
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering

Department of Cybernetics

BACHELOR THESIS

Dmitrii Mikhailov

Graph-Based Simplex Algorithm for Discrete Energy
Minimization

Thesis supervisor: doc. RNDr. Daniel Pr̊uša, PhD

August, 2021



BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

483580Personal ID number:Mikhailov DmitriiStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Open InformaticsStudy program:

Artificial Intelligence and Computer ScienceSpecialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Graph-Based Simplex Algorithm for Discrete Energy Minimization

Bachelor’s thesis title in Czech:

Grafový simplexový algoritmus pro minimalizaci diskrétní energie

Guidelines:
1. Get to know the problem of discrete energy minimization [2] and a graph-based simplex algorithm proposed to solve
its general [3] and submodular instances [1] in the case of binary variables.
2. With the help of the supervisor, identify deficiencies in [1] (a confusing and incomplete description of the algorithm,
implementation not working for larger instances, limited experiments).
3. Formulate your own description of the graph-based simplex algorithm for submodular instances, propose suitable data
structures and implement the algorithm in your way.
4. Perform thorough testing of the implementation using artificial instances as well as instances from low-level computer
vision [4]. Analyze the obtained results.

Bibliography / sources:
[1] E. Tiuzhina: Application of Simplex Algorithm for Submodular Discrete Energy Minimization with Binary Variables.
Czech Technical University in Prague, Bachelor thesis, 2018.
[2] Y. Boykov, V. Kolmogorov: An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in
Vision. IEEE Trans. on Pattern Analysis and Machine Intelligence, 26(9):1124–1137, Sept. 2004.
[3] D. Průša: Graph-based Simplex Method for Pairwise Energy Minimization with Binary Variables. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR 2015), Boston, MA, USA, June 7-12, 2015.
[4] Max-flow problem instances in vision: https://vision.cs.uwaterloo.ca/data/maxflow, University of Waterloo, Canada.

Name and workplace of bachelor’s thesis supervisor:

doc. RNDr. Daniel Průša, Ph.D., Machine Learning, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 13.08.2021Date of bachelor’s thesis assignment: 28.12.2020

Assignment valid until: 30.09.2022

_________________________________________________________________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
doc. RNDr. Daniel Průša, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1



III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1



Author statement for undergraduate thesis

I declare that the presented work was developed independently and that I have listed
all sources of information used within it in accordance with the methodical instructions
for observing the ethical principles in the preparation of university theses.

In Prague on 13.08.2021 Dmitrii Mikhailov



Acknowledgements

I would like to thank to my supervisor Daniel Pruša, for giving me all necessary infor-
mation and because he explained me all information, which i couldn’t understand. Also
i would like to thank to my family, because thay always believe in my possibilities and
always give a lot of support. And also i would like to thank to my girlfriend for helping me
to keep calm and always be by my side.



Abstract

Discrete energy minimization is a combinatorial problem where the task
is to find an optimal assignment of labels to nodes of a given undirected
graph. The goal is to find an assignment of minimal total cost. This
problem is widely used in low-level computer vision In general, it is an
NP-hard problem. It can be solved approximately by algorithms based
on a linear programming relaxation. It is possible to apply the simplex
algorithm to solve the binary submodular energy minimization. However,
the standard implementation of the simplex algorithm is not efficient on
large inputs, because the simplex table is too huge. Our goal is to in-
vestigate a special, graph-based version of the simplex algorithm which
will handle all possible configurations arising during the simplex method
iterations.
Keywords : Submodular binary instances, Discrete energy minimiza-
tion.



Abstract

Minimalizace diskrétńı energie je kombinatorický problém, ve kterém
hledáme optimálńı přǐrazeńı label̊u pro uzly daného neorientovaného
grafu. Ćılem je naj́ıt přǐrazeńı s minimálńı celkovou cenou. Tento problém
je široce použ́ıván např́ıklad v oblasti poč́ıtačového viděńı. Obecně se
jedná o NP-těžkou úlohu. V př́ıpadě submodulárńıch vstup̊u lze řešit
relaxaci problému lineáńım programováńım. Standartńı implementace
simplexového algoritmu však neńı užitečná pro velké vstupy, protože
simplexová tabulka by byla př́ılǐs velká. Nášim ćılem bude navrhnout
specializovanou simplexovou metodu, která namı́sto simplexové tabulky
pracuje s grafem, a která je schopna efektivně zpracovat všechny možné
konfigurace, které se mohou během iteraćı simplexové metody objevit.
Kĺıčová slova : Súbmodulárńı binárńı instance, Minimalizace diskrétńı
energie.



CONTENTS

Contents

1. Introduction 1

1.1. The problem of energy minimization. . . . . . . . . . . . . . . . . . . . . . 1

2. Problem formulation 2

2.1. Binary energy minimization . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2. Submodular binary instances . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.3. Linear programming relaxation . . . . . . . . . . . . . . . . . . . . . . . . 3

2.4. Solving the LP relaxation by simplex algorithm . . . . . . . . . . . . . . . 4

3. Preparations for the algorithm 6

3.1. Introduction to the graph structure . . . . . . . . . . . . . . . . . . . . . . 6

3.2. Equations for basic variables . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2.1. Node variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2.2. Edges connecting nodes of different trees . . . . . . . . . . . . . . . 9

