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Abstrakt

Digitalizace historických dokument̊u je d̊uležitým úkolem, který může bada-
tel̊um pomoci pohodlněj́ı přistupovat k historickým dat̊um. Ćılem této práce je
taková digitalizace týkaj́ıćı se dat z digitálńı knihovny Kramerius provozované
Národńı knihovnou České republiky. Obsahuje celou pipeline, která se skládá z
vytvořeńı datové sady, r̊uzných technik předzpracováńı dat, daľśıho trénováńı
model̊u digitálńıho rozpoznáváńı (např́ıklad Tesseract LSTM, Tesseract Le-
gacy nebo GOCR) a vyhodnoceńı výsledk̊u. Nav́ıc, tato práce navrhuje novou
metriku, kterou lze použ́ıt k vyhodnoceńı účinnosti modelu ve srovnáńı s
referenčńım modelem.

Kĺıčová slova rozpoznáváńı textu, OCR, historické dokumenty, porovnáńı
výkonu, testováńı OCR algoritmů, zpracováńı obrazu
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Abstract

Historical document digitization is an important task that might help re-
searchers to access historical data more conveniently. This thesis aims at such
digitalization related to the data from the Kramerius digital library operated by
the National Library of the Czech Republic. It contains the whole pipeline that
consists of dataset creation, various data preparation techniques, further digital
recognition model training (such as Tesseract LSTM, Tesseract Legacy, and
GOCR), and evaluation of the results. Moreover, it proposes a new metric that
can be used to evaluate the efficiency of a model comparing to the reference
one.

Keywords Text recognition, OCR, Historical documents, Performance com-
parison, Testing OCR algorithms, Image processing
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Introduction

Historical document digitization is an important task for the preservation of
our cultural heritage. For centuries, an enormous number of important articles,
documents, and novels have been collected in the form of paper publications
and scanned image files. However, the data accumulated in this format is
difficult to analyze and process, and there is no way to search for words and
phrases in the text. So the text digitization has become essential for knowledge
extracting and informational retrieval from such type of data.

Decades ago, scientists may go through hours in a library looking through
a large number of pages to locate a valuable paragraph. In the age of modern
technology and the World Wide Web, there are opportunities to classify and
collect knowledge from different fields in one place, which makes working with
various text sources of information much faster. Things get much simpler when
we can work with digitized text.

It is especially difficult to digitize manuscripts. If the processing document
is typewritten or handwritten, the digitization process gets more complicated
due to a wide range of fonts and a huge amount of noise while writing process.

One of the ways to translate documents into text from is rewriting all the
content manually by keyboard typing, but this process will take too much
effort and time, so this solution will not be effective.

Modern optical character recognition (OCR) frameworks cope with this
kind of task. These algorithms can naturally recognize text and convert it to a
readable and editable digital format many times faster than a human.

This thesis exploring a set of methods that allows performing an optical
character recognition on scanned documents. There are many different OCR
algorithms, so it is important to describe, classify some of them and measure
their efficiency. It will reveal the advantages and disadvantages of different
algorithms, allowing us to draw some conclusions about the feasibility of their
use.

Such innovation underpins the formation of digital library materials and
makes accessible huge amount of text over the Internet.
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Introduction

Goals of this thesis are to test different text recognition algorithms and
determine a measure of the applicability of various techniques in a historical
archive environment using data from the Kramerius digital library operated
by the National Library of the Czech Republic.
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Chapter 1
Image processing

With digitized texts, people can without much of a stretch quest search for
anything they want. OCR innovations were first evolved to peruse printed
text, so early present day handwriting presents new difficulties. But before
starting to explore OCR algorithms it is necessary to know basic approaches
and definitions.

Even the most sophisticated analysis is of no use if it is based on bad data.
The phrase ”Garbage in, garbage out” [7] uttered by Charles Babbage who lived
in the 19th century also applies to data mining and machine learning projects,
so data pre-processing is an important step in the data mining processes.

Grayscaling Noise reduction Area segmentation

Dilatation

Erozion

Closing

Opening

Feature extracting

Figure 1.1: Image pre-processing pipeline.

As a field of signal processing, digital image processing has many advantages
over analog processing. It allows a much wider range of algorithms to be applied
to input data and avoids problems such as added noise and distortion during

3



1. Image processing

processing. With image processing, it is possible to get an enhanced image
or extract useful information from it. So image processing can significantly
help with recognition of text in a picture. The image 1.1 summarizes the basic
principles. The following terms refer to the book [8].

1.1 Grayscaling

Grayscaling is a process of converting colored image into shades of gray,
representing the degree of brightness of the white color. The grayscale image
consists of only one channel, where each pixel is represented by 8 bits and
takes values from 0 (black) to 255 (white color). To make the grayscale image
more contrasting, the weighting method is used. Its principle is to add all
the values from the three color channels multiplied by the coefficients while
converting an image from the RGB model. Because of the peculiarities of
human vision, green is multiplied by the biggest coefficient for a high-quality
conversion. This is due to the fact that in ancient times our ancestors lived
their entire lives outdoors and saw a lot of greenery and plants around, so the
human eye sees more green shades. Referring to framework [9] that I used in
my experiments, the translation is done as follows:

G(x, y) = 0, 299 ∗R+ 0, 587 ∗G+ 0, 114 ∗B, (1.1)

where x and y are Cartesian coordinates describing the image plane.

1.2 Noise reduction

Every image in the form of a natural scene is faced with the presence of some
degree of unwanted noise. This can cause problems in further processing.
Therefore, it is necessary to remove or at least reduce the noise first. When
working with a scanned document containing text of unknown size, it is
important to consider techniques that preserve some level of edge detail while
reducing the noise. Median and Gaussian filtering cope with such tasks.

1.2.1 Linear filters

The most common type of filters are linear filters, in which the value of the
output pixel is determined as a weighted sum of the values of the input pixels.

I ′(x, y) =
∑

i

∑
j

I(x+ i, y + j) ·H(i, j), (1.2)

where I represents original image, h is a kernel, which represents coefficients
of the filter. In general this formula can be written as follows:

I ′(x, y) = I ∗H, (1.3)

where ∗ is a convolution operation [10].

4



1.2. Noise reduction

1.2.2 Median filter

Median filter replaces the value of a given pixel by the median of the values of
neighboring pixels located in a square vicinity around that pixel. Pixel values
inside the filter window are sorted in ascending (descending) order and the
value that is in the middle of the ordered list goes to the filter output.

I ′(x, y) = Me{I(x+ i, y + j)|(i, j) ∈ R}. (1.4)

A variation of the median filter is the weighted median filter. Such a
filter uses a weighting function but it is interpreted differently than in linear
filters. The weighting coefficients show how many times pixels of the image,
in the vicinity of each individual pixel, should be taken into account in the
calculations.

Figure 1.2: Visual representation of the weighted median filter.

1.2.3 Gaussian filter

A Gaussian filter is a linear filter that has the following kernel:

Hgauss(i, j) = 1
2πσ2 e

− i
2 + j2

2σ2 , (1.5)

where σ2 variance of a random variable. A Gaussian filter has a nonzero
kernel of infinite size. However, the filter kernel rapidly decreases to zero with
distancing from the point (0, 0), and therefore in practice one can be limited
to convolution with a window of small size around (0, 0) (by taking the radius

5



1. Image processing

of the window as 3σ for example). So the image transformation formula is as
follows:

I ′(x, y) = 1
2πσ2

∑
i

∑
j

e−
i2 + j2

2σ2 · I(x+ i, y + j). (1.6)

1.3 Area segmentation

1.3.1 Binary image

A binary image consists of a single channel where each pixel takes on the value
0 or the value 1. There are lot of ways to convert an image into binary. Images
represented by color models or shades of gray can be converted to a binary
image by, for example, thresholding. The 0 value is conventionally called the
background, and 1 the foreground.

1.3.2 Thresholding

A filter separates objects from the surrounding background when the brightness
of the pixels of the objects and the background are concentrated near the two
predominant values. Usually the filter is used to obtain a binary image from a
grayscale image or to remove noise.

