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Abstrakt / Abstract

Symbolická regrese (SR) je druh re-
gresní analýzy, kde je cílem najít model
ve formě matematického výrazu, který
je co nejjednodušší a, pokud možno,
lidsky čitelný. Metody SR jsou většinou
založeny na genetickém programování
(GP).

V této práci se zabýváme vylepše-
ním algoritmů SR založených na GP.
Provádíme testovací studii, kde porov-
náváme několik nedávných algoritmů
SR na jednotné sadě testovacích pro-
blémů. Výsledky naznačují, že metody
SR nejsou lepší než klasické metody
strojového učení, ale skýtají prostor pro
zlepšení.

Navrhujeme nový typ uzlu pro algo-
ritmy SR založené na GP, který umož-
ňuje zakódovat afinní transformace
prostoru příznaků. Výsledky ukazují, že
tyto uzly zlepšují výkon algoritmu.

Zavádíme problém dynamické SR,
který je úzce spjat s oblastí posilova-
ného učení. Ukazujeme, že navržený
nový typ uzlu je velmi přínosný pro
tento druh problému, jelikož laditelné
transformace umožňují rychle reagovat
na změny.

V neposlední řadě se zaměřujeme na
téma predikce fitness založené na pod-
vzorkování trénovací datové sady. Navr-
hujeme modifikace dříve publikovaných
metod, které značně zjednodušují algo-
ritmus samotný a také zmenšují množ-
ství parametrů, které je třeba nastavit.
Výsledky naznačují, že tato zjednodu-
šení jsou vážnou alternativou k běžně
užívanému koevolučnímu přístupu.

Klíčová slova: genetické progra-
mování; symbolická regrese; lineární
regrese; strojové učení; konstrukce pří-
znaků; fitness prediktory

Překlad titulu: Vylepšení algoritmů
pro symbolickou regresi založených na
genetickém programování

Symbolic regression (SR) is a kind of
regression task where the goal is to find
a model in the form of a mathemati-
cal expression that is as small as pos-
sible and, preferably, human-readable.
SR methods are mostly based on genetic
programming (GP).

In this thesis we focus on improv-
ing the GP-based SR algorithms. We
conduct a benchmarking study that
compares a number of recent SR algo-
rithms on a common set of benchmarks.
The results indicate that the SR meth-
ods are not superior to the classic
machine learining methods, but there is
a room for improvement.

We propose a new type of node for
GP-based SR algorithms which allows
for encoding affine transformations of
feature space. The results show that
these nodes improve the performance of
the algorithm.

We introduce the task of dynamic SR
which is closely connected to reinforce-
ment learning. We show the good ap-
plicability of the proposed new type of
node for this kind of task, as the tun-
able transformations allow for fast tar-
get tracking.

Lastly, we focus on the topic of fit-
ness prediction based on subsampling
the training dataset. We propose mod-
ifications of previous methods which
significantly simplify the algorithms
and decrease the number of parame-
ters that need to be set. The results
indicate, that these simplifications are
a viable alternative to the commonly
used coevolutionary approach.

Keywords: genetic programming;
symbolic regression; linear regression;
machine learning; feature construction;
fitness predictors
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Chapter1
Introduction

Evolutionary computation is a subfield of computer science which focuses on computa-
tional methods that are inspired by the natural phenomenon of evolution. In nature,
living organisms compete for limited resources and try to survive and reproduce. As
they reproduce, changes to their bodies and behaviours are inevitably introduced by
random mutations when their DNA is copied. Some of these changes have no impact at
all, some make the organisms better, and some make the organisms worse in the task of
survival and reproduction. Those organisms that are better in this task are more likely
to get a chance to reproduce while those that are not as good do not get this chance.
Because of this, the successful organisms survive and reproduce while the unsuccessful
ones eventually go extinct. It could be said that evolution optimizes the organisms’
ability to prevail in the environment. An important aspect of evolution is that the opti-
mal “solution” to the task of survival and reproduction is unknown (if one even exists),
the optimization is achieved only by the random mutations and the non-random effect
that those organisms that are not successful do not stay around to reproduce while the
successful ones do. This phenomenon is also called the survival of the fittest.

Evolutionary algorithms (EAs) mimic the principle of natural evolution to perform
optimization of difficult tasks. Instead of a population of organisms there is a population
of candidate solutions (or just individuals) to the task, instead of the DNA there is
an encoding of the individuals, instead of random mutations there are random variation
operators (some of them called mutations), and, finally, instead of the implicit chance of
reproduction there is often an explicit measure of fitness, usually called fitness function,
that describes how good an individual is at solving the task, and an algorithm of
selecting the individuals for reproduction based on this fitness. Similarly to natural
evolution, EAs do not know how to find the optimal (or at least good enough) solution.
But thanks to the selection pressure, the population is gradually driven towards better
and better solutions.

An example of one type of EAs are genetic algorithms (GAs) [1]. GAs have a pop-
ulation of individuals of fixed size, and the individuals are encoded as binary strings
of fixed length. The variation operators are crossover, where a portion of the binary
strings is swapped between two individuals, and mutation, which randomly flips bits
in the binary strings. There are several selection mechanisms, one of the most com-
monly used is a so-called tournament selection [2–3] where two (or more) individuals
are picked from the population completely randomly and the one with the best fitness
is selected.

Genetic programming (GP), first introduced by John Koza in [4], is very similar
to GA – it also has a population, selection and variation operators. However, a ma-
jor difference is that GP evolves tree structures (which represent computer programs)
that are variable in size and are structured. This also comes with different variation
operators: the crossover exchanges subtrees in the two individuals rather than a por-
tion of a bit string, and the mutation replaces a subtree with randomly generated one
instead of flipping a bit in a bit string.

1



1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Symbolic regression (SR) is a machine learning task, where the goal is to find a model
that captures patterns in the given data well, and is in the form of an analytic math-
ematical function, that is as small and as simple as possible, ideally interpretable by
a human. SR is a traditional application domain of GP [4], as the tree encoding used
in GP is very natural to represent mathematical expressions.

Both GP and SR are described in more detail in Chapter 2.

1.1 Problems of symbolic Regression by genetic

programming

While SR by GP has recorded some success, there are problems that limit the applica-
bility in real life. The symptom of these problems is simply that GP is often not able
to produce satisfactory SR models in a reasonable amount of time. We think there are
two main reasons for this: searching for structure and parameters at the same time,
and blindness of the search.

Simultaneous search for structure and parameters. SR algorithms based on GP are
unique compared to conventional ML methods in that they are able to search for the
structure of the model as well as for its parameters, both at the same time. This is
usually viewed as a benefit over the conventional methods, because it frees the user from
deciding on the structure of the model in advance 1, but it is a double-edged sword.

Searching for both the structure and its parameters at the same time can be ineffi-
cient. A candidate model structure can be discarded due to its bad performance but
this performance might well be caused only by not having well-tuned parameters. The
same effect, from the “other” side, is that a not particularly good structure gets chosen
over a better one only because it happened to have better tuned parameters.

Blindness of search. GP, and EAs in general, are well suited for problems where there
is little to no domain knowledge, i.e. so-called black box problems. However, SR is far
from a black box problem.

In SR, the problem is very transparent: the training data (i.e. the features and
the corresponding target values) is available by definition (otherwise there would be
nothing to train on), and the error metric is known and often even designed by the user.
However, standard GP does not utilize this information at all. The only mechanism of
finding better models is to perform random modifications and then select them based
on their errors. In other words, there is only the selection pressure that pushes towards
better model.

1.2 Contributions of this thesis

Comparative study of algorithms. The first contribution of this thesis is a comparative
study of several state-of-the-art algorithms on a common set of benchmarks. Before we
conducted our comparative study [P2, J1], these algorithms have never been tested and
compared. This work shines some light on how they compare to each other and allows
the reader to make an informed decision as to what algorithm to choose, should there
be such need.
1 The user, however, still has to choose the building blocks and usually also the maximum size or

complexity of the model.
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Linear combinations of features. The second and main contribution of the thesis is
a new type of node for GP – the Linear Combination of Features (LCF). This con-
tribution addresses both problems mentioned in previous section. LCF nodes de facto
construct new features as a linear combination of original features, exposing the coef-
ficients of this combination as tunable parameters. These parameters are (or can be)
tuned in an informed way by utilizing the error gradient, making the search not blind
any more.

Dynamic symbolic regression. We introduced a dynamic SR task where the target
values change over time. This task is heavily inspired by the process of learning value
functions in reinforcement learning. This task differs from other dynamic SR tasks
in the literature in that the changes are gradual and there are many more stages. We
show that LCFs are a very good mechanism for this kind of problem.

Simplification of adaptive-size fitness predictors. We show that the usual way of using
coevolution to find fitness predictors is not necessarily needed and can be substituted
with local search or even simple random sampling, simplifying the algorithm, and re-
ducing the number of parameters that need to be set or tuned.

1.3 Thesis structure

After this introductory chapter, we cover the basics of GP and SR (Chapter 2), if the
reader is not familiar with this topic. We then proceed with an overview of the state-
of-the-art algorithms for SR (Chapter 3). Chapter 4 is dedicated to benchmarking
some of these algorithms and selection of the one we then use for the rest of this
work. The Linear Combinations of Features are introduced and examined in Chapter 5.
In Chapter 6 we introduce the task of dynamic symbolic regression, stemming from the
processes that can be found in Reinforcement Learning, and show the applicability
and good performance of LCFs for these problems. Chapter 7 focuses on the topic of
fitness prediction and provides significant simplification of the current algorithms both
in terms of the algorithm complexity itself as well as in number of parameters required
by the algorithms. Chapter 8 concludes the thesis and offers ideas for possible future
work.

3



Chapter2
Preliminaries

In this chapter we familiarize the reader with the basic concepts regarding genetic
programming and symbolic regression. A reader who is already familiar with these
topics can safely skip this chapter.

2.1 Genetic Programming

Genetic programming (GP) [4] is a problem-solving paradigm based on the principles
of natural evolution. GP is used to find solutions in the form of computer programs
(generally speaking), for problems that are too hard to solve by other means, or when
there is only a very limited amount of information known about the problem at hand.
All that is needed to run a GP algorithm is the encoding of the solution that allows
modifying the structure, and the ability to determine the quality of a solution, or even
just to be able to compare and choose the better of two solutions.

The general structure of a GP algorithm is depicted in Algorithm 2.1. We are then
going to cover all the important parts in the following subsections.

1 procedure 𝐺𝑒𝑛𝑒𝑡𝑖𝑐𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝑚𝑖𝑛𝑔
2 𝑃 ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛() // initialization (see Section 2.1.2)
3 until termination condition
4 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑃 ) // evaluation (see Section 2.1.3)
5 𝑃′ ← 𝐵𝑒𝑠𝑡(𝑃 , 𝑛𝑒𝑙𝑖𝑡𝑒𝑠) // elitism (see Section 2.1.4)
6 until |𝑃 ′| < |𝑃 |
7 𝑝1 ← 𝑆𝑒𝑙𝑒𝑐𝑡(𝑃 ) // selection (see Section 2.1.5)
8 𝑝2 ← 𝑆𝑒𝑙𝑒𝑐𝑡(𝑃 ) // selection
9 if 𝑟𝑛𝑑() < 𝑃𝑟𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟

10 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝑝1, 𝑝2) // crossover (see Section 2.1.6)
11 end

12 if 𝑟𝑛𝑑() < 𝑃𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛
13 𝑀𝑢𝑡𝑎𝑡𝑒(𝑝1) // mutation (see Section 2.1.7)
14 end

15 if 𝑟𝑛𝑑() < 𝑃𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛
16 𝑀𝑢𝑡𝑎𝑡𝑒(𝑝2) // mutation
17 end

18 𝑃′ ← 𝑃′ ∪ {𝑝1, 𝑝2}
19 end

20 𝑃 ← 𝑃′
21 end

22 return the best individual in 𝑃
23 end

Algorithm 2.1. Pseudocode of a general GP algorithm.

4
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Note. Algorithm 2.1 shows a so-called generational scheme. That means that in one
generation (the outermost loop), a whole population of offspring is created, which then
replaces the parent population (line 20). In the other commonly used scheme, only
one or two offspring are created in each generation, and they are immediately put back
into the population using some replacement strategy. For the sake of simplicity, we are
going to focus on the generational scheme only.

Note on terminology. In the rest of the thesis, we will refer to this (Koza’s [4]) style
of GP as to “vanilla GP”. Such GP algorithm has individuals composed of one tree,
the crossover operator is the subtree crossover (see below), and the mutation operator
is the subtree mutation (see below).

2.1.1 Tree encoding

By far the most commonly used representation, or encoding, of solutions in GP al-
gorithms are trees, i.e. the programs are encoded as tree structures. An example
of an encoding of a computer program into a tree is in Figure 2.1, and of a mathematical
expression, which can also be considered a kind of a computer program, is in Figure 2.2.

if ObstacleAhead() then
Stop()

else
Move()

end

Figure 2.1. An example of how a simple program (left) can be represented by a tree
structure (right).

(sin 𝑥)2 ⋅ (e𝑥 − cos 𝑥)
sin e. cos

.

.2 -

x x x

Figure2.2. An example of how a simple mathematical expression (left) can be represented
by a tree structure (right).

2.1.2 Initialization

In this step, the initial population of solutions is created. Usually, some kind of ran-
dom initialization is used. One of the most commonly used procedures is Ramped
Half’n’Half [4].

In this initialization procedure, the minimum and maximum depth are chosen before-
hand. Then an equal number of individuals is generated for each depth between these
limits. For each depth, half of the individuals is generated using the grow method,
while the other half is generated using the full method. The two methods are very
similar and differ only in which kind of nodes can be chosen at specified depth. A pseu-
docode of both methods combined (switched by the parameter 𝑓𝑢𝑙𝑙) is depicted in Algo-
rithm 2.2. As can be seen, the only difference is whether a non-terminal (full), or either

5
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1 function 𝐹𝑢𝑙𝑙𝐺𝑟𝑜𝑤(𝑓𝑢𝑙𝑙, 𝑁, 𝑇 , 𝑚𝑎𝑥𝐷𝑒𝑝𝑡ℎ) // 𝑁 – set of non-terminal nodes
2 // 𝑇 – set of terminal nodes
3 if 𝑚𝑎𝑥𝐷𝑒𝑝𝑡ℎ = 1
4 return 𝑐ℎ𝑜𝑜𝑠𝑒𝑅𝑎𝑛𝑑𝑜𝑚(𝑇 )
5 end

6 if 𝑓𝑢𝑙𝑙
7 𝑛𝑜𝑑𝑒 ← 𝑐ℎ𝑜𝑜𝑠𝑒𝑅𝑎𝑛𝑑𝑜𝑚(𝑁)
8 else

9 𝑛𝑜𝑑𝑒 ← 𝑐ℎ𝑜𝑜𝑠𝑒𝑅𝑎𝑛𝑑𝑜𝑚(𝑁 ∪ 𝑇 )
10 end

11 for 𝑖 = 1, · · · , 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑛)
12 // set 𝑖-th child of 𝑛𝑜𝑑𝑒 by recursive call with lower depth
13 𝑐ℎ𝑖𝑙𝑑𝑖(𝑛𝑜𝑑𝑒) ← 𝐹𝑢𝑙𝑙𝐺𝑟𝑜𝑤(𝑓𝑢𝑙𝑙, 𝑁, 𝑇 , 𝑚𝑎𝑥𝐷𝑒𝑝𝑡ℎ − 1)
14 end

15 return 𝑛
16 end

Algorithm 2.2. Pseudocode of the full and grow methods. If the method is called
as 𝐹𝑢𝑙𝑙𝐺𝑟𝑜𝑤(𝑡𝑟𝑢𝑒, · · ·) it behaves as the full method. If it is called as 𝐹𝑢𝑙𝑙𝐺𝑟𝑜𝑤(𝑓𝑎𝑙𝑠𝑒, · · ·)

it behaves as the grow method.

terminal or non-terminal (grow) node is allowed to be chosen at non-final depths. This
means that the full method generates full, balanced trees up to the specified depth,
while the grow method can generate less deep and unbalanced trees.

2.1.3 Evaluation

In this step, all individuals in the population are evaluated on the given problem, and
their performance is recorded as their fitness value.

2.1.4 Elitism

It is common to select a number of best-performing individuals from the population
and directly copy them into the offspring population. If this is done, there is no need
to explicitly save the best-so-far individual, as the best is always present.

2.1.5 Selection

Selection represents the pressure on the individuals to get better. The purpose of the
selection procedure is to select an individual from the parent population in such way
that the better-performing ones are more likely to be chosen than the worse-performing.
There are many selection procedures, but one of the most commonly used ones is the
so-called tournament selection.

In tournament selection, a number1 of individuals is chosen randomly from the parent
population, and the one with the best fitness is selected.

2.1.6 Crossover

In crossover, “genetic” information is exchanged between the two parents. In GP, the
standard type of crossover is so-called subtree crossover. In this type of crossover,
a random point in each of the parent trees is chosen, and then the subtrees under this

1 This number is then a parameter of the algorithm.
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Figure 2.3. Illustration of a crossover event.

point are swapped between the parents, giving rise of two offspring. This is illustrated
in the Figure 2.3.

Note that the crossover does not happen everytime, but is performed only with
a predefined probability (see line 9 in Algorithm 2.1).

2.1.7 Mutation

The goal of mutation is to introduce new material into the population. In GP, the
standard type of mutation is so-called subtree mutation. In this type of mutation,
a random point is chosen in the individual, and then the subtree under this point
is discarded, and a new randomly generated2 subtree is placed there. A mutation event
is illustrated in the Figure 2.4.

sin e. cos

.

.2 -

x x x

e. cos

.

-

x x

+

x

.2

.2

e.

sin

x

Figure 2.4. Illustration of a mutation event.

Similarly to crossover, mutation is also applied only with a certain predefined prob-
ability (see lines 12 and 15 in Algorithm 2.1).

2.2 Symbolic regression

Symbolic regression (SR) is an inductive learning task, where the goal is to find a model
in the form of a (preferably simple) symbolic mathematical expression that fits the
available training data.

2 Typically either the full or grow method is used, with a predefined maximum depth.
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Formally, given a set of data samples 𝗫 = {𝘅𝑖 | 𝑖 = 1, 2, · · · , 𝑛; 𝘅𝑖 ∈ ℝ𝑁}, their
corresponding target values 𝘆 = {𝑦𝑖 | 𝑖 = 1, 2, · · · , 𝑛; 𝑦𝑖 ∈ ℝ}, and an error function 𝑒,
find a function 𝑓 such that 𝑒( ̂𝘆, 𝘆) is minimized, where ̂𝘆 = { ̂𝑦𝑖|𝑖 = 1, 2, · · · , 𝑛; ̂𝑦𝑖 = 𝑓(𝘅𝑖)}
is a set of estimated target values.

However, the user is usually not as much interested in the goodness of fit on the
training data, but rather in how well the model actually captures the patterns present
in the data, that is, how well the model generalizes. In practice, this is measured
using a testing dataset, which is identically independently distributed, i.e. the testing
data come from the same distribution as the training data, but are independent of it.
A model that fits training data very well, but exhibits great error on testing data, is
said to exhibit overfitting, or fails to generalize.

SR models are analytic functions, in principle suitable to interpretation and analysis.
Traditionally, GP has been used as the engine for SR [4], or, in other words, SR has been
one of the first applications of GP. The tree-based encoding used in GP is very suitable
to build SR models as mathematical expressions translate to trees very naturally, as
could be seen in the previous section.

For the task of SR, GP is usually slightly extended compared to the basic struc-
ture, which we outlined in the previous section, in order to allow for better handling
of numerical constants. In principle, a GP algorithm can use just a single non-zero
constant and derive other values by evolving arithmetic operations manipulating this
constant. That is, however, inefficient, and therefore, other techniques are used. One
common technique is called “ephemeral random constant”, or ERC [4]. ERC is a spe-
cial terminal symbol, which, when it is chosen in a tree generation procedure, produces
a randomly generated3 numerical constant, which is put in its place. Another common
technique is the use of numeric mutations [5] – a second mutation operator beside sub-
tree mutation4 – where numeric leaf nodes are selected and their value is perturbed by
a randomly generated3 number.

While the conventional machine learning (ML) techniques usually fit models with
a structure fixed in advance and only tune their parameters, GP searches a much
broader class of possible models limited only by the available function and terminal
symbols and maximal model complexity, i.e., GP searches also for a useful structure of
the model. Such a system may reach impressive results [6–7] when given good data and
enough time, sometimes even recovering the true equations describing the underlying
phenomenon which generated the observed data.

3 From a predefined distribution.
4 Whether they can both be applied to a single individual, or they are mutually exclusive with stochastic

choice between them, is up to the implementation of particular algorithm.
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Chapter3
Overview of state-of-the-art symbolic

regression algorithms

In this short chapter, we provide an overview of the current state of SR algorithms. We
present a number of algorithms which we consider important and/or state of the art.
We also perform a high-level conceptual comparison of the algorithms to highlight the
main features and differences.

3.1 Overview of selected symbolic regression

algorithms

In this section we give a broad overview of important SR algorithms.
As will be seen in the following subsections, there is a notable trend among the

algorithms, which is that the models produced by the algorithms has a form of linear
combination of one or more (non-linear) functions:

𝑓(𝘅) = 𝑎0 +
𝑘

∑
𝑖=1

𝑎𝑘 ⋅ 𝐵𝑖(𝘅) (3.1)

where 𝑎𝑖 are real coefficients, 𝐵𝑖 are (possibly non-linear) basis functions, and 𝑘 is the
number of basis functions in the model. This form of model could be called a Gener-
alized Linear Model (GLM) [8]. However, the GLM framework is more general than
that. For this reason, we shall call such a model, as defined in Equation (3.1), a Linear

Combination of Basis Functions, or LCBF.
In this overview, we focus on algorithms that produce the model in the form

of an LCBF, and on a selection of other algorithms that we consider important.

3.1.1 Scaled Symbolic Regression

Scaled Symbolic Regression (SSR) [9] is a simple extension of vanilla GP. In SSR, indi-
viduals are single trees, as in vanilla GP. However, before the tree is evaluated, the out-
put of the tree is scaled and shifted, i.e. the tree expression becomes 𝑓(𝑥) → 𝑎 + 𝑏𝑓(𝑥),
where 𝑎 and 𝑏 are parameters determined by running simple linear regression on the
output of the original tree with respect to the training data. Therefore, the models
in SSR are in the form of a LCBF (see Equation (3.1)) with 𝑘 = 1.

This extension is motivated by the idea that a tree might have a good structure but it
would be rendered unfit only because it does not have the right linear parameters. The
benefit of this extension is significant – it improves the performance of the algorithm
from the very start and it lifts the burden of finding the simple linear parts from the
evolutionary process.

9
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3.1.2 Multi-Gene Genetic Programming

Multi-Gene Genetic Programming, or MGGP [10–11], could be viewed as further ex-
tension of Scaled Symbolic Regression. In MGGP, an individual is composed of not one
but multiple trees. These trees are linearly combined, forming an LCBF, with the coef-
ficients being computed optimally with respect to the error on the training data using
multiple linear regression. From the individual evaluation perspective, the difference
from Scaled Symbolic Regression is only in the number of expression trees considered
for linear regression.

With the different structure of an individual (a set of trees instead of a single tree),
MGGP introduces a new crossover operator, called high-level crossover, which ex-
changes whole genes between two individuals, rather than subtrees of some of their
genes. The original subtree crossover operator is kept, and the operator used for
crossover is chosen stochastically from these two.

MGGP has been shown to be faster and more accurate than vanilla GP [10] and also
a comparable or better alternative to classical methods like Support Vector Regression
and Artificial Neural Networks [12].

3.1.3 Multiple-Regression Genetic Programming

Multiple-Regression Genetic Programming, or MRGP [13], is another extension of
vanilla GP. The motivation behind MRGP is that in vanilla GP, the selection pressure
is on the whole program (expression) rather than its building blocks, or subprograms
(subexpressions). MRGP approaches this issue by changing how the model output
is computed. In MGRP, the expression is broken down into a set of subexpressions
of the original expression, and then the outputs of these subexpressions are linearly
combined (hence producing a LCBF) using multiple linear regression. In order to deal
with possible incompatibilities with linear regression1, the authors employ Least Angle
Regression.

The authors propose two variants – post-run MRGP and inline MRGP. The post-run
variant is only an extra step run once on the final solution from another SR algorithm.
The authors propose various strategies of which subexpressions to select for the linear
combination: root-only (which collapses into a simple univariate regression, similar
to what Scaled Symbolic Regression does with each individual), root and leaves, all
subexpressions (including the root and leaves), root and variables (i.e. the features,
whether or not they are present in the tree), and subexpressions and variables (if
a variable is also present in the tree, it is not selected twice). The authors have shown
that this extra step improves the performance of the base SR algorithm.

The inline variant uses the breakdown and linear combination on each individual
during a SR algorithm run. In order to control for the size of the model, the authors
employ a model complexity metric and use the NSGA-II algorithm [14] which uses
the prediction error and the complexity metric as criteria to drive the evolution. The
authors try several complexity metrics which are all of similar performance but the
metric “sum-t” (sum of t-statistics, we refer the reader to the original paper [13] for
details) produced the “most reliable” results, meaning being among the best performers
and showing low variance between the individual runs. Overall, the inline variant
produced even smaller errors than the post-run variant.

1 Subexpressions can be linearly dependent, or the tree size (and therefore the number of subexpressions)
is greater than the number of datapoints in the training set.
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3.1.4 Evolutionary Feature Synthesis

In Evolutionary Feature Synthesis, or EFS [15], the population does not consist of
complete models but rather of features, or bases, which, collectively, form a single
model in the form of LCBF.

The initial population is formed by the original features of the dataset. Then, in each
generation, a model is composed of the features in the current population by Pathwise
Regularized Learning and is stored if it is the best. The next step in a generation is
the composition of new features by applying unary and binary functions to the features
already present in the current population. This way, more complex features are created
from simpler ones. Also, the features are selected during this composition step according
to the Pearson correlation coefficient with the feature’s parents.

EFS does not build the symbolic model explicitly – it works with the data of the
features in a vectorial fashion and only stores the structure for logging purposes. This is
possible because the operators in EFS are only constructive, i.e. only whole expressions
are combined into bigger ones, and therefore the subexpressions do not need to be
reevaluated. This results in a very fast algorithm.

The original paper [15] reports EFS being comparable to neural networks and similar
or better than MRGP which itself was reported to outperform vanilla GP, multiple
regression, and SSR.

3.1.5 Fast Function Extraction

Fast Function Extraction, or FFX [16], is a deterministic algorithm for symbolic re-
gression. It first exhaustively generates a massive set of basis functions, which are then
linearly combined using Pathwise Regularized Learning [17–18] to produce sparse mod-
els in the form of LCBF. In this respect, FFX is similar to EFS: in EFS the features may
be more complex (depending on the complexity constraints) and are generated stochas-
tically while in FFX the individual features are relatively simple and are generated
systematically and exhaustively but in both algorithms a set of features collectively
forms a single LCBF model. The algorithm produces a Pareto-front of models with
respect to their accuracy and complexity. It is up to the user to choose the final model.

There are two kinds of bases that are generated: univariate bases and bivariate bases.
Univariate bases are

. a variable raised to a power (chosen from a fixed set of options), and

. (non-linear) functions applied to another univariate base.

Bivariate bases are products of all pairs of univariate bases excluding the pairs where
both the bases are of function-type. The author of FFX argues that products of two
function-type bases are “deemed to be too complex” (in [16], Section 4, paragraph “FFX
Step One”). FFX also includes a trick that allows it to produce rational functions of the
bases using the same learning procedure. When executed, the algorithm runs multiple
times with various features of the algorithm turned on and off, combining the results
of all these runs into a single final Pareto-front.

The original paper [16] reports FFX to be more accurate than many classic methods
including vanilla GP, neural networks and SVM.

3.1.6 Geometric Semantic Genetic Programming

Geometric Semantic Genetic Programming, or GSGP [19], is a novel view of the SR
problem. In GSGP, the focus of the evolution is the semantics (the output values of
the candidate solutions) rather than the syntax (the actual trees and expressions). The
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semantic space is an 𝑛-dimensional Euclidean space where 𝑛 is the size of the training
dataset. Each candidate function maps into this semantic space as a single point with
coordinates equal to the output values the function produces for each individual data-
point. From this point of view, the goal is to find a function that is as close as possible
to the point defined by the known target values.

GSGP uses simple linear operators to search the semantic space. Geometric Seman-
tic Crossover takes two trees from the population and creates an offspring by making
a (weighted) average of the two parents. Geometric Semantic Mutation takes an in-
dividual from the population and creates a linear combination of this individual and
a tree composed of a difference of two randomly generated trees. The rest of the al-
gorithm is very similar to vanilla GP – the individuals are selected, evaluated, and
reproduced/modified with the two operators.

From the point of view of the geometric semantic operators, the fitness landscape is
a cone which is easy to search, even using just the mutation operator. GSGP is able
to converge quite quickly (compared to vanilla GP) and steadily. It is also resistant to
overfitting due to the small steps it makes towards the optimum. The major disadvan-
tage of GSGP is the fact that the size of the solutions grows exponentially (with the
crossover operator) or linearly (with the mutation operator) over time which results in
huge trees [20].

3.1.7 Geometric Semantic Genetic Programmingwith Reduced

trees

Geometric Semantic Genetic Programming with Reduced Trees, or GSGP-Red [20],
is a recent extension to GSGP [19] we just discussed. The algorithm is equivalent to
standard GSGP in that it builds the models using exactly the same operators. GSGP-
Red extends GSGP by adding a simplification step after the application of the geometric
semantic crossover and mutation operators which considerably reduces the size of the
individuals which would otherwise (i.e. in canonical GSGP) grow exponentially.

Although GSGP does not produce LCBFs by design, the models are linear combi-
nations due to the nature of the geometric semantic operators. In pure GSGP, the
final model is a linear combination of two or three trees (depending on whether the
last applied operator was crossover or mutation). However, the individual is composed
of recursive application of the linear combination introduced by the genetic operators.
GSGP-Red’s simplification procedure expands the linear combinations introduced by
the genetic operators which produces a “flat” linear combination. Therefore, the final
models are, in fact, LCBFs.

3.1.8 Eureqa

Eureqa [7, 6] is a commercial SR tool utilizing coevolution of fitness predictors [21], and
Age-Fitness Pareto Optimization [22]. The coevolution of fitness predictors is employed
in order to reduce the amount of time spent in evaluation and to focus on datapoints
that are the most important ones. Age-Fitness Pareto optimization [22] introduces age
of the solutions as a second objective in Pareto front optimization, i.e. the algorithm
aims to optimize the solutions to have the best fitness with minimum age.

The tool is, however, closed-source and therefore cannot be properly analysed.

3.1.9 ParetoGP

ParetoGP [23–24] is a GP-based algorithm that considers the model complexity as
one of the objectives and uses a Pareto-front archive of the best solutions (in a multi-
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objective sense). The algorithm picks parents for crossover from this archive and from
the population.

3.1.10 Prioritized Grammar Enumeration

Prioritized Grammar Enumeration, or PGE [25], is a deterministic SR algorithm that
works with tree-based representation and uses Pareto non-dominance sorting. However,
instead of stochastic operators used in GP-based algorithms, it uses grammar produc-
tion rules to systematically search the space of mathematical formulas. PGE uses
simplification procedures to reduce the size of the trees while keeping the expressions
syntactically equivalent. Tree nodes for addition and multiplication are n-ary rather
than binary and the algorithm imposes an ordering on the children of these operators,
reducing the search space. The algorithm utilizes the Levenberg-Marquardt algorithm
to optimize the numerical coefficients in the formulas. Lastly, the algorithm uses integer
prefix tree to store and determine whether an expression has already been seen or not,
evaluating each form only once, even when derived along different paths through the
grammar production rules.

3.1.11 Kaizen Programming

Kaizen Programming, or KP [26], is an algorithm inspired by the “Kaizen” methodology.
For the symbolic regression task, the algorithm builds models in the form of an LCBF.
The algorithm cycles through four phases called plan, do, check, and act. In the plan
phase, new basis functions are generated from the ones already available (at the be-
ginning, only the original features are available), similarly to crossover and mutation
in GP. In the do phase, outputs of all basis functions are computed. In the check
phase, multiple linear regression is applied to the outputs computed in the previous
phase, producing coefficients for each of the basis functions. These coefficients are then
used to assess the contribution of their corresponding basis functions. In the act phase,
the basis functions are filtered based on their contribution. The algorithm is essentially
greedy and a restarting strategy is employed in order to prevent getting stuck in local
optima.

3.1.12 Feature Engineering Automation Tool

Feature Engineering Automation Tool, or FEAT [27], is a novel algorithm on the bor-
derline between GP and neural networks. Similarly to MGGP, the algorithm evolves
a set of trees instead of a single one, which are then combined using ridge regression,
forming an LCBF. Weights are assigned to inputs of each differentiable operator and
are tuned using backpropagation and gradient descent. One of the main novelties of
this algorithm is using feedback from the ridge regression: trees with smaller coefficients
are considered more suitable to be targeted by variation operators. The algorithm uses
𝜀-Lexicase selection [28] and the survival scheme of NSGA-II [14] using three objec-
tives: model error, complexity, and disentanglement which aims to reduce correlations
between the trees inside an individual. An extension of the algorithm [29] introduced
semantic-aware crossover operators. These operators utilize the information of the
output of individual trees inside each parent in order to minimize the residual of the
offspring. The algorithm was shown to be competitive with conventional ML methods
and producing orders of magnitude simpler models.

3.1.13 AI Feynman

AI Feynman [30] is a novel physics-inspired algorithm designed to recover exact formu-
las of physical phenomena. The fundamental idea of the algorithm is to exploit common
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properties of equations describing physical phenomena to simplify the problem into one
that can be solved easily. The simplification techniques and principles are: dimensional
analysis using known units, translational, rotational and scaling symmetries, and addi-
tive and multiplicative separability. The algorithm applies these techniques and calls
itself recursively.

The algorithm assumes smoothness of the sought function, i.e. that it is differentiable
in its domain, and trains a fully connected 6-layer FFNN to make a good approxima-
tion of the sought function. This neural network is then used to discover symmetries
and separability. The search engine used when the problem can no longer be simpli-
fied is a simple brute force search. The authors demonstrated the performance of the
algorithm by letting it recover 100 equations extracted from Richard Feynman’s The
Feynman Lectures on Physics and 20 more physical equations that the authors deem
famous and complex. The algorithm has been able to recover all of the 100 equations
and 18 of the 20 extra equations.

