
Instructions

The aim of this thesis is the automated generation of music composition. Since the task of music 

generation is very complex, the thesis will focus on specific sub-problems such as the connection of two 

songs together. The research is expected to be done at the symbolic level using the commonly 

accepted MIDI format. The student will fulfill following tasks: 

 

1. Study relevant literature on music theory and music generation at the  symbolic level; prepare a 

survey; identify important sub-problems. 

 

2. Adapt an existing concept from computer science and apply it on  selected sub-problem from music 

generation; the candidate concept are for example formal grammars. 

3. Implement the proposed method as a software prototype and perform relevant tests focused on the 

quality of generated music. 
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Abstrakt

Tato bakalářská práce se zabývá algoritmickým generováním hudby. Práce
shrnuje aktuální řešení automatické kompozice a jejich výsledky. Jsou zde
převážně zmíněné rozdíly mezi jednotlivými přístupy a jejich nevýhodami. V
další části jsou popsány prvky z hudební teorie, teorie jazyků a základy pravdě-
podobnosti. Ty jsou dále využity k vytvoření systému ke generování přechodu
mezi dvěma skladbamy.

Praktická část definuje omezení na skladby použité pro generování. Skladby
jsou definované ve formátu MIDI. Dále je práce rozdělena do dvou částí: ana-
lýzy skladeb a procesu generování. U analýzy je použito znalosti z teorie hudby
pro reprezentaci a analýzy skladeb. Následně s použitím Markovových řetězců
je vytvořen model, který slouží ke generování nové skladby.

Testování je následně provedeno se čtyřmi písní a vzniklé skladby jsou
posouzeny dobrovolníkem za pomoci předem definovaných charakteristik.

Klíčová slova hudba, teorie hudby, generování hudby, stavové systémy,
Scala, Markovovy řetězce
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Abstract

This bachelor thesis describes the algorithmic generation of music, it gives
an overview of existing solutions in the process of automatic composition and
their results. This summary predominantly describes the advantages and dis-
advantages of different approaches to the issue.

The next section describes structures from music theory, state transition
systems, and probabilistic introduction. These structures are the basis for the
synthesis of the transition between two songs.

The practical part defines constraints on the MIDI songs used as input
to the system. The system is separated into two parts: the analyzer and the
generator. The analysis uses concepts from music theory to create an internal
representation, which is then used to create Markov chains. This model and
other attributes from the analysis are then given to the generator.

The system is subjectively evaluated.

Keywords music, music theory, automatic music generation, algorithmic
composition, state transition system, Scala, Markov chains, algorithmic com-
position
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Introduction

Ever since the creation of computers, there were attempts of algorithmic
composition and use of computational creativity. With recent machine learn-
ing techniques, computational creativity is mainly associated with automated
analysis of songs and synthesis of new combinations similar to the data used.
Unlike other machine learning techniques, such as object detection, music is
not easily evaluated algorithmically, so the approach of subjective validation
is selected.

This thesis focuses on the composition of a short transition that connects
two songs. In the process of algorithmic composition, several steps are cre-
ated from analyzing existing songs and synthesis of generic songs to the final
composition of the transition.

A summary of different types of state-of-the-art solutions of algorithmic
composition is created. Based on that, an approach to solve the issue is
selected. The system is composed largely of Markov chains in the process
of analysis, on the other hand, the generator uses probabilistic context-free
grammars.

Motivation
Solving automated music generation is in high demand as the music industry
revenue is in dozens of billion USD yearly. The most obvious application
is creating new songs for performers or even creating new personalized songs.
Moreover, more recent applications are in video games and movie soundtracks,
where the musical piece evokes emotions and brings a more vivid experience
to the customers.

The obstacle in automatic music generation is that this topic spans over
several fields – computer science, musicology, math, and physics. Already Mu-
sicology is based on ethnology, history, psychology, acoustics, mathematics,
philosophy, and art. This intersection of fields often creates miscommuni-
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Introduction

cation between technical and artistic views and inconsistencies in scientific
publications. Luckily, several overviews of existing studies on the topic of
automatic music composition exist. The overview ”A Functional Taxonomy
of Music Generation Systems”[1] and ”AI Methods in Algorithmic Composi-
tion: A Comprehensive Survey”[2] were used as a source for state-of-the-art
knowledge on the topic of automatic composition.

In the artistic view, creativity describes one’s character and expresses emo-
tions in the art. On the other hand, a technical representation of music is an
attempt to formalize structures found in western music. Music theory is ori-
ented mainly toward describing western music in a more formal representation.
This thesis will cover the fundamentals of music theory, and when referred
to music, it is related to western music, specifically tonal music. Throughout
history, patterns like harmony and tonality emerged, adding new features to
separate previous works from newer ones. The most studied genres in auto-
matic music generation are classical music, jazz, and pop genre.

Structure of the thesis
The thesis is separated into 5 parts. The first is the background and an
overview of the state-of-the-art solutions in algorithmic composition. The
listed approaches are described in a quick summary, with some examples of
the existing work. The chapter representation of music lists different types
of notation used to describe music and most of them will be used in this
work. MIDI standard is described in more detail as it is used as input to the
system. The individual signals of MIDI are listed and a few downsides of this
representation are described.

In the chapter Music theory, different concepts from the theory of music
are described. The transition from sound to individual notes, relationships
between individual notes, and further development of these relationships to
more complex structures is shown. At the end of the chapter, a quick overview
of the listed structures and connection with the qualities of tonal music is
established.

In chapter Computational background in music, the event space is defined
and later followed by the probability. After that, an overview of the pos-
sible event spaces in terms of music is described. Next is the extraction of
some attributes from the song with the help of correlation, which is used for
identifying the scale and chord progressions. In the last part, state transition
systems, stochastic context-free grammars, and Markov chains are introduced.

The practical part consists of 5 main sections. The first is the introduction
of the constraints on the song and the qualities that were defined. The pre-
processing part deals with constructing internal representation from the MIDI
format of the input songs. Some of the issues related to the MIDI format are
described. The system – Electronic Virutal Artistist (EVA), consists of two

2
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Structure of the thesis

parts. One is the analyzer and second generator. In the analyzer, the song is
represented in structures of music theory, and attributes are extracted from
it. From the internal representation, Markov chains are trained, and together
with the attributes are used as input to the generator. The generator estab-
lishes a fixed format for synthesis of the transition and for the evaluation of
the system,
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Chapter 1
Related Work

The topic of automatic music generation has been a long-studied problem,
and this issue is still in development. The first computer-generated composi-
tions are dated to 1957 [3] making this topic almost as old as the computers
themselves. Even before the first computers were invented, there were ten-
dencies by several composers to automate music generation, such as Mozart’s
Würfelspiel (Dice games 1) The range of approaches to algorithmic compo-
sition is very wide, enclosing methods from machine learning, musicology,
mathematical fields. . . . The next sections cover only a small part of the most
used methods. The methods are grouped into sections based on their internal
structure. In the process of algorithmic composition, methods are typically
combined.

From a computer science point of view, we have several models that are
used for generation. The main ones are Grammars, Knowledge and rule-
based systems (KBS),Markov chains (MM), Artificial neural networks (ANN),
Evolutionary algorithms (EA),Cellular automata (CA). In recent years, the
success of artificial neural networks has led to applying this method to various
fields. The research is currently saturated with this type of model, in spite of
that, I would like to put emphasis on knowledge-based systems, probabilistic
grammars, and Markov chains, as these are the models used in this work.

1.1 Knowledge and rule-based systems
Systems, where knowledge is used to create structured symbols (or a set of
rules) and dependencies between the symbols. Typically KBS is used in con-
junction with other approaches as some level of musical composition is known,

1These games were developed in the 18th century. They were based on many several
variations of parts of the song. Dice throw was used as a random selection from this set
of variations, consequently, creating a unique set of combinations, thus a newly composed
song. The earliest work of dice games is expected to be from J.P. Kirnberger [4]

5
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but some aspects remain unclear. The theory of music and its sub-theories
represent music in musical symbols. The notation is one of the examples,
where the key features of the songs are captured. Even though the rules are
defined statically, they can also be used to learn probabilities for some of the
structures. Typically, machine learning techniques for chord progressions or
melody are used.

KBS can be created from systems of harmonization, counterpoint, jazz
improvisation rules, theories such as ”A Generative Theory of Tonal Music” [5]
or use of various spaces describing dependencies between structures(chordal
spaces, pitch spaces).

A generative theory of tonal music is a theory created by American
composers Fred Lerdahl and Ray Jackendoff, with an attempt to formalize
music in the style of Noam Chomsky’s grammar. First published in 1983, it
was created to define musical grammar to describe how people understand
music scientifically. As both authors of this theory are experts in their field
and have dozens of books published on the algorithmic composition of music
and representation of music structures, GTTM is widely cited and influenced
many researchers.

GTTM creates a hierarchical system that is tightly connected to musical
intuition. The structures defined: Grouping structure, Metrical structure,
Time-span reduction, Prolongation reduction. Each of these structures has
a set of rules that define how the structures are formed, and they describe
how to form the internal representation as a binary tree. GTTM is a quite
extensive theory, and so far, nobody has managed to create a system that
would cover all the rules. Usually, studies limit the set of rules and focus
only on some structures. (etc. ”Musical structural analysis database based
on GTTM” [6] focuses on Time-span reduction) GTTM is also used for the
analysis of musical pieces, in a study by Masatoshi Hamanaka [7], 17 out of
26 rules were implemented.

1.2 Grammars
Grammars can be described as a set of production rules which expand high-
level symbols into sequences of terminal symbols. The sequences (words) are
created by repeatedly applying rules, this is why they are suited for the repre-
sentation of knowledge-based systems. A set of all sequences that are created
by derivation rules from the grammar form a language.

The grammars can be created from the author’s knowledge of music, but
they can be derived from analysis of the corpus. Many types of grammar
can be used in algorithmic composition. Amongst the most used are stochas-
tic context-free grammars. These grammars turned to have quite promising
results for some studied genres such as chorales, etudes, and jazz.[8, 9] How-
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ever, as context-free grammars are a subset of context-sensitive grammars,
the possibility of expanding existing solutions with new rules captures the
context-sensitive part of the music composition. The study “Music as a For-
mal Language”[10] suggests that the generative capacity for representing music
must be beyond that of context-free languages. The study also implies that
music has features of mildly context-sensitive language.

When writing this thesis, a work on a probabilistic(k,l) context-sensitive
grammar study was published. [11] The study uses Hidden Markov Model
and Gibbs sampling method on chord sequences. Results show that Gibbs
sampling can improve the perplexity of grammars.

L-Systems Lindenmayer System is a special variation of grammar, inspired
by the structure of plants, where rewriting sequences can be done in parallel,
etc. simple grammar with rules: S → AbAA → aA → c

Could result in derivations: S → AbA → aba, or S → AbA → cbc

These grammars are useful as they represent self-similarity within the sys-
tem, which in songs happens in chord progressions, motifs, and different parts
of song repetitions.[12]

Stochastic Context-free grammars The word stochastic describes that
each rule is accompanied by an activation probability. They are often used as
an implementation of results from Markov models. The PCFGs are used for
the synthesis of new melodies, rhythm patterns, or chord progressions. One of
the studies ”Musical Composition with Stochastic Context-Free Grammars”
[13] uses the structures to create a new composition. The rules are set man-
ually by the author. In this thesis, the structure of the generator is highly
inspired by this study.

1.3 Machine-learning techniques
With every year, the storage of data is cheaper, which creates large datasets in
various fields. Music is no exception as large datasets such as the GiantMIDI-
Piano [14] or Groove MIDI dataset [15] are created and available to public.
The datasets can now easily contain hundreds of GB of data and still be
accessible by a large number of researchers. Machine learning is an approach
to learn structures reappearing in song and creating a model that represents
a given dataset.

1.3.1 Markov chains
The discrete Markov chain is in a simple form, a stochastic process, where each
probability of event depends on the previous states (events). The transition
matrix is a representation of the model and it describes the probabilities of
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events based on the values in this matrix. The Markov chains can be generated
only by training the model with corpus or the probabilities can be introduced
by an experienced musician. The latter is often used in programs that are
accompanying musicians in composing songs.

The main characteristic of the Markov chain is a memory (order of the
model), denoting the number of states the system requires to be able to pre-
dict the next state. In the algorithmic composition, Markov chains are most
often used to generate melodies or genres that have a well-described set of
rules. The number of publications on melody generation using Markov chains
is quite large, among those a study ”Finite-Length Markov Processes with
Constraints” [16], which describes the generation of melodies.

Markov chains are also used for the analysis of music structures, one of
these is Hook theory [17] that used over 5000 popular songs to identify struc-
tures like chord progressions or key signatures using Markov chains. The
website hooktheory.com offers a free API that has data from their analysis of
approximately 5000 songs. This source is used in this work in chord progres-
sions as predefined probabilities.

The downsides of the Markov chains are:

• Inability to capture global similarities with raw data (etc. repetitions,
choruses) as higher-order Markov chains are impractical

• The generated pieces can resemble trained data.

1.3.2 Artificial neural networks
Artificial neural networks are models inspired by the biological structure found
in the nervous system of animals – neurons. The individual approximations of
neurons are constructed into interconnected networks. In recent years, deep
neural networks are used, describing a large set of neurons assembled into
layers. Typical use is in supervised learning, where datasets are labeled by
some desired values, and the model learns to predict based on the labels.

In the process of algorithmic composition, the ANN is used with large
datasets of musical data and the quality of the data is essential. The NNs can
be used to compress songs, classify genres, evaluate the quality (fitness func-
tion), or produce new songs. The representation of music that is most often
used as input is a piano roll, however, even successful raw sound generators
were created, one of the recent developments by Deepmind – Wavenet [18].
The downside of the NNs is that the models consist of thousands of neurons
and in such a vast space it is unfeasible to extract any information of how the
system operates.

