
Instructions

The student will get to know the Linked Data principles [1][3] and the RDF data model and

serializations [2][4].

The student will study the architecture of the LinkedPipes ETL tool to get to know its API [5].

The student will design, implement, document and evaluate an Android-based mobile application

serving as an alternative client to the current LinkedPipes ETL frontend.

The application will provide pipeline and execution management and notification capabilities for

multiple LinkedPipes ETL instances.

 

[1] Christian Bizer, Anja Jentzsch. State of the LOD Cloud. http://www4.wiwiss.fu-

berlin.de/lodcloud/state/

[2] W3C. RDF Primer. http://www.w3.org/TR/rdf-primer/

[3] Linked Data. http://linkeddata.org/

[4] SPARQL Query Language for RDF. W3C Recommendation 15 January 2008.

http://www.w3.org/TR/rdf-sparql-query/

[5] LinkedPipes ETL, https://etl.linkedpipes.com

Electronically approved by Ing. Michal Valenta, Ph.D. on 12 February 2020 in Prague.

Assignment of bachelor’s thesis

Title: Android-based mobile client for LinkedPipes ETL

Student: David Paleček

Supervisor: RNDr. Jakub Klímek, Ph.D.

Study program: Informatics

Branch / specialization: Web and Software Engineering, specialization Software Engineering

Department: Department of Software Engineering

Validity: until the end of summer semester 2020/2021

Bachelor’s thesis

Android-based mobile client for
LinkedPipes ETL

David Paleček

Department of Software Engineering
Supervisor: RNDr. Jakub Kĺımek, Ph.D.

June 26, 2021

Acknowledgements

I would like to thank my supervisor RNDr. Jakub Kĺımek, Ph.D. for his never
ending patience and willingness to guide me. Also, I would like to thank my
parents for supporting me through my studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In V Praze on June 26, 2021

Czech Technical University in Prague
Faculty of Information Technology
c© 2021 David Paleček. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Paleček, David. Android-based mobile client for LinkedPipes ETL. Bachelor’s
thesis. Czech Technical University in Prague, Faculty of Information Technol-
ogy, 2021.

Abstrakt

LinkedPipes ETL je systém pro práci s linked data, který má pouze webové
rozhrańı. Tato práce se zabývá tvorbou mobilńıho klienta LinkedPipes ETL
pro platformu Android. Obsahuje všechny stádia vývoje této aplikace, což jsou
sepsáńı požadavk̊u pro aplikaci, procházeńı exiistuj́ıćıch řešeńı, navrhováńı
aplikace, implementace, testováńı a tvorba dokumentace.

Kĺıčová slova tvorba klienta, Android, Kotlin, LinkedPipes, ETL

Abstract

LinkedPipes ETL is a system for working with linked data, which has only a
web interface. This work deals with the creation of the LinkedPipes ETL mo-
bile client for the Android platform. It contains all stages of the development
of this application, which are writing down the application requirements, the
browsing of existing solutions, the designing of application, implementation,
testing and the creation of documentation.

Keywords client creation, Android, Kotlin, LinkedPipes, ETL

vii

Contents

Introduction 1

Work goal 3

1 Requirements engineering 7
1.1 Requirements . 7
1.2 Use cases and scenarios . 10

2 Existing solutions 15
2.1 Responsive web app . 15
2.2 Summary . 15

3 UI Design 17
3.1 Design language and UI framework 17
3.2 Main screens . 17
3.3 Main navigation . 18

3.3.1 Navigation drawer . 18
3.3.2 Tabs . 18
3.3.3 Bottom navigation . 18

3.4 Conclusion about the main navigation 18
3.5 Lists . 18
3.6 Edit server instance screen . 19
3.7 Edit pipeline screen . 19
3.8 Edit component screen . 21
3.9 Notifications . 21

4 Architecture Design 23
4.1 Software architecture patterns 23

4.1.1 Basic patterns . 23
4.1.1.1 MVC . 23

ix

4.1.1.2 MVP . 24
4.1.1.3 MVVM . 25

4.1.2 Conclusion about picking the pattern 25
4.2 Main layers and libraries . 25

4.2.1 View . 25
4.2.2 Viewmodel . 27
4.2.3 Repository . 27
4.2.4 DAO and network IO 27
4.2.5 Observable data structure 27

4.3 Conclusion about software architecture 28

5 Implementation 29
5.1 Room . 29
5.2 LiveData . 29
5.3 Retrofit . 30
5.4 Coroutines . 30
5.5 Scheduling of asynchronous tasks 30
5.6 QR code scanner . 30
5.7 Draggable Views . 31
5.8 Undo operations . 31

6 Documentation 33
6.1 UI Documentation . 33
6.2 Developer documentation . 33
6.3 System requirements . 37
6.4 Deployment . 37

7 Tests 39
7.1 Local unit tests . 39
7.2 Instrumented unit tests . 40

Conclusion 41

Bibliography 43

A List of abbreviations used 47

B Contents of the enclosed CD 49

x

List of Figures

1.1 Use cases . 13

3.1 History . 19
3.2 Pipelines . 19
3.3 Settings . 19
3.4 Deleting pipeline . 20
3.5 Undo option . 20
3.6 Edit server instance . 20
3.7 Edit pipeline screen . 20
3.8 Edit component screen 1 . 21
3.9 Edit component screen 2 . 21
3.10 Notifications . 22

4.1 MVC . 24
4.2 MVP . 24
4.3 MVVM . 25
4.4 Architecture . 26

5.1 Delete action . 32
5.2 Finish interrupted delete actions 32
5.3 Undo action . 32

6.1 UI documentation . 34
6.2 KDoc comment . 34
6.3 Example of part of a javadoc page 35
6.4 Part of the handwritten developer documentation 36

7.1 Test Coverage . 39

xi

List of Tables

2.1 Existing solutions . 15

xiii

Introduction

Linked data is data that links to other data using URIs. The URIs identify
not only other data objects, but also relations, types or other concepts. [1]

LinkedPipes ETL is a system that consumes, transforms and produces
linked data. It was created in 2016 by students and researchers from Prague
computer science universities [2]. It is an open source project [3] with MIT
license, so anyone can use it. The system is accessible via web front-end. The
front-end has support for mobile phones, but it has some drawbacks that will
be discussed later, with the main drawback being that it is unable to manage
multiple server instances from one place.