3.1.14 Deep Symbolic Regression

Deep Symbolic Regression, or DSR [31], is very recent addition to the pool of SR tech-
niques. DSR utilizes a recurrent neural network (RNN) to produce symbolic expression
trees. The network produces a preorder traversal of the tree, one node at a time, by
producing a probability distribution over the available nodes at each step and the node
is then chosen with that distribution. The parent and sibling nodes for the currently
produced node are passed as an input to the network. Reinforcement learning (RL) is
used to train the RNN. Citing from [31], Section 3.2: “In this view, the distribution over
mathematical expressions 𝑝(𝜏|𝜃) is like a policy, sampled tokens are like actions, the par-
ent and sibling inputs are like observations, sequences corresponding to expressions are
like episodes, and the reward is a terminal, undiscounted reward only computed when
an expression completes.” The authors propose and use a risk-seeking policy gradient
to optimize the RNN.

3.2 Conceptual comparison

Table 3.1 provides a high-level conceptual comparison of the algorithms.

3.2.1 Handlingmodel complexity

The discussed algorithms handle the issue of model complexity in different ways. GSGP
does not handle model complexity at all. GSGP-Red also does not explicitly handle the
complexity but effectively reduces it thanks to the simplification procedures employed.
SSR is not fully an algorithm itself but rather an improvement of how to work with
the individual which is applicable to a range of algorithms which have their own way
of handling the complexity. MGGP is similar in this regard to SSR but there is a hard
limit (which is a parameter of the algorithm) on the number of trees in an individ-
ual. EFS uses LASSO regression to regularize and limit the number of bases in the
final model. Other than that, it does not limit the size of the bases as an algorithm
but its implementation by the authors [32] has a hardcoded limit of depth of 5. FFX
enumerates all possible bases allowed by the algorithm, then uses elastic net to select
from them. The generation procedures result in maximum depth of 5. The algorithm
also produces a non-dominated set of models of varying complexity and it is up to the
user to select the final model. AI Feynman relies on the problem simplification/decom-
position to transform it into a problem simple enough that it can be solved by brute
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Algorithm Family Is model LCBF? Individual ref.

SSR GP single-base tree [9]
MRGP GP yes tree [13]
MGGP GP yes set of trees [10]
EFS GP yes tree [15]
FFX enumeration (de-

terministic)
yes no concept of individuals [16]

GSGP GP no tree [19]
GSGP-Red GP yes LCBF [20]
Eureqa GP, coevolution no tree [7]
ParetoGP GP no tree [23–24]
PGE dynamic pro-

gramming (deter-
ministic)

no tree [25]

KP restarted stochas-
tic greedy search

yes tree [26]

FEAT GP, 𝜇 + 𝜆 evolu-
tion strategy

yes LCBF [27, 29]

AI Feynman almost
deterministic1

no no concept of individuals [30]

DSR RNN/reinforce-
ment learning

no no concept of individuals [31]

1 Except for batch shuffling when training the FFNN.

Table 3.1. Conceptual comparison of the algorithms.

force search; otherwise, it fails. There is no explicit complexity handling mechanism al-
though the algorithm is designed to produce simple expressions that can be encountered
in the real world, especially in physics. PGE does not have explicit complexity handling
mechanism either but, similarly to EFS, it starts with minimal expressions and only
expands them, therefore covering smaller solutions first. FEAT uses multi-objective
approach with the complexity as one of the objectives. Their complexity measure is
defined recursively as the complexity of an expression is the sum of complexities of its
subexpressions multiplied by a complexity weight of the operator at the root of the
expression. In DSR, there is a hard limit (which is a parameter) on the minimum and
maximum length of an expression.

3.3 Summary

In this chapter we have provided an overview of a number of SR algorithms that we con-
sider state of the art and/or important for the field. As we have shown, e.g. in Table 3.1,
majority of the algorithms produce models in form of LCBFs.

In the next chapter we focus on a selection of the algorithms that produce LCBF
models. We subject them to testing on a common set of benchmarks and select one of
them which will be used as the base algorithm for the rest of this thesis.
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Chapter4
Benchmarking state-of-the-art symbolic

regression algorithms

In Chapter 1 we discussed two problems that GP-based SR algorithms exhibit: possible
inefficiency of searching for both structure and parameters at the same time, and the
blindness of search while the SR problem is not a black box problem. In previous
chapter we outlined a number of SR algorithms which employ Linear Regression (LR)
in order to (partially) tackle both problems. Models found by these algorithms exhibit
relatively small error right from the start of the algorithm and are claimed to be orders
of magnitude faster than SR algorithms based on vanilla GP.

A systematic comparison of such algorithms on a set of common problems, however,
has been missing. In this chapter we conceptually and experimentally compare some of
these algorithms. The goal is to make a comparison on a common set of benchmarks,
and, based on the results, select one algorithm we are going to use as the basis for
further improvements in the rest of this work.

This chapter is based on and slightly extends the research done in [P2, J1].

4.1 Selected algorithms

From the algorithms presented in Chapter 3, we have selected the following:

1. GPTIPS [33], an implementation of MGGP,
2. FFX [16], an example of a non-evolutionary deterministic method,
3. EFS [15], a recent evolutionary method for fast creation of interpretable SR models,

and
4. GSGP-Red [20], an extended version of GSGP which employs a simplification pro-

cedure that reduces the solution size.

These methods were reported by their authors as successful SR methods.
We have selected these algorithms for the following reasons:

. they all have available open-source implementations that allow us to perform proper
testing (Eureqa and ParetoGP are not openly available),
. we consider them a good representation of what seems to be the general trend of pro-

ducing models in the form of LCBFs (GSGP, Eureqa, ParetoGP, PGE, AI Feynman,
and DSR do not produce LCBFs),
. some of the algorithms we mentioned in previous chapter were not yet published

when this research was performed (namely FEAT, AI Feynman, and DSR), so they
obviously could not be included in the comparison, and
. some of the algorithms are ancestors of the ones included in the comparison (SSR →

MGGP, MRGP → EFS, GSGP → GSGP-Red)
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1 procedure 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑒𝑎𝑟𝑐ℎ
2 𝐼∗ ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙()
3 until termination condition
4 𝐼 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙()
5 if 𝑓(𝐼) > 𝑓(𝐼∗) then // evaluate and compare
6 𝐼∗ ← 𝐼 // store if best so far
7 end

8 end

9 output 𝐼∗

10 end

11 function 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙
12 𝐺 ← ∅
13 𝑛𝑔 ← 𝒰(1, 𝑛𝑚𝑎𝑥) // choose # of genes
14 repeat 𝑛𝑔-times // generate each gene
15 𝑑𝑒𝑝𝑡ℎ ← 𝒰(𝑑𝑒𝑝𝑡ℎ𝑚𝑖𝑛, 𝑑𝑒𝑝𝑡ℎ𝑚𝑎𝑥) // choose depth
16 𝑚𝑒𝑡ℎ𝑜𝑑 ← ℛ({𝑓𝑢𝑙𝑙, 𝑔𝑟𝑜𝑤}) // choose full or grow method
17 𝑔𝑒𝑛𝑒 ← 𝑚𝑒𝑡ℎ𝑜𝑑(𝑑𝑒𝑝𝑡ℎ)
18 𝐺 ← 𝐺 ∪ 𝑔𝑒𝑛𝑒
19 end

20 return 𝐺
21 end

Algorithm4.1. Pseudocode for the RdS algorithm, where 𝑓 is the fitness function (which
includes the linear regression to determine the intercept and genes’ coefficients), 𝒰(𝑎, 𝑏)
represents an integer between and including 𝑎 and 𝑏 chosen uniformly randomly, and ℛ(𝕊)

represents an element from the set 𝕊 chosen uniformly randomly.

In addition to the four selected algorithms, we also include a Random Search (RdS).
It is a trivial algorithm (see Algorithm 4.1) we designed for the purpose of providing
a baseline of a minimum that can be reasonably expected from linear combinations of
multiple (non-linear) expressions. The algorithm is intentionally very simple – it has no
population and only performs a random search, storing the best solution found so far
over the course of a run. The algorithm has a single MGGP-style individual (i.e. in the
same form as GPTIPS has) which is randomly generated in each iteration and stored
if it is better than the best one so far. As in MGGP/GPTIPS, the individual is a set
of one or more trees which are combined with a linear combination with coefficients
determined using classic LR on the outputs of the trees, exactly as MGGP/GPTIPS
does. The individual generation procedure is inspired by the Ramped Half-n-Half pop-
ulation initialization method [4]: first a number of genes is uniformly randomly picked
from the allowed range, then for each gene the maximum depth of that gene is uni-
formly randomly picked from the allowed range, then the full or grow method is picked
randomly, and, finally, the gene in question is generated using the picked method and
up to the picked depth. As a part of the evaluation, the coefficients of the top-level
linear combination are determined in the same way as in GPTIPS.

A high-level comparison of the selected algorithms is provided in Table 4.1.
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algorithm LR technique type of alg. individuals raw alg.
output

GPTIPS pure LR evolutionary complete
models

the last
population
of models

EFS LASSO evolutionary bases of
a bigger
model

single best-
performing
model

FFX elastic net deterministic no concept
of individu-
als

Pareto-front
of models

GSGP-Red none evolutionary complete
models

single best-
performing
model

Random Search pure LR random complete
model

single best-
performing
model

Table 4.1. Overall comparison of the tested algorithms.

4.2 Research questions

Now, when we selected the algorithms of interest, we ask the three research questions.

RQ1: What are the performance differences between the algorithms? We do not really
expect that one of the algorithms would produce better models than the others in all
reasonable circumstances. We are more interested in the types of differences we can
expect from these algorithms when applied to the same regression problems.

RQ2: How do the algorithms compare to reasonable baselines? We propose two types
of baseline:

. a trivial algorithm that uses random search to generate bases for LCBF which are
then fitted using LR, and
. conventional machine learning (ML) techniques.

The random search based algorithm should show what can be expected from LCBFs
at minimum, i.e. the importance of evolution in the algorithms. Comparison with
conventional ML techniques should show how competitive the SR algorithms are.

RQ3: What algorithmshouldwechoose for further experimentation? We want to choose
an algorithm that has good performance, but the algorithm design also plays a major
role as it can significantly restrict (or support) extensibility.

4.3 Benchmarks and testing

For testing, we have selected five artificial and four real-world benchmarks. The artificial
benchmarks cover various types of complexities and features. An important feature of
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all the artificial benchmarks (except for Koza-1) is that they contain internal constants,
which is challenging for all the algorithms. The quality of the results is judged just
by the testing error: we shall thus see whether the limited ability to learn the internal
constants is a show-stopper for these algorithms.

4.3.1 Artificial benchmarks

All the datasets except for UB were picked from the comprehensive summary of bench-
marks in [34]. Table 4.2 presents a summary of the used artificial benchmarks: their
definitions, number of dimensions and their original source. Table 4.3 presents the
training and testing sampling of those datasets. Using the notation from [34]:

. the expression 𝑈[𝑎, 𝑏, 𝑐] means 𝑐 random samples from uniform distribution on the
interval [𝑎, 𝑏] for each variable;
. the expression 𝐸[𝑎, 𝑏, 𝑐] means a grid in the interval [𝑎, 𝑏] with spacing of 𝑐 (including

the boundaries) for each variable.

Name Definition # of features Ref

Koza-1 𝑓1(𝑥) = 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 1 [4]
Korns-11 𝑓2(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = 6.87 + 11 cos(7.23𝑥3

1) 5 [35]
S1 𝑓3(𝑥) = e−𝑥𝑥3 sin(𝑥) cos(𝑥)(sin2(𝑥) cos(𝑥) − 1) 1 [36]
S2 𝑓4(𝑥1, 𝑥2) = (𝑥2 − 5)𝑓3(𝑥1) 2 [36]
UB 𝑓5(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = 10

5+∑5
𝑖=1(𝑥𝑖−3)2 5 [36]

Table 4.2. Definitions of the artificial benchmarks.

Name Training sampling Testing sampling
Koza-1 𝑈[−1, 1, 20] 𝑈[−1, 1, 100]
Korns-11 𝑈[−50, 10, 10000] 𝑈[−50, 10, 10000]
S1 𝐸[−0.5, 10.5, 0.1] 𝐸[−0.5, 10.5, 0.05]
S2 𝑥1 = 𝐸[−0.5, 10.5, 0.1] 𝑥1 = 𝐸[−0.5, 10.5, 0.05]

𝑥2 = 𝐸[−0.5, 10.5, 2] 𝑥2 = 𝐸[−0.5, 10.5, 0.5]
UB 𝑈[−0.25, 6.35, 1024] 𝑈[−0.25, 6.35, 5000]

Table 4.3. Description of the training and testing sampling. Note that each variable in
S2 has its own sampling type.

Koza-1 [4] is a classic, easy-to-solve SR benchmark. It shall test the ability of the
algorithms to fit a very simple function. Although [34] advises not to use these easy
benchmarks, we included it as a sanity check.

Korns-11 [35] is specific in the fact that the output depends on only one of the 5 input
features and also by the presence of internal constants. The function is hard to fit
because of the high frequency components.

Salustowicz 1D (S1) [36] (called Vladislavleva-2 in [34]) is defined by a single, rather
complex term. It does not fit the LCBF structure well.

Salustowicz 2D (S2) [36] (called Vladislavleva-3 in [34]) has similar features as S1, but
in two dimensions.
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Unwrapped Ball 5D (UB) [36] is specific by the presence of a fraction and consists of
5 features which all influence the target value. Again, it does not fit the LCBF struc-
ture well.

A note on training and testing sampling. Originally (i.e. in the referenced articles),
some of the benchmarks had different sampling for training and testing data than we
present here. There are two modifications we have made:

. For Koza-1, originally there is no testing set, i.e. the same points are used both
for training and testing. In order to make the results more descriptive, we decided
to sample an independent testing set using the same procedure but producing more
points (100).
. For S1, originally the training sampling is 𝐸[0.05, 10, 0.1] and testing sampling is

𝐸[−0.5, 10.5, 0.05]. This means that the range of training data is smaller than the one
of testing data. Because we want to focus on interpolation rather than extrapolation,
we used the bigger of the two ranges, i.e. [−0.5, 10.5] both for training and testing.
We kept the original value of the grid spacing: 0.1 for training and 0.05 for testing.

4.3.2 Real-world benchmarks

The summary of the used real-world benchmarks is in Table 4.4. We used random
0.7/0.3 split for training/testing dataset.

Name # of features # of datapoints Ref
ENC 8 768 [37–38]
ENH 8 768 [37–38]
CCS 8 1030 [39, 38]
ASN 5 1503 [38]

Table 4.4. Summary of the real-world benchmarks.

Energy Efficiency (ENC, ENH) [37] are datasets regarding energy efficiency of cooling
(ENC) and heating (ENH) of buildings, acquired from the UCI repository [38]. They
were already used as benchmarks in [15, 20], where the EFS and GSGP-Red methods
respectively were introduced.

Concrete Compressive Strength (CCS) [39] is a dataset representing a highly non-linear
function of concrete age and ingredients, acquired from the UCI repository [38]. This
dataset was already used in [20] where GSGP-Red was introduced.

Airfoil Self-Noise (ASN), acquired from the UCI repository [38], is a dataset regarding
the sound pressure levels of airfoils based on measurements from a wind tunnel. This
dataset was also already used in [20].

4.3.3 Baseline algorithms

In order to provide reasonable baselines for the results of the four SR algorithms (and
RdS), we have also run the same experiments with three classic machine learning algo-
rithms. The implementations of all three ML algorithms were grabbed from the Python
machine learning package scikit-learn [40–41].

Linear Regression (LR) is an ordinary least-squares multiple linear regression, without
any form of regularization. The model is built just from the original input features.
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Random Forest (RF) is an ensemble regression model made of a number of regression
trees, each fitted to a slightly perturbed version of the training data.1 Using the grid
search, we tuned the following hyperparameters of the method:

. number of trees in the forest with possible values 5, 10, 50, 100, 200, and

. number of features to consider when looking for the best split with possible values
𝑁 and

√
𝑁, where 𝑁 is the number of features of the dataset.

The grid search computes crossvalidation score for each grid point with 3-fold cross-
validation and selects the best settings2. For the purposes of computing time, we
consider the grid search to be part of the training. In this view, one training run of RF
has following steps:

1. for each grid point, run a 3-fold crossvalidation using the training data,
2. select the best grid point,
3. train the model parametrized by the best grid point using the whole training data.

Support Vector Regression (SVR)3 with RBF kernel, combined with grid search in the
following hyperparameters:

. 𝐶, the penalty parameter of the error term, with possible values 10−3, 10−2, 10−1,
100, 101, 102, 103, and
. 𝛾, the parameter of the RBF kernel, with possible values 0.01/𝑁, 0.1/𝑁, 1/𝑁, 10/𝑁,

100/𝑁, 1000/𝑁, where 𝑁 is the number of features of the dataset.

The grid search works in the same way as in RF.

4.3.4 Settings and usage of the algorithms

The goal is to perform a comparison of the chosen methods as ready-to-use tools.
Therefore, we didn’t modify the code of the algorithms4, and we left all of the settings
at their default values.

Additionally, because the default function set of GPTIPS is very limited, we added
a second version of GPTIPS, which we refer to as mGPTIPS, with the function set as
close as possible to that of EFS without coding new functions, i.e. using only functions
already available (either in MATLAB or in the GPTIPS package). This is possible
because GPTIPS is easily configurable via a configuration file without the need to
modify the code (in contrast to the other packages). Summary of the function sets of
all compared methods is in Table 4.5.

Timeout. Both EFS and GPTIPS support a timeout after which the computation is
terminated. We set it to 10 minutes for both methods. However, as will be seen
in results in Table 4.11, except for RdS, all runs of all algorithms (including FFX and

1 For details about the implementation and parameters see http://scikit-learn.org/0.17/modules/
generated/sklearn.ensemble.RandomForestRegressor.html.
2 For details about the implementation and parameters see http://scikit-learn.org/0.17/modules/

generated/sklearn.grid_search.GridSearchCV.html.
3 For details about the implementation and parameters see http://scikit-learn.org/0.17/modules/

generated/sklearn.svm.SVR.html.
4 The only exception is EFS: we changed the round variable to false (which was originally hard-coded

to true) according to the issue we opened on the algorithm’s GitHub repository, see https://github.
com/flexgp/efs/issues/1.
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function GPTIPS
mGPTIPS,

RdS EFS FFX GSGP-Red

add ✓ ✓ ✓ ✓𝑎 ✓
add3 ✓
sub ✓ ✓ ✓ ✓𝑎 ✓
mult ✓ ✓ ✓ ✓ ✓
mult3 ✓
div ✓𝑝 ✓𝑝 ✓𝑏

AQ ✓
sqrt ✓𝑝 ✓𝑝 ✓𝑐

square ✓ ✓
cube ✓ ✓
quart ✓
log ✓𝑝 ✓𝑝 ✓
sin ✓ ✓
cos ✓ ✓
abs ✓

max-hinge ✓
min-hinge ✓
𝑎 Only via top-level linear combination.
𝑏 Only via rational functions trick and sign of exponent of feature variable.
𝑐 Only of feature variable.
𝑝 Protected version.

Table 4.5. Function sets of individual algorithms. Functions add3 and mult3 are ternary
addition and ternary multiplication, respectively. AQ is the Analytic Quotient opera-
tor [42] defined as 𝐴𝑄(𝑥1, 𝑥2) = 𝑥1

√1+𝑥2
2

. Functions max-hinge and min-hinge are FFX’s

hinge functions defined as 𝑚𝑎𝑥(0, 𝑥 − 𝑡ℎ𝑟) and 𝑚𝑖𝑛(0, 𝑥 − 𝑡ℎ𝑟) respectively, where 𝑡ℎ𝑟 is a
parameter.

GSGP-Red which have no support for timeout5) finished well within this amount of
time. RdS has run for the whole 10 minutes of time.

Parameter values. We do not apply the grid search to tune the parameters of the SR
methods because of several reasons:

. Some of the algorithms have very limited set of exposed settings and parameters
(especially EFS, which has no exposed settings, see below). Thus, it would not be
fair, if some algorithms went through tuning while the others would not.
. Grid search runs the method multiple times (number of grid points times the number

of crossvalidation folds). The running time is (usually) acceptable in case of ML
methods while it is often prohibitive in case of SR methods.
. Due to the highly stochastic nature of the majority of SR methods, the crossvalidation

results have high variance (especially for a small number of folds usually used in grid
search), i.e., the crossvalidation score is less reliable for scoring the configurations
of SR methods (compared to the ML methods).

5 FFX has a built-in 50s timeout for performing the fit of the elastic net. If the elastic net fails to fit
within this time a constant model is returned for that particular fit. Note, however, that FFX fits the
elastic net multiple times for each of the multiple runs (see Section 3.1.5) and there is no support for
timeout of this combined run and returning the results obtained so far.

22



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3 Benchmarks and testing

All three points, in our view, prohibit an effective use of grid search for the SR methods.
Therefore, we use fixed parameter values, mostly identical to the defaults provided by
the respective packages.

GPTIPS and mGPTIPS use identical default values of parameters, except for the
extended function set for mGPTIPS. The most interesting parameters are

. population size is 100,

. number of generations is 150,

. tournament size is 10,

. fraction of elites is 0.15,

. max. tree depth is 4,

. max. number of genes is 4, and

. the initialization procedure is Ramped Half’n’Half.

EFS, except for the timeout, has no user-definable settings. Its settings are hardcoded
and the most important are

. the number of composed features 𝑞 = 3𝑝, and

. the number new features created each generation 𝜇 = 𝑝 where 𝑝 is the number of
features of the problem.

For details on the parameters, see the original paper [15].
FFX has no user-definable settings. It is worth to note, however, that the possible

exponents for a variable are -1, -0.5, 0.5 and 1; it is thus impossible for the algorithm
to create, for example, a quartic term, because FFX allows at most bivariate bases, i.e.
bases of the form 𝑎 ⋅ 𝑏, where 𝑎 and 𝑏 are either variables raised to one of the exponents
mentioned above, and/or a function of a variable. The greatest possible exponent is
therefore 2, or -2, when a bivariate base has the form 𝑥 ⋅ 𝑥 = 𝑥2, or 𝑥−1 ⋅ 𝑥−1 = 𝑥−2.

GSGP-Red is very configurable via configuration files which allow the user to control
all important aspects of the algorithm. The default values for the most interesting
parameters are

. population size is 1000,

. number of generations is 250,

. tournament size is 10,

. probabilities of crossover and mutation are both 0.5, and

. initialization procedure is Ramped Half’n’Half.

Finally, RdS has only two parameters (except for the function set): maximum number
of genes and maximum depth, which we set to 10 and 18 respectively in order to provide
more “freedom” than the other algorithms have, because RdS is likely to evaluate more
models as the only computational burden is the evaluation, and it is going to run for
the whole 10 minutes.

Model training and selection. From each run of each algorithm, we need to get a single
model as a result of said algorithm. EFS returns just a single model as a result,
that best fits the training data. RdS behaves in the same way, as there is no set of
models in the algorithm to begin with. We decided to use the same strategy also for
FFX, GPTIPS and GSGP-Red. In case of FFX, which produces as its output a set
of nondominated models with respect to performance and the number of bases, we
selected the best model with respect to training MSE, which means the most complex
model was selected. GPTIPS and GSGP-Red also return a population of models, from
which the best one is chosen.
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Choosing the model with minimal training set error might not be considered a good
practice because of possible overfitting to the training set. Yet, we decided to do so,
because of the following reasons:

. In four of the five methods, overfitting is constrained by setting hard limits on the
expressional complexity (GPTIPS, EFS, FFX, RdS) and/or by putting soft empha-
sis on simpler models, like regularized linear regression (EFS, FFX), or parsimony
pressure (GPTIPS)). GSGP(-Red) is reported to be resistant to overfitting because
of the small steps it takes towards the optimum.
. Using the best solution from the population as the result is standard practice in GP,

or EAs in general.

4.3.5 Model complexity constraints

Each of the selected algorithms handles the issue of resulting model complexity in a dif-
ferent way. GPTIPS has (user-defined) limits on the maximum number of nodes and/or
maximum depth, and on the maximum number of bases. By default, there is a depth
limit of 4, and maximum number of bases (not counting the intercept) is also 4. EFS
computes the maximum number of bases from the number of input features; maximum
number of nodes in a base is hard-coded to 5. The FFX procedure results in a maximum
model depth of 5. In GSGP-Red, even though the tree reduction procedure is employed
(which considerably reduces the size of the solutions), in principle, there is still no limit
on the size just as in the original GSGP. In RdS, the individuals are limited in depth
which we set to 18.

4.3.6 Testing environment

As we stated earlier in this chapter, we use existing open-source implementations of
the algorithms except for RdS which we implemented ourselves. Table 4.6 summarizes
where the implementations were retrieved from.

Algorithm Implementation
GPTIPS version 2, [43]
FFX version 1.3.4, [44]
EFS [32]
GSGP-Red [45]
RdS ours

Table 4.6. Sources of implementations of the algorithms.

All computations were performed on the same PC with Intel Core 2 Duo E6550 at
2.33 GHz, running 64-bit Ubuntu 15.04. The environments for the three algorithms
were

. MATLAB version R2014a (8.3.0.532) 64-bit for GPTIPS,

. Java version 1.8.0_60-b27 for EFS and GSGP-Red,

. Python version 2.7.9 (built with GCC 4.9.2) for FFX, and

. Python version 3.4.3 (built with GCC 4.9.2) for RdS and the baseline algorithms.

24



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4 Results and discussion

4.3.7 Testingmethodology

Each artificial dataset with uniform random sampling (i.e. the 𝑈-type sampling) was
independently sampled 100 times. Artificial datasets with deterministic sampling (i.e.
the 𝐸-type sampling) each have only a single instance which is used in all runs. Each
real-world dataset was randomly and independently split 100 times into training and
testing sets using 70 % and 30 % of the datapoints respectively.

Each algorithm was run once on each of the randomly sampled dataset instances
(and 100 times on the deterministically sampled ones) producing a single model in
each run. The accuracy and complexity of the resulting models are then aggregated
and statistically compared. The only exception is the FFX algorithm on S1 and S2
datasets: these datasets are sampled deterministically (so there is only one instance for
both these datasets) and the FFX algorithm is also deterministic, hence a single run is
sufficient for these cases.

Evaluation. The performance metric is the RMSE on testing dataset. The model
complexity metric is the number of nodes in the model. We define the number of nodes
as the sum of the numbers of nodes across all basis functions of the model. We count
only the expression trees themselves, i.e. we do not count the additional coefficients and
operators related to the top-level linear combination produced by the linear regression
approach used in the tested algorithms. These coefficients and operators are not counted
because they are fully dependent on the bases themselves (their number) and counting
them brings no interesting information6. FFX’s hinge functions, having a form of
max(0, 𝑥 − 𝑡ℎ𝑟) and min(0, 𝑥 − 𝑡ℎ𝑟), count as 5 nodes.

Differences between individual methods in terms of the testing RMSE and the
model complexity are statistically evaluated using one-sided Mann-Whitney U-test
(MWUT) [46–47] for each pair of algorithms with the Bonferroni correction with the
significance level 𝛼 = 0.01.

4.4 Results and discussion

In this section we present the results. We discuss the global trends we recognize in the
results as well as the notable patterns specific for each dataset. We also discuss the
time demands of the methods, and the differences among SR and ML models.

4.4.1 Results

The results are presented both in the form of tables and plots. The tables show ag-
gregated results for all algorithms and datasets, as well as the statistical significance.
For an overall view, Table 4.7 shows median RMSE values on testing data for each
algorithm and dataset. A detailed view on the performance, the statistical significance
and the statistical comparison of all the algorithms is provided in the Table 4.8. A view
on the complexity (number of nodes) of the produced models can be seen in Tables 4.9
and 4.10.

The plots show the performance and complexity of the individual algorithm runs,
as well as the aggregated performance of each algorithm on both training and testing
data in the form of box plots. The plots, one per dataset, can be seen in Figures 4.1
through 4.9.
6 The number of nodes is used as a simple common measure of complexity across all the algorithms

only for the purposes of the evaluation done here. The individual algorithms use their own measures of
complexity in their search processes.
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SR methods ML methods
GPTIPS mGPTIPS EFS FFX GSGP-Red RdS LR RF SVR

Koza-1 0.000 0.000 0.128 0.063 0.010 0.024 0.614 0.208 0.104
Korns-11 7.811 7.749 7.792 7.796 7.811 7.794 7.798 7.905 7.797

S1 0.291 0.111 0.269 0.294 0.221 0.230 0.302 0.015 0.060
S2 0.994 1.154 1.107 1.007 0.881 1.075 1.007 0.228 0.738
UB 0.141 0.114 0.076 0.083 0.118 0.159 0.188 0.069 0.057
ENC 2.907 2.278 1.640 1.791 3.172 3.011 3.252 1.633 1.278
ENH 2.538 1.717 0.546 1.046 2.726 2.691 2.926 0.510 0.674
CCS 8.762 7.178 6.429 5.986 8.798 8.314 10.52 5.169 10.03
ASN 4.138 4.003 3.623 3.580 12.14 4.471 4.816 1.839 6.054

Table 4.7. Median RMSEs on testing data. The best (smallest) values among SR and
ML methods in each row are underlined. The best (smallest) value among all methods is

typeset in bold.

GPTIPS mGPTIPS EFS FFX GSGP-Red
rank ssbt rank ssbt rank ssbt rank ssbt rank ssbt

Koza-1 1-2 EFSdLRV 1-2 EFSdLRV 7-8 L 4-5 LRV 3 EFLRV
Korns-11 2-8 R 1 GEFSdLRV 2-8 R 2-8 R 2-8 R

S1 7 FL 3 GEFSdL 5-6 GFL 8 L 4 GEFL
S2 4-5 EFd 7-9 7-9 6 Ed 3 GEFdL
UB 7 dL 5-6 GdL 3 GmFSdL 4 GmSdL 5-6 GdL
ENC 6-7 SL 5 GSdL 2-3 GmFSdL 4 GmSdL 8-9
ENH 6 SL 5 GSdL 1-2 GmFSdLV 4 GmSdL 7-8 L
CCS 5-7 LV 4 GSdLV 3 GmSdLV 2 GmESdLV 5-7 LV
ASN 5 SdLV 4 GSdLV 2-3 GmSdLV 2-3 GmSdLV 9

RdS LR RF SVR
rank ssbt rank ssbt rank ssbt rank ssbt

Koza-1 4-5 LRV 9 7-8 L 6 LR
Korns-11 2-8 R 2-8 R 8 2-8 R

S1 5-6 GFL 9 1 GmEFSdLV 2 GmEFSdL
S2 7-9 4-5 EFd 1 GmEFSdLV 2 GmEFSdL
UB 8 L 9 2 GmEFSdL 1 GmEFSdLR
ENC 6-7 SL 8-9 2-3 GmFSdL 1 GmEFSdLR
ENH 7-8 L 9 1-2 GmFSdLV 3 GmFSdL
CCS 5-7 LV 8-9 1 GmEFSdLV 8-9 L
ASN 6 SLV 7 SV 1 GmEFSdLV 8 S

Table 4.8. Statistical ranking of RMSEs. Left columns show the rank of the algorithm.
The title of right columns, “ssbt”, stands for statistically significantly better than, and they
show algorithms that were statistically significantly worse as judged by the MWUT. The
significance level is 𝛼 = 0.01 which is reduced by a Bonferroni correction for 36 tested pairs
resulting in 𝛼 ≊ 0.00028 for each tested pair. The individual algorithms are denoted in the
following way: G for GPTIPS, m for mGPTIPS, E for EFS, F for FFX, S for GSGP-Red,

d for RdS, L for LR, R for RF, and V for SVR.
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GPTIPS mGPTIPS EFS FFX GSGP-Red RdS
Koza-1 33 14 11 35 7703 20
Korns-11 63 17 69 14 3221 11

S1 52 23 12 10 21342 11
S2 53 25 28 1 10034 8
UB 36.5 10.5 66 105 7559 14
ENC 48 2 108 136 6883 20
ENH 47.5 26 105 146 7047 21
CCS 43 23 108 474.5 6009 17
ASN 58 30 67 52.5 33320 21.5

Table 4.9. Median number of nodes for each algorithm and dataset. The best value in
each row is highlighted.

GPTIPS mGPTIPS EFS FFX GSGP-Red RdS
rank ssbt rank ssbt rank ssbt rank ssbt rank ssbt rank ssbt

Koza-1 4-5 S 2 GFS 1 GmFSd 4-5 S 6 3 FS
Korns-11 4-5 S 2-3 GES 4-5 S 2-3 GES 6 1 GmES

S1 5 S 4 GS 2-3 GmS 1 GmES 6 2-3 GmS
S2 5 S 3-4 GS 3-4 GS 1 GmESd 6 2 GmES
UB 3 EFS 1-2 GEFS 4 FS 5 S 6 1-2 GEFS
ENC 3 EFS 1-2 GEFS 4 FS 5 S 6 1-2 GEFS
ENH 3 EFS 1-2 GEFS 4 FS 5 S 6 1-2 GEFS
CCS 3 EFS 2 GEFS 4 FS 5 S 6 1 GmEFS
ASN 3-4 ES 2 GEFS 5 S 3-4 ES 6 1 GmEFS

Table 4.10. Statistical ranking of complexities (number of nodes). Left columns show the
rank of the algorithm. The title of right columns, “ssbt”, stands for statistically significantly
better than, and they show algorithms that were statistically significantly worse as judged by
the MWUT. The significance level is 𝛼 = 0.01 which is reduced by a Bonferroni correction
for 15 tested pairs resulting in 𝛼 ≊ 0.00067 for each tested pair. The individual algorithms
are denoted in the following way: G for GPTIPS, m for mGPTIPS, E for EFS, F for FFX,

S for GSGP-Red, and d for RdS.

4.4.2 Discussion on error and complexity

In this subsection we discuss the results from the point of view of the achieved RMSE
and model complexity in terms of the number of nodes.