Selection of objects is performed by determining the value of the threshold
that separates areas of brightness distribution. If the brightness value of a
particular pixel is greater than the threshold value, then that point belongs to
the object, if less to the background.

There is also a way of double thresholding which is a variant of simple
thresholding, where we use two thresholds t1 and t2. If the pixel value is
between the threshold values t1 and t2, (t1 < t2) then in the resulting binary
image, the pixel has a value corresponding to white, otherwise it has a value
corresponding to the black colour.

1.3.3 Otsu’s method

Otsu’s Method was first described by Nobuyuki Otsu in 1979. This method is
built on maximizing the variance σ2

b (t) between the classes of light and dark
regions (segmented by the threshold t) named between class variance.

max(σ2
b (t)) = max(wfwb(µf − µb)2), (1.7)

where wb , and wf are the relative proportions of background and foreground
pixels in the image (wb + wf = 1) for a given threshold value t. wb and wf

6



1.3. Area segmentation

values calculating according to formulas:

wb =
t−1∑
k=0

pk, wf =
L−1∑
k=t

pk, (1.8)

where pk = nk
N is probability of a pixel with intensity value k, N is the total

number of pixels in the image, and L the number of grayscale values.
Mean values of µb and µf are calculated from the relations:

µb = 1
wb

t−1∑
k=0

kpk, µf = 1
wf

L−1∑
k=t

kpk. (1.9)

The optimal threshold value is found by a complete search of the space of
all values by successively calculating the criterion values for each threshold
value. The optimum threshold value is the value where the dispersion of light
and dark intensities areas is the greatest - the areas do not differ much from
each other, they are the most contrasting to each other.

a) Greyscale Image b) Binary Image c) Histogram

Figure 1.3: Otsu’s Thresholding.

Consider an 8× 8 pixel image with 8 levels of grayscale. The number of
pixels nk for each level k is given in the table below. The goal is to find the
optimal threshold using Otsu’s method.

k nk pk wb wf kpk
∑
kpk µb µf σ2

b (t)
0 4 0.062 0.062 0.937 0.000 0.000 0.000 4.100 0.984
1 8 0.125 0.187 0.815 0.150 0.125 0.666 4.576 2.329
2 10 0.152 0.347 0.656 0.315 0.437 1.272 5.190 3.462
3 9 0.140 0.484 0.515 0.421 0.859 1.774 5.787 4.023
4 4 0.062 0.546 0.453 0.250 1.109 2.028 6.034 3.976
5 8 0.125 0.671 0.328 0.625 1.734 2.581 6.428 3.262
6 12 0.187 0.859 0.140 1.125 2.859 3.327 7.000 1.630
7 9 0.140 1.000 0.000 0.984 3.843 3.843 - -

Table 1.1: Otsu’s calculating table.
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1. Image processing

Maximum criterion value σ2
b (t) is 4.023, which corresponds to k = 3,

respectively t− 1 = 3, i.e. the optimal threshold is t = 4.
Pictures 1.3 below shows the progress of the algorithm.

1.3.4 U-Net

Figure 1.4: U-net architecture.

Another way of image segmentation is U-Net segmentation. U-Net is a
convolutional neural network that was created in 2015 to segment biomedical
images at the Department of Computer Science at the University of Freiburg
[11]. Undefined terms will be explained further in this thesis (in sec. 2). The
network architecture is a fully-connected convolutional network [12], modified
so that it can handle fewer examples (training images) and do more accurate
segmentation.

The network contains a convolutional (sec. 2.8) (left) and a upsampling
part (right), so the architecture looks like the letter ”U”, which is reflected in
the name. At each step, we double the number of feature channels.

The convolutional part is similar to a regular convolutional network, contain-
ing two consecutive 3× 3 convolutional layers, followed by a ReLU (activation
function described in sec. 2.2) and a 2× 2 pooling function (sec. 2.9) with a
step of 2.

Each step of the upsampling part contains a layer, the reverse of the pooling,
which expands the feature map, followed by a 2× 2 convolution, which reduces
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1.4. Mathematical morphology

the number of feature channels. This is followed by a concatenation with an
appropriately trimmed feature map from the squeezing path and two 3 × 3
convolutions, each followed by a ReLU. The cropping is necessary because we
lose border pixels in each convolution. On the last layer, a 1× 1 convolution
is used to bring each 64-component feature vector to the required number of
classes. The network has a total of 23 convolutional layers.

1.4 Mathematical morphology

Mathematical morphology refers to a grouping of techniques used for image
processing based on the geometric shapes of objects and structures. Morpholog-
ical operations were originally defined for use on binary images, but were later
extended to grayscale images and then to color images. The structuring ele-
ment is a function with two variables that defines how the pixel values around
the pixel being processed are considered in the calculation. Subsequently, the
value of the structuring element is either added or subtracted from the pixel
depending on the specific morphological operation.

1.4.1 Translation

Suppose that A is a set of pixels in a binary image, and w = (x, y) is a
particular coordinate point. Then Ax is the set A ”translated” in the (x, y)
direction.

Aw = {(a, b) + (x, y) : (a, b) ∈ A} . (1.10)

In image 1.5 A is a cruciform set and w = (2, 2). The set A has been
shifted in the x and y directions by the values given in w. Matrix coordinates
were used, instead of Cartesian coordinates, so the origin of the coordinates is
at the top left, x goes down, and y goes across.

Figure 1.5: Translation illustration.
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1. Image processing

1.4.2 Dilation

Suppose A and B are sets of pixels. Then the dilation of A by B, denoted
A
⊕
B, is defined as:

A⊕B =
⋃

w∈B

Aw, (1.11)

that means is that for every point w ∈ B, we translate A by those co-
ordinates. Then we take the union of all these translations. An equivalent
definition is that

A⊕B = {(x, y) + (u, v) : (x, y) ∈ A, (u, v) ∈ B} . (1.12)
From this last definition, dilation is also shown to be commutative, that is

A⊕B = B ⊕A. (1.13)
An example of a dilation is given in image 1.6. In the translation diagrams,

the gray squares show the original position of the object. Note that A(0,0)
is of course just A itself. In this example, we have denoting coordinates
B = {(0, 0), (1, 1), (−1, 1), (1,−1), (−1,−1)}. These are the coordinates by
which we translate A. In the general case A⊕B can be obtained by replacing
each point (x, y) in A with a copy of B and place the point (0, 0) of B in (x, y).
Equivalently, we can replace each point (u, v) of B with a copy of A.

Dilation has the effect of increasing the size of an object.

1.4.3 Erosion

Given sets A and B, the erosion of A by B, written A	B, is defined as:

A	B = {w : Bw ⊆ A} . (1.14)
The erosion of A through B consists of all points w = (x, y) for which B is

in A. To perform an erosion, we can move B through A and find all the places
where it will fit, and for each such place mark the corresponding (0, 0) point of
B. The sum of all such points forms the erosion.

In the image 1.7 can be seen the progress of the algorithm.

1.4.4 Closing

This operation may be understood as “second level” operation in that it build
on basic dilation operation followed by erosion, which denoted as A• B:

A •B = (A⊕B)	B. (1.15)
An example of closing can be seen on image 1.8
Closing tends to smooth an image, but it eliminates small holes, fuses

narrow breaks and thin gulfs.

10



1.4. Mathematical morphology

Figure 1.6: Dilation explanation.

1.4.5 Opening

Analogous to closing we can define opening. Given A and a structuring element
B, the opening of A by B, denoted A ◦B, is defined as:

A ◦B = (A	B)⊕B. (1.16)

11



1. Image processing

Figure 1.7: Erosion explanation with a cross-shaped structuring element.

So, an opening consists of an erosion followed by a dilation. An equivalent
definition is:

A ◦B = ∪{Bw : Bw ⊆ A} , (1.17)

12



1.5. Feature extracting

Figure 1.8: Closing explanation.

which mean that A ◦ B is the union of all translations of B that are placed
inside A. The difference with erosion is that erosion consists only of (0, 0) point
of B for those translations that fit inside A. Opening consists of all of B. Here
1.9 is an example of opening.