In this thesis a solution to both problems is presented by making an An-
droid application, where all of the user’s LinkedPipes ETL server instances
can be managed at the same time. The Android application will provide a
nice and smooth mobile experience to LinkedPipes ETL users, especially to
those, who are working with multiple server instances.

The rest of this thesis is structured as follows. Requirements for the ap-
plication will be written down in chapter 1. The written requirements will
be compared to existing solutions in chapter 2. The application’s parts that
can be seen and users can interact with will be designed in chapter 3. Parts
that can not be seen, such as the architecture, will be designed in chapter 4.
At the end of the chapter 4, everything needed for the implementation should
be known. In the chapter 5, important libraries and some inconspicuous al-
gorithms will be described. Creation of documentation will be described in
chapter 6. Testing will be described in chapter 7.

1

Work goal

The goal of this thesis is to pitch an Android client for the LinkedPipes ETL
system as an alternative to opening a web page in a mobile browser.

In order to do that, the following steps must be fulfilled.

• A list of requirements for the application will be put together in the
analysis chapter.

• Existence of no current solution will be verified in the existing solutions
chapter.

• Application will be designed, including appearance and code layering,
in the design chapters.

• Result of the implementation chapter will be the application.

• Documentation will be created after the application is created and de-
scribed in the documentation chapter.

• Application tests will be described in the test chapter.

3

Glossary

History History of pipeline executions

List A group of objects

Managing Adding, editing, deleting

Pipeline A set of tasks defined in LinkedPipes ETL server instance

Server instance LinkedPipes ETL server instance

User Common user of an Android smartphone

5

Chapter 1
Requirements engineering

Features expected from the application will be written down in this chapter.
All information needed was gathered in an interview with the thesis supervisor,
an experienced LinkedPipes ETL user.

1.1 Requirements

In this section, granular requirements are gathered and described.

F-1.1: Settings screen

Application must have a separate screen for settings.

F-2.1: View server instance

List of server instances will be visible from the settings screen.

F-2.2: Add server instance

User must be able to add server instances.

F-2.3: Edit server instance

User must be able to edit already added server instances.

F-2.4: Delete server instance

User must be able to delete already added server instances. It will be possible
to undo the action.

7

1. Requirements engineering

F-2.5: Deactivate server instance

User can deactivate server instances in settings instead of deleting it, so it
is possible to activate it again later easily. App will not communicate with
deactivated server instances.

F-2.6: Ping server

User can test if the server address is correct.

F-2.7: Load server instance info from QR code

User can load server instance URLs from QR code.

F-3.1: Notification after pipeline execution finish

Application shall create a notification on pipeline execution finish.

F-3.2: Notifications in settings

It will be possible to toggle notifications in settings.

F-4.1: Pipeline list screen

Application must have a separate screen for working with pipelines. Which
pipelines will be visible there depends on F-4.8.

F-4.2: View pipelines

List of pipelines will be visible from pipeline list screen. Which pipelines will
be visible depends on F-4.8.

F-4.3: Edit pipeline screen

Application must have a screen for editing pipelines.

F-4.4: Create pipelines

User must be able to start an empty edit pipeline screen (F-4.3) from the
pipeline list screen (F-4.1).

F-4.5: Edit existing pipelines

User must be able to edit pipelines by starting the edit pipeline screen (F-4.3)
with the selected pipeline loaded.

8

1.1. Requirements

F-4.6: Delete pipelines

User must be able to delete a pipeline of his choice.

F-4.7: Execute pipeline

User must be able to execute pipelines.

F-4.8: Source for visible pipelines

User must be able to choose, if he wants to see pipelines from all instances, or
just a specific one.

F-5.1: Execution history screen

Application must have a separate screen for execution history. History of
which server instance will be visible depends on F-5.5

F-5.2: View execution history

List of executions will be visible from the execution history screen. History of
which server instance will be visible depends on F-5.5

F-5.3: Delete execution from history

User must be able to delete a specific execution from the execution history. It
will be possible to undo the action.

F-5.4: Re-execute pipelines from history

There must be an option to re-execute pipeline from the execution history
screen. This action will also make a new record in execution history.

F-5.5: Source of visible history

User must be able to choose, if he wants to see the history of all instances, or
just a specific one.

F-6.1: Night mode

User can have an option in settings to use a light or a dark theme, or use the
system default theme (Android 10 and newer).

9

1. Requirements engineering

1.2 Use cases and scenarios

In this section, use cases, representing reasons why users want to use our
application, will be described and complemented by scenarios, describing how
to achieve the goals of those use cases. This section is supplemented by a
diagram concluding use cases. See Figure 1.1

UC-1: Get overview of executions in particular server instance

Enables user to see what pipelines were executed in chronological order from
a specific server instance.

• SC-1.1: Get overview of executions in particular server in-
stance User opens the execution history screen (F-5.1, F-5.2) and selects
what server instance’s executions he wants to see (F-5.5).

UC-2: Execute specific pipeline

Enables user to execute a pipeline of his choice from a specific server instance.