Koza-1. As can be seen from Table 4.7 and Figure 4.1, GPTIPS and mGPTIPS were the
only methods that were able to achieve zero error. GPTIPS with the default function
set found such model in all runs, although needing more nodes for that. Enriching the
function set (mGPTIPS) enables the method to find simpler models also with optimal
performance, but – due to a larger search space – it sometimes fails to find the optimum.
RdS was able to find a zero-error model, but did so in only a few runs and otherwise
had inconsistent performance which is expected since the algorithm is just a random
search.

FFX and EFS are worse, both reaching RMSE of the order of 10−2 with no significant
difference between them (see Table 4.8), partially due to the large range of RMSE values
produced by EFS. The non-zero error is caused by the regularization used in these
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Figure 4.1. Complexity-performance plots (left) and box plots of training and testing
errors (right) for the Koza-1 dataset. Legend: individual runs of Y GPTIPS, + mGPTIPS,

× EFS, • FFX, ⋆ GSGP-Red, ∗ RdS, median RMSE of — LR, - - - RF, · · · SVR.
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Figure4.2. Complexity-performance plots (both left) and box plots of training and testing
errors (both right) for the Korns-11 dataset. The upper plots display the whole results,
the lower ones zoom on the dense area around RMSE = 7.8. Legend: individual runs of
Y GPTIPS, + mGPTIPS, × EFS, • FFX, ⋆ GSGP-Red, ∗ RdS, median RMSE of — LR,

- - - RF, · · · SVR.

methods – EFS indeed found the optimal bases, but their coefficients are not equal
to 1.
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Figure 4.3. Complexity-performance plots (left) and box plots of training and testing
errors (right) for the S1 dataset. FFX has only a single point because both the sampling
of this dataset and FFX are deterministic. Legend: individual runs of Y GPTIPS,
+ mGPTIPS, × EFS, • FFX, ⋆ GSGP-Red, ∗ RdS, median RMSE of — LR, - - - RF,

· · · SVR.
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Figure4.4. Complexity-performance plots (both left) and box plots of training and testing
errors (both right) for the S2 dataset. FFX has only a single point because both the
sampling of this dataset and FFX are deterministic. The upper plots display the whole
results, the lower ones zoom on the dense area around RMSE = 1. Legend: individual
runs of Y GPTIPS, + mGPTIPS, × EFS, • FFX, ⋆ GSGP-Red, ∗ RdS, median RMSE of

— LR, - - - RF, · · · SVR.
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Figure 4.5. Complexity-performance plots (left) and box plots of training and testing
errors (right) for the UB dataset. Legend: individual runs of Y GPTIPS, + mGPTIPS,

× EFS, • FFX, ⋆ GSGP-Red, ∗ RdS, median RMSE of — LR, - - - RF, · · · SVR.
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Figure 4.6. Complexity-performance plots (left) and box plots of training and testing
errors (right) for the ENC dataset. Legend: individual runs of Y GPTIPS, + mGPTIPS,

× EFS, • FFX, ⋆ GSGP-Red, ∗ RdS, median RMSE of — LR, - - - RF, · · · SVR.

100 101 102 103 104

no. of nodes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

RM
SE

 (t
es

t)

m
GP

TI
PS

GP
TI

PS EF
S

FF
X

GS
GP

-R
ed Rd
S LR RF SV
R

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

RM
SE

Figure 4.7. Complexity-performance plots (left) and box plots of training and testing
errors (right) for the ENH dataset. Legend: individual runs of Y GPTIPS, + mGPTIPS,

× EFS, • FFX, ⋆ GSGP-Red, ∗ RdS, median RMSE of — LR, - - - RF, · · · SVR.
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Figure 4.8. Complexity-performance plots (left) and box plots of training and testing
errors (right) for the CCS dataset. The upper plots display the whole results, the lower
ones zoom on the dense area around RMSE = 8. Legend: individual runs of Y GPTIPS,
+ mGPTIPS, × EFS, • FFX, ⋆ GSGP-Red, ∗ RdS, median RMSE of — LR, - - - RF,

· · · SVR.
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Figure 4.9. Complexity-performance plots (left) and box plots of training and testing
errors (right) for the ASN dataset. Legend: individual runs of Y GPTIPS, + mGPTIPS,

× EFS, • FFX, ⋆ GSGP-Red, ∗ RdS, median RMSE of — LR, - - - RF, · · · SVR.

GSGP-Red is slightly more accurate than FFX both for training and testing data
but it explodes in the complexity of the models, which is a global trend that can be
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seen over all datasets. The high complexity is expected of a GSGP-based algorithm,
even though the –Red extension simplifies the models significantly.

FFX and GPTIPS tend to construct significantly more complex models (see Ta-
bles 4.9 and 4.10) than EFS and mGPTIPS – this is most likely caused by the fact that
they are unable to effectively create the 4th power, and therefore need to compensate
for it by creating a lot of bases.

For Koza-1, the SR models are better than or comparable to the tuned ML models.

Korns-11. This dataset comes from a quickly oscillating function (see Table 4.2) with
a constant range of values. The datapoints look very much like samples from a constant
function with noise. As can be seen from Tables 4.7, 4.8, and Figure 4.2, all the methods
(SR and ML) provide models of comparable performance. The best for this problem
is mGPTIPS which is better than the others from the statistical point of view despite
the outliers; the real importance of the difference is, however, questionable. The fact
that some algorithms (mGPTIPS and EFS) had sin and cos functions in their function
set does not seem to affect the result. We argue that that is caused by the already
mentioned noisy look of the data – the sin/cos cannot match right away, they would
have to have the right argument from the start which is very unlikely and even a small
difference in the argument can lead to dramatic errors w.r.t. the training data.

FFX and mGPTIPS produced models with significantly smaller number of nodes
than GPTIPS and EFS (see Tables 4.9 and 4.10). Even though FFX is deterministic,
the complexity of its models varies highly. The only possible cause are the differences
in the individual dataset samplings themselves. Somewhat unexpected is the fact that
it influences FFX so much compared to the stochastic EFS. Note, however, that de-
spite the larger variance in complexities, the overall complexity of FFX models is still
significantly lower than that of EFS models. GSGP-Red produces several orders of
magnitude more complex models than the other methods. RdS has performance very
similar to that of FFX in both metrics with the exception of a couple of outliers in the
performance metric.

S1. As can be seen from Table 4.7 and Figure 4.3, GPTIPS, which has the most
limited function set among the compared methods, produces complex models with
relatively large errors. FFX produced a simpler model (10 nodes only) with comparable
error. The complexity of EFS models is comparable to FFX, but EFS tends to produce
more accurate models. The best trade-off is provided by mGPTIPS models which are
significantly more accurate, with complexities only slightly worse than those of EFS.
The performance of GSGP-Red is “in between” the performances of mGPTIPS and
EFS but with significantly more complex models. Note that FFX was run only once
since it is a deterministic algorithm and there is only a single instance of this dataset.
RdS is performs better than GPTIPS in both complexity and performance, and than
EFS in performance, with complexities being spread over a wider range.

An interesting point is that among the SR algorithms, the two best were mGPTIPS
and EFS, both having sin and cos functions available (and they are used in the models),
compared to GPTIPS and FFX which don’t have these functions. The S1 dataset is
defined by a function containing both sin and cos functions.

The performance of SR models on this benchmark is better than pure linear regres-
sion, but worse than RF and SVR.

S2. For this problem, the only algorithm that produced models discernibly better than
a constant function from a practical point of view was RF. Out of the SR methods, only
FFX was able to provide the constant model with only a single node, as can be seen
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in Table 4.9 and Figure 4.4. Default GPTIPS provides models with comparable per-
formance (yet statistically better than FFX), but with much larger complexity. Some
models of mGPTIPS are in fact able to reach better performance, but sometimes also
much worse (by several orders of magnitude). EFS provides results similar to mGP-
TIPS, but more consistent. GSGP-Red is comparable to other evolutionary methods
but with orders of magnitude more complex models. RdS behaved similarly to other
methods but generally with lower complexities and smaller variance in performance
than that of mGPTIPS and EFS.

UB. Except for LR and RdS, the default GPTIPS is the least accurate solver here, as
can be seen in Table 4.7 and Figure 4.5, and also statistically confirmed in Table 4.8.
Enlarging the function set allows mGPTIPS to find not only more accurate but also
simpler models, but still not as good as those provided by EFS and FFX. GSGP-
Red’s performance is in between that of GPTIPS and mGPTIPS, with very high model
complexity. The most accurate SR algorithms for this problem are EFS and FFX, with
EFS generating models with lower number of nodes than FFX. Both EFS and FFX,
however, produce more complex models than (m)GPTIPS and RdS.

Similarly to S1, SR methods are better than pure LR, but worse than SVR and RF.

ENC, ENH. As can be seen in Figures 4.6 and 4.7, the pattern of the results is similar
for both datasets in terms of both the accuracy and complexity of the models, which
can also be seen in Tables 4.7–4.10. The results of GPTIPS are dominated both in
accuracy and complexity by mGPTIPS, the results of FFX are dominated by EFS in
a similar fashion. GSGP-Red is dominated by all other methods except for LR. RdS
exhibits comparable performance as that of GPTIPS but with lower complexities. EFS
and mGPTIPS provide a good compromise with EFS producing more accurate models,
while mGPTIPS producing simpler models.

RF and SVR are comparable or better than the best of SR methods, except for EFS,
in terms of accuracy.

CCS. In this dataset, a similar pattern among SR algorithms as in ENC and ENH is
also present, except that the accuracies of EFS and FFX are flipped and the differences
are not as strong, as can be seen in Figure 4.8 and Tables 4.7 and 4.8.

From the complexity point of view, however, the ENC/ENH pattern remains: mGP-
TIPS and RdS provide the simplest models, followed closely by GPTIPS. EFS produces
just over a hundred nodes, FFX explodes with four to five hundred of nodes and GSGP-
Red is in the area between one and ten thousand nodes. The high number of nodes in
FFX’s models is caused by the majority of bases being the hinge functions which carry
high complexity.

RF models are only slightly, but significantly better than those of the best SR algo-
rithms – FFX and EFS. All SR algorithms produce on average better models than pure
linear regression. Note, however, the failure of SVR on this dataset – it is better than
LR by only a small margin. Having the best training errors and much worse testing
errors, SVR is suspect from overfitting here.

ASN. Figure 4.9 shows that all the SR methods except for GSGP-Red perform similarly
in terms of RMSE but by statistical comparison they are different (see Table 4.8). EFS
produced a number of outliers (some actually worse than a pure linear model) and is
thus less reliable. GSGP-Red is clearly the worst algorithm here, not producing a single
model better than LR.
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The simplest models are produced by RdS, followed by mGPTIPS and then by FFX
and GPTIPS which are statistically indifferent (Table 4.10), and then closely by EFS.
As in all other datasets, GSGP-Red produces the largest models.

RF again produced the most accurate models. SVR failed again, with both the
training and testing errors larger than the errors of LR. The explanation may lie in the
dataset which may be unsuitable for SVR modelling. Another reason may be the fact
that SVR optimizes its 𝜀-intensive loss function, and not RMSE.

4.4.3 Global trends

Across all datasets we can see that none of the compared SR algorithms was the best
everywhere, both from the performance and complexity points of view. We can see that
EFS and FFX perform quite well on real-world datasets and the UB dataset, but not
as well on the other artificial datasets. This suggests that for certain class of real-world
problems the inability to work with internal constants, of which only (m)GPTIPS and
indirectly GSGP-Red are capable, is not crucial and can be compensated by a linear
combination of sufficiently large number of features.

Across all datasets, EFS and FFX methods are very consistent, meaning that the
clusters in complexity-performance space are compact and without too many outliers.
This fact might be important in applications where consistency of the produced models
is an issue. In contrast to (m)GPTIPS, this may be the results of the regularized
learning employed in EFS and FFX.

(m)GPTIPS tends to have a higher spread of either complexity or accuracy or both
(except on Korns-11 where all the algorithms are similarly inconsistent). We argue
that this is caused by the approach being close to vanilla GP based on population of
models, in contrast to the population of features of EFS and deterministic generation
of features in FFX.

The performance of RdS, when compared to the other SR methods, is interesting.
Note that the RdS algorithm is supposed to be a just a baseline – it randomly generates
LCBF models and applies LR on the bases but nothing more. It does not use previ-
ously found models to create future ones, it only remembers the best generated model
encountered. And despite this simplicity, the performance is always in the vicinity of
the non-random methods, sometimes even better than (some of) them. This suggests,
that the only non-random element in the RdS algorithm – the linear regression – is
quite powerful in itself when provided with suitable features.

The comparison of SR methods with conventional ML approaches (with tuned hyper-
parameters) shows that the SR methods are not the best performers. In the majority
of cases, the SR methods were better than pure LR models, but were worse than RF or
SVR models. For many datasets it can also be observed that the differences between
training and testing errors were much larger for RF and SVR models than for SR mod-
els. We thus hypothesize that with the default settings of the SR methods may be too
constraining and possibly produce underfitted models, while the settings found by the
grid search for RF and SVR may result in somewhat overfitted models.

Another phenomenon worth noting is that many times the SR methods were worse
than pure LR despite all of them use LR too. However, in (m)GPTIPS the LR is
performed on the evolved bases only, lacking the original feature variables. In EFS and
FFX the feature variables are always present, but the LR is regularized.
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4.4.4 Comparisonwith previous research

The non-dominance of the SR methods seems to be in contradiction to the original
papers of EFS [15] and FFX [16] and research done with GPTIPS [12] which usually
found the SR models to be better than conventional ML ones. However, in each of
these papers the methods were compared in a different way with different settings of
both the SR methods and the traditional ML algorithms. The differences are discussed
below.

The original paper on EFS [15] shows that EFS is overall better than most of the ML
methods it was compared with, while in this work we found that one of the conventional
ML methods is better on all problems except Koza-1 and Korns-11, which might be seen
as a contradiction. The settings of EFS in this paper are the same as those used in [15].
However, the original paper compared EFS with different ML algorithms besides LR (for
which our results are consistent) and also on different datasets except ENC and ENH.
In [15], EFS was beaten by a feed-forward neural network (FFNN) on two datasets
and was very close to FFNN on the others. We thus hypothesize that the different
conclusion in this case is caused by using a different set of competing ML methods.
It could well be that our settings of RF and SVR allowed for better regression models
than their settings for FFNN, but the authors gave only a little details on the settings
of FFNN (they stated that they used 10 neurons in a hidden layer and the toolbox
used, but provide no information about activation functions, learning algorithm, etc.).

In [16], FFX was shown to outperform many ML methods, including LR and SVR,
on six 13-dimensional problems, which, again, seems to contradict our results. However,
it is important to note three facts:

1. all six regression problems in the original paper were some performance characteris-
tics of a CMOS operational transconductance amplifier, i.e., they come from a very
specific domain;

2. the paper does not describe the settings of the ML methods (including the SVR) in
any detail;

3. the settings of FFX in those experiments were different than those provided as the
defaults, namely the set of possible exponents included also -2 and 2 (see Section 4.3.4
for setting used in this work).

Due to these reasons, the different conclusions do not have to contradict each other.
Some results comparing GPTIPS to conventional ML methods can be found in [12].

GPTIPS was compared with SVR and artificial neural network (ANN) and GPTIPS
was reported to be better than both. In that research, SVR used a linear kernel and its
parameters were determined by a combination of simulated annealing and grid search.
The experiments were done on only one 2-dimensional dataset from the domain of mod-
elling soil-water retention curves. GPTIPS used in that research was “version 1” [48],
while we used “version 2” [33], and the used algorithm settings were different from the
default ones (larger population, smaller tournament, larger limits on tree depth and
number of genes). It is thus well possible that the used parameter settings were cho-
sen with respect to the analysed dataset, but we cannot rule out the possibility that
GPTIPS with less limiting settings than the default ones would provide better results
even in our study.

In general, our results differ from the previous research, but this seems to be caused by
testing on different datasets, comparing to different ML algorithms, and using different
settings of both the SR and the ML algorithms.
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4.4.5 Discussion on running time

Evaluation of the running time of the algorithms is presented to provide at least some
view into this aspect of the algorithms. The running times are presented in Table 4.11.
The results are also influenced by the implementation language and running environ-
ment (FFX runs in Python, EFS and GSGP-Red in Java, GPTIPS in MATLAB). Be-
cause of this, the running times are only informative and do not necessarily represent
the real computational complexity of the algorithms.

GPTIPS mGPTIPS EFS FFX GSGP-Red LR RF (10) SVR (42)
Koza-1 44.98 33.51 0.33 1.71 27.66 <0.01 2.85 0.34
Korns-11 101.91 90.18 16.38 7.86 319.04 <0.01 71.87 1138.74

S1 58.87 44.37 0.38 6.85 128.58 <0.01 2.88 0.54
S2 58.11 48.82 1.26 0.56 56.53 <0.01 2.97 5.71
UB 48.05 36.27 6.38 6.15 61.61 <0.01 6.05 6.67
ENC 57.40 51.09 24.96 109.63 40.42 <0.01 3.02 7.59
ENH 59.63 53.23 25.42 129.83 41.04 <0.01 2.96 11.61
CCS 59.22 51.15 19.29 30.58 43.08 <0.01 4.73 5.32
ASN 68.00 57.86 9.43 22.20 269.70 <0.01 4.17 12.90

Table 4.11. Median running times of the algorithms per dataset (in seconds). The Ran-
dom Search (RdS) algorithm is not displayed because it always ran for the whole 10 minutes
of available time. For RF and SVR, the number in the parentheses denotes the number of
points of the grid search which is included in the running time. The fastest running times

among the SR algorithms are emphasized.

Based on the wall-clock time, from the SR algorithms, (m)GPTIPS and GSGP-Red
tend to run for the longest time (tens of seconds), with the exception of ENC and ENH
datasets, where FFX was even slower. Runtime of EFS follows the number of features
in the dataset: with Koza-1 and S1 (1D) requiring the least time, S2 (2D) requiring
some more time, followed by Korns-11, UB, and ASN (5D), and finally ENC, ENH,
and CCS (8D) requiring the most time. Note that EFS determines the number of bases
from the number of features.

The time demands of the SR methods usually depend only linearly on the number of
training examples (since they are used typically only to compute the value of evaluation
function). Conventional ML methods may have much worse dependency on the number
of training examples. This difference is pronounced in our study in case of the SVR
algorithm (which needs to compute the kernel matrix) and the Korns-11 benchmark
which has a large training set, where SVR is by far the slowest algorithm. In other
cases, the time required to find a symbolic model was about an order of magnitude
greater than the time to tune and train a conventional ML model (with the exception
of pure LR which is of course the fastest among the algorithms), but still within one
minute of time in most cases.

4.5 Comparisonwith results from omitted algorithms

As we have stated at the start of this chapter, we selected only some of the state-of-the-
art algorithms, because some of them were published only after the research presented
here was performed. In this section we briefly review research performed with these
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newer algorithms and, where possible, try to estimate how would they compare, if they
were included in the comparison.

Interestingly, many of the algorithms we reviewed in Chapter 3 have not been tested
on real-world problems by their respective authors. It is therefore next to impossible
to estimate how would these algorithms compare to those in our study. The algorithms
that were in some way tested on real-world problems are ParetoGP, AI Feynman and
FEAT7.

ParetoGP. In [23], the algorithm is tested on a “polymer reactivity problem” but the
authors do not provide the source of the dataset; in [24], the authors use the “Tower”
problem, a gas chromatography measurement of the composition of a distillation tower,
but the authors also do not point to the source of the dataset. Even neglecting the
unavailability of the datasets, the authors compared their algorithm only to standard
GP. It is therefore impossible to estimate how would ParetoGP perform compared to
other algorithms.

AI Feynman. The authors tested using formulas from physical laws which could be
argued to be real world. However, they are still known formulas which were just used
to generate data for the algorithm to solve. Our notion of a real-world data is that
the underlying process is not known and the data comes from measurements of a real-
world system.

FEAT. Testing of this algorithm has been the most compatible with our study. Both the
original version [27] and the extended version with semantic-aware operators [29] were
examined on 100 regression datasets from PMLB [49]. This has shown FEAT (or its
versions with the semantic-aware operators) to be competitive with XGBoost and to
outperform multilayer perceptron, random forests, GSGP and other methods.

The extended version also went through a hyperparameter tuning which was per-
formed on a number of datasets we used in our comparison here, specifically the UB,
ENC, ENH, CCS, and ASN datasets. Table 4.12 shows the performance of the best
variants of FEAT on these datasets compared to the SR algorithm from our study
which had the best median RMSE on that dataset. However, the authors did not
present specific numbers but only plots of R2 score and we have to read from them.
Also, they used 5-fold crossvalidation while we used repeated training/testing split,
therefore the translation from R2 to RMSE (which is the metric we used) provides just
a rough picture.

To translate their reported R2 score, we basically invert the definition of R2 and
transform it to RMSE:

𝑅2 = 1 −
∑𝑛

𝑖=1( ̂𝑦𝑖 − 𝑦𝑖)2

∑𝑛
𝑖=1( ̄𝑦𝑖 − 𝑦𝑖)2

𝑅2 − 1 = −
∑𝑛

𝑖=1( ̂𝑦𝑖 − 𝑦𝑖)2

∑𝑛
𝑖=1( ̄𝑦 − 𝑦𝑖)2

(𝑅2 − 1)
𝑛

∑
𝑖=1

( ̄𝑦 − 𝑦𝑖)2 = −
𝑛

∑
𝑖=1

( ̂𝑦𝑖 − 𝑦𝑖)2

(1 − 𝑅2)
𝑛

∑
𝑖=1

( ̄𝑦 − 𝑦𝑖)2 =
𝑛

∑
𝑖=1

( ̂𝑦𝑖 − 𝑦𝑖)2

7 SSR (see Section 3.1.1) and MRGP (see Section 3.1.3) were also subject to testing on real-world data,
but we deem them surpassed by MGGP and EFS respectively.
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( ̄𝑦 − 𝑦𝑖)2 = 𝑅𝑀𝑆𝐸 (4.1)

where 𝑛 is the number of data points, ̂𝑦𝑖 is the model estimate for the 𝑖-th data point,
𝑦𝑖 is the true target value of the 𝑖-th data point, and ̄𝑦 is the mean true target value
of all data points. The sum on the left-hand side of Equation (4.1) is a quantity which
we can estimate. Since we do not know which specific data points were included in the
crossvalidation folds, we compute the quantity over the whole dataset, which, we think,
is good enough approximation for a rough comparison.

dataset
best FEAT rough equiv.

best SR alg.
best SR alg.

median R2 RMSE median RMSE
UB 0.9195 0.06 EFS 0.076
ENC 0.973 0.33 EFS 1.64
ENH 0.9976 0.1 EFS 0.55
CCS 0.858 53.47 FFX 5.97
ASN 0.726 3.57 FFX 3.58

Table 4.12. Rough comparison of FEAT from tuning experiments from [29]. The column
“rough equiv. RMSE” roughly shows what the RMSE would have been if FEAT achieved

the reported R2 score in our testing environment.

From these results it seems that FEAT would pose very strong competition to the
algorithms we have tested.

4.6 Answers to research questions

In Section 4.2, we have stated three research questions. Armed with the experimental
results, we answer those questions here.

RQ1: What are the performance differences between the algorithms? The results show
that none of the benchmarked algorithms is superior to the others with their default
settings. GPTIPS shows more varying performance, possibly given by the close relation
to vanilla GP, while EFS and FFX provide more consistent results.

RQ2: How do the algorithms compare to reasonable baselines? The results of the com-
parison with random search show that the SR algorithms are overall better than the
random search, which is an expected behaviour. However, the differences are not as
large as one might have expected which, we argue, is the effect of the versatility of the
LCBF form and the linear regression which is able to create good models even when
the underlying bases are by themselves not of great quality.

Regarding the comparison with conventional ML algorithms, the results show that
the SR algorithms are no silver bullet – in the majority of cases, an ML algorithm was
more successful than any of the SR methods, especially RF. Note, however, that the ML
algorithms each went through a grid search for the optimal parameter settings while
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the SR algorithms were used without any tuning (see Section 4.3.4 for reasons). Also,
even in cases when the ML methods were statistically significant, the gap between them
and the SR methods was not large. Moreover, the SR methods have the benefit of pro-
ducing symbolic models which may be an important asset in circumstances when not
only prediction accuracy is of interest but also the understanding of the inner structure
of the model is required. Last but not least, RF and SVR have shown greater discrep-
ancy between training and testing errors, hinting that they may be more susceptible
to overfitting.

Based on the results we obtained we think that classic ML methods are often as
good as the SR methods with default parameter settings, or better, and they provide
the results faster and often are more reliable.

RQ3: What algorithm should we choose for further experimentation? Based on the
results, we choose GPTIPS, or rather the underlying algorithm MGGP. Its performance
was not the best but was still competitive with the other algorithms, while it is the
least constrained algorithm.

The reasons why we have not chosen the other algorithms are following:

. FFX severely restricts the class of models it can produce and easing this restriction
would result in combinatorial explosion, should it still be the same algorithm.
. EFS, while it has good performance, is built around the idea is that the features are

built only constructively which allows it to not reevaluate already evaluated subtrees.
The extensions we want to implement require reevaluation of subtrees, and doing so
with EFS would require rewrite of major parts of the algorithm, possibly rendering
it significantly less effective than it is.
. GSGP-Red had poor performance on the real-world datasets, and the models pro-

duced by the algorithm are about two orders of magnitude larger than those produced
by the other methods.

4.7 Summary and conclusions

In this chapter we compared four recent methods for symbolic regression: MGGP,
EFS, FFX, and GSGP-Red, plus a baseline in the form of RdS, a random search of a
model in the form of LCBF with top-level linear parameters fitted with LR. All the
algorithms produce models in the form of LCBFs. Two of those methods, EFS and
FFX, use Pathwise Regularized Learning, while MGGP (and RdS) uses classic multiple
linear regression to determine the linear coefficients of the resulting model. EFS and
MGGP are stochastic methods based on GP operators of mutation and crossover, while
FFX is a completely deterministic method.

We used publicly available implementations of the algorithms, with their default
settings and without modifications of their implementations. Since the default settings
of GPTIPS, an implementation of MGGP, contain a very limited function set, we added
an extra configuration with a function set closer to the one used by EFS.

We compared the algorithms with three classic ML algorithms – multiple linear
regression, random forests, and support vector regression. The results have shown that
the classic ML methods are, overall, the best performers, and that there is no single SR
algorithm that would outperform all the others. Despite not being the best performer,
we have selected MGGP as the algorithm to continue our research with, as it is the
most extensible one, while its performance was still competitive.
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Chapter5
Feature space transformations for genetic

programming

In some SR tasks, the underlying function could be modelled more easily, if the algo-
rithm had access to a suitable rotation of the feature space, or to suitable projections
of the features. Such transformations can be achieved by linear combinations of the
features of the problem.

Such linear combinations are already available in virtually any SR system that allows
for numeric constants and has the operators of addition and multiplication. However,
these transformations have to be constructed using structural manipulation of the tree
via mutation and crossover, and the values of the constants must be adjusted as well.
Also, suitable transformations can be found only through the selection pressure. In this
chapter we propose a new type of node for use in GP-based SR that explicitly provides
a linear combination of features, and we show how it allows for informed tuning that
does not rely solely on selection pressure.

This chapter is based on and extends article [C5].

5.1 Linear Combinations of Features

Linear Combinations of Features (LCFs) is an extension to GP-based SR systems that
provides a new type of leaf node. LCFs perform linear combinations of input features
and can be utilized by the GP algorithm as any other leaf node. Figure 5.1 illustrates
how the model structure changes when LCFs are introduced.

Figure5.1. An illustration of a model structure without (left) and with (right) LCF nodes.
The triangles denoted “GP tree” represent the inner structure of the model, 𝘅 represents

the feature vector and 𝐿𝐶𝐹1, 𝐿𝐶𝐹2, . . . , 𝐿𝐶𝐹𝑘 represent the LCF leaf nodes.
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Mathematically, the 𝑘-th LCF node implements the following function

𝐿𝐶𝐹𝑘(𝘅; 𝗮𝑘, 𝑏𝑘) = 𝗮⊤
𝑘 𝘅 + 𝑏𝑘 = 𝑏𝑘 +

𝑁
∑
𝑖=1

𝑎𝑘,𝑖𝑥𝑖 (5.1)

where 𝘅 is the feature vector (vector of inputs to the model), 𝑁 is its length, i.e. the
number of features, and 𝗮𝑘 and 𝑏𝑘 are the LCF parameters. Similar extension was
proposed for Single-Node Genetic Programming (SNGP) in [50]. In the rest of this
chapter we are going to refer to the multiplicative constants 𝑎𝑘,𝑖 and additive constant
𝑏𝑘 simply as to weights.

The LCFs allow the underlying GP-based SR system to directly represent affine
transformations of the feature space. To show that, let 𝑓(𝘅) = 𝑓(𝑥1, · · · , 𝑥𝑁) be a func-
tion of the original features. If these original features 𝑥𝑖 are replaced by LCFs, the
function changes to

̂𝑓(𝘅) = 𝑓(𝐿𝐶𝐹1(𝘅; 𝗮1, 𝑏1), · · · , 𝐿𝐶𝐹𝑁(𝘅; 𝗮𝑁, 𝑏𝑁)). (5.2)

Expanding the LCFs using Equation (5.1)

̂𝑓(𝘅) = 𝑓(𝗮⊤
1 𝘅 + 𝑏1, · · · , 𝗮⊤

𝑁𝘅 + 𝑏𝑁). (5.3)

Now, the individual vectors 𝗮𝑘 can be rearranged into a matrix, the individual intercepts
𝑏𝑘 can be rearranged into a vector

̂𝑓(𝘅) = 𝑓 ⎛⎜⎜
⎝

⎛⎜⎜
⎝

𝗮⊤
1
...

𝗮⊤
𝑁

⎞⎟⎟
⎠

𝘅 + 𝗯⎞⎟⎟
⎠

= 𝑓(𝗔𝘅 + 𝗯). (5.4)

Obviously, the mapping 𝘅 ↦ 𝗔𝘅 + 𝗯 can represent rotation, translation, or scaling as
its special cases.

The LCFs are not meant to replace all the features. Instead, an LCF is just another
type of leaf node that is available to the GP algorithm to build trees from. A particular
GP tree may contain no LCFs at all, but it is also possible that all leaf nodes of the
tree will be LCFs. The original features are still available so the trees can use both
the transformed and the original features. These features then enter the evolved tree
at the bottom level and can be further transformed in non-linear ways by the rest
of the nodes in the tree (see Figure 5.1). These transformations can be numerically
optimized in an informed way using a gradient of the error w.r.t. the parameters of
the transformations so that the whole function, including the non-linear parts, fits the
target better.

We argue that LCFs are beneficial

1. in static scenarios when the target function is effectively a (potentially simple) func-
tion operating on a space transformed by a (close to) affine transformation, e.g.
rotated (discussed in this chapter), or

2. in dynamic scenarios when the target changes between stages in a similar way (dis-
cussed in Chapter 6). The GP algorithm then does not have to deal with this change
by creating a possibly much more complicated function, but it can adjust the coef-
ficients of LCFs and possibly small parts of the tree, especially when the changes
are gradual.
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5.1.1 Initializing the LCFweights

Whenever a new LCF node is created, i.e. during generation of initial population or
when a new subtree is generated due to a mutation, its weights must be initialized
as well. We have chosen an approach that is as close as possible to not using any
LCFs at all: when a new LCF node is created, one of the multiplicative weights, 𝑎𝑘,𝑖,
corresponding to certain input variable 𝑥𝑖 (which is chosen randomly) is set to 1, and
all other weights, including 𝑏𝑘, are set to 0. With this initialization procedure, a freshly
created LCF node behaves exactly as a single (randomly chosen) variable.

There are, however, other possible initialization procedures. An obvious one is to just
sample the parameters randomly from a predefined distribution, or to set all parameters
equally to some predefined constant.

5.1.2 Tuning theweights

We designed three ways of tuning the weights:

. using a gaussian mutation, i.e. adding a normally distributed random number
to a weight, and let the evolution choose better settings,
. using an informed gradient descent-based approach, and
. combination of the two previous approaches, i.e. using gradient-based tuning with

an occasional perturbation of the weights using a mutation.

The gradient-based tuning takes advantage of the fact that the task being solved is a re-
gression, i.e. the features, the target values, as well as the error (fitness) function are
fully known and available (in contrast to some of other tasks usually solved by GP).
We use the backpropagation algorithm commonly used in neural networks [51]1 to de-
termine the partial derivatives of the model error with respect to the weights. Similar
approach was used in [52–54] where gradient descent was used to optimize values of con-
stant leaf nodes, and in [55] to optimize “inclusion factors” which are weights assigned
to inputs of addition and multiplication operators.

Once the partial derivatives are computed, an update algorithm can be used to modify
these weights to decrease the error. We have chosen iRprop−[56] for this task because
of two reasons:

1. it is simple (both computationally and from the implementation point of view) yet
efficient [57]2, and

2. it is numerically robust as it operates only with the signs of the derivatives rather
than with the values or magnitudes.

Especially the second reason is important because there is generally no constraint on
the inner structure of the trees in the GP environment. The gradients of the expressions
can easily explode, producing derivatives that exceed the range of floating-point number
representation.

In our implementation, the gradient-based tuning takes place just before an individual
is to be evaluated for fitness. It is effectively a part of the fitness evaluation process
since the output values which are the basis for fitness computation are required to
compute the gradient. The tuning is composed of three steps:
1 The backpropagation algorithm used in this thesis slightly differs from the classic backpropagation

algorithm in that there can be also binary functions (e.g. multiplication) instead of only unary ones as in
the case of neural networks.
2 Although the reference shows that iRprop+ is superior to iRprop−, our preliminary experiments have

shown that in the GP environment the latter variant performs better and with less overfitting, hence we
decided to use it.

42



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1 Linear Combinations of Features

1. forward pass, i.e. evaluating the individual on the training data,
2. backward pass, i.e. propagating the error backwards all the way down to the LCF

nodes and computing the partial derivatives of the error, and
3. update step, i.e. modifying the weights based on the partial derivatives computed in

step 2.

These three steps are repeated a number of times which is a parameter of the algorithm.