Figure 1.9: Opening explanation with a cross-shaped structuring element.

Opening tends to smooth an image, remove thin protrusions, break narrow
joins.

1.5 Feature extracting

Feature extraction is part of a dimensionality reduction process in which the
raw data is separated and reduced to more manageable groups. That way,
when we want to process the data, it will be easier.

1.5.1 Edge detection

Edge detection is a term in image processing theory and computer vision,
partly from the field of object search and object selection, based on algorithms
that highlight points in a digital image where brightness changes sharply or
where there are other types of inhomogeneities.
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1. Image processing

1.5.2 Gradient

Gradient is a vector of partial derivatives. It points in the direction of the
largest increase in values.

∇f(x, y, ...) =
(
df

dx
,
df

dy
, ...

)
. (1.18)

In our case we find the gradient of the image i.e. a function of two variables
f(x, y). The gradient modulus determines the steepness of the greatest slope
or rise of the surface. The edge strength is given by the magnitude:

|∇f | =
√(

df

dx

)2
+
(
df

dy

)2
. (1.19)

1.5.3 Prewitt operator

In the discrete world, derivatives are approximated by differences f(x+ 1)−
f(x−1), that can be described as a linear filter masks, such as Prewitt operator:

Px =

−1 0 1
−1 0 1
−1 0 1

 Py =

−1 −1 −1
0 0 0
1 1 1

 , (1.20)

where Px is operator for vertical and Py is for horizontal edges.

1.5.4 Sobel operator

The Sobel operator is based on image convolution by small separable integer
filters in the vertical and horizontal directions, so it is relatively easy to compute.
On the other hand, the gradient approximation used by it is rather coarse,
especially it affects the high-frequency oscillations of the image. However, it is
good enough for practical application in many problems. More precisely, the
operator uses intensity values only in the vicinity 3× 3 of each pixel to obtain
an approximation of the corresponding image gradient, and uses only integer
values of brightness weights to estimate the gradient.

Sx =

−1 0 1
−2 0 2
−1 0 1

 Sy =

−1 −2 −1
0 0 0
1 2 1

 , (1.21)

At each point of the image the approximate value of the gradient value can
be calculated by

S =
√
S2

x + S2
y . (1.22)
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1.5. Feature extracting

We can also calculate the direction of the gradient:

Θ = arctan

(
Sy

Sx

)
. (1.23)

Below 1.10 is a demonstration of how the filters work.

a) Original image b) Prewitt c) Sobel

Figure 1.10: Operators work illustration.

1.5.5 Non-maximums suppression

The goal of non-maximums suppression is to keep only those pixels that belong
to the edge. The way to do it is to assign to each pixel a direction θ described
above called edge gradient. The pixel that forms the edge must then have a
larger intensity than its local neighbours in the direction of the edge gradient
of that pixel. The computed edge gradient does not point to a specific pixel,
but between pixels, so it is we need to consider the extent of their contribution
to the edge gradient calculation based on neighbouring pixels. We take the
neighbouring pixels of the gradient as the ones between which the gradient is
directed and calculate the weighted average from them. For example, in the
figure 1.11, this would be the two red highlighted pixels on the top right.

Direction of edge

Figure 1.11: Illustration of finding of edge direction.
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1.5.6 Hysteresis thresholding

Hysteresis thresholding is a method that uses two thresholds: a lower threshold
tl and an upper threshold tu. A pixel which value is greater than th is considered
as a strong edge pixel. A pixel which value is between tl and th, and which is at
the same time adjacent to another edge pixel (strong edge pixel), is considered
a weak edge pixel.

th

tl

1 2

3
4

5

Figure 1.12: Hysteresis thresholding.

In figure 1.12, 1 and 2 are strong edges as they are above high threshold
th. Similarly, 5 is a sure non edge. Both 4 and 3 are weak edges but since 3
is connected to 2 which is a sure edge, 3 is also considered as a strong edge.
Using the same logic 4 is discarded. This way we will get only the strong edges
in the image.

1.5.7 Canny edge detector

The Canny detector [13] in the discipline of computer vision is an image border
detection operator. It was developed in 1986 by John F. Canny and uses a
multi-step algorithm to detect a wide range of boundaries in images.

Canny studied the mathematical problem of obtaining a filter optimal
according to the criteria of selection, localization, and minimization of several
responses of one edge. He showed that the desired filter is the sum of four
exponents. He also showed that this filter could be well approximated by the
first derivative of the Gaussian. Canny introduced the notion of Non-Maximum
Suppression, which means that the pixels of the edges are declared to be the
pixels where the local maximum of the gradient in the direction of the gradient
vector is reached.

The steps of the algorithm are as follows:

• smoothing (Gaussian filter for example),
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1.5. Feature extracting

• finding gradients (Sobel filter for example),

• non-maximums suppression,

• dual threshold filtering (hysteresis thresholding),
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Chapter 2
Soft computing methods

Soft computing is a concept introduced by Lotfi Zadeh in 1994 [14], uniting
into a general class imprecise, approximate methods for solving problems, often
with no solution in polynomial time.

Soft computing technologies are oriented to solving control problems with
weakly structured control objects [15]; soft computing tools often use the
technique of artificial neural networks [16]. Various soft computing methods
can complement each other and are often used together, forming hybrid systems
[17]. Referring to experiments published in article [18], the most successful
OCR can only be done using machine learning algorithms.

2.1 Artificial neuron

An artificial neuron is a node of an artificial neural network, which is a simplified
model of a natural neuron. Mathematically, a neuron is a weighted adder,
whose single output is defined through its inputs and matrix of weights as
follows:

y = f(u), u =
n∑

i=1
wixi + w0, (2.1)

where xi and wi are the signals at the neuron inputs and the weights of the
inputs respectively, the function u is called the induced local field, and f(u)
is an activation function. Possible values of signals at the neuron inputs are
considered to be given in the interval [0, 1].

2.2 Activation function

Activation function f(u) defines the dependence of the signal at the output
of the neuron on the weighted sum of the signals at its inputs. In most cases
it is monotonically increasing and has a value range of [−1, 1] or [0, 1], but
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2. Soft computing methods

there are exceptions. Also, for some learning algorithms it is necessary for the
network to be continuously differentiable on the entire numerical axis.

An example of the activation function is Rectified linear unit (ReLU).

f(u) =
{

0, u < 0
u, u ≥ 0

(2.2)

2.3 Loss function

In statistical decision theory loss function is a function that characterizes the
losses in incorrect decision-making based on observed data. If the problem of
estimation of a signal parameter against the background of noise is solved, the
loss function is a measure of the discrepancy between the true value of the
estimated parameter and the estimate of the parameter.

2.4 Cross-entropy

The cross-entropy or logarithmic loss function measures the difference between
two probability distributions. If the cross-entropy is large, it means that the
difference between the two distributions is large, and if the cross-entropy is
small, the distributions are similar to each other.

In the case of binary classification, the formula is as follows:

Hp(q) = − 1
N

N∑
i=1

yilog(p(yi)) + (1− yi)log(1− p(yi)), (2.3)

where y is class label, p(y) is the predicted probability and N is amount of
samples.

2.5 Intersection over Union metric

Intersection over Union (IoU) metric, also known as the Jaccard index, is
a number from 0 to 1 that shows how much the inside area of two objects
(the reference ground truth and the current object) overlap. Formally, for two
non-empty sets A and B , the function IoU is defined as:

IoU(A,B) = |A ∩B|
|A ∪B|

. (2.4)

2.6 Backpropagation

Training the neural network (adjusting the weights) is called backpropagation
and uses a gradient method called stochastic gradient descent. The gradient

20



2.7. Convolution

of the activation function specifies the direction (represented by a sign) and
magnitude by which the corresponding weight should be changed to achieve
more optimal value in a given iteration. Thus, instead of immediately searching
for the best solution, the goal is reaching by successive steps. If the model is
working correctly, the gradient should converge to zero.

