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Abstract

Quality control is an integral part of SMT electronics manufacturing. Automated inspec-
tion systems are available but costly. In this thesis, we propose a hardware and software
solution that is less expensive and easier to implement. Our image capturing system
is composed of 3D-printed parts and additional electronic parts for illumination. The
proposed defect detection method consists of a simple thresholding-based localization
method and a random forest classifier, which uses features extracted with a pre-trained
VGG-16 neural network. Our model reaches an 80 % accuracy on our dataset, showing
the success of our solution but also exposing shortcomings of our dataset and method.
The thesis concludes with an analysis of results and suggestions for future improvements.

Keywords Automated Optical Inspection, Solder Joint Inspection, Surface Mount
Technology, Printed circuit board, Transfer Learning, Illumination

Abstrakt

Kontrola kvality je nedílná součást výroby SMT elektroniky. Automatizované kontrolní
systémy jsou dostupné, ale nákladné. V této práci navrhujeme hardwarové a softwarové
řešení, které je levnější a jednodušší na implementaci. Náš snímací systém se skládá
z 3D tištěných dílů a dodatečných elektronických součástek pro osvětlení. Navrho-
vaná metoda pro detekci defektů sestává z jednoduché prahovací metody lokalizace a
klasifikace náhodným lesem, který používá příznaky extrahované pomocí předtrénované
neuronové sítě VGG-16. Náš model dosahuje přesnosti 80 % na našem datasetu, čímž
ukazuje úspěch našeho řešení, ale odhaluje také nedostatky našeho datasetu a postupu.
Práci uzavírá analýza výsledků a návrhy pro budoucí vylepšení.

Klíčová slova automatická optická inspekce, inspekce pájených spojů, SMT, deska
plošných spojů, transfer learning, osvětlení
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AOI Automated Optical Inspection.

API Automatic Placement Inspection.

CART Classification and Regression Trees.

ConvNet Convolutional Neural Network, also CNN.
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Introduction

Most of the Surface Mount Technology (SMT) electronics production process is fully or
partially automated to match the demand for high quality and low cost. Aside from
fabrication itself, the quality control stages of production can benefit from automation
just as well. Various commercial solutions are available for large-scale operations that
leverage different imaging methods and evaluation of part quality, but none of these
solutions are suitable for smaller production environments primarily due to high cost.

In this thesis, we aim to create a prototype consisting of software and hardware that
could be used as a final production stage to visually verify a finished SMT product. We
employ one type of Automated Optical Inspection (AOI) that focuses on imaging solder
joints using a colored light system and use a transfer learning method combined with a
random forest classifier to find any defects. The prototype is constructed using readily
available parts and devices that are feasible for use in small-scale operations while still
attempting to achieve high accuracy to bring a meaningful improvement in production
efficiency.

In the first chapter we lay out the foundation of the SMT process, the AOI field,
and the methods we use in our solution. In the second chapter, we describe and discuss
the present solutions of AOI in general and specifically Post-Soldering Inspection (PSI).
The following two chapters are dedicated to designing and implementing our prototype,
followed by an analysis of the results we achieved.

We conclude the thesis by discussing possible modifications of our approach in the
current state, along with suggestions for future work that could improve our solution
with a significantly different method. These improvements may lead to a more robust
solution and help implement it in production.

Our prototype shows promising results and demonstrates that it is possible to con-
struct an automated quality control process even in low-volume production. The solution
could be transformed into a working product with some modification and bring mean-
ingful improvement to manufacturers.

1





Chapter 1

Theoretical Background

This chapter starts with a brief introduction to the field of SMT manufacturing, AOI in
general, and the specific case of inspection we focus on. In the latter part, we describe
image acquisition and processing methods, which we use in the following chapter to
design and implement our prototype.

1.1 SMT Manufacturing Process
SMT production aims to mount SMD parts onto a Printed Circuit Board (PCB) using
solder. There is an older method called through-hole technology (THT), which achieves
the same goal by securing parts in drilled holes in PCBs, but SMT is dominant in
manufacturing because, as per [1], it has many advantages, such as higher component
density, ease of automation and lower part cost.

As described in [2, 3], SMT assembly (excluding inspection steps) is done in three
phases: solder paste printing, component placement, and reflow soldering. These stages
are described in the following sections. Sometimes, as mentioned in [3], wave soldering
is used instead of reflow soldering, but the latter is dominant in SMT.

1.1.1 Solder Paste Printing
In the first phase, solder paste – a mixture of microscopic balls of solder and viscous flux
– is applied to solder pads (exposed metal contacts on a PCB) in a solder paste printer.
This machine, shown in fig. 1.1a, uses a metal stencil to apply solder paste precisely in
all places on the PCB where parts will be soldered.

Common defects in solder paste printing are applying too much or too little solder
paste on the PCB. If not corrected, this leads to parts completely or partially unattached
to soldering pads or bridges – unintended electrical connections between neighboring
soldering pads.

1.1.2 Component Placement
SMD components are placed onto a PCB in a pick-and-place machine. The parts are
put in their place by a fast-moving head with a nozzle that holds components using a

3



4 Theoretical Background

(a) A solder paste printing machine [2]. (b) A solder paste printing defect [2]

Figure 1.1 Solder paste printing

vacuum on their way from a part feeder to their destination. As [2] states, these machines
operate at up to 100,000 cph (components per hour) and can place a wide range of sizes
and types of parts by using different nozzles and feeders. This machine commonly uses
a vision system to place components correctly and check them for defects before placing
them.

1.1.3 Reflow Soldering
In the last phase of assembly, the prepared PCB is heated up, solder paste is melted, and
all connections between components and the board are made permanent. This process
called reflow soldering consists of four stages:

1. preheating

2. soaking

3. reflow

4. cooling

This entire procedure is done in a reflow oven, a long machine where the prepared
board slowly goes through all these steps on a conveyor system. First, the board is
preheated to a high temperature but not enough to melt any solder. This is done slowly
(at 2 °C or less per second, according to [2]) to avoid damaging any components.

