explaining
how their individual matching process works. We also implement a bench-marking framework
to compare these algorithms in a level playing field with simulated data, with main focus on
scalability of this solution to other algorithms, and algorithm development. We implement the
before mentioned algorithms into the bench-marking framework, and compare their performance
in multiple scenarios based on business requirements specified by Seznam.cz. In the end we
determine Advert to be the best performer, however, we also point out the positives of every
algorithm.

Keywords guaranteed advertisement, comparison framework, SHALE, PropAlloc, Seznam.cz,
Python

ix

Acronyms

ARIMA Autoregressive integrated moving average
CSV Comma-separated values
DSP Demand-side platform

JSON JavaScript Object Notation
PyPI Python Package Index
SSP Supply-side platform
SVG Scalable Vector Graphics

x

Chapter 1

Introduction

1.1 Motivation
Advertising is what powers the internet in today’s day and age. It is a lucrative business that is a
main source of income for internet giants Google and Facebook, and locally even for Seznam.cz.
What puts them in a position of making profits on advertising is that they provide SSP.

SSP, or Supply-side platform, is a service that works as an advertisement provider for web
pages that want to monetize their content. Once the web page gets SSP to serve advertisements
on their website, they are making money, the DSP is making money, and the SSP as the provider
takes a cut. The SSP is, in its essence, an advertisement marketplace, matching demand for
advertisements from web pages to supply from DSPs.

DSP, or Demand-side platform, is the source of the advertisements. Under each SSP there
are usually many DSPs. When the web page asks for an advertisement, the SSP carries out an
auction, decides which advertisement wins, and as such, how will the site make the most money.
The DSPs take part in the auction based on many targeting parameters which the SSP provides.
Targeted advertising is a popular form of online advertising because it allows specification of
target demographic, limiting displaying the advertisements only to them. These SSP targeting
parameters describe the type of advertisement needed, the place where it will be shown, as well
as description of the user that visited given website. This information is obtained from the web
page, or from the SSP itself which usually keeps track of identity of the visitors.

That is in general how display advertising works - as a DSP you get a specific request and
you either match it to your advertisement, put a price on it and take part in the auction, or you
just do not take part at all. Your client only pays if his advertisement is shown, and can set up
limits on the amount he wants to spend and when he wants the advertisement to be shown.

Guaranteed advertisement is different from the normal display advertisement because as a
DSP you are committing to serving a specific amount of impressions in the future. You are
guessing that said amount of people matching the targeting will visit the targeted site in the
specified time frame.

The problem of guaranteed advertisement is that it relies on the DSP knowing that it is
going to be able to display advertisement certain number of times in the future. So the DSP
is naturally starting to be dependent on knowing the future, or at least predicting it with a
reasonable accuracy. At the same time, its also necessary to be able to compute these predictions
within such a time frame, that by the time the next forecast finishes, the old predictions are not
completely out of date. Adding more options of targeting the user, and giving more options of
restricting the supply to the advertisers through methods like capping1 causes the complexity of

1the same advertisement will not be shown to the same user in the time interval selected by the advertiser

1

2 Chapter 1. Introduction

computing these predictions to rise exponentially. This means we have to find a balance between
not relying on completely accurate predictions while at the same time having the advertisements
evenly distributed.

1.2 Aim of the Thesis
As the serving of guaranteed advertisement is a problem troubling multiple internet companies,
some of them have brought out research papers describing possible algorithms for the guaranteed
advertisement distribution. However, there is not a direct comparison between these, because
they are tailor made solutions for the requirements of the company the algorithm was developed
for. The goal for this work is to provide that comparison, and more importantly to provide a
platform for comparing such algorithms in a level playing field. Any future algorithms can then
be plugged into this framework and compared on multiple business-critical parameters against
other algorithms. This work will not be focusing on computing predictions, nor will it be focusing
on the SSP side of advertisement transaction. Both will however be described for context and
considered in comparison.

1.3 Structure of the Thesis
Chapter 2 shows what the general algorithm should do, as well as describing the algorithms
that were chosen to implement. They are namely PropAlloc2, SHALE3 and a legacy Seznam.cz
algorithm used in previous guaranteed advertisement solution.

Chapter 3 describes the framework created for testing these algorithms, as well as how it
simulates real circumstances and what are our business-critical metrics for production imple-
mentation.

Chapter 4 will present the findings from experiments using framework from chapter 3, and
carefully crafted data exploring real world scenarios.

The thesis will conclude in Chapter 5, where we explore possible future work on expanding
the framework as well as testing new algorithms.

2courtesy of Google and Columbia University
3courtesy of Yahoo

Chapter 2

Algorithm for choosing
advertisement

2.1 Introduction to guaranteed advertisement selection
In internet advertisement, there is demand and supply.

Demand is representing advertisements themselves. There are many choices of targeting the
advertisement to fit the perfect web page visitor for a product, as well as measures to moderate
the amount of exposure given to the same visitors. It is possible to target peoples gender, age,
geographical location, interests, the device they are using, as well as the site they are on, even a
specific article on a news site. It is also possible to then narrow the selection down even further,
by selecting which hours of the day the advertiser wants to show the ad, or utilizing capping.
The concept of capping is that every visitor has a unique identification, and the advertiser can
limit how often to show the advertisement to them.

The other side is supply. Supply is represented by impressions. Impression is the feedback
DSP gets after serving the advertisement, usually a call to a specific URL confirming that the
advertisement was actually rendered into the targeted site. This is the definite metric that has
a business value. If the DSP does not receive the confirmation of serving an advertisement in
form of impression, it cannot bill their client for it. Each impression is unique, and carries
information about the visitor who has seen the advertisement. This information is used to select
the advertisement based on targeting on the user. Some impressions will not have all of the
targeting data available because of the recent GDPR legislation, giving the visitors control over
the data that websites collect about them. All of the targeting selection is of course supplied to
the DSP before choosing the advertisement, however, impressions are the actual product that
the DSP is selling, so that is why we consider them to be the supply. Even though the supply is
actually visitors of the website.

While the targeting selection allows for a combinatorial explosion, in normal advertising that
is a non-issue. The DSP simply runs the currently running advertisements through the specified
filters, and selects the best candidate in the end - the one that makes the most money.

Where this starts getting complicated is when the DSP guarantees to serve certain number of
impressions for given targeting. In this scenario, the DSP is selling something that will happen
in the future, and cannot quite know if the requested impressions will actually arrive. So it has
to turn to predicting, or forecasting the future. It is not difficult to approximate future data
points in a time series based on historical data. There are many models out there to select from.
For example, the current production solution in Seznam.cz features implementation of Hannan-
Rissanen [13] algorithm for ARIMA models by Workday, Inc.[21]. The problem is that when

3

4 Chapter 2. Algorithm for choosing advertisement

Table 2.1 Order for three advertisements from Example 2.1.

AdvertisementId Interest Location Quantity
1 I1 L1 or L2 100
2 I2 N/A 200
3 I2 L2 or L3 300

I1 I2

L1

L2

L3

A

B

C

D

E

Supply
Impressions

Demand
Advertisements

A

B

C

D

E

Ad 1 - 100

Ad 2 - 200

Ad 3 - 300

Figure 2.1 Transformation of the example offer from Table 2.1 to bipartite graph.

more advertisements are added into the equation the targeting gets fragmented even further,
and as such increases the number of series that the algorithm has to forecast.

In order to be able to compute this forecast of impressions, while keeping the number of series
minimal, they are grouped together by matching targeting in the largest possible disjunct sets.
Creating such sets allows to transform this problem to a bipartite graph matching, where one
side of nodes represents supply, the other demand, and edges represent whether or not is given
advertisement matching the adjacent impression set. The process of this transformation is shown
in the example 2.1.

Transforming this problem into stochastic matching in bipartite graphs, allows us to solve it
as there already exists a lot of research on that topic.

