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Abstract

Problems of classical planning are usu-
ally solved using the algorithms of for-
ward search with heuristic. Although the
search is usually able to achieve the de-
sired results, in some cases the problem
can have large plateaus where all states
have the same heuristic value and it is
difficult to choose the best direction. In
motion planning similar problems can be
resolved by introducing randomization.

This thesis deals with exploring the
possibility of adapting and studying the
Rapidly-exploring Random Trees (RRT)
algorithm, which was designed for motion
planning in continuous space, to classical
planning.

Keywords: planning, RRT,
Rapidly-exploring Random Tree

Supervisor: Ing. Daniel Fiser, Ph.D.

vi

Abstrakt

Problémy klasického planovani se obvykle
resi pomoci algoritmi dopredného pro-
hledavéani (forward search) s heuristikou.
Prestoze obvykle dosahuji pozadovanych
vysledk, v nékterych pripadech muze pro-
blém obsahovat velké oblasti, kde vsechny
stavy maji stejnou hodnotu heuristiky a
je slozité zvolit nejlepsi smér. Pri plano-
vani pohybu robortt mohou byt podobné
problémy feseny randomizaci.

Tato prace se zabyva zkoumanim moz-
nosti adaptovanim a studiem algoritmu
Rapidly-exploring Random Trees (RRT),
ktery byl navrzen pro planovani ve spoji-
tém prostoru, pro klasické prohledavani v
diskrétnim prostoru.

Klicova slova: planovani, RRT, Rychle
rostouci ndhodny strom

Pteklad nazvu: Planovac pro klasické
planovani postaveny na RRT
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Chapter 1

Introduction

The usual way of solving problems of classical planning is using forward search
accompanied by heuristic function, which should help the planner reach the
goal more quickly. Moreover, when using admissible heuristic, algorithms
such as A* are guaranteed to find the optimal path.

Nevertheless, greedy searches have issues choosing the best path when
dealing with problems with large plateaus which consist of states with the
same heuristic value.

The reason to explore the possibility of using RRT in classical planning is
because RRTs are one of the most successful state-of-the-art techniques in
motion planning. The possible use of the algorithm in classical planning is
being explored because of its useful properties - mainly for the randomization
used in sampling of the state space, which can help to prevent getting stuck
in a plateau, as opposed to sampling using greedy search.

On the other hand, uniform sampling over all possible states is not as
straightforward as in motion planning, since random sampling could return
states that might be unreachable either from the initial state or towards a
goal. This issue could be overcome by sampling only over the subset of goal
states, but that would devalue the idea of uniform sampling.

The goal of the thesis is to propose and implement a solver of classical plan-
ning problems based on the techniques used in the sampling-based methods
for solving motion planning problems. We will be focusing mainly on the RRT

1



1. Introduction

algorithm. In this thesis we used the algorithm outline proposed in [AVB11]
and suggested ways to adapt and implement the individual subprocedures to
classical planning and then examined the performance of the implementation.



Chapter 2

Background

B 2.1 Classical planning

Classical planning is a special case of restricted automated planning. A
classical planning domain (or a state-transition system) is defined in [GN'T16]
as a tuple Y = (5, A4, v, cost), where

® S is a finite set of states.
® A is a finite set of actions.

B v : SxA— S is a state-transition function. If v(s, a) is defined, then a is
applicable in s, with (s, a) being the predicted outcome. Otherwise a
is inapplicable in s.

® cost: SxA— [0,00) is a cost function which assignes a value to each
action. In case the cost function isn’t specified, then cost(s,a) = 1
whenever (s, a) is defined.

In addition to that, classical planning domain is limited by a set of restrictive
classical planning assumptions:

® Finite, static environment. Changes happen only as a response to actions.

3



2. Background

® No explicit time, no concurrency. We are working with a discrete sequence
of states and actions and we do not consider time at all.

B Determinism, no uncertainty. We are able to predict the result of action
a in a state s.

B 2.1.1 Finite domain representation

A finite domain representation [Hel09] (FDR), also known as multi-valued
planning task or SAS+, can be described as a tuple P = (V, O, Sinit, Sgoal, €),
where:

V is a finite set of state variables. Each variable v € V has a finite
domain D,,.

A partial state s is a partial variable assignment over V. A state is a
partial state assigned over all variables v € V.

® O is a set of operators. Operator o € O is a pair o = (pre(o0), eff(0)),
where precondition pre(o) and effect eff(o) are both partial states. We
require that V' = v cannot be both a precondition and an effect.

B s;,;: is the initial state of the task.
B 540 IS a partial states which describes its goal.

B ¢ is a cost function mapping each operator to a non-negative real number.

A partial state s is consistent with a partial state s’ if each variable defined
in s’ was assigned the same value as the corresponding variable in s.

An operator o is applicable in a state s if all the values in pre(o) are
equal to values assigned to variables in s. The resulting state of applying an
applicable operator o in the state s is the state s’ = res(o, s). If a variable is
defined in eff(0), then the corresponding variable in s is assigned the same
values as the variable in eff(0). Otherwise, the variable is assigned a value
from s.

A sequence of operators m = (o1,...,0,) is applicable in a state sg if
there are states si, ..., s, where every operator o; is applicable in s; 1 and
si = res(o;, si—1) for i € [1,n]. The result of this action is res(m, sg) = sp.

4



2.2. Relaxed heuristics

A sequence of operators 7 is called a plan if s = res(m, Sinit) is consistent
with s40q. The cost of a plan is ¢(7) = > c,c(0). Optimal plan is a plan
with the minimal cost over all plans.

. 2.2 Relaxed heuristics

The relaxed heuristic functions [BGOI1] is obtained by considering a relaxed
problem in STRIPS [FNTI] representation where all delete effects are ignored.
Even though we are not focusing on STRIPS in this thesis, we can modify
FDR and instead of having a variable and its value, we combine them into
one fact which is either true or false. We can obtain the relaxed plan by
assuming that once a fact is true, it will always be true.

The optimal cost for solving the relaxed problem is a lower bound of the
optimal cost of the original problem and can be used estimation of the cost
of achieving the goal state.

The cost of achieving a fact p from the state s (denoted as gs(p)) is defined
as

() = {0’. hres (2.)
mingeop) [l + gs(pre(o))], otherwise.

where O(p) stands for the operators o that add p, gs(pre(o)) is estimated
cost of the set of facts given by the preconditions of operator o.

The cost of sets of atoms can be defined as the weighted sum of costs
of individual atoms is the additive heuristic hyqq. The cost acquired by
combining the cost of atoms by the max operation is the max heuristic A,qz.
However, the hpp heuristics takes different approach. First, it finds a state
which is consistent with the goal partial state in the relaxed plan, then it
uses supporters (actions which cause a fluent to be true) to compute its value
from the goal to the initial state.



2. Background

. 2.3 Forward search

Forward search [GNT16] is an algorithm that represents a large number of
algorithms which start their search from the initial state and head towards
the goal state.