Weights adjust after each training example and thus ”move” in the mul-
tidimensional space of weights. To ”get” to the minimum error, we need to
”move” in the opposite direction to the gradient, that is add to each weight
wi,j gradient

∇wi,j = −η dE

dwi,j
, (2.5)

where 0 < η < 1 is a multiplier specifying the speed of ”movement” called
learning rate.

2.7 Convolution

Convolution is an operation with a pair of matrices A (of size nx × ny) and B
(of size mx ×my), the result of which is matrix C = A ∗B of size (nx −mx +
1)×(ny−my +1). Each element of the result is calculated as the scalar product
of matrix B and submatrix A of the same size (the submatrix is determined
by the position of the element in the result). That is

Ci,j =
mx−1∑
u=0

my−1∑
v=0

Ai+u,j+vBu,v. (2.6)

In 2.1 can be seen how matrix B ”moves” over matrix A, and at each
position the scalar product of matrix B and the part of matrix A on which
it is now superimposed is counted. The resulting number is written to the
corresponding element of the result.

2.8 Convolutional layer

The convolution layer of the neural network is an application of the convolution
operation to the outputs from the previous layer, where the convolution kernel
weights are trainable parameters. Another trainable weight is used as a constant
shift (bias).

One convolution layer may contain several convolutions. In this case, for
each convolution, the output will have a different image. For example, if the
input has dimension w × h, and the layer has n convolutions with kx × ky

kernel, then the output will have dimension n× (w − kx + 1)× (h− ky + 1);
The convolution kernels may be three-dimensional. The convolution of a

three-dimensional input with a three-dimensional kernel occurs similarly. The
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2. Soft computing methods

Figure 2.1: Example of convolution of two 5× 5 and 3× 3 matrices [1].

scalar product is also counted over all image layers. For example, to average
color information of the original image, a convolution of dimension 3× w × h
can be used on the first layer. The output of such a layer will be one image
(instead of three); Here 2.2 is an example.

Figure 2.2: A convolution with a three-dimensional kernel [2].

The convolution operation shrinks the image. Also pixels that are on the
edge of the image participate in fewer convolutions than internal ones. For
this reason, image padding is used in convolution layers. Outputs from the
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previous layer are augmented with pixels, so that the image size is retained after
convolution. Such convolutions are called same convolution, and convolutions
without image augmentation are called valid convolution.

Another parameter of the convolution layer is the stride. Although convolu-
tion is usually applied in a row for each pixel, sometimes a shift other than one
is used. The scalar product is not counted with all possible kernel positions,
but only with positions multiples of some shift s. If input has dimension w×h,
and convolution kernel has dimension kx × ky and shift s is used, then output
will have dimension bw−kx

s + 1c × bh−ky

s + 1c.

2.9 Pooling layer

The pooling layer is designed to reduce the dimensionality of the image.
The initial image is divided into blocks of size w × h, and for each block
some function is calculated. The most often used function is max pooling or
(weighted) average pooling. This layer has no teachable parameters.

How pooling works can be seen on a figure 2.3.

Figure 2.3: Example of a pooling operation with a maximum function [2].

The main purposes of the pooling layer:

• image reduction, so that next convolutions could operate on a larger area
of the original image;

• increasing the invariance of the network output with respect to small
input transfer;

• speeding up calculations.
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2.10 Softmax nonlinearity

For classification, it is necessary to create a layer in which each neuron is
connected to each other. Such layer is called FCL (Fully Connected Layer).
Although classification based only on convolutional and pooling layers would
also be possible, the creation of a fully connected layer a more convenient and
relatively inexpensive way to introduce additional nonlinearity into the model.

When the number of possible classes is more than two, the Softmax function
is used. The function converts a vector z of dimension K to a vector σ of the
same dimension, where each coordinate σi of the resulting vector is represented
by a real number in the interval [0, 1] and the sum of coordinates is equal to 1.

The coordinates σi are calculated as follows:

σ(z)i = ezi∑K
k−1 e

zk
(2.7)

The coordinates σi of the resulting vector are interpreted as probabilities
that the object belongs to class i.

2.11 Recurrent neural network

Diagrams and main thoughts mainly follow this article [19].

Figure 2.4: RNN and its expanded representation.

Recurrent neural networks are networks with loops that are well suited
for processing sequences. RNN training is similar to training an ordinary
neural network. We also use the backpropagation algorithm, but with a slight
modification. Since the same parameters are used at all temporal steps in the
network, the gradient at each output depends not only on the computation
of the current step, but also on the previous temporal steps. For example, to
calculate the gradient for the fourth element of the sequence, we would have
to ”propagate the error” to 3 steps and sum the gradients. This algorithm is
called Backpropagation Through Time (BPTT) algorithm [20].
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2.12. Long short-term memory

Figure 2.5: Diagram of the recurrent network layer.

2.12 Long short-term memory

Long-term memory (LSTM) is a special kind of recurrent neural network
architecture capable of learning long-term dependencies, proposed in 1997 by
Sepp Hochreiter and Jürgen Schmidhuber [21]. Recurrent neural networks add
memory to artificial neural networks, but the realized memory is short - at
each learning step the information in the memory is mixed with the new one
and after several iterations it is completely overwritten.

LSTM modules are specifically designed to avoid the problem of long-term
dependency by remembering values for both short and long periods of time.
This is because the LSTM module does not use an activation function within
its recurrence components. Thus, the stored value does not erode over time and
the gradient does not disappear when using the backward error propagation
over time method when training the network.

Figure 2.6: Diagram of the Long-Term Memory layers.

The key components of an LSTM module: the cell state and various filters.
The cell state can be spoken of as the memory of the network, which transmits
the relevant information throughout the module chain. In this way, even
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information from early timesteps can be retrieved at later ones, leveling out
the effect of short-term memory.

First the ”forget gate layer” determines which information can be forgotten
or left behind. The values of the previous output ht − 1 and the current input
xt are passed through the sigmoidal layer. The resulting values are in the
range [0; 1]. Values that are closer to 0 will be forgotten, and those closer to 1
will be left (figure 2.7).

Figure 2.7: Forget gate layer.

Next, it is decided what new information will be stored in the cell state.
This step consists of two parts. First, a sigmoidal layer called the input layer
gate determines which values to update. Then the tanh layer [22] constructs a
vector of new candidate values C̃t that can be added to the cell state (figure
2.8).

Figure 2.8: Input layer gate and tanh laye.

To replace the old cell state Ct− 1 with the new cell state Ct it is necessary
to multiply the old state by ft, forgetting what we decided to forget earlier.
Then adds it ∗ C̃t. These are the new candidate values multiplied by t (how
much to update each of the state values). Details illustrated at figure 2.9.

The last step determines what kind of information the output will be. The
output will be based on our cell state and some filters will be applied to it.
First, the values of the previous output ht − 1 and the current input xt are
passed through a sigmoidal layer, which decides what information from the cell
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Figure 2.9: Change of the main ”highway”.

state will be output. The cell state values are then passed through the tanh
layer to get output values from the range -1 to 1 and multiplied with the output
values of the sigmoidal layer, which allows only the required information to be
output 2.10.

Figure 2.10: Change of the secondary ”highway”.

The ht and Ct thus obtained are passed on down the chain.

2.13 Beam search

This algorithm will be used further in one of the best OCR systems, so it
is important to describe it first. Beam search is one of the algorithms for
searching the state space. It is an optimization of best-first search. It is based
on the idea of ordered search to continue searching always from the most
promising node, supplemented by ”pruning” the least promising branches,
which reduces memory requirements. For each searched node, all its successors
are sorted according to a given heuristic, and only a certain number given by
the so-called ”beamwidth”, which is fixed in the basic version of the algorithm,
are then put into the priority queue for further search. When the beamwidth
is set to infinity, the algorithm corresponds to an ordered search algorithm.
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2.14 Transfer Learning

Transfer learning is a task in machine learning aimed at storing knowledge
gained in one task and applying it to another but related task [23]. For example,
knowledge gained during learning to recognize one type of text, font, can be
applied when trying to recognize others. From a practical perspective, reusing
or transferring information from previously trained tasks to train new tasks has
the potential to significantly improve the effectiveness of a machine learning
model.
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Chapter 3
OCR software

Before startning to scan documents, it is important to know the features of
modern software. Because of importance of text recognition, the competition in
this area is quite high. This chapter will survey the currently available software.
The software divided into categories of commercial and non-commercial use.
Commercial software defined as software that is provided under a paid license
in the form of a subscription. Non-commercial software is software that is
licensed under one of the open source licenses or just free to use.