The problem of solving matching in graphs has been popular in computer science for a very
long time, and as such there exists considerable amount work on those algorithms over the
years.[12, 5, 19, 15, 16] Ran Duan and Seth Pettie went into great depths to describe the history
and complexity of Cardinality and Maximum Weight Matching algorithms, and improve the
efficiency by approximating the result.[4]

Focusing on online matching in advertisement, there is a plethora of work, some of which
serves as a base for the algorithms that we chose for implementation.[6, 11, 20, 18, 3]

The algorithms that we chose to describe, implement and benchmark are SHALE, PropAlloc
and Advert. All of them have a single purpose - when they receive a request that can be matched
into a supply node on the bipartite graph, they have to select what advertisement, if any, to return
as a winner.

▶ Example 2.1. With the given three advertisements from Table 2.1 the targetings form a
Venn diagram where each overlapping targeting forms a new data series to forecast. In total
we have 5 final series that need to be predicted in this example. These series are displayed

2.2. SHALE 5

in the bipartite graph connected to their respective advertisements. We can see that each of
the advertisements has its quantity specified. The targeting data series nodes will have the
quantity attached once it is forecast. That will help certain algorithms decide in selection of
advertisement, other algorithms are able to function with just this bipartite graph. E.g. when
a request matching supply node B arrives, the algorithm has to decide whether to pick Ad 1, or
Ad 2.

Some of these series can be predicted by simply applying the selected forecast algorithm to
specific series - e.g. B or C in Figure 2.1. Other series have to be predicted by forecasting
multiple series and adding or subtracting them - e.g. series A has to be computed the following
way:

Add series Interest I1, Location L1

Add series Interest I1, Location L2

Subtract series Interest I1 & I2, Location L1 - was already predicted as series B

Subtract series Interest I1 & I2, Location L2 - was already predicted as series C

2.2 SHALE
This section will describe the practical application of the SHALE algorithm.[2] The algorithm
consists of 2 stages - offline and online, and the offline stage is divided into 2 phases. The offline
stages needs forecast predictions to give weight to the supply side of the bipartite graph. It
works on the basis of approximating the best possible weights of edges of the bipartite graph
for stochastic matching by computing them from coefficients assigned to every node. Those
coefficients are adjusted in every round of offline phase. The algorithm can be stopped at any
point and give usable edge weights, however, the more rounds that are run the closer the weights
are to the perfect solution.

2.2.1 Glossary
i - index of targeting set/supply

Si - forecast size of targeting set

j - index of advertisement/demand

Dj - ordered number of impressions

xij - weight of given edge, value is used for selecting advertisement,

xij = max(0,
∑
j

(θj) ∗ (1 + (αj − β))

θj - ordered demand divided by possible supply for its targeting,

∀jθj =
Dj∑
i′(Si′)

, i′ ∈ (edges connected to j)

αj - demand constraint, ∀j
∑

i′(Si′ ∗ xi′j) >= Dj , i
′ ∈ (edges connected to j)

βi - supply constraint, ∀i
∑

j′(xij′), j
′ ∈ (edges connected to i)

6 Chapter 2. Algorithm for choosing advertisement

The original algorithm also includes penalties for failure to deliver, importance of presence
of advertisement in impressions, and mechanisms to finish unfinished orders. All of these do
not make business sense for us, so we will forgo using them by substituting them by neutral
values not affecting the algorithm. We will also forgo the zeta computation, which serves as αj

with receding demand. This decision was taken due to the architecture of our distributed server
solution.

2.2.2 First phase
Computing αj for groups and βi for targetings. This phase is where the approximation takes
place. The more iterations it goes through, the better the coefficients should be. However, there
is no minimal number of iterations. The algorithm should provide usable data when stopped at
any point.

αj is initiated to 0 for all advertisements.

2.2.2.1 Computing Betas
βi is computed from solving following equation

∑
j(xij) = 1. However, since xij uses max

function we cannot simply equate βi to:

βi =
(1 +

∑
j(θj))

∑
j(θj ∗ αj)∑

j(θj)

since for some impression set

θj ∗ (1 + αj − βi)

could equal less than 0. Negative value should be substituted by 0, and as such not take part
in computation of βi value. We will instead compute β′

i = αj + 1 which gives us the solution

xij = max(0,
∑
j

(θj) ∗ (1 + (αj − (αj + 1)))) = max(0,
∑
j

(θj) ∗ 0)

This new variable therefore gives us the primitive solution for xij = 0. The way we use it is
by ordering this targeting’s edges by this value in ascending manner. That way we can compute
βi in the fashion specified above, however, if the βi value is negative, we can simply set βi as 0
and continue onto the next targeting set. If the βi value is higher than β′

i, we can eliminate the
edge with lowest β′

i and recalculate the βi again. If the βi has a positive value lower than β′
i we

can actually use it. Otherwise, we just set βi as 0. We follow this pattern until we get the βi

matching the requirements.
This process is then repeated for each targeting set.

2.2.2.2 Computing Alphas
In a similar fashion αj are computed by solving

∑
i(Si ∗ xij) = Dj for each advertisement. But

once again, the max function does not allow us to compute αj straight forward with the following
equation:

αj = Dj ∗
∑
i

(θj ∗ βi)−
∑
i

(θj)

since the result could be negative. Much like with βi, we will select α′
j = βi − 1. The edges

are then sorted in descending order by this value. Now we can again use this equation for finding
αj . If the found αj is greater than α′

j we can select is as a result, however, limited to the max
value of 1. If we do not match that requirement, we remove the edge from the αj computation

2.3. PropAlloc 7

and try again until we get a valid αj value, or we end up with 0 edges and therefore 0 as αj

value as well.

2.2.3 Second phase
Since we have eliminated the mechanisms to deal with finishing unfinished orders, and receding
demand, this phase only consists of one more round of recalculating betas.

2.2.4 Online phase
In this phase the original SHALE algorithm computes values of xij for advertisements that match
the incoming impression, however, due to our architecture, we are lacking the computed zeta.
Therefore, we are missing the need to compute this value online. The value is computed for each
edge of the bipartite graph in the second phase of offline stage.

2.2.4.1 Computing x
For all advertisements matching a single targeting set, the sum of their x values will be less than
or equal to 1. This means that there is still a possibility to not select a single advertisement, if
the space is under-allocated.

2.3 PropAlloc
Compared to the SHALE algorithm, the PropAlloc algorithm is a lot more simple, and its major
selling point for our application is its lesser dependency on predictions.

The research paper references two versions of this algorithm - PropAlloc and PropAlloc+
- with the latter one allowing additional parameters for setting weight to graph edges while
maximizing a combination of weight and entropy matching.[1]

Since that has no added business value for our case, we will focus solely on PropAlloc, which
is the same algorithm set up with above mentioned parameters in such a way that they are no
longer present.

This algorithm does not have an offline stage, and does not need predictions.

2.3.1 Glossary
Ca - ordered number of impressions

ϵ ∈ (0, 1) - parameter affecting the scale by which betas are adjusted each round

βa - priority score for given advertisement node

xia - priority score for given graph edge,

xia =
βa∑

a′∈Ni
(βa′)

,∀a ∈ Ni

Alloca - sum of assigned allocations of given advertisement,

Alloca =
∑
i∈Na

(xia)

8 Chapter 2. Algorithm for choosing advertisement

2.3.2 Algorithm
While the original algorithm has two stages - first one for establishing beta values, and second
one for the rest of the serving process - that is not possible for us due to the business require-
ments. The algorithm expects graph to be immutable, and thus that after O(logn/ϵ

ϵ2) rounds
the betas would settle to their optimal values. Here n represents number of advertisers. In
our implementation it is however possible for the edges to change nodes during the run of the
algorithm, therefore we have to carry on with the first stage of establishing betas until the end.