The preheating phase is followed by a soaking period, where the temperature is kept
stable to make sure all components are heated evenly. This is especially important for
assemblies with a wide range of component sizes, as smaller components heat up faster
than larger ones.

In the reflow step, the temperature is raised above the melting temperature for a
short period. Correct timing and temperature are crucial to form a good connection and
not damage components, which are often rated for temperatures just slightly above the
reflow temperature. Short reflow time can result in unmelted solder paste that does not
form a proper connection, but solder melted for too long can be prone to cracking.

Finally, the finished board is cooled down slowly to prevent similar issues as in the
preheating step. This concludes the fabrication process, and the finished board is ready
for final inspection and testing.
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Figure 1.2 SMT Assembly line including inspection machines [4].

1.2 Inspection Phases in Manufacturing
As we described in the previous section, the SMT manufacturing process consists of
numerous steps, each of which can result in some kind of defect that usually results in a
product that does not function properly or has a risk of developing a malfunction later
on.

There are many ways of testing and inspecting the PCB throughout the manufac-
turing process to prevent these issues. Functional testing is usually done at the end to
verify the finished product’s functional electrical properties, but it cannot be done in
earlier stages, and it is not suitable for quality control in terms of long-term reliability.
Functional testing methods are out of the scope of this thesis, and we will further focus
on visual methods of inspection used in the SMT process.

Similarly to the assembly process, inspection is done in three main stages, each after
one of the assembly steps to make sure it was executed correctly, and the board can be
passed on to the next machine.

As described in [4, 2], the inspection stages are:

1. Solder Paste Inspection (SPI)

2. Automatic Placement Inspection (API), also known as Pre-Reflow Automated Opti-
cal Inspection or Post-Placement Inspection

3. Post-Soldering Inspection (PSI), also known as Post-Reflow Automated Optical In-
spection

As shown in fig. 1.2, SPI and API are targeted at failure prevention because nothing
is soldered and finalized at that stage, but PSI is only done for failure detection on a
finished product, which can be then discarded or, in some cases, fixed manually.

The inspection steps are primarily done optically, hence the term Automated Optical
Inspection. Although this name is used as an umbrella term for all three of the stages, the
actual inspection methods, in the sense of image capturing and image processing, vary
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Figure 1.3 Fringe pattern projection SPI [2]

greatly. We will focus on these methods in the following sections with a brief description
of SPI and API, followed by a deeper look into PSI, which is the main subject of this
thesis.

1.2.1 Solder Paste Inspection
The base goal of SPI is to make sure that solder paste is present in all locations on the
board, where it should be, and is not in places where it is not supposed to be applied.
This goal can be achieved using a 2D SPI machine. However, modern ones are designed
to do more than that – measure if the applied solder paste volume in each location is
correct. To achieve inspection of volume, various optical methods are used to capture
a 3D representation of the board, mainly laser scanning [5, 6, 7] and fringe pattern
projection [8, 9, 10], shown in fig. 1.3.

1.2.2 Automatic Placement Inspection
As described in [4], API is focused on defects regarding placement of each SMD compo-
nent, and current solutions can to check for errors in rotation, X/Y shift on the board
surface, polarity, and more.

To achieve this, [2] mentions that “the best way of doing this is by using an AOI
machine” in the sense that API is done with a machine working on the same principles
as in PSI, which is (confusingly enough) often itself referred to as AOI. This is no
surprise given that the only difference between API and PSI is the state of solder –
printed solder paste and finished joints, but many defects in component placement are
the same, regardless if they are caused by an error in placement or reflow.

1.2.3 Post-Soldering Inspection
As we discussed earlier, some defects may not become obvious in functional testing,
and [2] mentions that manufacturers often require good post-reflow AOI to prevent
early board failure, which may be costly. PSI is also by far the most researched form of
inspection, as stated in [4].

A common approach to PSI is Solder Joint Inspection (SJI), which is focused on
visually checking the quality of joints between the board and components. This is also
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identifier class name class diagram [11] dataset image

0 Acceptable solder joint

1 Insufficient solder

2 Excessive solder

3 Tombstone

4 Component missing

5 Component shifted

Table 1.1 PSI soldering defect overview

the type of AOI we chose for this thesis, as it is relatively easy to implement and very
effective at discovering most of the frequent defects.

Some other methods do not inspect only joints but also all components on the board,
which is more complex, but can uncover more subtle defects such as polarity flip and
placement of a different type of component.

1.2.4 PSI Defects
We have encountered many ways of categorizing soldering defects across the AOI litera-
ture. For the context of this thesis, we selected 6 of the most common classes, inspired
by [11]. All of them are shown in table 1.1. Dataset images are captured using the
3-color method described in the following section.

The first two types of defects are caused primarily by incorrect solder paste applica-
tion, and the three remaining are usually a result of a failure in component placement,
but a shifted component can often also be a result of excessive solder application.
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(a) Tiered illumination diagram [11].

(b) Solder fillet color reflection effect [11]

Figure 1.4 Tiered color light illumination system

1.2.5 Tiered Color Illumination System

Our image acquisition approach uses an illumination system based on tiered color lights.
As further discussed in section 2.1.1, this is a commonly used system in AOI, which has
been implemented and improved upon multiple times.

As shown in fig. 1.4a, the most common configuration consists of three tiers of red,
green, and blue circular light sources mounted in a dome-shaped enclosure. The camera
is mounted above the center of the dome, pointed directly at the captured board, which
is located below.