3.2.3. Edges connecting nodes of the same tree . . . . . . . . . . . . . . . 11

3.2.4. Coefficients in simplex table columns . . . . . . . . . . . . . . . . . 12

4. Description of the algorithm 13

4.1. Definitions of the parts of the simplex algorithm . . . . . . . . . . . . . . . 13

4.2. Changing costs of all basic variables to 0 . . . . . . . . . . . . . . . . . . . 13

4.3. Searching for a leaving variable . . . . . . . . . . . . . . . . . . . . . . . . 13

4.3.1. Entering variable is a node . . . . . . . . . . . . . . . . . . . . . . . 14

4.3.2. Entering variable is an edge . . . . . . . . . . . . . . . . . . . . . . 15

4.4. Distract raw in simplex table . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.4.1. Leaving variable is a node . . . . . . . . . . . . . . . . . . . . . . . 16

4.4.2. Leaving variable is an edge . . . . . . . . . . . . . . . . . . . . . . 17

4.5. Changes of direction and changes of colors . . . . . . . . . . . . . . . . . . 17

4.5.1. Entering variable and leaving variable are both nodes . . . . . . . . 17

4.5.2. Entering variable is a node and leaving variable is an edge . . . . . 19

4.5.3. Entering variable is an edge and leaving variable is a node . . . . . 23

4.5.4. Entering variable is an edge and leaving variable is an edge . . . . 25

i



CONTENTS

5. Implementation 29

6. Conclusion 32

ii



1. Introduction

1.1. The problem of energy minimization.

Discrete energy minimization is a combinatorial problem where the task is to find an
optimal assignment of labels to nodes of a given undirected graph. Unary and binary costs
of assigning labels are defined for the graph nodes and edges, respectively. The goal is
to find an assignment of minimal total cost. This problem is widely used e.g. in low-level
computer vision [1] [2]. In general, it is an NP-hard problem. It can be solved approximately
by algorithms based on a linear programming relaxation [3].

A prominent role has the variant with two labels. It can be expressed as quadratic
pseudoboolean optimization [4] [5]. Max-flow/min-cut algorithms can be applied to find a
partial optimal solution. The LP relaxation of the binary energy minimization is known to
be half integral, and it is integral in the case of so called submodular instances. These facts
imply that it is possible to apply the simplex algorithm to solve the binary submodular
energy minimization. However, the standard implementation of the simplex algorithm is
not efficient on large inputs, because the simplex table is too huge.

In this work we study a more efficient method which encodes the simplex tableau by a
graph whose size is proportional to the size of the input graph. We show that basic and
nonbasic variables form a special structure of subtrees in the input graph. This structure
allows to compute rows and columns of the simplex tableau efficiently.

Special versions of the simplex method with similar properties, known as network sim-
plex, have already been described in the literature for other problems [6]. Graph-based
simplex method was proposed for the half-integral LP relaxation of the binary energy min-
imization in [7]. Graph-based simplex method for LP relaxation of submodular instances
was investigated in [8]. However, this work does not give a full analysis and description of
the algorithm steps. Our goal is to deliver a complete implementation which handles all
possible configurations arising during the simplex method iterations.

1



2. Problem formulation

2.1. Binary energy minimization

Let G = (V,E) be an undirected graph where elements of V are called objects and
elements of E ⊆

(
V
2

)
are called object pairs. Let C = {0, 1} be a set of labels. For each

u ∈ V , let pu : C → R be a unary cost function for assigning labels to object u, and for
each {u, v} ∈ E, let puv : C × C → R be a binary cost function for assigning labels to the
objects of the object pair {u, v}. We adopt that puv(k, `) = pvu(`, k) for all {u, v} ∈ E and
k, ` ∈ C. The task of energy minimization is to find

minc∈CV

[∑
u∈V pu(cu) +

∑
{u,v}∈E puv(cu, cv)

]
We shortly write pu(k) as pu:k and puv(k, `) as puv:k`. An instance of energy minimization
problem is defined as a tuple (V,E, p).

An instance of binary minimization problem can be represented by the scheme bellow.
Objects are depicted as boxes. There are two nodes inside each objects representing as-
signment of label 0 and 1, respectively. Object pairs are represented by edges connecting
nodes from the neighboring objects. Numbers in nodes and along edges are values of the
unary and binary cost functions.

2.2. Submodular binary instances

We say that an instance (V,E, p) is submodular if for each object pair {u, v} ∈ E:

puv:01 + puv:10 ≥ puv:00 + puv:11

2



2.3 Linear programming relaxation

For each (V,E, p), it is possible to change cost function so that we obtain an equivalent
instance (V,E, p′) fulfilling p′uv:00 = 0 and p′uv:11 = 0 for all {u, v} ∈ E.

A desired equivalent instance can be obtained by repeatedly applying so called reparametriza-
tion, which is demonstrated by the following schemes.

As a result of the reparametrization, we get an instance:

2.3. Linear programming relaxation

Let (V,E, p) be an instance of binary submodular energy minimization such that puv:00 =
0 and puv:11 = 0 for all {u, v} ∈ E.

We can formulate the following linear (LP) programming relaxation of the problem.

min
∑
u∈V

(pu:0xu:0 + pu:1xu:1) +
∑
{u,v}∈E

(puv:01xuv:01 + puv:10xuv:10)

subject to:

xu:0 + xu:1 = 1, u ∈ V

xu:0 + xuv:10 = xv:0 + xuv:01, {u, v} ∈ E

x ≥ 0

3



2.4 Solving the LP relaxation by simplex algorithm

2.4. Solving the LP relaxation by simplex algorithm

We assume that the reader is familiar with the simplex algorithm [9].