Our implementation of the algorithm initializes all the betas to 1 at the beginning, and then
starts updating them for all impressions that arrive by the following rules:

Alloca ≤ Ca

(1 + ϵ)
=⇒ βa = (1 + ϵ) ∗ βa

Alloca ≥ (1 + ϵ) ∗ Ca =⇒ βa =
βa

(1 + ϵ)

and for advertisements with Alloca > Ca

xia =
Ca

Alloca
∗ βa∑

a′∈Ni
(βa′)

,∀i ∈ Na

until the very end of the run.

2.4 Legacy Seznam.cz solution - Advert
This algorithm is not described in any research paper, as it is a custom solution that was tailor
made more than a decade ago by the research and development team at Seznam.cz. The main
attractions of this algorithm are that it was created with the servers and entity structure in mind,
as well as the possible volatility of ordered advertisements. That means that it is quite resistant
to the supply and demand changing. At the same time however, that comes with drawbacks.

This algorithm is similar to PropAlloc by the fact that it does not need supply predictions
to operate, however, that is where the similarities end.

While there are predictions calculated in the system, it is only for the purpose of entering
advertisements into the system. They are only forecast to see if it should be allowed to sell given
number of impressions. The online algorithm itself operates independently.

We can still separate it into an offline and online phase.

2.4.1 Offline phase
Once the advertisement is entered, the plans for it are created. This is done by spreading the
impressions equally through the ordered days, recognizing if some day is a national holiday,
weekend, or weekday and adjusting the percentage of available impressions that day. Similar
mechanic is then used in further segmenting these plans to hourly granularity. There is a static
traffic curve that was created retrospectively from averaging traffic coming into the system. This
process is shown in example 2.2.

Since the algorithm was written with the consideration that some of the impressions will
be marked as fraudulent1, and that it will most likely be unable to deliver the exact ordered
amount, the whole plan is also inflated by a configurable variable called quantity cushion. It
is recommended this variable is set to 1.05 meaning effectively that the plan for each hour is
inflated by 5% for achieving the best results.

1Fraudulent impressions are considered multiple hits from the same IP address, hits from the internal IP range,
or artificial traffic of web crawler.

2.4. Legacy Seznam.cz solution - Advert 9

Table 2.2 Order of one advertisement for Example 2.2.

ID Impressions Day From Day To
1 2600000 4 6

Table 2.3 Calendar accompanying the order for Example 2.2.

Day Type Coefficient
1 weekday 1
2 weekday 1
3 weekday 1
4 weekday 1
5 holiday 0.8
6 weekend 0.8
7 weekend 0.8

▶ Example 2.2. Normal weekday will have coefficient of 1 while the weekend or holiday might
have 0.8. The plan for the day would then be created by multiplying the total ordered impressions
by the fraction of current coefficient to the sum of all coefficients in the plan. The order for this
example is specified in Table 2.2. To create the plans for this advertisement we need to take a
look into the calendar 2.3 to know what coefficients to apply. For each day we can then apply
the static traffic curve from Table 2.4. Afterwards we are left with a complete plan for this ad,
shown in Table 2.5.

2.4.2 Online phase
Working with the plan created in offline phase, this phase tries to serve the specified amount of
advertisements by converting the demand into a linear function. We know how many impressions
to serve in an hour, so at any point in the hour, we can say how many impressions should have
been served by now. While not completely accurate due to real traffic spiking during the hour
instead of having a linear course, it gives us a precise plan to follow, and more importantly, tells
us at any point if we are ahead or behind of said plan.

This is used in a function computing each advertisement’s property called fitness. This
function takes two configuration parameters. Quantity tolerance describes how far ahead of the
plan we want to get in the hour, while quantity exponent affects the exponents used in this
function.

2.4.2.1 Glossary
Sa - ordered number of impressions

S′
a - current number of total dispatched impressions

P b
a - total number of impressions planned to be served by the beginning of current hour

P e
a - total number of impressions planned to be served by the end of current hour

Ph
a - number of impressions planned for current hour

P c
a - total number of impressions planned to be served at current time

t - number of seconds passed in current hour

Qt - quantity tolerance

10 Chapter 2. Algorithm for choosing advertisement

Table 2.4 Hourly coefficients accompanying the order for Example 2.2.

Hour Coefficient
0 0.010
1 0.005
2 0.005
3 0.005
4 0.005
5 0.015
6 0.030
7 0.055
8 0.065
9 0.055
10 0.055
11 0.055
12 0.060
13 0.055
14 0.055
15 0.050
16 0.050
17 0.050
18 0.050
19 0.060
20 0.065
21 0.065
22 0.050
23 0.030

2.4. Legacy Seznam.cz solution - Advert 11

Table 2.5 Resulting plan for Example 2.2.

Day Hour Impressions
4 0 10000
4 1 5000
4 2 5000
4 3 5000
4 4 5000
4 5 15000
4 6 30000
4 7 55000
4 8 65000
4 9 55000
4 10 55000
4 11 55000
4 12 60000
4 13 55000
4 14 55000
4 15 50000
4 16 50000
4 17 50000
4 18 50000
4 19 60000
4 20 65000
4 21 65000
4 22 50000
4 23 30000

Day Hour Impressions
5 0 8000
5 1 4000
5 2 4000
5 3 4000
5 4 4000
5 5 12000
5 6 24000
5 7 44000
5 8 52000
5 9 44000
5 10 44000
5 11 44000
5 12 48000
5 13 44000
5 14 44000
5 15 40000
5 16 40000
5 17 40000
5 18 40000
5 19 48000
5 20 52000
5 21 52000
5 22 40000
5 23 24000

Day Hour Impressions
6 0 8000
6 1 4000
6 2 4000
6 3 4000
6 4 4000
6 5 12000
6 6 24000
6 7 44000
6 8 52000
6 9 44000
6 10 44000
6 11 44000
6 12 48000
6 13 44000
6 14 44000
6 15 40000
6 16 40000
6 17 40000
6 18 40000
6 19 48000
6 20 52000
6 21 52000
6 22 40000
6 23 24000

12 Chapter 2. Algorithm for choosing advertisement

Qe - quantity exponent

The fitness is then computed for each advertisement a like this:

Ph
a = P e

a − P b
a

P c
a = P b

a + (
P b
a ∗ t
3600

)

δ = max(0, P c
a − S′

a)

fitness = max((Qt ∗ Ph
a)

1−Qe ∗ δQe , O)

With the fitness established we can sort advertisements in descending order and start picking
winners. This is done by going down the list from highest to lowest and picking advertisements
that can be served. Due to the nature of the server, not all targeting based filtering is done
before this selection process. Should this part of the process be reworked, then the selection
process is just picking the highest fitness.

Chapter 3

Framework for algorithm
comparison

What we have in total is 3 different algorithms, with very different approaches. SHALE, PropAl-
loc and Advert are all online stochastic graph matching algorithms that find their use in guar-
anteed advertisement. Our task is to find out which one will work the best for Seznam.cz. All
these algorithms were described in detail in Chapter 2. What they all have in common is that
they all need ordered advertisements, and they all need incoming requests for advertisements.
This is what we need to simulate.

In this chapter we will introduce a framework that will allow to just plug in any algorithm,
possibly for the future even other algorithms then the ones mentioned. This framework produces
a unified output and eliminates randomness where possible, while also replicating the real adver-
tisement serving cycle as closely as possible. We will go over the decision making process that led
to choosing the language for implementation as well as the the whole design of the framework.

3.1 Choosing language
When picking the language for this project, the decision was quite simple. Our requirements are
that the finished product

needs to be easy to run, understand, and even edit - it could in the future be used by the
research team at Seznam.cz for testing solutions.

has to be able to support wide scale of file formats (CSV, JSON, Parquet, possibly others).

does not have to be high-performance. Speed is not our priority, nor is efficiency.

For all the reasons listed above, our language of choice is Python. Python is an interpreted
language with enforcement of indentation, which - some would argue - adds code readability.[8]
The fact that the language is interpreted makes it a great fit for proof of concept programming
where we want to often modify the code without having to wait for compilation. Another thing
that makes the case for Python even more convincing is the sheer amount of libraries available
from their own repository PyPI.[10] Their package manager pip is automatically configured to use
this repository and makes installation of required packages really frictionless. The downside of
python is that even though most of its core libraries are written in C, the programs performance
is in most use cases not comparable to low-level languages. However, for our use case the
performance should be sufficient.