5.1.3 Operationmodes of LCFs

A single LCF node represents a single row of some linear transformation matrix and
a single element of the offset vector (see Equations (5.2), (5.3) and (5.4)), i.e. a single
element of an affine transformation. If there are more LFC nodes than there are features,
it necessarily follows that the transformation matrix encoded in those LCF nodes no
longer has linearly independent rows. However, it might be desirable to restrict the
algorithm to search using only an independent set of LCF nodes. To accommodate
this, we designed three operation modes of LCFs.

Unsynchronizedmode. In this mode, there are no restriction on the LCF nodes at all.
There can be any number of LCF nodes present in an individual.

Synchronizedmode. In this mode, each LCF node created (both during initial popula-
tion initialization or during new subtree creation in subtree mutation), it is randomly
assigned an index between (and including) 1 and the number of features of the data.
Then, all LCFs with the same index are forced to have the same weights. This way,
effectively only a single affine transformation will be introduced by the LCF nodes (or
only some of its dimensions since there can be less LCF nodes than is the dimensionality
of the data).

From technical point of view, all LCF nodes are still treated independently. However,
to get the synchronised behaviour, special handling is employed:

. After each backpropagation phase (if tuned by gradient-based approach), the com-
puted values of partial derivatives are summed up among the LCF nodes with the
same index and these summed values replace the ones in the individual LCF nodes.
This way, all partial derivatives are equal among the same-indexed groups of LCF
nodes and are therefore updated in the same way.
. If a “conflict” is detected, i.e. that an individual has multiple sets of LCF weights for

some of the indexes (e.g. due to crossover or subtree mutation), all sets are evaluated
and the best performing set is selected.

Globally synchronized mode. This mode is similar to the synchronized mode but the
index-based grouping encompasses the whole population instead of single individuals.
The motivation behind this mode is that should there truly be a globally suitable
transformation of the feature space, the models can work together to find it.

Since there is only a single set of LCF nodes, using only mutation to tune them no
longer makes sense because there is no population of LCF sets the selection could pick
from and hence mutation would only be a random walk. Therefore, we always use the
gradient-based approach, alone or accompanied by the mutation as means to escape
possible local optima.
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5.2 Relatedwork

Gradient-based tuning of parameters has been proposed and used in several previous
research works. In [52–54] gradient descent was used to optimize values of constant leaf
nodes. In [55], so called “inclusion factors” are introduced, which are multiplicative
constants from the interval [0, 1] that multiply the output of children of addition and
multiplication nodes. The inclusion factors are also tuned using gradient descent-based
approach.

In [25], gradient-based tuning of numeric parameters is necessary as the algorithm is
deterministic. Such tuning is also standard practice in [27, 29].

The most similar approach to ours is in [50], where the authors proposed linear
combinations of features in Single-Node Genetic Programming (SNGP) [58–59]. The
authors introduce a new segment of the linearly arranged population of nodes where
each node in this segment (size of which is a parameter; the authors use length equal to
the number of features) is a tuple 𝑣 = ⟨𝑤0, 𝑐0, 𝑥0, · · · , 𝑤𝑁, 𝑐𝑁, 𝑥𝑁⟩ where 𝑁 is the number
of features, 𝑤𝑗 ∈ ℝ, 𝑐𝑗 is a pointer to a constant-valued node in the population, and
𝑥𝑗 is the 𝑗-th original feature with 𝑥0 = 1 to allow for the offset of the transformation.
The value of such node is calculated as

𝑣 =
𝑁

∑
𝑗=0

𝑤𝑗𝑜(𝑐𝑗)𝑥𝑗,

where 𝑜(𝑐𝑗) is the output of the node referenced by 𝑐𝑗. Tuning of this transformation is
performed (1) through standard mutation operator by changing the reference 𝑐𝑗, and (2)
through dedicated tuning, step which is a simple local search, where at each iteration of
this search a random transformed variable is chosen and, with equal probability, either
𝑐𝑗 is changed or 𝑤𝑗 is modified by adding a normally distributed random number. If such
change does not decrease the performance of the model it is accepted. The number of
iterations of this process is a parameter of the algorithm. This approach is very similar
to our synchronized mode with a local search-based tuning procedure, not utilizing the
error gradient.

5.3 LCFs inMGGP

So far, we have described how LCFs plug into vanilla GP algorithm. However, the
LCFs can be plugged into other GP-based algorithms as well3. As we established in
previous chapter, we use Multi-Gene Genetic Programming (MGGP) instead of regular
GP algorithm. MGGP is itself an extension to the classic GP aimed at the SR task
and therefore the introduction of a new type of node is seamless.

In MGGP, each individual is composed of multiple, independent expression trees,
called genes. The final model that an individual represents is then created by making
a linear combination of the genes, including an intercept term. Formally, the function
represented by an MGGP individual is

𝑓(𝘅) = 𝑐0 + 𝑐1𝑔1(𝘅) + 𝑐2𝑔2(𝘅) + · · · + 𝑐𝑚𝑔𝑚(𝘅)

where 𝑚 is the number of genes in the given individual, 𝑔𝑖 are genes of the given individ-
ual, and 𝑐𝑖 are constants of the linear combination. For the rest of this work, we refer to

3 For a short discussion of the applicability of LCFs to other types of SR systems, see Section 5.3.2.
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this linear combination of individual’s genes as to the top-level linear combination as it
is the final operation that is performed with the genes before providing an output value.
The coefficients of the top-level linear combination are computed deterministically by
using multiple linear regression on the outputs of the particular genes.

When the LCFs are plugged in the MGGP, individuals are composed of:

. LCF nodes, that add new features to the set of inputs, and allow the model to encode
affine transformations of the input space.
. Several GP trees – genes – that allow to build non-linear functions, using the original

variables and/or their affine transformations created by LCFs as inputs.
. Top-level linear combination that scales and shifts the outputs of the genes to best

fit the target values.

Comparison of a general model structure of an MGGP individual without and with
LCFs can be seen in Figure 5.2. It is similar to the vanilla GP case (see Figure 5.1)
except there are multiple trees per individual and a linear regression that combines
them into the single output.

Figure 5.2. An illustration of a model structure represented by an MGGP individual
without (left) and with (right) LCF nodes. The triangles denoted “GP tree” represent the
inner structure of the genes, 𝘅 represents the feature vector and 𝐿𝐶𝐹1, 𝐿𝐶𝐹2, . . . , 𝐿𝐶𝐹𝑘

represent the LCF leaf nodes.

5.3.1 Genetic operators

There are two kinds of crossover operators used in MGGP4. The first one is the classic
subtree crossover, which is identical to the one of vanilla GP, i.e two subtrees, one in
each of the individuals being crossed over, are randomly chosen and swapped. The other
kind of crossover operator is high-level crossover. High-level crossover swaps whole genes
between the two individuals. These two operators are chosen stochastically whenever
a crossover event takes place.

There are two mutation operators (which are not unique to MGGP): the classic sub-
tree mutation which modifies the structure, and gaussian mutation which modifies the
4 Though we have our own implementation of MGGP [60], it is identical (in terms of genetic operators

of both the crossover and mutation) to Searson’s GPTIPS 2 package [33] and we describe those crossover
operators here.
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values of constant leaf nodes. This Gaussian mutation is independent of the mutation
used to perturb the LCF parameters. This means that whenever a mutation event takes
place, one of the following mutations is chosen stochastically:

. subtree mutation,

. Gaussian mutation of constant leaf nodes, or

. Gaussian mutation of LCF nodes (if this mutation is used).

5.3.2 Incorporating LCFs in other SR algorithms

In principle, LCFs can be used in any SR system as it is just a subexpression to be
used in the produced models. However, for various SR systems this can be more or less
complicated. Clearly, if gradient-based tuning is to be used, the gradient needs to be
computed which the system might not be ready for, and may need major implementa-
tion changes. However, LCFs can also be tuned using only mutation which is arguably
easier to implement, though it does not use the gradient information and relies only
on the selection pressure.

Another significant limitation might be the design of the algorithm. Some algorithms
cache the outputs of subexpressions to speed up the computation.5 This assumes that
values of subexpressions stay constant once they are evaluated. However, the tuning of
LCFs causes their outputs to change (including the related parts of GP trees). There-
fore algorithms that take advantage of caching would need to be modified (possibly
requiring a major redesign) to allow for changing subexpressions, which might lead
to the algorithm being slowed down considerably.

5.4 Research questions

In the rest of this chapter, we aim to answer the following research questions:

. RQ1: Are LCFs beneficial when an affine transformation is truly present in the data?

. RQ2: Are LCFs beneficial in other cases?

. RQ3: Are LCFs with gradient-based tuning better than using the same kind of tuning
on numeric constants?
. RQ4: Which algorithm configuration with LCFs should be adopted as the best one,

or the default, if any?

5.5 Experimental evaluation

In this section we experimentally examine the viability of LCFs in the context of the
research questions we have stated in the previous section. We perform a series of
experiments in the classic regression task: given a training data and a fixed amount of
time, find a model that fits the target variable as well as possible also on unseen data
from the same distribution.

We first evaluate our approach on a set of toy problems, specifically designed in a way
that LCFs should be beneficial. These should answer RQ1. We then move to a more
realistic set of problems which is composed of two artificial ones, four real-world ones,

5 An example of such algorithm is EFS [15], which does not actually hold the trees at all (it only logs
them in order to be able to retrieve the final model) and it only works with the outputs of the (sub)trees.
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and three problems that are related to Reinforcement Learning (RL). These should
answer RQ2. RQ3 and RQ4 are going to be answered by comparing the performance
of carefully chosen algorithm configurations, description of which follows.

5.5.1 Algorithm configurations

The base algorithm to which the LCFs are added as an extension is Multi-Gene Ge-
netic Programming (MGGP) algorithm [10] which shall also serve as a baseline for
comparison. In Section 5.1.2 we proposed three methods of tuning the LCF weights,
and in Section 5.1.3 we proposed three operation modes. We shall examine all sensible
combinations of these6. These algorithm configurations shall be identified by 2-letter
“codenames” with the first letter signifying the operation mode and the second one the
method of tuning the weights. These code letters are summarised in Table 5.1.

code letter description

operation mode
U unsynchronised
S synchronised
G globally synchronised

tuning method
M mutation
B gradient-based
C combined M and B

Table 5.1. Description of codename letters of the algorithm configurations.

In order to answer the research questions, two extra configurations are added to
the comparison as well. The first one is the MGGP algorithm without LCFs. It
shall have no codename assigned and will be referred to simply as MGGP. The second
extra configuration, introduced specifically to answer RQ3, is MGGP without LCFs
but with numerical constants tuned using the same gradient-based approach as for
the LCF parameters. It will be referred to as MGGP+TC (TC standing for Tuned
Constants). These two extra configurations should serve as baselines. Comparison
with MGGP should show whether LCFs bring an improvement, while comparison with
MGGP+TC should show whether it is the explicit linear combinations that make the
difference (if any), or rather the gradient-based tuning itself.

Note. MGGP+TC is very similar to the approach proposed in [52, 54]. In both of these
works, numeric leaf nodes were tuned using a gradient descent. The main differences are
(1) we use MGGP as the base algorithm (they used GP), and (2) we use the iRprop−

update rule while [52] used simple gradient descent with adaptive learning rate and [54]
used the Levenberg-Marquardt algorithm.

5.5.2 Algorithm parameters

The introduction of LCFs naturally comes with a number of parameters that exactly
specify the behaviour of the algorithm. Table 5.2 summarises them together with those
that come from the base algorithm of MGGP. The values of MGGP parameters are
based on the defaults provided by the GPTIPS2 [33] package with a few exceptions,
namely 𝐺𝑚𝑎𝑥, 𝐷𝑚𝑎𝑥 and the function set. The values of LCF-related parameters were
chosen manually based on preliminary experiments. All MGGP parameters are the
6 As we argued in 5.1.3, we don’t consider globally synchronised mode with mutation-only tuning as

sensible and therefore we omit this combination.
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same across all configurations with the exception of configurations using gradient-based
tuning where we decided to halve the population size because more time is spent with
each individual due to the tuning and there would be little time left for structural
exploration.

param. description value

M
G
G
P

𝐺𝑚𝑎𝑥 maximum number of genes 10
𝑁𝑚𝑎𝑥 maximum number of nodes ∞
𝐷𝑚𝑎𝑥 maximum depth of a gene 11

|𝑃 | population size 100 (50)
|𝑇 | tournament size 10 (5)
𝐸 number of top individuals directly copied to next gen. (elitism) 15 (8)

𝑃𝑟𝑥 probability of crossover 0.84
𝑃𝑟𝑚 probability of mutation 0.14

𝑃𝑟𝐻𝐿𝑥 probability of high-level crossover (given a crossover takes place) 0.2
𝑃𝑟𝐿𝐿𝑥 probability of low-level crossover (given a crossover takes place) 1 − 𝑃𝑟𝐻𝐿𝑥
𝑟𝐻𝐿𝑥 probability of a gene being selected for high-level crossover 0.5
𝑃𝑟𝑆𝑚 probability of subtree mutation (given a mutation takes place) 1 − 𝑃𝑟𝐶𝑚 − 𝑃𝑟𝑊𝑚
𝑃𝑟𝐶𝑚 probability of constant leaf node mutation 0.05
𝜎𝐶𝑚 variance of the gaussian distribution for constant leaf node mutation 0.1

LC
F

𝑃𝑟𝑊𝑚 probability of LCF weights mutation 0.05
𝜎𝑊𝑚 variance of the gaussian distribution for LCF weights mutation 3

𝐵𝑝𝑠𝑡𝑒𝑝𝑠 base number𝑎 of backprop.+update steps 25
𝐵𝑝𝑚𝑖𝑛 minimum number𝑎 of backprop.+update steps 2

𝑎 The actual number of backprop.+update steps is determined as max{𝐵𝑝𝑚𝑖𝑛, 𝐵𝑝𝑠𝑡𝑒𝑝𝑠 − #𝑛𝑜𝑑𝑒𝑠}.

Table 5.2. Algorithm parameters. Values in parentheses indicate the values used in
configurations which employ gradient-based tuning, i.e. configurations UB, UC, SB, SC,

GB, GC, and MGGP+TC.

Function set (non-terminal nodes) available to the algorithm were (𝑥 and 𝑦 being
placeholders for child nodes): 𝑥 + 𝑦, 𝑥 − 𝑦, 𝑥𝑦, sin 𝑥, cos 𝑥, e𝑥, 1

1+e−𝑥 , tanh 𝑥, sin 𝑥
𝑥 ,

ln(1 + e𝑥), e−𝑥2 , 𝑥2, 𝑥3, 𝑥4, 𝑥5, and 𝑥6.

5.5.3 Testingmethodology and environment

For each algorithm configuration and benchmark, 30 runs were computed, each with
a different training/testing sampling. Each run was limited to 7 minutes of wall-clock
time. Fitness is R2 on training data and is maximized. After a run is finished, the final
model (the one with best training fitness) is evaluated on the testing set.

All tests were carried out on the National Grid Infrastructure MetaCentrum (see
Acknowledgements). We ensured that all runs were performed on nodes of identical
configuration7.

7 2x 8-core Intel Xeon E5-2650 v2 2.6 GHz, Debian 8.7 (Jessie), SPECfp2006 [61] score 490 (30.6 per
core). However, the algorithms are single-threaded so only one core was utilized.
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5.5.4 Toy problems

We provide two toy problems, called S5D and RS5D. The function that produces the
S5D problem is defined as

𝑆(𝘅) = 1
1 + e−𝑥1

(5.5)

where 𝘅 is 5-dimensional. In other words, it is a sigmoid function applied to the first
dimension; the target is independent of the other dimensions.

The function that produces the RS5D problem is defined as

𝑅𝑆(𝘅) = 𝑆(𝗥𝘅) (5.6)

where 𝘅 is 5-dimensional and 𝗥 is a rotation matrix that rotates the feature vector by 𝜋
4

in all pairs of axes. Therefore, in the RS5D problem the target value depends on all
features.

Both training and testing data is uniformly randomly sampled from the inter-
val [−10, 10]5, there are 500 samples in the training set and 1250 samples in the testing
set.

The expectation is following:

. All configurations should perform well on the S5D problem. The target function
is very easy because the sigmoid function is among the functions available to the
algorithm (see Section 5.5.2).
. On the RS5D problem, the algorithm with LCFs should perform significantly better

than without them because LCFs provide means to do the rotation directly, without
the need to arrange the coefficients by manipulating the tree structure.

We have no expectations regarding the performance of the three different operation
modes as well as the base-TC configuration.

5.5.5 Results on toy problems

The results are presented in Tables 5.3 and 5.4. For both tables, the first two rows
show the performance of the base (pure MGGP) and base-TC (MGGP with tunable
constants) configurations, the columns “vs. base” and “vs. base-TC” indicate whether
the corresponding configuration was better than (denoted by ✓), worse than (denoted
by ⨯) or indifferent to (denoted by blank space) the base and base-TC configuration
respectively, which was established using the MWUT on the testing R2 with the signifi-
cance level 𝛼 = 0.01. Columns “mean LCF”, “mean consts” and “mean depth” provide
a high-level view on the overall structure of the resulting models by showing the mean
proportion of LCF nodes among non-constant leaf nodes (i.e. #LCFs

#LCFs + #original features ),
mean proportion of constant leaf nodes among all leaf nodes and mean maximum depth
of the models respectively.

Discussion. The first expectation – that all configurations work well on the unrotated
problem – was confirmed, as can be clearly seen in Table 5.3. The second expectation
– that the rotated problem is easy for configurations with LCFs but not for the base –
was confirmed as well, though not for all configurations.

In Table 5.4 it can be seen that UM and SM were not significantly better or worse
than MGGP or MGGP+TC and GC was significantly worse than MGGP. Those con-
figurations also show smaller ratios of LCFs than the other configurations. For UM and
SM, this indicates that tuning the weights only by mutation is not enough and thus
the LCFs are not used as much and the performance is similar to MGGP(+TC). The
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config.
training R2 testing R2 vs.

MGGP
vs.

MGGP+TC
mean
LCF

mean
consts

mean
depthmedian max

min median max
min

MGGP 1 1
1 1 1

1 – 0.161 4.33
MGGP+TC 1 1

1 1 1
1 – 0.157 4.40

UM 1 1
1 1 1

1 0.482 0.061 4.10
UB 1 1

1 1 1
1 0.576 0.053 3.50

UC 1 1
>0.999 1 1

>0.999 0.521 0.056 3.77
SM 1 1

1 1 1
1 0.469 0.054 4.13

SB 1 1
1 1 1

1 0.475 0.052 4.20
SC 1 1

>0.999 1 1
>0.999 0.480 0.054 3.73

GB 1 1
1 1 1

1 0.380 0.076 4.23
GC 1 1

>0.999 1 1
>0.999 0.352 0.073 4.87

Table 5.3. Results on the S5D toy problem. The columns “vs. MGGP” and “vs.
MGGP+TC” mark whether the configuration was significantly better or worse than MGGP
and MGGP+TC respectively, as established by MWUT. The column “mean LCF” shows
the mean proportion of LCF nodes among non-constant leaf nodes. The column “mean

consts” shows the mean proportion of numeric leaf nodes among all leaf nodes.

config.
training R2 testing R2 vs.

MGGP
vs.

MGGP+TC
mean
LCF

mean
consts

mean
depthmedian max

min median max
min

MGGP 0.995 0.997
0.942 0.991 0.996

0.912 – 0.016 10.90
MGGP+TC 0.990 0.997

0.861 0.987 0.995
0.215 – 0.061 10.90

UM 0.993 >0.999
0.930 0.990 >0.999

0.907 0.524 0.029 10.63
UB >0.999 1

>0.999 >0.999 1
>0.999 ✓ ✓ 0.980 0.000 4.60

UC >0.999 1
>0.999 >0.999 1

>0.999 ✓ ✓ 0.974 0.000 4.63
SM 0.995 >0.999

0.158 0.993 >0.999
-0.168 0.579 0.031 10.90

SB >0.999 >0.999
>0.999 >0.999 >0.999

>0.999 ✓ ✓ 0.900 0.001 8.10
SC >0.999 >0.999

>0.999 >0.999 >0.999
>0.999 ✓ ✓ 0.954 0.005 7.77

GB >0.999 >0.999
0.855 >0.999 >0.999

0.659 ✓ ✓ 0.817 0.008 8.53
GC 0.974 >0.999

0.872 0.962 >0.999
0.736 ⨯ 0.651 0.032 6.70

Table 5.4. Results on the RS5D toy problem. The columns “vs. MGGP” and “vs.
MGGP+TC” mark whether the configuration was significantly better or worse than MGGP
and MGGP+TC respectively, as established by MWUT. The column “mean LCF” shows
the mean proportion of LCF nodes among non-constant leaf nodes. The column “mean

consts” shows the mean proportion of numeric leaf nodes among all leaf nodes.

case of GC is interesting when compared to GB. Both GB and GC use backpropagation
to tune the weights but GC also mutates them. GB was able to beat both base and
base-TC while GC was beaten by base and indifferent to base-TC. This indicates that
in the globally synchronised mode, the random perturbations are detrimental to the
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performance of the algorithm. A possible reason for these results of GC is that because
of the global synchronisation, there is no “population” of LCFs to choose from and
therefore bad mutations cannot be subject to selection pressure.

We can also see that the successful configuration have high LCF ratio which indicates
that the LCFs are really being used. Another interesting aspect is the depth usage:
MGGP, MGGP+TC, UM and SM configurations utilise almost all the available depth
(limit was 11) while SB, SC and GB utilise only about 8 levels of depth, and UB and
UC even use only about 4.6 levels on average. This is an indication that the LCFs
provide good projections that don’t need to be manipulated much further.

Regarding the performance of MGGP+TC, it was shown indifferent to MGGP and
other configurations are in almost identical relationship to it as they are to MGGP.
This indicates that in this case, gradient-based tuning of constants neither improves
nor degrades the performance of the pure MGGP algorithm.

5.5.6 Realistic problems

There are 9 problems that we consider “realistic” because of the number of samples,
dimensions, their real-world nature, or a combination of these criteria.

K11C is an artificial dataset, a modified version of Keijzer11 from [34]. The original
Keijzer11 is defined as

𝑓(𝑥1, 𝑥2) = 𝑥1𝑥2 + sin ((𝑥1 − 1) (𝑥2 − 1))

while our modified version adds several numerical constants throughout the formula
and is defined as

𝑓(𝑥1, 𝑥2) = (27.22𝑥1 − 4.54) (−0.39𝑥2) + 11.46 sin ((0.21𝑥1 − 1) (𝑥2 + 16.6) + 1.97)

We introduced the modification so that the algorithms cannot make a good model
using only the function and variable nodes. The training set is 500 uniformly randomly
sampled datapoints from the range [−3, 3]2. The testing set is a grid from the same
range with spacing of 0.01 in each dimension, resulting in 361201 datapoints.

UB5D (Unwrapped Ball 5D) [36] is also an artificial dataset. It is defined as

𝑓(𝘅) = 10
5 + ∑𝑁

𝑖=1(𝑥𝑖 − 3)2

where 𝑁 = 5. The training and testing sets are 1024 and 5000 uniformly randomly
sampled from the range [−0.25, 6.35]5.

ASN, CCS, ENC, ENH are four real-world datasets that we have already used in the pre-
vious chapter and we use them here as well, in exactly the same way. See Section 4.3.2
for details.

PS, PS-I (pendulum swingup) are two datasets from a reinforcement learning (RL) do-
main. They represent value functions of an inverted pendulum swing-up problem,
computed by a numeric approximator. They are 2-dimensional (pendulum angle and
angular velocity) and the value for a given point is the value of the state w.r.t. the tar-
get position which, for the PS variant, is located at [0, 0]. The PS-I variant is identical
except the first coordinate (pendulum angle) is shifted by 𝜋

2 so the target position is at
[±𝜋, 0] (due to the circular nature of the problem). There are 441 samples which are
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Figure 5.3. Depiction of the PS and PS-I datasets. Note that the non-smoothness of the
contour lines is an artifact of the display method and the fact, that we do not have the
actual function available and therefore we display the data. An optimal V-function (which

this data approximates), if it was known, would be smooth [62–63]

randomly split into training and testing sets in the proportion 70:30. Both datasets are
depicted in Figure 5.3.

MM (magnetic manipulation) is another RL-based dataset. It represents a value func-
tion of a 2-coil linear magnetic manipulator that manipulates a steel ball’s position
on a linear track, again computed by a numeric approximator. It is also 2-dimensional
(the ball’s position and velocity). There are 729 samples randomly split into training
and testing sets in the proportion 70:30. The dataset is depicted in Figure 5.4.
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Figure 5.4. Depiction of the MM dataset.

5.5.7 Results on realistic problems

First, we present a summary of which configurations were better than, indifferent to or
worse than the MGGP and MGGP+TC configurations, which can be seen in Table 5.5.
The table shows how a particular configuration was compared to the baseline configu-
rations across all the datasets, using the same statistical test and its settings as for the
“vs. MGGP” and “vs. MGGP+TC” columns in the tables in previous subsection.

First of all, we can see that MGGP+TC did not outperform MGGP on any dataset
and was outperformed by MGGP on three of them. Next, we can see that UM and
SM were, except for a single case, indifferent to MGGP and outperformed MGGP+TC
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config. MGGP+TC UM UB UC SM SB SC GB GC
better than MGGP 1 5 5 1 3 3

indifferent to MGGP 6 8 3 3 8 4 4 6 3
worse than MGGP 3 1 1 2 2 3 6

better than MGGP+TC – 4 5 6 3 5 4
indifferent to MGGP+TC – 5 4 3 6 4 5 7 6
worse than MGGP+TC – 2 3

Table5.5. Summary results for each configuration on the realistic problems. The numbers
show on how many problems was the particular configuration better than, indifferent to,

or worse than the baseline.

on 4 and 3 datasets respectively. Also, GB and GC were never better than neither
MGGP nor MGGP+TC.

The results for individual datasets are presented in Tables 5.6 through 5.14 and
Figures 5.5 through 5.13 which show box plots of the final values.

Discussion. In the summary results (see Table 5.5) we can see that the configurations
using globally synchronised mode were in no case better than either of the baselines. We
hypothesise that this is caused by the fact that both structurally good and structurally
bad individuals can be present in the population. These, in turn, “fight” each other
when the LCF parameters are to be updated, stalling the progress. The usefulness of
the globally synchronised mode is therefore doubtful.

We can also see that the (locally) synchronised mode does not perform as well as
the unsynchronized mode. We hypothesise that this is caused by the need to resolve
conflicts when structural changes (i.e. subtree mutation or crossover) take place (see
Section 5.1.3; synchronized mode). After a conflict is resolved, some LCFs necessarily
have their weights changed from what they were before the structural change happened
which were presumably optimised. These optimised weights are then lost due to the
conflict resolution. Also, this extra step requires evaluation of the individual multiple
times (once for each set of conflicting sets of LCFs) which takes some time.

Another clearly visible result is that using only mutation for tuning the weights makes
almost no difference compared to MGGP which is in line with the results on the toy
problems (see Section 5.5.5). However, the configurations tuned by gradient descent
(except for GB which we already discussed and MGGP+TC which we discuss below)
were able to improve on the baseline performance of MGGP, especially UB and UC.
This indicates that this technique is a viable approach to tune the LCFs.

The MGGP+TC configuration, i.e. MGGP where the numerical constants are tuned
in the same way as are the LCF parameters in LCF-enabled configurations, did not show
an improvement over MGGP. Also, all the LCF-enabled configurations compared better
against MGGP+TC than against MGGP. At first glance, this seems to be in contradic-
tion to [52] and [54] which both tested the idea of gradient-based tuning of numerical
constants. Although their algorithms are similar in principle, there are significant dif-
ferences to our setup. The one we deem the most important to the underperformance
of MGGP+TC is that the base algorithm is MGGP rather than GP that was used in
both works. We think that the effect of having multiple genes combined optimally by
top-level linear combination is itself so powerful that it already greatly improves the
performance when compared to ordinary GP. Optimization of the numerical constants
then introduces extra computational cost that degrades the performance of the algo-
rithm. This, however, does not happen when the optimized constants are bound to
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config.
training R2 testing R2 vs.

MGGP
vs.

MGGP+TC
mean
LCF

mean
consts

mean
depthmedian max

min median max
min

MGGP 0.981 0.997
0.971 0.976 0.995

0.965 ✓ – 0.070 11.00
MGGP+TC 0.976 0.994

0.963 0.970 0.991
0.956 ⨯ – 0.182 10.97

UM 0.986 0.997
0.975 0.981 0.996

0.969 ✓ ✓ 0.542 0.072 10.97
UB 0.998 >0.999

0.990 0.996 >0.999
0.978 ✓ ✓ 0.873 0.038 8.87

UC 0.998 >0.999
0.992 0.997 >0.999

-3.2e29 ✓ ✓ 0.874 0.024 8.53
SM 0.986 0.997

0.973 0.981 0.997
0.966 ✓ ✓ 0.595 0.068 11.00

SB 0.991 0.998
0.954 0.989 0.998

0.945 ✓ ✓ 0.603 0.032 10.13
SC 0.992 0.998

0.954 0.990 0.997
0.948 ✓ ✓ 0.622 0.026 9.93

GB 0.972 0.993
0.958 0.967 0.992

0.952 0.549 0.028 10.53
GC 0.971 0.989

0.956 0.966 0.987
0.949 ⨯ 0.177 0.085 10.40

Table 5.6. Results on the K11C problem. Columns “vs. MGGP” and “vs. MGGP+TC”
mark whether the configuration was significantly better, worse, or indifferent to the base
and base-TC configurations based on MWUT. The column “mean LCF” shows the mean
proportion of LCF nodes among non-constant leaf nodes. The column “mean consts” shows

the mean proportion of constant leaf nodes among all leaf nodes.

Figure 5.5. Training (left) and testing (right) R2 boxplots over all 30 runs on the K11C
dataset. Note that for UC, one test-set outlier at -3.24e29 is not shown.

the features, as is done in LCFs. This suggests that, for MGGP, not only the tuning
is important, but also the structure of LCFs.

On the K11C dataset (see Table 5.6 and Figure 5.5) we can see a strong result in
favour of UB and UC configurations. The true relationship contains several terms of the
form 𝑎𝑥 + 𝑏 (see Section 5.5.6), which is exactly what LCFs are capable to express, so
the result of the LCF-enabled configuration is a strong indication that LCFs themselves
are beneficial.
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config.
training R2 testing R2 vs.

MGGP
vs.

MGGP+TC
mean
LCF

mean
consts

mean
depthmedian max

min median max
min

MGGP 0.885 0.976
0.808 0.866 0.968

0.796 – 0.032 11.00
MGGP+TC 0.851 0.972

0.818 0.835 0.966
0.800 – 0.111 10.60

UM 0.884 0.965
0.821 0.862 0.966

0.802 0.539 0.009 10.93
UB 0.857 0.887

0.828 0.828 0.856
0.580 ⨯ 0.823 0.009 5.33

UC 0.858 0.932
0.824 0.826 0.892

0.807 ⨯ 0.802 0.024 6.40
SM 0.907 0.982

0.813 0.890 0.977
0.805 0.533 0.015 10.87

SB 0.839 0.972
0.802 0.816 0.967

0.796 ⨯ 0.553 0.010 6.47
SC 0.839 0.930

0.816 0.818 0.908
0.795 ⨯ 0.601 0.016 6.13

GB 0.825 0.881
0.761 0.808 0.873

0.749 ⨯ ⨯ 0.334 0.014 8.00
GC 0.828 0.902

0.778 0.808 0.887
0.783 ⨯ ⨯ 0.068 0.013 8.13

Table5.7. Results on the UB5D problem. Columns “vs. MGGP” and “vs. MGGP+TC”
mark whether the configuration was significantly better, worse, or indifferent to the base
and base-TC configurations based on MWUT. The column “mean LCF” shows the mean
proportion of LCF nodes among non-constant leaf nodes. The column “mean consts” shows

the mean proportion of constant leaf nodes among all leaf nodes.
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Figure 5.6. Training (left) and testing (right) R2 boxplots over all 30 runs on the UB5D
dataset. Note that for UB, one test-set outlier at 0.580 is not shown.

On the UB5D dataset (see Table 5.7 and Figure 5.6), the LCF-enabled configurations
with gradient-based tuning showed worse behaviour than MGGP. We hypothesize this
is caused by the fact that the true function is a single fraction and there is no division
operator in the function set, because of which the potentially good optimization of
the LCF parameters can push the models into local optima. Without the gradient-
tuned LCRs (i.e. the MGGP, MGGP+TC, UM, and SM configurations), the algorithm
doesn’t waste time optimizing the parameters (except for occasional mutation for the
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config.
training R2 testing R2 vs.

MGGP
vs.

MGGP+TC
mean
LCF

mean
consts

mean
depthmedian max

min median max
min

MGGP 0.842 0.892
0.720 0.824 0.885

0.625 ✓ – 0.063 11.00
MGGP+TC 0.808 0.868

0.719 0.783 0.855
0.658 ⨯ – 0.089 11.00

UM 0.845 0.890
0.787 0.824 0.890

0.729 ✓ 0.461 0.021 10.93
UB 0.849 0.914

0.729 0.818 0.893
-0.719 0.834 0.005 6.30

UC 0.841 0.894
0.705 0.818 0.880

0.623 0.828 0.001 5.77
SM 0.836 0.887

-7.226 0.811 0.884
-4.135 ✓ 0.462 0.020 11.00

SB 0.804 0.842
0.675 0.770 0.829

0.624 ⨯ 0.651 0.013 7.50
SC 0.800 0.867

0.710 0.760 0.861
0.653 ⨯ 0.680 0.011 7.43

GB 0.817 0.860
0.631 0.788 0.880

0.584 0.430 0.012 8.80
GC 0.778 0.849

0.669 0.757 0.859
0.645 ⨯ 0.309 0.023 8.47

Table 5.8. Results on the ASN problem. Columns “vs. MGGP” and “vs. MGGP+TC”
mark whether the configuration was significantly better, worse, or indifferent to the base
and base-TC configurations based on MWUT. The column “mean LCF” shows the mean
proportion of LCF nodes among non-constant leaf nodes. The column “mean consts” shows

the mean proportion of constant leaf nodes among all leaf nodes.
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Figure 5.7. Training (left) and testing (right) R2 boxplots over all 30 runs on the ASN
dataset. Note that for UB, one test-set outlier at -0.719 is not shown, as well as two test-set

outliers at -7.226 and -4.135 for SM.