The biggest projects that use artificial neural networks are AIVA [19],
MuseGAN [20] or Jukebox [21]. JukeBox is particularly interesting as it also
synthesizes lyrics and applies them to the style of various singers. There
are many other projects and with publicly available datasets of songs anyone
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can create their implementation with the use of frameworks specified for music
synthesis, the well-known is Magenta [22], which is an extension of TensorFlow
library.

1.4 Other approaches
Evolutionary algorithms Another approach inspired by biological pro-
cesses is an evolutionary algorithm, where populations are repeatedly sub-
jected to evaluation, selection, and reproduction, and cyclically produce a
new population. Various events modifying the world can occur throughout
the generations. This approach has been applied in fields where a large num-
ber of solutions can occur. The most important element of EAs is the fitness
function and proper representation of the data (individual).

The representation of the data is not an issue in music, but the fitness
function describing the quality of individuals is in terms of music quality hard
to define and no such function has been so far found. That is why they are
often combined with other models, such as ANN or used in interactive form,
where a human evaluates the solutions instead of the fitness function, however,
as the population is at least in tens or hundreds of individuals, this approach
is quite time-consuming.

Cellular automata Is a system described by simple computational units,
that operates over n-dimensional space (grid). The cells are in each time step
evaluated by the transition rules. Cellular Automata (CA) tend to produce
either stationary or chaotic patterns. In music, the CA are used for the
algorithmic composition, however, the behavior of the CA is not ideal for
music generation as the generated songs are either too simple or way too
complex. One of the known composers using CA was Xenakis, who edited the
created pieces manually to achieve more pleasing sounds.

1.5 Summary
Despite the success of the generators (such as AIVA [19]2), people seem to be
negatively biased toward computer-generated music [23] depending on their
level of expertise. The general public seems to be skeptical, however, pro-
fessionals admire the structures created by these systems. There are a lot of
frameworks that work with large datasets and use them for machine learn-
ing. Even though it has some promising results, it is hard to learn from these
models and be able to understand the structures created by these systems.

2AIVA even provides many songs for free to listen to or even generate your own based
on few attributes.

9

https://magenta.tensorflow.org/




Chapter 2
Representation of music

In this work, music is represented several ways, from the input MIDI format
to the internal representation in the implementation part, to other types of
musical notation used to describe the music in text and figures. These repre-
sentations often describe some qualities of musical structures and usually they
implement at least the most basic ones such as limited pitch range. This chap-
ter only outlines different representations, additionally a few of their examples
and a description of their use in the work.

2.1 MIDI
Musical Instrumental Digital Interface (MIDI) is a standardized binary proto-
col for real-time communication between musical instruments and electronic
devices (computers, recorders. . .). It is still used in synthesizers and electronic
representations of music notation despite limitations in its design. The stan-
dard defines how devices communicate and the format of the file. Instead of
using a continuous stream of information (eg. sound stream), it works with
a sequence of events. Events are messages paired with ticks that act as a
timestamp. Messages are read chronologically based on the ticks. The most
important messages are NoteOn and NoteOff. They signalize when the note
starts to play and when it stops playing in terms of the inner ticks. These
messages have several parameters:

• Integer value (0-16) – channel. It describes on which channel the given
note is played. This is useful when we separate channels by either their
octave span or if different channels are played by different instruments.
3 In this work, only 2 channels will be used and to separate the melody
(channel(0)) and bass (channel(1))

3This makes MIDI files impractical for generating more complex compositions, such as
music for orchestra and not for the only reason
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2. Representation of music

• Integer value (0-127) – pitch of the note. The difference between pitch
heights of 1 is equivalent to the distance of one semitone in a 12-tone
chromatic scale. Figure 2.1lists part of the MIDI values.

• Integer value (0-100) – the volume

The standard tone A4(440Hz) has a pitch value of 69, the pitch value(p)
of any tone in MIDI can be calculated by:

p = 69 + 12 ∗ log2
f

440 Hz

The duration of a tone is obtained by subtracting the tick value of its
NoteOn message and NoteOff. To be able to do that, NoteOn events have to
be matched with the corresponding NoteOff events. The duration obtained is
in the number of ticks. However, ”What is the length of the note in seconds?”.
The next message that works with the tempo of the song is the Tempo. Tempo
sets the value of time (in microseconds) per quarter note – MPQ. To get Beats
Per Minute (BPM)4, which is standardly used by musicians, BPM = 60∗106

MP Q .
In figure 2.3, the melody is shown in terms of musical notation and on the
left, corresponding extracted MIDI events of notes.

The number of ticks of the quarter note in the figure is 256, the MIDI
specifies this value in the header. The value is described as Pulses Per Quarter
note (PPQ) and it specifies what length of a quarter note is used for the song.
The MIDI standard does not specify what PPQ value should be used, but
most often the value for PPQ is 480. Unfortunately, not all songs have this
value at 480 and songs have to be changed to the same value of PPQ.

MIDI has also an option to predefine the key signature of the song. How-
ever, it is optional and does not have to exist or even be incorrect. Therefore,
this value will not be used, and instead, an own analysis of the song to identify
the key signature of the song is used. As MIDI mostly works with NoteOn
and NoteOff messages, it does not capture any dependency structures from
the perspective of music theory. To acquire any information about the song,
algorithms for analysis have to be developed. In section Preprocessing, the
needed structures are listed and the issues arising from MIDI representation
and their solutions are described.

2.2 Piano roll
The piano roll is derived from automated pianos, which originally consisted of
a piano and a roll of paper with punched holes that represent the note control
of the piano key. The notes had various durations based on the length of the
corresponding hole. This representation is often used to visualize the content

4Number of quarter notes per minute
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2.2. Piano roll

Figure 2.1: MIDI values with analogous representations in piano, names of
tones and frequencies [24]

[0,NoteOn(72,1,100)]
[256,NoteOff(72,1,0)]
[256,NoteOn(69,1,100)]
[768,NoteOff(69,1,0)]
[768,NoteOn(65,1,100)]
[896,NoteOff(65,1,0)]
[896,NoteOn(65,1,100)]
[1024,NoteOff(65,1,0)]
[896,NoteOn(60,1,100)]
[1024,NoteOff(60,1,0)]

Figure 2.2: MIDI events of simple
melody

Figure 2.3: Simple melody in sci-
entific pitch notation 2.4 to show
different representation of music

of the MIDI file5 as the events NoteOn and NoteOff can be easily transformed
5As the binary format is for most people unreadable
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2. Representation of music

to ”holes” in the piano roll. Piano roll (shown in the figure 2.4) is formed by
two axes, the vertical for pitch and the horizontal for time.

Figure 2.4: Piano roll of melody in figure 2.3, on the right corresponding piano
keys are displayed

2.3 Scientific pitch notation
Is a string-based notation that specifies the pitch of notes in terms of their
pitch class in 12-tone chromatic scale6 and a number identifying the octave.
The pitches are separated into octaves based on the standard tuning and the
lowest note is C0 with the frequency of 16.352Hz. As an example, A3 and
A4 are notes of the same pitch class but an octave apart. The notation is
easy to use and legible in text, especially if talking about notes of unspecified
duration.

2.4 Musical notation
This section describes modern staff notation(standard music notation). It
captures many concepts from chapter Music theory, and therefore here we
only describe the visual aspect of the notation, and definitions are omitted.
The notation is a system to visually represent music, and it tries to legibly
display the musical structure to musicians7. Besides visualizing the tones of
the songs, it also captures audible characteristics of instruments and therefore
it can vary depending on the instruments used in the song. 8 The notation
uses a list of symbols to define structures.

6The chromatic scale is described in paragraph 3.1
7To be able to read the notation, knowledge of western music is expected
8such as dynamics and articulation of the song
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2.4. Musical notation

Staff Most of the symbols are formatted on a staff. Staff is made of 5 parallel
horizontal lines. The pitch of the notes is referenced to the staff and if the
pitch reaches out of scope, ledger lines are used. Clefs are symbols found at
the beginning of the line (or if the clef is changed). The two basic clefs are G

clef(treble clef) and F clef (bass clef), with symbols G, I, respectively. G

clef is spanning notes that are mainly used in melodies (approximately from
C4 to C6) and the C clef describes the range of pitches used for bass (C2-C4).

Measure The staff is segmented into measures, which are of equal length
of time. They correspond to the specific number of beats predefined at the
begging of the song – Time signature. The division into bars provides reference
points and usually, repetitions in songs are signalized at this level.

Key signature The key signature describes the range of pitches used for
the song. It does not limit the number of pitches that can be used, but it
refers to the scale that is used for the song. It is expected that the notes used
in the song will be in the range predefined by the key signature. It consists of
symbols Z, and \, which describe all notes on the same horizontal line.
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Chapter 3
Music theory

Music theory(MT) is a study that captures the practices of music and rep-
resents them in various structures. The structures identified can be melody,
accompaniment, rhythm, harmony, tonal systems, tuning, etc. This chapter
introduces the fundamental structures of music theory and describes where
these structures can be found in songs.

3.1 Tone
A tone is the most basic unit in music created from sound. Sound is a vi-
bration, therefore, it is measured in frequency and amplitude. The range of
frequencies that are perceptible by people is from 20 Hz up to 15 000 Hz, but
music usually spans frequencies from 50 Hz to 4000 Hz. The simplest of units
in music is tone and it is defined as a periodic steady sound.

In musical terms, the frequency of the tone is said to be a pitch and the
amplitude is a volume. The length of time that the sound can be heard is
labeled as duration. Timbre of the tone is not important for this work as
notes are projected on the piano keys and other instruments are not used.9.
Volume in this work is also overlooked, thus in this work, the musical tone
can be defined by only 2 characteristics instead of 4: pitch and duration.

Duration of sound can be of any length. In terms of music, a discrete space
of note durations is used. In musical notation, the durations are represented
as ratios of the given time signature. The most frequent durations and their
shortcuts used are whole note(WN), half note(HN), quarter note(QN), an
eighth note(EN), and sixteenth note(SN). The time signature of a song can
vary, often different genres of music use different time signatures. In this work,

9Timbre distinguishes between different sound productions, etc. human voice, piano.
This work does not work with different types of timbers and all results are in piano(the
default format for MIDI)
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3. Music theory

only two time signatures are encountered, those are frac24 and frac44. The
upper number describes how many beats per measure and the bottom number
describes what kind of duration is a beat, 4 describes QN. 10 Therefore, with
a time signature frac44 the number of QN in a sequence is 4. Durations can
be combined, lengthened, or adjusted by special symbols in the notation. To
not go too deep into the details, most of the descriptions consist of the basic
5 durations. In musical notation, the durations are displayed as:

• WN - ¯

• HN - ˘ “

• QN - ˇ “

• EN - ˇ “(

• SN - ˇ “)

Pitch A sound that is represented by a single sine wave is identified as
a single pitch. Any frequency of sound can be described as a mixture of
sinusoidal waves. A combination of sine waves is perceived as a single tone,
and it is called a combined tone. This representation of music is way too
complicated and is rarely used to generate new music. As the music developed,
several relationships between tones emerged and a series of tones were created.
Within these series, pitch represents the relationship within the series. Most
often these series use natural numbers or a set of letters to describe pitches.

Harmonic series The simplest of the series is the harmonic series that
has the definition described by:

an+1 = an + d, a1 = f0 ∧ d = f0, where f0 is the frequency of base tone and
an describes frequency of nth tone in the series.

From this definition, tones from a harmonic series always progress in
equidistant steps. 11 In practice to achieve better qualities of intervals (oc-
taves, fifths, and so on) within harmonic series, inaccuracies (small deviations)
from the equation are introduced.12 The deviations in 12-tone chromatic scale
are described in figure 3.1.

102 – half note beats and 8 – eighth note beats, but these will not be used
11Such as scales, octaves, fifths, etc.
12For average person unnoticeable deviations
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3.1. Tone

Figure 3.1: Harmonic series in notations, the numbers above the notes describe
the deviations in cents [25]

12-tone chromatic scale and tuning Almost all instruments use a 12-
tone chromatic scale, meaning that instruments are designed to create sounds
from that set of tones. The chromatic scale is equal-tempered if the distance
between subsequent notes is 100 cents. 13 The scale is therefore defined by
tones that are in the ratio 2:1. Western music uses the tuning of 440 Hz, and
this tone is named A4. Instead of indexing tones from the chromatic scale, a
name for each tone in the series is given, these are:

C, C\/DZ, D, D\/EZ, E, F, F\/GZ, G, G\/AZ, A, A\/BZ, B.

The step between the subsequent tones is called a semitone step, and the
step of two semitones is called a tone step. For clarification, D is a tone step
above the tone C and C is a 2 semitone step below D in this scale. In the
figure 3.2, the distance between neighboring pitches is one semitone.

The 12-tones in conjunction with a number corresponds to a specific tone
in the scale, where the number depicts the octave. Therefore, A4 describes a
tone that has pitch A, and it is in the 4th octave. A musical note is different
from a musical tone in that tone refers to the musical notation and a tone
can be characterized by more labels, but here a note and a tone will be used
interchangeably.

Interval Interval describes the distance between two notes. It can refer to
either the ratio of the two notes or in terms of cents. The simplest is to
use numbers to describe the number of semitone steps (the distance between
two successive tones) in the chromatic scale. Special names are often used to
describe these intervals as they represent the quality of the interval.

interval quality The quality of the interval separates intervals into dif-
ferent groups based on the percept of the intervals. Identified groups are per-
fect, major, minor, augmented, and diminished intervals. In the next section,
we describe only the most important intervals that appear in the chromatic
scale.