13

14 Chapter 3. Framework for algorithm comparison

Figure 3.1 High level look at the production architecture. Client asks for a web page, and the web
page asks for advertisements. SSP starts an auction and requests all DSPs to submit their candidates.
From said candidates SSP picks a winner and returns it to web page, which in turn calls the winning
DSP’s impression URL to inform them of successfully displaying their advertisement. The page possibly
also informs other DSPs about losing in the auction so that they can still accurately produce impression
forecasts for their needs. The impression endpoint makes sure to write the data into our NoSQL database,
so that the offline part of our algorithm - should our algorithm require one - can have access to this
real time information. This data is also relayed to the statistics page where our clients can control the
performance of their advertisements. All of this and more is done in under 500ms.

Figure 3.2 One week of traffic in real production environment. The timeline is from Monday to
Sunday. The values represent requests per second.

3.2. Server and offline process 15

3.2 Server and offline process
First, let us take a look at the production architecture. We will see how the requests go through
the system, so that we know what to mock, and what to implement.

In Figure 3.1 we can see a clear separation of what the framework will implement, as well
as all the other components that we either have to mock, or be conscientious of. We have to
implement the server, the offline process, as well as a tool for visualizing resulting statistics.

While building a server would not be difficult, it would add unnecessary complexity to our
benchmarks, as well as the code. It would mean we would have to run a server, while also running
some process sending requests to that server. We can bypass that by simply emulating serving
by reading requests from a file.

Such file will have to store a large amount of lines, and does not need to be human readable.
For that reason the choice of file format is Apache Parquet, a very compact columnar storage
format used in various Apache data processing frameworks.[7]

With the format selected, we need to fill the file with data. While it is possible to capture real
requests in our production, we would have no input on what requests are coming in, when, and
in what amount. We would also have to clear those requests with GDPR legislative. Therefore,
the better solution here is to generate our own requests for bench-marking purposes, matching
the real production request curve seen in Figure 3.2 to the best of our abilities.

Seeing how some algorithms need predictions, we need to have the data representing the
forecast impressions closely resemble the actual requests. This opens up a possibility for us to
actually generate the requests from forecast data which we will manually create. The predictions
we need are going to have to be broken down to hourly granularity. Even though it is possible to
create such data manually, once there is a couple of targetings, and a couple of days we want to
predict, the number of data entries rises exponentially. We do however want this to be human
readable, so that we can potentially find a specific row and edit it manually for simulating a
specific scenario.

3.2.1 Prediction generation
With this in mind, we can create a program that will take as input

list of targeting sets with specified daily impressions

weekly coefficients specifying the weekly traffic curve

hourly coefficients specifying the hourly traffic curve for each day

Using these variables, we can generate hourly plan for any amount of days from one line
specifying one targeting set. As was previously specified, the output has to be human readable.
Naturally so does the input, since that will be human created data for specific benchmarks. As
such, we decided to use CSV. The reason for that is that the format is easily editable in any
text editor of choice, but is also a recognized format by the popular spreadsheet software such
as Microsoft Excel, Google Sheets and others. Also, Python offers native support of the CSV
format, so working with it as far as reading and writing data goes is as simple as a few lines of
code.[9]

Since CSV files are structured data files emulating table or spreadsheet we can specify the
data in each entry for each file. The description of those files is provided in Tables 3.1, 3.2, and
3.3, as well as the output file in Table 3.4.

To make our requests closely resemble the real traffic, we will use actual production data to
create hourly coefficients. We do this by taking the requests incoming only on the endpoint that
serves advertisements, seen in Figure 3.2. We take a total number of requests received in an
hour, for each hour for the duration of one week. Then we average the numbers for each hour of

16 Chapter 3. Framework for algorithm comparison

Table 3.1 Data structure of daily predictions file.

Field name Description Type
ZoneId Unique name of the spot on web page where string

advertisement will be drawn
TargetingId Unique number identifying the disjunct targeting set integer
Impressions The number of impressions the user wants predicted integer

on a normal weekday

Table 3.2 Data structure of daily curve file. While this file is still technically in CSV format, it has
only one column, and as such does not necessarily resemble a classic CSV file. However, it has other
rules. The curve is meant to represent weekly traffic scaling, so it is expected to be exactly 7 lines long.
One line for each day of the week, Monday to Sunday.

Field name Description Type
Daily coefficient Multiplier of predicted impressions for given day in a week double

the day, and create the coefficients by dividing the results over the sum of all averages. Doing
so, we are left with coefficients in Table 3.5

When it comes to the daily coefficients, we will use the same coefficients we will be using
in Advert implementation. Both hourly and daily coefficients will be used in our Advert mock
configuration for creating plans so it makes sense to adopt that configuration. Advert views
weekdays as having coefficient 1, and weekends or holidays as having coefficient 0.8.

The traffic curve has actually changed since the global pandemic started, and should we want
the mock requests to resemble actual traffic closely, we might have to recalculate the coefficients
once again. The curve is there mainly to demonstrate that given algorithm can deal with varying
demand.

3.2.2 Requests generation
With the generated hourly predictions, it is possible to start generating requests. Our require-
ment is to be able to simulate inaccuracy of predictions, while keeping the general traffic curve.
Because of the separation of generation of requests from the server mock, we can introduce ran-
dom deviation from the generated prediction. Our generator will therefore take configuration
parameters specifying the range in which it is allowed to sway from the predicted requests. Set-
ting such deviation to the range from 0 to 0 will allow us to create requests shadowing predictions
exactly and thus for example see if any prediction based algorithm is more dependent on accurate
predictions than others.

As the input of this program, we will feed it the predictions generated by the program
described in previous section. Format of this input is specified in Table 3.4. The format of the
output will not be in CSV, but as earlier explained is Apache Parquet. Using Python gives us
the advantage of having a library for working with Parquet at the ready. In this case the library
in question is pandas, and more specifically their DataFrame implementation.[17]

Table 3.3 Data structure of hourly curve file. While this file is still technically in CSV format, it
has only one column, and as such does not necessarily resemble a classic CSV file. However, it has other
rules. The curve is meant to represent daily traffic scaling, so it is expected to be exactly 24 lines long.
One line for each hour in a day.

Field name Description Type
Hourly coefficient Multiplier of predicted impressions for given hour in a day double

3.2. Server and offline process 17

Table 3.4 Data structure of the hourly prediction file, the output of the prediction generation.
While day and hour combination could be represented by one timestamp, we choose to separate them
to improve the human readability. We can always later transform it to timestamp for internal use.

Field name Description Type
Day Specifies the day this prediction belongs to integer
Hour Specifies the hour this prediction belongs to integer
ZoneId Unique name of the advertisement board on web page where string

advertisement will be rendered
TargetingId Unique number identifying the disjunct targeting set integer
Impressions The number of impressions that are predicted for this integer

combination of zone and targeting

Table 3.5 The resulting hourly coefficients created from production requests.

Hour Coefficient
0 0.011843233402519
1 0.00601335679856
2 0.004357084356617
3 0.004373363140177
4 0.007464276712183
5 0.015706790394239
6 0.0326317318052
7 0.054340796802974
8 0.067595979062075
9 0.058797537829832
10 0.057145142687474
11 0.058293895916321
12 0.060413383968527
13 0.0571500556121
14 0.052597896928031
15 0.050264638746891
16 0.047667498437786
17 0.047275345672189
18 0.050642395988726
19 0.058848387522874
20 0.06477167851259
21 0.062230362925086
22 0.044529477354308
23 0.025045689422719

18 Chapter 3. Framework for algorithm comparison

Table 3.6 Description of Parquet file containing requests.