We will show how it solves the following instance:

In the scheme above, nodes and edges are in one to one correspondence with LP relax-
ation variables. We use three colors (black, blue, red) to categorize the variables:

For the given instance, we assemble the simplex table:

xA:0 xA:1 xB:0 xB:1 xAB:01 xAB:10 d
-1 2 0 -1 3 -2 0

xA:1 1 1 0 0 0 0 1
xB:1 0 0 1 1 0 0 1
xAB:10 1 0 -1 0 -1 1 0

Before i start simplex algorithm, i need to change values of non-basic variables to ze-
ros. It can be solved with subtraction 2 times first row, then add 1 times second row, and
then add one time third row, after this operation we have this simplex table and can start
the algorithm.

xA:0 xA:1 xB:0 x B:1 xAB:01 xAB:10 d
-1 0 -1 0 1 0 -1

xA:1 1 1 0 0 0 0 1
xB:1 0 0 1 1 0 0 1
xAB:10 1 0 -1 0 -1 1 0

4



2.4 Solving the LP relaxation by simplex algorithm

Firstly we need to choose the column with minimal value, in this case it could be the
first column or the third. Let choose the third column. For each row find a criterion, for
the first is 1/0 (infinity), for the second is (1/1) = 1, for the last one it’s (0/-1). Pivot in
this situation will be determined by the minimum non negative value. The pivot will be in
the second row.
Let make a first iteration of simplex algorithm with addition second row to each row for
changing value in the third column to 0. And also we need to add xB:0 to a basic variables,
and delete xB:1 from basic variables. After first iteration we have

xA:0 xA:1 xB:0 xB:1 xAB:01 xAB:10 d
-1 0 0 1 1 0 0

xA:1 1 1 0 0 0 0 1
xB:0 0 0 1 1 0 0 1
xAB:10 1 0 0 1 -1 1 1

Ratios for the rows are the minimal negative value in the first column, so there we need to
find pivot. Criterion for each row are (1,none,1), so we can choose first and third row, let
choose the third one. And let us make the next iteration:

xA:0 xA:1 xB:0 xB:1 xAB:01 xAB:10 d
0 0 0 2 0 1 1

xA:1 0 1 0 -1 1 -1 0
xB:0 0 0 1 1 0 0 1
xA:0 1 0 0 1 -1 1 1

In this case all costs are positive, so we don’t need next iterations, so simplex algorithm is
finished. And this is our optimal decision with cost = (-d), so in this case with cost equal
to -1. The result is represented as follows:

5



3. Preparations for the algorithm

3.1. Introduction to the graph structure

In this chapter we derive equations for basic variables when they are expressed as a
linear combination of non-basic variables. It means that we give a characterization of the
simplex table rows.

The theorems rely on the structure of basic and non-basic variables described in [8].
The structure is as follows. There are two types of objects.
Root objects contain one basic and one non-basic variable (of value 1, i.e., black).

Ordinary objects contain two non-basic variables (of value 0 and 1, i.e., blue and black).

Next, there are two types of object pairs.
Tree object pairs contain two non-basic edge variables (red)

6



3.2 Equations for basic variables

while non-tree object pairs contain one basic (blue or black) and one non-basic variable.

Subgraphs of objects connected by tree edges form trees with exactly one root object.

3.2. Equations for basic variables

3.2.1. Node variables

Let (N,E, p) be an instance of the discrete energy minimization problem where G =
(V,E) is a undirected graph and p is a cost vector.

Theorem 3.1. Let xu:` be a basic variable for some object u ∈ V and a label ` ∈ {0, 1}.
Let u0, . . . , uk (k ≥ 0) be a tree path from u = uk to a root u0. Then it holds

� if xu0:` is a non-basic variable, then xuk:` +
∑k

i=1

(
xuiui−1:ˆ̀̀

− xuiui−1:`ˆ̀

)
− xu0:` = 0,

� otherwise xuk:` +
∑k

i=1

(
xuiui−1:ˆ̀̀

− xuiui−1:`ˆ̀

)
+ xu0:ˆ̀

= 1,

where ˆ̀= 1− `.

Proof: By induction on k.

Let k = 0. It means that u = uk = u0 is a root and xu0:` = xuk:` is a basic variable,
hence xu:` + xu:ˆ̀ = 1, which is equivalent to the theorem statement.

Let k = 1. It holds that

xu1:` + xu1u0:ˆ̀̀
− xu0:` − xu1u0:``

= 0 . (1)

7



3.2 Equations for basic variables

If xu0:` is a non-basic variable, the theorem statement is fulfilled. If xu0:` is a basic variable,
we substitute xu0:` = 1− xu0:ˆ̀

to (1) and we obtain

xu1:` + xu1u0:ˆ̀̀
− xu1u0:`ˆ̀

+ xu0:ˆ̀
= 1 ,

which shows again that the theorem statement is valid.

Let k > 1. It holds that

xuk:` + xukuk−1:ˆ̀̀
− xuk−1:` − xukuk−1:`ˆ̀

= 0 . (2)

Case 1: Assume that xu0:` is a non-basic variable. By the induction hypotheses, it holds
that

xuk−1:` +
k−1∑
i=1

(
xuiui−1:ˆ̀̀

− xuiui−1:`ˆ̀

)
− xu0:` = 0 (3)

which implies

xuk−1:` = xu0:` −
k−1∑
i=1

(
xuiui−1:ˆ̀̀

− xuiui−1:`ˆ̀

)
. (4)

We substitute (4) to (2) and obtain:

xuk:` + xukuk−1:ˆ̀̀
− xukuk−1:`ˆ̀

+
k−1∑
i=1

(
xuiui−1:ˆ̀̀

− xuiui−1:`ˆ̀

)
− xu0:` = 0 ,

xuk:` +
k∑

i=1

(
xuiui−1:ˆ̀̀

− xuiui−1:`ˆ̀

)
− xu0:` = 0 ,

which proves the theorem.