UM and SM variants) and just tries to find a structure that fits well on the range of the
data. Similar result can be observed on the ASN dataset (see Table 5.8 and Figure 5.7),
although not as pronounced. Also, since ASN is a real-world dataset and we don’t know
the true underlying relationship, we cannot make the same hypothesis.

A fact worth pointing out is that the presented configurations, especially UB and UC,
performed very well on the RL domain datasets (PS, PS-I, MM). There are common
characteristics of these three datasets: low dimensionality (2 dimensions), the target
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config.
training R2 testing R2 vs.

MGGP
vs.

MGGP+TC
mean
LCF

mean
consts

mean
depthmedian max

min median max
min

MGGP 0.869 0.890
0.848 0.844 0.868

-8.68e7 – 0.042 10.97
MGGP+TC 0.856 0.874

0.840 0.832 0.865
-2.331 – 0.042 10.97

UM 0.866 0.885
0.851 0.839 0.865

-1.16e6 0.496 0.026 11.00
UB 0.901 0.924

0.869 0.859 0.892
0.806 ✓ ✓ 0.870 0.000 4.77

UC 0.899 0.931
0.854 0.858 0.880

0.758 ✓ ✓ 0.885 0.011 4.30
SM 0.862 0.885

0.846 0.837 0.882
0.799 0.467 0.026 11.00

SB 0.889 0.906
0.868 0.851 0.898

-4.74e4 ✓ 0.676 0.000 6.10
SC 0.893 0.908

0.857 0.846 0.873
-290.91 0.707 0.019 5.60

GB 0.859 0.885
0.844 0.825 0.867

-99.601 0.430 0.026 9.73
GC 0.854 0.867

0.836 0.830 0.879
-7.35e6 0.252 0.004 7.40

Table 5.9. Results on the CCS problem. Columns “vs. MGGP” and “vs. MGGP+TC”
mark whether the configuration was significantly better, worse, or indifferent to the base
and base-TC configurations based on MWUT. The column “mean LCF” shows the mean
proportion of LCF nodes among non-constant leaf nodes. The column “mean consts” shows

the mean proportion of constant leaf nodes among all leaf nodes.
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Figure 5.8. Training (left) and testing (right) R2 boxplots over all 30 runs on the CCS
dataset. Note that multiple outliers are not shown: at -86.81e6 for base, at -2.331 for
base-TC, at -1.16e6 and 0.442 for UM, at -47.41e3 for SB, at -290.9 and 0.478 for SC, at

-99.60 and -5.382 for GB, and at -7.35e6 for GC, all of them for test set.

shape is smooth, without sharp peaks or rapid oscillations, and there is no noise. It is
possible that LCFs are well suited to these kinds of problems. This explanation would
be supported also by the results on the toy problems and the K11C dataset as those,
too, share these characteristics.
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config.
training R2 testing R2 vs.

MGGP
vs.

MGGP+TC
mean
LCF

mean
consts

mean
depthmedian max

min median max
min

MGGP 0.974 0.981
0.969 0.970 0.982

0.963 – 0.050 11.00
MGGP+TC 0.972 0.980

0.970 0.968 0.973
0.962 – 0.054 10.97

UM 0.974 0.984
0.971 0.970 0.980

0.961 0.548 0.031 10.97
UB 0.974 0.988

0.970 0.969 0.982
0.957 0.751 0.006 6.60

UC 0.975 0.986
0.972 0.971 0.985

0.961 ✓ 0.772 0.000 5.27
SM 0.974 0.985

0.970 0.969 0.979
0.960 0.520 0.009 10.90

SB 0.974 0.979
0.969 0.968 0.973

0.965 0.609 0.000 7.23
SC 0.973 0.980

0.969 0.968 0.976
0.962 0.609 0.003 7.27

GB 0.971 0.980
0.967 0.967 0.981

0.954 ⨯ 0.551 0.008 8.53
GC 0.971 0.973

0.968 0.967 0.972
0.957 0.123 0.008 8.50

Table5.10. Results on the ENC problem. Columns “vs. MGGP” and “vs. MGGP+TC”
mark whether the configuration was significantly better, worse, or indifferent to the base
and base-TC configurations based on MWUT. The column “mean LCF” shows the mean
proportion of LCF nodes among non-constant leaf nodes. The column “mean consts” shows

the mean proportion of constant leaf nodes among all leaf nodes.
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Figure 5.9. Training (left) and testing (right) R2 boxplots over all 30 runs on the ENC
dataset.
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config.
training R2 testing R2 vs.

MGGP
vs.

MGGP+TC
mean
LCF

mean
consts

mean
depthmedian max

min median max
min

MGGP 0.998 0.998
0.996 0.997 0.998

0.995 ✓ – 0.030 11.00
MGGP+TC 0.997 0.998

0.994 0.996 0.998
0.994 ⨯ – 0.063 10.97

UM 0.998 0.998
0.996 0.997 0.998

0.995 ✓ 0.501 0.010 10.93
UB 0.997 0.998

0.993 0.997 0.998
0.991 0.730 0.000 4.70

UC 0.998 0.998
0.995 0.997 0.998

0.994 0.732 0.003 5.90
SM 0.997 0.998

0.996 0.997 0.998
0.996 ✓ 0.546 0.032 10.90

SB 0.997 0.998
0.993 0.997 0.998

0.993 0.592 0.003 6.87
SC 0.997 0.998

0.990 0.997 0.998
0.988 0.610 0.000 6.97

GB 0.996 0.998
0.990 0.996 0.997

0.990 ⨯ ⨯ 0.487 0.006 8.07
GC 0.996 0.998

0.989 0.996 0.997
0.986 ⨯ ⨯ 0.099 0.005 8.90

Table5.11. Results on the ENH problem. Columns “vs. MGGP” and “vs. MGGP+TC”
mark whether the configuration was significantly better, worse, or indifferent to the base
and base-TC configurations based on MWUT. The column “mean LCF” shows the mean
proportion of LCF nodes among non-constant leaf nodes. The column “mean consts” shows

the mean proportion of constant leaf nodes among all leaf nodes.
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Figure 5.10. Training (left) and testing (right) R2 boxplots over all 30 runs on the ENH
dataset.
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config.
training R2 testing R2 vs.

MGGP
vs.

MGGP+TC
mean
LCF

mean
consts

mean
depthmedian max

min median max
min

MGGP 0.955 0.988
0.879 0.909 0.978

-0.664 – 0.088 11.00
MGGP+TC 0.913 0.969

0.808 0.859 0.960
0.719 – 0.156 10.87

UM 0.960 0.993
0.877 0.918 0.987

0.683 0.527 0.050 11.00
UB 0.985 0.994

0.963 0.971 0.994
0.881 ✓ ✓ 0.894 0.025 9.73

UC 0.985 0.996
0.930 0.966 0.992

0.916 ✓ ✓ 0.885 0.026 9.43
SM 0.946 0.987

0.846 0.907 0.981
-0.185 0.528 0.052 11.00

SB 0.977 0.991
0.881 0.955 0.984

0.819 ✓ ✓ 0.598 0.037 10.37
SC 0.968 0.993

0.885 0.958 0.978
0.694 ✓ 0.633 0.050 9.60

GB 0.927 0.983
0.727 0.885 0.985

-5.11e3 0.466 0.039 10.47
GC 0.880 0.961

0.805 0.822 0.941
0.627 ⨯ 0.165 0.044 9.70

Table 5.12. Results on the PS problem. Columns “vs. MGGP” and “vs. MGGP+TC”
mark whether the configuration was significantly better, worse, or indifferent to the base
and base-TC configurations based on MWUT. The column “mean LCF” shows the mean
proportion of LCF nodes among non-constant leaf nodes. The column “mean consts” shows

the mean proportion of constant leaf nodes among all leaf nodes.
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Figure 5.11. Training (left) and testing (right) R2 boxplots over all 30 runs on the PS
dataset. Note that multiple outliers are not shown: at -0.664 for base, at -0.185 for SM,

and at -5.11e3 for GB, all of them for test set.
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config.
training R2 testing R2 vs.

MGGP
vs.

MGGP+TC
mean
LCF

mean
consts

mean
depthmedian max

min median max
min

MGGP 0.931 0.979
0.841 0.885 0.970

0.175 – 0.086 11.00
MGGP+TC 0.908 0.969

0.728 0.864 0.959
-4.771 – 0.171 10.93

UM 0.938 0.992
0.886 0.899 0.975

0.606 ✓ 0.517 0.046 10.97
UB 0.970 0.993

0.938 0.955 0.987
0.886 ✓ ✓ 0.895 0.030 8.93

UC 0.976 0.991
0.915 0.962 0.988

0.865 ✓ ✓ 0.912 0.019 8.77
SM 0.937 0.989

0.851 0.910 0.980
-6.844 0.498 0.069 11.00

SB 0.942 0.988
0.884 0.928 0.992

0.769 ✓ 0.569 0.028 10.37
SC 0.952 0.989

0.836 0.931 0.990
0.788 ✓ ✓ 0.623 0.029 10.00

GB 0.887 0.966
0.694 0.853 0.967

0.505 0.518 0.051 10.27
GC 0.862 0.925

0.768 0.829 0.915
-2.86e3 ⨯ 0.151 0.041 10.10

Table 5.13. Results on the PS-I problem. Columns “vs. MGGP” and “vs. MGGP+TC”
mark whether the configuration was significantly better, worse, or indifferent to the base
and base-TC configurations based on MWUT. The column “mean LCF” shows the mean
proportion of LCF nodes among non-constant leaf nodes. The column “mean consts” shows

the mean proportion of constant leaf nodes among all leaf nodes.
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Figure 5.12. Training (left) and testing (right) R2 boxplots over all 30 runs on the PS-I
dataset. Note that multiple outliers are not shown: at -4.771 and -0.580 for base-TC, at

-6.844 for SM, and at -2.86e3 for GC, all of them for test set.
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config.
training R2 testing R2 vs.

MGGP
vs.

MGGP+TC
mean
LCF

mean
consts

mean
depthmedian max

min median max
min

MGGP 0.966 0.987
0.954 0.960 0.983

0.930 – 0.151 11.00
MGGP+TC 0.966 0.987

0.948 0.958 0.982
0.939 – 0.231 10.93

UM 0.970 0.988
0.957 0.961 0.987

0.947 0.552 0.085 11.00
UB 0.988 0.997

0.973 0.985 0.995
0.969 ✓ ✓ 0.763 0.032 9.43

UC 0.988 0.996
0.969 0.985 0.995

0.943 ✓ ✓ 0.797 0.038 9.03
SM 0.970 0.989

0.958 0.965 0.982
0.937 0.565 0.098 11.00

SB 0.976 0.991
0.967 0.973 0.986

0.961 ✓ ✓ 0.559 0.040 9.77
SC 0.974 0.997

0.947 0.971 0.996
0.935 ✓ ✓ 0.563 0.067 10.30

GB 0.967 0.982
0.941 0.959 0.981

0.928 0.462 0.076 10.40
GC 0.961 0.977

0.942 0.952 0.969
0.928 ⨯ 0.248 0.071 10.03

Table 5.14. Results on the MM problem. Columns “vs. MGGP” and “vs. MGGP+TC”
mark whether the configuration was significantly better, worse, or indifferent to the base
and base-TC configurations based on MWUT. The column “mean LCF” shows the mean
proportion of LCF nodes among non-constant leaf nodes. The column “mean consts” shows

the mean proportion of constant leaf nodes among all leaf nodes.
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Figure 5.13. Training (left) and testing (right) R2 boxplots over all 30 runs on the MM
dataset.
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5.6 Answers to research questions

RQ1: Are LCFs beneficial when an affine transformation is truly present in the data? Yes,
LCFs are beneficial in this case as the results on the toy problem have revealed. Five
out of eight configurations with LCFs were shown to be significantly better than an un-
modified MGGP. Neither of the configurations that used only mutation to tune the
LCF parameters were among the successful ones, and the configuration with globally
synchronised mode and combined gradient-based and random mutation tuning was even
significantly worse.

RQ2: Are LCFs beneficial in other cases? There is no clear answer to this question. LCF-
enabled configurations were successful on the K11C, CCS, PS, PS-I, and MM datasets
and indifferent to or worse than the baseline on the UB5D, ASN, ENC, and ENH
datasets. Of the datasets where a success was recorded, K11C is an artificial dataset
where the defining function has elements that are suitable to LCFs, and PS, PS-I, and
MM datasets are all datasets from reinforcement learning domain of which PS and PS-I
clearly show features (especially the central diagonal “wall” in PS, see Figure 5.3) that
could be modelled easier with an affine transformation available.

RQ3: Are LCFs with gradient-based tuning better than using the same kind of tuning on

numeric constants? Yes – in no experiment was the MGGP+TC configuration (the con-
figuration with numeric leaf nodes tuned by gradient-based tuning) significantly better
than the MGGP baseline, while configurations with LCFs have shown improvement,
especially the UB and UC configurations which both employ gradient-based tuning.
Since LCF-enabled configurations with mutation-based tuning only were not as suc-
cessful, it can be argued that it is the combination of LCFs and gradient-based tuning
that makes the difference.

RQ4: Which algorithm configurationwith LCFs should be adopted as the best one, or the

default, if any? There were two configurations that were similarly successful. Both
of them use the unsynchronized mode and gradient-based tuning and they differ only
in that one uses also mutation of the LCF parameters while the other one does not.
We therefore conclude that these configurations should be the first choice if one decides
to use LCFs.

5.7 Summary and conclusions

In this chapter we have presented a new type of leaf node for use in SR – a linear com-
bination of feature variables, or LCF. The coefficients of these linear combinations can
be tuned in two major ways – by random mutation, or by a gradient-based approach
which utilizes a form of backpropagation algorithm and an update rule to adjust the
weights accordingly. We also presented three operation modes: an “unsynchronized”
mode where there are no restrictions put on the coefficients of the LCF nodes, a “syn-
chronized” mode where all LCFs in an individual form a single affine transformation,
and a “globally synchronized” mode where all LCFs across the whole population form
a single such transformation.

We have performed two sets of experiments. In the first set we used a very simple
problem to test the assumption that LCFs can help when an affine transformation is
actually present in the data. The results on this toy problem confirmed this assumption
as the algorithm configurations with tuned LCFs (with the single exception of the GC
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configuration) were able to produce (almost) perfectly fitting models while the other
ones were not.

In the second set of experiments, we have run the algorithm configurations on mul-
tiple datasets, both artificial and real-world. The results have shown that both “un-
synchronized” configurations with gradient-based tuning (UB and UC) were the best
performers as they improved upon MGGP on 5 out of 9 datasets, and were detrimental
only on a single dataset. We have shown that gradient-based tuning itself is not the
cause of the improvement as a control configuration where numerical constants were
tuned this way did not improve upon MGGP but, in fact, showed worse performance.

We consider the result a significant one and the LCFs a worthy extension of MGGP
and possibly other GP-based algorithms.
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Chapter6
Feature space transformations in dynamic

scenarios

In Chapter 5 we have examined the benefit of using LCFs in a classical static regression
scenario. In this Chapter we examine another application of this technique, that is
dynamic scenarios where the target is gradually changing.

First, we cover the basics of dynamic optimization and related research in this field.
Next, we review existing research regarding dynamic SR scenarios. We then proceed
with introducing the problem we focus on in this chapter – dynamic SR scenarios with
gradually changing targets – for which we propose to use LCFs. Finally, we perform
extensive experimental evaluation of this idea and discuss the results and implications.

6.1 Evolutionary Dynamic optimization

Dynamic optimisation refers to an optimisation task where some characteristics of the
solved problem are not static and change during the optimisation process. One such case
is when the optimum of the optimisation task is changing, i.e. when the optimisation
algorithm is chasing a moving target.

There are many flavours of dynamic optimisation tasks which differ in the dynamics of
the changes. If the target changes only once in a very long time frame (compared to the
time required to find the solution), the dynamic task can be considered just a sequence
of static optimisation tasks. On the other side of the spectrum, there is a case where the
target is changing all the time (e.g. every iteration of the algorithm, or even between
individual evaluations). Here we aim in between these two extremes: the target changes
at discrete time steps, thus forming a sequence of separate stages, slowly enough that
there is a reasonable amount of time for the algorithm to work on each stage, but fast
enough that it cannot be considered a sequence of static tasks.

In evolutionary dynamic optimization (EDO) [64], there are two dominant classes
of approaches that deal with changing environments: using a memory and maintain-
ing diversity. Memory-based approaches are suitable for problems with recurring be-
haviour. The core idea is that information discovered previously might be useful in the
future. The memory can be implicit by utilizing a redundant representation of the
individuals (e.g. [65–66]), or explicit where a specific information is stored in a dedi-
cated memory and later reintroduced into the population [67–70]. Since we are not
dealing with problems with recurring behaviour, we omit memory-based approaches
from further consideration.

The approaches based on maintaining diversity aim to counteract the convergence
of the population to a small area of the search space, thus allowing the algorithm to
refocus to a different area in the search space when the environment changes. Such
approaches are more suitable for our setting with gradual changes. Hypermutation [71]
is an adaptive mutation operator that increases the mutation rate for a period of time
after a change is detected. Variable local search (VLS) [72–73] also reacts on a detected
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change, but instead of increasing the mutation rate it increases the mutation strength
or size. The Random Immigrants technique [74] introduces several randomly generated
individuals to the population in each generation, thus keeping the diversity. Fitness
sharing [75–76] maintains the diversity by penalizing similar individuals. Diversity
can be also maintained by making it an objective and optimizing both for fitness and
diversity using a multi-objective algorithm [77].

6.2 Dynamic symbolic regression

SR in dynamic scenarios has not been studied very intensively so far, we found only
a few occurrences in the literature.

In [78], with the aim to propose a dynamic benchmark for GP, the authors examined
a two-stage SR scenario where the target function differed in the two stages of the run.
They tested whether it is better to restart the algorithm with the new stage, or continue
with the current population, in relation to the distance between the two targets. The
results suggest that the more distant the two targets are, the more beneficial it is to
restart the algorithm.

In [79] the focus is specifically on GP in dynamic environments and techniques im-
proving its behaviour in such scenarios. One of the testing problems was SR with
the target defined as ∑8

𝑖=1 𝑎𝑖𝑥𝑖 with the dynamic behaviour being realized by switch-
ing (some of) the coefficients 𝑎𝑖 from +1 to -1 and back over time in three difficulty
settings. In the “easy” setting the target alternates at regular intervals between two
such polynomials differing in just one coefficient. In the “medium” setting the target
cycles probabilistically between five such polynomials. In the “hard” setting the tar-
get changes at random times to a random such polynomial (each coefficient switched
with 50% probability). The authors put several base techniques to the test (hypermu-
tation [71], an adaptation of an immigrants-based technique ERIGA [80], a memory
approach where the best individual is stored and reintroduced into the population
when the environment changes, and an adaptation of a technique called Transforma-
tion [81]) as well as hybrid techniques that combine two or more of the base techniques.
According to the results to this particular problem, the best technique was a hybrid
of hypermutation, memory, transformation and standard GP combined via multiple
sub-populations.

In [82] the authors focus on artificially introducing dynamics to a static SR problem
as a means to enhance the fitting process. The idea is to start with only a few samples
from the training set, and add the rest gradually over the course of the run, up to the
point when the full set is used. This approach is reported to produce higher quality
solutions of smaller size than when using the full training set from the start. The authors
also propose an immigrants-based technique using a Kendal Tau distance measure to
assess the severity of the environment change, which is then used to determine the
number of immigrants introduced into the population.

In [83] the author examines the impact of the size of the population and using the
ALPS technique in Cartesian GP (CGP) in dynamic SR scenarios. The scenarios are
constructed as switching the target between several 1-dimensional polynomials and their
ratios. The results suggest that using ALPS is superior to ordinary CGP regardless of
the population size. Also, the author concludes that if an abrupt change takes place,
it is better to restart the algorithm from scratch.

Note that all the above-mentioned instances of dynamic SR tasks found in the liter-
ature use very dissimilar targets between stages, with the exception of [82] where the
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target function does not change at all (only the training dataset changes). These results
are thus not directly relevant for our class of tasks with smaller, gradual changes.

6.3 Dynamic scenarios with gradual changes

Basically all the research in dynamic SR mentioned in the previous section has only
a very little connection to real-world use cases. All the benchmarks are artificial, often
constructed by switching between more or less arbitrarily chosen functions. In this work
we use dynamic SR problems with a close relation to a real-world use case – Reinforce-
ment Learning (RL). Our benchmarks (which are discussed in detail in Section 6.6.2)
simulate the search for a value function of four RL benchmark problems, and we strongly
believe that their similarity to the real-world dynamic SR tasks with gradual changes
is much higher than the similarity of the problems found in the literature.

A value function (V-function for short) is a function that maps a state from the
state space of the RL problem to an expected return given a policy. Many RL solution
methods involve finding the optimal V-function (which provides state values given the
optimal policy). One method for finding the optimal V-function is the Value Iteration
algorithm (VIA). VIA works by iteratively improving the V-function starting from
a trivial estimate (usually just the reward function or zero) and updating the value for
each state by maximizing the value from the neighbouring states. When the state space
is finite and small enough, the V-function can simply be represented as a lookup table
with the value for each state. However, for continuous state spaces, unless discretiza-
tion is used, the V-function must truly be a function rather than a table. Conventional
methods employ some kind of numeric approximator to represent the function, e.g.
simple linear or polynomial models, neural networks, or basis functions [84]. The ques-
tion whether these approximators can be replaced by a symbolic model learned by SR
is an interesting research topic (beyond the scope of this work), and the origin of our
benchmark problems. The benchmarks thus require the dynamic SR algorithm to find
a symbolic approximator of a sequence of targets precomputed by VIA, as a check how
well SR can fit the data coming from the VIA.

In this work we aim at gradually changing target functions. The sought function may
be, for example, rotated or scaled in one or more directions, but still be close to the
previous one. The general shape should be more or less kept, without major qualitative
changes. The benchmarks we focus on shall have the following properties:

. a benchmark has a number of stages (each represented by a different dataset);

. the features of all data points are fixed across all stages, i.e. the points do not “move”
across the feature space1;
. the stages differ only in the target function values of the data points;
. the stages (the target values of all data points) are switched in regular time intervals,

regardless of the actual performance of the algorithm, and the algorithm’s job is to
adapt to these new targets;
. the changes from stage to stage are gradual.

An example of such data can be seen in Figure 6.1 which displays four selected
stages from two of the benchmarks used later in this chapter (described in detail in
Section 6.6.2).
1 The algorithms that we subject to testing later in this chapter (see Sections 6.4 and 6.6) are, in fact,

indifferent to how the training data changes. In principle, the whole dataset could be replaced by a com-
pletely different one. However, that would be a different problem, while we want to focus on the described
kind of dynamics.
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a) From left to right: stages 1, 3, 5 and 7 of the PS problem.

b) From left to right: stages 1, 5, 10 and 20 of the MM problem.

Figure 6.1. Example stages of two of the benchmarks. Note that the contour plot is used
to better show the shape but in fact the benchmarks are defined by a set of data points,

not by an actual function which is unknown.

In the first row of the figure, we can clearly see a trend where the starting shape,
a very simple one, is smoothed out and rotated. In the second row, the changes are
even smaller. We can see that the initial shape is generally kept, but it is then deformed
as if “sheared” by pulling the right-hand side of the shape towards the negative part of
axis 𝑥2 and the left-hand side is pulled in the opposite direction.

To further illustrate the size of the differences between individual stages of our bench-
marks, Figure 6.2 shows how each stage differs from the previous one for all benchmarks.
The metric used to measure this difference is 1 − |𝑐𝑜𝑟𝑟𝑠𝑠| where 𝑐𝑜𝑟𝑟𝑠𝑠 is the Pearson
correlation of two consecutive stages. In [78] a mean squared distance was used as a dif-
ference measure; nevertheless, we have chosen the correlation-based measure since it
“hides” simple linear scaling and shift of the target values which is desirable in case of
scaled GP, or MGGP (which we use as the base algorithm), because the top-level lin-
ear regression takes care of such differences easily. The correlation value is subtracted
from 1 for better visualization (and, thus, represents a dissimilarity of two targets,
or stages).

Beside the used benchmarks (artificial, PS, PS2, MM, MM2), the dissimilarity dis-
tributions for two extra datasets are displayed in Figure 6.2 as a reference in the form
of the median, first quartile and third quartile of the correlation value they exhibit.
The first one is a random dataset – a dataset whose targets are uniformly randomly
resampled every stage. It is no surprise that such dataset exhibits almost zero correla-
tion between stages. The second one is the 8th degree polynomial regression problem
from [79], already mentioned in Section 6.2. The displayed values are aggregation of
correlation values of all possible transitions between the 256 possible states used in that
problem (i.e. switching +/- signs in front of the polynomial’s elements).
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Figure 6.2. Dissimilarity of targets of neighbouring stages for each of the benchmarks.
The higher the value, the less similar the neighbouring stages are.

We can see that for our benchmarks the differences between consecutive stages get
smaller with increasing stage number which is an expected phenomenon for datasets
generated by VIA because the values should converge towards the true value function.
It is also important to note that the correlation-based dissimilarity measures only how
close the targets are, but not necessarily how easy it is for an algorithm to track these
targets, or how useful the LCFs are going to be.

6.4 Proof-of-concept experiment

Before we dive into proper evaluation on serious benchmarks, we demonstrate the LCFs
in action with a minimalistic experiment we designed for this purpose. We use an
artificial benchmark where the true function is known and therefore can be compared
to the evolved models. The benchmark is a 7-dimensional dataset with 31 stages,
i.e. 31 different target values for each datapoint that change from stage to stage. The
target values of the first stage are given by a sigmoid function along the first dimension,
i.e. the value of the function is independent of the other dimensions. In each of the
following stages, the feature vector is rotated by 𝜋

60 rad (or 3∘) in all pairs of axes, and
the first dimension of this rotated vector is passed to the sigmoid function. At the last
(31st) stage, the feature space has rotated by 𝜋

2 rad (or 90∘) in all pairs of axes and
therefore the values now again depend only on one of the features. For illustration,
a 2-dimensional example on regular grid is shown in Figure 6.3.

Effectively, the values in stage 𝑠 are defined by the sigmoid function

𝑓𝑠(𝘅) = 1
1 + e𝗿𝘀

⊤⋅𝘅

where 𝘅 is the feature vector, and 𝗿𝘀 is a vector from the rotation matrix of the 𝑠-th stage
corresponding to the first dimension. The data points come from a 7-dimensional space
and are sampled uniformly from the interval [−10, 10]7. For the sake of this experiment
we select three stages 𝑠 = 1, 𝑠 = 2 and 𝑠 = 15 to examine the models produced by the
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(a) Initial stage. (b) Stage 5 (5 ⋅ 3∘ = 15∘). (c) Stage 10 (10 ⋅ 3∘ = 30∘).

Figure 6.3. A 2-dimensional example of gradually rotated sigmoid function on a regular
grid. Note that in the actual benchmark there are 7 dimensions and the points are sampled

randomly.

algorithm. The values of 𝗿𝘀 for these stages are (rounded to three significant figures):

𝗿𝟭 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0
0
0
0
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

𝗿𝟮 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.992
0.0520
0.0520
0.0521
0.0522
0.0523
0.0523

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

𝗿𝟭𝟱 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.168
0.152
0.204
0.275
0.370
0.497
0.669

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

For this proof-of-concept experiment, the underlying algorithm is vanilla GP with
ephemeral random constants, i.e. no MGGP and no linear fitting of the output of the
tree. The function set is identical to the one used for the actual comparative experiments
and is described in Section 6.6.3. Note that it includes the very sigmoid function so
it is easy to find the correct model if a suitable argument to the function is found too.
This algorithm is run both with LCFs and without them. The goal is to look at the
models produced by the algorithms and compare them to the true function.

Stage 1 (initial stage). In the first stage, both the algorithms with and without LCFs
produced models equal to the actual true function, as expected:

𝑓(𝘅) = sigmoid(𝑥1) (6.1)

Stage 2. A typical model produced by GP without LCFs is either the same as in the
first stage – the rotation is still small, so the resulting error is also small enough for the
first stage model to “survive” – or it is similar to the following function (which is one
of the actual models found):

𝑓(𝘅) = sigmoid(𝑥1 + tanh((((sinc(𝑥3 + tanh(cos(𝑥4))))6)6)5)) (6.2)

where sinc(𝑥) = sin 𝑥
𝑥 . We can see it is a sigmoid of the first dimension plus a non-linear

function of (some of) the other dimensions. This particular model had 𝑅2 ≈ 0.974
on testing data. Other models found by GP without LCFs have this inner non-linear
function different from the one above but this general form is similar.

GP with LCFs, on the other hand, produced models that almost exactly match the
true function:

𝑓(𝘅) = sigmoid(𝐿𝐶𝐹(𝘅; 𝗮, 4.772 ⋅ 10−7)) (6.3)

where 𝗮 = [ 0.992 0.0520 0.0521 0.0521 0.0522 0.0523 0.0523 ]⊤. Compare with 𝗿𝟮 above to
see it matches almost exactly. This particular model had 𝑅2 ≈ 1 on testing data.
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Stage 15. A typical model produced by GP without LCFs looks like this:

𝑓(𝘅) = sigmoid(𝑥7 ⋅ sigmoid((tanh(𝑥7))2 ⋅ 𝑥2
6) ⋅ sigmoid(tanh(𝑥7) ⋅ 𝑥6⋅

sigmoid(sigmoid(sigmoid(𝑥3))) ⋅ sigmoid(sigmoid(𝑥5 ⋅ 𝑥6))))
(6.4)

This particular model had 𝑅2 ≈ 0.575 on testing data.
GP with LCFs, again, produces models almost perfectly matching the ground truth:

𝑓(𝘅) = sigmoid(𝐿𝐶𝐹(𝘅; 𝗮, 5.304 ⋅ 10−8))) (6.5)

where 𝗮 = [ 0.168 0.152 0.204 0.275 0.370 0.497 0.669 ]⊤. This particular model had
𝑅2 ≈ 1 on testing data.

We can see that LCFs are indeed able (at least in principle) to find a suitable trans-
formation of the feature space. Although the GP algorithm can create models with
multiple LCFs, the best models found in stages 2 and 15 contain only a single LCF
(which is sufficient to solve this particular problem).

Note that the kind of analysis presented in this section can be done only in cases
where the true function in each stage is known. This is not the case for our other
RL benchmarks, where only the datasets for individual stages are available, but the
underlying function is unknown. Also note that even though the true function is as
simple as the one used in this minimalistic experiment, the produced models may not
match as perfectly, if a different underlying algorithm than vanilla GP is used simply
because such algorithm can have more ways to express the function, or it is easier for
the algorithm to do so (e.g. MGGP models used in this work can have more trees and
the found transformation can be “distributed” among them).

6.5 Research questions

With the proof-of-concept experiment showing that LCFs can be, in principle, bene-
ficial, we state four research questions regarding how LCFs plugged into MGGP are
going to perform on more realistic benchmarks. The research questions are:

. RQ1: Does MGGP with LCFs enable better target tracking compared to MGGP
without them?
. RQ2: Is MGGP with LCFs better than just restarting the ordinary MGGP with

each change of the target?
. RQ3: Is it profitable for LCFs to retain information learned in previous stages, or

is it better to start learning it from scratch after each target change?
. RQ4: Is the use of LCFs better than a classic evolutionary dynamic optimisation

method, hypermutation, applied to an ordinary MGGP?

6.6 Experimental evaluation

6.6.1 Algorithm configuration

We have designed six configurations that, when compared one to another, should exhibit
the benefits or drawbacks of the LCFs and answer the research questions. The configu-
rations combine the base algorithm with three different techniques: LCFs as presented
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in Section 5.1, restarting as a naïve way of dealing with changes, and hypermutation
as a representative of the classic EDO techniques. Hypermutation was chosen because
it is a well-established technique, and because (from [64], Section 4.3.2.): “. . .methods
like hyper-mutation appear to be good in solving problems with highly frequent changes
where changes are small and medium.” The configurations are:

. MGGP

. MGGP + LCF

. restarted MGGP

. restarted MGGP + LCF

. MGGP with hypermutation

. MGGP + LCF with hypermutation

MGGP. It is a pure MGGP implementation without any of our modifications, i.e. the
individuals are composed of one or more genes that are combined via the top-level linear
regression, and the trees are evolved genetically (i.e. using crossover and structural and
gaussian mutations). The algorithm does not explicitly react on the changed target
values in any way (it only starts to get different fitness values).

MGGP + LCF. It is MGGP extended by adding LCFs (as introduced in Chapter 5, see
Section 5.1) to the pool of terminal nodes available for construction of trees. The coeffi-
cients at these nodes are tuned by several steps of backpropagation and iRprop− update
algorithm just before the fitness evaluation. The LCFs are used in the unsynchronized
mode (see Section 5.1.3) as this was the most successful mode in the static problems
in previous chapter (see Section 5.5.7). This algorithm does not explicitly react on the
changed target either. Results of this algorithm should, when compared to MGGP,
show whether LCFs bring an improvement or not (RQ1).

Restarted MGGP, restarted MGGP + LCF. Identical to MGGP and MGGP + LCF respec-
tively, except that after each change of the target the whole population is discarded
(including already optimized LCF nodes) and a new one is initialized from scratch. The
algorithm is effectively restarted. Results of restarted MGGP should, when compared
to MGGP + LCF, show whether LCFs are actually effective or if a mere restart is
enough (RQ2). Results of restarted MGGP + LCF should, when compared to MGGP
+ LCF, show whether the use of information learned by LCFs in the previous stages is
beneficial for the algorithm (RQ3).

MGGP with hypermutation, MGGP + LCF with hypermutation. Identical to MGGP and
MGGP + LCF respectively, except that after each change a hypermutation (i.e. an in-
creased probability of mutation) is employed for a fixed amount of time. Results of
MGGP with hypermutation should, when compared to MGGP + LCF, show how LCFs
compare to this classic EDO technique (RQ4). The MGGP + LCF with hypermutation
is included for completeness, and the results should show whether the benefit of both
techniques (if any) can be combined to form even better performing setup.