13Cent is a logarithmic measure where 1200 cents is the whole octave and 100 cents is
one semitone
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3. Music theory

Figure 3.2: Pitch classes in chromatic circle [26]

0 1
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Figure 3.3: Harmonic frequencies are used in defining octaves. Two tones with
ratio of frequencies 2:1 are octave apart [27]

3.2 Harmony

Harmony describes the perceptual property of music. We identify two quali-
ties, consonance and dissonance. Consonance refers to the pleasant, beautiful
sound and in contrast, dissonance brings an unpleasant and rough sense to
the music. Harmony lists different types of intervals and their properties, the
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properties are then applied to the construction of chords. Not only simulta-
neously played notes experience harmony, but also the successive undergoes
this property.

Consonant intervals We will discuss the simplest of consonant examples.
These are perfect intervals: unison, perfect octave, perfect fourth, and the
perfect fifth. Simple two-note intervals are described, and later they are fol-
lowed by creating chords. The perfect intervals are typically in a small-integer
ratio of their frequencies.

First are the unisons, which simply describe simultaneously played notes
of the same pitch. This consonance is the simplest, in ratio 1:1. The unisons
are used if multiple instruments play together, however, in this thesis only a
single instrument is considered.

Octave intervals Next, the perfect octave is when two notes of the same
pitch class are from adjacent octaves, for example – C3, C4. We have already
mentioned that these notes share similarities from a sinusoidal perspective of
sound, and that is that they are in a 2:1 ratio, this is what the figure 3.3
displays. 14. In practice, this phenomenon is used to double voice leading and
make the melody sound richer.

Perfect fifths The perfect fifth is an interval, where the frequency ratio
is 3:2. Perfect fifths are abundant in musical pieces, and they are one of the
key features of western music. An important structure is used in music theory
called a circle of fifths, the structure is displayed in figure 3.4. Neighboring
pitches are in a 3:2 ratio.

Perfect fourths These intervals have a ratio of 4:3. The perfect fourth
is a complement to the perfect fifth, which means that if put in succession
C → G → C (fifth followed by the fourth interval), we get the same pitch.
It is important to see that we have created a chord with 3 of the perfect
consonant intervals in a single chord: perfect octave, perfect fifth, and perfect
fourth. This structure is often used in accompaniment.

Dissonance Dissonance appears when the ratio of the interval. Typical
examples are notes one semitone apart. In this thesis, avoiding dissonance is
simply achieved via expressing the songs in terms of heptatonic scales.

14In western music, the tuning of the keys is slightly adjusted to fit the 12-tone chromatic
scale, and some of the ratios are not exactly true in the sense of the implementation in
instruments, but these minor adjustments are to an untrained ear indistinguishable
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3. Music theory

Figure 3.4: Outer pitch classes represent circle of fifths and inner the circle of
fourths fourths

3.2.1 Pitch space
There were many attempts to identify different types of mathematical rep-
resentations of relations between pitch classes. Different pitch spaces can
abstract various features and relations between pitches. The most known, we
already mentioned is a space, where the repetition of the 12-tone chromatic
scale is represented, figure 3.2.

3.2.2 Chords
A chord is a harmonic set of notes or pitches. These musical structures are in
their simple basic form played simultaneously, but they can even describe a
sequence of notes played in succession.15 In this thesis, the maximum number
of notes in a single chord is 3. The chords are created from intervals, and they
are often described in terms of scale.

The naming of the chords is skipped in this thesis as it creates unnecessary
complexity to learn all naming. Instead, chords will be described as ordered
tuples of interval values. For example, C major chord will be described as
(C, E, G). The succession of chords will be described with a right arrow (→).
Instead of using the names of the chords, we will be using Roman numerals
to describe the intervals of the root note. This is often used when describing
the chord progression in songs.

During the research for this thesis, many representations of chord spaces
were reviewed, however, no relation between a practice and their structure was
found. In the book ”The Geometry of Music” [28], the main part describes
chordal spaces and properties of the chords. The main property is a symmetry
of chords called OPTIC symmetry. The symmetries are listed in figure 3.5.
These are useful as they retain some of the qualities of the chord.

15Arpeggios are one of these structures, and they are used mainly in chord progressions
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The OPTIC symmetries

• Octave – any note from the chord can be moved by an octave

• Permutation – order of the notes can be changed

• Transposition – move all notes by same amount

• Inversion – all notes are reflected around specified note

• Cardinality – notes with same pitches as in chord can be added

Figure 3.5: These operations with chords retain some properties of the chords.

In this thesis, the symmetry of octave, cardinality, and transposition is
used. Moreover, another symmetry is proposed by me and that is a simplifi-
cation, where chords can be altered by removing their least significant note.
In this thesis, the only chord type that is identified is the triad, specifically
major and minor triads.

3.2.3 Triads

Triads are chords that consist of three pitches. If the reader is not familiar
with the scales, I recommend skipping to section Scales. Triads refer to major
and minor scales, and their notes are created from the intervals first (root),
third, and fifth of the scale.

Therefore, in C-major(C,D,E,F,G,A,B), one of the triads could be (C,E,G)
or (G,B,D). In total, 7 such triads can be created for any diatonic scale. The
Roman numerals refer to the root of the chord, so classifying the chord as ”I”
in the C-major scale would create (C, E, G) triad and ”V” (G, B, D). The
numerals ”I, II, III, IV, VI, VII” describe major triads, while ”i, ii, iii, iv, vi,
vii” minor triads. These notations simplify how individual chord progressions
can be represented. In this work, I use mainly (I-VII) to describe chords in
both types of scales.

As triads consist of the root, third, and fifth intervals of the scale for
some chords the intervals are more significant. In the ”I” chord, the root and
fifth create a perfect fifth consonance, this is why for the triad I created a
significance measure, the significance is a function that assigns each note of
the diatonic scale a value describing its importance in the triad chord. The
measure is (10, 1, 5, 1, 7, 1, 2), where the first element is the root of the
chord. As an example C-major and root V would produce that pitches would
be assigned values: G = 10,A = 1,B = 5,C = 1,D = 7,E = 1,F = 2. This is
used in chord type extraction in Analyzer.
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Rule description

Cardinality (E3,C2,E4,G3,A5) E3,E4 remove duplicate
pitch class notes

Octave (E3,C2,G3,A5) closest C to E3 is C3,
same with G and A

Permutation (E3,C3,G3,A3) C3 is lowest, then E then G then A

Table 3.1: Example of chord simplification on (E3,C2,E4,G3,A5)

3.2.4 Chord Progression

Songs typically consist of two parallel sets of notes, melody, and accompani-
ment. An accompaniment is the underlying structure of the song that makes
the song sound more ”richer”.

The ”beat” is a repeating rhythmical pattern of the accompaniment, and
the chord progression is a sequence of chord types. Despite the differences
in the words ”bass”, ”chord progression”, and ”accompaniment” I use them
interchangeably to describe the underlying structure of the song.

The representation of chord progressions is as a sequence of Roman nu-
merals. If the song is written on a diatonic scale, I-V would describe the
progression of the first and fifth chord. The chord progressions are usually of
size 3 or 4, depending on the genre and complexity of the composition.

In the practical part, we will focus a lot on chord progressions as they
provide a lot of information about the bass. Therefore, for the analysis, we
will have to identify each chord’s root key. We already discussed the OPTIC
symmetries, but for identification, we only need 3 of these transformations.
Octave, permutation, and cardinality. To limit the number of chords in the
song, the chords are transformed to a minimal form by the OPC rules(from
the OPTIC symmetries). As an example, description of how the chord (E3,
C2, E4, G3, A5) is transformed to (C3, E3, G3, A3) in table 3.1.

In chord progressions, chords typically change in fixed durations, which
are of length WN or HN. The number of different chord progressions in songs
is really small as the chord progressions are repeating. The figure 3.6 describes
allowed progressions of chords for major and minor scales described in GOM.16

In some genres, such as blues, the chord progressions are even more strictly
limited.

The diagram defined in the figure can be translated to a state transition
system if considering the Roman numerals as states and arrows are the tran-
sitions to the next state. In this way, allowed major chord progressions are
described by the STS in the table 3.2. This state transition system could be
used to generate new chord progressions by traversing the states. For exam-

16The exceptions of songs using different types of progression can occur, however in
practice majority of the songs undergo these rules, the same applies to the following rules.
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ple, one possible chord progression generated is I-ii-V-IV-I in the chords of the
C-major scale, C-dm-G-F-C.

In the analysis of 1300 popular songs by Dave Carlton [17] a lot of in-
formation about the chord progressions was found, for example, if the song
started with a C major chord, the following chord was with 31% probability
G major. This is not a surprise as the building blocks of chord progressions
in popular music are I, V, and IV chords.

In the section Analyzer, the probabilities from the analysis of popular songs
are used to create a model of chord progression. The chord progressions of
popular songs were created via 1st-order Markov chains, and the probabilities
can be found at hooktheory.com with visual representation. The collected
probabilities are summed in the table 3.3, only probabilities of more than 5%
are collected, and in the practical part, the table is normalized.

Figure 3.6: Allowed chord progressions in major (left) and minor(right) scales,
figure from the book ”A geometry of music” [28]

I →vi | S | D
vi→S | D | I
S →IV | ii
IV→ii | D |I
D→vii | V
vii→V | I
V→vi | IV | I

Table 3.2: Rules of grammar, describing the allowed major chord progressions

3.2.5 Scales
Scales represent a set of pitch profiles. Usually, the scales are heptatonic17,
meaning that scale is constructed from 7 pitch classes of 12-tone chromatic
scale. They are most often described as a set of pitch classes, for example, C

17octave repeating
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chord I ii iii IV V vi
I - 0.06 0.04 0.182 0.252 0.1
ii 0.06 - 0.081 0.155 0.064 0.063
iii 0.04 0.081 - 0.326 0.077 0.06
IV 0.182 0.155 0.326 - 0.205 0.232
V 0.252 0.064 0.077 0.205 - 0.26
vi 0.1 0.063 0.06 0.232 0.26 -

Table 3.3: Probabilities of the most significant chords in popular songs, col-
lected from HookTheory, the code to extract probabilities is in attachments

major scale {C, D, E, F, G, A, B, C}, but they represent the whole range of
notes as the pattern repeats for each octave.

In musical notation, scales are predefined at the beginning of the song
by a key signature. Songs are written in terms of scales, and most of the
notes present in the composition belong to the predefined scale. Using notes
out of this scope creates accidentals, which produces dissonance. In songs
many scales can be found, however, they do not overlap, meaning only one
scale is used simultaneously. In this thesis, only single-scale compositions are
examined.

It is possible to represent the scales in several ways. The most common
is using a sequence of pitches, where the pitches are in ascending order (for
example, C major scale (C, D, E, F, G, A, B)). Other representations could
be obtained with a root pitch (lowest pitch note) and a list of intervals from
the given note corresponding to the interval in a 12-tone chromatic scale.

Scale types Music theory describes many scale types that are varying in
span and number of notes. They are usually tightly connected to the culture
or the specific genre of music. In this thesis, only major and minor scale types
are used as they are the most abundant and easier to classify. 18

Major Most used scale in Western music, which evokes consonance.
Steps of this scale are (2,2,1,2,2,2,1)19, which can be transformed to scale
type (0,2,4,5,7,9,11,12). Therefore, the major scales are (r, (0,2,4,5,7,9,11,12),
where r is the root pitch of the scale

Minor Songs in minor scales sound melancholic compared to major.
Steps of minor scale are (2,1,2,2,1,2,2), and transformed to scale definition
- (r,(0,2,3,5,7,8,10,12)).

18It is possible to extend the current implementation to work with different scale types
too, however besides the interval list and root note, the profile is also needed for key signature
analysis of songs

192 - is Whole step, 1- is Half step
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Comparison of scale types For each minor scale, there exists a major scale
that has the same pitch range. As an example, figure 3.7 shows two scales,
C-major and A-minor with notes (C,D,E,F,G,A,B) and (A,B,C,D,E,F,G) re-
spectively. To capture the pitch equivalence between major and minor scales,
the circle of fifths/fourths (figure 3.4) is used, where the outer circle repre-
sents major and the inner circle minor scales. The scales next to each other
are scales with the same pitch profile.

The difference is between the two scales is in the order of the pitches,
which changes the intervals within the scale. It is best seen in 3.2.4, where
the degrees are used to construct chords. A similar scheme of I-V-IV would
be different major and minor scales. As an example, in C-major the intervals
would be C-G-F, and in A-minor, A-E-D.

Figure 3.7: C-major and A-minor scales

Distance I define a measure of the distance built from the circle of fifths.
For better reference, the circle of fifths is transformed to a lattice so that the
minor scales are at one vertical level and major at the other (figure 3.8. In
the lattice, the distance between horizontal neighbors is 1.

Two scales are considered equal if their pitch profiles are the same, de-
scribing the vertical edge.
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Figure 3.8: Lattice of scales, the upper level is minor and lower major.

3.3 Tonality
It is a principle of building music around the central note, often described as
tonic. We identify two types of tonality major-minor, which refer to the scales
used. I have already mentioned many features of tonality in section Harmony,
thus, I will not go into too many details of the tonality theory. Only 5 features
contributing to tonality are reviewed.

27
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Melody A melody is a series of tones that are played in succession. The
melody is one of the key aspects of music and its construction is a primary
interest in music theory. Melodies often consist of several motifs that are
reappearing across the whole song. If notes of the melody do not overlap
(sound at the same time), the melody is monophonic.

3.3.1 Features of tonality
One of the composers and music theorists dealing with musical structure and
tonality is Dmitri Tymoczko. He wrote many books on this topic and one
of them was used as a knowledge base for this thesis. This section describes
features from the book ”A Geometry of Music” [28]. The 5 features of tonality
are:

• Conjunct melodic motion

• Acoustic consonance

• Harmonic consistency

• Limited macroharmony

• Centricity

Conjunct melodic motion It describes a melody and refers to the prefer-
ence of small steps instead of larger ones even though the interval has better
quality. For example, octaves and fifths are highly consonant intervals, but
instead of going immediately to these intervals, the preferred movement is go-
ing to be smaller, etc. second interval and then to fifth. This is also present in
constructing arpeggios, where one octave is divided20 and the notes are played
in small steps.