Case 2: Assume that xu0:` is a basic variable. By the induction hypotheses, it holds that

xuk−1:` +
k−1∑
i=1

(
xuiui−1:ˆ̀̀

− xuiui−1:`ˆ̀

)
+ xu0:` = 1 . (5)

We can express xuk−1:` from the above equation and substitute it to (2) to obtain that

xuk:` +
k∑

i=1

(
xuiui−1:ˆ̀̀

− xuiui−1:`ˆ̀

)
+ xu0:` = 1 ,

which again proves the theorem. �

8



3.2 Equations for basic variables

3.2.2. Edges connecting nodes of different trees

Theorem 3.2. Let xu:` and xv:ˆ̀ be a basic variable for some object u ∈ V and v ∈ V
and a label ` ∈ {0, 1}. Let u0, . . . , uk (k ≥ 0) be a tree path from u = uk to a root u0 and
v0, . . . , vk (k ≥ 0) be a tree path from v = vk1 to a root v0. Then it holds

� if xu0:` is a non-basic variable and xv0:` and is a non-basic variable, then xukvk1:`ˆ̀
+∑k

i=1

(
xuiui−1:ˆ̀̀

− xuiui−1:`ˆ̀

)
−xu0:`−

∑k1
i=1

(
−xvivi−1:ˆ̀̀

+ xvivi−1:`ˆ̀

)
+xv0:`−xukvk1:ˆ̀̀

=

0,

� if xu0:` is a basic variable and xv0:` and is a non-basic variable, then xukvk1:`ˆ̀
+∑k

i=1

(
xuiui−1:ˆ̀̀

− xuiui−1:`ˆ̀

)
+xu0:ˆ̀

−
∑k1

i=1

(
−xvivi−1:ˆ̀̀

+ xvivi−1:`ˆ̀

)
+xv0:`−xukvk1:ˆ̀̀

=

1,

� if xu0:` is a non-basic variable and xv0:` and is a basic variable, then xukvk1:`ˆ̀
+∑k

i=1

(
xuiui−1:ˆ̀̀

− xuiui−1:`ˆ̀

)
−xu0:`−

∑k1
i=1

(
−xvivi−1:ˆ̀̀

+ xvivi−1:`ˆ̀

)
+xv0:`−xukvk1:ˆ̀̀

=

1,

� if xu0:` is a basic variable and xv0:` and is a basic variable, then

xukvk1:`ˆ̀
+

k∑
i=1

(
xuiui−1:ˆ̀̀

− xuiui−1:`ˆ̀

)
+ xu0:ˆ̀

−
k1∑
i=1

(
−xvivi−1:ˆ̀̀

+ xvivi−1:`ˆ̀

)
+ xv0:` − xukvk1:ˆ̀̀

= 1 ,

where ˆ̀= 1− `.

Proof: First of all, we know the equation for the edge between nodes xuk
and xvk1

:

− xuk:` − xukvk1:ˆ̀̀
+ xvk1:` + xukvk1:`ˆ̀

= 0 . (6)

Case 1: Assume that xu0:` is a non-basic variable and xv0:` and is a non-basic variable, then
we have 2 equations from theorem 5.1:

− xuk:` =
k∑

i=1

(
xuiui−1:ˆ̀̀

− xuiui−1:`ˆ̀

)
− xu0:` . (7)

xvk1:` = −
k1∑
i=1

(
xvivi−1:ˆ̀̀

− xvivi−1:`ˆ̀

)
+ xv0:` . (8)

We substitute (7) and (6) and also substitute (8) and (6), and obtain:

k∑
i=1

(
xuiui−1:ˆ̀̀

− xuiui−1:`ˆ̀

)
−xu0:`−xukvk1:ˆ̀̀

−
k1∑
i=1

(
xvivi−1:ˆ̀̀

− xvivi−1:`ˆ̀

)
+xv0:`+xukvk1:`ˆ̀

= 0 .

(9)

9



3.2 Equations for basic variables

Case 2: Assume that xu0:` is a basic variable and xv0:` and is a non-basic variable, then we
have 2 equations from theorem 5.1:

− xuk:` =
k∑

i=1

(
xuiui−1:ˆ̀̀

− xuiui−1:`ˆ̀

)
+ xu0:ˆ̀

− 1 . (10)

xvk1:` = −
k1∑
i=1

(
xvivi−1:ˆ̀̀

− xvivi−1:`ˆ̀

)
+ xv0:` . (11)

We substitute (10) and (6) and also substitute 11 and (6), and obtain:

k∑
i=1

(
xuiui−1:ˆ̀̀

− xuiui−1:`ˆ̀

)
+xu0:ˆ̀

−xukvk1:ˆ̀̀
−

k1∑
i=1

(
xvivi−1:ˆ̀̀

− xvivi−1:`ˆ̀

)
+xv0:`+xukvk1:`ˆ̀

= 1 .

(12)
So it’s equal to the theorem Case 3: assume,that xu0:` is a non-basic variable and xv0:` and
is a basic variable, then we have 2 equations from theorem 5.1:

− xuk:` =
k∑

i=1

(
xuiui−1:ˆ̀̀

− xuiui−1:`ˆ̀

)
− xu0:` . (13)

xvk1:` = −
k1∑
i=1

(
xvivi−1:ˆ̀̀

− xvivi−1:`ˆ̀

)
+ 1− xv0:ˆ̀

. (14)

We substitute (13) and (6) and also substitute (14) and (6), and obtain:

−
k∑

i=1

(
xuiui−1:ˆ̀̀

− xuiui−1:`ˆ̀

)
+xu0:`+xukvk1:ˆ̀̀

+
k1∑
i=1

(
xvivi−1:ˆ̀̀

− xvivi−1:`ˆ̀

)
+xv0:ˆ̀

−xukvk1:`ˆ̀
= 1 .