3.1 Commercial

3.1.1 ABBYY FineReader

ABBYY FineReader 3.1 is an optical character recognition program developed
by the Russian company ABBYY. ABBYY FineReader PDF 15 makes it easy
to digitize, search, convert, edit documents, share files and work together on
any type of documents. The program allows to translate images of documents
into electronic editable formats. In particular into Microsoft Word, Microsoft
Excel, Microsoft Powerpoint, Rich Text Format, HTML, PDF/A, searchable
PDF, CSV. The program supports text recognition in 192 languages and
has a built-in spell checker for 48 of them. There are more than 20 million
ABBYY FineReader users in the world. FineReader is based on ABBYY OCR
optical character recognition technology licensed by Fujitsu, Panasonic, Xerox,
Samsung and others.

3.1.2 OmniPage

OmniPage Ultimate 3.2 is professional software for converting images (JPG
and PNG), documents, and PDF files into digital files. Available from Kofax
Incorporated. OmniPage can accurately digitize images and documents, making
them both editable and searchable. It also supports a long list of image formats,
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Figure 3.1: ABBYY FineReader program.

so regardless of the file extension you can easily convert it to the file format you
want. OmniPage Ultimate uses its proprietary technology to detect the layout
of images and automatically rotates the document in the correct orientation.
It is also possible to work with both vertical and horizontal text.

Figure 3.2: OmniPage program.
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3.1.3 Adobe Acrobat Pro DC

Adobe Acrobat 3.3 is a software package produced in 1993 by Adobe Systems
and designed for creating and viewing electronic publications in PDF format.
Adobe (the creator of PDF fromat and various document standards) has
developed a powerful text recognition engine for accurately extracting texts
from PDF files that may be represented as scanned images for example.
Although it is not as feature-rich as ABBYY FineReader, Adobe Acrobat
certainly excels it at extracting. For example, you can easily import text PDF
files into Adobe Acrobat and then use text recognition technology to convert
the file into editable text. However, if you want to process an image, you first
need to create PDF file from it and only then can you work with that.

The program saves the font of the original document using the method
of creating custom fonts. Since Adobe has a huge repository of branded,
common and designer fonts, it automatically matches the font style of the
source document and then converts the PDF to that particular font. And in
case there is no font available, the program creates its own font using similar
typography. This is a feature that only Adobe can use.

Figure 3.3: Adobe Acrobat Pro DC program.
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3.2 Non-commercial

Under the conditions of the research testing was conducted on open for distribu-
tion, the so-called Open Source programs. Non-commercial software is inferior
to their counterparts in the quality of recognition, the number of built-in
languages, as well as the lack of user interfaces. The interaction is performed
using terminal commands or through frameworks (external libraries). User
also often has to pre-process the image on their own to achieve better results.

3.2.1 Tesseract OCR

According to Google trends statistics (figure 3.4), Tesseract is considered to
be the most popular OCR engine of the last 5 years, so it was used as a
benchmark.

Figure 3.4: Google trends comparison for different open source OCR tools.

Tesseract is a free computer program for text recognition that was developed
by Hewlett-Packard from the mid-1980s to the mid-1990s. In 2005 Hewlett-
Packard released Tesseract as open source software. Since August 2006, it has
been developed by Google. It is available under the Apache 2.0 license. At
the moment the program already works with UTF-8. Languages support is
provided by additional modules (more than 192). It also supports a variety of
image formats, different types of recognition (image as a word, block of text,
vertical text) and easy customization.
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3.2.1.1 Architecture

Tesseract takes binary images with optional text regions as input. Recognition
is done mostly in the traditional way, but with some modifications. Explanation
follows analysis by Ray Smith [4]. Text lines are broken into words in different
ways depending on the type of character spacing. Tesseract searches for
patterns in pixels, letters, words, and sentences, using a two-step approach
which includes adaptive classifier.

Figure 3.5: Tesseract OCR Architecture [3].

It takes one pass through the data to recognize the characters. Each
satisfactory word is passed to the adaptive classifier as training data. It allows
better recognition of the text that goes next. However, useful information for
training may be at the very end of the text (at the bottom of the page). So
second pass is made to recognize the least successful recognition cases during
the first phase. Tesseract replaces them with the letters most likely to match
the word or context of the sentence.

3.2.1.2 Line finding

Lines are searched by filtration of so-called blobs and line construction. Blobs
are formed by the contours of characters. After analyzing the page layout for
text blocks (whether they are in columns, forming separate chunks), Tesseract
removes drop-down lines, vertically contiguous characters, as well as noise with
a median filter and percentile height filter [24]. Blobs are then combined into
rows based on their y-axis coordinates as well as heuristic criterias.

3.2.1.3 Baseline fitting

The lines are then fitted more precisely with the square spline [25]. This tech-
nique allows you to process text with curved baselines [26]. This artifact often
appears during scanning. The algorithm knocks down groups of characters,
with a fairly uncontinuous offset relative to the original straight baseline. The
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quadratic spline is then guided to the most populous group of symbols, which
is the baseline, using the method of least squares. Result of this process is
shown in 3.6.

Figure 3.6: An example of a curved fitted baseline [4].

Baseline shown as bottom blue line. Purple line is named as mean line.

3.2.1.4 Character chopping

After the characters have formed into words, there is a possibility that there are
no gaps between them. Some characters stick together when they are printed
poorly. Tesseract tries to find such cases and splits words into characters using
a certain constant pitch. In figure 3.7 is an example.

Figure 3.7: A fixed-pitch chopped word [4].

In case of text non-fixed pitch (figure 3.8), Tesseract measures the gaps
between the baseline and mean line. Gaps close to the threshold become fuzzy,
so the final decision may change after the word is recognized.

Figure 3.8: Some difficult word spacing of non-fxed pitch text [4].

3.2.1.5 Word recognition

Next, the algorithm shreds the blobs. In case of unsatisfactory result at the
previous step, the tesseract tries to shrink the blob with the least confidence
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from the classifier. The points that could potentially become candidates are in
the concave vertices of the polygonal approximation [27]. An example is given
in figure 3.9.

Figure 3.9: Candidate chop points and chop [4].

If the word is still not good enough, it lends itself to further processing. The
so-called associator searches the segmentation graph for possible combinations
of maximally chopped blocks (parts of letters) using the algorithm A* [28]. An
example of such chunks is shown in figure 3.10.

Figure 3.10: Associating broken characters [4].

3.2.1.6 Character classification

At first, Tesseract used a static character classifier based on topological features.
However, this method handled broken letters poorly (figure 3.11).

The idea was to use polygonal approximation segments as features, but
this approach is also not robust to broken characters. The features of the
unknown data do not necessarily have to match the features of the training
data. This problem has been solved by extracting many small features of
varying length from the unknowns and combining them to match more robust
symbol characteristics. The process of matching small features to large features
showed good results. But the computational cost of doing so is quite high.

The classification itself is done by matching the symbol with instances of
training data. The number of similar features is used to decide which letter to
identify the processed picture to. The features are also counted using heuristics.
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Figure 3.11: (a) Original letter ’h’, (b) broken ’h’, (c) features matched to
prototypes [4].

3.2.1.7 LSTM Integration

In October 29, 2018, a version of the program, Tesseract 4, was released. The
update made it possible to use LSTM [21] neural networks. Input image is
split into blocks of text and then fed to the LSTM model.

Figure 3.12: Tesseract using LSTM [5].