The search is described in Algorithm 1, where Frontier is set of nodes
waiting to be visited and Fxpanded is a set of already visited nodes. A node
is a pair v = (7, s), where 7 is a plan and s = y(sg, 7). The initial node is

(0 50)-

At first the initial node ((), sg) is inserted into Frontier and Expanded
is set to be an empty set. In each loop the algorithm selects a node v =
(m,s), removes it from Frontier and inserts it into Fxzpanded, generates its
Children, prunes unpromising nodes and inserts Children into the Frontier.

Algorithm 1: Forward search from [GNT16]

Data: >, so, ¢

Frontier <+ {({), s0)};

FExpanded < ©;

while Frontier # @ do

select a node v = (m, s) € Frontier;

remove v from Frontier and add to Expanded,

if s satisfies g then
| return 7;

end

Children < {(m,a,7v(s,a)) | s satisfies pre(a)};

prune 0 or more nodes from Children, Frontier and Ezxpanded,
Frontier < Frontier U Children;

end

return failure;

B 2.3.1 Greedy Best-First Search

Greedy best-first search [GNT16] is the most frequently chosen algorithm for
classical planning problems which do not require optimal solution.

It is a forward search, where a node selection is specified as the selection

6



2.4. Mutex

of a node from the Frontier with the minimal heuristic value. Pruning work
as follows: For each node v = (m,s) € Children, if there are more than one
plan that goes to s, keep the one with minimal cost and remove the others.

. 2.4 Mutex

Mutex, mutex groups and fact-alternating mutex groups are defined in [FK18]
as follows:

Mutex M C F is a set of facts such that for every reachable state s € R it
holds that M ¢ s.

A mutex group M C F is a set of facts such that for every reachable state
s € R it holds that | M Ns < 1.

A fact-alternating mutex group (fam-group) M C F is a set of facts such
that | M N Sinie |[< 1 and | M Nadd(o) |<| M N pre(o) Ndel(o) | for every
operator o € O.

As mentioned in [AT15], one of the methods to obtain mutexes is using
the h™ heuristic [BGO1], where h™ performs a reachability analysis in P™
[Has09]. P™ is a semi-relaxed version of the original problem in which atoms
are sets of m fluents. If the value of A" of an atom in P™ is infinite, then
the atom is a mutex of size m.

Algorithm 2 shows us a way to infer fam-groups using integer linear program

7



2. Background

[FKTS].

Algorithm 2: Inference of fact-alternating mutex groups using ILP
(from [FK18§])
Input: Planning task II = (F, O, sinit, Sgoal)
Output: A set of fam-groups M
Initialize ILP with constraints according to Equation (2.2) and
Equation (2.3);
Set objective function of ILP to maximize > c p 74
Solve ILP and save the resulting fam-group into M;
while | M |> 1 do
Add M to the output set M;
Add constraint according to Equation (2.4) using M;
M + 0;
Solve ILP and if a solution was found, save the resulting fam-group
into M;
end

Y ow<l (2.2)

fi€sinst

Yo e O: Z x; < Z Zj. (2.3)

fi€add(o) fi€del(o)Npre(o)

> o>l (2.4)

fisinit

The most frequently used method to find invariants is h%. Apart from this
method, in this thesis we will use the forward and backward computation of
h? and also h? and fam-groups.

B 25 Motion planning

Motion planning [LaV06] is a type of planning that deals with motions of
a robot in a configuration space with obstacles. A plan in motion planning
determines the configuration of the robot so that it reaches a goal state and
avoids colliding with obstacles.



2.6. Rapidly Exploring Random Trees

B 26 Rapidly Exploring Random Trees

The rapidly exploring random tree (RRT) [LF98] is an algorithm successfully
used for exploring the continuous space. It is popular for its preference to
expand towards unsearched parts of the search space and yet still being simple
to implement.

Figure 2.1: Rapidly-Exploring Random Tree (picture from [L¥98])

Figure 2.2: The extend phase of RRT algorithm (picture from [LKD¥01])

At first, the tree is initialized and a random state is selected from the
domain. Sampled state is assigned its nearest neighbor, which is a state
already present in the tree. Then an input is selected in a way that minimizes
the distance from the sampled state to the nearest neighbour and avoids
colliding with obstacles. The algorithm attempts to join these states while
following the path of input. If the distance to sampled state is within given
limit, the state is added to the tree. If not, the algorithm adds a new state,
that follows the same direction from the nearest neighbour and its distance is

9



2. Background

equal to the limit.

Algorithm 3: Generate RRT (from [L798])

Data: Tingty K, At

T.init (Qfmlt) 5

for k=1 to K do

Zrand — RANDOM__STATE();

Tnear < NEAREST NEIGHBOUR(yand, T);
u < SELECT INPUT(%,and: Tnear);
Tnew < NEW__STATE(Znear, u, At);
T.add_ vertex(Tpew);
T.addiedge(l‘near, Tnews 'LL)7

end

return 7'

10



Chapter 3

Related Work

This section introduces us to several papers on a similar topic and shows
us how the authors dealt with issues of adapting algorithms used in motion
planning to classical planning.

B 31 Sampling-Based Planning for Discrete Spaces

In this paper we are introduced to discrete space search algorithms
based on motion-planning techniques such as Rapidly-exploring Random
Trees and Probabilistic Roadmaps [KSLO96] to discrete space. We will be
focusing on the RRT algorithms.

I 3.1.1 Discrete RRTs

The way the discrete algorithm determines the nearest state is replacing
the distance metric with heuristic estimate of the cost-to-go that is used in
general informed search methods.

The algorithm starts with an initial state gsqrt. At each step selects a
random state g,q,qg Which is not present in the tree and find a nearest state
Gnear Pased on a heuristic estimate of the cost-to-go from each state to ¢reng-

11



3. Related Work

Every operator is applied on gpeqr and the state which is closest to ¢rqnq and
is not present in the tree becomes gnew. The state gneq is added to the tree
connect to ¢peqr With an edge.

The paper also mentions a variation of the algorithm using Rapidly-
Exploring Random Leafy Tree, which keeps an open list of all states reachable
in one step from the tree. Therefore, instead of considering successors of only
one state, we are able to use the successors of the whole tree.

Algorithm 4: GrowRRT (from [MBO04])
Data: Gstart
T-init(QStart);
forn=1 to N do
Grand = randomUnexploredState();
extendRRT (¢ana, T);
end

Function extendRRT (¢,qnd, 1)

Gnear = T.nearestTreeNode(g,qnd) ;

if gpear-hasUnseenSucessors() then
Gnew = nearestSucessor(Grand; dnear);
T.addChildNode(gnew, Gnear);

end

Function extendRRLT (¢yqnd, 1)
Gnew = T'nearestTreeLeaf(qrqnd) ;
T.changeLeafToNode(gnew);
T.addNewLeaves(gnew);

B 3.1.2 RRTs with Local Planners

RRTs with local planner uses the Algorithm 4 from the previous section as
a global planner, but uses a different planner for local planning. Instead of
picking successors closest to g,qnq, & local planner limited by depth, size or
time is used from ¢peqr tO Grang. When the local search is finished, the node
closest to ¢rqng and nodes along its path are added to the tree.