6.6.2 Benchmarks

We use 5 dynamic benchmark problems in our experiments. One of them is the artificial
benchmark already described and used in Section 6.4. The other four benchmarks
come from the RL domain and they represent different iterations of a Value Iteration
algorithm (VIA), taken from a precomputed run of VIA using a conventional numeric
approximator. The goal here is not to perform VIA with SR used for finding the model
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of the V-function, but rather to assess how well our GP improvements cope with the
kind of dynamics of the changing target that can be seen in RL problems. For details
about the exact process of how these V-functions are obtained see Appendix B.2 The
features of the training data for each of the benchmarks directly correspond to the state
space of the corresponding RL problem, i.e. they are samples of states from this space.
The samples are placed in a regular grid over the state space. We have chosen four RL
tasks:

. Pendulum swingup (PS) – An inverted pendulum is to be swung up to an upright
vertical position and stop there, while the torque of the motor is insufficient to do
so directly. It has to swing to one side and then use the momentum when the
pendulum swings back. The state variables are the angle and angular velocity. The
V-function (the target for the regression task) of four example stages can be seen in
the Figure 6.1a.
. 2-pendulum swingup (PS2) – Similar to the previous problem but at the end of

the pendulum there is another pendulum with a motor. The task is to get both
pendulums to an upright vertical position and stop there. The state variables are
the two angles and angular velocities.
. 2-coil magnetic manipulation (MM) – There are two electromagnetic coils under a rail

where a metal ball is rolling. The goal is to use the magnetic force of the two coils to
drive the ball to a specific position. The state variables are the position and velocity
of the ball. Four example stages can be seen in the Figure 6.1b.
. 2-coil magnetic manipulation with current (MM2) – Identical to the previous task

but there are two additional state variables representing the actual electric currents
flowing through the coils.

The main features of all the benchmarks are summarized in Table 6.1. The training
and testing data for the artificial benchmark are just different random samplings of
the feature space. The training and testing data for the VIA benchmarks differ in
the resolution of the grid with the testing data using a finer resolution in each of the
dimensions of the state space, therefore (some of) the samples from the training data
are also present in the testing data.3

task # of dimensions # of stages
# of samples

training testing common
artificial 7 16 700 1750 0

PS 2 42 961 3721 961
PS2 4 122 14364 234526 1936
MM 2 92 441 1681 441
MM2 4 205 3825 61200 400

Table 6.1. Summary of RL benchmarks. The number of dimensions is the number of
state variables of the problem. The last column shows how many samples are common for

both the training and testing set.

2 The actual data for all stages of all used problems are available at https://github.com/zegkljan/
dynamic-sr-supplementary.
3 For PS and MM benchmarks the spacing between the grid points in the testing set is half of the spacing

in the training set and therefore all the points in the training set is also present in the testing set. For PS2
and MM2 benchmarks the number of points in each dimension in the testing set is double the number of
points in the corresponding dimensions in the training set and therefore some but not all of the training
set points are also present in the testing set.
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6.6.3 Experiment settings

The fitness measure used by all the algorithm configurations is the coefficient of deter-
mination R2. In each run of the algorithm on a benchmark, the individual stages of
the benchmarks are used as targets, sequentially. The targets are switched after a fixed
amount of time. For each benchmark and algorithm, 20 runs were performed (with
different random seeds). The time per stage was set to 60 seconds for all algorithms
and benchmarks except for PS2 and MM2 benchmarks where the time was set to 240
seconds (because of higher number of dimensions as well as the number of samples)4.
For the artificial benchmark, a different sample from the same distribution was gener-
ated for each of the runs while for the VIA benchmarks (PS, PS2, MM, MM2) only one
sampling per benchmark was used in all the runs.

Testing environment. We use our own implementation of the algorithms [60] which is
written in Python 3 and uses the NumPy library for vector and matrix calculations
including the linear regression. All the experiments were carried out on machines with
identical configuration5.

Algorithmparameters. The parameters of the algorithm for all the benchmarks and for
all its versions were the same and are summarized in Table 6.2. The parameters were
determined during preliminary testing. The set of functions available to the algorithm
is the following (using 𝑥 and 𝑦 as arguments): 𝑥 + 𝑦, 𝑥 − 𝑦, 𝑥 ⋅ 𝑦, sin(𝑥), cos(𝑥), ex,
sigmoid(𝑥) = 1

1+ex , tanh(𝑥), sinc(𝑥) = sin(𝑥)
𝑥 , softplus(𝑥) = ln(1 + ex), gauss(𝑥) = e−x2 ,

𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6.

6.6.4 Results

The progress of the algorithms across the stages can be seen in Figures 6.4 to 6.8. Here
we are primarily interested in the performance at the end of each stage. The plots
thus show the performances just before the target is switched to the next stage. (The
behaviour within the stages is discussed shortly in Section 6.6.6.) For better context,
the plots also show how the targets of the benchmark itself differ between the stages
using the dissimilarity measure discussed in Section 6.3.

We also provide a statistical evaluation of the performances of the configurations.
The score used is the best-error-before-change [64] (originally called Accuracy in [85]).
The score is defined as

𝐸𝐵 = 1
𝑚

𝑚
∑
𝑖=1

𝑒𝐵(𝑖) (6.6)

where 𝑚 is the number of changes (which we call stages in this work) and 𝑒𝐵(𝑖) is the
error of the best individual found in the 𝑖-th stage before the switch to the next stage.
We use the R2 score in place of 𝑒𝐵 and therefore the 𝐸𝐵 score is actually a goodness-
of-fit metric rather than error metric, and higher values mean better performance. The
20 runs of one configuration on one problem produce 20 𝐸𝐵 values. These are then
statistically compared using MWUT. We compared MGGP + LCF with all the other
configurations separately for each benchmark problem. The results of this statistical
comparison can be seen in Table 6.3.

4 We use wall-clock time instead of, for example, the number of generations simply because a generation
represents a different amount of computation for algorithm with LCFs and without them.
5 2x 8-core Intel Xeon E5-2650 v2 2.6 GHz, Debian 8.7 (Jessie), SPECfp2006 [61] score 490 (30.6 per

core). However, the algorithms are single-threaded so only one core was utilized.
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parameter value
fitness measure R2

pop. size 125
elitism 10 %

max. gene depth 10
max. # of genes 10
tournament size 4 %
crossover prob. 0.7 (∼0.636)
mutation prob. 0.2 (∼0.363)

subtree crossover prob. 0.85
high-level crossover prob. 0.15
high-level crossover rate 0.5
subtree mutation prob. 0.7
gaussian mutation prob. 0.3
gaussian mutation 𝜎 10.0

following parameters apply only for MGGP + LCF (and variants)
backprop. & update steps max{20 − #𝑛𝑜𝑑𝑒𝑠, 1}

𝜂+ 1.2
𝜂− 0.5
Δ0 0.1

Δ𝑚𝑖𝑛 10−6

Δ𝑚𝑎𝑥 50

Table 6.2. Parameter values for the algorithms. The percentages relate to the population
size. The parenthesized values are active during hypermutation, and were derived by
multiplying the regular mutation probability by 2 and then both crossover and mutation
probability were scaled to sum up to 1. This factor of 2 was determined in preliminary

experiments. Parameters 𝜂+, 𝜂−, Δ0, Δ𝑚𝑖𝑛, and Δ𝑚𝑎𝑥 are parameters of iRprop−.

6.6.5 Discussion

In the artificial benchmark (Figure 6.4) we clearly see the superiority of the configu-
rations with LCFs over the ones without them. The rotation of the feature space has
almost no impact on the configurations with LCFs, on the contrary to the other con-
figurations. It is also interesting that the behaviour of configurations with LCFs does
not differ very much. We argue that this is caused by the fact that if there are LCFs
available, the sought function is easy to find even from scratch (i.e. without the help
of having the solution to the previous stage available), because LCFs enable to easily
construct the rotation transformation which is the only part of the artificial benchmark
problem that changes between the stages (see also Section 6.6.6). We have already
tested this phenomenon in a static scenario with similar artificial problem in previous
chapter (see Section 5.5.5) so we are quite confident this is the correct explanation.
Restarted MGGP gets worse as the target rotates but gets back to almost perfect fit at
the final stages because the targets are then rotated by 90∘ and therefore aligned with
the axes, making it an easy task again.

In the VIA benchmarks, except for PS2, we can see that MGGP + LCF and
MGGP + LCF with hypermutation are, overall, the best performers. Also, restarted
MGGP is clearly the worst performer. Restarted MGGP + LCF and pure MGGP
(non-restarted) are comparable across all VIA benchmarks. The PS2 benchmark
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Figure 6.4. Plot of the last-in-stage (i.e. just before the target switch) fitness values
over the stages aggregated over 20 runs on the artificial benchmark. Solid lines show the
median R2, dashed lines show the 1st and 3rd quartile of R2, both on testing data (right
axis). Grey area shows the dissimilarity measure (as discussed in Section 6.3) between

consecutive stages of the benchmark (left axis).
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Figure 6.5. Plot of the last-in-stage (i.e. just before the target switch) fitness values over
the stages aggregated over 20 runs on the PS benchmark. Solid lines show the median R2,
dashed lines show the 1st and 3rd quartile of R2, both on testing data (right axis). Grey
area shows the dissimilarity measure (as discussed in Section 6.3) between consecutive

stages of the benchmark (left axis).
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Figure 6.6. Plot of the last-in-stage (i.e. just before the target switch) fitness values over
the stages aggregated over 20 runs on the PS2 benchmark. Solid lines show the median
R2, dashed lines show the 1st and 3rd quartile of R2, both on testing data (right axis).
Grey area shows the dissimilarity measure (as discussed in Section 6.3) between consecutive

stages of the benchmark (left axis).
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Figure 6.7. Plot of the last-in-stage (i.e. just before the target switch) fitness values over
the stages aggregated over 20 runs on the MM benchmark. Solid lines show the median
R2, dashed lines show the 1st and 3rd quartile of R2, both on testing data (right axis).
Grey area shows the dissimilarity measure (as discussed in Section 6.3) between consecutive

stages of the benchmark (left axis).
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Figure 6.8. Plot of the last-in-stage (i.e. just before the target switch) fitness values over
the stages aggregated over 20 runs on the MM2 benchmark. Solid lines show the median
R2, dashed lines show the 1st and 3rd quartile of R2, both on testing data (right axis).
Grey area shows the dissimilarity measure (as discussed in Section 6.3) between consecutive

stages of the benchmark (left axis).

turned out to be the only one where MGGP + LCF was not significantly better
than any other configuration (see Table 6.3). Yet it still reached better results than
other configurations.

A pattern noticeable across all VIA benchmarks is that the variance of the fitness of
restarted algorithms across the stages is much higher compared to their non-restarted
counterparts. This is probably caused by the fact that during the reinitialization all
progress is lost and the algorithm starts from a new random population, easily converg-
ing to a different solution. The non-restarted versions, on the other hand, do not lose
anything and therefore the transition to the next stage is much smoother.

Note also the worse performance of the restarted algorithms, which shows that the
benchmarks are not just sequences of similarly hard static tasks. An important obser-
vation visible across all VIA benchmarks (though very minimal for PS2) is that the
restarted algorithms get worse with the increasing stage number, recovering only a lit-
tle. The reason for this phenomenon, we argue, is that the problems actually get more
difficult for the restarted versions with the progressing stages. In other words, we argue
that finding a model of the targets in a later stage from scratch (restarted versions
throw away the population after each stage) is more difficult than finding a model of
targets in the first stage. As an example, consider the PS benchmark and a depiction of
some of its stages we have already presented in Figure 6.1a: in the first stage the shape
of the function is symmetrical in both axes around the center point (𝜋, 0) and the shape
itself is not very complicated. In the initial stages the general shape is still present but
is somewhat rotated which requires more manipulation of the features compared to the
first stage where the symmetry axes are aligned with the feature space coordinate axes.
In the following stages the target becomes more complicated regarding the symmetry,
rotation, and the shape, with more pronounced and more localized shape elements. We
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configuration
artificial PS PS2

U p r U p r U p r

MGGP 57 1.16e-4 5 47 3.71e-5 5.5 163 0.323 3
MGGP + LCF - - 3 - - 1 - - 1
rest. MGGP 20 1.20e-6 6 47 3.71e-5 5.5 120 3.15e-2 6
rest. MGGP + LCF 223 0.543 1 75 7.58e-4 3 152 0.199 5
hyp. MGGP 65 2.75e-4 4 69 4.16e-4 4 159 0.273 4
hyp. MGGP + LCF 201 0.989 2 175 0.508 2 196 0.925 2

configuration
MM MM2

avg. rank
U p r U p r

MGGP 35 8.60e-6 5.5 76 8.36e-4 6 5
MGGP + LCF - - 2 - - 1 1.6
rest. MGGP 35 8.60e-6 5.5 80 1.23e-3 5 5.6
rest. MGGP + LCF 40 1.60e-5 4 120 3.15e-2 3 3.2
hyp. MGGP 57 1.16e-4 3 84 1.78e-3 4 3.8
hyp. MGGP + LCF 246 0.218 1 188 0.756 2 1.8

Table 6.3. Statistical comparison of MGGP + LCF to all other algorithms. The U
columns show the value of the U statistic for the MGGP + LCF and therefore the smaller
the value the better MGGP + LCF was. Possible minimum is 0 (the algorithm was always
worse than MGGP + LCF), possible maximum is 20 ⋅ 20 = 400 (the algorithm was always
better than MGGP + LCF). The p columns show the p-values of the tests. The values
lower than the significance level 𝛼 = 0.01 are typeset in boldface. The r columns show
the raking of the algorithms based on the value of the U statistic (the higher the value,
and therefore the more times the algorithm was better than MGGP + LCF, the lower
the rank). The final column “avg. rank” is the average rank for the algorithm over all

benchmarks, the lower the number the better the algorithm.

argue that the first stages are easier to fit than the later ones. Therefore, the restarted
algorithms do not keep up with the non-restarted ones because they have to fit the com-
plex shape from scratch compared to the non-restarted ones which already have a fit
on a similar shape from the previous stage. To further illustrate this, Figure 6.9 shows
the target dissimilarity of a particular stage compared to the first stage in a similar
manner we did earlier for stage-to-stage dissimilarity. Since all the algorithms generally
have no trouble fitting the first stage, this figure shows the potential difficulty of the
benchmarks for the restarted algorithms.

Coming back to the overall results in Figures 6.4 to 6.8, a final notable pattern is
the drop of the fitness value related to the change in the target values. We can see
that the biggest drop happens when the target values change the most, which is an
expected behaviour. However, each of the algorithms reaches the minimum fitness
value at a different stage. For example, in the PS, PS2 and MM2 benchmarks, the pure
MGGP (in turquoise colour) quickly drops to its minimum values (over all the stages)
right after the maximum changes in target values, while MGGP + LCF both with and
without hypermutation (in blue and brown colours) drops at slower rate and reaches its
minimum fitness values later than pure MGGP. We provide two possible explanations
for this behaviour. First, the LCF weights require time for the adaptation which makes
the algorithm to “lag” behind the target. Second, the algorithm with LCFs performs
much better which also means that the room for improvement (after the initial drop of
fitness) is much smaller, leading to later recovery from the initial drop.
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Figure 6.9. Dissimilarity of a particular stage to the first stage for each of the bench-
marks.

6.6.6 Intra-stage behaviour

The primary focus of the experiments above was to examine the end-of-stage per-
formance of the algorithms. Here we also shortly analyze the behaviour inside the
individual stages. For the sake of brevity and clarity we have selected just two of the
benchmarks and of those we have focused on just several stages. Figures 6.10 and 6.11
show the intra-stage behaviour in the artificial and the PS benchmarks respectively.
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Figure 6.10. Intra-stage progress on a few selected stages on the artificial benchmark.
Medians over 20 runs are plotted. Due to implementation reasons, the time resolution is
one generation, which means that changes happening within one generation are not visible

and only the best solution at the end of the generation is seen.

The effect of LCFs is clearly visible with the restarted algorithms. The restarted
algorithm with LCFs (in red), even though the whole population is discarded, recov-
ers very quickly, while without LCFs (in orange), the recovery is not as successful.
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Figure 6.11. Intra-stage progress on a few selected stages on the PS benchmark. Medians
over 20 runs are plotted. Due to implementation reasons, the time resolution is one gener-
ation, which means that changes happening within one generation are not visible and only

the best solution at the end of the generation is seen.

In Figure 6.11 we also see that for stages 2 and 3, MGGP + LCF with restarts (red
line) reached the best solutions inside the stages (despite the initial big drop in each
stage), while from stage 4 on, the effect of restarting started to be disturbing, and the
non-restarted algorithms provided better and more stable results.

6.7 Answers to research questions

In Section 6.5 we stated four research questions. Now, when we have performed exper-
iments and discussed the results, it is the time to answer them. Strictly speaking, the
answers are valid only in the context of the 5 benchmark problems we use. Neverthe-
less, we believe that they generalize to a great extent to the class of dynamic regression
tasks with gradually changing target functions.

RQ1: Does MGGP with LCFs enable better target tracking compared to MGGP without

them? Yes, MGGP with LCFs enables better target tracking than a pure MGGP. This
is clearly seen from the presented results as MGGP + LCF is always among the best
performers while MGGP is not.

RQ2: Is MGGPwith LCFs better than just restarting the ordinary MGGPwith each change

of the target? Yes, MGGP with LCFs is better than restarting the ordinary MGGP.
Restarted MGGP is even worse than pure MGGP which can be seen over all the results
with the exception of the artificial benchmark where they are of comparable perfor-
mance.

RQ3: Is it profitable for LCFs to retain information learned in previous stages, or is it

better to start learning it from scratch after each target change? Yes, LCFs are able
to utilize information found in previous stages to the advantage in future stages. This
can be seen from the performance of restarted MGGP + LCF: it is worse than that
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of MGGP + LCF (non-restarted) in all cases except for the artificial benchmark (for
which we discussed the reasons at the beginning of Section 6.6.5).

RQ4: Is the use of LCFs better than a classic evolutionary dynamic optimisationmethod,

hypermutation, applied to an ordinary MGGP? LCFs perform better than MGGP with
hypermutation. This is true for all the benchmarks without an exception. We can see
that hypermutation improves the performance of MGGP only very slightly. LCFs, on
the other hand, have much bigger impact on the improvement.

Note also that hypermutation may sometimes seem to improve the performance of
MGGP + LCF in certain stages. This happened, for example, in the PS2 and MM
benchmarks (see Figures 6.6 and 6.7), but in either case, the difference, while visually
noticeable, was not statistically significant when measured across the whole run (see
Table 6.3). In the other cases, adding hypermutation to MGGP + LCF did result
in an improvement.

6.8 Summary and conclusions

In this chapter, we have applied LCFs, the new type of leaf node we introduced in
Chapter 5, to the task of SR where the target changes over time during the course
of the evolution, making it a kind of dynamic optimization task. We have identified
a subclass of dynamic SR tasks with a close relation to a practical application, rein-
forcement learning. An important feature of these tasks is that the modelled function
changes gradually, on the contrary to other dynamic SR problems found in the liter-
ature. We have proposed five benchmarks of gradually changing target functions, the
first one being a simple function that is gradually rotated, the others being V-functions
of RL tasks during the course of a Value Iteration algorithm.

We have selected the “winning” configuration from the static SR benchmarks from
Chapter 5 – the unsynchronized mode with gradient-based tuning – to test on the
dynamic benchmarks. We have performed a proof-of-concept experiment that showed
the ability of LCFs to track a simple rotating target in a vanilla GP algorithm. We have
then proceeded to test the LCFs on a number of RL-based benchmarks. We have
compared the two algorithms (MGGP without and with LCFs) each in three variants
(no handling of changed targets, restarting and hypermutation).

The results have clearly shown that the LCF-enabled algorithm is more resistant
to the gradually changing target and it is able to track it better than the algorithm
without LCFs. Results of the algorithm without LCFs have shown a significant drop
in the fitness when the target changes. The results have also shown that for these
problems, it is beneficial to use the population from the previous stages rather than
start from scratch. Using hypermutation, a classic EDO method, instead of LCFs has
turned into only a slightly better performance than no change-handling method at all.
The algorithm combining both the LCFs and hypermutation has been very similar
in performance to using just LCFs without hypermutation so their benefits do not
“add up”.

The general conclusion is that the LCFs are a beneficial addition to MGGP for dy-
namic SR tasks, especially when the changes are gradual. In the future, an LCF-enabled
algorithm could be used as the driver for VIA in solving RL tasks, replacing the numer-
ical model with a symbolic one, opening a range of possibilities for the RL domain.
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Chapter7
Case-based fitness prediction

In a standard SR scenario, there is a training dataset that is given to the SR algorithm
to produce the model. In order to assess a quality of a candidate model (its fitness), it
needs to be evaluated on this dataset. This dataset, however, can be very large. In such
case, the computational demands on the algorithm can be very high.

One of the techniques to mitigate this issue is fitness prediction – instead of using the
whole dataset to assess the fitness, use some less computationally demanding mechanism
that predicts or estimates the fitness.

In this chapter we explore fitness prediction based on subsampling the training
dataset. We review previous research on this topic, and we propose two simplified
versions of fitness predictor search with adaptive-size predictors, which reduce the num-
ber of parameters. We compare the original and simplified methods on a number of
real-world benchmarks with three different base GP algorithms.

7.1 Relatedwork

One of the first attempts at speeding up a GP run is a random sampling [86]. The core
principle of this technique is that a random subset of the training data is selected and
used for fitness evaluation, resampling it periodically during the evolution. In [87] this
technique was used for reducing overfitting of software quality classification models.

In [88–89], this technique was further explored and extended with the main goal
of improving test-set performance / reducing overfitting. It has been shown that the
extreme case of selecting just a single random datapoint each generation produces the
best results for their datasets.

In [90], two new techniques, called Interleaved Sampling and Random Interleaved
Sampling, further extend the random subsampling approach. In Interleaved Sampling,
the evaluation switches between the full training set and a single randomly selected dat-
apoint each generation. However, their results have shown that presenting the whole
dataset has negligible effect and the performance is equivalent to using single randomly
selected datapoint each generation. In Random Interleaved Sampling, the choice be-
tween a single randomly selected point and the full training set is random, but with
a set probability of each choice.

In [21], a coevolutionary approach was used to evolve fitness predictors (subsets of
training data in case of SR) together with the solutions. The predictors are just fixed-
sized subsets of training data. The size of the predictor is a parameter that has to be
determined beforehand. There are two populations used: one for the solutions, and the
other one for the fitness predictors. Additionally, there is an archive of solutions used
for evaluation of the predictors. The solutions are evolved with fitness being evaluated
using the current best predictor. The predictors are evolved with fitness being the
difference between the true fitness and predicted fitness across the solutions in the
archive. Solutions that have high variance of predicted fitness across the predictor
population are selected to the archive. This approach was also proposed for Cartesian
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Genetic Programming (CGP) in [91] and shown to speed up the computation time by
a factor of 2 to 5.

In [92–93] the predictors are coevolved such that they predict correct rank of the
solutions rather than the absolute fitness value.

The disadvantage of the approach in [21, 92–93] is that the size of the predictor has
to be chosen beforehand and stays fixed during the evolution. This issue has been
addressed in [94], where the approach from [21] is extended by adaptively changing
the size of the predictor based on the progress of the evolution. Also, the archive for
predictor evolution is constructed differently: instead of selecting the solutions based on
variance, the best-performing solutions are used instead. Another main difference is that
the core GP algorithm used was Cartesian GP (CGP) which is quite distinct from vanilla
GP. The adaptive approach was reported to have overall better success rate (ability
to find a good enough solution) than other tested algorithms (no predictors, coevolved
constant-size predictors, and random constant-size predictors) while consuming similar
amount of CPU time or less.

7.2 Extending the adaptive-size predictor approach

From the approaches we briefly reviewed in previous section, we think that the adaptive-
size predictor approach [94] is the most useful as it frees the user from the need to per-
form a series of experiments to determine the optimal size of the predictors. However,
we also think there is still a room for improvement and extension. In this section we pro-
pose two improvements/extensions to the algorithm. For the sake of clarity, we present
a high-level pseudocode of the adaptive-size predictor approach in Algorithm 7.1. Our
focus is the step on line 17 – how the data points, that are used in the predictors, are
selected. The original approach uses a GA and utilizes the archive 𝐴 as fitness cases
for the predictor candidates.

The problem of this coevolutionary approach is that in addition to the main EA, there
is one extra EA that needs to be set up, i.e. its parameters (population size, crossover
and mutation probabilities, tournament size, etc.) have to be determined. We propose
two replacements for the inner EA: simple local search, and uniform random sampling.
All other aspects of the algorithm remain the same.

7.2.1 Uniform random sampling

Randomly sampled subset of training data is not a new concept. In fact, as we have
already discussed in Section 7.1, random subset selection was among the very first
methods for fitness prediction (although it has not been called in such way back then).
However, to the best of our knowledge, there has been no attempt at adaptive-size
randomly sampled predictors. In [21] randomly sampled predictors were examined as
a baseline to the coevolved predictors, but all with a fixed size of the predictor, chosen
before the start of the experiment. In [94] the adaptive-size predictor approach is
compared to random predictors but those are, again, fixed-sized.

We propose to take the predictor size adaptation approach and replace the inner
EA with uniform random sampling. From the point of view of Algorithm 7.1, nothing
changes except for what the “update active predictor” step on line 17 means: instead
of running a number of generations of a GA, the new predictor is simply randomly
sampled, with the number of samples determined by the currently set predictor length.
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1 procedure 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐸𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛
2 for 𝐺 = 1, 2, · · · // generations
3 evaluate solution population
4 𝑆 ← best solution in population
5 if 𝑓𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟(𝑆) > 𝑓𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟(𝑆∗) then

6 store 𝑆 in archive 𝐴 used for predictor evaluation
7 if 𝑓𝑓𝑢𝑙𝑙(𝑆) > 𝑓𝑓𝑢𝑙𝑙(𝑆∗)
8 𝑆∗ ← 𝑆
9 end

10 update predictor length // new length is now stored and applied only
11 // when predictor is updated (line 17)
12 else if predictor length was not updated for 𝐺𝑢𝑝𝑑𝑎𝑡𝑒 generations
13 update predictor length
14 end

15 create next generation population
16 every 𝑛-th generation
17 update active predictor
18 end

19 end

20 output: 𝑆∗

21 end

Algorithm 7.1. High-level view on the adaptive-size predictor approach from [94] where
detailed description of the algorithm can be found.

The main advantages of such approach should be:

. reduction of the number of parameters – there are no parameters related to the
predictor search algorithm as there is no search (only parameters regarding the size
adaptation), and
. major simplification of the algorithm – no need to implement a search algorithm

as there is only random sampling which also allows to remove the solution archive
completely

Whether this approach can maintain (or even improve) the performance is a question
we attempt to answer in this chapter.

7.2.2 Local search for predictors

The other approach we propose is to use a local search algorithm instead of an EA to
search for quality predictors. Again, the main goal is simplification of the algorithm
while keeping the performance. The local search algorithm is a very basic, greedy
stochastic local search, described in Algorithm 7.2. The algorithm works by randomly
choosing one element in the predictor and another one not in the predictor and swapping
them. If the new predictor is better it is accepted, otherwise it is rejected and the
previous predictor is reverted. In either case, this process repeats a number of times
and the final accepted predictor is the result of this search. To assess the quality of
a predictor, the average size of absolute differences of R2 scores of solutions in archive
using the predictor vs. using the full training set is used, as can be seen on lines 9 and
15 in Algorithm 7.2.

The advantages should be similar to those of the uniform random sampling we de-
scribed above, but not as pronounced, since the local search is “in between” the random
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1 procedure 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ
2 inputs:
4 ℙ, // initial predictor
5 𝕏, // the whole training dataset
6 𝐴, // archive of individuals
7 𝑛𝑚𝑎𝑥 // number of iterations
8 ℝ ← 𝕏 ∖ ℙ // the “rest” of datapoints (not in predictor)
9 𝑞 ← 1

|𝐴| ∑𝑖∈𝐴 |𝑓ℙ(𝑖) − 𝑓𝕏(𝑖)|
10 for 𝑛 = 1, 2, . . . , 𝑛𝑚𝑎𝑥 do

11 𝑎 ← ℛ(ℙ)
12 𝑏 ← ℛ(ℝ)
13 ℙ′ ← (ℙ ∖ {𝑎}) ∪ {𝑏}
14 ℝ′ ← (ℝ ∖ {𝑏}) ∪ {𝑎}
15 𝑞′ ← 1

|𝐴| ∑𝑖∈𝐴 |𝑓ℙ(𝑖) − 𝑓𝕏(𝑖)|
16 if 𝑞′ < 𝑞 then

17 𝑞 ← 𝑞′

18 ℙ ← ℙ′

19 ℝ ← ℝ′

20 end

21 end

22 output: ℙ
23 end

Algorithm 7.2. Pseudocode for the predictor local search algorithm, where 𝑓𝕊(𝑎) is the
fitness (R2 score) of individual 𝑎 using the set of datapoints 𝕊 and ℛ(𝕊) represents an

element uniformly randomly chosen from the set 𝕊.

sampling and GA in terms of complexity: It needs some parameters (mainly the number
of iterations per predictor update) but not as much as a GA, and it is more complicated
algorithm than simple random sampling but not as complicated as GA.

The effectiveness of this approach is to be answered in this chapter as well.

7.3 Research questions

Having proposed our modifications to the adaptive-size predictor approach, we ask the
following research questions:

. RQ1: Can uniform random sampling replace the inner GA as the algorithm for
finding suitable fitness predictors, while keeping or improving the performance?
. RQ2: Can local search replace the inner GA as the algorithm for finding suitable

fitness predictors, while keeping or improving the performance?
. RQ3: Are fitness predictors beneficial when LCFs (see Chapter 5) are used?

7.4 Experimental evaluation

7.4.1 Base algorithms

To assess the benefit of fitness prediction in different environments, we use three base
GP algorithms to which the fitness prediction is added as an extension.
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GP This is a vanilla GP algorithm, i.e. the individuals are single trees, and no linear
fitting is performed.

MGGP This is a standard MGGP algorithm, i.e. the individuals are composed of one or
more trees, and they are linearly fitted to the training data. This is the same algorithm
that has been used in Chapter 5 as the base for extension with LCFs.

MGGP+LCF This is an MGGP algorithm with the LCF extension that has been intro-
duced in Chapter 5. Gradient-based tuning is used to find the LCF parameters and the
unsynchronized mode is used, see Section 5.1 for details.

7.4.2 Fitness predictionmethods

We examine three fitness prediction approaches plus a control configuration where no
fitness prediction is employed.

Coevolution (CE) This is a 1:1 reimplementation of the approach used in [94], except the
base algorithm is not CGP but one of the above-mentioned. In short, in this approach,
the predictors are co-evolved alongside the main evolution, and the size of the predictor
is adapted over the course of the run of the algorithm.

Random (R) This is the approach we proposed in Section 7.2.1. Here, the points that
form the predictor are chosen randomly (without repetition). However, the same pre-
dictor size adaptation mechanism as in [94] is used.

Local search (LS) This is the approach we proposed in Section 7.2.2. Here, the points
that form the predictor are found using a simple greedy local search. The size of the
predictor, though, is also determined using the mechanism from [94].

None For proper assessment of the benefit of using fitness prediction, we also include
the “naked” base algorithms without any fitness prediction at all, i.e. the full training
set is used for all evaluations of all individuals.

7.4.3 Benchmarks

We have selected 6 datasets for evaluation of the performance of the algorithms. The
datasets are summarized in Table 7.1 and further described below.

name # of features
# of datapoints

source
train test

ASN 5 1052 451 [95]
ParkinsonMotor 18 4112 1763 [96, 95]
ParkinsonTotal 18 4112 1763 [96, 95]

puma8NH 8 5734 2458 [97]
SupCon 81 14884 6379 [98, 95]
WEC-A 48 50399 21600 [95]

Table 7.1. Summary of datasets used for benchmarks of fitness prediction algorithms.

ASN Full name is Airfoil Self-Noise and it is a dataset with data from testing airfoils
in a wind tunnel. The goal is to predict sound pressure levels for these airfoils. There
are 1503 datapoints in total and we have split them randomly 70:30 into training and
testing subsets.
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ParkinsonMotor, ParkinsonTotal In these datasets, the goal is to predict motor and total
UPDRS score based on features extracted from voice measurements of 42 early-stage
Parkinson’s disease patients. The measurements come from a telemonitoring device for
remote symptom progression monitoring. Each data point corresponds to one voice
measurement. There are 5875 datapoints in total and we have split them randomly
70:30 into training and testing subsets.

puma8NH The data in this dataset come from a realistic simulation of dynamic of an
Unimation Puma 560 robot arm. The goal is to predict an angular acceleration of one
of the robot arm’s links, given angular positions, velocities and torques of the arm.
There are 8192 datapoints in total and we have split them randomly 70:30 into training
and testing subsets.

SupCon This dataset contains features of superconductor materials along with their
critical temperatures which is the prediction target. There are 21263 datapoints in
total and we have split them randomly 70:30 into training and testing subsets.

WEC-A This dataset contains data about positions and absorbed power of a number
of Wave Energy Converters near Adelaide, Australia. The goal is to predict the total
output power based on the positions and absorbed powers. The full dataset consists of
four locations (Sydney, Adelaide, Perth and Tasmania) of which we have chosen only
Adelaide. There are 71999 datapoints in total and we have split them randomly 70:30
into training and testing subsets.

7.4.4 Performancemetrics

There are two performance metrics that we measure:

. end-of-run R2 score on testing set (EoR-R2 for short), and

. relative area under curve (RAUC for short) of the evolution plot.

Both metrics are illustrated in Figure 7.1.
The value of EoR-R2 for one run of an algorithm is the testing set R2 score of the

model that was overall best during the evolution with respect to the training set. The
value of RAUC for one run of an algorithm is obtained with this procedure: whenever
a new best model (with respect to the training set) is found during the evolution, its
R2 score on the testing set as well as the wall-clock time since the start of the run are
recorded. The RAUC is then calculated as

𝑅𝐴𝑈𝐶 =
(∑𝑁−1

𝑘=1 𝑅2
𝑘 ⋅ (𝑡𝑘+1 − 𝑡𝑘)) + 𝑅2

𝑁 ⋅ (𝑇 − 𝑡𝑁)
𝑇

where 𝑅2
𝑘 is the test-set R2 score of the 𝑘-th model found, 𝑡𝑘 is the time of that model

being found, 𝑁 is the total number of models found, and 𝑇 is the total time given to
the algorithm which was 900 seconds.