Acoustic consonance Is the description of interval properties. The inter-
vals were already reviewed in section Interval

Harmonic consistency This feature describes long-term relationships be-
tween structures in the song. The structures that are similar to each other
(chord type, rhythm pattern) create an audible similarity.

Limited macroharmony Songs typically consist of a small set of notes.
A song can be divided based on the reappearing motifs and the repetition of
the same chord progression. Some of the songs have a small number of these
sections, which can be identified as chorus-verse schemes. Other abundant

20Preferably evenly
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parts present in songs are bridges21, intro22 and outro23 In the generator this
is applied by generating the transition song in 3 sections – intro, middle, outro.

Centricity Some of the notes or pitches tend to be more dominant in the
song, many songs have a central point of the song to which it repeatedly
returns. Often songs start and end with central notes. This feature is utilized
in generating a generic melody.

21They connect chorus and verse
22First few measures of a song
23Several last measures of the song
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Chapter 4
Computational background in

music

This chapter focuses on the mathematical and computational models used for
the analysis and synthesis of the song. The main principle is a stochastic
generation, where the model describes the music structure in terms of events
and assigns probabilities to each event.

4.1 Stochastic generation
The probabilistic models to be used for automatic generation are mainly
stochastic state transition systems. These are transition systems that for
each transition a probability is assigned. The probabilities can be predefined
during construction or learned based on the events from the data set. The
generator works with a set of events that it uses to represent the data.

4.1.1 Event Space

When working with probabilities, it is necessary to define an event space,
which describes what parameters and what range of values is to be used.
There are many measurable features in music theory, and it is possible to use
any of the musical sets in an event space. However, with each attribute, the
complexity of the generator increases.

Definition 4.1.1 Event space is an ordered set of events E = (e1, e2, /dots, en)
E is the event space , where event represents values of the generator ei - e is an individual event that and i means the index in terms of the event space E

In this thesis, event space is represented with various structres from music
theory. For example, we will list a few here:
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4. Computational background in music

E1 =< ¯ , ˘ “, ˇ “, ˇ “( >
as a representation of duration

or we can represent it in terms of Double as
E2 =< 1, 0.5, 0.25, 0.125 >
where 1 is a WN, 0.5 HN, 0.25 QN and 0.125 EN

and event space of pitches: E3 =< 0, 1, 2, . . . , 11 >
where value represents the pitch class of 12-tone chromatic scale

The event space can also be defined by describing events or rules defining
the whole set. Such as the event space of all piano keys or a set of all one-bar
rhythms.

4.1.2 Probability

Probability describes the likelihood of an event to occur in an event space
based on some experiment. The probability of an event can be anywhere
between 0 and 1.

In terms of music, one of the simplest probabilities could be using event
space of all pitches of notes of the song, the experiment would be looking at
each note and count how many times a pitch appears in the song. From the
simple melody of (C3,D3,E3,D3,C4), the probabilities for p(C) = 2

5 , p(D) =2
5 ,

and p(D) = 1
5 . To be able from these probabilities select one event at random.

We need a random generator or random selection.

4.1.3 Random number generators in computers

In computers, the RNGs can be identified as two types, truly hardware-random
number generator, which generate randomness based on some physical envi-
ronmental value, and pseudo-random number generators, that are described
by functions. In this work, only the latter generator is considered as it is the
most common type. All programming languages offer libraries that implement
these random generators. In this thesis, ”scala.util.random” library is used to
create randomness for the generators.

The randomness is pseudo-random, which means that the generator seems
to be random (without an observable pattern), however, they are described
as a function internally. This is often implemented via a pair of seed and
RNG, where the seed has to be hidden to call the process random. Seed
describes the first value of the generator. Typically the RNG is implemented
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4.1. Stochastic generation

via function Xn+1 = (aXn + b) mod m, where a, b, m are large integers and
Xi is a generated number, and the seed is the X0.24

The possible solutions to implement random selection from probability
distributions can be various. I do not like to work with double values as they
are not precise, instead the probabilities are expressed in integer values by
multiplication by 10x, typically 3 as more precision is not needed. The method
uses a cumulative distribution function, but instead of the range < 0, 1 >,
range < 0, 10x > is used. From the cumulative distribution function, an
interval of integer values is extracted for each step of the function. As an
example, p(e1) = 0.5, p(e2) = 0.2, p(e3) = 0.3, would create range of values
e1 = (0, 500 >, e2 = (500, 700 >, e3 = (700, 1000 >. To obtain one event,
RNG would then be used to generate a number from the range 1 to 1000, and
the number would select one of the 3 events, eg. rn=233 → e1.

One more type of random selection from the set is used. This approach
is applied when a small number of events are present (less than 10). The
method creates a new sequence of events from the probabilities by adding
each event(e) p(e) ∗ 10x times to the sequence. Random selection is then done
with a random permutation of the sequence and selecting the first event. For
the P (E) : p(e1) = 0.5, p(e2) = 0.2, p(e3) = 0.3, the sequence with x = 1 would
be (e1, e1, e1, e2, e2, e3, e3, e3). This type of selection is ineffective, however, it
is more illustrative.

4.1.4 Probability generation
The probability distribution is a function that gives each event a probability.
The simplest probabilistic distribution is an equally likely distribution (dis-
crete uniform). Considering the event space E1 the probabilities would be
p(e) = 1

4 , ∀e ∈ E1. If we were to generate events from this distribution, for
each selection, we would randomly with a given probability select that item.
The different types of distributions appearing in the music will not be much
of a concern, however, for the generic melody generator probabilities are pre-
defined. The probability distribution is created with a knowledge of some of
the structures found in music.

Experiment-driven probability (learned) distribution is more common, as
the probabilities are created from real observable situations. To find the prob-
ability distribution P : E− > R we could for example have an event space
E1, and our experiment would be the next occurrence of any note of given
duration in simple rhythm: P : E1− > R : P (E1) = 1, P ( ¯ ) = 0.2, P ( ˘ “) =
0.3, P ( ˇ “) = 0.5, P ( ˇ “( ) = 0, 0 probability events can be omitted from definition,
by default all undefined will be 0.25

24the values of the function in library used are m=248 ,a=25214903917 ,b=11
25The likelihood of whole event space has to be 1 as the experiment is defined on given

events, if different values of durations would be in the experiment, they would not be used
for the probability distribution of E1
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Figure 4.1: simple rhythm of song

Now, given a task to generate x number of note durations, we could gener-
ate it using these probabilities. With the 50% probability, we would get QN.
Therefore, with these probabilities, one possible generated part of length 7 of
the rhythm could be HN, QN, HN, QN, WN, QN, QN. Compared to simple
rhythm, it easy to see that the generated sequence does not resemble any of
the previous bars, thus creating a completely new rhythm. This in itself is
not an issue as the generation of new sequences is often desired. It depends if
the generated sequences are valid in terms of music and if this structure could
appear. The sequence is valid, however, if we would want to split this sequence
into bars (of 4/4 time signature), it would be impossible to do without some
notes spanning two bars, which in chord progressions is not typical. To have a
more restrictive generation, we have to either define a better event space that
we use or implement a different type of generator.

One of the possible more complex structures could be E5 =< allsequencesoflengthofonebar >
, (etc.,sequence ˇ “( , ˇ “, ˇ “( , ˘ “). To show the importance of selecting right event
space, consider the following two experiments:

• Experiment1: E4 =< allsequencesof3successivenotes > Occurrence of
an event in the song, with steps of 1 note

• Experiment2: E5 =< allsequencesoflengthofonebar > Occurrence of
an event, with every bar in the song

Using these experiments on simple rhythm, probability distribution ac-
quired for Experiment1 is:

P3 : E4 → E4 :
P (e1) = 0.3, e1 = { ˘ “, ˇ “, ˇ “},
P (e2) = 0.3, e2 = { ˇ “, ˇ “, ¯ },
P (e3) = 0.2, e3 = { ˇ “, ¯ , ˘ “},
P (e4) = 0.2, e4 = { ¯ , ˘ “, ˇ “}

for experiment2:
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4.1. Stochastic generation

P4 : E5 → E5 :
P (e1) = 0.5, e1 = { ˘ “, ˇ “, ˇ “},
P (e2) = 0.5, e2 = { ¯ },
}

In the table 4.1, are values that were generated using probabilities from
the experiments, the generated sequences are of various lengths to match each
other in the number of notes, we can see that with the same input (example
song) the results generated can be completely different for even such small
variations.

Experiment Probabilities generated sequence
1 e1 = 0.2, e2 = 0.3, e3 = 0.5 < ¯ , ˘ “, ˇ “, ˇ “, ˘ “>
2 e1 = 0.3, e2 = 0.3, e3 = 0.2, e4 = 0.2 < { ˇ “, ˇ “, ¯ }, { ˘ “, ˇ “, ˇ “}, { ˇ “, ¯ , ˘ “},

{ ¯ , ˘ “, ˇ “}, { ¯ , ˘ “, ˇ “} >
3 e1 = 0.5, e2 = 0.5 <{ ¯ } ,{ ˘ “, ˇ “, ˇ “}, { ˘ “, ˇ “, ˇ “},

{ ˘ “, ˇ “, ˇ “},{ ¯ } >

Table 4.1: Experiments with generated sequences

Possible statistical views on symbolic musical data in the thesis ”Proba-
bilistic Models for Music”[29] are listed. The probabilistic models are sepa-
rated into sections based on the parts they represent, such as chord progres-
sions, rhythms, melodies. . .
In ”Harmonic analysis with probabilistic graphical models” [30] suggest that
the use of only pitch and rhythm substantially loses some information, how-
ever, the human listener can still base harmonic analysis only on these two
elements. Their experiment consisted of using chords with 3 values, Tonic
(the root of scale), scale (major/minor), and degree(I,. . . , VII).

4.1.5 Correlation
It is a statistical association of two random variables.26. Correlation is used
to quantify various relationships between the two variables.

Definition 4.1.2 Correlation coefficient R of two random variables X,Y is
defined as

corr(X, Y ) =

n∑
i=1

(xi − x)(yi − y)√
n∑

i=1
(xi − x)2

n∑
i=1

(yi − y)2

26when talking about correlation, it is meant Pearson correlation coefficient
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4. Computational background in music

where x ∈ X and y ∈ Y and x is the mean of all x.

The correlation has a symmetry property meaning that corr(X, Y ) =
corr(Y, X). The correlation is a value between -1 and 1, describing linear
dependence between variables. In music terms, we use the correlation for two
types of analysis, scales and chords.

4.1.6 Key Detection - Scale detection
Identifying the key signature of music is important for replicating the style
of music generated. The key typically limits the 12 pitches of the chromatic
scale to some subset (7 in heptatonic scales). The following is a description of
”The Krumhansl-Schmuckler Key-Finding Algorithm” [31]

Pitch profile The pitch profile describes the distribution of notes in the
song if only the pitches of notes are considered. From the profile, it is possible
to infer what type of scale is used for a song. To acquire the profile, the pitch
of each note is extracted and a histogram of pitches is created. In the figure
4.2, the pitch profile of the song ”Arrival of the birds” is extracted. Each bar
describes the number of notes in the pitch, from this a guess of identifying
that the pitches F\/GZ, C\/DZ, and D\/EZare probably significant notes of the
song.27 From this, as a musician with years of experience, I could guess that
the scale is either F\-major or GZ-major. The question ”How do we create
such a guess algorithmically?”.

The algorithm works with correlation and compares major and minor pro-
files to that of a given song. The probabilities of the profiles can be various,
however, I used the ones that were defined in their research. The profiles for
major and minor are listed in table 4.2. For major, the significant intervals
have values: root – 6.35, 5th – 5.19, and 2nd – 4.38. These intervals have
the highest values and are a consequence of being abundant both in chord
progressions and in the melodies.

Interval 0 1 2 3 4 5 6 7 8 9 10 11
Major 6.35 2.23 3.48 2.33 4.38 4.09 2.52 5.19 2.39 3.66 2.29 2.88
Minor 6.33 2.68 3.52 5.38 2.6 3.53 2.54 4.75 3.98 2.69 3.34 3.17
song 107 169 60 224 97 209 291 47 139 61 177 111

Table 4.2: The profiles for major and minor scale, and song Arrival of the
birds [32]

To identify the scale of a song, the profile of the song has to be extracted.
Then for each major and minor profile (C-major, C-minor, D-major, D-minor,

27contributing to chord used often or intervals that are abundant in songs, F is left out
as it is too close to the most abundant pitch
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Figure 4.2: Pitch profile of the Arrival of the birds song, where y axis describes
number of pitches in the song

. . .), the correlation coefficient is calculated. These coefficients are later com-
pared and the maximum value is selected, which marks the most likely profile.
28

In this thesis, a similar approach as scale identification is used to identify
what type of chord is used in chord progressions. The values are closely related
to the ones used in the table 4.2 with the erasure of the notes out of the scope
of the identified scale. The implementation of the key finding algorithm and
chord type is described in section Analyzer.

4.2 State transition systems

State transition systems are defined as a pair (S, →) where S is set of states
and →⊂ S × S – transitions. STS are similar to directed graphs, where
states are nodes and transitions edges. In terms of music, the states could
be created similarly as events were in the previous section, and the tran-
sitions could describe the preceding event in the song. A simple melody
(C4,D4,E4,E4,C4,D3), where states are pitches {C,D,E} would create tran-
sitions (C,D),(D,E),(E,E),(E,C). In figure 4.3 the created system is presented
as a directed graph. This structure could be used to generate new sequences
by traversing the states. One of the possible traversing, where the starting
state is E, could create a melody (E, E, E, C, D).