(15)
it’s also equal to the theorem Case 4: assume,that xu0:` is a basic variable and xv0:` and is
a basic variable, then we have 2 equations from theorem 5.1:

− xuk:` =
k∑

i=1

(
xuiui−1:ˆ̀̀

− xuiui−1:`ˆ̀

)
+ xu0:ˆ̀

− 1 . (16)

xvk1:` = −
k1∑
i=1

(
xvivi−1:ˆ̀̀

− xvivi−1:`ˆ̀

)
− xv0:ˆ̀

+ 1 . (17)

We substitute (16) and (6) and also substitute (17) and (6), and obtain:

k∑
i=1

(
xuiui−1:ˆ̀̀

− xuiui−1:`ˆ̀

)
+xu0:ˆ̀

−xukvk1:ˆ̀̀
−

k1∑
i=1

(
xvivi−1:ˆ̀̀

− xvivi−1:`ˆ̀

)
−xv0:ˆ̀

+xukvk1:`ˆ̀
= 0 .

(18)
�

10



3.2 Equations for basic variables

3.2.3. Edges connecting nodes of the same tree

Theorem 3.3. Let xu:` be a basic variable for some object u ∈ V and a label ` ∈ {0, 1}.
Let u0, . . . , uk (k ≥ 0) be a tree path from u = uk to a root u0 and u0, . . . , uk1 (k1 < 0) be
a tree path from v = vk1 to a root v0 Then it holds

� xukuk1:`ˆ̀
+
∑k

i=1

(
xuiui−1:ˆ̀̀

− xuiui−1:`ˆ̀

)
−
∑0

i=k1+1

(
−xuiui−1:ˆ̀̀

+ xuiui−1:`ˆ̀

)
−xukuk1:ˆ̀̀

=

0

where ˆ̀= 1− `.

Proof: First of all, we know the equation for the edge between nodes xuk
and xuk1

:

− xuk:` − xukuk1:ˆ̀̀
+ xuk1:` + xukuk1:`ˆ̀

= 0 . (19)

Also from the theorem 5.1 we know next equations for xuk:` and xuk:`:

− xuk:` =
k∑

i=1

(
xuiui−1:ˆ̀̀

− xuiui−1:`ˆ̀

)
− xu0:` (20)

xuk1
:` = −

0∑
i=k1+1

(
xuiui−1:ˆ̀̀

− xuiui−1:`ˆ̀

)
+ xu0:` (21)

Let substitute (20),(21) with (19):

k∑
i=1

(
xuiui−1:ˆ̀̀

− xuiui−1:`ˆ̀

)
− xukuk1:ˆ̀̀

−
0∑

i=k1+1

(
xuiui−1:ˆ̀̀

− xuiui−1:`ˆ̀

)
+ xukuk1:`ˆ̀

= 0 . (22)

In other case if a xu0:` is a basic variable, those values will also disappear and will be
the same equation. Edge always has value 0 because basic edge with value 1 can only be
between two basic variables, but because it carried out between two roots of the same tree
it can’t exist. �

11



3.2 Equations for basic variables

3.2.4. Coefficients in simplex table columns

Let us assume that u1 is a root, and we know,that xu1:0 = 1.

And assume, that we want to find the coefficients of all basic variables for xu1:1

xun:0 : xun:0 +
∑

k∈1:n(Xukuk+1:10)−
∑

k∈1:n(Xukuk+1:01) + xu1:1 = 1 (”+”)
xun:1 : xun:1 −

∑
k∈1:n(Xukuk+1:10) +

∑
k∈1:n(Xukuk+1:01)− xu1:1 = 0 (”−”)

So we find the signs for unary variables, let now find the signs for binary variables

xunun+1:01 : ... + xunun+1:01 +
∑

k∈1:n−1(Xukuk+1:01)−
∑

k∈1:n−1(Xukuk+1:01) + xu1:1 = 1 (”+”)

xunun+1:10 : ... + xunun+1:10 −
∑

k∈1:n−1(Xukuk+1:01) +
∑

k∈1:n−1(Xukuk+1:01)− xu1:1 = 0 (”−”)

12



4. Description of the algorithm

4.1. Definitions of the parts of the simplex algorithm

”Blue variable” means variable which is basic and has the value 0 in simplex table.
”Black variable” means variable which is basic and has the value 1 in simplex table.
”Red variable” means non-basic variable and has the value 0 in simplex table.
”Green edges” means directions from children to the root of all trees in this graph
”Blue edges” means entering and leaving variables.

4.2. Changing costs of all basic variables to 0

Before the first iteration of the simplex algorithm, we should change all costs of variables
to 0, using theorems, that we proved before.
Firstly we should change costs of all basic variable, and we do this with next operation.

And after this we should change costs of all nodes with next operation

And then we can go to the iterations.

4.3. Searching for a leaving variable

We find element with entering variable and leaving variable. First of all we need to
choose variable, that has the minimum cost. There are two different situations, which we
can get after this step:
1) If the minimum-cost variable is a node it would be our entering variable.
2) If the minimum-cost variable is an edge it would be our entering variable.

13



4.3 Searching for a leaving variable

4.3.1. Entering variable is a node

After theorems, which we had prove in third part of the project, we can get next rules
how to choose a pivot. If our entering variable has a label 1. So in this case when our
entering variable is XA:1, all varibles in this tree, which has the opposite label as XB:1,
XC:1 has a positive coefficient of minimal value in their equations. So they can be chosen
as pivot. So it can be a leaving variable. But they don’t get privelege if we will get other
pivots, but with other value. So it would be Blue variables.