12



3.2. RRT-Plan: a Randomized Algorithm for STRIPS Planning

B 3.2 RRT-Plan: a Randomized Algorithm for
STRIPS Planning

The authors of this paper [BPD06] proposed a randomized STRIPS planning
algorithm inspired by Rapidly exploring Random Trees.

The algorithm follows the outline of the RRT-Connect [KLO0|] algorithm.
RRT-Connect grows the tree from the inital state, and after every expansion
it attempts to connect to the goal.

To select a random state, the RRT-Plan algorithm generates possible ¢,qnqg
states by taking random subsets from the goal. After obtaining a ¢,qnq state,
a nearest neighbor must be found. To estimate distances RRT-Plan uses the
HSP technique h;‘dd. Then a planner is invoked to connect ¢peqr t0
Grand- The authors have chosen a limited version of FF [Hof01] as a local
planner. A new node ¢n¢y, is added to the tree. After that, the algorithm
attempts to connect ¢pe to goal. RRT-Plan also uses other techniques
such as goal subset locking and adapting search paramterers to improve its
performance.

Algorithm 5: One iteration of the RRT-Plan algorithm [BPDOG]

Function iteration():
select random goal subset RGS;

find nearest neighbor ¢peqr to RGS;
invoke planner to connect gneqr to RGS;

if @new is found that satisfies RGS then
add gnew to tree as child of gneqr;

calculate atom costs for geqw;
attempt to connect ¢ne to final goal;
end

B 33 Adapting a Rapidly-Exploring Random Tree
for Automated Planning

In this paper [AVBT1] a new use of RRTS in automated planning is proposed.
Since we are using the outline of the Algorithm 6 in our implementation, we
will focus on the description more in the next chapter.

13



3. Related Work

The planner implemted in this paper uses Fast Downward as its local
planner configured to greedy best-first search with lazy evaluation. The
chosen heuristic the relaxed plan heuristic used by FF. Sampling uses mutexes
computed by the invariant analysis in Fasts Downward.

Algorithm 6: RRT for discrete space (from [AVBI11])
Data: Search space S, limit ¢, initial state gpew, goal ggoal
Result: Plan solution
tree < Qinit;
while —goal Reached() do

if p < random() then

Grand < sampleSpace(S);
Gnear < findNearest(tree, ¢rand, S);

Gnew < jOin(Qneara Qrand; €, 5)7
addN ode(tree, qnear, qnew);

Aneargoq < Qnews
else
| Gneargon < findNearest(tree, qgoal, S);
end
Inewgoar <~ jOin(tree7 dgoal S)a
addN ode(tree, Gneargoar> Inew o );

end
solution < traceBack(tree, qgoal);
return solution;

14



Chapter 4

Description of the Algorithm

This chapter describes the Algorithm 6, which was proposed in [AVBTI] and
further examined in and chosen to be studied in this thesis.

The goal is to plan a solution to a problem in FDR. The algorithm starts
with search space, limit for local planner, initial state and partial goal state.
The tree is initialized with the initial state.

With probability 1 — p it samples the space, finds its nearest neighboring
state stored in the tree, and tries to reach the sampled state from the nearest
neighbor. If the sampled state is reached within the limited number of steps,
the state is added to the tree. In case the limit of steps is reached first, a
newly found state with the lowest heuristic value is added to the tree.

With probability p, instead of sampling the space, we search for a state in
the tree, which has the smallest distance towards the partial goal state.

The algorithm then attempts to join the state used in the previous step
with the partial goal state. The loop repeats until a solution is found.

15



4. Description of the Algorithm

B a1 Sampling

If we decided to sample the state by choosing random number of facts and
also random facts from a search space of a problem represented in STRIPS,
we would most likely generate an enormous number of unreachable states.
The idea behind random sampling in this thesis is taking advatage of using
the FDR representation and having each state consist of a given number
of variables. That helps us prune large number of the possible unreachable
states, since we are picking from a domain corresponding to a variable and
not from the whole state space.

1. First sampling option will select random variable and then a random
value from its domain without considering any other mutexes.

2. Second sampling option (also described in [AVB11]) will start by choosing
random order in which variables will be assigned. In that given order,
we again randomly select a value for each variable, this time however
anytime a new value is assigned, we check whether it is not mutex with
any other already selected values in the state. In case we are not able to
add a new value and the state is not completed yet, we start the whole
process again.

We will be comparing several configurations:

® Random. Apart from variables in FDR no additional mutex groups
added. Uses first sampling option.

® Lifted. Mutex groups obtained during preprocessing and translation.
Uses second sampling option.

® hs. Additionally computed hs mutexes. Uses second sampling option.

® hy forward backward. Additionally computed hs mutexes forward
and backward. Uses second sampling option.

® hgs. Additionally computed hg mutexes. Uses second sampling option.

® Fam. Additionally computed fact-alternationg groups. Uses second
sampling option.

As a last step of sampling, we verify that the state is reachable from the
initial state and towards the goal by using h,,ax. In case the state is not
reachable, we discard it and sample a new state.

16



4.2. Search for a nearest state

. 4.2 Search for a nearest state

A state s’ is considered the nearest state, when it is stored in the tree and its
heuristic value is the lowest towards the sampled state s. For this project we
have chosen to use hrp to help estimate the distance.

B 43 Join

The join stage tries to connect the sampled state s with the nearest state s’ in
a limited number of steps using a local planner. We have chosen greedy search
with lazy evaluation, where hpp is the heuristic function. If s is reached
within the limit, the output is the state s. If not, it returns the state, which
was encountered during the search and has the lowest heuristic value.

17
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Chapter 5

Experiments

In this chapter we examine the results of the implemented solver.

In order to test the planner we used a dataset of 45 domains from the
satisficing track at the IPC. Each domain contains 20 problems. The com-
putations were executed using MetaCentrum resources with the time limit
being set to 1800 second and the memory being restricted to 8GB.

The planner was built on top of cpddl library https://gitlab.com/|
ldanfis/cpddl-devl Greedy algorithm with lazy evaluation from the library
was chosen as the local planner with hpp as its heuristic function.

Three configurations of the solver were chosen based on number of steps
the local planner was allowed to take. Since the proposed algorithm relies
on the element of randomization, every configuration will run three times.
The tables contain result of a planner that uses either a different method of
sampling or a different mutex groups in sampling. The displayed results are
the mean and standard deviation of the three iterations for each configuration.
Every time a planner samples a new state, its reachability from the initial
state and towards the goal is verified using hqz-
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5. Experiments

. 5.1 Results

To put performance of our newly implemented planner into context, we com-
pare the results with a commonly used greedy algorithm with lazy evaluation
implemented in the cpddl library https://gitlab.com/danfis/cpddl-dev,
Table 5.1 shows the numbers of successfully found plans of said algorithm. It
also informs us about how the situation would look if we were to run only
the local planner.