28In this thesis only major and minor scales are considered, the implementation of other
scales especially those spanning more than a single octave would be more challenging
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C

D

E

Figure 4.3: State transition system/directed graph of melody
(C4,D4,E4,C4,D3)

Ergodicity of a system expresses that from every state of the system there
exists a path (sequence of transitions) to every other state. For the example
this property is true, and that is why the traversing of the states could have
been infinite. In terms of the generators, we want to have every system ergodic
as it is possible to find from any of the starting states to have a path that is
of any size.

Labelled transition systems The difference from the transition systems
is that each transition is labeled (from a set of labels). Therefore, they are
defined by (S, Λ, →), where S is set of states, Λ set of labels, and → (S×Λ×S).
Labels can represent different things, such as expected input, output when
traversing, probability, or conditions to trigger the transition. . . .

Deterministic property describes that for any state s and label l, there
exists only one possible transition (s,l,q). It means that at any given moment
(state) the label fully determines the next transition. In a non-deterministic
system, for some state, there exists more than one transition with the same la-
bel. In stochastic generation, typically non-labeled, non-deterministic systems
are used and at each transition, the probability describes the next action.

4.2.1 Formal grammars
Describes how to form a language (a set of words) from an alphabet. Gram-
mars can be described as a set of production rules working on strings. The
strings are generated by using a set of rules repeatedly, in so-called derivation
steps. Noam Chomsky formalized generative grammars into 4 types, these
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are regular, context-free, context-sensitive, and formal (unrestricted) gram-
mars, the relationship between types is regular grammars ∈ context-free ∈
context-sensitive ∈ formal.

Definition 4.2.1 Formal grammar is a quadruple (N, T, P, S)

• N is a finite set of nonterminal symbols

• T is a finite set of terminal symbols

• P is a set of production rules in the form (T ∪N)∗N(T ∪N)∗ → (T ∪N)∗,
and * describes any number from set symbols preceding the symbol

• S a start symbol, S ∈ N

derivation In term of grammar we identify operation derivation (⇒), that
describes the application of grammar rules to generate string. If we always
apply rules of the leftmost nonterminal first, we say that the derivation is
leftmost. Often x=⇒ describes that the x rule was used during the derivation
step, if multiple steps are used, a list of rules can be used above the arrow.
A string is accepted/generated when no nonterminal is present in it and thus
the derivation step cannot be applied.

In terms of music, grammars can be used to describe different parts of the
song and abstract more complex structures of music. As an example grammar
G1 defined in figure 4.4

The grammar G1 describes a possible grammar for developing chord pro-
gressions of a song. The terminal symbols describe the type of chord used and
nonterminals describe the section of a song. One possible derivation Intro
1,3,4,2,3,4,3,5========⇒ I I V IV VI V II I V IV II I VI V II I V IV II I V II I IV V I I,
creates chord progression that could be used in the song. In the figure 4.5
intermediate derivation steps are listed.

4.2.2 Context-free grammar
From the definition of formal grammars, the only difference is in the definition
of P – a set of production rules, where the rules are of format N → (T ∪ N)∗.

In figure 4.6 the grammar from figure 4.4 is changed so that it is CFG by
elimination of the conflicting 6th rule and creating a new one that describes
the same rule.

4.2.3 Probabilistic context-free grammar
Or also stochastic context-free grammars are extensions of CFG, where each
rule is associated with a probability. These probabilities can be either learned
or given. The sum of all probabilities of nonterminal rules has to be 1. A
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G1 = (N, T, P, S)

• N = {Intro, Verse, Chorus, Bridge, Outro}

• T = {I, II, III, IV, V, VI, VII}

• S = Intro

• P = {

1. Intro → I I V IV V erse Outro

2. V erse → V erse Chorus V erse

3. V erse → V I V II I

4. Chorus → V IV II I

5. Outro → IV V I I

6. V erse Chorus→ V erse Bridge Chorus

7. Bridge → I V II

}

Figure 4.4: Formal grammar describing chord progression scheme that can be
in songs

Intro
1=⇒ I I V IV V erse Outro

3=⇒ I I V IV V I V II I Chorus V erse Outro

4=⇒ I I V IV V I V II I V IV II I V erse Outro

2=⇒ I I V IV V I V II I V IV II I V erse Chorus V erse Outro

3,4,3===⇒ I I V IV V I V II I V IV II I V I V II I V IV II I V II I Outro

5=⇒ I I V IV V I V II I V IV II I V I V II I V IV II I V II I IV V I I

Figure 4.5: Derivation steps of G1

derivation of a string is done with the help of the random generator which
selects rules based on their probabilities.
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G2 = (N, T, P, S)

• N = {Intro, Verse, Chorus, Bridge, Outro}

• T = {I, II, III, IV, V, VI, VII}

• S = Intro

• P = {

1. Intro → I I V IV V erse Outro

2. V erse → V erse Chorus V erse

3. V erse → V I V II I

4. Chorus→ V IV II I

5. Outro → IV V I I

6. V erse → V erse Bridge Chorus V erse

7. Bridge → I V II

}

Figure 4.6: Context-free grammar created from G1 in figure 4.4

Definition 4.2.2 Probabilistic context-free grammars are defined as a quin-
tuple
G=(N,T,R,S,P)
where

• M – a set of non-terminal symbols,

• T – a set of terminal symbols (alphabet)

• R – a set of production rules

• S – a starting non-terminal symbol

• P – a function, where every production rule is assigned with a probability

In the figure 4.7 an extension of the context-free grammar G2 with added
probabilities for each rule. This grammar is quite simple as only nonterminal
Verse has multiple rules.
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R =

p(1) = 1
p(2) = 0.5
p(3) = 0.3
p(4) = 1
p(5) = 1
p(6) = 0.2
p(7) = 1

Figure 4.7: Extension of CFG, by assigning each production rule a probability

4.2.4 Markov Chains

A Discrete-time Markov chain is a stochastic model, where the probabilities
are learned from a sequence of events, and it describes a sequence of possible
events in terms of the event obtained from a previous event. Markov chains
were built to analyze the text and generate similar text based on the input.
The definition of discrete-time Markov chain is defined as:

Markov chain
Given random variables X1, X2, . . . , XN , whereXi ∈ L and probability
defined as P (Xn+1 = x|X1 = x1, x2, . . . , xn) = P (Xn+1 = x|Xn = xn)

Time-homogeneous Markov chain
P (xn+1|x1, . . . , xn) = P (xn+1|xn)

Markov chain with memory
P (Xn = xn|Xn−1, . . . , X1 = x1) = P (Xn = xn|Xn−1 = xn−1, . . . , Xn−m =
xn−m)

In this thesis, several Markov chains are used to analyze different aspects
of the song, different types are selected depending on their properties, and
event spaces are built for the analysis. The Markov chain with memory is
possible to be translated to a homogeneous Markov chain if we construct
chains with Yn =< Xn, Xn−1, . . . , Xn−m+1 >, and this property is applied
when generating melody notes. By convention, we assume that the Markov
chain has always a transition from any state.

42



4.2. State transition systems

Transition Matrix Is a 2-dimensional matrix describing the probabilities
of transitions. Let E = (e1, . . . , en) be an event space that the Markov chain
works with. Given transition matrix P , build on E, the probabilities of the
the transition ei → ej is a value at index Pi,j . An element-wise sum across all
rows has to be equal to 1.

P =



P1,1 . . . P1,j . . . P1,n
... . . . ... . . . ...

Pi,1 . . . Pi,j . . . Pi,n
... . . . ... . . . ...

Pn,1 . . . Pn,j . . . PS,n


,

∀i, 1 ≤ i ≤ n,
n∑

j=1
Pi,j = 1

The probabilities are characterized by a state space, describing the prob-
abilities of transitions. Two states are said to be communicating with each
other if there is a sequence of transitions that leads to the second. For us, it
will be important that for every state there exists at least one transition. In
this thesis, it is achieved by appending m events from the start of the song to
the end, making the whole system ergodic, this is expected for every training
in the system.

Training The transition matrix for Markov chains is created based on the
learning from the sample data. The sample data is transformed into a sequence
of events, and then all probabilities of the transition matrix are updated. The
implementation is done via iteration over a sequence of events and counting
the abundance of transitions in the sequence. Therefore, if in the sequence at
position 3 is e4 and at position 4 e3 the transition matrix is updated by 1, this
is done for the whole sequence. The pseudocode in figure 4.8 describes how
to obtain the probabilities.

Starting state When using a transition matrix, it is necessary to provide a
starting state to generate the next sequence. As the matrix created is always
ergodic, it is always possible to find the transition. In the system, a fixed
starting symbol is used in the chord progression, and others use random states
from the transition matrix.

Examples of Markov chains in music In music, the Markov chains are
applied to many structures. As an example for Markov chains of various
orders, I will be using an event space E ={1,2,4,8}, corresponding to the
durations. Figure 4.9 is the sample sequence of 8 bar length. The rhythm
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4. Computational background in music

input: sequence of events
train:

segments <- split data into order sized chunks
for every segment:

key <- take all events from segment except the last one
next <- last event of a segment
update transition matrix:

key describes the row of the table
next describes the column
update cell of the transition matrix by adding weighted

value to the cell value

normalize:
for every row of transition matrix:

sum <- sum all values of row
update every cell of the row by dividing

the cell value by the sum

Figure 4.8: Pseudo-code of obtaining transition matrix from sequence of events

contains reappearing patterns, specifically 1st, 3rd, and 6th measure have the
same rhythm, similarly 4th, 7th bars and 5th with 8th. If more than 1 bar
similarity is considered then bars {3, 4, 5} are the same as {6, 7, 8}. Instead
of listing transition matrices for all Markov chains, I use directed graphs for
easier visualization.

The simplest of Markov chains is 1st order. The transition matrix is trained
using the sample rhythm and after the matrix is normalized. The resulting
Markov chain is displayed in figure 4.10. This chain is ergodic, and if used as
a generator of event 1, the generated sequence of length 7 is (1,1,4,2,4,8,2).
Higher-order Markov chains get complicated quite quickly, therefore for 2nd
order Markov. Already for this order, the transition matrix has 10 states and
14 different non-zero transitions. The generated model can be seen in figure
4.11.

Figure 4.9: Sample rhythm of 8 measures in 4
4 rhythm. In event space E, it is

(2,1,1,4,1,1,2,2,1,1,2,1,1,4,2,2,4,8,2,1,1,4,2,2,4,8).

When working with durations, it is reasonable to split the data into mea-
sures. Not only the rhythm patterns generated by MM will be more similar
to the input data, but also the size of possible states will be much smaller.

In the sample rhythm, we have 8 measures, however, only 4 unique rhythm
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1 0.5

2

0.2

4

0.3

0.44

0.33
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Figure 4.10: Graph of 1st order Markov chain with event space E ={1,2,4,8}

patterns in these measures. The event space E = {e1 = (2, 1, 1, 4), e2 =
(1, 1, 2, 2, 1, 1), e3 = (2, 2, 4), e4(8)} describes unique bars of the sample rhythm.
Expressing the sample rhythm in terms of this event space results to a se-
quence (e1, e2, e1, e3, e4, e1, e3, e4). With these, 1st order Markov chain has
only 4 states and 5 transitions, figure 4.12
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Figure 4.11: Graph of 2nd order Markov chain with event space E ={1,2,4,8}
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Figure 4.12: Graph of 1st-order Markov chain with event space E = {e1 =
(2, 1, 1, 4), e2 = (1, 1, 2, 2, 1, 1), e3 = (2, 2, 4), e4 = (8)}, the number of node
corresponds to index of an event
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Chapter 5
Practical part

The task of the thesis is to create a seamless transition between two songs
using musical structures, music theory, and computer science. The transition
is created via analysis of the songs followed by synthesis using the analyzed
characteristics of the songs. This part is separated into sections: Analysis and
design, Analyzer, Generator, and System evaluation.

In the first section, constraints on the songs are listed. The songs had to
be preprocessed before they met the constraints. The process is described in
Preprocessing. In the last section, the design of the system is described.

Section Analyzer goes through the first process of the proposed system.
The analyzer describes how to acquire different attributes from songs that
are then used to generate the transition. The attributes are either musical
structures or Markov chains, which are used for the analysis of both melody
and accompaniment.

The generator works with the attributes created in the analyzer and applies
them to the synthesis of the transition. The generator creates two types of
transition based on the method of melody synthesis. The final compositions
are then evaluated by participants.

5.1 Analysis and design
5.1.1 Constraints in songs
To limit the number of possible implementations, we make some constraints
on the input songs. A quick explanation of why and their importance is given
in each of the paragraphs.

1. Single instrument

2. Separate bass from melody

3. Melody as monophony
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5. Practical part

4. Single key

5. Accidentals

6. Chord progressions

7. Time signature

8. Bounded bars

9. Single tempo

10. No rests

Single instrument - the song is limited to a single instrument as multiple
instruments would add more complexity to the analysis. The instrument in-
tended to capture the song is the piano, as it enables to simultaneously play
bass and melody. The other instruments can be generated from the composi-
tion by simplification. Melody (voice leading) can be selected for single-note
instruments and bass for accompaniment with various instruments such as
piano or guitar.

Separate bass from melody - to be able to create a new melody and
chord progression, it has bass and melody in separate channels.

Melody as monophony - the melody cannot have simultaneous notes as
the analysis of the melody works only with a sequence of notes. This is not an
issue as many songs are represented with voice-leading and accompaniment.

Single key - because the key signature of the song is not given and identi-
fying the scale is part of the analysis, the song is expected to be written in a
single scale.