If our entering variable has a label 0. So in this case when our minimal-cost variable is
XA:0, all variables in this tree, which has the opposite label as XB:0, XC:0 has a positive
coefficient of minimal value in their equations. So they can be chosen as leaving variable.
But they don’t get privelege if we will get other pivots, but with blue color. So it would
be Blue variables.

Next we will consider other situations how can we choose an edge as a leaving variables.
So in this case if we have XA:0 as a entering variable, we should choose an edge which goes
from a opposite label. So in this case it would be any line , such as XAB:10, XBC:10, XCD:10,
So it would be any line with this direction which goes from any end of this tree.

2) Implementation for searching leaving variable, when entering variable is a node;
For implementation of searching leaving variable, i am using breadth-first search algorithm.
Starting from a root node, where is based our entering variable, and for each node we decide
which of two variables are possible pivots. In previous cases it would be any node black
variable, which lies in nodes of the tree. When this node have at least in one direction
an edge, which is not in this tree (don’t have colors of 01 and 10 both red). So in this

14



4.3 Searching for a leaving variable

case if one of the line which has the same label, that our entering variable (for example
our minimal variable has label 0, so edge should have label 01) has color different from
red(”Blue” or ”Black”). If we get blue pivot, we terminate the search, because we found a
pivot for next step and this is our pivot for the next step. If in the end of the searching we
have only black pivots, we take one of them.

Algorithm 1 Searching for a leaving variable

1: queue← ()
2: queue← startNode
3: while queue 6= empty do
4: node← queue.pop
5: for neigbour in node.neigbours do
6: if neigbour is a child of node then
7: pivotBlueNode← node.node0 or node.node1 and color

8: pivotBlackNode← node.node0ornode.node1andcolor
9: queue← neigbour
10: else
11: pivotBlueLine← line.line01orline.line10andcolor . The line that not in

the tree, but goes out from node of this tree
12: pivotBlackLine← line.line01orline.line10andcolor
13: end if
14: end for
15: end while

4.3.2. Entering variable is an edge

. Similary as in the search of a pivot node, we should choose any variables in the nodes
of the same tree, which has the same label. For example if XAB:10 is a entering variable, we
need to search all variables of nodes which has label 1. For example XB:1, XC:1, XD:1, they
can be chosen as leaving variable. If we had XAB:01 as a entering variable, we choose one
variable of all variables of nodes in this tree which has label 0, such as XB:0, XC:0, XD:0.

When searching for an edge to be taken as the leaving variable, we should search any line,
which is not in the tree, but goes from the endings of this tree. And those should have

15



4.4 Distract raw in simplex table

the same label as our minimal line. For exampe if we have XAB:01 as an entering variable,
and we search for it leaving edge variable, we should choose line which has the same label
XDE:01, but if we have XAB:10 as a line, we should choose as a pivot line XDE:10, so it would
be our leaving variable.

For the search we use the same algotithm as in previous case, but this time we start the
search from a node, in which our line leads. And from this node we perform the search, if
we find a blue pivot we terminate searching, otherwise we continue.

4.4. Distract raw in simplex table

Distract the raw in simplex table of leaving variable, from costs of all variables , which
are presented in equations of leaving variable. We should consider two different examples:
1) If leaving variable is a node variable.
2) If leaving variable is a edge variable.

4.4.1. Leaving variable is a node

Because after theorems for node variable. We know their equation;

And we need to distract this raw from the costs, of variable, which are presented in this
equation. And we need to distract this raw as many times, as a cost of entering variable.
So for example we need to distract from XAB:10 cost of entering variable. And add to the
XAB:01 cost of entering variable. And make the same thing for others variables of this
equations

16



4.5 Changes of direction and changes of colors

4.4.2. Leaving variable is an edge

Because after theorems for edge variable we know their equation. So equation of XBC:01

will be:

And we make the same operations as in previous example. From each variable, that
has a positive coefficient in the equation, we need to distract cost of entering variable.
For example from XBC:01,XAB:01,XA:1, and distract cost of entering variable from costs
of all variables, which have negative coefficient in equation of leaving variable. Such as
XCD:10,XDE:10,XE:1.

4.5. Changes of direction and changes of colors

Next step of our simplex algorithm would be distraction of our pivot from each other
line. For that we use changing of directories and of colors. We should consider 4 different
situations:
1) Entering variable and leaving variable are both nodes
2) Entering variable is a node, but leaving variable is a edge
3) Entering variable is a edge, but leaving variable is a node
4) Entering variable and leaving variable are both edges

4.5.1. Entering variable and leaving variable are both nodes

In this example we also have two different situations:
1) Both entering and leaving variables stay in the same node
2) Leaving variables and entering variables stay in different nodes

1) Both entering and leaving variables are located in the same node

17



4.5 Changes of direction and changes of colors

In this situation we don’t need to change directions, because node, which contains both
this variables will still be a root of the tree, so we only need to change colors between
themselves in each node of the tree. So it would be the result:

But if entering and leaving variables lean in different nodes:

18



4.5 Changes of direction and changes of colors

We should change directions of all edges, that adjacent from our root to the node, which
obtains leaving variable, and this node would be the next root, and because pivot is black
we also need to change colors of other variable in this node and then change colors of all
node in this tree

Algorithm 2 Changing colors of nodes in the tree

1: nwev . (node with entering variable)
2: nwlv . (node with leaving variable)
3: queue← nwev
4: while queue 6= empty do
5: node← queue.pop
6: node.node0.color ← node.node1.color
7: node.node1.color ← node.node0.color
8: for neigbour in node.neigbours do
9: if neigbour is a child then
10: queue← neigbour
11: else
12: Change colours of lines that go from ending variables