LSTM neural networks outperform all other alternative neural network
architecture models for this type of pattern recognition. Their application is
also superior to the more ”classical” character recognition algorithms used
in various popular commercial products. For example, the LSTM network
has achieved the best known results in unsegmented coherent handwriting
recognition, and won the ICDAR handwriting recognition competition in
2009. If the Tesseract recognizer based on the LSTM neural network fails
on a particular sequence of characters, it can ”revert” to its general static
shape classifier for detection. So, in essence, the Tesseract LSTM is two OCR
classifiers [29].
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3.2.2 GOCR

To complete the picture, it is important to consider an algorithm that uses
more classical methods of text recognition.

Figure 3.13: GOCR processing problems [6].

GOCR (or JOCR) [6] is a freely distributed optical character recognition
program developed by Jörg Schulenburg. Can be used to convert or scan
images (portable bitmaps or PCX) to text files. GOCR is capable of processing
unprinted fonts 20-60 pixels high. Program has issues with character overlaps,
embossed fonts, handwriting, heterogeneous fonts, noisy images, high-skewed
text, and any non-Latin characters. Between versions 0.40 (March 2005) and
0.43 (December 2006), the recognition mechanism was gradually replaced by a
vector version. The program was originally called GOCR which means GNU
Optical Character Recognition. When it came time to register the project on
SourceForge, the GOCR name was already taken, so the project was registered
as JOCR (Jörg’s Optical Character Recognition). As a result, the project and
program are known as GOCR and JOCR. Valid formats: PBM, PGM, PPM,
PNM, PCX (some), TGA.
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Chapter 4
Comparison methods

4.1 Comparison metrics

This section mainly follows instructions suggested by Smitka, J. and Borkovcova,
M. [18]. The algorithms are compared according to:

• quality of character recognition (error rate),

• the amount of memory that the algorithm needed to run,

• the amount of time the algorithm needed to run.

The error rate is calculated as the ratio of incorrectly recognized (or unrecog-
nized) characters to the total number of characters in the scanned document.

The amount of memory is measured as the maximum peak of allocated
memory in run-time.

The time required to run the algorithm is variable – it depends on the
hardware we use. So we need to recalculate this value in such a way as to
eliminate the influence of the hardware. For this purpose, we can determine a
certain standard for comparison purposes. As this standard, we can use the
Tesseract Open Source OCR Engine. We can run this algorithm in a 1-thread
environment.

Let ttess be the time required by the Tesseract algorithm to solve the OCR
problem on the basic dataset of historical documents. Therefore the time score
of the tested algorithm can be calculated as a time required by the tested
algorithm divided by the value of ttess (and multiplied by 100 to obtain the
percentage value):

ti = talg

ttess
, (4.1)

where ti means the time score of the algorithm in this one test. However, we
can do more tests - we have a rich dataset.
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The total time score can be determined as the median of an array of sorted
results, where each result is calculated on a unique scanned document (for the
whole dataset):

t = Me(T ), (4.2)

where T is a set of all test results (time scores) done on the whole dataset and
Me(T ) is a median of T .

We can assume that the time score in this case will be relatively independent
of the architecture of CPU.

In the same way, we can calculate the value of total error rate:

ei = ealg

etess
. (4.3)

The total error score can be determined as the median of an array of sorted
results:

e = Me(E), (4.4)

where E is a set of all test results (error rates) done on the whole dataset and
Me(E) is a median of E.

To evaluate memory requirements we must take maximum peak of the
allocated memory of all tests and compare it to the reference value given by
Tesseract OCR engine:

m = max(M)
max(Mtess) , (4.5)

where M is a set of memory peaks of all tests for the whole dataset and Mtess

is memory required by the Tesseract OCR engine.

4.2 Algorithm performance presentation

After performing the tests, for each algorithm we obtain a triple (e, m, t).
For general purposes, we may need only one value, which must be calculated
from this triple. Basically, it is an alternative to some benchmark value in the
CPU world (Whetstone, Dhrystone, MIPS, FLOPS and other metrics). This
benchmark value can be calculated as:

score = wee+ wmm+ wtt, (4.6)

where we, wm and wt are constants. After some tests these values were chosen:
we = 0.8, wt = 0.15, wm = 0.05.
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4.3 Text similarity

To calculate our total error score we have to determine the way of document
comparing.

Levenshtein distance is a metric that measures the difference between two
sequences of characters. It is defined as the minimum number of one-character
operations (insertion, deletion, replacement) needed to transform one sequence
of characters into another.

Levenshtein’s distances between words or text fields have the following
disadvantages:

• rearranging words or parts of words gives relatively large distances;

• distances between completely different short words are small, while
distances between very similar long words are considerable.

The calculation of the Levenshtein distance is based on the observation that
if we reserve a matrix to store the Levenshtein distances between all prefixes
of the first row and all prefixes of the second row, we can compute the values
in the matrix using dynamic programming, and thus find the distance between
two complete rows as the last computed value.

There is a sequence of actions required to get from the one string to another
in the shortest possible way. Usually actions are denoted as: D (delete), I
(insert), R (replace), M (match).

For example, for lines ”CONNECT” and ”CONEHEAD” we can build the
following table of transformations which illustrated in the figure 4.1.

M M M R I M R R
C O N N E C T
C O N E H E A D

Table 4.1: Levenstein transformations table

Let S1 and S2 be two strings with length M and N respectively, then
Levenstein distance d(S1, S2) can be calculated by the following recurrence
formula:

d(S1, S2) = D(M,N), (4.7)
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where D(i, j) is defined as follows:

D(i, j) =



0, i = 0, j = 0
i, j = 0, i > 0
j, i = 0, j > 0

min


D(i, j − 1) + 1
D(i− 1, j) + 1 j > 0, i > 0
D(i− 1, j − 1) +m(S1[i], S2[j]),

(4.8)
where m(a, b) is 0 if a = b and 1 otherwise.

Each step by i represents deletion (D) from the first line, by j represents
insertion (I) into the first line, and the step of both indexes represents character
substitution (R) or no change (M).

Levenshtein similarity can be calculated by formula:

sym = d(S1, S2)
max(M,N) , (4.9)

where S is a compared document consisting of consecutive lines, max(M,N)
the length of the longest word.

An example of the resulting matrix can be seen in table 4.2.

S a t u r d a y
0 1 2 3 4 5 6 7 8

S 1 0 1 2 3 4 5 6 7
u 2 1 1 2 2 3 4 5 6
n 3 2 2 2 3 3 4 5 6
d 4 3 3 3 3 4 3 4 5
a 5 4 3 4 4 4 4 3 4
y 6 5 4 4 5 5 5 4 3

Table 4.2: An example of how the Levenshtein algorithm works.

So our error rate is calculated by:

e = 1− sym. (4.10)

4.4 Character Error Rate

Character Error Rate (CER) is a common performance metric for automatic
speech recognition systems. However, it is also suitable for our text recognition
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goals. The character error rate [30] can be calculated as follows:

CER = (R + D + I)
N = (R + D + I)

(R + D + M) , (4.11)

where N is the number of characters in the reference (N = R + D + M) -
other values are defined before.
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Chapter 5
Data extraction

For high-quality image processing, a careful approach to preprocessing is
needed, as it has a big impact on the final result. Before classifying the text, it
is first necessary to separate from the background and create a dataset, which
become the basis for training and validating the OCR algorithms.

Earlier in this paper we discussed various methods of image segmentation,
which are widely used to solve different problems. In order to understand
which method is suitable for historical archives processing, I decided to test
the relevance of their application to our data.

5.1 U-net processing

The network is trained on a small number of images and outperformes the
previous best method (a convolutional network with a sliding window) in the
ISBI competition for segmentation of neural structures in electron microscopic
stacks. U-Net won first place in the ISBI 2015 in cell-tracking competition by
a landslide. In addition, this network is fast. Segmenting a 512×512 image
takes less than a second on a modern GPU. It is also important that the U-net
is characterized by using a small amount of data to achieve good results.