The advantage of this illumination system is that it allows us to evaluate the angle
of a slope of solder at any point, giving us information about the 3D shape of a solder
connection just from a 2D image captured by a single camera. This effect can be seen
in fig. 1.4b, where parts of a solder fillet reflect the light of different colors based on
which color of light meets the solder with the best angle of incidence to be captured by
the camera above. The resulting color pattern makes it easier to determine the shape of
solder and can be utilized in many ways by an image processing method.
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Figure 1.5 An example of a ConvNet architecture [12].

1.3 Image Processing Methods
In this section, we describe the main methods we used in our image processing pipeline.
Some of them are related directly to image processing, other are more general algorithms
of machine learning applied in our case of image classification.

1.3.1 Convolutional Neural Network
A Convolutional Neural Network, also CNN (ConvNet), is a type of neural network that
is commonly used to extract information from images, especially for classification tasks.

The main building block of ConvNets are convolutional layers. Their purpose is to
extract information from a localized region of the source image or an intermediary layer.
An example of an architecture with convolutional layers is shown in fig. 1.5. These layers
apply a discrete convolution to the input of each layer with filters (also kernels), which
are composed of weights applied to each pixel in the region. Filter weights are optimized
throughout the learning process, gradually creating filters that extract the most valuable
information available in the layer.

Aside from convolutional layers, ConvNets usually contain pooling layers that reduce
the dimension of the processed image (or rather feature maps – intermediary results of
convolution). As [13] describes them, pooling layers also work on a localized level, most
commonly with a 2 × 2 filter size and a max operation – compressing the region to its
maximum value, reducing the feature map resolution to half in both dimensions.

1.3.2 VGG-16
VGG-16 [14] is a deep convolutional neural network (ConvNet) architecture originally
developed for the 2014 ILSVRC competition [15] by the Visual Geometry Group (VGG)
at the University of Oxford. The number 16 denotes the number of layers in the network,
but the authors also experimented with configurations ranging from 11 to 19 layers, with
VGG-19 being another popular choice for some applications. As shown in fig. 1.6, the
VGG-16 architecture consists of 4 types of layers – convolutional (with 3 × 3 filters),
max pooling (with 2× 2 filters), fully connected, and softmax. The first two types have
been described in the previous section, and the latter two are specific to the classification
purpose of the model.



10 Theoretical Background

Figure 1.6 VGG-16 architecture [16].

Fully connected layers, also used in traditional neural networks, compose each ele-
ment of the output matrix by applying weights to the whole input feature map, gaining
the ability to extract global information across the whole processed image, but at the
cost of dramatically increasing the number of parameters (weights) in the model.

The final layer of the VGG-16 architecture is a softmax layer that converts the data
from the previous layers to the predicted probabilities of each class in the classification
task – the popular ImageNet dataset containing 1000 categories.

1.3.3 ConvNet Transfer Learning
As described by [17], transfer learning is a method of using gained knowledge on a source
domain in a source learning task and using this knowledge to improve learning on a new
target domain in the target learning task.

In ConvNet image classification tasks, this method is used based on the assumption
that the source domain (usually a large image dataset) can be used to learn knowledge
that is also useful in the target task – another classification task with a target domain.
However, this precondition cannot be applied blindly. There are rare cases, such as [18],
where the target domain is different from the source domain in ways that do not allow
for effective transfer learning.

This approach is often used solely because the target domain contains significantly
fewer data points than the source domain, and pre-trained ConvNets on source domains
(most commonly the ImageNet dataset) are widely available.

As [19] describes the process, transfer learning on ConvNets is practically done in
the following way:
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1. train the desired ConvNet for the source task (or use a pre-trained one)

2. remove the last layer, which is specific to the classes used in the source domain

3. add a new final layer with the correct dimension for our target domain

4. randomly re-initialize all fully connected layers that lead up to the final layer

5. train the network on the target domain, potentially leaving the convolutional layers
without change (freezing them)

The other ConvNet transfer learning approach is to use the pre-trained network as
a generic feature extractor, and as [20, 21] show, this is a viable method in the AOI
context. This method leaves out the whole training phase and uses the source ConvNet
without any changes, only to extract raw data that can be processed in some way for
the target task. This is usually done by selecting one of the last layers in the network
and using it as the output, based on the assumption that this data contains valuable
information relevant to the target task. The last convolutional layer is most commonly
selected as the output, but as [20] suggests, features from fully connected layers can also
be used to extract more high-level features related to the source classification task.

1.3.4 Principal Component Analysis
Principal Component Analysis (PCA) is a popular method for dimensionality reduction,
meaning that it allows us to lower the dimension of data without losing much information.
This is done by finding an orthogonal linear transformation that, when applied to our
data (an n × p matrix X with n data points and p features), results in a new matrix
containing new features with the maximum variance, sorted in descending order, giving
us the most “important” information in the data [22].

The method uses a modified matrix X ′ that is centered by the sample mean in
each dimension. A covariance matrix is then computed as 1

n−1X
′TX ′, and the desired

components are the eigenvectors of this matrix sorted by their eigenvalue. These vectors
can then be used as a matrix for the orthogonal transformation on the source data.

1.3.5 Data Augmentation
Data augmentation is a technique most frequently used in image-based machine learning
to enlarge a dataset and reduce overfitting. The concept of augmentation is to create
new data points (images) using the original dataset. As [23] describes, there are many
ways of manipulating an image to produce a new sample, which is effective in learning.
This includes simple geometric methods – flipping, rotation, cropping, translation, and
more sophisticated methods, such as noise injection and color space transformations.

1.3.6 Decision Tree Classification
Decision trees, also known as Classification and Regression Trees (CART) [24], are, as
the name suggests, is a predictive model type used both for classification and regression.
Each prediction in this model starts at the tree’s root node, then each node represents a
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single decision based on a parametrized condition, and the prediction ends when a leaf
node is reached – each of the leaf nodes is assigned with a prediction value.