It is very clear, that no matter which version of sampling was used, the
planners with the largest limit in local search have the best results. The
most successful configuration appears to be the planner using fact-alternating
mutex groups with the limit of steps in local planner set to 100,000.

None of the solvers (including the local greedy search) was able to complete
any problem from the domains elevatorsll, ged14 and visitalll4. The planners
struggle and work on long searches with large state space and result in timeout.
Other than that, visitall is a domain known to perform better with different
heuristic function than hpp. Planner using hg mutex groups exits in several
problems (e.g., parkingl4) while trying to obtain additional mutex pairs.

Results in domain mystery98 might look mediocre, but this domain contains
problems that were deemed unsolvable during translation and pruning of
FDR.

Some of the domains contain problems where the solvers struggle with
sampling a reachable state (e.g., tetris14, spider18). That causes the planner
to discard large number of states and sample again, causing it to get stuck in
a loop. This problem is amplified for planners using shorter local search, as
it is required from them to sample more often. For that reason, solvers were
allowed 100,000 attempts to sample a reachable state, and in case even that
number was surpassed, we allow an unreachable state to be returned.

To further examine whether allowing using unreachable states in sampling
could be benefitial, we added another set of tests featuring the most succesful
version of the planner and this time, we do not check the reachability of the
newly sampled state neither from the initial state nor towards the goal. Table
5.8 shows clear improvement in configuration limited to 1,000 steps in local
planner.
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5.2. Tables

II 5.2 Tables

Domain greedy
agricolal8 (20) 9
barmanll (20) 3
barmanl4 (20) 4
blocks00 (20) 20
calderal8 (20) 15
cavediving14 (20) 7
childsnack14 (20) 0
data-network18 (20) 3
depot02 (20) 16
driverlog02 (20) 18
elevatorsll (20) 0
floortilel1 (20) 7
floortile14 (20) 2
freecell00 (20) 19
ged14 (20) 0
gripper98 (20) 20
hiking14 (20) 20
logistics00 (20) 20
logistics98 (20) 16
maintenancel4 (20) 6
mprime98 (20) 17
mystery98 (20) 11
nomysteryll (20) 8
openstacks06 (20) 20
parking11 (20) 20
parking14 (20) 17
pegsolll (20) 20
pipesworld-notankage04  (20) 19
rovers06 (20) 18
satellite02 (20) 19
scanalyzerll (20) 18
snakel8 (20) 6
sokoban11 (20) 18
spider18 (20) 11
storage06 (20) 18
termes18 (20) 16
tetris14 (20) 11
thoughtful14 (20) 12
tidybot11 (20) 17
tpp06 (20) 19
trucks06 (20) 15
visitall11 (20) 4
visitalll4 (20) 0
woodworking11 (20) 17
zenotravel02 (20) 20
SUM (900) 576

Table 5.1: Results of the
greedy algorithm with lazy
evaluation.
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5. Experiments

Domain 1000 10000 100000
agricolal8 (20) 5.67+-0.58 6.33+-0.58 6.33+-0.58
barmanl1 (20) 0.00+-0.00 0.00+-0.00 0.00+-0.00
barman14 (20) 0.00+-0.00 0.00+-0.00 0.00+-0.00
blocks00 (20) | 20.004-0.00  20.004+-0.00  20.00+-0.00
calderal8 (20) | 12.334+-0.58  14.004+-0.00  15.00+-0.00
cavediving14 (20) 0.00+-0.00 7.00+-0.00 7.00+-0.00
childsnack14 (20) 0.00+-0.00 0.00+-0.00 0.67+-0.58
data-network18 (20) 1.674-0.58 2.67+-0.58 4.67+-0.58
depot02 (20) | 12.334+-1.15  14.67+-0.58  16.33+-1.53
driverlog02 (20) | 15.674+-0.58  18.33+-1.53  19.00+-0.00
elevators11 (20) 0.00+-0.00 0.00+-0.00 0.00+-0.00
floortilel1 (20) 5.00+-1.00 5.67+-0.58 6.00+-0.00
floortile14 (20) 2.00+-0.00 2.00+-0.00 2.33+-0.58
freecell00 (20) | 19.674+-0.58  20.00+-0.00  20.00+-0.00
ged14 (20) 0.00+-0.00 0.00+-0.00 0.00+-0.00
gripper98 (20) | 20.004-0.00  20.004+-0.00  20.00+-0.00
hiking14 (20) | 20.004+-0.00  20.00+-0.00  20.00+-0.00
logistics00 (20) | 20.004+-0.00  20.00+-0.00  20.00+-0.00
logistics98 (20) | 10.33+-0.58  15.00+-1.00  19.67+-0.58
maintenancel4 (20) | 11.334-1.53  15.004+-0.00  13.67+-0.58
mprime98 (20) | 19.33+-1.15  20.004+-0.00  18.67+-0.58
mystery98 (20) | 13.00+-0.00  13.00+-0.00  13.00+-0.00
nomysteryl1 (20) 6.67+-0.58 7.67+-1.53 7.67+-0.58
openstacks06 (20) | 20.004+-0.00  20.00+-0.00  20.00+-0.00
parking11 (20) 0.67+-0.58 7.33+-0.58 19.00+-0.00
parking14 (20) 0.00+-0.00 0.67+-0.58 15.00+-1.00
pegsolll (20) | 19.004-0.00  19.334+-0.58  19.67+-0.58
pipesworld-notankage04 ~ (20) | 20.00+-0.00  20.004+-0.00  20.00-+-0.00
rovers06 (20) | 18.33+-0.58  20.00+-0.00  20.00+-0.00
satellite02 (20) | 17.674+-0.58  20.00+-0.00  19.67+-0.58
scanalyzer1l (20) | 14.33+-0.58  16.67+-0.58  18.67+-0.58
snakel8 (20) 4.33+-0.58 6.33+-0.58 7.00+-1.00
sokoban11 (20) 8.00+-0.00 12.004+-1.00  15.67+-1.53
spiderl8 (20) 2.33+-1.53 6.33+-0.58 10.33+4-0.58
storage06 (20) | 20.004-0.00  20.004+-0.00  20.00+-0.00
termes18 (20) 5.33+-0.58 14.67+-1.15  18.00+-1.00
tetris14 (20) 3.00+-0.00 10.004-1.00  14.00+-0.00
thoughtful14 (20) | 17.33+-1.53  16.33+-0.58  15.67+-0.58
tidybot11 (20) | 18.004+-0.00  18.00+-0.00  19.00+-0.00
tpp06 (20) | 13.004+-0.00  15.00+-0.00  17.67+-1.53
trucks06 (20) | 16.334+-0.58  17.67+-0.58  18.67+-1.15
visitallll (20) 0.33+-0.58 3.33+-0.58 4.004--0.00
visitall14 (20) 0.00+-0.00 0.00+-0.00 0.00+-0.00
woodworking11 (20) 9.00+-1.00 17.334+-0.58  17.33+4-0.58
zenotravel(02 (20) | 19.004+-0.00  20.00+-0.00  20.00+-0.00
SUM (900) | 461.00+-4.00 542.33+-3.06 599.33+-2.52