Accidentals - accidentals are expected to not be present in the song

Chord progressions - each measure (bar) of the accompaniment contains
only pitches of a single chord

Time signature - all songs can only have time signature of 4
4 . This is

used so that extraction of the chord progression is easier. The system could
be changed so that variable time signatures are allowed, but this would also
mean that the chords can only change each measure.
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5.1. Analysis and design

Bounded bars - all notes cannot span more than one bar. Because in one of
the approaches the song is split into bars, the notes that span more measures
can become an issue. The notes could be split into two, however, that would
mean that the song is played twice. For some of the notes, the mentioned
method is used, but not necessarily as some were edited by adding extra notes
to the melody.

Single tempo - all songs are constrained to use only one tempo. And the
tempo is defined at the beginning of the song.

No rests - Rests are substituted by the repetition of the following notes or
prolongation of the preceding note. Usually, songs do not have many rests
within the song, if so they are quite short and the above substitution is not
changing the song too much.

Summary The constraints of the song enable better manipulation of the
songs and eliminate the complexity that songs can have. As an example, in
figure 5.1 a small section of the song ”River flows in you” by Yurima [33], is
edited using software Musescore [34] and with adjusted MIDI section from
EVA29. The issues were with chord progression inconsistency and this is fixed
by doubling the tempo of the song (to 130 BPM) and all durations of the
notes are also lengthened. Another problem is that the bars are not bounded
(some notes are spanned in two bars), the notes are divided into two notes
with each note being in a different bar.

5.1.2 Preprocessing
Before I can create the model and generate a new song, a few issues with
MIDI files have to be considered. As MIDI describes only the standard for
communication, there are no restrictions on how to form songs and represent
them in MIDI. The variations can arise from different tools transcribing no-
tation to MIDI. Even though the song could sound the same, in MIDI, the
song could be encoded in different ways. Most of these issues originated from
my implementation of loading the MIDI. In retrospect, I would have selected
a different form of representation of songs as input to the system as the im-
plementation turned to be a quite time-consuming part, which could be easily
substituted.

PPQ inconsistency To understand this issue, I quickly describe how the
tempo of a song works. In MIDI, the tempo of a song is affected by two values,
the first is the PPQ 30 defined in the header, and the second tempo event,

29The loading and saving of the MIDI was edited so that the issues were removed auto-
matically

30number of ticks per quarter note
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5. Practical part

Figure 5.1: First bars of edited score of River flows in you by Yurima[35]

which sets the time in microseconds per quarter note (MPQ). The tempo
event is possible to occur many times in the song, nevertheless, the songs
are constrained to be only in a single tempo, so the tempo event is at the
beginning of the song. Musicians use BPM (Beats per minute) to measure the
tempo of songs. It describes how many quarter notes(beats) can be played in
sequence in one minute. If we wish to obtain this value from MIDI, we use
the following equation:

BPM = 60 * 1000 / MPQ

Figure 5.2: Upper part are 4 quarter notes and lower part has 8 semi notes. If
the upper part would be have BPM double of the lower part they would have
same tempo

The issue arises from two different values of PPQ used. Consider the same
song created twice, first with PPQ: 512 and Tempo: 5 ∗ 106, and second with
PPQ:256, Tempo: 5∗106. If combining these two songs into one, we would get
twice as fast a second repetition. This means that to be able to combine two
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5.1. Analysis and design

songs into one, it is necessary to have both songs in the same PPQ format.31

In this thesis, I transformed every song to be in PPQ of 480. It is done by
calculating the ratio currentP PQ/480 and all ticks of the events multiplied
by this ratio. Just a quick example, left events with PPQ=240 → ratio=2,
right events transformed to PPQ=480:

Tempo(0,750002)
NoteOn(0, 69)
NoteOff(228, 69)
NoteOn(240, 71)
NoteOff(354, 71)
NoteOn(360, 69)
NoteOff(816, 69)
NoteOn(640, 74)
NoteOff(954, 74)

Tempo(0,750002)
NoteOn(0, 69)
NoteOff(456, 69)
NoteOn(480, 71)
NoteOff(708, 71)
NoteOn(720, 69)
NoteOff(1632, 69)
NoteOn(1680, 74)
NoteOff(1908, 74)

Deviations in durations Notes in MIDI can have different lengths for the
same type of duration, usually caused by the special notation of the notes.
For example, these can be staccato (shortly played notes), fermata, or accent.
Or variations in terms of a few ticks to fit the measure more evenly. These
variations result in inconsistent durations of the same note in MIDI format.
Even notes without any extra notation are still in incorrect ratio to PPQ,
which is caused by the nature of the MIDI. As an example, the figure 5.3
shows a simple melody, with corresponding events on the right.

When the notes are extracted, the durations (shown in the figure 5.5) are
for QN = 455, EN = 227, and HN = 911, PPQ of the melody is 480, meaning
that it should be 480 pulses per QN.

If we have a look at QNs, they have 455 ticks, instead of 480 as denoted in
the header. The expected representation of a song acquired from MIDI files
is a sequence of notes with a limited number of durations. For this purpose,
a simple solution of identifying the closest notes to the expected values could
be created, creating a set of allowed durations. However, this solution would
shorten the length of notes slightly and operations such as separating notes
into bars would be more complicated. Besides, in some songs, for the same
note duration, slight changes in tick number were present (+-5ticks). This
way we would lose information about a certain type of duration used and
create multiple representations instead of one.

For the next possible solution, we have to look at the start of the events.
The starts of each note (NoteOn events) look like their tick distance fits the
480 PPQ frame. This way, a straightforward solution subtracting the next

31This is also important to do for the analysis as we need the same number of ticks for
the same notes.
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Figure 5.3: One bar as a represen-
tative made in Musescore

Tempo(0,750002)
NoteOn(0, 69)
NoteOff(455, 69)
Tempo(480,750000)
NoteOn(480, 71)
NoteOff(707, 71)
Tempo(720,750002)
NoteOn(720, 69)
NoteOff(1631, 69)
Tempo(1680,750002)
NoteOn(1680, 74)
NoteOff(1907, 74)

Figure 5.4: Midi events of simple
melody

Note(0,69,455)
Note(480,71,227)
Note(720,69,911)
Note(1680,74,227)

Figure 5.5: Notes extracted from the melody in figure 5.4. Attributes of note
are tick, pitch, and duration respectively.

tick of the NoteOn event from the current NoteOn could be used to create
durations. For this example, the solution would work beside the last note. 32

Unfortunately, if the song is polyphonic33 the above solution cannot be used.
Within the same track, the distance to the next NoteOn event does not have
to be correct, this applies also if rests are used.

The final solution is recalculating the durations to the closest duration in
the list of allowed durations. This list is created from the value of PPQ and
has values from 1

32 duration to the whole. In the example,5.6 the list with
a PPQ of 480 is created. Even though only 16th notes are allowed in the
song, the thirty-second note is listed, because each note can also have a dot
notation.34 When creating a new duration for note, the note is compared to
the list of allowed and the higher closest is assigned 35. If no duration is found,

32solving this in the song would not be an issue as we could for example do something
like mapping it to the closest duration already defined

33allows simultaneously played notes in accompaniment
34the description of the dot notation is in section Duration
35max deviation allowed is 10% of the note
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5.1. Analysis and design

the combination of successive notes is tried. This can be seen in the figure
5.6 which is created from notes5.5. If the tick information, the notes used for
analysis are obtained.

Note(0,69,480)
Note(480,71,240)
Note(720,69,960)
Note(1680,74,240)

Figure 5.6: Notes extracted from 5.4. Attributes of note are tick, pitch, and
duration respectively.

Accidentals - manipulation This problem is created after key signature
analysis and when I transform the pitch of notes to the intervals of the scale.
As the scale is a list of pitches of the chromatic scale, to represent notes in
terms of the scale, all notes have to be from that scale. However, this does
not have to happen as accidentals can occur both from falsely identifying the
scale or accidentals still being present in the song. 36

One of the solutions could be to use a 12-tone chromatic scale and express
all notes in terms of this scale37. Or have a type of mark describing a raise in
semitone for each note. This would still keep the knowledge of the scale of the
song. On the other hand, we would have to remember for each note an extra
attribute, which would create a more complex model. And as accidentals do
not occur that often in a song, my solution is simply ignoring them.

5.1.3 Design of the system
The system, named Electronic Virutal Artistist (EVA), consists of two parts,
the analyzer and generator. In the figure 5.7, a basic idea of the system is
shown.

The input to the analyzer is two songs in MIDI, which are transformed into
the internal representation. The analyzer identifies features of the songs and
creates models representing melody and accompaniment. The first attribute
identified is the key signature of the whole song, and from it scales for melody
and accompaniment are created.

For the melody of the songs, two approaches are used, one uses event space,
where the event is a pair of duration and pitch. The first splits the melody into
a sequence of pitches and the second into a sequence of durations of length one
bar. Markov chain is created for both approaches and the transition matrices
are models of melody.

36pitches that are out of the scope of scale
37all MIDI values are within this scope
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Accompaniment is handled separately from the melody. The accompani-
ment is first sequenced to bars and then for each bar, only pitch classes are
considered to predict the chord type used in the bar. The rhythm patterns of
accompaniment are not analyzed. From a database, a model of already identi-
fied songs using a 1st-order Markov chain is collected and then retrained with
the songs. This results in a transition matrix describing the chord progression
of the song.

Then generates, mainly via the transition matrices, individual sections of
the transition. In the transition, 3 scales appear. The first part is generated in
the scale of the first song. The middle part is in the scale created by defining
a distance measure on the circle of fifths and choosing a scale that has ideally
the same distance from both scales of the two input songs. The last part is
again in the scale of the following song.

Figure 5.7: The system to create short composition connecting two songs
together

5.2 Analyzer
The analysis is the main part of the EVA. It loads the songs from MIDI and
transfers them to the internal representation. The songs are throughout the
analysis independent of each other. Apart from some variations in transition
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5.2. Analyzer

matrices using melody pitch, the song is analyzed the same way regardless of
the order it arrives in the system. The order is considered in the generator.38.
Both songs go through the same steps, therefore, a description of a single song
will be given throughout this section. The analyzer is structured in order of
the acquired attributes. The attributes of the songs with their shortcuts:

• SM – Scale of Melody

• SB – Scale of Bass

• M1 – Markov chain created from pitch

• M2 – Markov chain created from the rhythm of bars

• M3 – Markov chain created from the pitch of the melody

• M4 – Markov chain representing the chord progression

5.2.1 Key signature
Before creating and analyzing the melody and bass of the songs, it is necessary
to identify the key of the song as in both parts the scale is the key musical
structure. The theory of the process is described in section Key Detection -
Scale detection, where the pitch profile of the song correlation coefficient is
calculated. The pitch profile of the song is created by taking all notes (from
NoteOn events) and extracting the pitch, this creates a sequence of pitches.
Each pitch is mapped by mod12 to its pitch class. For each pitch class, the
abundance of notes having the same pitch is calculated.

To obtain the scale of the song, the correlation coefficient is calculated
using major and minor profiles, and all pitch classes, in total 22 correlation
coefficients (11 pitch classes times 2 types of scales). In the figure 5.8, pseudo-
code of the scale detection is described. The major and minor profiles are
listed in table 4.2. The highest value of the coefficients describes both the
root pitch class and the scale type of the song.

To create scales of both the melody and accompaniment, the octave of the
root has to be found. This is achieved by calculating the mean of all pitch
values. The mean value describes the center, the first pitch that is below the
mean value and is from the same root pitch class is the root. The pair root
and scale type identify the scale for both melody and bass.

5.2.2 Melody pitches analysis
Because the melody in this thesis is monophonic, it enables representing it as
a sequence of notes. As some characteristics of tones are omitted, the note
can be represented as a pair of pitch and duration. In the MIDI, the sequence

38Input song1,song2 will result with a different transition than input song2, song1
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function detect_key:
major <- major pitch profile
minor <- minor pitch profile
song <- song pitch profile
max <- describes max value from correlations,

the scale type and root is stored too
for (root <- range 0 to 11):

k_minor <- calculate correlation between minor,
with current root

k_major <- calculate correlation between major,
with current root

if k_minor or k_major > max:
max <- update max

return max

Figure 5.8

is acquired via the NoteOn and NoteOff events. The process is described in
section 5.1.2.

Definition 5.2.1 Given d ∈ D, where D is set of durations and a p ∈ N, 21 ≤
p ≤ 108 is pitch, an ordered pair n = (p, d) is said to be a note and the set of
all possible notes is defined as N

The set of durations can vary, that is why I do not specifically define the
set of durations. As said in the section 5.1.2, the values of durations are
constructed from a set 32nd Note,SN,EN,QN,HN,WN with relative ratio to
the PPQ. Therefore, one of the possibilities would be defining it in terms of
ratio or simple set 1, 2, 4, 8, 16, 32 respectively, where each value represented
would have to be transformed to MIDI ticks by multiplying it by a constant
m = PPQ/8. However, in the implementation, I work with values derived
directly from MIDI ticks. The exact values are not important.

To relate to the elements of the note n, the notation n.p and n.d is used
to describe pitch and duration respectively.

Definition 5.2.2 An ordered set m = m1, . . . , mn, n ∈ N ∧ ∀i ∈< 1, . . . , n >
, mi ∈ N is said to be a monophonic melody

From now on, I will be working with the sequences of pitch values and
durations separately, the sequence of pitches of a melody m is labeled m.p =
m1.p, . . . , mn.p, and m.d for durations. For the representation of the pitches
of the melody already the m.p could be used, however, that is possible with
a large number of songs analyzed. Instead of using a large dataset, I chose
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to utilize the knowledge of the scale and express the pitch melody in terms of
scale and then create a step function.