The decision tree is iteratively built from the root, based on the training dataset.
For the classification task, we have fractions p1, p2, . . . , pn for the current node in each
iteration, where pi is the proportion of class i in the subset T of training inputs predicted
to this node by the current tree structure [25].

If |T | > 1 (1 can be substituted by a constant), the algorithm finds the best way to
create a new condition (based on available features) to split the training subset into two
parts with the highest information gain IG, based on the parent node entropy H(T ),
and weighted entropy (by proportion in T ) of each of the proposed child node training
subsets T0 and T1, calculated by the following formula:

H(T ) =

n−1∑
i=0

pi(T ) log pi(T )

IG = H(T )− t0 ·H(T0)− t1 ·H(T1)

There is also a popular alternative with Gini impurity instead of entropy, the infor-
mation gain is then calculated as follows:

IG = 1−
n−1∑
i=0

pi(T )
2

1.3.7 Random Forest
Random Forest [26] is an ensemble learning model suitable for both classification and re-
gression tasks. The model is composed of many decision trees (described in section 1.3.6),
which do not perform as well on their own, but they are used to “vote” on the prediction
result, enabling more robust generalization, and thus reducing overfitting, which simple
decision trees are prone to. The trees in a Random Forest are also usually much smaller
than a single decision tree model would be for the same task.

Two main methods are used to create decision trees that are different from each
other (with lesser correlation) – Bootstrap Aggregation (Bagging) and feature selection
(feature bagging). Bagging assigns each decision tree a different input training set by
selecting a specified number of samples with replacement. Feature bagging is applied in
each node split during the learning process by selecting a random subset of features to
consider for splitting. This forces the decision trees to split using more obscure features
instead of a few popular ones used in most of the trees.

1.3.8 Cross-validation
Similar to data augmentation (described in section 1.3.5), cross-validation is another
method frequently used to improve a model’s performance on a small dataset. Tradi-
tional training methods use a separate training, validation, and test dataset, limiting the
size of the training dataset to only a small portion of the total dataset size, especially
when the test and validation dataset needs to be large enough to evaluate the quality of
the model.
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Cross-validation removes this shortcoming by eliminating the validation dataset and
generating different sets of training and validation data multiple times to evaluate the
quality of the same model configuration.

The k-fold method used in this thesis achieves this by splitting the dataset into k
folds – k randomly selected equally sized subsets. For each of these subsets, we run
our training procedure with all data not included in the subset and evaluate the model
on the remaining data in the subset. This produces k scores for our model, and their
average is then presented as the final estimation of the model’s performance metric.

As we stated earlier, this method is beneficial in cases where we don’t have enough
data. However, it comes at a performance penalty because the whole training process
needs to be run k times for a single evaluation.





Chapter 2

Related Work

There have been numerous attempts at the task of detecting soldering defects over the
past decades. This chapter introduces some notable approaches and compares their
differences.

2.1 Image Acquisition
Both 2D and 3D image capturing methods are used in the SMT industry. However,
as [2] warns, the difference is not clear because AOI system manufacturers often claim
3D capability, even if the system uses only a 2D image to assume the 3D properties of
the inspected article. This approach is also sometimes referred to as 2.5D.

A “pure” 2D capturing solution can be as simple as taking an image of the fin-
ished board with a DSLR camera as in [27]. Commercial “full 3D” solutions are widely
available for purchase, such as [28], and some technical information about them is avail-
able [29], but the methods behind 3D reconstruction-based post-reflow AOI are currently
not well represented in literature.

2.1.1 Illumination Systems
The vast majority of research has, for decades, focused on development of 2D based
solutions, where the main difference in image capturing is often the illumination system
used to highlight key features of the inspected board.

One of the illumination solutions, arguably the most popular one, is a tiered color
light system first described in 1988 [30], which was later improved upon and used by [31,
11, 21, 32, 33, 34, 35, 36].

As described in section 1.2.5, this system usually consists of three tiers of red, green
and blue circular light sources, but different configurations have also been implemented
with two [30] and four [33] levels and colors. Older solutions, such as [30], use fluorescent
lamps to achieve this setup, while modern ones dominantly use circular LED arrays,
usually mounted inside a dome-shaped enclosure as described in [11, 32, 31, 33].

Other, less popular, illumination approaches exist, such as a two-color system [37],
where three images are taken, one with top-mounted white light and two with opposing
red and blue light, as shown in fig. 2.1.

15
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(a) Two color illumination diagram (b) Two color illumination image example

Figure 2.1 Alternative two color illumination system[37]

This system is easier to implement, but it is highly dependent on the orientation of
SMD components, which may, in practice, be mounted at any angle.

2.2 Image Processing

Depending on the image capturing method, there are many ways of processing this
data to extract meaningful information, mainly as a task of classification - deciding on
whether the inspected part is defective or not, usually specifying a type of defect.

2.2.1 Solder Joint Localization
Solder joints must be first localized to extract features from a board image. This is
usually done by matching a template of a manually verified sample [27, 38, 39] or by
dynamically localizing solder pads in each sample, which can be done in different ways.
More straightforward thresholding-based approaches are common, such as [40, 41, 42,
43]. There is also a recent example of a modern You Only Look Once (YOLO) convo-
lutional neural network object detection method used by [21] with good results.

2.2.2 Feature Extraction
When a solder joint is localized, the extracted RoI can be directly used in a classification
algorithm, or, more commonly, features are extracted from the image to create data that
is more suitable for use in the chosen classification algorithm, while often bringing out
some desirable properties of the image. Feature extraction methods vary both in the
types of features and the method used to extract them. A review of previous works [44]
shows that many of the earlier approaches use wavelet transform and various geometric
properties, such as length, area, perimeter, and compactness.