Field name Description Type
Timestamp Custom timestamp implementation specifying the time of request integer
ZoneId Unique name of the spot on web page where string

advertisement will be drawn
TargetingId Unique number identifying the disjunct targeting set integer

As parquet is a columnar storage with strict types, we have to specify the output now even
more so than with the CSV files. The resulting Parquet specification can be found in Table 3.6.

3.2.3 Server mock implementation
We have to create a general class describing a server and its interface, which can later be used to
implement specific algorithms. The input will obviously read requests generated by the program
from previous section, however it will also read ordered advertisements from a CSV file, which
will be made available to specific implementations through class variables. That file format’s
specification is in Table 3.7. In this table is mentioned zone, which is the place in a website where
the advertisement is rendered. Zone usually has a unique identification, as well as specification
of the size of advertisements that it wants. The reasoning behind separating zone and targeting
is the fact that an advertisement can only target a single zone, while there is no restrictions
on other targetings. Because of that we have one parameter indicating the destination zone,
and other single parameter summarizing all other possible targetings into a single identification
number.

This server skeleton will keep the statistics of dispatched advertisements, as some algorithms
need the feedback to work correctly, and of course as we need it to be able to compare the
effectiveness of the algorithms. It will produce two output files.

One will be somewhat of a request log, a CSV file containing a request on each line, which
can, much like on a real server, be used for debugging or simply identifying issues with given
algorithm. Described in Table 3.8

The other file will be in JSON format and provide a more high level look on the statistics,
showing the breakdown of impressions and misses down to each minute. Impression being the
confirmation of seen advertisement, and miss being the confirmation of lost auction on SSP.
The reason behind using the JSON format is that it very closely resembles the internal Python
dictionary structure. That is a good thing because it allows us, with use of the native Python
JSON library, very easily save and load the data into the program. Loading statistics created by
a different run can be useful in simulating a situation where and advertiser changes targeting in
the middle of its run.

The last functionality of this skeleton is simulating unrealized impressions. As was explained
earlier in the thesis, the fact that the DSP returns an advertisement to SSP does not mean that it
can count it as impression. The impression is only realized once the SSP selects the advertisement,
the web page confirms the impressions, and the DSP clears it as not being fraudulent. This
option therefore allows the user to declare a certain percentage of impressions as unrealized. The
drawback here is that this introduces a randomness factor to the simulation and as such the
benchmark using this option will need to be taken lightly in the evaluation.

3.2.3.1 SHALE
The implementation of SHALE algorithm, described in chapter 2, into the server mock skeleton
is - much like any other algorithm - a case of instantiating the class described in previous section.
We will add additional configuration file for this specific implementation, as SHALE needs to
create a plan from predictions. We will therefore provide the implementation with the hourly

3.2. Server and offline process 19

Table 3.7 Data structure of ordered advertisements file.

Field name Description Type
AdvertisementId Unique identifier of advertisement. Is present integer

to allow for pairing up with statistics present
in a resumed simulation

ZoneId Unique name of the spot on web page where string
advertisement will be drawn

TargetingIds One or more unique identifiers of the disjunct integer array
targeting sets

Day from Day on which the advertisement starts integer
Day to Day on which the advertisement ends integer
Hour planning Specific hours when displaying advertisement is allowed integer array
Impressions Number of ordered impressions integer

Table 3.8 Data structure of request log.

Field name Description Type
Timestamp Custom timestamp implementation specifying the integer

time of request
ZoneId Unique name of the spot on web page where string

advertisement will be drawn
TargetingId Unique number identifying the disjunct targeting set integer
AdvertisementId Unique identifier of advertisement optional integer

prediction file generated earlier in the pipeline, and specified in Table 3.4. Here we benefit greatly
from the created system of generating requests from manually created predictions.

The offline phase that computes all coefficients will take place in the class initialization,
preparing for the serving in online phase. The implementation will get possible candidates for
selection as winners from the server mock, and based on their ID’s and the targeting of given
request will get their coefficients. The coefficients are then used for weighted random selection.

3.2.3.2 PropAlloc
The PropAlloc implementation itself does not need any additional information that is not already
available from the server mock. Only thing needed is to initialize the default variables, and the
selection mechanism itself.

While the coefficients are not created before the online phase, but rather adjusted as the
serving goes on, the principle is similar to SHALE implementation: find the coefficients for
given advertisements selected by server mock, and use them for weighted random selection of
the winner.

3.2.3.3 Advert
As was mentioned chapter 2, the Advert algorithm uses plans created by applying daily and
hourly coefficients to the ordered impressions. This process can be seen in example 2.2, and we
can once again re-purpose the files created for generating predictions. Hourly and daily curve
files are described in Tables 3.3 and 3.2 respectively.

The online part then has only responsibility of computing fitness for each candidate and
selecting the highest ranking one as the winner.

20 Chapter 3. Framework for algorithm comparison

Figure 3.3 One week of traffic generated by the simulation. The timeline is from Monday to Sunday.
The values represent requests per second.

3.3 Graph statistics
While the framework provides statistics in text form so that they can be analyzed in a way that
suits the users, we have also implemented a way to visualize those results. That is why we have
another Python program that reads the JSON statistics, and with the use of the matplotlib
library visualizes them as a graph in the form of a SVG image.[14]

This program is designed in a way that allows specifying the time frame to graph, as well as
setting the width and height of resulting image and the frequency of x-axis labels.

3.4 Summary
When used all together the programs create a pipeline that takes specific configuration and at
the end produces graphs visualizing the benchmark results. This whole pipeline is illustrated in
Figure 3.4 for better understanding.

The whole reason for creating this pipeline was to simulate the real traffic pictured in Figure
3.2. Taking a look at the result from running this pipeline with no advertisements and default
parameters, pictured in Figure 3.3, we can see that the graph resembles the original quite closely.

While the steps in the graphs and the linear progression between hours does not shadow the
reality exactly, the whole reasoning behind implementing the traffic curve in the first place was
to examine the impact rapid supply change has on the given algorithm. For this purpose the
approximation our pipeline creates will be sufficient.

We have, therefore, managed to implement a whole data pipeline for bench-marking online
bipartite matching algorithms consisting of 6 different programs. Three of those are implementa-
tions of the algorithms instantiating the general server mock class, which was also implemented
and designed by us to fit into the data pipeline.

3.4. Summary 21

Figure 3.4 Diagram illustrating the data flow through the implemented system.

Chapter 4

Benchmarks

With the bench-marking framework implemented we can finally create specific benchmarks and
see how well different algorithms combat the given scenarios. We will conduct 4 benchmarks,
each one in 8 variants to help us decide which algorithms satisfy the business requirements the
best.

4.1 Business requirements
First, we need to specify what are the important business qualities that we want to find in these
algorithms.

The very obvious one is that all of the ordered impressions have to be served. This is a basic
requirement, as when we do not deliver what was ordered, we do not get paid for it.

Next there is the importance of spreading out the impressions equally throughout the duration
of the advertisement. E.g. we have an order for 7 days for a total of 700 impressions. We would
ideally want to dispatch 100 impressions each day, even if the first day can service all of the 700
impressions.

Another requirement is that should there not be enough supply to meet the demand of
advertisements on given disjunct targeting set, all the advertisements should then fail to deliver
in a similar manner. What is not wanted is to give preference to a single advertisement to the
detriment of others.

Our last requirement is that the algorithm needs to be able to deal with the fact that SSP
can deny the impression in favor of another advertisement that will end up making more money
for the web page as well as SSP.

With this set, we can move onto the benchmarks.

4.2 Benchmark variants
Each benchmark will be conducted in exactly 8 variants. To see the effects that unreliable
predictions will have on given algorithm, we will run the benchmarks on:

requests matching the predicted requests exactly

requests deviating from hourly predictions by 0% - 10%

requests deviating from hourly predictions by -10% - 0%

requests deviating from hourly predictions by -10% - 10%

23

24 Chapter 4. Benchmarks

Table 4.1 Benchmark 1 advertisement order.