For the purposes of calculating the RAUC metric, models that have training 𝑅2 < 0
are excluded so that extremely bad models (typically at the start of the run) don’t
pollute the metric (and also because in such case a simple constant model equal to the
mean of training data could be used instead).

Since the sum is divided by the total running time 𝑇, the value of 𝑅𝐴𝑈𝐶 = 1 means
that the algorithm has found a perfect model right at the very start of the run, the
value of 𝑅𝐴𝑈𝐶 = 0 means that the algorithm has not been able to produce any model
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Figure 7.1. Illustration of the EoR-R2 and RAUC performance metrics. EoR-R2 is the
test set R2 of the last model (the best on training data), RAUC corresponds to the area
under the plot of test set R2 scores of the best solution, divided by the total time. In this
case, EoR-R2 = 0.38, and RAUC = 0⋅1+0.1⋅1+0.3⋅1+0.25⋅3+0.4⋅3+0.38⋅3

12 ≈ 0.29. Note that the
“best-so-far” relates to training performance which is the reason the best-so-far solution

can get worse from the testing point of view.

0 2 4 6 8 10 12
t

0.0

0.2

0.4

0.6

0.8

1.0

te
st

in
g

R
2

best-so-far solution

(a) RAUC = 0
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(b) RAUC = 1

Figure 7.2. Illustration of the edge cases of the RAUC metric. In (a) RAUC = 0 because
the only solution found had R2 = 0. In (b) RAUC = 1 because a solution with R2 = 1

was found at the very start of the algorithm.

that would be better than a simple constant model of mean of training targets values1.
These edge case situations are illustrated in Figure 7.2.

Values in between 0 and 1 mean that the algorithm found a non-perfect model(s)
and/or it found them later in the evolution2.

1 This follows from the definition of 𝑅2 = 1 − ∑𝑁
𝑖=1(𝑓(𝘅𝑖)−𝑦𝑖)2

∑𝑁
𝑖=1( ̄𝑦−𝑦𝑖)2 where 𝑓 is the evaluated model. If 𝑓(𝘅) = ̄𝑦

(or worse) then 𝑅2 = 0 (or less), therefore it is counted towards RAUC as 0. If no better model is found,
RAUC stays at 0.
2 Another interpretation of this metric is that it is the test-set R2 averaged over the run of the evolution.
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A third, supplementary metric is the size of the models in number of nodes. All three
metrics – EoR-R2, RAUC, and No. of nodes – are aggregated over all runs of an
algorithm and statistically compared.

7.4.5 Algorithm parameters

The parameters of the base algorithms (i.e. GP, MGGP, MGGP+LCF) are depicted
in Table 7.2. Note that parameters that are common for multiple algorithms are set to
the same value for all of them.

parameter value
applies for

GP MGGP MGGP+LCF
pop. size 300 ✓ ✓ ✓

tournament size 12 ✓ ✓ ✓
# of elites 30 ✓ ✓ ✓
max. depth 10 ✓ ✓ ✓
mut. prob. 0.2 ✓ ✓ ✓
cross. prob. 0.7 ✓ ✓ ✓

const. mut. prob. 0.3 ✓ ✓ ✓
const. mut. 𝜎 10 ✓ ✓ ✓
# of genes 5 ✓ ✓

high-level cross. prob. 0.2 ✓ ✓
high-level cross. rate 0.5 ✓ ✓
# of backprop. steps 3 ✓
weights mut. prob. 0.05 ✓
weights mut. 𝜎 3 ✓

function set
𝑎 + 𝑏, 𝑎 − 𝑏, 𝑎 ⋅ 𝑏, 𝑎

𝑏 , 𝑎2, 𝑎3, 𝑎4,
✓ ✓ ✓sin 𝑎, cos 𝑎, exp 𝑎, log 𝑎

Table 7.2. Parameters of base algorithms. The parameter “const. mut. prob.” is the
probability that a mutation (if a mutation already takes place) is a numerical constant leaf

node mutation. Otherwise, the mutation is a subtree mutation.

The other part of the settings are the fitness prediction parameters. Since each
fitness prediction approach brings with itself a number of parameters, we performed
a grid search over these parameters with grid points that we considered as sensible
values. The parameters and their corresponding grid values are listed in Table 7.3.

We allowed only a single value for some of the parameters. Parameters |𝑃𝑝𝑟𝑒𝑑|, |𝑇𝑝𝑟𝑒𝑑|,
𝑝𝑝𝑟𝑒𝑑,𝑐𝑟𝑜𝑠𝑠, and 𝑝𝑝𝑟𝑒𝑑,𝑚𝑢𝑡 were simply taken from [94] as these apply only for the CE
configurations which uses the same inner GA. Parameter 𝑙𝑚𝑖𝑛 was set as the lowest
number where the linear regression task in MGGP algorithm can be fully determined –
there are 5 genes (see Table 7.2) and an intercept. Parameter 𝑢 was determined based
on preliminary experiments.

The grid search was performed on datasets ASN (as a representative of a “small”
dataset) and SupCon (as a representative of a “big” dataset) by running each configu-
ration (combination of base algorithm and prediction method with one set of param-
eters) 10 times. Then, for each base algorithm and each fitness prediction approach,
two configurations are selected based on the two performance metrics we described in
Section 7.4.6: the best w.r.t. the end-of-run test-set R2, and the best w.r.t. the relative
area under curve. The first criterion should provide a configuration that produces good
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description symbol values
applies for
CE LS R

# of generations between predictor updates 𝑖 20, 40, 60, 80 ✓ ✓ ✓
# of inner evolution generations 𝑔 1, 10, 20 ✓
# of local search iterations 𝑟 100, 800, 1500 ✓
predictor population size |𝑃𝑝𝑟𝑒𝑑| 32 ✓
predictor tournament size |𝑇𝑝𝑟𝑒𝑑| 2 ✓
predictor crossover prob. 𝑝𝑝𝑟𝑒𝑑,𝑐𝑟𝑜𝑠𝑠 0.8 ✓
predictor mutation prob. 𝑝𝑝𝑟𝑒𝑑,𝑚𝑢𝑡 0.2 ✓
size of archive for predictor evaluation |𝐴| 75, 300, 600 ✓ ✓
minimum length of a predictor 𝑙𝑚𝑖𝑛 6 ✓ ✓ ✓
initial length of the predictor as fraction of all data 𝑙𝑖𝑛𝑖𝑡 0.05, 0.5 ✓ ✓ ✓
maximum # of generations after which the desired

𝐺𝑢𝑝𝑑𝑎𝑡𝑒 8 ✓ ✓ ✓length of the predictor is recalculated
see [94], Section 3.1.2, step 3 𝐼𝑡ℎ𝑟 0.03, 0.1 ✓ ✓ ✓

Table 7.3. Grid search points for parameters of fitness prediction methods.

results at the end of the run, while the second criterion should provide a configuration
that produces good results fast. The “best” configuration, according to the given cri-
terion, is selected by putting all runs of all tested configurations together and ranking
them, then the ranks are summed across both datasets, and, finally, the configuration
with the lowest sum of ranks of its runs is selected. In the case when the same con-
figuration is the best in both metrics (for one fitness prediction approach), in order to
keep two configurations per fitness prediction approach, the second-best configuration
from the RAUC point of view is taken as the second one. The control configurations
with no fitness prediction obviously did not go through the grid search as they have no
fitness prediction parameters to be determined.

Selected configurations. The configurations selected using this process for GP, MGGP
and MGGP+LCF are summarized in Table 7.4. For the sake of brevity, we will distin-
guish these configurations using a “codename” in the form

X-Y-Z
where “X” refers to the base algorithm (GP, MGGP, or MGGP+LCF), “Y” refers to
the fitness prediction method used (CE, LS, or R), and “Z” refers to the metric based on
which was the particular configuration was selected (“A” for RAUC, “E” for EoR-R2).

7.4.6 Testingmethodology

Each combination of base algorithm (GP, MGGP, MGGP+LCF), fitness prediction
(coevolution, local search, random, and no prediction), and set of parameters (best by
RAUC, best by EoR-R2; only one set for base algorithms without prediction) i.e. 21
distinct algorithm configurations, is run 20 times independently on each dataset. The
performance metrics are collected for each configuration independently, aggregated over
the 20 runs and statistically compared.
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parameter *-CE-A *-LS-A *-R-A *-CE-E *-LS-E *-R-E
G
P-

*

𝑖 40 80 20 20 20 20
𝑟 10 100 – 1 800 –

|𝐴| 600 300 – 75 75 –
𝑙𝑚𝑖𝑛 6 6 6 6 6 6
𝑙𝑖𝑛𝑖𝑡 0.05 0.5 0.05 0.5 0.05 0.05

𝑢 8 8 8 8 8 8
𝐼𝑡ℎ𝑟 0.03 0.03 0.1 0.1 0.1 0.03

M
G
G
P-

*

𝑖 20 40 60 60 40 60
𝑟 20 800 – 1 800 –

|𝐴| 75 300 – 300 75 –
𝑙𝑚𝑖𝑛 6 6 6 6 6 6
𝑙𝑖𝑛𝑖𝑡 0.05 0.05 0.5 0.05 0.5 0.5

𝑢 8 8 8 8 8 8
𝐼𝑡ℎ𝑟 0.03 0.03 0.1 0.1 0.03 0.03

M
G
G
P+

LC
F-
* 𝑖 20 20 20 20 40 20

𝑟 20 100 – 10 1500 –
|𝐴| 300 75 – 300 75 –
𝑙𝑚𝑖𝑛 6 6 6 6 6 6
𝑙𝑖𝑛𝑖𝑡 0.05 0.05 0.05 0.05 0.5 0.5

𝑢 8 8 8 8 8 8
𝐼𝑡ℎ𝑟 0.1 0.1 0.03 0.03 0.1 0.1

Table 7.4. Selected configurations of fitness prediction methods for GP base algorithm.
Note: configurations GP-LS-A, MGGP-R-A and MGGP-CE-A were not the best configu-
rations for given base algorithm, fitness prediction approach and performance metric but
the second-best ones because the best ones were identical to the best ones in the other

metric.

All runs are performed on the MetaCentrum cluster such that only machines of
identical configuration are utilized.

7.4.7 Results and discussion

Now we present the results of the selected configurations on all datasets. Tables 7.5
and 7.6 show the median values of EoR-R2 and RAUC metrics respectively. Table 7.7
then shows the median number of nodes of the final model. Detailed view in form of
boxplots can be found in Appendix C.1.

Table 7.5 shows that, except for GP-CE-A on the ParkinsonTotal dataset, no fit-
ness prediction configuration was significantly better or worse than the base algorithm,
when EoR-R2 is considered. From the RAUC point of view, as shown in Table 7.6,
there are more differences, especially with the MGGP+LCF-based algorithms on the
WEC-A dataset, but the overall picture is similar – mostly no difference from the base
algorithms. When the model size (number of nodes) is considered, which is depicted
in Table 7.7, it can be said that fitness prediction did not improve in this regard and
multiple times produced even more complex models than the base algorithm.

Regarding the reason for why the MGGP+LCF-based algorithms actually worsened
their RAUC performance over the base algorithm on the WEC-A dataset, we propose
the following explanation. The dataset seems to be “easy” to solve as all algorithms and
fitness prediction configurations (including the configurations with no fitness prediction)
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dataset no pred. *-CE-A *-CE-E *-LS-A *-LS-E *-R-A *-R-E
G
P-

*

ASN 0.471 0.459 0.528 0.482 0.500 0.416 0.411
ParkinsonMotor 0.368 0.470 0.409 0.350 0.379 0.417 0.423
ParkinsonTotal 0.359 0.382 0.306 0.295 0.372 0.450 0.432

puma8NH 0.673 0.677 0.676 0.670 0.666 0.671 0.677
SupCon 0.588 0.615 0.612 0.573 0.618 0.626 0.612
WEC-A >0.999 >0.999 >0.999 >0.999 >0.999 >0.999 >0.999

total (+ |=| -) – 4 |1 | 1 4 |1 | 1 1 |1 | 4 4 |1 | 1 3 |1 | 2 4 |1 | 1
total sig. (+ |=| -) – 0 |6 | 0 0 |6 | 0 0 |6 | 0 0 |6 | 0 0 |6 | 0 0 |6 | 0

M
G
G
P-

*

ASN 0.797 0.806 0.810 0.808 0.786 0.805 0.808
ParkinsonMotor 0.728 0.734 0.737 0.740 0.723 0.752 0.740
ParkinsonTotal 0.701 0.743 0.716 0.712 0.733 0.713 0.726

puma8NH 0.683 0.681 0.682 0.684 0.684 0.683 0.683
SupCon 0.753 0.758 0.760 0.754 0.761 0.758 0.759
WEC-A >0.999 >0.999 >0.999 0.999 >0.999 >0.999 >0.999

total (+ |=| -) – 4 |1 | 1 4 |1 | 1 5 |0 | 1 3 |1 | 2 4 |2 | 0 4 |2 | 0
total sig. (+ |=| -) – 1 |5 | 0 0 |6 | 0 0 |6 | 0 0 |6 | 0 0 |6 | 0 0 |6 | 0

M
G
G
P+

LC
F-
*

ASN 0.760 0.782 0.786 0.783 0.771 0.789 0.788
ParkinsonMotor 0.448 0.481 0.472 0.546 0.491 0.466 0.538
ParkinsonTotal 0.430 0.442 0.500 0.551 0.428 0.613 0.455

puma8NH 0.673 0.673 0.670 0.669 0.675 0.671 0.674
SupCon 0.718 0.742 0.749 0.728 0.734 0.724 0.725
WEC-A >0.999 >0.999 >0.999 >0.999 >0.999 >0.999 >0.999

total (+ |=| -) – 4 |2 | 0 4 |1 | 1 4 |1 | 1 4 |1 | 1 4 |1 | 1 5 |1 | 0
total sig. (+ |=| -) – 0 |6 | 0 0 |6 | 0 0 |6 | 0 0 |6 | 0 0 |6 | 0 0 |6 | 0

Table7.5. Aggregated results of the fitness prediction algorithms on all datasets as viewed
by the EoR-R2. The “no pred.” column shows the performance of the base algorithm
without any prediction. The values are medians for the particular algorithm configuration
and dataset over 20 independent runs. Values in green/red indicate that the median is
better/worse than that of the base algorithm without prediction. Values set in bold indicate
that their distributions also differ according to the two-sided MWUT with significance
level 𝛼 = 0.01. The rows “total (+ |=| -)” show the total number of times the particular
configuration was better | equal to | worse than the base algorithm without prediction
when comparing just the medians. The rows “total sig. (+ |=| -)” are similar, but only

the significant differences are considered better/worse.

achieved almost perfect median of nearly 1.0, as seen in Table 7.5. Also, MGGP+LCF
uses only 5 nodes to do that, as seen in Table 7.7. This means that it heavily utilizes
the LCF nodes as those are counted as a single node, and indeed, an inspection of the
models shows 5-gene models where the genes are each just a single LCF node3. This also
means that the LCF nodes have to be tuned properly. Since the fitness prediction makes
the algorithm use less datapoints, the signal received from the error backpropagation
3 This means that the model is linear. If the MGGP algorithm was allowed to use (at least) as many genes

as there are features in the WEC-A dataset (48) it would be able to directly produce optimal linear model
as it utilizes linear regression. However, the maximum number of genes is just 5 so this is not possible.
With the LCFs, however, the algorithm can “pack” the features into the LCF nodes and optimize the
parameters via gradient descent.
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dataset no pred. *-CE-A *-CE-E *-LS-A *-LS-E *-R-A *-R-E
G
P-

*

ASN 0.340 0.330 0.389 0.379 0.300 0.280 0.340
ParkinsonMotor 0.272 0.350 0.354 0.238 0.245 0.335 0.347
ParkinsonTotal 0.272 0.267 0.213 0.250 0.205 0.354 0.319

puma8NH 0.665 0.664 0.668 0.661 0.645 0.662 0.665
SupCon 0.524 0.555 0.557 0.537 0.568 0.587 0.571
WEC-A 0.859 0.939 0.890 0.868 0.899 0.951 0.942

total (+ |=| -) – 3 |0 | 3 5 |0 | 1 3 |0 | 3 2 |0 | 4 4 |0 | 2 4 |2 | 0
total sig. (+ |=| -) – 0 |6 | 0 0 |6 | 0 0 |6 | 0 0 |5 | 1 0 |6 | 0 0 |6 | 0

M
G
G
P-

*

ASN 0.760 0.778 0.748 0.744 0.752 0.775 0.782
ParkinsonMotor 0.652 0.666 0.654 0.635 0.646 0.673 0.666
ParkinsonTotal 0.651 0.688 0.664 0.636 0.654 0.648 0.668

puma8NH 0.676 0.672 0.674 0.669 0.677 0.677 0.677
SupCon 0.720 0.731 0.736 0.734 0.736 0.727 0.725
WEC-A 0.954 0.971 0.976 0.968 0.951 0.951 0.958

total (+ |=| -) – 5 |0 | 1 4 |0 | 2 2 |0 | 4 2 |0 | 4 4 |0 | 2 6 |0 | 0
total sig. (+ |=| -) – 1 |5 | 0 1 |5 | 0 0 |6 | 0 0 |6 | 0 0 |6 | 0 0 |6 | 0

M
G
G
P+

LC
F-
*

ASN 0.725 0.743 0.739 0.710 0.728 0.738 0.745
ParkinsonMotor 0.396 0.376 0.367 0.468 0.429 0.396 0.380
ParkinsonTotal 0.358 0.348 0.373 0.465 0.340 0.516 0.338

puma8NH 0.657 0.653 0.651 0.650 0.661 0.651 0.663
SupCon 0.688 0.728 0.730 0.715 0.704 0.708 0.687
WEC-A 0.984 0.981 0.981 0.992 0.961 0.991 0.954

total (+ |=| -) – 2 |0 | 4 3 |0 | 3 4 |0 | 2 4 |0 | 2 5 |1 | 0 2 |0 | 4
total sig. (+ |=| -) – 1 |4 | 1 1 |4 | 1 2 |4 | 0 0 |5 | 1 3 |3 | 0 0 |5 | 1

Table7.6. Aggregated results of the fitness prediction algorithms on all datasets using the
RAUC performance characteristic. The “no pred.” column shows the performance of the
base algorithm without any prediction. The values are medians for the particular algorithm
configurations and dataset over 20 independent runs. Values in green/red indicate that
the median is better/worse than that of the base algorithm without prediction. Values
set in bold indicate that their distributions also differ according to the two-sided MWUT
with significance level 𝛼 = 0.01. The rows “total (+ |=| -)” show the total number of times
the particular configuration was better | equal to | worse than the base algorithm without
prediction when comparing just the medians. The rows “total sig. (+ |=| -)” are similar,

but only the significant differences are considered better/worse.

is weaker than in the case of using the full dataset. As for why this does not happen
for the other datasets, we think that it is because they require more complex models
where the LCF nodes do not play as important role. Also note that even though the
difference is statistically significant, it is not very big in terms of absolute values.

Overall, using fitness prediction should help the algorithms work faster and therefore
achieve better results in the end, or achieve the same results sooner in the run, but
that is not what can be observed in the presented results, except for a few cases.
This is somewhat unexpected, since previous research has shown that fitness prediction
improves the underlying algorithms. We have three hypotheses that try to explain the
cause of this discrepancy.
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dataset no pred. *-CE-A *-CE-E *-LS-A *-LS-E *-R-A *-R-E
G
P-

*
ASN 72.5 63.5 84.5 82.5 60.5 68.5 58.5

ParkinsonMotor 75.5 99 110.5 90 95.5 90.5 96
ParkinsonTotal 75 84.5 97 88 95 110.5 100.5

puma8NH 60.5 87.5 74.5 84 90.5 81.5 85.5
SupCon 66 68 86.5 68 72 63.5 83
WEC-A 34.5 38 44.5 35 31 36.5 38

total (+ |=| -) – 0 |5 | 1 0 |6 | 0 0 |5 | 1 0 |5 | 1 0 |5 | 1 0 |5 | 1

M
G
G
P-

*

ASN 155.5 137 144 130 135 144.5 136.5
ParkinsonMotor 79 102 108 110.5 99 102 89.5
ParkinsonTotal 93.5 109 99.5 98 100.5 96 104

puma8NH 72.5 75.5 61.5 83 90.5 71 73
SupCon 56.5 109.5 77.5 77 82.5 80 83
WEC-A 39.5 42 37.5 57 37.5 48 49

total (+ |=| -) – 0 |5 | 1 0 |5 | 1 0 |5 | 1 0 |5 | 1 0 |5 | 1 0 |5 | 1

M
G
G
P+

LC
F-
*

ASN 44 42.5 43.5 48 37.5 40 41.5
ParkinsonMotor 16.5 28 19 34.5 18.5 29.5 17.5
ParkinsonTotal 16 31 32 32 26 27.5 26.5

puma8NH 13 21 18 30 21 22.5 18
SupCon 5.5 7.5 7 7.5 12 7.5 6
WEC-A 5 5 5 5 5 5 5

total (+ |=| -) – 0 |6 | 0 0 |5 | 1 0 |3 | 3 0 |6 | 0 0 |5 | 1 0 |6 | 0

Table 7.7. Aggregated results of the fitness prediction algorithms on all datasets in terms
of number of nodes of the final model. The “no pred.” column shows the value for the base
algorithm without any prediction. The values are medians for the particular algorithm
configurations and dataset over 20 independent runs. Values highlighted in red/green
indicate that the median is worse/better than that of the base algorithm without prediction,
and their distributions differ according to the two-sided MWUT with significance level
𝛼 = 0.01. A non-highlighted value means that no difference in distributions was found
according to this test. This result is summarized in the row “total (+ |=| -)” which indicates
the number of times the particular configuration was better | indifferent to | worse than

the base algorithm without prediction.

H1: The fitness evaluation is not the bottleneck of the algorithm. Our implementation
is written in Python with the actual evaluation using the numpy library [99]. Since
Python is an interpreted language while numpy has a highly efficient pre-compiled core
utilizing OpenBLAS4 [100], the evaluation is significantly faster than the rest of the
algorithm and therefore the benefit of speeding it up (by evaluating less data) is not
as pronounced as in an implementation that is written entirely in a compiled language
like C, where the evaluation could actually be the bottleneck.

4 In our environment.
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Figure 7.3. Timing of algorithms on the ASN dataset. The columns show mean time
spent in the corresponding part of the algorithm, the error bars show standard deviation.
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Figure 7.4. Timing of algorithms on the ParkinsonMotor dataset. The columns show
mean time spent in the corresponding part of the algorithm, the error bars show standard

deviation.

To get some insight into this issue, we analyze the timing of the algorithms. Fig-
ures 7.3 through 7.8 show how much time is spent in evaluation5 of the data, tuning
the LCF parameters6, reproduction7, and other parts8.

We can see that on ASN (which is the smallest dataset in terms of number of data-
points), both GP and MGGP spend the majority of time in reproduction. Introducing
fitness prediction changes this ratio only slightly. On the other hand, MGGP+LCF
spends the majority of time in gradient-based tuning of LCF parameters. Again, intro-
ducing fitness prediction changes this only slightly. On ParkinsonMotor, ParkinsonTo-
tal, and puma8NH (the “mid-sized” datasets), the picture is similar except that for GP,
the ratio is roughly 1:1, and for MGGP, the majority is spent in evaluation. Introduc-
ing fitness prediction has stronger impact than it had on the ASN dataset. On the two
largest datasets – SupCon and WEC-A – the majority of time is spent in evaluation
for GP and MGGP, and fitness prediction lessens the difference. In MGGP+LCF, the
most time is spent roughly equally in evaluation and LCF tuning, and fitness prediction
decreases the evaluation time in favour of the LCF tuning.

5 For MGGP and MGGP+LCF, evaluation includes also the linear regression on the outputs of the genes.
6 Only for MGGP+LCF.
7 Includes selection, crossover and mutation.
8 Includes selection of elites, various bookkeeping routines, and also the procedure that creates the fitness

predictors, i.e. coevolution, local search or random sampling.
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Figure 7.5. Timing of algorithms on the ParkinsonTotal dataset. The columns show
mean time spent in the corresponding part of the algorithm, the error bars show standard

deviation.
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Figure7.6. Timing of algorithms on the puma8NH dataset. The columns show mean time
spent in the corresponding part of the algorithm, the error bars show standard deviation.
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Figure 7.7. Timing of algorithms on the SupCon dataset. The columns show mean time
spent in the corresponding part of the algorithm, the error bars show standard deviation.

We can definitely see that, at least for GP and MGGP, reproduction takes a signifi-
cant amount of time of the algorithm which might indicate that this hypothesis – that
evaluation is not the bottleneck of the algorithm and therefore speeding it up does not
help – may have some merit. This hypothesis is testable – although we cannot just
make the non-evaluation part of the algorithm faster, we can make the evaluation part
slower by simply introducing a slight artificial delay for each datapoint being evaluated.
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Figure 7.8. Timing of algorithms on the WEC-A dataset. The columns show mean time
spent in the corresponding part of the algorithm, the error bars show standard deviation.

H2: The base algorithm itself (i.e. GP and MGGP in this case) is more computationally

demanding than CGP used in [94]. This is a reasonable hypothesis since CGP does not
require any tree structure manipulation, it only has a fixed-sized grid of functions where
the interconnections and the individual functions are manipulated.

However, this hypothesis is difficult to verify since it would require comparison with
the algorithms form the referenced papers, implementations of which are not available.
Also, in [21] a coevolutionary approach to fitness prediction was used with a classic
tree-based GP9, and was reported to be significantly better than the algorithm without
fitness prediction. This makes the hypothesis less likely to be true.

H3: Previous fitness predictor research is not entirely compatible with the experiments

performed here. In [6, 94], the SR benchmarks used for evaluation of the algorithms
were artificial, one-dimensional test problems only. In those experiments, the test
problems were such that they could be, in principle, modelled perfectly because the
function sets used by the algorithms had all the building blocks needed to reconstruct
the sought functions. This might not be the case for real-world datasets. Also, the
processes themselves, that gave rise to the real-world data, are likely more complex
than the artificial benchmarks. It is possible that fitness prediction is simply not as
effective in such situation.

This hypothesis is plausible and verifiable by simply conducting experiments on these
test problems as well. However, if H1 is true, that effect could contaminate the results
of the verification experiments, leading to false results. Beside this major point, we also
think that such simple datasets are not very interesting and have only limited potential
for showing the performance of the algorithms.

We think that H1 is the most likely explanation and also the most fundamental one,
and we have means to verify it. Therefore, in the rest of this chapter, we are going to
focus on eliminating the effect described in H1.

7.5 Experiments simulatingmore time-demanding

evaluation

The results presented in the previous section show only a little difference, between the
base algorithm and its variants with fitness prediction. We proposed a hypothesis that

9 The implementation is not publicly available and cannot be analyzed, though.
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this is caused by the fact that the evaluation is actually not the most time consuming
part of the algorithm, due to our implementation being written in Python with the
exception of the evaluation itself, which utilizes a highly efficient numpy library.

In order to test this hypothesis, we perform identical experiments, but we modify the
algorithm by introducing an artificial delay for each datapoint being evaluated. In our
environment, evaluation of a single datapoint takes, on average10, 1.18 𝜇s. We decided
to introduce a delay of double this time, i.e. 2.36 𝜇s, therefore the evaluation should
take roughly three times more time than with the regular algorithm.11

7.5.1 Results and discussion

As in the original experiments, we present the results in the same form. Tables 7.8
and 7.9 show the median values of EoR test-set R2 and RAUC metrics respectively.
Detailed view in form of boxplots can be found in Appendix C.2.

Contrary to the original experiments from previous section, the difference in perfor-
mance is much more pronounced. First, compare Tables 7.5 and 7.8 which show the
aggregated EoR-R2 results for the original experiments and experiments with simulated
time-demanding evaluation respectively. While there was only a single case where an al-
gorithm with fitness prediction was significantly better than the no-prediction algorithm
in the original experiments, in the ones with simulated time-demanding evaluation there
are multiple such cases, most of them for the WEC-A dataset. However, for the ma-
jority of the experiments with simulated time-demanding evaluation, the indifference
of EoR-R2 performance remained. On the other hand, this is not entirely unexpected
as the goal of fitness prediction is to speed up the process rather than improve the end
result.

Next, compare Tables 7.6 and 7.9 which show the aggregated RAUC performance
for the original experiments and the ones with simulated time-demanding evaluation
respectively. In the original experiments (Table 7.6), in almost all cases for GP and
MGGP algorithms, no difference was identified, and for MGGP+LCF the fitness pre-
diction algorithms were actually mostly worse than the base algorithm for the WEC-A
dataset. On the other hand, in the experiments with simulated time-demanding eval-
uation (Table 7.6), although the negative trend for WEC-A dataset and MGGP+LCF
algorithm remained in place, there is now a number of cases where an algorithm with
fitness prediction was significantly better than the base algorithm.

The coevolution-based approach (*-CE-A and *-CE-E) turned out to be beneficial
especially for the MGGP base algorithm as there was a significant improvement for
majority of the experiments (4 datasets out of 6 for -A and 3 out of 6 for -E). The
random-based approach (*-R-A and *-R-E) turned out to be beneficial especially for
the GP base algorithm.

To complete the picture, the timing plots for experiments with simulated time-
demanding evaluation are shown in Figures 7.9 through 7.14. As expected, the evalua-
tion now takes the most time for all base algorithms on all datasets. Fitness prediction
then decreases the proportion of evaluation in favour of the other parts of the algo-
rithms.

Note on the number of iterations. With all the experiments, both normal and with
simulated time-demanding evaluation, the algorithms were run for a fixed amount
10 The time is shorter at the beginning of the algorithm and longer towards the end as the solutions tend
to grow in size.
11 For the MGGP+LCF algorithm, only the forward pass (see the end of Section 5.1.2) is delayed. Back-
propagation of the error is unmodified as, technically, it is not the part of the evaluation.
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dataset no pred. *-CE-A *-CE-E *-LS-A *-LS-E *-R-A *-R-E
G
P-

*

ASN 0.431 0.477 0.457 0.458 0.497 0.414 0.294
ParkinsonMotor 0.200 0.388 0.334 0.255 0.343 0.391 0.299
ParkinsonTotal 0.281 0.504 0.334 0.287 0.356 0.348 0.384

puma8NH 0.672 0.670 0.674 0.667 0.666 0.675 0.673
SupCon 0.434 0.563 0.471 0.510 0.595 0.574 0.552

WEC-A 0.392 0.597 0.938 0.940 0.878 >0.999 >0.999
total (+ |=| -) – 5 |0 | 1 6 |0 | 0 5 |0 | 1 5 |0 | 1 5 |0 | 1 5 |0 | 1

total sig. (+ |=| -) – 1 |5 | 0 0 |6 | 0 0 |6 | 0 1 |5 | 0 1 |5 | 0 1 |5 | 0

M
G
G
P-

*

ASN 0.777 0.815 0.825 0.804 0.782 0.798 0.805
ParkinsonMotor 0.670 0.736 0.714 0.712 0.702 0.720 0.730
ParkinsonTotal 0.664 0.739 0.724 0.673 0.718 0.686 0.686

puma8NH 0.681 0.679 0.681 0.682 0.684 0.683 0.683
SupCon 0.689 0.752 0.758 0.747 0.741 0.725 0.731
WEC-A 0.845 >0.999 >0.999 0.999 0.962 0.937 0.945

total (+ |=| -) – 5 |0 | 1 5 |1 | 0 6 |0 | 0 6 |0 | 0 6 |0 | 0 6 |0 | 0
total sig. (+ |=| -) – 3 |3 | 0 2 |4 | 0 1 |5 | 0 1 |5 | 0 1 |5 | 0 1 |5 | 0

M
G
G
P+

LC
F-
*

ASN 0.736 0.758 0.790 0.772 0.768 0.772 0.778

ParkinsonMotor 0.401 0.442 0.353 0.510 0.449 0.467 0.408
ParkinsonTotal 0.340 0.417 0.369 0.495 0.353 0.549 0.360

puma8NH 0.672 0.672 0.673 0.671 0.671 0.672 0.674
SupCon 0.712 0.734 0.722 0.725 0.730 0.722 0.721
WEC-A >0.999 >0.999 >0.999 >0.999 >0.999 >0.999 >0.999

total (+ |=| -) – 5 |1 | 0 6 |0 | 0 5 |0 | 1 5 |0 | 1 5 |1 | 0 6 |0 | 0
total sig. (+ |=| -) – 1 |5 | 0 1 |5 | 0 1 |5 | 0 1 |5 | 0 2 |4 | 0 2 |4 | 0

Table 7.8. Aggregated results of the fitness prediction algorithms on all datasets using
the EoR R2 performance characteristic for the experiments with simulated time-demanding
evaluation. The “no pred.” column shows the performance of the base algorithm without
any prediction. The values are medians for the particular algorithm configurations and
dataset over 20 independent runs. Values in green/red indicate that the median is bet-
ter/worse than that of the base algorithm without prediction. Values set in bold indicate
that their distributions also differ according to the two-sided MWUT with significance
level 𝛼 = 0.01. The rows “total (+ |=| -)” show the total number of times the particular
configuration was better | equal to | worse than the base algorithm without prediction
when comparing just the medians. The rows “total sig. (+ |=| -)” are similar, but only

the significant differences are considered better/worse.

of wall-clock time. Using a subsample of the training data for evaluation should cause
the algorithm to perform more generations of the main evolution in total. We illustrate
this in Table 7.10.