• SC-2.1: Execute specific pipeline User opens pipeline list screen (F-
4.1, F-4.2). He then finds the desired pipeline and executes it (F-4.7).
Optional: After opening the pipeline screen, user can filter pipelines by
the server instance (F-4.8).

UC-3: Manage registered server instances

Enables user to register server instances in the application. Application will
check, if IP is already registered or if name of the new server instance is already
in use, in order to warn user about duplication or name collision that could
cause chaos. It also enables user to change the IP address of already registered
server instances due to type error or network changes. User can also remove
registered server instances.

• SC-3.1: Change IP address or name of registered server in-
stance User opens settings screen (F-1.1), selects the desired server
instance (F-2.1) for editing (F-2.3). He then changes the IP address and
saves the changes.

• SC-3.2: Register server instance User opens settings screen (F-
1.1), tells the application he wants to register a new server instance and
proceeds to enter server instance’s information (F-2.2) and saves it.

• SC-3.3: Delete registered server instance User opens the settings
screen (F-1.1), views registered server instances (F-2.1) and tells the
application what server instance he wants to delete. It will be possible
to undo the action (F-2.4).

10

1.2. Use cases and scenarios

UC-4: Manage pipelines

Enables user to manage pipelines in desired server instances.

• SC-4.1: Create pipeline User opens pipeline list screen (F-4.1). Then
he tells the application he wants to create a new pipeline (F-4.4). He
chooses a server instance to which the pipeline will be saved and the
screen for editing pipeline will be launched (F-4.3) and the user can
design a new pipeline here. When he is finished, he will save the pipeline.

• SC-4.2: Edit pipeline User opens pipeline list screen (F-4.1, F-4.2).
He then finds the desired pipeline and tells the application he wants
to edit it (F-4.5). The screen for editing pipeline will be launched (F-
4.3) with the selected pipeline loaded so the user can make and save
changes here. Optional: After opening the pipeline screen, user can
filter pipelines by the server instance (F-4.8).

• SC-4.3: Delete pipeline User opens pipeline list screen (F-4.1, F-4.2).
He then finds the desired pipeline and tells the application he wants
to delete it (F-4.6). It will be possible to undo the action. Optional:
After opening the pipeline screen, user can filter pipelines by the server
instance (F-4.8).

UC-5: Re-execute pipeline from history

Enables user to quickly execute the pipeline he sees while viewing history.

• SC-5.1: Re-execute pipeline from history User opens the execution
history screen (F-5.1, F-5.2). He finds a pipeline and realizes he wants
to execute it now, so he tells that to the application (F-5.4). Optional:
After opening the execution history screen, user can select what server
instance executions he wants to see (F-5.5).

UC-6: Delete history

Enables user to delete items from history.

• SC-6.1: Delete history User opens the execution history screen (F-
5.1, F-5.2). He finds a record and realizes that he does not want this
record in history anymore, so he tells that to the application (F-5.3).
Optional: After opening the execution history screen, user can select
what server instance executions he wants to see (F-5.5).

11

1. Requirements engineering

UC-7: View execution history

Enables user to view the execution history of all the instances at the same
time.

• SC-7.1: Get overview of executions User opens the execution his-
tory screen (F-5.1, F-5.2).

UC-8: View pipelines

Enables user to view pipelines from all the server instances.

• SC-8.1: Get overview of pipelines User opens pipeline list screen
(F-4.1, F-4.2).

UC-9: Be notified on execution finish

User has the option to be notified about execution completion.

• SC-9.1: Be notified User executes a specific pipeline, just like in SC-
2.1. Application will notify user about the execution completion (F-3.1).
Notifying will happen only if it is allowed in settings (F-3.2).

12

1.2. Use cases and scenarios

Figure 1.1: Diagram consisting of use cases

13

Chapter 2
Existing solutions

In this section, an overview of possible existing solutions can be found. There
will be a table with comparisons of those solutions by the end of this chapter.

2.1 Responsive web app

The web front-end can be used by any device possessing a web browser. Users
are not obligated to download any application, which also means they do
not have to update anything. The responsive web app only works with one
server instance. On an Android device, the web app responds slower to screen
rotation and animations often lag. Users have to be online, even just for
browsing execution history or viewing a pipeline list. The responsive web app
is also browser dependent.

2.2 Summary

In this section, existing solutions are being compared with each other (see
Table 2.1), resulting in a decision if there is a need to create a new application.

Table 2.1: Features of existing solutions

Feature Android App Web App
Can work with multiple server instances + -
Works on any device - +
Does not need to be downloaded - +
Smooth UI + -
Can view stuff while offline + -

The comparison indicates that the web application is missing at least one
critical feature, that is not being able to work with multiple server instances,
thus there is a need for the creation of a new application.

15

Chapter 3
UI Design

The appearance of the UI will be described in this chapter.

3.1 Design language and UI framework

Because the application should look decent, some UI guidelines have to be
chosen and followed. These guidelines cover information about colors, shapes
and individual components, including their layout. A set of these guidelines
is called design language. Following design languages are suitable for the An-
droid platform due to the existence of frameworks for this platform, containing
themes and components of those languages.

Bootstrap [4] is a framework for designing web pages, but there also exists
a third party library [5] for the Android platform. Both Microsoft Fluent
Design System [6] and Material Design [7] have their own official libraries
available from their representative web pages.

The Bootstrap Android library has not been updated since December 2016
and considering that UI design is always changing and evolving, this library is
out of question. Both Microsoft Fluent Design System and Material Design are
being kept up-to-date and are backed by big international companies, which
should ensure their stability. Because our application will be available on the
Android platform, which is Google’s domain and most Android phones come
with several Google applications pre-installed, Android users are already used
to Material Design.

That is why Material Design will be used by our application.