A recent article [21] also describes feature extraction based on transfer learning –
using a pre-trained neural network’s ability to generalize for image classification tasks
to generate features for an unrelated dataset (further described in section 1.3.3). This
approach uses transfer learning only to extract features, but their work is also based
on [19], which shows that transfer learning can also be used directly for classification (in
a similar AOI task) by modifying the pre-trained network and fine-tuning.
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2.2.3 Classification
Like the previous stages of the inspection pipeline, the choice of a classification algorithm
is not clear. Many methods have been used successfully with no obvious performance
differences. The accuracy of each classification model may vary greatly based on the
features used, number and types of defects targeted, and there is also no well known
public dataset to be used as a benchmark for comparisons. However, some literature uses
datasets from other AOI tasks to compare performance, such as a metal strip surface
defect dataset [45].

Neural network based classifiers have been a popular choice, even as early as 1995,
starting with Multilayer Perceptron (MLP) [46] and Learning Vector Quantization (LVQ)
models [35]. There have also been successful attempts with a Support Vector Machine
(SVM) classifier [21, 47], a genetic algorithm combined with a neural network [48], and
ensemble approaches with AdaBoost [49] and Random Forest [50].





Chapter 3

Proposed Approach

As we stated in the introduction, our primary goal is to create a prototype of an AOI
system suitable for small-scale SMD manufacturers, such as startup companies and hob-
byists. To achieve this, we need an affordable hardware system and defect detection
software that is suitable to use even in a small production run of a few boards instead
of millions. In the following sections, we will go through the design and implementation
of our system.

3.1 Image Acquisition
Our image acquisition solution is composed of multiple parts, most of which are designed
and made by us. In this section, we will describe all these parts, starting with the
illumination system and ending with the camera configuration.

As we discussed in 2.1.1, a popular illumination solution is a dome-shaped three-
color system that highlights the three-dimensional shape of solder. We set out to design
and build our solution that can be made using a 3D printer and relatively inexpensive
electronic parts. The following sections will focus on the specifics of this design, and in
section 3.1.6 we will summarize the price comparison against a commercial solution.

3.1.1 Illumination Geometry
To achieve the desired color pattern reflection, we devised a geometric model, shown in
fig. 3.1. When using a dome-shaped enclosure, we can place the light sources in such a
way that we can reflect light into the top-mounted camera from solder at an angle of 0°
to 45°, or practically a slightly narrower range due to the top cut-out for a camera and
the vertical gap between the bottom of the dome and the inspected board.

We divided this range of angles into three parts – 0° to 15°, 15° to 30°, and 30° to
45°. For each of these angle ranges, we modeled a reflection from a light source mounted
on the dome’s surface towards a simplified pin-hole model camera with an optical center
10mm above the top of the dome. The modeled light rays are reflected from a circular
arc (with a radius of 1mm) placed near the horizontal center 10mm below the bottom
rim of the dome. We believe this representation is close to the real inspection the dome
will be used for.
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(a) The complete dome illumination model

(b) 3 light ray reflections across the 45° angle range

Figure 3.1 Illumination geometry model

The result of this model is a set of computed positions and angles for three layers of
light sources to be mounted inside the dome.

3.1.2 Dome Enclosure Design
For the light sources in each of the three layers, we decided on an array of small PCB
segments, each of which is mounted with three LED components of one color. These
segments are of trapezoidal shape in order to form a circular array at the specified angle
with as small gaps as possible, so that we could solder these components directly together
without any wires.

Based on preliminary design of the segments (discussed in detail in the next section),
we decided to work with a minimum size of 8.1mm vertically and 7.5mm horizontally,
increasing the horizontal dimension on one side to form a trapezoid of the desired size
for each layer.

We then wrote a Python script to calculate the number of segments and their dimen-
sions for each layer. Based on the results, we finalized the PCB design for the segments
and created their 3D models. These models were then used to design the whole dome en-
closure using SolidPython [51], a Python library for generating code for OpenSCAD [52]
– a code-based CAD modeler.

The resulting model shown in fig. 3.2 is a dome with cut-outs to fit and hold each
layer, a hole for the camera and additional holes for the light array wiring. We then
printed this structure in a 3D printer and mounted it with illumination hardware dis-
cussed in the following section.



Image Acquisition 21

(a) Dome enclosure 3D model exterior (b) Dome enclosure 3D model interior

Figure 3.2 Dome enclosure 3D model

3.1.3 Illumination Hardware Design
The illumination system hardware, pictured in fig. 3.3, consists of three main components
– the three layers of LED segments, a breadboard for wiring and additional components,
and an Arduino Uno Rev3 microcontroller board.

(a) LED segment hardware design (b) LED segments soldered with
components

(c) Complete illumi-
nation system

Figure 3.3 Illumination hardware

As we mentioned in the previous section, the LED light arrays consist of many PCB
segments. These segments, shown in figs. 3.3a and 3.3b, are mounted with 5 SMD
components: 3 color LEDs, 1 resistor and 1 driver IC for the LEDs. The segments are
joined by 3 soldered connections on each side, providing 5V power, ground, and light
intensity control. One connection in each layer is wired out to the breadboard, where
a Pulse Width Modulation (PWM) signal from the Arduino board controls the light
intensity using 3 transistors.

The USB-powered Arduino board is used both as a power source and as a simple
computer that controls the light sources by setting 3 output pins to a PWM mode with
an experimentally selected duty cycle length.

Unlike most other tiered color light designs discussed in section 2.1.1, we decided to
change the order of the two top layers to use the LEDs with the highest light output
(green) in the top layer, where we could only mount 10 segments. This choice results in
visually different images but should not affect performance in any way.
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(a) Sample positioning structure (b) Camera mounting bracket

Figure 3.4 Capture station structure models

(a) Sample positioning structure (b) Complete image capturing
station

Figure 3.5 Image capturing station

3.1.4 Image Capture Station
To consistently capture images of all sample boards, we needed a structure to hold all
components of the capturing equipment together while allowing for variable positioning
in order to position the inspected component in the center of the illumination system
according to the model described in section 3.1.1.