Definition 5.2.3 Given a vector x = (x0, . . . , xi, . . . , xn), ∀i ∈ [0, n), 0 ≤
xi < xi+1 < 12, and a value r ∈ N , where x

⊕
r = (x0 + r, x1 + r, . . . , xn + r)

using this we define scale as an ordered pair of s = (r, x) where r represents
root note and x steps within this scale, S is then set of all scales

To express notes in terms of the scale, I define two functions, one is a
function, which returns the value of the pitch, by indexing in the scale:

Definition 5.2.4 ξ : S ×N → N,whereξ(s, n) = s.r +s.x(n mod 12)+d∗12,
where 0 <= n + 12 ∗ d <= 12

And function abs, which takes the pitch and returns the index of the given
scale

Definition 5.2.5 abs : S × N → N, where abs(s, n) = i if ∃i, such that
ξ(s, i) = n

The next definition needed is the step function

Definition 5.2.6 Given a vector x = (x0, x1, . . . , xn), x ∈ N and a function
δ : x → Z, δ(xi) = xi − xi−1, i ∈ N, 1 ≤ i < n, δ(x0) = x0 thus creating new
vector δ(x) = (x0, x1 −x0, . . . xi −xi−1, . . . , xn −xn−1) the new vector δ(x) are
the steps of vector x

To obtain the steps of intervals within a scale. This can be now expressed
with the above definitions as:

Definition 5.2.7 Given m ∈ M, s ∈ S, where ∀x ∈ m, ∃i such that ξ(s, i) = x
then abs(m.p) = (abs(p0), . . . , abs(pn)) and δ(abs(m.p)) = (abs(p0), abs(p1) −
abs(p0), . . . , abs(pn) − abs(pn − 1)) are defined as melody scale steps,

MSS is a vector of Z, where range depends on the scale used and values are
usually within [−14, 14]. At this point, the MSS is paired with the sequence
of durations to describe melody.

Because this is the last part before Markov chains, an example with one
bar melody from figure 5.3,39 is transformed into scale steps of scale s =
(C5, Major). The description of obtaining notes is described in section Devia-
tions in durations, thus this part is skipped. The melody m (69, 480), (71, 240), (69, 960), (74, 240)
and scale (72, (0, 2, 4, 5, 7, 9, 11)) are given. In the table 5.1, the iterative steps
of obtaining MSS are listed.

39As a reminder these are notes (A3,QN),(B3,EN),(A3,HN),(D4,EN)
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operation sequence
m (69,480) (71,240) (69,960) (74,240)

m.p 69 71 69 74
abs(m.p, s) -2 -1 -2 1

δ(abs(m.p, s)) -2 1 -1 3

Table 5.1: The process of obtaining scale steps from melody

Generating generic melody In this work, what we are trying is to create a
transition from one song to the other in a way that the connection is seamless,
but still, it is expected that the generated part will be different from the songs.
This is partly achieved by creating MSS and also by creating a generic melody.
In this part, I describe how to generate a simple melody.

I chose an approach of a simple probabilistic context-free generator inspired
by the study ”Musical Composition with Stochastic Context-Free Grammars”. [13]
The proposed generator for pitch used in the study is a probabilistic gener-
ator where each note is created by intervals within the scale. In the table
5.2 probabilities describe the transition as interval. These intervals apply for
downward and upward intervals with a 50/50 probability. I created 3 out of
10 songs using this technique.

Interval 1st 2nd 3rd 4th 5th 6th 7th 8th
Probabilities 0.05 0.3 0.2 0.1 0.2 0.05 0.05 0.05

Table 5.2: Two possible set of probabilities based on the ”Musical Composition
with Stochastic Context-Free Grammars” [13]

Proposed generator for melody The first adjustment is using a prob-
abilistic context-free grammar describing the probability distribution that is
used. The nonterminal symbols describe different features of tonality.40 The
proposed features and their symbols in the grammar are:

• small steps(S) – conjunct melodic motion

• one note with higher probability(C) – centrality

• large steps(L) – acoustic consonance

The generator adjusts the probabilities of intervals for some movements.
The proposed PCFG is listed in table 5.3, the rules are after the nonterminal,
and the probabilities are in the last column, where they correspond to the
rules respectively. The output of this system is a sequence of terminals (0-7)
and the letter ”c”. This sequence is then transformed to a given scale, where

40The features are described in section Tonality
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input: sequence of symbols, scale and central note
output: sequence of MIDI values

function pitchesFromString:
previous note <- central note
pos <- 0
for every symbol in symbols do

if the symbol is c
note <- find closest pitch to the previous

note using central note pitch
previous note <- note
pos <- position of note in scale (abs)
add note to the new sequence

else
//it can only be number here 0-7

pos <- (pos + symbol)
note <- note from the scale indexed by pos
previous note <- note
add note to the new sequence

Figure 5.9: A pseudo-code that obtains pitches from string generated by pro-
posed PCFG

0-7 describes steps in the scale. Letter c is transformed to the closest pitch of
the central note to the previous note.

As an example, (c,-1,c,3) is generated from PCFG.41, which is in C-Major
scale and C4 central pitch, transformed to values (60,59,60,67), in scientific
pitch notation (C4, B4, C4, G5). Below is a pseudocode for the transformation
to pitch.

rules N = (Start,M,S,L,C) T = (0,1,2,3,4,5,6,7,c,e) probabilities
S → CM | MC | CMC [0.3,0.3,0.4]
M → SM | LM | CM | m | e [0.4,0.15,0.25,0.15,0.05]
S → SS | s | e [0.3,0.5,0.2]
L → LL | l | e [0.1,0.4,0.5]
C → CSC | c | e [0.25,0.05,0.4,0.3]
m → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 [0.05,0.3,0.2,0.1,0.2,0.05,0.05,0.05]
s → 0 |1 | 2 | 3 | 4 [0.2,0.4,0.3,0.15,0.05]
l → 2 | 3 | 5 | 7 [0.1,0.1,0.45,0.1,0.25]

Table 5.3: The probabilistic context-free grammar for generating melody

The table 5.4 describes one of the generated sequences from the grammar
and its transformed sequence with the midi values. From my point of view,

41the -1 was created by 50% random chance of transforming to downward motion
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Symbols from grammar (2, 1, 8, 1, 2, 1, 8, 1, 8, 2, 4)
MIDI values (64, 65, 60, 62, 65, 67, 72, 71, 72, 69, 76)

Scientific pitch notation (E5, F5, C4, D5, F5, G5, C5, B5, C5, A5, E6)

Table 5.4: Example grammar output, where C-major and root C were used.
The second line is created from the output by transforming the c to closest
pitch to the previous note, the numbers are transformed using scale and they
refer to steps within the scale(50% for upward and downward motion)

this method implements better tonality features of melodies than the simple
probability generator described earlier.

With these two methods, 10 generic melodies are created. 3 with the first
method and 7 with the other. The length of each melody is approximately
similar to the length of the input song.42

Markov Chains on MSS At this point, MSS is created for the melody of
the given song and also a generic melody. The event space used are the values
of the MSS, typically[-14,14]. The obtained transition matrix will be a model
for melody in the generator.

For the melody, I have selected a 3rd-order Markov chain to capture the
dependencies in melody. In addition to the definitions and description of the
Markov chains in section 4.2.4 the training is weighted, equivalent that the
same input used w times.43. To get the desired Markov chains. The training
has to be performed.

The pseudocode is described in figure 4.8. The train method takes as input
a sequence of events and iteratively goes through the sequence and updates
the transition matrix values. For both types of approaches, the training is
performed twice, once with the generic melody and weight of 1, and the second
time with the song’s melody and weight of 5, so that the generated song is
affecting the probabilistic generator more, and the melody is more similar to
the input one. The output of this part is a transition matrix, that is after the
training normalized, and used as input to the generator, it is labeled as M1.

5.2.3 Melody rhythm analysis
The necessary part of the melody is the rhythm pattern. To better capture the
structure of the melody, the durations are grouped into bars. The sequence
is created by a simple algorithm from the sequence of durations. A set D =
{2,3,4,6,8,12,16,24,32} is a set of durations in the song. The rhythm pattern
is defined as:

42The length of the melodies has to be at least 80% length of the song and at max 120%.
43In the implementation the input is not used w times but instead each cell of the tran-

sition matrix is incremented with value w instead of 1
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Definition 5.2.8 The sequence d = (d1, d2, . . . , dn),wheredi ∈ D is called a
rhythm pattern. If ∑n

i=1 di = 32 it is said to be a bar rhythm pattern or a bar

Simply the bar is of length one whole note, where the whole note has a value
of 32. Here we fix the value of the quarter note to 8, but in the implementation,
I work with the exact PPQ as it is more convenient for debugging.

The sequence of bars is used to create 1st-order Markov chain. In these,
the event space is the bars of the song. It is labeled as M2

5.2.4 Rhythm and pitches of melody combined
For the melody, one more model is created. This time MSS is used in com-
bination with duration. The event space E, e ∈ E, e = (p, d),wherep ∈
[−14, 14]∧d ∈ D, is used for the 2nd-order Markov chain. Similarly to melody
pitch, the generic melody is used. This time the melodies are matched with
melodies of the song, m.d, if the generic melody is shorter, m.d is shortened,
and if the generic melody is longer, it is shortened to fit m.d. This way, 10
generic songs are created and used to train the Markov chain, the real melody
is trained with the weight of 5. Normalization is performed at the end. The
result is a model describing the pitch+rhythm of the melody(M3).

5.2.5 Chord progression analysis
The proposed analysis of chord progression is again done with the knowledge
of the scale and use of Markov chains. A large part of the generator is created
with the probabilities from In the section Chord Progression, the obtained
graph from the website is described and the probabilities listed, these values
are used by the generator to create new sequences. Because the Hook theory
model is created using 1st-order Markov chains, in this implementation the
same is used to analyze the chord progression of the song and update the
obtained transition matrix.

The key part of chord progression analysis is the extraction of the chord
type. What I try to accomplish here is identifying the type of the chord in
terms of Roman numerals (the root of the chord), with a proposition that all
chords are triads.

Representation of bass The bass is extracted differently than the melody
from MIDI. Identifying the individual notes and durations is similar to the
melody, however, the sequence of single notes would not represent the bass
properly.

The internal representation is a sequence of bars, where each bar consists
of a sequence of either notes or chords. This is extracted directly from the
MIDI algorithm that takes a sequence of pairs, where the first item is the
tick in the midi file and the second is a note. The individual notes are then
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structured based on the overlapping. As defined in the section Constraints
in songs, all notes played simultaneously have to have aligned NoteOn and
NoteOff events. 44 This way chords are created by combining notes that have
the same tick.

In the figure 5.10, a representation of accompaniment is at two levels. One
is with Roman numerals (level 1) and the second with durations accompanied
with a sequence of steps (level 2). The rhythmical structure is at level 2, and
in this work, it will not be implemented. The next part works with level 1
only.

Figure 5.10: Example of desired representation of chord progression with I,
V, V scheme

Chord type extraction At the start, the representation of the bass is in
terms of bars with a sequence of chords (or notes), in identifying the chord
type only pitches of the chords are needed, so for each bar, the pitches are
extracted. Unlike the pitch profile of the song, the number of times the pitch
is in the bass is omitted and the only information collected is a set of pitch
classes present in the bar.

As an example, the first measure from figure 5.10 would be represented as
{C,G}, the second as {G,D}, and the third {G,D}. Moreover, as the scale is
known and the pitches are in terms of pitch classes, the intervals in the scale
(index of scale) can be used, thus {C, G} in C-major would be {0,4}. The
final transformation of the bars, before using correlation to identify the chord
type, is creating a vector that represents all indexes of scale, the values of the
vector are either 0 or 1 based on the profile extracted. Therefore, (0, 4) is
transformed to (1,0,0,0,1,0,0). I call this ”a profile of the chord”.

As the songs are expected to use only major/minor triads in their accom-
paniment, the chords can be identified by their root. I propose a similarity
measure created with the correlation. As a reminder, the triad consists of

44all notes start playing together and finish at the same time
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5.3. Generator

input: chord of the bar, scale
output: root of the chord
function detect_chord:

triad <- (10,1,5,1,7,1,2)
chord_profile <- profile of chord
max <- describes max value from correlations,

the root is stored
for (root <- range 0 to 7):

k <- calculate correlation of chord_profile,
and triad, with current root

if k has higher value than max:
max <- update max

return max.root

Figure 5.11: Pseudo-code detecting type of the chord

notes formed by (0,2,4) scale intervals. The method uses the chord profile
(10,1,5,1,7,1,2). It is created based on the knowledge of the significance of
intervals in the triad (octave, fifth. . .). The next part is similar to the one
used in KS, the correlation between the vectors of the chord and the triad.
It is created 7 times and the highest value describes the most likely chord.
The figure 5.11 describes the process of detecting the root of the chord, thus,
determining the chord type.

The result of this part is a sequence of chord types, where each value
describes the root key of the bar. For the example 5.10, the sequence (0,4,4)45

is the identified chord progression.

Training the Markov model The sequence of chord types is used as
the sample space to train 1st-order Markov chains. The event space is a root
value (0-7). The transition matrix is created the same way as before and then
combined with the transition matrix collected from Hook theory with ratio
1:1, meaning both the transition matrices are first normalized, and after that,
all probabilities are added together. The resulted matrix(M4) has to be again
normalized and the transition is the model describing chord progression.

5.3 Generator
The generator is the part where all models and attributes from the analysis
are collected and used to synthesize a transition between two songs. These

45Internally the root is described in terms of index in the scale, however (0,4,4) describes
(I,V,V) chord progression
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attributes are a bit different for individual approaches. For the first approach,
the attributes of one song are:

• SM – the scale of the melody

• M1 – a model of melody pitches

• M2 – a model of melody rhythm in bars

• SB – the scale of the bass

• M4 – a model of chord progression

For the second these are:

• SM – scale of the melody

• M3 – model of melody pitches + rhythm

• SB – scale of the bass

• M4 – model of chord progression

The attributes are the same for both songs, thus, for the first 10 attributes
used. The songs in the generator are labeled as song1(S1) and song2(S2),
describing the preceding and the following song.