3.2 Main screens

Based on the analysis of the user requirements in chapter 1, three screens
which cover the functionality of displaying execution history, pipeline list and
settings have to be designed.

17

3. UI Design

3.3 Main navigation

On the Android platform, there are multiple navigation designs and they will
be described in this section.

3.3.1 Navigation drawer

The hamburger icon at the top left and sliding menu from left to right is what
the navigation drawer looks like. This navigation is suitable for five or more
top level screens, or some sort of hierarchical menu [8].

3.3.2 Tabs

Slidable tabs on top of the screen. Users can click on tab names or just slide
left or right in order to navigate between the screens.

3.3.3 Bottom navigation

Bottom navigation consists of icons, usually with text, located at the bottom
of the screen.

3.4 Conclusion about the main navigation

The navigation drawer will not be used, because our application does not
require five or more main screens nor a hierarchical menu. Also, with the
increasing sizes of mobile phones and most people being right-handed, it is
hard to reach the hamburger menu with the right thumb. There will be lists
of items displayed on each of the three main screens. Those items will be
swipeable and having swipeable items on top of swipeable navigation would
cause confusion. Material Design states that the recommended number of links
in the bottom navigation is three to five [9]. The bottom navigation satisfies
our needs and will be used for the main navigation. The three main screens,
containing the bottom navigation, can be seen in Figure 3.1, Figure 3.2 and
Figure 3.3.

3.5 Lists

Each of the three main screens will display some sort of list. For the execution
screen it is a list of executions, for the pipeline screen it is a list of pipelines
and for the settings screen it is a list of server instances.

All of those lists will have one thing in common and that being the swipe
gesture. When users swipe an item to the left or to the right, the item will be
deleted. This can be seen in Figure 3.4. Users will have the ability to undo

18

3.6. Edit server instance screen

Figure 3.1: History
screen design

Figure 3.2: Pipelines
screen design

Figure 3.3: Settings
screen design

this operation for a short period of time. The undo option can be seen in
Figure 3.5.

Tapping on an item from the pipeline screen will open the edit pipeline
screen. Long click on item from execution screen or from pipeline screen will
launch the pipeline.

3.6 Edit server instance screen

While registering a new server instance or editing an already registered one,
the application needs the address for communication and some name for la-
beling and better organising. Users will be able to add a description of the
instance, so that there is no pressure to store every information about the
instance in the server name. There could also be an option to ping the server
(F-2.6, section 1.1) to verify the address and a way to cancel the registra-
tion/edit. Because of this, another screen, just for registering/editing server
instances, will be added and can be seen in Figure 3.6.

3.7 Edit pipeline screen

According to the F-4.3 requirement, described in section 1.1, there has to be a
screen for editing pipelines. This screen will be displaying pipeline components
and drawing links between them. The preliminary design of this screen can
be seen in Figure 3.7

19

3. UI Design

Figure 3.4: Deleting
pipeline design

Figure 3.5: Undo option
design

Figure 3.6: Edit server
instance screen design

Figure 3.7: Edit pipeline
screen design

20

3.8. Edit component screen

Figure 3.8: Edit compo-
nent screen 1 design

Figure 3.9: Edit compo-
nent screen 2 design

3.8 Edit component screen

This screen has to be created, because each pipeline’s component has its own
settings. In Figure 3.8 and Figure 3.9 is the preliminary design of this screen.

3.9 Notifications

According to the F-3.1 requirement, described in section 1.1, notifications need
to be implemented. The preview of notifications can be seen in Figure 3.10.

21

3. UI Design

Figure 3.10: Notification design

22

Chapter 4
Architecture Design

The architecture of the application will be described in this chapter.

4.1 Software architecture patterns

Every non trivial software project should follow some architecture design so it
always remains maintainable and expandable as much easily as possible. The
project should be modularized, so that any part could be replaced without
the need of rewriting the entire project. And for this reason, there exist
architecture patterns.

4.1.1 Basic patterns

The three basic software architecture patterns will be described here. The
conclusion on which one to pick for our application will be made afterwards.

All of these patterns have one thing in common, that being structuring
code into three main layers. The names of those layers are present in these
pattern’s names.

4.1.1.1 MVC

Model View Controller. View is responsible for displaying data, controller
is responsible for getting the user input and model for storing and serving
data. The controller takes user input, it updates the model and then tells the
view to update itself. [10]

On the Android platform, the part of application responsible for display-
ing data is also responsible for dealing with user input. The pattern can be
modified the way that the view gets the user input, sends it to the controller,
the controller updates the model and then informs the view to update itself,
based on the data from the model. [10]

The MVC and it’s modified version can be seen in Figure 4.1.

23

4. Architecture Design

Figure 4.1: Model View Controller

Figure 4.2: Model View Presenter

So both view and controller know the model, the view knows the controller
and the controller knows the view. That is high consistency and that is a thing
to be avoided, especially in the Android world, where forgetting to remove a
link can and will cause memory leaks.

And what if the data should be somehow transformed for presentation?
What part should do this presentation transformation, also known as UI logic?
This logic should not be pushed to the view, because it’s purpose is only to
display the given data. The controller and the model also can not possess it,
because the controller does not supply any data to the view and the model is
responsible for data storing and serving and there is no reason why it should
know how to display data.

4.1.1.2 MVP

Following the MVC and the UI logic problem. What if the view does not com-
municate with the model, but only communicates with the controller and the
controller was also responsible for taking data from the model and supplying
them to the view. The UI logic could be put in this new controller. This new
controller will be called presenter, instead of new controller. And that is what
Model View Presenter is (see Figure 4.2). [10]

But that means the presenter still holds a link to the view and some
repetitive code would have to be written because of this. [11]

Also, the presenter should not know what parts of the view should be
updated after the data changes, because displaying data is not his job.