It can be seen that up to a few cases (which all happen for the vanilla GP-based algo-
rithms), the algorithms with fitness prediction were able to perform more iterations than
their no-prediction counterparts, i.e. they were able to test more candidate solutions.
The difference is best seen on the larger datasets (they are sorted left to right from
smallest to largest), and it is especially apparent with the simulated time-demanding
evaluation (the bottom numbers in the table).
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dataset no pred. *-CE-A *-CE-E *-LS-A *-LS-E *-R-A *-R-E
G
P-

*

ASN 0.270 0.291 0.300 0.352 0.296 0.332 0.165
ParkinsonMotor 0.126 0.278 0.181 0.203 0.203 0.336 0.225
ParkinsonTotal 0.145 0.325 0.239 0.220 0.182 0.292 0.278

puma8NH 0.634 0.648 0.649 0.643 0.641 0.659 0.663

SupCon 0.388 0.530 0.413 0.440 0.511 0.532 0.503

WEC-A 0.121 0.558 0.431 0.346 0.644 0.840 0.880

total (+ |=| -) – 6 |0 | 0 6 |0 | 0 6 |0 | 0 6 |0 | 0 6 |0 | 0 5 |0 | 1
total sig. (+ |=| -) – 2 |4 | 0 0 |6 | 0 1 |5 | 0 1 |5 | 0 3 |3 | 0 4 |2 | 0

M
G
G
P-

*

ASN 0.743 0.765 0.782 0.726 0.748 0.769 0.776
ParkinsonMotor 0.545 0.627 0.638 0.576 0.599 0.601 0.618
ParkinsonTotal 0.589 0.645 0.641 0.607 0.603 0.611 0.610

puma8NH 0.658 0.660 0.664 0.661 0.665 0.666 0.666
SupCon 0.669 0.711 0.710 0.706 0.679 0.667 0.670
WEC-A 0.691 0.862 0.861 0.894 0.782 0.777 0.779

total (+ |=| -) – 5 |0 | 1 6 |0 | 0 5 |0 | 1 6 |0 | 0 5 |0 | 1 6 |0 | 0
total sig. (+ |=| -) – 4 |2 | 0 3 |3 | 0 1 |5 | 0 1 |5 | 0 1 |5 | 0 1 |5 | 0

M
G
G
P+

LC
F-
*

ASN 0.696 0.717 0.725 0.696 0.721 0.724 0.728
ParkinsonMotor 0.313 0.361 0.302 0.383 0.342 0.357 0.312
ParkinsonTotal 0.288 0.344 0.301 0.369 0.296 0.394 0.289

puma8NH 0.618 0.642 0.636 0.640 0.639 0.641 0.639

SupCon 0.663 0.678 0.657 0.707 0.678 0.703 0.665
WEC-A 0.949 0.928 0.846 0.979 0.913 0.980 0.881

total (+ |=| -) – 5 |0 | 1 3 |0 | 3 5 |1 | 0 5 |0 | 1 6 |0 | 0 4 |0 | 2
total sig. (+ |=| -) – 2 |3 | 1 1 |4 | 1 2 |4 | 0 2 |3 | 1 3 |3 | 0 1 |4 | 1

Table 7.9. Aggregated results of the fitness prediction algorithms on all datasets using
the RAUC performance characteristic for the experiments with simulated time-demanding
evaluation. The “no pred.” column shows the performance of the base algorithm without
any prediction. The values are medians for the particular algorithm configurations and
dataset over 20 independent runs. Values in green/red indicate that the median is bet-
ter/worse than that of the base algorithm without prediction. Values set in bold indicate
that their distributions also differ according to the two-sided MWUT with significance
level 𝛼 = 0.01. The rows “total (+ |=| -)” show the total number of times the particular
configuration was better | equal to | worse than the base algorithm without prediction
when comparing just the medians. The rows “total sig. (+ |=| -)” are similar, but only

the significant differences are considered better/worse.
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Figure 7.9. Timing of algorithms on the ASN dataset for the experiments with simulated
time-demanding evaluation. The columns show mean time spent in the corresponding part

of the algorithm, the error bars show standard deviation.
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Figure 7.10. Timing of algorithms on the ParkinsonMotor dataset for the experiments
with simulated time-demanding evaluation. The columns show mean time spent in the

corresponding part of the algorithm, the error bars show standard deviation.
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Figure 7.11. Timing of algorithms on the ParkinsonTotal dataset for the experiments
with simulated time-demanding evaluation. The columns show mean time spent in the

corresponding part of the algorithm, the error bars show standard deviation.
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Figure 7.12. Timing of algorithms on the puma8NH dataset for the experiments with
simulated time-demanding evaluation. The columns show mean time spent in the corre-

sponding part of the algorithm, the error bars show standard deviation.
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Figure 7.13. Timing of algorithms on the SupCon dataset for the experiments with simu-
lated time-demanding evaluation. The columns show mean time spent in the corresponding

part of the algorithm, the error bars show standard deviation.
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Figure 7.14. Timing of algorithms on the WEC-A dataset for the experiments with simu-
lated time-demanding evaluation. The columns show mean time spent in the corresponding

part of the algorithm, the error bars show standard deviation.
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algorithm ASN Parkinson Parkinson puma8NH SupCon WEC-AMotor Total

GP 783.3±645.6 387.7±192.7 726.9±818.0 364.0±83.3 509.4±332.0 184.7±56.0
384.1±109.0 183.5±46.4 197.5±49.6 135.2±9.3 81.2±4.5 23.6±0.7

GP-CE-A 1004.2±868.8 502.4±283.7 488.4±316.1 331.5±72.8 760.3±632.6 473.6±205.1
880.7±757.8 359.3±247.2 405.7±296.8 240.0±57.1 475.2±382.4 130.6±67.3

GP-CE-E 714.7±602.5 389.6±259.6 417.9±265.0 358.9±89.8 566.3±428.5 360.2±138.0
563.4±363.3 323.7±252.5 350.4±208.0 279.3±27.3 278.0±193.4 40.7±8.8

GP-LS-A 807.4±760.2 622.2±487.3 653.5±856.6 381.9±94.9 564.8±272.5 226.3±93.9
638.4±547.8 506.4±483.5 442.7±650.2 244.5±57.0 215.5±62.2 44.2±3.4

GP-LS-E 914.8±698.9 621.0±324.7 604.8±470.3 407.9±77.2 797.0±410.8 630.6±279.9
903.9±683.6 558.8±322.3 573.6±481.1 404.9±77.1 574.5±315.3 298.1±238.7

GP-R-A 1199.9±911.4 502.8±219.4 431.3±259.2 377.3±45.5 865.0±541.2 638.1±233.2
1131.9±910.8 480.4±191.0 407.4±264.4 366.6±64.3 674.7±455.1 293.1±266.4

GP-R-E 1140.6±924.7 597.9±397.2 514.1±311.5 352.4±62.5 609.6±255.7 470.0±177.1
1022.3±854.4 471.0±337.6 352.0±175.7 286.8±54.5 423.5±186.9 198.9±192.9

MGGP 300.2±31.3 249.4±45.1 237.6±47.7 387.7±100.8 367.8±142.2 143.2±31.6
233.9±17.7 138.8±15.2 141.5±17.2 142.1±10.1 75.2±2.5 23.0±0.4

MGGP-CE-A 322.0±41.8 324.6±79.9 324.7±80.9 402.3±87.6 388.6±100.1 604.2±173.2
298.2±33.6 235.2±50.7 226.1±48.2 296.4±69.3 262.8±70.9 379.5±129.2

MGGP-CE-E 308.0±81.7 339.2±75.3 321.6±66.4 436.3±126.3 418.8±120.4 640.4±134.5
296.9±39.6 262.1±46.1 243.9±83.5 268.5±94.1 272.9±57.5 346.6±84.3

MGGP-LS-A 328.0±39.8 315.3±102.5 315.7±67.3 419.6±98.5 465.8±118.8 572.6±105.2
280.8±35.9 229.1±67.2 215.0±50.2 267.0±46.1 231.9±89.8 304.4±124.8

MGGP-LS-E 320.3±48.4 323.0±55.8 329.4±81.7 436.9±79.3 424.6±150.9 270.7±77.6
295.6±44.8 227.9±48.5 233.7±66.1 262.8±49.9 201.7±56.6 44.9±2.3

MGGP-R-A 348.2±57.7 383.9±99.3 326.2±52.9 437.1±91.9 461.2±121.4 303.6±64.7
296.3±38.4 246.3±67.0 237.6±36.3 264.7±33.2 210.3±47.5 48.9±1.0

MGGP-R-E 351.2±57.4 328.0±79.4 334.4±65.9 440.7±87.1 425.1±96.8 381.1±124.3
321.1±41.7 241.4±57.3 237.5±40.2 258.2±41.3 207.0±49.7 48.5±1.0

MGGP+LCF 146.9±40.0 96.9±29.3 103.0±27.4 113.9±37.9 22.8±4.9 11.8±1.9
85.9±12.5 39.1±3.9 41.5±5.2 35.1±3.0 12.4±1.0 3.5±0.5

MGGP+LCF-CE-A 173.8±68.2 144.5±54.6 123.6±64.3 140.6±49.7 114.8±39.4 382.8±77.5
131.1±28.4 69.5±13.3 70.3±21.0 75.7±21.7 75.7±20.0 237.7±53.6

MGGP+LCF-CE-E 160.3±44.9 134.5±42.8 126.7±60.5 121.3±47.8 59.4±27.3 353.1±62.1
127.4±27.3 71.3±19.1 67.5±15.5 67.5±17.3 47.9±19.1 233.5±53.9

MGGP+LCF-LS-A 167.0±61.8 126.5±41.4 109.0±46.2 123.3±64.7 135.8±41.0 414.1±71.0
135.5±41.8 62.1±13.3 61.9±11.0 64.3±22.7 92.1±18.1 285.9±26.8

MGGP+LCF-LS-E 153.4±39.8 123.2±40.7 119.7±39.4 141.2±39.1 34.1±9.3 15.7±2.5
121.8±27.4 58.9±8.6 69.8±29.5 83.2±20.5 22.3±2.4 7.2±0.4

MGGP+LCF-R-A 184.3±52.1 106.8±34.5 114.8±28.0 133.0±54.5 65.8±52.2 408.7±84.4
126.0±28.8 57.1±8.9 57.8±8.1 57.1±13.1 56.0±51.2 285.1±48.4

MGGP+LCF-R-E 152.0±46.4 140.4±49.5 108.6±25.8 140.1±51.8 28.5±5.7 16.7±3.7
114.4±25.7 54.3±10.1 59.3±13.4 71.8±16.7 21.7±1.1 7.2±0.6

Table7.10. Total number of generations performed by the algorithms (mean ± std. dev.).
The top numbers in each cell show the value for the original experiments, the bottom
numbers show the value for the experiments with simulated time-demanding evaluation.
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7.6 Answers to research questions

With the experiments conducted, we return to the research question we laid out in
Section 7.3 to answer them.

RQ1: Can uniform random sampling replace the inner GA as the algorithm for finding

suitable fitness predictors, while keeping or improving the performance? For the
normal experiments, none of the fitness prediction approaches were, overall, able to
significantly improve the performance of the base algorithm, with the exception of
MGGP+LCF algorithm in the RAUC metric (see Table 7.6).

In the experiments with simulated time-demanding evaluation, random sampling
turned out to be surprisingly effective for GP (from the point of view of the RAUC
metric, see Table 7.9). For MGGP, random sampling turned out to be only very slightly
more effective than not using any fitness prediction, while coevolution provided greater
improvement. For MGGP+LCF, one of the two random sampling configurations proved
to be somewhat effective both in normal experiments, where it brought slightly better
improvement than coevolution, and in simulated time-demanding experiments, where
the performance was comparable to that of coevolution.

There is a possible analogy to mini-batch stochastic gradient descent (SGD) where
the mini-batches are also randomly sampled. Randomly sampled subset provides an
unbiased view on the data which cannot be said about neither of the other fitness
prediction methods. Another supporting evidence is reported in [101], where they
examined possibilities of biasing the selection of fitness cases in lexicase selection [102].
They found out that the biased shufflings did not improve the performance compared
to uniform random shuffling.

From our point of view, it can be stated that random sampling is not inferior and
should be considered as a valid option, especially when parameter tuning is an issue as
there are no parameters associated with the subset selection.

RQ2: Can local search replace the inner GA as the algorithm for finding suitable fitness

predictors, while keeping or improving the performance? In the normal experiments,
the performance of local search was very similar to that of coevolution, as neither
approach was able to improve the performance of the base algorithm very much (see
Tables 7.5 and 7.6).

In the experiments with simulated time-demanding evaluation, local search seems
to perform similarly to coevolution for GP, slightly better than coevolution for
MGGP+LCF, and worse than coevolution for MGGP. It can therefore be said that
unless MGGP algorithm is used, local search can replace the inner GA without a neg-
ative impact on performance while reducing the number of parameters and simplifying
the algorithm.

RQ3: Are fitness predictors beneficial when LCFs (see Chapter 5) are used? Based on the
results, we cannot provide a universal answer to this question. It seems that when LCFs
alone are enough to explain the data (as the WEC-A dataset seems to be), the answer
tends towards no, with the exception of the MGGP+LCF-R-A configuration which has
shown improvement over the baseline both in normal experiments and experiments with
simulated time-demanding evaluation (in terms of RAUC). Regarding other datasets,
there is a net positive effect, but its magnitude is questionable, especially considering
the need to determine the parameters of the fitness prediction method.
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7.7 Summary and conclusion

In this chapter, we analysed the topic of case-based fitness prediction in SR. The main
goal of fitness prediction is to make the algorithm evolve the solutions faster by reducing
the amount of fitness computation through using a subset of training datapoints.

We proposed two modifications of the approach from [94] by replacing the inner GA
with a simple uniform random sampling, and with a simple greedy local search proce-
dure. The potential benefit of using a simpler search algorithm is fewer parameters to
choose and easier implementation, if needed. We also tested how the fitness prediction
approaches compare on larger and more complex datasets than in previous research.

The results have shown that fitness prediction, in general, is not an universally appli-
cable technique. In the basic experiments, we found little to no improvement over the
base algorithms without fitness prediction. However, when we artificially emphasized
the time spent in evaluation, fitness prediction became a significant improvement. This
indicates that implementation and the design of the base algorithm are also important
when considering the usage of fitness prediction. If the algorithm is fast compared to
evaluation, fitness prediction seems to be beneficial, while if it is the other way around,
the benefit is smaller or even none. This also suggests that fitness prediction might be
useful for other, non-SR applications of GP where the evaluation is more computation-
ally demanding.

Our proposal of replacing the inner GA with random sampling turned out to be
effective (better than the coevolution approach) when the base algorithm is vanilla GP
(when evaluation time is emphasized). For MGGP+LCF, random sampling turned
out to be more effective than coevolution but not by such a margin as for vanilla GP.
Random sampling was worse for MGGP. Our modification of replacing the inner GA
with local search turned out to be, overall, about as effective as coevolution, except for
the MGGP algorithm, where coevolution was the best approach.

Based on these results, we consider random sampling and local search as a competi-
tive alternatives to coevolution, while being simpler to implement and requiring lower
number of parameters to be set.
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Chapter8
Conclusion

In this thesis, we focused on the task of symbolic regression by genetic programming-
based algorithms. We first examined the state of the art of symbolic regression where
we have shown that nowadays a common technique is to form and evolve (in algorithms
which use evolution) models in the form of linear combination of multiple (non-linear)
basis functions, utilizing some kind of linear regression to estimate the coefficients of the
combination. We have selected four of the state-of-the-art algorithms and performed
an empirical comparison on a common set of benchmarks which has not been done so
far with these algorithms. We have found out that none of the tested algorithms was
universally superior to the others. We have also found out that the SR algorithms are,
generally, not better than conventional machine learning techniques like random forests
or support vector regression machines, but they still produce a symbolic model which
the conventional algorithms do not. Based on the results we selected the MGGP algo-
rithm for further extensions, although those are applicable to any GPbased algorithm.

To (partially) mitigate both the problems of simultaneous learning of structure and
parameters, and the problem of blindness of search, we proposed an extension to GP-
based algorithms in the form of new type of node, the Linear Combination of Features.
The LCF nodes encapsulate all the problem features in a single linear combination with
coefficients tuned in an informed way by utilizing the error gradient. The LCFs can
easily encode affine transformations of the feature space which we have demonstrated
with simple proof-of-concept experiments. We have subjected several variants of this
extension to testing on both artificial and real-world datasets and we found it over-
all beneficial to the performance of the algorithm when gradient-based tuning of the
parameters is used.

We have also introduced the task of dynamic symbolic regression with small gradual
changes which stems from the value iteration algorithm from the field of reinforcement
learning. We proposed to use the new leaf node for this task as we argued that small
changes can be well captured by adjusting the parameters of the linear combinations.
Both proof-of-concept experiment and testing on RL-based problems has shown that
LCFs indeed help the algorithm to better track the changing target.

Finally, we have examined the technique of fitness prediction based on subsampling
the training dataset. The main idea of this kind of fitness prediction is to save time by
not evaluating the candidate solutions on all datapoints but only those that sufficiently
represent the dataset. We based upon previous work with coevolved predictors, that
introduced adaptation of the size of the subset. We proposed two simplifications of
the algorithm that lie in replacing the coevolution with random sampling and local
search. The first set of experiments did show only little difference between using fitness
predictors and full training set. The most benefit was brought by one of the random
sampling configurations on the MGGP algorithm with LCFs. We hypothesized that the
cause might be the relatively low-cost evaluation compared to the rest of the algorithm.
Therefore, we conduced a second set of experiments where we simulated a more time-
demanding evaluation by introducing an artificial delay to the evaluation process. These
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experiments have shown a clear advantage of the algorithms with fitness prediction. The
coevolution-based approach was most effective for the MGGP algorithm without LCFs,
while the random sampling approach was most effective on vanilla GP and MGGP with
LCFs. The local search approach was the most effective on MGGP+LCF as well, but
not very much on the other algorithms. We conclude that coevolution is not a necessary
component and can be replaced with a simpler algorithm (that requires less parameters
or even none) in some cases.

8.1 Future work

Expand benchmarking study. The comparison presented in Chapter 4 provides a ba-
sic insight into the performance differences between the selected methods and further
benchmarking might reveal patterns not discovered there. The most straightforward
way is to expand the set of algorithms, notably the recent ones we discussed in Chap-
ter 3, and benchmarks (with varying complexities, higher number of dimensions, and
noise), providing a broader and more robust comparison of current state of the art.

Another view on the algorithm comparison may be provided by unifying the sets of
function symbols of all compared algorithms (which would, however, require general-
izations and non-trivial changes to some of the presented algorithms’ implementations)
and possibly other settings as well. The expanded set of benchmarks shall also allow
to tune the available parameters of the methods, and thus reduce the effects caused by
possibly suboptimal parameter settings.

Different change dynamic in dynamic SR. In Chapter 6 we examined dynamic behaviour
in a setting where the target changes at regular time intervals of the length which was
one to four minutes long. It would certainly be interesting to see how would the
algorithms cope with this time getting shorter, up to the extreme of switching to the
next stage every generation. We can reasonably argue that restarting would get only
worse results but the performance of LCFs is unknown, yet worth exploring.

Effectiveness of fitness predictors in context of algorithm design and implementation.

As we have shown in Chapter 7, the effectiveness of fitness prediction greatly increased
when we introduced an artificial delay to the fitness evaluation. Disregarding evaluation,
different algorithms have different computational demands and therefore the amount of
time saved by using fitness prediction can vary. Investigation in this effect could provide
valuable insight as well as similar investigation regarding the actual implementation.
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AppendixA
List of abbreviations

ANN . Artifical Neural Network
API . Application Programming Interface
CE . Coevolution
CGP . Cartesian Genetic Programming
DSR . Deep Symbolic Regression
EA . Evolutionary Algorithm
EDO . Evolutionary Dynamic Optimisation
EFS . Evolutionary Feature Synthesis
EoR-R2 . End of Run R2 score
ERC . Ephemeral Random Constant
FFNN . Feed-Forward Neural Network
FFX . Fast Feature eXtraction
GA . Genetic Algorithm
GLM . Generalized Linear Model
GP . Genetic Programming
GPTIPS . Genetic Programming Toolbox for the Identification of Physical Sys-

tems
GSGP . Geometric Semantic Genetic Programming
GSGP-Red . GSGP with Reduced trees
GUI . Graphical User Interface
KP . Kaizen Programming
LASSO . Least Absolute Shrinkage and Selection Operator
LCBF . Linear Combination of Basis Functions
LCF . Linear Combination of Features
LR . Linear Regression
LS . Local search
MAE . Mean Absolute Error
MGGP . Multi-Gene Genetic Programming
ML . Machine Learning
MRGP . Multiple Regression Genetic Programming
MSE . Mean Squared Error
MWUT . Mann-Whitney U-test
PGE . Prioritized Grammar Enumeration
RAUC . Relative Area Under Curve
RBF . Radial Basis Function
RF . Random Forest
RL . Reinforcement Learning
RMSE . Root Mean Squared Error
RNN . Recurrent Neural Network
SGD . Stochastic Gradient Descent
SNGP . Single-Node Genetic Programming
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SR . Symbolic Regression
SVM . Support Vector Machine
SVR . Support Vector Regression
UPDRS . Unified Parkinson’s Disease Rating Scale
VIA . Value Iteration Algorithm
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AppendixB
RL benchmark data generation

The data for the VIA benchmarks (see Section 6.6.2) are generated by Fuzzy VIA
[103–104] with triangular membership functions. The transition model 𝑓 and the reward
function 𝜌 are given:

𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘) (B.1)
𝑟𝑘+1 = 𝜌(𝑥𝑘, 𝑢𝑘, 𝑥𝑘+1) (B.2)

Next, a set 𝐶 = 𝑐1, ..., 𝑐𝑁 of points distributed over a regular grid in the state space
is defined. Also a vector of triangular membership functions 𝜙 = [𝜙1(𝑥), ..., 𝜙𝑁(𝑥)]𝑇 is
defined such that each 𝜙𝑖(𝑥) is centred (its maximum is) at 𝑐𝑖 and is zero at all other
points, i.e. 𝜙𝑗(𝑐𝑖) = 0, ∀𝑗 ≠ 𝑖. Finally let there be a finite set of discrete control input
values 𝑈 = 𝑢1, ...𝑢𝑀. The V-function is then approximated as

𝑉 (𝑥) = 𝜃⊤𝜙(𝑥) (B.3)

where 𝜃 = [𝜃1, ..., 𝜃𝑁] ∈ 𝗥𝑁 is a vector of parameters found by iterating

𝜃𝑖 ← max
𝑢∈𝑈

[𝜌(𝑐𝑖, 𝑢) + 𝛾𝜃⊤𝜙𝑖(𝑓(𝑐𝑖, 𝑢))] (B.4)

Rewritten as an algorithm, this procedure can be seen in Algorithm B.1.

1 𝜃0 ← 0𝑁
2 repeat in every iteration ℓ = 0, 1, 2, · · ·
3 for 𝑖 = 1, · · · , 𝑁 do

4 𝜃ℓ+1,𝑖 ← max𝑢∈𝑈 [𝜌(𝑐𝑖, 𝑢) + 𝛾𝜃⊤
ℓ 𝜙𝑖(𝑓(𝑐𝑖, 𝑢))]

5 end

6 until ‖𝜃𝑙+1 − 𝜃𝑙‖∞ ≤ 𝜀𝑉 𝐼

7 output ̂𝜃∗ = 𝜃ℓ+1

AlgorithmB.1. Fuzzy V-iteration.

For the benchmarks used in Chapter 6, all the state points were identical to the
centers of the membership functions so the V-function is determined by the values of
𝜃ℓ only. To generate the consecutive stages, not only the final ̂𝜃∗ is used but also all
the intermediate values of 𝜃ℓ that form these stages.
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AppendixC
Detailed performance plots of fitness predic-

tion approaches

C.1 Regular experiments

Boxplots of results from Section 7.4.7 (figures start on the next page).
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FigureC.1. Boxplots of results on the ASN dataset. Subfigures (a) and (b) show results for
the GP base algorithm, subfigures (c) and (d) show results for the MGGP base algorithm,
and subfigures (e) and (f) show results for the MGGP+LCF base algorithm. Subfigures
(a), (c), and (e) show the EoR-R2 score, while subfigures (b), (d), and (f) show the relative
area under curve. Each configuration has a pair of boxplots, where the left one shows the
training data performance and the right one shows the testing data performance. Note:
for the sake of clarity, a few outliers are cropped from the plots – one in subfigure (d): for
test-set MGGP at -3.25; two in subfigure (f): for test-set MGGP+LCF-CE-A at -247586.24

and test-set MGGP+LCF-LS-A at -60.37 and -5.53.
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Figure C.2. Boxplots of results on the ParkinsonMotor dataset. Subfigures (a) and (b)
show results for the GP base algorithm, subfigures (c) and (d) show results for the MGGP
base algorithm, and subfigures (e) and (f) show results for the MGGP+LCF base algorithm.
Subfigures (a), (c), and (e) show the EoR-R2 score, while subfigures (b), (d), and (f) show
the relative area under curve. Each configuration has a pair of boxplots, where the left one
shows the training data performance and the right one shows the testing data performance.
Note: for the sake of clarity, a few outliers are cropped from the plots – one in subfigure
(b) for test-set GP-LS-A at -2.08, one in subfigure (e) for test-set MGGP+LCF-R-A at

-3.10, and one in subfigure (f) for test-set MGGP+LCF-CE-A at -318544.15.
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FigureC.3. Boxplots of results on the ParkinsonTotal dataset. Subfigures (a) and (b) show
results for the GP base algorithm, subfigures (c) and (d) show results for the MGGP base
algorithm, and subfigures (e) and (f) show results for the MGGP+LCF base algorithm.
Subfigures (a), (c), and (e) show the EoR-R2 score, while subfigures (b), (d), and (f) show
the relative area under curve. Each configuration has a pair of boxplots, where the left one
shows the training data performance and the right one shows the testing data performance.
Note: for the sake of clarity, a few outliers are cropped from the plots – one in subfigure

(f) for test-set MGGP+LCF-CE-A at -1.43.
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Figure C.4. Boxplots of results on the puma8NH dataset. Subfigures (a) and (b) show
results for the GP base algorithm, subfigures (c) and (d) show results for the MGGP base
algorithm, and subfigures (e) and (f) show results for the MGGP+LCF base algorithm.
Subfigures (a), (c), and (e) show the EoR-R2 score, while subfigures (b), (d), and (f) show
the relative area under curve. Each configuration has a pair of boxplots, where the left one
shows the training data performance and the right one shows the testing data performance.
Note: for the sake of clarity, a few outliers are cropped from the plots – one in subfigure

(f) for test-set MGGP+LCF-R-A at -0.26.

126



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C.1 Regular experiments

GP

GP
-C

E-
A

GP
-C

E-
E

GP
-L

S-
A

GP
-L

S-
E

GP
-R

-A

GP
-R

-E

0.3

0.4

0.5

0.6

0.7
Eo

R 
te

st
-s

et
 R

2

(a) GP – EoR-R2

GP

GP
-C

E-
A

GP
-C

E-
E

GP
-L

S-
A

GP
-L

S-
E

GP
-R

-A

GP
-R

-E

0.3

0.4

0.5

0.6

0.7

RA
UC

(b) GP – RAUC

M
GG

P

M
GG

P-
CE

-A

M
GG

P-
CE

-E

M
GG

P-
LS

-A

M
GG

P-
LS

-E

M
GG

P-
R-

A

M
GG

P-
R-

E0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Eo
R 

te
st

-s
et

 R
2

(c) MGGP – EoR-R2

M
GG

P

M
GG

P-
CE

-A

M
GG

P-
CE

-E

M
GG

P-
LS

-A

M
GG

P-
LS

-E

M
GG

P-
R-

A

M
GG

P-
R-

E0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

RA
UC

(d) MGGP – RAUC

M
GG

P+
LC

F

M
GG

P+
LC

F-
CE

-A

M
GG

P+
LC

F-
CE

-E

M
GG

P+
LC

F-
LS

-A

M
GG

P+
LC

F-
LS

-E

M
GG

P+
LC

F-
R-

A

M
GG

P+
LC

F-
R-

E0.70
0.72
0.74
0.76
0.78
0.80
0.82
0.84

Eo
R 

te
st

-s
et

 R
2

(e) MGGP+LCF – EoR-R2

M
GG

P+
LC

F

M
GG

P+
LC

F-
CE

-A

M
GG

P+
LC

F-
CE

-E

M
GG

P+
LC

F-
LS

-A

M
GG

P+
LC

F-
LS

-E

M
GG

P+
LC

F-
R-

A

M
GG

P+
LC

F-
R-

E

0.675
0.700
0.725
0.750
0.775
0.800
0.825
0.850

RA
UC

(f) MGGP+LCF – RAUC

Figure C.5. Boxplots of results on the SupCon dataset. Subfigures (a) and (b) show
results for the GP base algorithm, subfigures (c) and (d) show results for the MGGP base
algorithm, and subfigures (e) and (f) show results for the MGGP+LCF base algorithm.
Subfigures (a), (c), and (e) show the EoR-R2 score, while subfigures (b), (d), and (f) show
the relative area under curve. Each configuration has a pair of boxplots, where the left one
shows the training data performance and the right one shows the testing data performance.
Note: for the sake of clarity, a few outliers are cropped from the plots – two in subfigure (c)
for test-set MGGP-LS-A at -4.44, two in subfigure (d) for test-set MGGP-LS-A at -0.48,

and one in subfigure (f) for test-set MGGP+LCF-LS-A at -2.40.
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Figure C.6. Boxplots of results on the WEC-A dataset. Subfigures (a) and (b) show
results for the GP base algorithm, subfigures (c) and (d) show results for the MGGP base
algorithm, and subfigures (e) and (f) show results for the MGGP+LCF base algorithm.
Subfigures (a), (c), and (e) show the EoR-R2 score, while subfigures (b), (d), and (f) show
the relative area under curve. Each configuration has a pair of boxplots, where the left one
shows the training data performance and the right one shows the testing data performance.
Note: for the sake of clarity, a few outliers are cropped from the plots – two in subfigure (a):
for train-set and test-set GP-LS-A at -140.74 and -140.12 respectively; six in subfigure (c):
for train-set and test-set MGGP-R-E both at 0.85, for train-set and test-set MGGP-R-A
both at 0.85, and for train-set and test-set MGGP-LS-E at 0.92 and 0.93 respectively.
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C.2 Experiments with simulated time-demanding

evaluation

Boxplots of results from Section 7.5.1 (figures start on the next page).
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Figure C.7. Boxplots of results on the ASN dataset for experiments with simulated time-
demanding evaluation. Subfigures (a) and (b) show results for the GP base algorithm,
subfigures (c) and (d) show results for the MGGP base algorithm, and subfigures (e) and
(f) show results for the MGGP+LCF base algorithm. Subfigures (a), (c), and (e) show the
EoR-R2 score, while subfigures (b), (d), and (f) show the relative area under curve. Each
configuration has a pair of boxplots, where the left one shows the training data performance
and the right one shows the testing data performance. Note: for the sake of clarity, a few
outliers are cropped from the plots – one in subfigure (c): for test-set MGGP at 0.09; one
in subfigure (e): for test-set MGGP+LCF-LS-A at -7.02; one in subfigure (f): for test-set

MGGP+LCF-CE-A at -283340.17.
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Figure C.8. Boxplots of results on the ParkinsonMotor dataset for experiments with
simulated time-demanding evaluation. Subfigures (a) and (b) show results for the GP
base algorithm, subfigures (c) and (d) show results for the MGGP base algorithm, and
subfigures (e) and (f) show results for the MGGP+LCF base algorithm. Subfigures (a),
(c), and (e) show the EoR-R2 score, while subfigures (b), (d), and (f) show the relative
area under curve. Each configuration has a pair of boxplots, where the left one shows the
training data performance and the right one shows the testing data performance. Note:
for the sake of clarity, a few outliers are cropped from the plots – one in subfigure (a):
for test-set GP-LS-A at -4.53; one in subfigure (b): for test-set GP-LS-A at -2.58; one in
subfigure (e): for test-set MGGP+LCF-CE-A at -34.13; two in subfigure (f): for test-set

MGGP+LCF-R-A at -3.09 and for test-set MGGP+LCF-CE-A at -0.90.
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Figure C.9. Boxplots of results on the ParkinsonTotal dataset for experiments with sim-
ulated time-demanding evaluation. Subfigures (a) and (b) show results for the GP base
algorithm, subfigures (c) and (d) show results for the MGGP base algorithm, and subfig-
ures (e) and (f) show results for the MGGP+LCF base algorithm. Subfigures (a), (c), and
(e) show the EoR-R2 score, while subfigures (b), (d), and (f) show the relative area under
curve. Each configuration has a pair of boxplots, where the left one shows the training

data performance and the right one shows the testing data performance.
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Figure C.10. Boxplots of results on the puma8NH dataset for experiments with simulated
time-demanding evaluation. Subfigures (a) and (b) show results for the GP base algorithm,
subfigures (c) and (d) show results for the MGGP base algorithm, and subfigures (e) and
(f) show results for the MGGP+LCF base algorithm. Subfigures (a), (c), and (e) show the
EoR-R2 score, while subfigures (b), (d), and (f) show the relative area under curve. Each
configuration has a pair of boxplots, where the left one shows the training data performance
and the right one shows the testing data performance. Note: for the sake of clarity, a few
outliers are cropped from the plots – one in subfigure (e): for test-set MGGP+LCF-R-A

at -198.22; one in subfigure (f): for test-set MGGP+LCF-R-A at -6.73.
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Figure C.11. Boxplots of results on the SupCon dataset for experiments with simulated
time-demanding evaluation. Subfigures (a) and (b) show results for the GP base algorithm,
subfigures (c) and (d) show results for the MGGP base algorithm, and subfigures (e) and
(f) show results for the MGGP+LCF base algorithm. Subfigures (a), (c), and (e) show the
EoR-R2 score, while subfigures (b), (d), and (f) show the relative area under curve. Each
configuration has a pair of boxplots, where the left one shows the training data performance
and the right one shows the testing data performance. Note: for the sake of clarity, a few
outliers are cropped from the plots – two in subfigure (c) for test-set MGGP-LS-E at 0.32.
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Figure C.12. Boxplots of results on the WEC-A dataset for experiments with simulated
time-demanding evaluation. Subfigures (a) and (b) show results for the GP base algorithm,
subfigures (c) and (d) show results for the MGGP base algorithm, and subfigures (e) and
(f) show results for the MGGP+LCF base algorithm. Subfigures (a), (c), and (e) show the
EoR-R2 score, while subfigures (b), (d), and (f) show the relative area under curve. Each
configuration has a pair of boxplots, where the left one shows the training data performance
and the right one shows the testing data performance. Note: for the sake of clarity, a few
outliers are cropped from the plots – eight in subfigure (a): for train-set and test-set GP-
LS-A at -150.35 and -151.05 respectively, for train-set and test-set GP at -96.87 and -97.65
respectively, for train-set and test-set GP-LS-E at -41.85 and -43.10 respectively, and for

train-set and test-set GP-CE-A at -25.84 and -26.01 respectively.
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