To meet all these requirements, we developed another 3D printed structure made up
of many parts, shown in fig. 3.4a. At the very bottom is a base with 4 small holes and
two rails that the illumination dome can slide on. The holes in the bottom are used
to hold 4 cylindrical posts of variable length (shown in front) that allow us to choose a
vertical position of the sample from 0mm to 12mm. On top of the posts, we placed a
flat plate that holds two long brackets. These brackets slide across the plate in one axis
and have an indentation on their inner side to clamp the inspected sample and enable
positioning in the perpendicular horizontal axis. The final components of this structure
are 4 small cube-shaped pegs that attach to the side rails to lock the dome position.

The second part of the capturing station is the camera arm, shown in fig. 3.5b. We
repurposed a simple Powerfix brand “helping hands” holder for soldering and 3D printed
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a mounting bracket (pictured in fig. 3.4b) for our camera with a small pin to lock it onto
one of the arm attachment parts.

The complete image capturing station, including the camera (further discussed in
the following section), is shown in fig. 3.5b.

3.1.5 Camera
At first, we experimented with a simple and inexpensive USB130W01MT model RGB
camera with a resolution of 640x480, but we found that the resolution and overall image
quality were not good enough to capture small SMD parts. The camera body we used
to capture our dataset is a Basler acA1920-50gc [53] – an RGB camera with a resolution
of 1920x1200, and its list price is 19342 CZK (at the time of writing). For the camera
lens, we chose a Basler C125-1620-5M [54] with a fixed focal length of 16mm, listed for
2777 CZK.

We captured images from this camera over an Ethernet connection using pylon
Viewer [55] software provided by Basler. After some experimentation, we settled on
hardware and software camera parameters in table 3.1. All unlisted parameters per-
formed best at their default value.

parameter parameter value
Aperture F3.0
Exposure 5000µs

White Balance Correction disabled
Color Adjustment disabled

Table 3.1 Camera parameters used in image acquisition

3.1.6 Price Comparison
Our solution is composed of multiple parts that we described in the previous sections.
In table 3.2, we summarize the cost of each part. For comparison, a commercial tiered
color illuminator is available for purchase locally from ATEsystem s.r.o., which sells a
unit of OPT-RIA200-RGB for over 60,000 CZK. With a total estimated cost of 1860.86
CZK, we think our solution accomplishes its goals in terms of price by a large margin.

3.1.7 Inspection Samples
As the sample PCB for our experiments, we selected the board described in section 3.1.3
and used to construct the illumination system because we had a large number of extra
units, many of which had genuine defects that we unintentionally created during our
production.

From this board, pictured in fig. 3.6a, we decided to inspect only one of the parts –
a resistor with two solder pads. The other components could also be inspected, but the
three LED modules on each board had a single joined solder pad on each side, caused
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part name quantity used unit price estimate (CZK)
array segment PCB, wide variant 10 5.34

array segment PCB, narrow variant 60 5.23
LED driver 70 4.60

red LED light 70 0.67
blue LED light 70 1.83
green LED light 70 2.75

array segment resistor 70 0.13
transistor 3 5.50

1 kOhm resistor 3 3
5 kOhm resistor 3 3
Arduino Uno v3 1 600

breadboard 1 62
wires 14 2.48

3D printing 106.4 g 0.6
total price 1860.86

Table 3.2 Estimated cost of our illumination system

by a mistake in design, and we also chose not to inspect the LED driver IC because,
as [21] suggests, IC solder joints are more challenging to inspect and are often solved
using different methods than regular non-IC components.

Most of the sample images we collected were from our small production using a reflow
oven, but we also had to create some defects manually using a soldering iron because
some defects did not occur naturally as often. However, many synthetic samples do not
look as consistent as those soldered in the reflow oven, partly because of a different solder
type (lead-based solder wire instead of solder paste) and also because of unsatisfactory
soldering skills, which also lead to many of these sample images being discarded. This
manual process was time-consuming, so there is still a significant disparity between the
different classes of defects in the resulting dataset, as shown in table 3.3. The whole
dataset is also included in the attached medium.

class identifier sample class number of samples in dataset
0 Acceptable solder joint 92
1 Insufficient solder 51
2 Excessive solder 45
3 Tombstone 12
4 Component missing 136
5 Component shifted 18

Table 3.3 Sample dataset overview
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(a) Source image from our dataset (b) Processed mask for landmark
extraction

(c) Cropped image with
landmarks, an angle cor-
rection line and solder pad
RoIs

Figure 3.6 Solder joint localization process

3.2 Image Processing
This section will go over all the steps in our image processing pipeline, starting with
the dataset we captured with the method described in the previous sections and ending
with the classification of the processed data.

3.2.1 Solder Joint Localization
First, we need to extract the solder joints from the source image. As discussed in
section 3.1.7, the task is to extract two solder joints of one component from each image.

We decided on an ad-hoc solution tailored to our dataset because a generalized
approach, such as object detection using a YOLO model used by [21], would require a
significantly larger dataset with manually located solder pads and would be more difficult
to implement. The following approach would not be suitable for real-world use in an
AOI application, but it was sufficient to extract data for our classification experiment.

We created a Python script for this task and used the OpenCV library [56] for most
of the image processing.

In the beginning, the source image (example shown in fig. 3.6a) is cropped down to the
center section – all the target PCBs are located in the center as a result of our positioning
system. Then we create a version of the image in the HSV color representation, which
is better suited for color-based thresholding. To precisely locate the board, we used four
white arrow-shaped marks, which are present at the edges of each board, as landmarks.