AdvertisementId ZoneId TargetingIds Day from Day to Hours Impressions
0 zone1 1 0 7 0-23 3300000

Table 4.2 Benchmark 1 daily predictions.

ZoneId TargetingId Impressions
zone1 1 1000000

This will help us assess if the algorithm starts under performing when supplied with more
or less requests than predicted respectively. Or when the hourly predictions do not match the
requests, but the total request count is still very close to predicted total.

Each of these variants will be run in two additional variants, and that is utilizing unrealized
impressions. This will simulate the fact that the auction for the spot on the target web site, that
our selected advertisement will enter, might be won by other advertisements. As the guaranteed
advertisements are more expensive then normal advertisements, this will happen rarely, but it
is possible. For this reason, we will see the effect 5% of unrealized impressions will have on each
variant, as well as keeping the baseline of 0%. As we will run these two modifications for each
variant mentioned above, that brings us to a total of 8 variants for each benchmark.

4.3 Benchmark 1 - a single advertisement

4.3.1 Description
This will be a very simple benchmark. Single advertisement running for 7 whole days. This does
not necessarily simulate that there is only a single advertisement in the whole system, just that
there is only a single one in the specified disjunct targeting set.

The order that will be used in this benchmark is described in Table 4.1, and the daily targeting
predictions in Table 4.2. From the tables we can gather that the advertisement is ordered for 3
300 000 impressions, and the targeting set has a base of 1 000 000 impressions. That means that
with the weekend coefficients, there will be 6 600 000 impressions available for the advertisement.
Seeing how the advertisement is planned for exactly the half of the available space, no algorithm
here should have trouble with delivering the ordered impressions. What we will be therefore
looking for more so on this benchmark is equal distribution over time.

4.3.2 Results
The total count of delivered impressions is shown in Table 4.3, and the graph for each of the
algorithms with the configuration of requests matching predictions exactly and undelivered im-
pressions making 5% is shown in Figure 4.1.

The first business value - delivering all ordered impressions was managed by both Advert and
PropAlloc algorithms. Advert has managed to deliver more impressions then originally ordered,
however that is down to the settings of the quantity cushion parameter of the algorithm. It
is also better business practice to deliver more impressions than ordered, if the other option is
delivering less. The costs connected to returning money to the clients are higher than a possible
loss created by delivering extra impressions for free. The most important takeaway here is that
both PropAlloc and Advert have managed to deliver the same amount of impressions no matter
the circumstances.

The algorithm struggling in this category is SHALE. While the impressions for exact requests
overflow the ordered amount by only 69 impressions, that is where the success of this algorithm

4.4. Benchmark 2 - a single advertisement 25

Table 4.3 Benchmark 1 results.

Algorithm Requests deviation Unrealized impression percentage Clean impressions
Advert 0% 0% 3464997
Advert 0% 5% 3464997
Advert 0% - 10% 0% 3464997
Advert 0% - 10% 5% 3464997
Advert -10% - 0% 0% 3464997
Advert -10% - 0% 5% 3464997
Advert -10% - 10% 0% 3464997
Advert -10% - 10% 5% 3464997
PropAlloc 0% 0% 3300000
PropAlloc 0% 5% 3300000
PropAlloc 0% - 10% 0% 3300000
PropAlloc 0% - 10% 5% 3300000
PropAlloc -10% - 0% 0% 3300000
PropAlloc -10% - 0% 5% 3300000
PropAlloc -10% - 10% 0% 3300000
PropAlloc -10% - 10% 5% 3300000
SHALE 0% 0% 3300069
SHALE 0% 5% 3134989
SHALE 0% - 10% 0% 3461771
SHALE 0% - 10% 5% 3290060
SHALE -10% - 0% 0% 3138065
SHALE -10% - 0% 5% 2981616
SHALE -10% - 10% 0% 3299993
SHALE -10% - 10% 5% 3133643

ends. Every variant where the requests deviate in any way from the predictions, SHALE deviates
from ordered impressions as well.

When we check with the graphs in Figure 4.1 however, we can see that the good results
coming from PropAlloc were to the detriment of the other quality that we are looking for, which
is equal distribution. PropAlloc has managed to serve all the impressions in first three and a
half days, returning only misses for the rest of the campaign run. This category shows much
better results for SHALE, however, the clear winner of this benchmark is the legacy algorithm
of Advert.

4.4 Benchmark 2 - a single advertisement

4.4.1 Description
This will be a modification of benchmark 1. Single advertisement running for 7 whole days. The
difference here being that the advertisement is only running from midnight to noon each day.

The order that will be used in this benchmark is described in Table 4.4, and the daily targeting
predictions in Table 4.5. From the tables we can see that the advertisement is ordered for 3 300
000 impressions, and the targeting set has a base of 1 000 000 impressions. That means that
with the weekend coefficients, there will be 6 600 000 impressions available for the advertisement.
Since the advertisement runs for only half a day however, and the morning period provides less
impressions, no algorithm will be able to deliver the full amount ordered. In this case it is
important to deliver every impressions available, so that the possible penalty is the lowest.

26 Chapter 4. Benchmarks

Figure 4.1 Benchmark 1 results.

Table 4.4 Benchmark 2 advertisement order.

AdvertisementId ZoneId TargetingIds Day from Day to Hours Impressions
0 zone1 1 0 7 0-11 3300000

Table 4.5 Benchmark 2 daily predictions.

ZoneId TargetingId Impressions
zone1 1 1000000

4.5. Benchmark 3 - three advertisements with overlapping targetings 27

Table 4.6 Benchmark 2 results.

Algorithm Requests deviation Unrealized impression percentage Clean impressions
Advert 0% 0% 2517481
Advert 0% - 10% 0% 2628953
Advert -10% - 0% 0% 2392846
Advert -10% - 10% 0% 2514346
PropAlloc 0% 0% 2517485
PropAlloc 0% - 10% 0% 2628957
PropAlloc -10% - 0% 0% 2392850
PropAlloc -10% - 10% 0% 2514350
SHALE 0% 0% 2517485
SHALE 0% - 10% 0% 2628957
SHALE -10% - 0% 0% 2392850
SHALE -10% - 10% 0% 2514350

Table 4.7 Benchmark 3 advertisement order.

AdvertisementId ZoneId TargetingIds Day from Day to Hours Impressions
0 zone1 1,4,5,7 0 7 0-23 4400000
1 zone1 2,4,6,7 0 7 0-23 4400000
2 zone1 3,5,6,7 0 7 0-23 4400000

4.4.2 Results
The total count of delivered impressions is shown in Table 4.6, and the graph for each of the
algorithms with the configuration of requests matching predictions exactly is shown in Figure
4.2. For this benchmark only, the results containing unrealized impressions will be ignored. The
reason for that is that the algorithms are already lacking impressions to use for delivery, so
randomly lowering their supply gives no additional informational value.

From the total numbers of clean impressions we can see that Advert is possibly struggling
in the first second of its serving cycle, as the fitness is 0, and therefore no advertisement is
dispatched. This is something that can be taken to be improved. Other than that, SHALE
and PropAlloc have managed to successfully use all impressions available. Needless to say, that
all the graphs shown in Figure 4.2 look almost the same, as was always expected. It is still
important to have the confirmation that all algorithms behave correctly in this scenario.

4.5 Benchmark 3 - three advertisements with overlapping
targetings

4.5.1 Description
This benchmark will show how each algorithm can deal with multiple advertisements competing
for the same impressions. Figure 4.3 shows the overlapping of targetings of the three ordered
advertisements. Each one circle is representing one of the advertisements, and the numbers
from 1-7 represent the different disjunct targeting sets. We formalize this graphic into the order
specified in Table 4.7, and the daily targeting predictions in Table 4.8.

To better explain the figures in the targeting table, there is 1 300 000 impressions available
for each of the 3 advertisements every standard day. However for 600 000 of those they will
compete with one of the other two advertisements, and for 400 000 they will compete with both
of them.