5.1.1 Architecture

U-Net is considered one of the standard CNN architectures for image segmen-
tation tasks, when it is necessary not only to define an entire image class,
but also to segment its areas by class, i.e. to create a mask that will divide
the image into several classes. Unfortunately this architecture cannot cope
with the classification of text, so we will do with single-class classification
(separating the background from the background).The architecture consists of
a pooling path for context extracting and a symmetric expanding path that
allows precise localization. The table C.1 shows the detailed architecture used
in the computation.
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5.1.2 Training

Before training our network we need to annotate data. I did it with Thresh-
olding method, selecting the most appropriate parameters manually. Since
training takes a very long time, I decided to bring the data to a size of 512×512
pixels. An example is given in figure 5.1.

Figure 5.1: Training data for U-net.

The network is trained by stochastic gradient descent based on the input
images and their corresponding segmentation maps. Due to convolutions, the
output image is smaller than the input by a constant boundary width. The
calculations also use pixel-wise soft-max over the final feature map combined
with the cross entropy loss function.

The partition boundary is calculated using morphological operations. Then
the weighting map is calculated by:

w(x) = wc(x) + w0 ∗ exp(−
(d1(x) + d2(x))2

2σ2 ), (5.1)

where wc is the weight map to balance the class frequencies, d1 means the
distance to the border of the nearest foreground part, d2 the distance to the
second nearest part, w0 and σ are set manually, by default they are 10 and 5
pixels respectively [11].

In my experiments, I used auxiliary methods from the keras unet external
python library. The data was split to train and validation parts. The results
of training on 10 epochs are presented in figures 5.2 and 5.3.

5.1.3 Prediction

After long enough training on the training data, U-net showed high performance
in time of mask prediction. The results are shown in figure 5.4.

5.2 Segmentation methods comparison

After training U-net I decided to try Thresholding and Canny edge detection
methods for extracting useful features. OpenCV library provides the function-
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Figure 5.2: U-net training overview with binary crossentropy loss function.

Figure 5.3: U-net training overview with Intersection over Union metric.

ality to work with these algorithms. I used 60 and 250 (pixel brightness) as
threshold values for both algorithms.

It’s hard to say right away which one will work best with our dataset. So I
decided to test the segmentation quality by evaluating the recognition with a
strong OCR algorithm (Tesseract with LSTM integration). I sent each of the
masks as input to this engine. The digitized images were converted to text
and then I compared each of them with the correct text.

I decided to measure the recognition error with the Levenstein similarity
described earlier in this thesis. The results of the calculations are in table 5.1.

Thresholding showed the best result in segmenting the text, so further this
method will be used.
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Figure 5.4: Examples of masks predicted by U-net.

a) U-net b) Canny c) Thresholding

Figure 5.5: Segmentation masks by different algorithms.
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Original Thresholding Canny U-net
error 0.02005 0.01259 0.2183 0.8537

Table 5.1: Evaluation of different segmentation methods. Error based on
Levenstein similarity

5.3 Forming dataset

I used the Kramerius (Digital Library of the National Library of the CR) as
a data source. The digital library includes several million digitized pages of
monographs and periodicals from the collections of the National Library of the
Czech Republic, which were digitized as part of the National Digital Library
project. A 19th century Czech book named ”Větévky z útlého kmene pov́ıdky
milé mládeži” [31] was used as czech language dataset base.

I downloaded djvu images from Kramerius website, converted them to png
images files for easier processing.

After choosing segmentation method, the images should be processed to
improve the recognition result. I used a bounding box to separate parts of the
text from each other (figure 5.6). The bounding box is an imaginary minimal
rectangle that serves as a reference point for object detection.

Figure 5.6: Bounding boxes example.

Throughout the experiments I also used grayscaling, deskewing (figure 5.7),
different methods of noise reduction (combining filters as well as morphological
operations) to achieve the best possible result.

5.3.1 Splitting page text into lines

In order to select lines on the page I used morphological operations, such as
dilation and opening. Applying dilate to merge text into meaningful lines/para-
graphs. I used larger kernel on x axis (120, 1) to merge characters into single
line, cancelling out any spaces but smaller kernel on y axis (1, 3) to separate
between different lines.

Then I wrote a function that aligns contours in the order in which a person
would read them. It converts the information about the contours into a rank
and uses that rank to sort the contours. The rank changes a lot when two
consecutive contours lie vertically, but changes only slightly if the contours are
horizontal. The contours are grouped from top to bottom first, and the lowest
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a) Skewed image b) Fixed rotation

Figure 5.7: Deskewing image.

variant value among horizontally stacked contours is used in case of a collision.
Example may be seen at figure 5.8.

After that, I divided the pre-prepared files with the correct text into
separated text lines and matched them with pictures. It formed ground truth
data for our dataset.

Therefore, we can process the entire data archive, resulting in a massive
dataset of characters. For the tested algorithms division into strings was
enough, but for future modifications of this project it will be useful to test
other algorithms.

By running the algorithm on scanned lines, the scanned photos of which
contain inaccuracies and artifacts, I got the following result (figure 5.9).

5.3.2 Book format

For further extensions of the project, I also added the ability to add books.
This is done by calling a special method of the class created as part of the
environment for testing. Based on the books from Kramerius, I identified
the main important data for further page processing and testing of various
algorithms.
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a) segmented lines b) numbered lines

Figure 5.8: Splitting page into lines.

Figure 5.9: Letters for dataset.

After the function is called, a data folder and a JSON file (figure 5.10 are
created in the testing environment folder.

51



5. Data extraction

{
” m a i n t i t l e ” : ”Vetevky z ut l eho kmene ” ,
” s u b t i t l e ” : ” povidky mile mladezi ” ,
” creator surname ” : ” Sastny ” ,
” creator name ” : ” Alfons , Bohumil ” ,
” lang ” : ” ce s ”

}

Figure 5.10: Book as JSON example.
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Chapter 6
Results

In this chapter the results of the algorithms will be evaluated using a testing
environment. The classification accuracy during training of some algorithms
will also be evaluated.

6.1 Training state-of-the art engine

The Tesseract has been trained on a sufficiently large amount of data and
shows impressive results in the text recognition task. In spite of this, the
accuracy of the algorithm can be improved even more by the transfer learning
method described in the theoretical part of the paper. I took the standard
Czech language model and trained it on data from our dataset using the official
Tesseract software called tesstrain. As training data I used the previously
extracted strings, as well as their corresponding labels, i.e. ground truth text
files. Figure 6.1 show the loss functions during training of different modes of
the Tesseract engine.

a) Tesseract Legacy b) Tesseract LSTM

Figure 6.1: Tesseract training results.

The value of this function should decrease during the learning process. The
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curve of the loss function value during the training phases ideally should be
without significant jumps or breaks. These are exactly the results I was able
to achieve while training both algorithms. As expected, LSTM showed better
results.

Looking at the loss functions of both models, we can also see that the
functions converge approximately after the first third of the training process.
This indicates that after this time, the algorithm learned, so to speak, ”in vain”
and therefore its training could have been terminated earlier.

6.2 Testing algorithms

After training algorithms, they can be used for text prediction then. Im-
plemented testing environment allows us to add new books without much
difficulty. So I decided to add books in German and English for better clarity
in comparing the algorithms.

I chose Tesseract LSTM as the benchmark algorithm because it showed
good results during the training. The other algorithms will be relative to it on
the parameters of recognition success, speed, and memory, as described earlier
in the thesis.

After running Tesseract LSTM, a JSON file named ’tesseract.json’ appears
in the ’metrics data’ book folder. An example of the content of this file is
shown in the figure 6.2.

{
” t t e s s l i s t ” :

[ 2 . 0 6 4 9 , 1 .4370 , 1 .4773 ,
1 .4746 , 1 .5845 , 1 .6012 ,
1 .2066 , 1 .4560 , 1 . 2 6 8 8 ] ,

” e t e s s l i s t ” :
[ 0 . 0 2 3 9 , 0 .0193 , 0 .02487 ,
0 .01580 , 0 .01905 , 0 .0203 ,
0 .01966 , 0 .0058 , 0 . 0 1 8 3 2 ] ,

” m tess ” : 161.6796
}

Figure 6.2: Tesseract metrics as JSON example.