We first filtered the image using two thresholds to extract these shapes, which results
in a binary mask containing only parts of the image similar (in terms of color) to the
landmarks. We then applied a blur using a median filter with a size of 5 × 5 to reduce
the effect of inconsistency in the image, such as noise and dust particles on the sample,
and eliminate any small gaps in the contours contained in the mask. One finished mask
example is shown in fig. 3.6b.

In the next step, we extract all contours from the mask using the algorithm [57].
These contours are then filtered by multiple properties to remove all unwanted contours
that are of similar color as our landmarks:

bounding box width and height
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bounding box position relative to the minimum and maximum x/y position of all
contours (removes contours from the center of the PCB)

bounding box aspect ratio

contour perimeter length

Based on the position of the four landmarks, we use their centers to create two
horizontal lines (one line drawn as yellow in fig. 3.6c) and calculate their angles. The
average of these angles, together with the positions of the landmarks, is then used to
rotate and crop the image so that we have a consistent image of the inspected board.

The final step is the solder pad Region of Interest (RoI) extraction, which is done us-
ing a template of RoI positions relative to the board image dimensions. These templates
were slightly different for the two variants of the sample PCB.

3.2.2 Feature Extraction
Inspired by [21], we chose a transfer learning based approach for feature extraction using
the VGG-16 model (discussed in section 1.3.2) pre-trained on the ImageNet dataset,
provided by the Keras [58] library.

This means that we used the prepared RoI image dataset images as the input for
the model but recorded the output from an intermediary feature map as the output,
specifically the last layer before the final fully-connected layers. This yields us 25088
features that could be potentially used in any classification algorithm.

To reduce the number of features, we used the PCA algorithm, discussed in sec-
tion 1.3.4. This step was not necessary, but it helped both in terms of performance and
in order to remove many features that carry little information useful for classification,
which helps our classifier with feature selection. The use of PCA allowed us to reduce
the number of features from the original 25088 down to 30 without any significant loss
of accuracy.

We also used a simple data augmentation method to increase the total number of
samples in our dataset. As discussed in section 1.3.5, there are many of ways to augment
an image to create a new one, such as horizontal/vertical shift, flip, rotation, and zoom.
We chose to use only the vertical and horizontal flip methods to generate 3 additional
images from one source, as most of the other augmentation methods could produce an
image very similar to a defect from an image of an acceptable joint.

3.2.3 Classification
The final part of the whole image processing pipeline is the classification stage – an
ensemble learning method based on a Random Forest model (described in section 1.3.7)
composed of decision trees.

Our implementation is based on the scikit-learn [59] library, which provides a model
that can be tuned with many hyperparameters. We chose 4 of these parameters; their
values and descriptions are listed in table 3.4.

The model was trained for each combination of these parameters, and its performance
was measured using the k-fold cross-validation method (described in section 1.3.8) with
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parameter name description value range step
n_estimators number of decision trees 100–220 20

max_depth maximum decision tree depth 4–14 2
criterion function used to measure split quality Gini, entropy –

max_eatures maximum features used by a decision tree 4–14 2

Table 3.4 Random forest classifier hyperparameters

5 folds. We chose cross-validation over the traditional training/validation data split
primarily to avoid decreasing our effective training dataset size.





Chapter 4

Results

4.1 Experiment Results

Our classification experiment, described in the previous chapter, was executed in a
Google Colaboratory PRO [60] environment with a Tesla P100 GPU [61]. Both the
feature extraction stage and classification training with all hyperparameter combina-
tions took less than an hour. The best model achieved an overall 85.28 % mean cross-
validation accuracy and an 80.33 % accuracy on the test dataset (25 % of all samples)
with hyperparameters listed in table 4.1

parameter name value
n_estimators 120

max_depth 12
criterion entropy

max_eatures 8

Table 4.1 Optimized random forest hyperparameters

When we look at the model’s performance on each of the classes with the precision
and recall metrics in table 4.2, it is evident that a large part of the errors come from the
three least represented classes. This issue could be caused simply by the low number of
samples, making it harder for the classifier to learn these classes. However, it could also
be caused by the representation differences in the training dataset because predicting
one of the larger classes is less likely to be an error, thus making it “riskier” for the
model (in terms of cross-validation scoring) to predict a smaller class. This effect can
be observed from the recall metric, which shows that the model predicted these classes
far less frequently than the larger ones, especially the Tombstone class with only 17 %
recall.

The disappointing performance on the Tombstone class is very likely also caused by
the wildly different visual appearance of each sample, of which only one is organic, and
the rest was created artificially.
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class identifier class name precision recall samples in test dataset
0 Acceptable solder joint 79 % 97 % 104
1 Insufficient solder 81 % 88 % 48
2 Excessive solder 55 % 45 % 40
3 Tombstone 44 % 17 % 24
4 Component missing 93 % 93 % 120
5 Component shifted 67 % 50 % 20

Table 4.2 Classification results for all classes

class identifier class name precision recall samples in test dataset
0 Acceptable solder joint 85 % 98 % 100
1 Insufficient solder 85 % 75 % 44
2 Excessive solder 97 % 62 % 48
4 Component missing 92 % 97 % 132

Table 4.3 Classification results with a simplified dataset

4.2 Additional Considerations
Aside from our main experiment, we also tried changing some components of the ap-
proach. Some of these experiments are documented in the following section, along with
an analysis of the results. The section ends with some suggestions for future work based
on the outcome of our experiments.

4.2.1 Simplified Dataset
As an experiment to demonstrate the performance of our approach without the issues
caused by insufficient samples in some classes, we ran the same experiment without
the two least represented classes. This resulted in a test dataset accuracy of 89.19 %,
with significantly more consistent metrics across the dataset (shown in table 4.3). These
results show that our model has the potential for better accuracy with a more balanced
dataset and more data in each class. However, this does not eliminate the risk that
the omitted classes are more difficult to classify even with more data, which is entirely
possible.