24

4.2. Main layers and libraries

Figure 4.3: Model View ViewModel

4.1.1.3 MVVM

Model View Viewmodel. When following the MVP, the presenter knows
the view and is executing the view’s methods when the view needs to be
updated. The presenter will no longer know it’s view. Instead it will provide
some kind of stream and the view will be able to observe the stream, so it
can display the data whenever the data changes. This new presenter will be
called viewmodel.

The view now knows the viewmodel, can call it’s methods on user input
and observe it’s data streams. The viewmodel knows the model, observes it’s
data streams and omits them to the view. The model does not know the view
or the viewmodel. This architecture is displayed in Figure 4.3.

4.1.2 Conclusion about picking the pattern

MVVM suits applications for the Android platform the best. Google even
made some libraries to support MVVM.

4.2 Main layers and libraries

The three main layers of the MVVM will be described here, including a new
fourth layer separated from the model. Some libraries that will be used inside
of those layers will also be described here. The diagram of the architecture
can be seen in Figure 4.4.

4.2.1 View

As stated before, the view is the layer responsible for displaying data. The
way it is implemented is through a combination of standard Kotlin code and
XML. The XML is mostly used to form the display structure and Kotlin is
mostly used to determine what data the view should display, how to update
itself and what to do with user input.

In order to work this way, XML and Kotlin have to be somehow linked to-
gether. A library called Data Binding will be used for this purpose. Compared
to other solutions, like Kotlin synthetics, Data Binding offers more features
and has a more robust outlook.

25

4. Architecture Design

Figure 4.4: Diagram consisting of MVVM and server instances

26

4.2. Main layers and libraries

4.2.2 Viewmodel

Google has made some architecture components and one of them is exactly for
viewmodel. There is no better way to represent this layer, so this component
will be used in our application.

4.2.3 Repository

Repository will represent the part of the model responsible for caching and
maintaining data stored in the application’s local database through commu-
nication with the following layer.

4.2.4 DAO and network IO

This will be the fourth layer responsible for storing and loading data and
communicating over the internet.

Storing and loading data is a common problem with already existing solu-
tions. These solutions are called persistence libraries. One persistence library
will be chosen for our application, so the data maintenance does not have to
be implemented again. The three popular persistence libraries for the Android
platform are Room [12], Realm [13] and ObjectBox [14]. Out of these three,
only Room offers the usage of custom written SQL commands, thus providing
more flexibility and will be used for our application.

Communicating over the internet is also a common problem, so an ex-
isting library will be chosen. Between commonly used HTTP libraries, not
specialised for images, belong Volley [15] and Retrofit [16]. Volley is more of
a HTTP client and Retrofit makes it very easy to adapt to REST APIs. Our
application will be communicating with the LinkedPipes ETL’s REST API
and Retrofit is a more fitting solution.

4.2.5 Observable data structure

Previously in subsubsection 4.1.1.3, “some kind of stream” was mentioned.
Libraries suitable for this “some kind of stream” are LiveData [17] or Rx-
Java [18]. Compared to RxJava, LiveData misses some features like working
on a background thread and is a bit more complex to use, but LiveData is
lifecycle-aware. Views have something called a lifecycle. Once they are not on
screen, all links to them need to be removed, otherwise memory leaks occur.
LiveData objects respect these lifecycles, so no additional repetitive code has
to be written. Also, LiveData objects are not really streams, because they do
nothing when there is no observer. If content changes multiple times between
the screen refresh rate, the view gets only the latest change. The “some kind
of stream” will be represented by LiveData.

27

4. Architecture Design

4.3 Conclusion about software architecture

Repository will communicate with the DAO and Network layer in order to
download, store and load data. Viewmodel will communicate with the reposi-
tory and offer data ready to display to the view layer. View layer will display
data and react to user input by forwarding it to the viewmodel. Passing data
to the view layer will be handled using LiveData. The summary can be seen
in Figure 4.4

28

Chapter 5
Implementation

In this chapter, the most important libraries used while implementing our
application, will be described. Besides libraries, the undo algorithm will be
also described at the end of this chapter.

It is advantageous to use libraries when programming, because some parts
that are needed to be implemented in the application have already been imple-
mented by someone else and may be available in the form of libraries. Using
these solutions not only saves time, but it also prevents creating bugs while
trying to implement these parts of code.

5.1 Room

Room is a persistence library that was decided to be used in our application
in subsection 4.2.4.

Room makes it easier to work with an application’s internal database.
For each entity stored in the database, an entity class is defined, which is
just a standard Kotlin class with some annotations. The simplest entity class
looks as follows. The whole class is annotated with @Entity and primary
key is annotated with @PrimaryKey. In case there is a need for multiple
primary keys, they can be listed in the @Entity annotation. DAO classes
are annotated with @Dao and are used to store and load objects to and from
the database. Creating DAO classes is done by declaring abstract methods
with annotations, optionally accompanied by SQL syntax. Those methods are
being implemented by Room. Entities, lists of entities or LiveData instances
of either of those can be returned by the DAO’s methods.

5.2 LiveData

LiveData is an observable data structure, that was decided to be used in our
application in subsection 4.2.5

29

5. Implementation

View components can observe this observable structure by registering in-
stances of Observer. When registering an Observer, the view have to pass
an instance of it’s lifecycle, so the LiveData instance can detect when to re-
move this Observer, so no memory leaks are created and so the performance
stays the same. Previously mentioned library Room can also return LiveData
instances, so observers can react to database changes directly, without any
other unnecessary code.

5.3 Retrofit

Retrofit is a HTTP library specialized for implementing REST API clients,
that has been decided to be used in our application in subsection 4.2.4.