If user choose to test any of the algorithms, the environment implies the
generation of a file that includes its effectiveness data. I also added information
fields for clarity, such as the name of the book, the name of the algorithm, the
language of recognition. Content of such file demonstrated in figure 6.3.
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{
”book ” : ” vetevky z ut leho kmene ” ,
” a lgor i thm ” : ”GOCR” ,
” lang ” : ” ce s ” ,
” t ” : 0 .7458239817573651 ,
” e ” : 26 .46705309342672 ,
”m” : 1 .196762503020053 ,
” s co r e ” : 21.345354197155984

}

Figure 6.3: Algorithm evaluation as JSON example.

6.2.1 Tesseract LSTM

The most effective framework has proved to be Tesseract LSTM. Its advanced
deep learning implementation has allowed it to surpass other OCR algorithms.
After training, its accuracy became about 98%. In figure 6.1 is Tesseract LSTM
testing score.

Book Metrics Values

cze
e 2.06 1.43 1.47 1.47 1.58 1.60 1.20 1.45 1.26
t 1.82 2.67 1.61 2.21 2.81 3.06 2.04 2.57 2.92
m 161.67

eng
e 1.82 2.67 1.61 2.21 2.81 3.06 2.04 2.57 2.92
t 0.04 0.02 0.07 0.04 0.02 0.02 0.04 0.03 0.02
m 202.18

deu
e 1.11 1.77 1.32 2.08 1.66 1.60 1.41 1.23 1.08
t 0.34 0.44 0.36 0.43 0.44 0.40 0.44 0.36 0.42
m 170.67

Table 6.1: Tesseract evaluating variables.

All of the above metrics were described in the chapter 4. Error metric e
based on Levenstein similarity.

6.2.2 Tesseract Legacy

As can be seen in figure 6.4, the Tesseract Legacy scored about 1.5, which
means that it is 1.5 times worse than the benchmark Tesseract LSTM.

An interesting detail is that the Legacy mode engine required the same
amount of memory to process the text.
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Figure 6.4: Tesseract processing result. Green is Tesseract LSTM result, yellow
is Tesseract Legacy, uncolored characters both algorithms have the same.

Book t e m score
Větévky z útlého kmene (cze) 2.88 1.32 1.0 1.54

The victoria falls (eng) 1.67 1.42 1.0 1.44
Abhandlung über (deu) 3.16 1.25 1.0 1.52

Table 6.2: Tesseract Legacy testing score

6.2.3 GOCR

Algorithm in process and result below (see fig. 6.5).
From the table of results in table 6.3 can be seen that it is 20–30 times

worth then state-of-the-art algorithm. It can be concluded that it is bad enough
for such noisy images.

Despite the fact that text processing is faster and sometimes less memory
is spent, the recognition error is too high for this algorithm to be considered
effective nowadays.
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Figure 6.5: GOCR Processing result.

Book t e m score
Větévky z útlého kmene (cze) 0.74 26.46 1.19 21.34

The victoria falls (eng) 2.52 28.25 0.95 23.02
Abhandlung über (deu) 0.68 37.19 1.0 29.90

Table 6.3: GOCR testing score
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Conclusion

The first part of this thesis focused on an overview of image processing methods.
As it was found during the study preprocessing plays a major role in text
recognition process.

Part of the research was devoted to soft computing, namely artificial
intelligence and machine learning methods. The biggest focus of this theoretical
part was on neural networks. Some important deep learning architectures that
are used in modern text recognition systems were explored, as well as the
analysis of the learning process, some machine learning metrics.

The purpose of this work was to evaluate existing text recognition algo-
rithms.

For example, I investigated both classical text recognition approaches and
approaches using soft computing, such as LSTM neural networks. A review of
commercial and non-commercial programs was also conducted.

I used the Kramerius Digital Library as a data source to form dataset.
To train the OCR model in the most efficient way possible I have also tested
some segmentation algorithms and found the most appropriate one under our
conditions to apply it for extracting useful data from parsed dataset.

A way to test different algorithms was realized. In the course of the research
it was found that in today’s realities of the text recognition market there is a
high competitiveness. Therefore, it is important to know how the algorithms
differ and to what extent they outperform each other.

Metrics were derived that take one of the best opensource engines Tesseract
LSTM for text recognition as a benchmark.

The development rudiments of this project in the future were also laid out.
New algorithms for text recognition are not difficult to add to testing environ-
ment. A dataset of 10,000 letters was also formed to test other algorithms in the
future. The possibility of adding one’s own data has been implemented, which
simplifies the creation of the dataset in the future. Potential user can train
OCR algorithms on his own data, which, of course, can be non-alphanumeric
characters, Chinese characters, Cyrillic characters.
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Appendix A
Acronyms

OCR Optical Character Recognition

CNN Convolutional Neural Network

RNN Recurrent Neural Network

LSTM Long Short-Term Memory

ReLU Rectified Linear Unit
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Appendix B
Contents of enclosed CD

readme.md.........................the file with CD contents description
books ........................................ the directory with books
pictures................................. the directory of source codes
training...........................the directory of model training files

train................................................... train data
evaluate...........................................evaluation data

characters dataset................ the dataset of recognized character
text..........................................the thesis text directory

thesis.pdf...........................the thesis text in PDF format
notebooks...........................jupyter notebooks related to work
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C. Appendix

Layer (type) Output shape Param # Connected to
input 2 (512, 512, 1) 0
conv2d 20 (512, 512, 64) 640 input 2
dropout 6 (512, 512, 64) 0 conv2d 20
conv2d 21 (512, 512, 64) 36928 dropout 6
max pooling2d 5 (256, 256, 64) 0 conv2d 21
conv2d 22 (256, 256, 128) 73856 max pooling2d 5
dropout 7 (256, 256, 128) 0 conv2d 22
conv2d 23 (256, 256, 128) 147584 dropout 7
max pooling2d 6 (128, 128, 128) 0 conv2d 23
conv2d 24 (128, 128, 256) 295168 max pooling2d 6
dropout 8 (128, 128, 256) 0 conv2d 24
conv2d 25 (128, 128, 256) 590080 dropout 8
max pooling2d 7 (64, 64, 256) 0 conv2d 25
conv2d 26 (64, 64, 512) 1180160 max pooling2d 7
dropout 9 (64, 64, 512) 0 conv2d 26
conv2d 27 (64, 64, 512) 2359808 dropout 9
max pooling2d 8 (32, 32, 512) 0 conv2d 27
conv2d 28 (32, 32, 1024) 4719616 max pooling2d 8
dropout 10 (32, 32, 1024) 0 conv2d 28
conv2d 29 (32, 32, 1024) 9438208 dropout 10
conv2d transpose 5 (64, 64, 512) 2097664 conv2d 29

concatenate 5 (64, 64, 1024) 0 conv2d transpose 5
conv2d 27

conv2d 30 (64, 64, 512) 4719104 concatenate 5
conv2d 31 (64, 64, 512) 2359808 conv2d 30
conv2d transpose 6 (128, 128, 256) 524544 conv2d 31

concatenate 6 (128, 128, 512) 0 conv2d transpose 6
conv2d 25

conv2d 32 (128, 128, 256) 1179904 concatenate 6
conv2d 33 (128, 128, 256) 590080 conv2d 32
conv2d transpose 7 (128, 128, 128) 131200 conv2d 33

concatenate 7 (256, 256, 256) 0 conv2d transpose 7
conv2d 23

conv2d 34 (256, 256, 128) 295040 concatenate 7
conv2d 35 (256, 256, 128) 147584 conv2d 34
conv2d transpose 8 (512, 512, 64) 32832 conv2d 35

concatenate 8 (512, 512, 128) 0 conv2d transpose 8
conv2d 21

conv2d 36 (512, 512, 64) 73792 concatenate 8
conv2d 37 (512, 512, 64) 36928 conv2d 36
conv2d 38 (512, 512, 1) 65 conv2d 37

Table C.1: U-net model architecture, Total params: 31 030 593.70
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