Table 5.2: Results of random RRT without additional mutex groups.
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5.2. Tables

Domain 1000 10000 100000
agricolal8 (20) 6.00+-1.00 6.33+-0.58 7.00+-0.00
barmanll (20) | 0.004-0.00 0.00+-0.00 2.00+-1.73
barmanl14 (20) 0.00+-0.00 0.00+-0.00 0.33+-0.58
blocks00 (20) | 20.004+-0.00  20.00+-0.00  20.00+-0.00
calderal8 (20) | 12.33+-0.58  14.00+-0.00  15.00+-0.00
cavediving14 (20) 0.33+4-0.58 7.004+-0.00 7.00+-0.00
childsnack14 (20) | 0.004-0.00 0.00+-0.00 0.00+-0.00
data-network18 (20) 1.67+-0.58 3.33+-0.58 5.00+-1.00
depot02 (20) | 12.67+-0.58  14.33+-0.58  16.33+-0.58
driverlog02 (20) | 15.674+-0.58  19.004+-1.00  19.33+-0.58
elevators1l1 (20) 0.004--0.00 0.004--0.00 0.00+-0.00
floortilell (20) 6.00+-0.00 6.67+-0.58 6.67+-0.58
floortile14 (20) | 2.004-0.00 2.334+-0.58 2.00+-0.00
freecell00 (20) | 19.67+-0.58  20.00+-0.00  20.00+-0.00
ged14 (20) 0.004--0.00 0.004--0.00 0.00+-0.00
gripper98 (20) | 20.004-0.00  20.00+-0.00  20.00+-0.00
hiking14 (20) | 20.004-0.00  20.00+-0.00  20.00+-0.00
logistics00 (20) | 20.00+-0.00  20.00+-0.00  20.00+-0.00
logistics98 (20) 9.33+-0.58 14.67+-1.53  20.004-0.00
maintenancel4 (20) | 11.004+-1.00  14.33+-0.58  13.67+-1.53
mprime98 (20) | 18.67+-0.58  18.67+-0.58  17.67+-1.15
mystery98 (20) | 13.004-0.00  13.00+-0.00  13.00+-0.00
nomysteryl1l (20) | 6.004+-1.00 6.334+-0.58 8.00+-0.00
openstacks06 (20) | 20.004+-0.00  20.00+-0.00  19.67+-0.58
parkingl1 (20) | 15.334+-0.58  20.00+-0.00  20.00+-0.00
parkingl14 (20) 4.334-0.58 15.67+-1.53  17.33+-1.15
pegsolll (20) | 19.004+-0.00  19.00+-1.00  19.67+-0.58
pipesworld-notankage04  (20) | 20.004+-0.00  20.004+-0.00  20.00+-0.00
rovers06 (20) | 19.00+-0.00  20.00+-0.00  20.00+-0.00
satellite02 (20) | 17.33+-1.15  19.33+-0.58  18.67+-1.15
scanalyzerll (20) | 17.004+-0.00  18.67+-1.15  20.00+-0.00
snakel8 (20) 5.33+-0.58 6.334--0.58 6.674+-1.15
sokoban11 (20) 7.334+-1.15 13.33+-0.58  16.67+-0.58
spider18 (20) | 2.004-0.00 8.00+-1.00  10.33+-0.58
storage06 (20) | 20.004+-0.00  20.00+-0.00  20.00+-0.00
termes18 (20) 6.00+4-1.73 15.004+-0.00  17.334-0.58
tetris14 (20) 3.00+-1.00 10.33+-4.16  13.67+-2.08
thoughtful14 (20) | 16.33+-0.58  17.67+-0.58  16.33+-0.58
tidybot11 (20) | 17.67+-0.58  18.33+-0.58  19.00+-1.00
tpp06 (20) | 14.33+-0.58  16.00+-0.00  18.33+-1.15
trucks06 (20) | 17.00+-1.73  19.004+-0.00  19.33+-0.58
visitallll (20) 1.004--1.00 2.334-0.58 4.334-0.58
visitall14 (20) 0.00+-0.00 0.00+-0.00 0.00+-0.00
woodworking11 (20) | 10.00+-1.73  18.33+-0.58  18.67+-0.58
zenotravel(02 (20) | 19.674+-0.58  20.00+-0.00  20.00+-0.00
SUM (900) | 486.00+-5.29 577.334+-5.03 609.00+-6.24

Table 5.3: Results of RRT with lifted mutex groups.
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5. Experiments