An abstract method is declared for each API call, complemented with an
annotation with HTTP request details. Retrofit also uses the OkHttp [19]
library, where the basic authentication can be arranged.

5.4 Coroutines

Coroutines are Kotlin’s way to improve multithreaded programming. Com-
pared to Java, Kotlin introduces a new keyword suspend that can be written
in front of methods. Methods with the suspend keyword can not be called
the normal way, but can be called from other suspend methods or launched
via higher order methods of CoroutineScope. Although suspend is a Kotlin’s
keyword, dependency for a library is needed in order to work with coroutines
and that is why Coroutines are described here, between libraries.

5.5 Scheduling of asynchronous tasks

Service is a part of an application that can run in background and can be
started even when the application is not running. Our application needs ser-
vices for checking execution statuses. Scheduling services across multiple An-
droid versions can be tricky, so using a library for his purpose is a good option.
Popular solutions for scheduling services are Android-Job [20] and WorkMan-
ager [21]. The readme file of Android-Job states that it is deprecated and that
WorkManager should be used instead [20]. Because of that, WorkManager will
be used for scheduling services.

5.6 QR code scanner

There is a need to implement a QR code scanner, because of section 1.1.
ZXing library [22], Mobile Vision [23], or Varvet’s QR code scanner [24] can
be used.

30

5.7. Draggable Views

When using the ZXing library, a third party application needs to be down-
loaded to the phone, which can be unpleasant. Mobile Vision is a new library
from Google that allows scanning QR codes without the need of a third party
application. Varvet’s QR code scanner is a library based on Google’s Mobile
Vision. For the purpose of reading QR codes, the Varvet’s QR code scanner
is easier to implement than the Mobile Vision library.

Varvet’s QR code scanner will be used for scanning QR codes in our ap-
plication.

5.7 Draggable Views

Pipeline’s components should be freely movable across the canvas while editing
the pipeline. That can be achieved by making some regular view (button or
image) movable. This is often achieved by a lot of unnecessary code and that
is why a library will be used for this purpose.

The only library suited for this purpose, that has been found, is Drag-
gableView by hyuwah [25]. It allows programmers to turn any view into a
draggable view, which means it can be moved with a finger.

5.8 Undo operations

In chapter 1 are some undo options in planning. The user should be able
to undo the deletions of pipelines and executions. It can not be done just
by scheduling the sending of the delete request. The application will create
and store a mark for every deleted item alongside with scheduling the delete
request (see Figure 5.1). Because of that, when the application is killed for
any reason before the delete request is sent, the application can check all of
those marks at the application launch and send the delete requests then (see
Figure 5.2). Marks can also be used for filtering pipelines and executions that
will be shown to the user. If the user undo the deletion, the mark is deleted
and the scheduling of the delete request is cancelled (see Figure 5.3).

31

5. Implementation

Figure 5.1: Delete action
Figure 5.2: Finish interrupted
delete actions

Figure 5.3: Undo action

32

Chapter 6
Documentation

This section describes user documentation, developer documentation, system
requirements and deployment.

6.1 UI Documentation

A documentation containing screenshots with descriptions (see Figure 6.1) has
been created and is available at the front page of the application’s github repos-
itory, alongside with a link to video tutorials going through previously writ-
ten use cases. The project can be found at https://github.com/Palda97/
LinkedPipesAndroidClient.

6.2 Developer documentation

In Kotlin, there is a documenting type of comment called KDoc (see Fig-
ure 6.2). With a plugin called Dokka [26], it is possible to construct a website
based on the KDoc comments, documenting the application’s code. An ex-
ample of a part of a class, documented via javadoc can be seen in Figure 6.3.

The second part of developer documentation has been written by hand,
explaining the internal operations from a greater distance, so other developers
can have a more bearable understanding of the application when they follow
up on development.

Section “Technologies” describes technology needed for the application de-
velopment, such as IDE and SDK. Section “Server instances” contains links
to an online demo server and to the LinkedPipes ETL github page. In the
“Basic code overview”, MVVM is mentioned and briefly described alongside
two important source code files. Then there are the headings “model” “view-
model” and “view”, each with its own explanation, especially the “model”,
because it is the most extensive one.

Part of the handwritten developer documentation can be seen in Figure 6.4

33

https://github.com/Palda97/LinkedPipesAndroidClient
https://github.com/Palda97/LinkedPipesAndroidClient

6. Documentation

Figure 6.1: UI documentation

Figure 6.2: KDoc comment

34

6.2. Developer documentation

Figure 6.3: Example of part of a javadoc page

35

6. Documentation

Figure 6.4: Part of the handwritten developer documentation

36

6.3. System requirements

Link to the developer documentation is accessible from the application’s
github page.

6.3 System requirements

The application requires Android 5.0 or greater. It needs at least 40 MB of
space. An internet connection is needed in order to communicate with servers,
but it is not needed for communication with servers on the local network.
Camera is needed for loading server information via QR code.

The system requirements are also available from the front page of the
application’s github page.

6.4 Deployment

Google Play is used for the deployment of this application. It is an Android
application store that is already installed on most Android phones. Using
Google Play is far better than just downloading and installing the app from
some storage. Some of the advantages are simplicity of updating and the
option to leave reviews. The application can be downloaded at https://
play.google.com/store/apps/details?id=cz.palda97.lpclient.

37

https://play.google.com/store/apps/details?id=cz.palda97.lpclient
https://play.google.com/store/apps/details?id=cz.palda97.lpclient

Chapter 7
Tests

This chapter will cover types of tests that were used in this project. It is
a good practise to write special code that can check whether parts of the
application work as intended. This code is simply called tests. This is not
only useful to test the application parts when they are being written, but
these tests could be run in future to ensure that possible code changes did not
break the functionality of previously written parts.