28 Chapter 4. Benchmarks

Figure 4.2 Benchmark 2 results.

1

Ad0
2

Ad1

3

Ad2
4

5

6
7

Figure 4.3 Benchmark 3 order.

4.6. Benchmark 4 - a single advertisement switching targeting 29

Table 4.8 Benchmark 3 daily predictions.

ZoneId TargetingId Impressions
zone1 1 300000
zone1 2 300000
zone1 3 300000
zone1 4 300000
zone1 5 300000
zone1 6 300000
zone1 7 400000

4.5.2 Results
The total count of delivered impressions is shown in Table 4.9, and the graph for each of the
algorithms with the configuration of requests matching predictions exactly and undelivered im-
pressions making 5% is shown in Figure 4.4.

The absolute numbers in this benchmark look actually the worst for PropAlloc, because while
it has managed to deliver the exact ordered amount in most cases, it has failed to deliver Ad
0 and Ad 1 while delivering Ad 3 in the case where the requests were lowered by up to 15%
thus not providing enough supply to satisfy demand. This is bad practice because we do not
want to play favoritism when it comes to the advertisers. This is further enforced by the graphs
shown in Figure 4.4. While SHALE and Advert have all very fluent graph, the PropAlloc graph
shows that during days 5 and 6 the algorithm starts updating the coefficients resulting in great
volatility in the impression values for each advertisements.

SHALE is once again struggling when requests do not match the predictions, and the Advert
algorithm is once again at the forefront.

4.6 Benchmark 4 - a single advertisement switching tar-
geting

4.6.1 Description
This benchmark is a single advertisement running for 7 whole days. Or rather running for 4
days, after which the targeting is switched for the remaining 3 days.

The order is specified in Table 4.10 and the daily targeting predictions in Table 4.11. This
means that there is total of 4 780 000 impressions available for an advertisement requesting 4
400 000. As the requests supply dramatically declines after 4 days, it is expected that most
algorithms will fail to deliver the guaranteed sum.

4.6.2 Results
The total count of delivered impressions is shown in Table 4.12, and the graph for each of
the algorithms with the configuration of requests matching predictions exactly and undelivered
impressions making 5% is shown in Figure 4.5.

It is clear that due to the setup of the benchmark, the best performer here is PropAlloc. The
reason behind that being the fact that the algorithm does not know anything about the supply
that will come over time, so it forces all advertisements out immediately, only slowing down
once the advertisement is nearing the total count. Advert all around presents better results then
SHALE, but both of them fail in comparison to PropAlloc.

30 Chapter 4. Benchmarks

Table 4.9 Benchmark 3 results.

Algorithm Requests deviation Unrealized impression Clean impressions
percentage Ad 0 Ad 1 Ad 2

Advert 0% 0% 4619995 4619995 4619994
Advert 0% 5% 4619994 4619993 4619993
Advert 0% - 10% 0% 4619995 4619995 4619995
Advert 0% - 10% 5% 4619995 4619995 4619995
Advert -10% - 0% 0% 4616757 4616757 4616757
Advert -10% - 0% 5% 4387812 4387811 4387811
Advert -10% - 10% 0% 4619996 4619996 4619996
Advert -10% - 10% 5% 4612068 4612068 4612068
PropAlloc 0% 0% 4400000 4400000 4400000
PropAlloc 0% 5% 4400000 4400000 4400000
PropAlloc 0% - 10% 0% 4400000 4400000 4400000
PropAlloc 0% - 10% 5% 4400000 4400000 4400000
PropAlloc -10% - 0% 0% 4400000 4400000 4400000
PropAlloc -10% - 0% 5% 4362905 4318744 4400000
PropAlloc -10% - 10% 0% 4400000 4400000 4400000
PropAlloc -10% - 10% 5% 4400000 4400000 4400000
SHALE 0% 0% 4401731 4399170 4400137
SHALE 0% 5% 4180239 4180125 4179472
SHALE 0% - 10% 0% 4617933 4620131 4622764
SHALE 0% - 10% 5% 4388269 4390910 4390291
SHALE -10% - 0% 0% 4166025 4167883 4166453
SHALE -10% - 0% 5% 3956857 3958369 3957992
SHALE -10% - 10% 0% 4410626 4413276 4412036
SHALE -10% - 10% 5% 4191072 4190493 4194259

Table 4.10 Benchmark 4 advertisement order.

AdvertisementId ZoneId TargetingIds Day from Day to Hours Impressions
0 zone1 1 0 4 0-23 4400000
AdvertisementId ZoneId TargetingIds Day from Day to Hours Impressions
0 zone1 2 4 7 0-23 4400000

Table 4.11 Benchmark 4 daily predictions.

ZoneId TargetingId Impressions
zone1 1 1000000
zone1 2 300000

4.6. Benchmark 4 - a single advertisement switching targeting 31

Figure 4.4 Benchmark 3 results.

32 Chapter 4. Benchmarks

Table 4.12 Benchmark 4 results.

Algorithm Requests deviation Unrealized impression percentage Clean impressions
Advert 0% 0% 3574035
Advert 0% 5% 3534100
Advert 0% - 10% 0% 3614231
Advert 0% - 10% 5% 3572761
Advert -10% - 0% 0% 3534700
Advert -10% - 0% 5% 3497091
Advert -10% - 10% 0% 3567889
Advert -10% - 10% 5% 3528577
PropAlloc 0% 0% 4400000
PropAlloc 0% 5% 4400000
PropAlloc 0% - 10% 0% 4400000
PropAlloc 0% - 10% 5% 4400000
PropAlloc -10% - 0% 0% 4400000
PropAlloc -10% - 0% 5% 4346711
PropAlloc -10% - 10% 0% 4400000
PropAlloc -10% - 10% 5% 4400000
SHALE 0% 0% 3441584
SHALE 0% 5% 3269919
SHALE 0% - 10% 0% 3602674
SHALE 0% - 10% 5% 3422193
SHALE -10% - 0% 0% 3281079
SHALE -10% - 0% 5% 3119095
SHALE -10% - 10% 0% 3424332
SHALE -10% - 10% 5% 3252750

As shown in the Figure 4.5 Advert and SHALE are using the full supply once the targeting
switch happens, trying to fulfill the order. PropAlloc meanwhile is done in the middle of day 6.

4.7 Summary
Throughout the benchmarks only one algorithm managed to keep up with all our business re-
quirements - Advert. And it makes sense as the algorithm was adjusted over the years to adapt
to all the scenarios that came up. It has evolved over the years to tackle the problems that came
as feedback, and as such became a tailor made solution difficult to replace.

The SHALE algorithm however shows great potential in computing plans. Replacing the
method creating plans in Advert with SHALE would allow for a more accurate serving as well
as possible better distribution of advertisements into disjunct targeting sets.

PropAlloc matched the set business requirements the least, however, improving the algorithm
by supplying hourly plans it should follow, instead of keeping multiple day plans, could provide
better results.

4.7. Summary 33

Figure 4.5 Benchmark 4 results.

Chapter 5

Conclusion

In this thesis we have familiarized ourselves with the problem that is guaranteed display advertis-
ing, the way that the advertisement makes its way to the web page visitor, and all the constraints
related to generating predictions and taking part in auction. We have explored existing solutions
to the problem, namely SHALE, PropAlloc and Advert, describing them in detail to see the
different approaches.

To emphasize the differences between the algorithms we have implemented a bench-marking
framework to compare them against each other. This consists of multiple Python scripts working
in a data pipeline, producing multiple machine-readable statistics files as well as a visualization
of given simulation in a graph. We have managed to successfully create data generators that
simulate the request flow on production servers, which can be used in our benchmark framework.

We have bench-marked the algorithms against each other on 4 different scenarios, each one
exploring some other aspect of what is required from these algorithms in production. The legacy
Seznam.cz algorithm ended up as the algorithm that matched the business requirements the
closest.