Domain 1000 10000 100000
agricolal8 (20) 5.67+-0.58 6.33+-0.58 7.00+-0.00
barmanll (20) 0.00+-0.00 0.33+-0.58 3.33+-0.58
barmanl14 (20) 0.00+-0.00 0.00+-0.00 0.00+-0.00
blocks00 (20) | 20.004+-0.00  20.00+-0.00  20.00+-0.00
calderal8 (20) | 12.67+-0.58 13.33+-1.15  14.00+-1.73
cavediving14 (20) 0.674+-1.15 6.67+-0.58 7.00+-0.00
childsnack14 (20) 0.00+-0.00 0.00+-0.00 0.00+-0.00
data-network18 (20) 1.67+-0.58 3.00+-1.00 4.33+-0.58
depot02 (20) | 13.33+-1.15  14.33+-1.15  16.00+-0.00
driverlog02 (20) | 15.67+-0.58  18.33+-0.58  19.00+-1.00
elevatorsll (20) 0.00+-0.00 0.00+4-0.00 0.00+-0.00
floortilel1 (20) 6.00+-0.00 6.00+-0.00 7.00+-1.00
floortile14 (20) 2.00+4--0.00 2.00+-0.00 2.33+-0.58
freecell00 (20) | 19.67+-0.58  20.00+-0.00  20.00+-0.00
ged14 (20) 0.00+-0.00 0.00+-0.00 0.00+-0.00
gripper98 (20) | 20.004+-0.00  20.00+-0.00  20.00+-0.00
hiking14 (20) | 20.00+-0.00  20.004+-0.00  20.00+-0.00
logistics00 (20) | 20.00+-0.00  20.004+-0.00  20.00+-0.00
logistics98 (20) 9.004-0.00  15.33+-0.58  18.67+-0.58
maintenancel4 (20) | 10.33+-0.58  15.00+-0.00  13.00+-1.00
mprime98 (20) | 19.67+-0.58  19.33+-0.58  18.67+-0.58
mystery98 (20) | 13.00+-0.00  13.004+-0.00  13.00+-0.00
nomysteryll (20) 6.00+-0.00 8.00+-0.00 7.67+-1.15
openstacks06 (20) | 20.004+-0.00  20.00+-0.00  20.00+-0.00
parkingl1 (20) | 13.33+-2.52  20.00+-0.00  20.00+-0.00
parking14 (20) 3.00+-1.00 17.00+-1.00  18.33+-0.58
pegsolll (20) | 19.33+-0.58  19.33+-0.58  19.00+-1.00
pipesworld-notankage04 ~ (20) | 20.00+-0.00  20.004+-0.00  20.00-+-0.00
rovers06 (20) | 18.00+-0.00  20.004+-0.00  20.00+-0.00
satellite02 (20) | 17.33+-1.53  20.00+-0.00  19.33+-0.58
scanalyzerll (20) | 17.33+-0.58  19.33+-0.58  19.67+-0.58
snakel8 (20) | 4.33+-1.15 6.67+-1.15 7.67+-1.15
sokobanl11 (20) 8.00+-1.00  13.00+-1.73  15.00+-1.00
spider18 (20) 3.67+-0.58 8.33+-0.58 10.00+-1.00
storage06 (20) | 20.004+-0.00  20.00+-0.00  20.00+-0.00
termes18 (20) 6.674+-1.53  15.00+-0.00  17.67+-0.58
tetris14 (20) | 4.33+-1.15 10.00+-1.73  14.67+-0.58
thoughtfull4 (20) | 16.67+-0.58  16.67+-1.15  15.67+-0.58
tidybot11 (20) | 17.67+-0.58  18.004+-0.00  19.33+-0.58
tpp06 (20) | 13.33+-0.58  15.67+-0.58  18.33+-0.58
trucks06 (20) | 16.00+-1.00  18.00+-0.00  19.00+-0.00
visitall1l (20) 0.00+-0.00 2.674-0.58 4.33+-1.15
visitalll4 (20) 0.00+-0.00 0.00+-0.00 0.00+-0.00
woodworking11 (20) | 12.00+-1.00  18.00+-1.00  17.33+-0.58
zenotravel02 (20) | 18.67+-1.15  20.00+-0.00  20.00+-0.00
SUM (900) | 485.00+-4.36 578.67+-7.09 606.33+-5.13
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5.2. Tables

Domain 1000 10000 100000
agricolal8 (20) | 6.334+-0.58 7.00+-0.00 6.67+-0.58
barmanll (20) | 0.004-0.00 0.67+-0.58 2.00+-1.00
barmanl4 (20) | 0.00+-0.00 0.00+-0.00 0.33+-0.58
blocks00 (20) | 20.00+-0.00  20.004+-0.00  20.00+-0.00
calderal8 (20) | 10.67+-1.15  14.00+-0.00  15.00+-0.00
cavediving14 (20) 7.004-0.00 7.00+-0.00 7.00+-0.00
childsnack14 (20) | 0.004-0.00 0.00+-0.00 0.00+-0.00
data-network18 (20) 1.67+-0.58 3.33+-0.58 4.67+-1.53
depot02 (20) | 11.67+-0.58  13.67+-1.15  15.67+-0.58
driverlog02 (20) | 16.00+-0.00  19.00+-1.00  18.67+-0.58
elevatorsll (20) | 0.004-0.00 0.00+4--0.00 0.00+-0.00
floortilel1 (20) | 6.674+-0.58 6.33+-0.58 7.00+-0.00
floortile14 (20) 2.00+-0.00 2.00+-0.00 2.33+-0.58
freecell00 (20) | 20.00+-0.00  20.004+-0.00  20.00+-0.00
ged14 (20) | 0.00+-0.00 0.004--0.00 0.00+-0.00
gripper98 (20) | 20.00+-0.00  20.00+-0.00  20.00+-0.00
hiking14 (20) | 20.00+-0.00  20.00+-0.00  20.00+-0.00
logistics00 (20) | 20.00+-0.00  20.00+-0.00  20.00+-0.00
logistics98 (20) | 9.67+-0.58  15.33+-1.15  19.33+-0.58
maintenancel4 (20) | 12.004+-1.00 14.67+-0.58  14.33+-0.58
mprime98 (20) | 19.33+-0.58  19.67+-0.58  19.00+-1.00
mystery98 (20) | 13.00+-0.00  13.00+-0.00  13.00+-0.00
nomysteryll (20) | 6.004+-1.00 7.33+-0.58 8.67+-0.58
openstacks06 (20) | 19.674+-0.58  20.00+-0.00  20.00+-0.00
parkingl1 (20) | 15.33+-3.79  20.00+-0.00  19.67+-0.58
parkingl4 (20) 2.00+-1.00  15.33+-1.15  18.33+-1.15
pegsolll (20) | 19.00+-0.00  19.33+-0.58  20.00+-0.00
pipesworld-notankage04  (20) | 20.004+-0.00  20.004+-0.00  20.00+-0.00
rovers06 (20) | 19.00+-0.00  20.00+-0.00  20.00+-0.00
satellite02 (20) | 17.00+-1.00  19.67+-0.58  18.33+-0.58
scanalyzerll (20) | 18.67+-0.58  18.67+-1.15  19.67+-0.58
snakel8 (20) | 4.674+-0.58 6.00+-1.00 6.33+-0.58
sokoban11 (20) | 8.00+-0.00  11.67+-0.58  15.67+-0.58
spider18 (20) | 3.00+-1.00 8.67+-0.58  10.33+-1.15
storage06 (20) | 20.00+-0.00  20.004+-0.00  20.00+-0.00
termes18 (20) 5.67+-0.58  15.00+-0.00  17.334-0.58
tetris14 (20) 2.33+-1.15  10.00+-2.65  14.334-0.58
thoughtful14 (20) | 15.00+-1.00  16.33+-0.58  15.67+-0.58
tidybot11 (20) | 18.00+-0.00  18.67+-0.58  19.67+-0.58
tpp06 (20) | 12.67+-0.58  15.67+-1.15  17.67+-0.58
trucks06 (20) | 15.67+-1.53  18.334+-1.53  19.00+-1.00
visitallll (20) 1.334-0.58 1.67+-0.58 4.33+-0.58
visitalll4 (20) | 0.004-0.00 0.00+-0.00 0.00+-0.00
woodworking11 (20) | 10.67+-1.563  17.00+-1.00  17.67+-0.58
zenotravel(02 (20) | 19.33+-0.58  20.004-0.00  20.00+-0.00
SUM (900) | 489.00+-6.08 575.00+-4.00 607.67+-3.06

Table 5.5: Results of RRT with hy forward backward mutexes.
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5. Experiments