7.1 Local unit tests

These are tests that require only JVM. They do not need any part of the
Android framework, so there is no need to run them on an Android device,
which makes them fast. Parsing objects from JSON and back can and is tested
here.

The model layer is tested here, but since the application’s database is not
accessible here, repository and DAOs are excluded from these tests, alongside
with some generated code, like from the Retrofit library. The coverage, as
displayed in Figure 7.1, is 82 % for classes and 82 % for lines of code. Coverage
of 70 % to 80 % is commonly considered good coverage.

Figure 7.1: Picture with local test coverage

39

7. Tests

7.2 Instrumented unit tests

Instrumented tests require some part of the Android framework, so they run
in background on an Android device. Previously mentioned library Room (in
subsection 4.2.4) requires a part of Android framework, so it can be used here.
Repositories are tested here too.

Unfortunately, the coverage could not be put into operation here. After
researching how coverage can be done on instrumented tests, most of the
tutorials are bound to various forks of the JaCoCo library [27], which caused
some errors during commissioning attempts.

40

Conclusion

The goals were a list of requirements, a look at existing solutions, design of
the application, the application itself, documentation and testing.

• Use cases, scenarios and requirements were put together in the analysis
chapter.

• The existence of no current solution for our requirements was verified in
the existing solutions chapter.

• The UI was designed in the UI design chapter and the software archi-
tecture was designed in the architecture design chapter.

• The application was created during the implementation chapter.

• The documentations were created and described in the documentation
chapter.

• The application tests were described in the test chapter.

In the future, the application may be improved with a better UI. Some
components are currently not supported and in the future, it could be solved
by a cooperation of the application developer(s) and the server developers.

41

Bibliography

[1] Berners-Lee, T. Linked Data - Design Issues. [online], [cit. 2020-12-06].
Available from: https://www.w3.org/DesignIssues/LinkedData.html

[2] Kĺımek, J.; Skoda, P. LinkedPipes ETL in use: practical publica-
tion and consumption of linked data. In Proceedings of the 19th In-
ternational Conference on Information Integration and Web-based Ap-
plications & Services, iiWAS 2017, Salzburg, Austria, December 4-
6, 2017, edited by M. Indrawan-Santiago; M. Steinbauer; I. L. Sal-
vadori; I. Khalil; G. Anderst-Kotsis, ACM, 2017, pp. 441–445, doi:
10.1145/3151759.3151809. Available from: https://doi.org/10.1145/
3151759.3151809

[3] Škoda, P.; Kĺımek, J.; et al. LinkedPipes ETL REST API. In: Github
[online], GitHub Inc., Oct. 2017, [cit. 2020-12-06]. Available from: https:
//github.com/linkedpipes/etl/wiki/LinkedPipes-ETL-REST-API

[4] Twitter, Inc. Bootstrap · The most popular HTML, CSS, and JS li-
brary in the world. [online], [cit. 2020-12-06]. Available from: https:
//getbootstrap.com/

[5] Bearded, H. Android-Bootstrap. In: Github [online], GitHub Inc., Dec.
2016, [cit. 2020-12-06]. Available from: https://github.com/Bearded-
Hen/Android-Bootstrap

[6] Microsoft Corporation. Microsoft Design - Android. [online], [cit. 2020-
12-06]. Available from: https://www.microsoft.com/design/fluent/#/
android

[7] Google LLC. Develop - Android - Material Design. [online], [cit. 2020-12-
06]. Available from: https://material.io/develop/android

43

https://www.w3.org/DesignIssues/LinkedData.html
https://doi.org/10.1145/3151759.3151809
https://doi.org/10.1145/3151759.3151809
https://github.com/linkedpipes/etl/wiki/LinkedPipes-ETL-REST-API
https://github.com/linkedpipes/etl/wiki/LinkedPipes-ETL-REST-API
https://getbootstrap.com/
https://getbootstrap.com/
https://github.com/Bearded-Hen/Android-Bootstrap
https://github.com/Bearded-Hen/Android-Bootstrap
https://www.microsoft.com/design/fluent/##/android
https://www.microsoft.com/design/fluent/##/android
https://material.io/develop/android

Bibliography

[8] Google LLC. Navigation drawer - Material Design. [online], [cit. 2021-04-
10]. Available from: https://material.io/components/navigation-
drawer#usage

[9] Google LLC. Bottom navigation - Material Design. [online], [cit. 2021-
04-10]. Available from: https://material.io/components/bottom-
navigation#usage

[10] Muntenescu, F.; Touchlab. A Journey Through MV Wonderland (up-
dated). Youtube [video], Youtube LLC, Nov. 2016, [cit. 2020-12-06]. Avail-
able from: https://youtu.be/QrbhPcbZv0I

[11] Leijdekkers, P.; ANZ Coders. Android MVP vs MVVM and the winner
is. Youtube [video], Youtube LLC, Feb. 2018, [cit. 2020-12-06]. Available
from: https://youtu.be/ugpC98LcNqA

[12] Google LLC. Save data in a local database using Room — An-
droid Developers. [online], [cit. 2020-12-06]. Available from: https:
//developer.android.com/training/data-storage/room

[13] MongoDB, Inc. Home — Realm.io. [online], [cit. 2020-12-06]. Available
from: https://realm.io

[14] ObjectBox Ltd. ObjectBox - Edge Database for Mobile and IoT. [online],
[cit. 2020-12-06]. Available from: https://objectbox.io/

[15] Google LLC. Volley overview — Android Developers. [online], [cit. 2020-
12-06]. Available from: https://developer.android.com/training/
volley