13: end if
14: end for
15: end while

4.5.2. Entering variable is a node and leaving variable is an edge

In this section we also have two different situations :
1) Leaving variable is a blue edge.
2) Leaving variable is a black edge.
1) Entering variable is a blue edge

19



4.5 Changes of direction and changes of colors

Algorithm 3 Changing direction

1: nwev . (node with entering variable)
2: nwlv . (node with leaving variable)
3: node← nwlv
4: while node.parent 6= empty do
5: parent← node.parent
6: line← line between node and parent

7: line.ChangeDirection

8: node← node.parent
9: end while

In this case we don’t need to change any colors of our tree which has leaving variables.
Because the new tree, have the same colors of their nodes as our tree, because this edge
is blue. In this case we need to change directions of all edges that go from root of our old
tree to the node, from which leaving variable is starting. And then we change our entering
variable to blue color, and also change leaving variable to red color. And edge which had
this leaving variable will have direction from ending of old tree to the new tree.

20



4.5 Changes of direction and changes of colors

21



4.5 Changes of direction and changes of colors

Algorithm 4 Changing direction for entering var node and for leaving var edge

1: nwev . (node with entering variable)
2: lwlv . (edge with leaving variable)
3: nodeOldTree← line.nodefrom
4: nodeNewTree← line.nodeto
5: node← nodeoldtree
6: while node.parent 6= empty do
7: parent← node.parent
8: line← line between node and parent

9: line.ChangeDirection

10: node← node.parent
11: end while
12: nwev.ev.color ← ”blue”
13: lwlv.lf.color ← ”red”
14: line.ChangeDirectionfromto(nodeOldTree,nodeToTree)

2) Entering variable is a black edge

In this case we has the same algorithm as in previous case, because we need to change
directions of the edges to the root of old tree. But because edge is black, and it means
that colors of old tree are different from colors of the new tree. That means that before
algorithm 4, we need to make algorithm 2,which will change colors of all nodes between
their variables. An after that we will have the result

22



4.5 Changes of direction and changes of colors

4.5.3. Entering variable is an edge and leaving variable is a node

In this example we also have two possible situations:
1) Leaving variable is a blue node.
2) Leaving variable is a black node.

1) Leaving variable is a blue node.

In this case we need to separate tree, by changing colors of entering variable, now this edge,
where is located entering variable will be an edge between two trees. And node, which has
leaving variable will be root of the new tree. And after this we should change direction of
all edges that go from the root of new tree to the edge, which has entering variables.

23



4.5 Changes of direction and changes of colors

Algorithm 5 Changing direction for entering var line and for leaving var node

1: lwev . (line with entering variable)
2: nwlv . (node with leaving variable)
3: nodeOldTree← lwev.nodefrom
4: nodeNewTree← lwev.nodeto
5: node← nwlv
6: while nodet 6= nodeOldTree do
7: parent← node.parent
8: line← line between node and parent

9: line.ChangeDirection

10: node← node.parent
11: end while
12: lwev.ev.color ← nwlv.if.color
13: nwlv.lf.color ← ”red”
14: nwlv.parent← nwlv

24



4.5 Changes of direction and changes of colors

2) leaving variable is a black node:

For this situation we need to do the same algorithm as in the previous case, when leaving
variable was blue pivot. But only thing that different in these solving. Before last algorithm,
that will separate this tree, we need to swap colors of variables in each node of the tree,
starting with node, where is starting edge, which has entering variable. We change this
nodes, with algorithm 2. And result would be

4.5.4. Entering variable is an edge and leaving variable is an edge

In this example we also have two different situations:
1) Leaving variable is a blue edge.
2) Leaving variable is a black edge.

25



4.5 Changes of direction and changes of colors

1) Leaving varriable is a blue edge

Like in the previous example we need to separate our tree by entering variable, and join
remaining tree to other tree by changing color of leaving variables. So we need to change
directions of all edges, which lie on the road from leaving edge and entering edge. And
after we change colors of entering and leaving variables, this step will be finished. We don’t
need to swap colors in nodes, because this leaving edge is blue, that means that tree to
which we want to join our remaining tree has the same colors of nodes as our tree.

26



4.5 Changes of direction and changes of colors

Algorithm 6 Changing direction for entering var edges and for leaving var edges

1: lwev . (line with entering variable)
2: lwlv . (line with leaving variable)
3: nodeOldTree← lwev.nodefrom
4: nodeNewTree← lwev.nodeto
5: nodeOldTreeLeaving ← lwlv.nodefrom
6: nodeNewTreeLeaving ← lwlv.nodeto
7: node← nodeOldTreeLeaving
8: while node 6= nodeNewTree do
9: parent← node.parent
10: line← line between node and parent

11: line.ChangeDirection

12: node← node.parent
13: end while
14: lwev.ev.color ← lwlf.if.color
15: lwlv.lf.color ← ”red”
16: nodeOldTreeLeaving.parent← nodeNewTreeLeaving

2) Leaving variable is a black edge

In this situation we should do the similar things, that in previous sittation, but before this
we need to swap colors in all nodes of the remaining tree, that we join to another tree.
And we will start changing colors of nodes from a node, where is starting a line, which
has entering variable. And then we perform the algorithm 6, and change directions of all
edges, which goes from leaving variable to entering variable. And we get this result:

27



4.5 Changes of direction and changes of colors

And after this step, we take the next entering variable, which has minimum cost. And
search for it leaving variables.