Domain 1000 10000 100000
agricolal8 (20) 6.334-0.58 7.00+-0.00 8.00+-0.00
barmanl1 (20) 0.00+4-0.00 0.00+-0.00 1.33+-0.58
barmanl4 (20) 0.00+-0.00 0.00+-0.00 0.33+-0.58
blocks00 (20) | 20.004+-0.00  20.00+-0.00  20.00+-0.00
calderal8 (20) 8.334-0.58 10.00+-0.00  9.67+-0.58
cavediving14 (20) 0.334-0.58 6.67+-0.58 7.00+-0.00
childsnack14 (20) 0.00+-0.00 0.00+-0.00 0.00+-0.00
data-network18 (20) 1.33+-0.58 3.674+-1.53 4.33+-1.15
depot02 (20) | 13.33+-0.58  14.00+-1.00  15.67+-0.58
driverlog02 (20) | 15.33+-0.58  17.67+-1.15  18.67+-0.58
elevators11 (20) 0.00+-0.00 0.00+-0.00 0.00+-0.00
floortilell (20) 6.334-0.58 6.33+-0.58 7.33+-0.58
floortile14 (20) 2.00+4--0.00 2.00+-0.00 2.33+-0.58
freecell00 (20) | 20.004+-0.00  20.00+-0.00  20.00+-0.00
ged14 (20) 0.00+-0.00 0.00+-0.00 0.00+-0.00
gripper98 (20) | 20.004+-0.00  20.00+-0.00  20.00+-0.00
hiking14 (20) | 20.00+-0.00  20.004+-0.00  20.00+-0.00
logistics00 (20) | 20.00+-0.00  20.004+-0.00  20.00+-0.00
logistics98 (20) 9.00+-0.00 13.33+-0.58  15.00+-0.00
maintenancel4 (20) | 10.674+-1.15  15.004+-0.00  14.33+-1.15
mprime98 (20) | 15.004+-1.00  15.00+-0.00  14.67+-0.58
mystery98 (20) 9.334-1.15 10.00+-0.00  10.00+-0.00
nomystery11 (20) | 6.33+-1.15 7.334-0.58 7.67+-1.53
openstacks06 (20) | 20.004+-0.00  20.00+-0.00  19.67+-0.58
parking11 (20) 2.00+4-0.00 2.00+-0.00 2.00+-0.00
parking14 (20) 0.00+-0.00 0.00+-0.00 0.00+-0.00
pegsolll (20) | 19.33+-0.58  19.67+-0.58  19.67+-0.58
pipesworld-notankage04 ~ (20) | 20.00+-0.00  20.004+-0.00  20.00-+-0.00
rovers06 (20) | 18.33+-0.58  20.004+-0.00  20.00+-0.00
satellite02 (20) | 16.33+-0.58  20.00+-0.00  19.33+-1.15
scanalyzerll (20) | 18.00+-1.00  17.00+-0.00  19.00+-1.00
snakel8 (20) 4.004-1.00 6.33+-0.58 6.00+-0.00
sokobanl1 (20) 8.674-0.58 12.67+-1.53  15.33+-1.15
spiderl8 (20) 0.00+-0.00 0.00+-0.00 0.00+-0.00
storage06 (20) | 20.004+-0.00  20.00+-0.00  20.00+-0.00
termes18 (20) 7.00+-1.73 15.00+-0.00  17.33+-0.58
tetris14 (20) 3.334-0.58 9.33+-1.53 15.00+-1.00
thoughtful14 (20) | 15.00+-1.00  14.00+-2.65  12.33+-4.62
tidybot11 (20) | 17.67+-0.58  18.00+-0.00  18.00+-0.00
tpp06 (20) | 13.00+-0.00 15.674+-0.58  18.33+-0.58
trucks06 (20) | 16.67+-0.58  18.67+-0.58  18.00+-1.00
visitall1l (20) 0.334-0.58 2.67+-0.58 4.004--0.00
visitalll4 (20) 0.00+-0.00 0.00+-0.00 0.00+-0.00
woodworking11 (20) 9.00+-2.00 18.00+-0.00  18.33+-0.58
zenotravel(2 (20) | 18.33+-0.58  19.00+-1.00  18.67+-0.58
SUM (900) | 450.67+-3.51 516.00+-4.36 537.33+-3.06
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5.2. Tables

Domain 1000 10000 100000
agricolal8 (20) | 5.67+-0.58 7.334+-1.15 7.334-1.15
barmanll (20) | 0.004-0.00 0.00+-0.00 2.00+-1.00
barmanl14 (20) 0.00+-0.00 0.00+-0.00 0.33+-0.58
blocks00 (20) | 20.004+-0.00  20.00+-0.00  20.00+-0.00
calderal8 (20) | 12.67+-1.53  13.67+-1.15  13.67+-1.15
cavediving14 (20) 4.334-1.53 7.004+-0.00 7.00+-0.00
childsnack14 (20) | 0.004-0.00 0.00+-0.00 0.00+-0.00
data-network18 (20) 1.334-0.58 2.00+-0.00 5.00+-1.00
depot02 (20) | 13.334+-0.58  15.67+-0.58  17.33+-1.15
driverlog02 (20) | 15.004+-0.00  18.67+-0.58  19.00+-0.00
elevators1l1 (20) 0.004--0.00 0.004--0.00 0.00+-0.00
floortilell (20) 6.00+-0.00 6.00+-0.00 7.33+-0.58
floortile14 (20) | 2.004-0.00 2.334+-0.58 3.33+-0.58
freecell00 (20) | 17.334+-0.58  18.00+-0.00  20.00+-0.00
ged14 (20) 0.004--0.00 0.004--0.00 0.00+-0.00
gripper98 (20) | 20.004-0.00  20.00+-0.00  20.00+-0.00
hiking14 (20) | 20.004-0.00  20.00+-0.00  20.00+-0.00
logistics00 (20) | 20.00+-0.00  20.00+-0.00  20.00+-0.00
logistics98 (20) | 10.33+-0.58  15.33+-1.53  18.67+-0.58
maintenancel4 (20) | 12.004+-1.00  15.00+-0.00  14.00+-1.00
mprime98 (20) | 19.33+-0.58  19.33+-1.15  18.33+-1.53
mystery98 (20) | 13.004-0.00  13.00+-0.00  13.00+-0.00
nomystery11 (20) | 6.33+-1.15 7.674+-1.15 9.67+-0.58
openstacks06 (20) | 20.004+-0.00  19.67+-0.58  20.00+-0.00
parkingl1 (20) | 14.33+-0.58  20.00+-0.00  20.00+-0.00
parkingl14 (20) 3.674-1.53 14.33+-2.89  18.67+-0.58
pegsolll (20) | 18.33+-0.58  19.67+-0.58  19.67+-0.58
pipesworld-notankage04  (20) | 20.004+-0.00  20.004+-0.00  20.00+-0.00
rovers06 (20) | 18.67+-0.58  20.00+-0.00  20.00+-0.00
satellite02 (20) | 17.67+-1.15  20.00+-0.00  19.67+-0.58
scanalyzerll (20) | 20.004+-0.00  20.00+-0.00  20.00+-0.00
snakel8 (20) 2.674+-0.58 3.004--0.00 5.33+-0.58
sokoban11 (20) 9.00+-1.00 13.00+-1.00  16.334-0.58
spider18 (20) | 2.334+-0.58 9.33+-2.52  11.00+-0.00
storage06 (20) | 20.004+-0.00  20.00+-0.00  20.00+-0.00
termes18 (20) 7.674+-1.15 15.334+-0.58  17.674-0.58
tetris14 (20) 7.674-2.08 14.33+-2.08  17.67+-0.58
thoughtful14 (20) | 18.33+-0.58  19.00+-0.00  17.33+-0.58
tidybot11 (20) | 18.00+-0.00  18.67+-0.58  19.00+-0.00
tpp06 (20) | 13.004+-0.00 15.67+-0.58  18.33+-0.58
trucks06 (20) | 16.004+-1.00  18.004+-1.00  18.33+-0.58
visitallll (20) 0.674-0.58 2.674-0.58 4.334-0.58
visitall14 (20) 0.00+-0.00 0.00+-0.00 0.00+-0.00
woodworking11 (20) | 10.00+-1.00  17.33+-0.58  17.67+-1.15
zenotravel(02 (20) | 19.33+-0.58  20.00+-0.00  20.00+-0.00
SUM (900) | 496.00+-3.46 581.00+-5.00 617.00+-1.00