[16] Square, Inc. Retrofit. [online], [cit. 2021-04-10]. Available from: https:
//square.github.io/retrofit

[17] Google LLC. LiveData Overview — Android Developers. [online], [cit.
2021-04-10]. Available from: https://developer.android.com/topic/
libraries/architecture/livedata

[18] RxJava Contributors. RxJava: Reactive Extensions for the JVM. In:
Github [online], GitHub Inc., [cit. 2020-12-06]. Available from: https:
//github.com/ReactiveX/RxJava

[19] Square, Inc. OkHttp. [online], [cit. 2020-12-06]. Available from: https:
//square.github.io/okhttp

[20] Evernote Corporation. Android-Job. In: Github [online], GitHub Inc.,
Oct. 2019, [cit. 2020-12-06]. Available from: https://github.com/
evernote/android-job

44

https://material.io/components/navigation-drawer##usage
https://material.io/components/navigation-drawer##usage
https://material.io/components/bottom-navigation##usage
https://material.io/components/bottom-navigation##usage
https://youtu.be/QrbhPcbZv0I
https://youtu.be/ugpC98LcNqA
https://developer.android.com/training/data-storage/room
https://developer.android.com/training/data-storage/room
https://realm.io
https://objectbox.io/
https://developer.android.com/training/volley
https://developer.android.com/training/volley
https://square.github.io/retrofit
https://square.github.io/retrofit
https://developer.android.com/topic/libraries/architecture/livedata
https://developer.android.com/topic/libraries/architecture/livedata
https://github.com/ReactiveX/RxJava
https://github.com/ReactiveX/RxJava
https://square.github.io/okhttp
https://square.github.io/okhttp
https://github.com/evernote/android-job
https://github.com/evernote/android-job

Bibliography

[21] Google LLC. Schedule tasks with WorkManager — An-
droid Developers. [online], [cit. 2020-12-06]. Available from:
https://developer.android.com/topic/libraries/architecture/
workmanager

[22] ZXing authors. ZXing. In: Github [online], GitHub Inc., Sept. 2020, [cit.
2020-12-06]. Available from: https://github.com/zxing/zxing

[23] Google LLC. Mobile Vision — Google Developers. [online], [cit. 2020-12-
06]. Available from: https://developers.google.com/vision

[24] Varvet. Android QR Code Reader Made Easy — Varvet. [online], [cit.
2021-04-10]. Available from: https://www.varvet.com/blog/android-
qr-code-reader-made-easy

[25] Wahyudin, M. DraggableView. In: Github [online], GitHub Inc., May
2020, [cit. 2021-04-10]. Available from: https://github.com/hyuwah/
DraggableView

[26] JetBrains s.r.o. and Dokka project contributors. Kotlin/dokka: Docu-
mentation Engine for Kotlin. In: Github [online], GitHub Inc., May 2018,
[cit. 2021-04-10]. Available from: https://github.com/Kotlin/dokka

[27] Gradle Inc. The JaCoCo Plugin. [online], [cit. 2021-04-10]. Available from:
https://docs.gradle.org/current/userguide/jacoco_plugin.html

45

https://developer.android.com/topic/libraries/architecture/workmanager
https://developer.android.com/topic/libraries/architecture/workmanager
https://github.com/zxing/zxing
https://developers.google.com/vision
https://www.varvet.com/blog/android-qr-code-reader-made-easy
https://www.varvet.com/blog/android-qr-code-reader-made-easy
https://github.com/hyuwah/DraggableView
https://github.com/hyuwah/DraggableView
https://github.com/Kotlin/dokka
https://docs.gradle.org/current/userguide/jacoco_plugin.html

Appendix A
List of abbreviations used

API Application Programming Interface

DAO Data access object

GUI Graphical user interface

IDE Integrated Development Environment

JSON JavaScript Object Notation

JVM Java virtual machine

MVC Model View Controller

MVP Model View Presenter

MVVM Model View Viewmodel

REST Representational State Transfer

SDK Software development kit

UI User interface

URI Uniform Resource Identifier

XML Extensible markup language

47

Appendix B
Contents of the enclosed CD

devDoc.pdf handwritten developer documentation
doc/...............................developer documentation repository

index.html......................developer documentation (javadoc)
README.md handwritten developer documentation source
videos.html..................................video tutorials online

ETLClient.apk....................................application package
LinkedPipesAndroidClient/.................application’s source codes

README.md............UI documentation and OS requirements source
readme.txt..................brief description of the contents of the CD
thesis/...............................LATEX source codes of this thesis
thesis.pdf.......................................this thesis as a PDF
uiDoc.pdf UI documentation and OS requirements
videos/..video tutorials

49

	Introduction
	Work goal
	Requirements engineering
	Requirements
	Use cases and scenarios

	Existing solutions
	Responsive web app
	Summary

	UI Design
	Design language and UI framework
	Main screens
	Main navigation
	Navigation drawer
	Tabs
	Bottom navigation

	Conclusion about the main navigation
	Lists
	Edit server instance screen
	Edit pipeline screen
	Edit component screen
	Notifications

	Architecture Design
	Software architecture patterns
	Basic patterns
	MVC
	MVP
	MVVM

	Conclusion about picking the pattern

	Main layers and libraries
	View
	Viewmodel
	Repository
	DAO and network IO
	Observable data structure

	Conclusion about software architecture

	Implementation
	Room
	LiveData
	Retrofit
	Coroutines
	Scheduling of asynchronous tasks
	QR code scanner
	Draggable Views
	Undo operations

	Documentation
	UI Documentation
	Developer documentation
	System requirements
	Deployment

	Tests
	Local unit tests
	Instrumented unit tests

	Conclusion
	Bibliography
	List of abbreviations used
	Contents of the enclosed CD