We have set out to understand, implement and evaluate alternatives to the current existing
solution, and create a platform to compare any other algorithms for guaranteed display adver-
tisement. That goal was achieved, however, there is still more work that can be considered.

5.1 Further work
There is definitely a case to be made to rework the architecture of the production environment to
be able to accommodate for the algorithms in their full scale. The researcher feels that the need
to stick to the current architecture has been a detriment to the implementation of the alternative
algorithms.

As was suggested in the summary of Chapter 4 there is potential to improve the Advert
algorithm by using SHALE to compute plans for the online phase of Advert. The dual constraints
that SHALE operates with allow for a much better distribution than the current linear solution
in Advert.

While the benchmarks are representative of the situations that the selected algorithm will
be facing in production, there is always space for more edge cases, and more scenarios to be
bench-marked.

35

Bibliography

[1] Shipra Agrawal, Vahab Mirrokni, and Morteza Zadimoghaddam. Proportional alloca-
tion: Simple, distributed, and diverse matching with high entropy, 2018. URL: http:
//proceedings.mlr.press/v80/agrawal18b/agrawal18b.pdf.

[2] Vijay Bharadwaj, Peiji Chen, Wenjing Ma, Chandrashekhar Nagarajan, John Tomlin, Sergei
Vassilvitskii, Erik Vee, and Jian Yang. Shale: An efficient algorithm for allocation of guar-
anteed display advertising, 2012. arXiv:1203.3619.

[3] Peiji Chen, Wenjing Ma, Srinath Mandalapu, Chandrashekhar Nagarajan, Jayavel Shanmu-
gasundaram, Sergei Vassilvitskii, Erik Vee, Manfai Yu, and Jason Zien. Ad serving using a
compact allocation plan, 2012. arXiv:1203.3593.

[4] Ran Duan and Seth Pettie. Linear-time approximation for maximum weight matching.
Journal of the ACM, 61(1), 2014. URL: https://web.eecs.umich.edu/~pettie/papers/
ApproxMWM-JACM.pdf, doi:10.1145/2529989.

[5] Thomas E. Easterfield. A combinatorial algorithm. Journal of the London Mathematical
Society, s1-21(3):219–226, 1946. URL: https://londmathsoc.onlinelibrary.wiley.com/
doi/abs/10.1112/jlms/s1-21.3.219, doi:10.1112/jlms/s1-21.3.219.

[6] Jon Feldman, Aranyak Mehta, Vahab Mirrokni, and S. Muthukrishnan. Online stochastic
matching: Beating 1-1/e, 2009. arXiv:0905.4100.

[7] Apache Software Foundation. Apache parquet. online. URL: https://parquet.apache.
org/.

[8] Python Software Foundation. Python. online. URL: https://www.python.org/.

[9] Python Software Foundation. Python csv library. online. URL: https://docs.python.
org/3/library/csv.html.

[10] Python Software Foundation. Python package index. online. URL: https://www.pypi.
org/.

[11] Arpita Ghosh, Preston McAfee, Kishore Papineni, and Sergei Vassilvitskii. Bidding for
representative allocations for display advertising, 2009. arXiv:0910.0880.

[12] Frank L. Hitchcock. The distribution of a product from several sources to numer-
ous localities. Journal of Mathematics and Physics, 20(1-4):224–230, 1941. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1002/sapm1941201224, doi:10.1002/
sapm1941201224.

37

http://proceedings.mlr.press/v80/agrawal18b/agrawal18b.pdf
http://proceedings.mlr.press/v80/agrawal18b/agrawal18b.pdf
http://arxiv.org/abs/1203.3619
http://arxiv.org/abs/1203.3593
https://web.eecs.umich.edu/~pettie/papers/ApproxMWM-JACM.pdf
https://web.eecs.umich.edu/~pettie/papers/ApproxMWM-JACM.pdf
http://dx.doi.org/10.1145/2529989
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/jlms/s1-21.3.219
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/jlms/s1-21.3.219
http://dx.doi.org/10.1112/jlms/s1-21.3.219
http://arxiv.org/abs/0905.4100
https://parquet.apache.org/
https://parquet.apache.org/
https://www.python.org/
https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/csv.html
https://www.pypi.org/
https://www.pypi.org/
http://arxiv.org/abs/0910.0880
https://onlinelibrary.wiley.com/doi/abs/10.1002/sapm1941201224
http://dx.doi.org/10.1002/sapm1941201224
http://dx.doi.org/10.1002/sapm1941201224

38 Bibliography

[13] Dawei Huang and Lei Guo. Estimation of nonstationary armax models based on the hannan-
rissanen method. The Annals of Statistics, 18(4), 1990. URL: https://www.jstor.org/
stable/2241884.

[14] John D. Hunter. Python matplotlib library. online. URL: https://matplotlib.org/.

[15] Leonid Kantorovich. On the translocation of masses. Management Science, 5(1):1–4, 1958.
URL: http://www.jstor.org/stable/2626967.

[16] Eugene L. Lawler. Combinatorial Optimization: Networks And Matroids. Holt, Rinehart &
Winston, New York, 1974.

[17] Wes McKinney. Python pandas library. online. URL: https://pandas.pydata.org/docs/
user_guide/dsintro.html#dataframe.

[18] Vahab S. Mirrokni, Shayan Oveis Gharan, and Morteza Zadimoghaddam. Simultaneous
approximations for adversarial and stochastic online budgeted allocation, 2011. URL:
https://homes.cs.washington.edu/~shayan/simultaneous.pdf.

[19] Robert L. Thorndike. The problem of classification of personnel. Psychometrika, 15(3):215–
235, 1950. doi:10.1007/BF02289039.

[20] Erik Vee, Sergei Vassilvitskii, and Jayavel Shanmugasundaram. Optimal online as-
signment with forecasts, 2010. URL: http://theory.stanford.edu/~sergei/papers/
ec10-lagrange.pdf.

[21] Inc. Workday. Timeseries-forecast. online. URL: https://github.com/Workday/
timeseries-forecast.

https://www.jstor.org/stable/2241884
https://www.jstor.org/stable/2241884
https://matplotlib.org/
http://www.jstor.org/stable/2626967
https://pandas.pydata.org/docs/user_guide/dsintro.html#dataframe
https://pandas.pydata.org/docs/user_guide/dsintro.html#dataframe
https://homes.cs.washington.edu/~shayan/simultaneous.pdf
http://dx.doi.org/10.1007/BF02289039
http://theory.stanford.edu/~sergei/papers/ec10-lagrange.pdf
http://theory.stanford.edu/~sergei/papers/ec10-lagrange.pdf
https://github.com/Workday/timeseries-forecast
https://github.com/Workday/timeseries-forecast

Contents of attached medium

README.md .. description of attached programs
benchmarks..data used for benchmarks
implementation...directory containing the programs
thesis...source code of thesis in LATEX
thesis.pdf..thesis in PDF

39

	Acknowledgements
	Declaration
	Abstract
	Acronyms
	Introduction
	Motivation
	Aim of the Thesis
	Structure of the Thesis

	Algorithm for choosing advertisement
	Introduction to guaranteed advertisement selection
	SHALE
	Glossary
	First phase
	Second phase
	Online phase

	PropAlloc
	Glossary
	Algorithm

	Legacy Seznam.cz solution - Advert
	Offline phase
	Online phase

	Framework for algorithm comparison
	Choosing language
	Server and offline process
	Prediction generation
	Requests generation
	Server mock implementation

	Graph statistics
	Summary

	Benchmarks
	Business requirements
	Benchmark variants
	Benchmark 1 - a single advertisement
	Description
	Results

	Benchmark 2 - a single advertisement
	Description
	Results

	Benchmark 3 - three advertisements with overlapping targetings
	Description
	Results

	Benchmark 4 - a single advertisement switching targeting
	Description
	Results

	Summary

	Conclusion
	Further work

	Contents of attached medium