Table 5.7: Results of RRT with fam groups.
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5. Experiments

Domain 1000 10000 100000
agricolal8 (20) 6.00+-1.00 6.33+-0.58 7.00+-0.00
barman11 (20) 0.00+-0.00 0.00+-0.00 0.334-0.58
barman14 (20) 0.00+-0.00 0.00+-0.00 0.33+4-0.58
blocks00 (20) | 20.004-0.00  20.004+-0.00  20.00+-0.00
calderal8 (20) | 12.004-1.73  13.334+-0.58  14.00+-1.73
cavediving14 (20) 2.67+-1.53 7.00+-0.00 7.00+-0.00
childsnack14 (20) 0.00+-0.00 0.00+-0.00 0.334-0.58
data-network18 (20) 1.67+-0.58 3.67+-0.58 5.00+-0.00
depot02 (20) | 13.334+-1.15  17.00+-1.00  17.33+-0.58
driverlog02 (20) | 15.674+-0.58  17.67+-1.15  19.33+-0.58
elevators11 (20) 0.00+-0.00 0.00+-0.00 0.00+4--0.00
floortilel1 (20) 4.67+-1.53 5.33+-0.58 4.334-2.52
floortile14 (20) 2.00+-0.00 2.33+-0.58 1.00+-0.00
freecell00 (20) | 20.004+-0.00  20.00+-0.00  20.00+-0.00
ged14 (20) 0.00+-0.00 0.00+-0.00 0.00+-0.00
gripper98 (20) | 20.004-0.00  20.004+-0.00  20.00+-0.00
hiking14 (20) | 20.004-0.00  20.004+-0.00  20.00+-0.00
logistics00 (20) | 20.004+-0.00  20.00+-0.00  20.00+-0.00
logistics98 (20) | 10.67+-1.15  14.67+-0.58  19.33+-0.58
maintenancel4 (20) | 10.67+-0.58  14.00+-0.00  13.00+-0.00
mprime98 (20) | 20.004-0.00  18.67+-1.15  18.33+-0.58
mystery98 (20) | 13.004-0.00  13.004+-0.00  13.00+-0.00
nomysteryl1l (20) 6.33+-0.58 8.33+-0.58 9.00+-1.00
openstacks06 (20) | 20.004+-0.00  20.00+-0.00  20.00+-0.00
parking11 (20) | 15.004-0.00  20.004+-0.00  20.00+-0.00
parking14 (20) 1.334--0.58 15.674+-1.53  19.004-0.00
pegsolll (20) | 19.674+-0.58  19.004+-0.00  19.00+-1.00
pipesworld-notankage04 ~ (20) | 20.00+-0.00  20.00+-0.00  20.00+-0.00
rovers06 (20) | 18.33+-0.58  20.00+-0.00  20.00+-0.00
satellite02 (20) | 17.004-0.00  19.67+-0.58  18.67+-0.58
scanalyzer11l (20) | 20.004-0.00  20.004+-0.00  20.00+-0.00
snakel8 (20) 4.00+-0.00 5.33+-0.58 6.334--0.58
sokoban11 (20) | 10.33+-0.58  14.00+-1.00  16.00+-0.00
spider18 (20) 6.67+-1.15 10.33+-2.31  11.67+-0.58
storage06 (20) | 20.004+-0.00  20.00+-0.00  20.00+-0.00
termes18 (20) 5.00+-2.00 14.674+-0.58  17.67+4-0.58
tetris14 (20) | 12.334+-2.52  18.33+-0.58  18.67+-0.58
thoughtful14 (20) | 19.67+-0.58  19.00+-0.00  19.00+-0.00
tidybot11 (20) | 18.00+-0.00  18.00+-0.00  17.33+-0.58
tpp06 (20) | 13.004+-0.00 15.33+-0.58  17.67+-1.15
trucks06 (20) | 14.004-1.73  17.67+-0.58  16.67+-0.58
visitallll (20) 1.004-0.00 2.00+-0.00 4.00+-0.00
visitalll4 (20) 0.00+-0.00 0.00+-0.00 0.00+4--0.00
woodworking11 (20) | 12.33+-0.58  20.00+-0.00  19.00+-1.00
zenotravel(02 (20) | 19.67+-0.58  20.00+-0.00  20.00+-0.00
SUM (900) | 506.00+-1.00 590.33+-4.16 609.33+-3.06

Table 5.8: Results of RRT with fam groups without discarding unreachable

sampled states.
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Chapter 6

Conclusions

The goal of the thesis was to propose a way to adapt the RRT algorithm,
which is commonly used in motion planning, for a solver of classical planning
problems. Then implement a planner and evaluate its performance on a
dataset.

We implemented the RRT-based planner in C and observed the influence
of used mutex groups:

® Random. Apart from variables in FDR no additional mutex groups
added.

® Lifted. Mutex groups obtained during preprocessing and translation.
8 hy. Additionally computed hs mutexes.

® hy forward backward. Additionally computed ho mutexes forward and
backward.

® h3. Additionally computed h3 mutexes.

® Fam. Additionally computed fact-alternationg groups.

For each variation of the planner we also studied how changing the limit
of steps the local planner is allowed to take affects the results. We then
compared our planner with a planner using greedy algorithm. Based on the
chosen configuration, our solver can yield better results than just the greedy
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6. Conclusions

algorithm. For a future evaluation another possible variation could show us a
different outcome - modifying the value of probability.
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Appendix A

Content of the Attached Disc

® cpddl-dev - directory containing the planner build on top of cpddl library

# README - file describing the way how to run the planner
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