Generating the song is separated into bass and melody generation as they
are generated independently. The whole song is separated into 4 parts of 4
bar length for both the melody and bass. In the figure 5.5, description of
the layout. For each part, the corresponding column describes what song
attributes are used. Apart from the obvious song1, song2 attributes, the mid-
scale appears. It is an intermediate scale that is created from song1 and song2
scales. The last row describes the bass of accompaniment. Since I have not
created any model for the bass, the bass is created via either WN chords or
arpeggios. The former describes playing a chord for the whole length of the
bar, and the latter is chord46, where individual notes of the chord are played
in sequence. The format used to create arpeggio using intervals root, fifth,
and octave, and notes played as root → fifth → octave → fifth. The last step
is descending, the others are ascending.

Mid-scale The scale created for the middle part is created with the help of
Distance and the similarity of scales. First, a path is created via traversing
a lattice of scales (3.8). The scales of both songs are used as a measure and
iterative steps between the two scales are taken. The algorithm in figure 5.12
describes the iterative process of creating a sequence of scales. In terms of the
lattice, the scale movement is only horizontal. The mid-scale is generated once

46typically spanning more octaves
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5.3. Generator

Part 1 2 3 4
scale song1 mid-scale song2

melody song1 song1 song2 song2
progression song1 song1 song2 song2

bass simple WN chords Arpegios simple WN chords

Table 5.5: the layout of the generator, describes what scale is used at the
given part and rhythm pattern is used for bass. First two parts relate to
song1 models and parts 3,4 to song2.

the sequences (s1,s2) have scale equivalent scales at their ends. The mid-scale
is always taken from the first sequence, and it is the last scale.

As an example, the search for mid-scale of scales C-major and B-minor.
The first step is C → G, next step Bm → Em, and then the condition Em ==
G, therefore the G major scale is the mid-scale of scales C-major and B-minor.

input: scale1,scale2 <- two scales
output: mid-scale
function findMidScale:

s1 <- sequence one
s2 <- sequence two
append scale1 to s1
append scale1 to s2
while s1.last is not scale equivalent with s2.last:

left <- do a left horizontal step from s1.last
right <- do a right horizontal step from s1.last
the shorter distance to s2.last is selected and

appended to s1
if the s1.scale is scale equivalent with s2.last

break

left <- do a left horizontal step from s2.last
right <- do a right horizontal step from s2.last

return s1.last

Figure 5.12: Mid-scale finding algorithm in pseudo-code

Generators For every part of the song, the generators are used to create
different sequences. In section Probability generation, the description of how
to generate sequences from probabilistic state transition systems is described.
I will not go through the process again, only describe the individual steps used
to combine the parts, and how to get the parts.

65



5. Practical part

Chord progressions The chord progressions are simple, for every part,
I generate a new chord progression of length 4 with a starting state I, the
model used is M4. Therefore, for each bar, we obtain a sequence of 4 chord
types (root values), that are then linked to the scales at the specific part.
In all parts, chords are created from 3 notes: root, fifth, and octave. In the
first and last measure, the chords are simply played simultaneously for WN
duration. In 2nd and 3rd part, the arpeggios are applied. This way the chord
progressions are created.

Melodies For the pitch of the melodies, in both approaches the same
is done. As the melody was transcribed into MSS, the similar reverse proce-
dure has to done for the generated sequence. First the sequence has to be
”unstepped”, as the individual numbers in this sequence represent steps, the
sequence values are summed. Let a vector x = (x0, . . . , xn) be the sequence de-
scribing the MSS, the vector y = (x0, x1 +x0, . . . ,

∑
i = 0nxi, . . . ,

∑
i = 0nxi)

then describes intervals in scale. To get individual pitches, the vector is ap-
plied to function ξ defined in Analyzer, ξ(s, y) = (ξ(s, y0), . . . , ξ(s, yn)). The
function takes scale and a index describing the relation in scale. As an exam-
ple, the process in table 5.1 is reversed to obtaining MSS.

For each of the approaches, the appropriate attributes are used. In ap-
proach 1, M1 with M2 is utilized. For each part, the first step is generating
4 bars from M2, where the start is a random bar of the transition matrix.
From the bars, the number of pitches is calculated by the summation of the
durations in individual bars. The pitches are synthesized from M1 and the
two generated sequences are matched together.47 In approach 2, M3. The
generated sequence is not sequenced into bars, however, I iteratively generate
the sequence for the melody and once the duration of the sequence matches
or exceeds the length of 4 bars, the sequence is used. If the latter happens,
the last note of the sequence is shortened to match the 4 bar scheme. The se-
quence is split into duration and pitches(MSS), to obtain the values of pitch in
terms of the corresponding scale. Finally, all parts are assembled as described
in table 5.5.

5.4 Implementation of the system
The implementation was created in the programming language Scala 3 [36]
in IntelliJ IDEA [37].48 Besides the mentioned structures created, I tried to
create a more complex internal structure using my knowledge of music theory,
however, most of it did not come to fruition. The internal representation of the

47Of course the reverse MSS procedure is expected to be made
48Scala 3 was not officially released during the time I started working on the project, it

was released in May 2021
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hierarchical structure of music tries to capture all similarities of the musical
notation. The figure 5.13 describes the dependencies of the individual classes.
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Figure 5.13: Class hierarchy used to represent song internally in the imple-
mentation from IntelliJ IDEA

5.5 System evaluation
To be able to evaluate the system, several things are needed. The songs that
will be used to generate the transitions, and an evaluation method of the
transition. Since music is subjective, I have chosen to evaluate the system
with a third person.

Songs in evaluation The selected represent different emotions in music.
The emotions are joy, sadness, and anger, which are the basic emotions iden-
tified in music [38], and hope. All songs were edited before using it in the
system, as at least one of the constraints defined in section 5.1.1 violated.

The adjustments of songs are small, mainly changing the polyphonic melody
to monophony and adjusting the time measure, so the chord progression
changes every bar. The edited songs are also included in the content of the
enclosed CD. The songs and corresponding characteristics are listed in the
table 5.6.

Evaluation For the evaluation of EVA, I generated songs with the songs
listed in the table 5.6. These songs are listed with their attributes in the
table 5.6. The input to the system is each combination of 2 songs, creating 12
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Name Heart of
Courage

River Flows
In You Summer You’re Gonna

Go Far Kid

Author Two Steps
From Hell Yiruma Joe Hisaishi The Offspring

Source [39] [35] [40] [41]

Genre Soundtrack Pop,
classical

Soundtrack,
classical Rock

Emotion Hope Sadness Joy Anger
Key sign. BZ-minor F\-minor D-major C-major
Length 61 92 109 92
Chords I,II,VII,II I,VI,III,VII VI,IV,V,I VI,IV,I,V

Table 5.6: The list of sample songs used for the evaluation of the system

different pairs. These pairs are used twice, the first time with generator type
1 and the second with generator type 2. Thus, in total 24 generated songs.

The first evaluation was done with a participant, who was a male stu-
dent(23 years old) with basic knowledge of music theory. The participant was
given all 24 songs labeled with the corresponding song1 and song2 inputs to
the system. He was also given 4 songs that were used as input to the system.
He listened to the songs in a quiet room using headphones and was allowed
to listen to the songs multiple times.

The evaluation for each song was done by listening to the transition and
answering 6 questions. Each composition is scored using 5-point Likert an-
swers.49 The questions are listed in table 5.7.

Q1: ”Does the song sound pleasant?”
Q2: ”Does the song sound real?”
Q3: ”Does the song sound interesting?”
Q4: ”Does it retain same emotion as in input songs?”
Q5: ”Is the song similar to the input songs?”
Q6: ”Is the transition fluent?”

Table 5.7: Questions used for evaluation of the system

The results of the evaluation of approaches 1 and 2 are listed in tables 5.8,
5.9 respectively.

One more evaluation was created to test if the songs used for generation
can be identified from the transition easily. The test was done with a volunteer
that did not hear any generated songs before. The participant was a female
(26-year-old) with intermediate knowledge of music theory, the environment

49Simple answers ”Strongly disagree”(1), ”Disagree”(2), ”Undecided”(3), ”Agree”(4),
”Strongly agree”(5)
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TYPE 2 Q1 Q2 Q3 Q4 Q5 Q6
heart kid 2 2 3 2 3 3
heart river 2 1 2 4 2 2
heart summer 2 4 4 4 2 4
kid heart 4 4 5 1 1 5
kid river 1 2 2 1 1 4
kid summer 2 2 4 3 3 4
river heart 2 4 4 2 2 4
river kid 2 4 4 2 2 4
river summer 2 2 4 2 2 4

summer heart 4 5 5 5 4 4
summer kid 2 2 4 3 2 2
summer river 4 4 4 5 3 3

AVERAGE 2,42 3 3,75 2,84 2,25 3,59

Table 5.8: Results of the evaluation using approach 1

TYPE 1 Q1 Q2 Q3 Q4 Q5 Q6
heart kid 2 3 2 1 3 1
heart river 3 3 4 2 2 3
heart summer 4 4 4 4 4 1
kid heart 2 2 2 2 1 3
kid river 3 4 4 4 4 4
kid summer 3 4 4 4 4 4
river heart 2 3 4 4 2 4
river kid 2 2 2 4 1 1
river summer 2 2 2 4 3 4

summer heart 4 4 4 4 2 4
summer kid 4 4 4 4 5 4
summer river 4 2 3 2 3 4

AVERAGE 2,92 3,09 3,25 3,25 2,84 3,09

Table 5.9: Results of the evaluation using approach 2

was noisy, and the songs were played by a speaker. They were asked to
combine individual songs so that the songs are in order song1 → generated
song → song2.

The participant was given 4 songs that were used for generating before the
test began to listen to them carefully. After that 6 unlabeled transitions were
given50, and the participant matched them to the original songs. The results
were that 2 were guessed completely correctly, 1 completely incorrect, and the

503 songs for each approach
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last 3 only one of the songs correct. This suggests that the composition is not
too similar to the original song, but there is still some information as more
than half of the songs were guessed correctly.

Result The interesting result is that when the song was pleasant (Q1), the
similarity to the previous songs was not always high (Q5), for all Q1 above 3,
the average value of Q5 was 3,1.

The results suggest that the method of using both the pitches and du-
ration together in the model creates a more pleasing song. I believe that
to accomplish a more seamless transition, bass of the song should be added
to the system. The middle section was crucial in combining the two songs.
The use of arpeggios was a good approach as it created a richer sounding
accompaniment, and the melody was not so dominant in that part.

Overall, only a few of the songs sounded unpleasant, which I consider as
a big positive. Most of it is thanks to the tonality that was used to create
these sequences. Upon listening to the songs reviewed as unpleasant, they had
slightly dissonant intervals in them, which appeared because the chord pro-
gression was generated independently of the melody. This could be avoided if
the generated song was automatically analyzed again and all dissonant inter-
vals would be substituted by more consonant ones.

5.6 Suggested improvements
My work leaves a lot of space for improvement as some of the parts of the song
were not utilized at all. The most important part would be the rhythmical
pattern of accompaniment.

For the analysis, I suggest splitting the song into sections: beginning,
middle, final, and each analyze separately. These sections would be then be
used in similar parts in the generation of the transition song. In addition,
finding repetitions of larger structures, such as chorus and verse might be
interesting. The transition could then be generated by removing the outro of
the song and creating a transition with the use of bridges and choruses.

One of the obvious improvements could be implementing parts that were
removed using constraints or ones that were ignored, such as the volume or
timbre.

Post-processing part, where the transition would be edited so that slightly
dissonant intervals are removed. Besides that, reediting the transition to bet-
ter describe the tonality features could also extend this work.
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Conclusion

In this work, I have identified different approaches, that are used for the
algorithmic composition. Based on that I chose to use a knowledge base from
music theory and probabilistic models.

The system created compositions based on analysis of the song and collect-
ing models for different parts of the song. The generation was created for two
types of approaches. The approaches were evaluated with a participant, that
listened to 24 generated songs and answered several questions describing the
transitions. The results of the evaluation suggest, more pleasing composition
arises, when the pitch and rhythm are used together, however, the transition
was more fluent, when rhythm was formed in bars.

The goal was to create a song that would seamlessly connect two input
songs. The results suggested that the transition does retain some qualities of
the songs, but altogether the quality of the composition does not perform bet-
ter than human. The transitions could be used as an underlying composition
for composers.
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Appendix A
Acronyms

AIVA Artificial Intelligence Virtual Artist.

ANN Artificial Neural Network.

BPM Beats Per Minute.

CA Cellular Automata.

CFG Context Free Grammar.

EA Evolutionary algorithm.

EVA Electronic Virutal Artistist.

GTTM Generative Theory of Tonal Music.

KBS Knowledge based system.

MIDI Musical Instrumental Digital Interface.

MM Markov Model.

MPQ Microseconds Per Quarter note.

MSS Monophony Scale Steps.

PCFG Probabilistic Context-Free Grammar.

PPQ Pulses Per Quarter note.

RNG Random Number Generator.

STS State Transition System.
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Appendix B
Contents of enclosed CD

readme.txt.........................the file with CD contents description
src.........................................the directory of source codes

scala................................ implementation sources in scala
python.............................implementation sources in python
thesis...............the directory of LATEX source codes of the thesis

text............................................ the thesis text directory
thesis.pdf............................the thesis text in PDF format

gen.............................the directory of songs used in evaluation
input....................................the directory of input songs
approach1.............the directory of songs created with approach 1
approach2.............the directory of songs created with approach 2
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