28



5. Implementation

For implementation of this algorithm I used a programming language C++. For this
implementation I have made a visualisation, which shows how the graph representing a
simplex method state looks like. And for the creation of the application, which performs
visualization I used Visual Studio environment.
For a graph is used class, which is called ”graph”. Graph had lists of all lines and of all
nodes in this graph, and have all methods, that we choose in our algorithm, which was
described in description of the algorithm.

Edge is represented as a structure, which has coordinates of two nodes, where lies our
line. Also this edge have two subnodes, which obtain two edges. It’s our edge variables.
And these variables have in their structure: cost and their color.

29



A node is represented by its coordinates. It has also information about its parent, and
about the root of the tree, where this node lies. And also has two subnodes, these is its
node variables, and they have information about their costs and colors.

The full application has three possible actions. First action is initialisation of graph from
a text file. Second action ”eliminate basic variable”. It’s the first thing, that we should
do before starting iterations of simplex algorithm. And third action make one iteration
of simplex algorithm, and write chosen pivot on a standard output. Bellow graph I have
information about all nodes and lines, which has this graph.

30



31



6. Conclusion

In this thesis we have delivered the implementation of graph-based simplex algorithm
for solving submodular instances of binary energy minimization problem. Idea of using this
algorithm for those instances have some potential, because it decreases memory needed for
storing data and can be useful for solving these instances.

Unfortunately we didn’t test enough this algorithm, so we can not assert, that this
algorithm is efficient for big datasets.

But we believe that this graph-based algorithm can be very useful for solving submodular
instances of binary energy minimization problem, because of reducing amount of memory,
than in standard simplex algorithm. And if this algorithm is not efficient, there could
possibly be another initialization of the data structures, which would be more appropriate
for solving this problem.

32



REFERENCES

References

[1] Martin J. Wainwright and Michael I. Jordan. Graphical models, exponential families,
and variational inference. Foundations and Trends in Machine Learning, 2008.

[2] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. Grabcut: Interactive fore-
ground extraction using iterated graph cuts. Association for Computing Machinery,
2004.

[3] Tomas Werner. A linear programming approach to max-sum problem: A review. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 29(7):1165 – 1179, 2007.

[4] Endre Boros and Peter L. Hammer. Pseudo-boolean optimization. Discrete Applied
Mathematics, 123:155 – 225, 2002.

[5] Vladimir Kolmogorov and Carsten Rother. Minimizing nonsubmodular functions with
graph cuts-a review. IEEE Transactions on Pattern Analysis and Machine Intelligence,
29(7), 2007.

[6] G. Dantzig and M. Thapa. Linear programming 1: Introduction. Springer, 1997.

[7] Daniel Prusa. Graph-based simplex method for pairwise energy minimization with bi-
nary variables. Conference: IEEE Conference on Computer Vision and Pattern Recog-
nition, 2015.

[8] Ekaterina Tiuzhina. Application of simplex algorithm for submodular discrete energy
minimization with binary variables; bachelor thesis. 2018.

[9] Katta G Murty. Linear programming. New York: John Wiley and Sons, Inc., 1983.

33



Appendix

Example of the input file

Examples of input file for grid of 2x2.
The first line contains two integers.
”Number of nodes” ”Number of edges”
After we have next ”Number of nodes” lines, where color is presented as {0, 1, 2},where
0 means ”red”, 1 means ”blue”, 2 means ”black”, and costs are integer variables and line
has format:
”position y” ”position x” ”color of label 0” ”color of label 1” ”cost of 0” ”cost of 1”
After these lines of nodes we have ”Number of edges” lines, and each of them are presented
as,
”position yfrom” ”position xfrom” ”position yto” ”position xto” ”color of 10” ”color of
01” ”cost of 10” ”cost of 01”
And full input file looks like:
4 4
0 0 2 0 0 -3
1 0 2 0 0 -4
0 1 2 1 -1 0
1 1 2 1 0 0
1 0 0 0 1 0 2 -1
1 1 1 0 0 0 -5 6
0 1 0 0 0 0 -2 4
0 1 1 1 1 0 0 1



REFERENCES

Appendix

Contents of the enclosed CD

Graph-BasedSimplexAlgorithmforDiscreteEnergyMinimization.pdf .The file with
pdf of BP

Project1............................................The direction with source files
graph.cpp...........The file, with all implemented methods for the object graph
graph.h..The file, which have initialization of all data structures, that are used in
the algorithm

MyForm.h The file, with application, with all posiible methods, which we used for a
visualization

vstup3.txt...The input file for initialization of instance, in which we control how
our algorithm works.

vstup4.txt...The input file for initialization of instance, in which we control how
our algorithm works.

vstup5.txt...The input file for initialization of instance, in which we control how
our algorithm works.

vstup6.txt...The input file for initialization of instance, in which we control how
our algorithm works.

35


	- Acronym
	Untitled
	- Acronym
	Introduction
	The problem of energy minimization. 

	 Problem formulation 
	Binary energy minimization
	Submodular binary instances
	Linear programming relaxation
	Solving the LP relaxation by simplex algorithm

	Preparations for the algorithm
	Introduction to the graph structure
	Equations for basic variables
	Node variables
	Edges connecting nodes of different trees
	Edges connecting nodes of the same tree
	Coefficients in simplex table columns


	Description of the algorithm
	Definitions of the parts of the simplex algorithm
	Changing costs of all basic variables to 0
	Searching for a leaving variable
	Entering variable is a node
	Entering variable is an edge

	Distract raw in simplex table 
	 Leaving variable is a node
	 Leaving variable is an edge

	Changes of direction and changes of colors 
	Entering variable and leaving variable are both nodes
	Entering variable is a node and leaving variable is an edge
	Entering variable is an edge and leaving variable is a node
	Entering variable is an edge and leaving variable is an edge 


	Implementation 
	Conclusion