4.2.2 Classification Model Selection
To confirm our classification model selection, we tried a very similar experiment with
another ensemble learning based AdaBoost classifier [62, 63], also provided by scikit-lean.
The results of this experiment in table 4.4 show very similar results with an accuracy of
79.77 % on the whole test dataset.

This experiment demonstrates that our specific selection of a Random Forest classifier
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class identifier class name precision recall samples in test dataset
0 Acceptable solder joint 75 % 95 % 104
1 Insufficient solder 80 % 90 % 48
2 Excessive solder 64 % 40 % 40
3 Tombstone 43 % 12 % 24
4 Component missing 90 % 94 % 120
5 Component shifted 77 % 50 % 20

Table 4.4 Classification results for the AdaBoost experiment

class identifier class name precision recall samples in test dataset
0 Acceptable solder joint 70 % 97 % 104
1 Insufficient solder 94 % 71 % 48
2 Excessive solder 54 % 38 % 40
3 Tombstone 00 % 0 % 24
4 Component missing 82 % 100 % 120
5 Component shifted 00 % 5 % 20

Table 4.5 Classification results for the experiment without PCA

did not negatively affect the results, but it also shows that we would likely need to choose
an entirely different kind of model to improve the performance of our classification
stage alone, perhaps an SVM classifier that is also popular in AOI (as mentioned in
section 2.2.3).

4.2.3 PCA Improvements
As mentioned in section 3.2.2, we processed our raw features using the PCA algorithm
(described in section 1.3.4) and reduced their number to 30 without any significant
performance loss. The feature transformation also greatly improved the accuracy of our
classification model, which we tested by running the same experiment, only without
PCA – using the original 25088 features. This configuration reaches only a 76.12 %
accuracy and the results in table 4.5 show that in this case, the model was even less able
to detect tombstones and achieved the best accuracy by abandoning the class altogether,
resulting in a 0 % recall.

4.2.4 Future Improvements
The hardware and software developed for this thesis show some positive results, but
to be used in a production environment, we would need to make several improvements
for it to function in a manufacturing workflow and perform with high accuracy. In the
following section, we will go over some of the most important changes to consider in
future work.
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(a) Image captured using our illumi-
nation system

(b) Image captured using a standard illumination sys-
tem [11]

Figure 4.1 Illumination system comparison

4.2.4.1 Positioning System
Our image capturing station (described in section 3.1.4) is useful to gather data for our
experiment, but for real-world use, especially on larger PCBs, an automated positioning
system would be helpful to take images exactly centered to each SMD part.

We think it is possible to attach our illumination system (with some modifications)
and camera to a pick-and-place machine, a part of SMT equipment already used by
many small scale-manufacturers and hobbyists thanks to the OpenPnP project [64].

4.2.4.2 Illumination System
Our illumination system proved to extract valuable information image, but we think
it has one flaw that could be addressed in a new iteration. As shown in fig. 4.1, a
standard illumination product, commonly used in the industry, produces an image with
more color blending and smooth transitions across the three colors, while our solution
produces discrete color regions with some dark regions in between. We think this issue
could be solved by adding more LED layers to the illumination system, filling in the
space between the three arrays in our dome solution.

4.2.4.3 Camera
The comparison in fig. 4.1 clearly shows that aside from illumination issues, our system
also has a meaningful difference in the resolution of the captured RoI. This could be
solved by using a higher resolution camera. However, a more sensible solution would be
a different lens that captures a narrower field of view with more detail.

In the current configuration, most of the image area captured by our system is not
used for inspection, and even if we used a larger board as a sample, we would not use the
outer parts of the image, as the correct illumination is only valid for the parts directly
in the center of the image.

4.2.4.4 Localization
The solder pad localization method we used in this thesis was tailored directly to our
experiment so that a real-world application would need a completely different solution.
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As discussed in section 2.2.1, there are many approaches, but most of them are
difficult to implement. Only the mentioned YOLO solution seems easier to use in an
application, but it would require a much larger dataset with manually labeled data.

4.2.4.5 Classification Using Fine-tuned VGG-16
As we mentioned in section 1.3.3, a more common way of leveraging a pre-trained model
in a transfer learning approach is reusing the ConvNet even for classification with some
fine-tuning. This would entirely eliminate our feature extraction and classification meth-
ods, and it could be a more effective system.





Chapter 5

Conclusion

In this thesis, we set out to create a prototype of an AOI system for inspecting soldered
SMD components targeted at small-scale manufacturing environments. First, we ana-
lyzed the SMT process, the defects that can occur during production and methods used
to detect them. We designed and built a complete inspection hardware system that we
later used to build a dataset of SMD component images.

We used this dataset to develop a software solution that localizes solder joints, which
are then processed using a transfer learning method to extract valuable information.
This data was then used in a Random Forest classifier to identify soldering defects. Our
approach experimentally demonstrates that it is possible to achieve the inspection goal
with a significantly less expensive hardware solution that can be easily reproduced.

There is, however, many improvements to be made before this system is viable in a
real-world application.
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Contents of the Enclosed Medium

README.pdf.....instructions needed to reproduce all results using the included code
data........................................directory containing all the input data

dataset................................................ image dataset directory
labels.csv...................................class labels for the image dataset
stl......................................directory with segment PCB STL files

out...................................directory for all outputs of the included code
domemodel.................................directory containing 3D modelling code
imgproc..................directory containing additional code for image processing
text................................................Latex source files of this thesis
thesis.pdf ......................................... thesis text in the PDF format
requirements.txt..................Python requirements file for the included code
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